WO2010013686A1 - 連続鋳造に使用するノズル用耐火物及び連続鋳造用ノズル - Google Patents

連続鋳造に使用するノズル用耐火物及び連続鋳造用ノズル Download PDF

Info

Publication number
WO2010013686A1
WO2010013686A1 PCT/JP2009/063371 JP2009063371W WO2010013686A1 WO 2010013686 A1 WO2010013686 A1 WO 2010013686A1 JP 2009063371 W JP2009063371 W JP 2009063371W WO 2010013686 A1 WO2010013686 A1 WO 2010013686A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractory
layer
inner hole
side layer
intermediate layer
Prior art date
Application number
PCT/JP2009/063371
Other languages
English (en)
French (fr)
Inventor
勝美 森川
昭成 佐々木
義隆 平岩
慶一郎 根葉
賢司 定野
福永 新一
田中 和久
Original Assignee
黒崎播磨株式会社
新日本製鐵株式会
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008193730A external-priority patent/JP5134463B2/ja
Priority claimed from JP2008193734A external-priority patent/JP5134464B2/ja
Priority claimed from JP2008203386A external-priority patent/JP5129684B2/ja
Application filed by 黒崎播磨株式会社, 新日本製鐵株式会 filed Critical 黒崎播磨株式会社
Priority to KR1020117003481A priority Critical patent/KR101310737B1/ko
Priority to EP09802929.1A priority patent/EP2322300B8/en
Priority to CN200980137914.XA priority patent/CN102164695B/zh
Priority to BRPI0916819-2A priority patent/BRPI0916819B1/pt
Publication of WO2010013686A1 publication Critical patent/WO2010013686A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/50Pouring-nozzles
    • B22D41/52Manufacturing or repairing thereof
    • B22D41/54Manufacturing or repairing thereof characterised by the materials used therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/50Pouring-nozzles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C11/00Multi-cellular glass ; Porous or hollow glass or glass particles
    • C03C11/002Hollow glass particles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/013Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics containing carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/04Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
    • C04B35/043Refractories from grain sized mixtures
    • C04B35/0435Refractories from grain sized mixtures containing refractory metal compounds other than chromium oxide or chrome ore
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/057Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on calcium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/36Glass starting materials for making ceramics, e.g. silica glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/401Alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron

Definitions

  • This invention relates to the nozzle for continuous casting which has arrange
  • the “inner hole side layer” is present on the inner hole side of the intermediate layer in the horizontal cross section at any position where the molten steel passage direction (vertical direction) of the continuous casting nozzle is the entire length.
  • the refractory layer is generically referred to, and includes the case where the inner hole side layer is composed of a plurality of layers, and the thermal expansion coefficient in that case is the maximum value of any one of the inner hole side layers.
  • the “peripheral side layer” is a generic term for the refractory layer existing on the outer peripheral side of the intermediate layer in the cross section, and the outer peripheral side layer is composed of a plurality of layers (for example, AG quality).
  • the coefficient of thermal expansion is the minimum value of any one of the outer peripheral layers.
  • the outer peripheral side layer and the inner hole side layer are separately formed, and the matrix of the refractory forming each of these layers has no continuity, that is, the mutually independent formed bodies can be deformed.
  • the present invention relates to a continuous casting nozzle having a structure fixed with a refractory for an intermediate layer (also referred to as “interpolation type” in the present invention).
  • a tubular refractory having an inner hole through which a high-temperature object stays or passes has a temperature gradient between the inner hole side and the outer peripheral side.
  • the inner hole side or the outer peripheral side is rapidly heated, and this phenomenon becomes remarkable.
  • Such temperature gradients cause stress distortion inside the refractory regardless of whether the refractory is a single layer or multiple layers, and cause damage such as external cracks in the tubular refractory. It is one.
  • a refractory constituting a continuous casting nozzle contains a large amount of graphite, or fused silica with a small thermal expansion amount is added or increased. There is a reduction in thermal stress due to high thermal conductivity, low expansion, low elastic modulus and the like.
  • increasing the amount of graphite or fused silica decreases oxidation resistance and increases reactivity with molten steel components, and thus has a detrimental effect on wear resistance, corrosion resistance, and the like, particularly on the inner hole side.
  • a refractory material having excellent thermal shock resistance is applied to the main body portion of the continuous casting nozzle, that is, the outer peripheral side layer to form the basic skeleton portion of the continuous casting nozzle.
  • the life of the continuous casting nozzle has been extended by disposing a refractory material having excellent wear resistance and corrosion resistance on the inner hole side layer having the inner hole surface in contact with the flow.
  • the immersion nozzle is equipped with a refractory layer containing a CaO component highly reactive with the alumina component on the inner surface of the immersion nozzle. Nozzle applications are being promoted.
  • Such a high-performance refractory has a small content of graphite or the like having a large function of relaxing thermal expansion and contains a large amount of refractory aggregate having a high thermal expansion property.
  • the difference in thermal expansion between the inner hole side layer and the outer peripheral side layer is also due to the increase in thermal gradient due to the increase in the thermal conductivity relative to the outer peripheral side layer of the inner hole side layer due to the reduction of the carbon content.
  • the thermal stress caused by it tends to increase more and more, the risk of destruction of the continuous casting nozzle, especially the outer peripheral layer, is further increased.
  • Patent Document 1 discloses a continuous casting nozzle including a refractory sleeve containing 20 mass% or more of CaO.
  • a fire-resistant bone is applied to the outer peripheral surface of the sleeve or a part or the whole of the inner-hole wall surface of the body to which the sleeve is mounted, or to the joint formed between the inserted sleeve and the inner-hole wall surface.
  • the joint structure of the refractory sleeve for the inner hole of the nozzle for continuous casting in which the porosity of the dried joint material adhesive is adjusted to 15 to 90% by applying an adhesive mixed with a binder and a binder is shown.
  • the porosity of the joint adhesive is adjusted by increasing or decreasing the solvent and binder constituting the adhesive or changing the filling amount. This is to obtain the stress relaxation ability by the porosity of the mortar, that is, the space in the mortar structure, the degree of which is to increase or decrease or change the filling amount of the solvent and binder constituting the mortar (adhesive). It is something to be adjusted with.
  • the mortar layer Even if the inner hole side layer can be fixed to the outer peripheral side layer (the main body of the nozzle for continuous casting) in a predetermined arrangement with such a mortar layer, the mortar layer inevitably has a density. Since the structure is low and the structure is weak, the structure is weak and low in strength. When relieving stress during the heat, the structure can be destroyed by weak external forces such as when handling the nozzle. It becomes difficult to maintain. For this reason, there exists a problem of becoming easy to cause peeling, a shift
  • the casting nozzle in which the inner hole side layer and the outer peripheral side layer are separated from each other by this separation layer is disclosed.
  • Patent Document 2 has an adhesive portion with less than 20% between the inner hole side layer and the outer peripheral side layer. Even if it is a slight adhesion portion, the cracking stress is transmitted from the inner hole side layer to the outer circumference side layer through this adhesion portion, and therefore, it becomes a starting point of the cracking phenomenon. Further, when the bonded portion is 0%, a basic problem that the inner hole side layer cannot be held as a structure occurs. Furthermore, in a joint of a so-called space such as the separation layer of Patent Document 2, the molten steel easily enters the joint, and the refractory is caused by solidification shrinkage of the molten steel and expansion of the steel during heating when subjected to a temperature change. There arises a problem that a crack occurs or the inner hole side layer is peeled off because the inner hole side layer is not bonded to the outer peripheral side layer.
  • the stress relieving layer of the continuous casting nozzle with a highly expanded inner hole side layer has a function to relieve stress due to thermal expansion from the inner hole side layer, and suppresses penetration of molten steel and slag components.
  • Such large pores do not exist continuously, and have the properties and shape retaining properties that can obtain the necessary thickness and packed structure in installation work, and do not lead to stress due to thermal expansion of the inner hole side layer It must be strong enough not to break depending on the external force, and it must have a support function that prevents the inner hole side layer from peeling off from the outer peripheral side layer, but a mortar layer that combines these functions has not yet been obtained. .
  • An object of the present invention is to provide an interpolated continuous casting nozzle in which a highly functional layer such as high corrosion resistance and high adhesion prevention is arranged on the inner hole side to improve durability. It prevents the outer peripheral layer from being cracked due to the difference in thermal expansion from the outer peripheral layer that is the material, and can fix the inner hole side layer to the outer peripheral layer (the main body of the nozzle for continuous casting) in a predetermined arrangement.
  • An object of the present invention is to provide a refractory material (mortar) for an intermediate layer of a continuous casting nozzle having properties and a continuous casting nozzle using the refractory material for the intermediate layer.
  • Another object of the present invention is to provide a refractory material (mortar) for an intermediate layer of a nozzle for continuous casting having a function of reliably preventing peeling of an inner hole side layer during casting in addition to the above-mentioned properties, and an intermediate layer thereof
  • Another object of the present invention is to provide a nozzle for continuous casting using a refractory for the purpose.
  • Still another object of the present invention is to provide a nozzle for continuous casting using a refractory material (mortar) for an intermediate layer suitable when an MgO—CaO-based material is applied to the inner hole side layer.
  • a refractory material material for an intermediate layer suitable when an MgO—CaO-based material is applied to the inner hole side layer.
  • the present invention is a.
  • the hollow refractory aggregate is, containing SiO 2 of 70 wt% or more and the alkali metal oxides and alkaline earth metal oxides vitreous containing 1% by weight to 10% by weight in total tissue
  • (6) It consists of a tubular refractory structure having an inner hole through which molten metal passes in the axial direction, and the thermal expansion of the refractory in the inner hole side layer in a part or all of the region of the tubular refractory structure
  • the inner hole side layer and the outer peripheral side layer are independent molded bodies, and the molded body of the inner hole side layer is fixed to the molded body of the outer peripheral side layer by an intermediate layer having a contractibility,
  • the adhesive strength in the hot in a non-oxidizing atmosphere 1000 ° C. or higher and 1500 ° C.
  • K (%) of the intermediate layer satisfies the following formula 1.
  • Tm Initial thickness of the intermediate layer at room temperature (mm)
  • ⁇ i Maximum coefficient of thermal expansion (%) in the range from room temperature to 1500 ° C. of the refractory on the inner hole side layer
  • ⁇ o Thermal expansion coefficient (%) at the temperature at the start of steel passing of the refractory on the outer peripheral side layer (Claim 6)
  • the intermediate layer includes 10% by volume to 75% by volume of a hollow refractory aggregate that satisfies a ratio of the average radius R of the grains to the average wall thickness t of the grains of R / t ⁇ 10, and As a proportion of the balance other than the hollow refractory aggregate, one or more of single metals or alloys of Al, Mg, and Si are converted into only those metal components, and the total is 0.5 mass% or more and 15 mass%.
  • the inner hole side layer includes a CaO component and a MgO component in a total amount of 80% by mass or more, and a mass ratio of CaO to MgO (CaO / MgO) is 0.2 to 1.5,
  • the mass ratio of the CaO content in the inner hole side layer in the inner hole side layer is divided by the mass ratio in the intermediate layer of the total amount of Al 2 O 3 , SiO 2 and alkali metal oxide in the intermediate layer.
  • the failure of the continuous casting nozzle due to cracking or splitting of the outer peripheral layer by the inner hole side layer is caused when the thermal expansion of the inner hole side layer is larger than the thermal expansion of the outer peripheral side layer, particularly the refractory of the inner hole side layer.
  • This is noticeably generated when the thermal expansion characteristic (synonymous with the coefficient of linear expansion associated with temperature rise in the present invention) is larger than the thermal expansion characteristic of the refractory on the outer peripheral side layer.
  • the stress due to the thermal expansion of the inner hole side layer acts as a radial compressive stress in the horizontal section of the continuous casting nozzle, and the continuous casting nozzle also has an outer peripheral side layer at the end in the long side axial direction.
  • the axial compressive stress also acts on the outer peripheral layer.
  • the present invention As a means for imparting a function to relieve stress between the inner hole side layer and the outer peripheral side layer having such a relationship, in the present invention, at least after the preheating is finished, at least the start of passing the molten steel (in the present invention
  • the start of casting in the submerged nozzle and the start of pouring of molten steel into the tundish of the long nozzle are synonymous. The same shall apply hereinafter.
  • An intermediate layer having a contractibility is installed at the time.
  • the thermal expansion of the inner hole side layer acts as a compressive stress on the intermediate layer without directly acting on the outer peripheral side layer.
  • the intermediate layer itself can reduce the stress due to expansion of the inner hole side layer by reducing the thickness in the radial direction or the axial direction according to the compressive stress, in other words, by reducing its volume. It becomes.
  • contractibility such a property that the thickness and volume can be reduced is referred to as contractibility.
  • the shrinkable target range to be obtained by the intermediate layer will be described below.
  • a refractory material having a cylindrical shape and a practically minimum radial structure having an outer peripheral layer of an Al 2 O 3 -graphite material having a maximum tensile strength of 6 MPa and having a practically minimum radial structure (outer periphery)
  • the inner diameter of the side layer is 80 mm and the outer diameter of the outer layer is 135 mm
  • pressure is applied from the inner wall surface of the pipe, it will break if a pressure of about 2.5 MPa is applied to the inner wall surface by calculation from the equation of the wall pressure cylinder. Will come.
  • the intermediate layer itself needs to exhibit deformation behavior. That is, the stress applied from the inner hole side layer to the outer peripheral side layer needs to be stopped to 2.5 MPa or less by deformation (reduction) of the intermediate layer.
  • the tensile stress generated in the outer peripheral side layer is 2.5 MPa or less, and in order to further improve safety, the tensile stress should be suppressed to as small as possible.
  • the intermediate layer itself needs to exhibit a deformation behavior under such a compressive stress value that results in a tensile stress value.
  • the contractibility required for the intermediate layer can be expressed by the contraction rate K (%) of the following equation.
  • Tm inner diameter of outer peripheral layer (mm)
  • Tm (initial) thickness (mm) of the intermediate layer at room temperature
  • ⁇ i Maximum coefficient of thermal expansion (%) in the range from room temperature to 1500 ° C. of the refractory on the inner hole side layer
  • ⁇ o Thermal expansion coefficient (%) at the temperature at the start of steel passing of the refractory on the outer peripheral side layer
  • Di and Do are the positions of the outer peripheral side surfaces of the inner hole side layer for the planar shape of the inner hole side layer and the outer peripheral side layer on the cross section in the direction horizontal to the axial direction of the target portion in the entire area in the axial direction, It means the diameter of the position of the inner hole side surface of the outer peripheral side layer.
  • the position of the outer peripheral side surface of the inner hole side layer is Di and the position of the outer peripheral side layer on the same straight line extending radially from the center of the planar shape of the inner hole side layer on the plane. If the position of the side surface of the inner hole is Do, the above equation 1 may be satisfied for the entire shape.
  • the contractibility at the end in the axial direction is expressed by the above formula 1 with respect to the planar shape of the inner hole side layer and the outer peripheral side layer on the axial section passing through the shaft (the center of the horizontal section nozzle for continuous casting).
  • Di is the axial length to the other end with the axially outer side surface position of the inner hole side layer as one end
  • Do is the other end with the axial inner side surface position of the outer peripheral side layer as one end. What is necessary is just to substitute with the length of the axial direction of the outer peripheral side layer to a part.
  • ⁇ i is the maximum coefficient of thermal expansion (%) in the range from room temperature to 1500 ° C. of the refractory in the inner hole side layer, which means that the maximum value of the refractory in the inner hole side layer is substantially up to the molten steel temperature.
  • the outer peripheral layer is the same as the room temperature (temperature of the surrounding environment), and at this time ⁇ o is an expansion coefficient at room temperature, which is a reference point for measuring the thermal expansion coefficient, That is, it can be regarded as almost “zero”, and the above formula 1 becomes the formula 2.
  • the shrinkage ratio K that satisfies this expression 2 is the shrinkage ratio that takes into account the most severe conditions, that is, the case where the difference in thermal expansion between the inner hole side layer and the outer peripheral side layer is maximized. If it is greater than or equal to the shrinkable rate, the outer peripheral layer will not break, but in order to ensure safety that is less likely to break, the shrinkable rate K that satisfies Equation 2 under all operating conditions is set. preferable.
  • K in the formulas 1 and 2 is a target in a non-oxidizing atmosphere in a reducing gas or inert gas atmosphere or in an oxidizing gas atmosphere such as air by applying an antioxidant to the surface.
  • the intermediate layer when using an actual continuous casting nozzle is a non-oxidizing atmosphere. (If the target sample is oxidized in the measurement of K, the exact properties cannot be grasped.)
  • the shrinkage rate of the refractory for the intermediate layer is preferably 10% or more and 80% or less.
  • the expansion allowance of the inner hole side layer can be reduced, but if it is less than 10%, the inner hole side layer and the outer peripheral side layer Due to the difference in coefficient of thermal expansion, the thickness of the intermediate layer must be increased, and the wall thickness of the nozzle for continuous casting is limited. As a result, the thickness of the main body material is reduced, causing a problem in strength as a structure. .
  • the thickness is greater than 80%, the thickness of the intermediate layer can be designed to be thin, so the above-described problems are unlikely to occur.
  • the inner diameter of the outer peripheral layer which is near the minimum size of a commonly used continuous casting nozzle, is approximately ⁇ 80 mm
  • the thermal expansion coefficient of the inner hole side layer is 2.0%
  • the thermal expansion coefficient of the outer peripheral layer is Assuming a condition of 0.8%, the thickness of the intermediate layer is about 4 mm, the contractibility required for the refractory of the intermediate layer is 10%
  • the inner diameter of the outer peripheral layer near the maximum size is about ⁇ 150 mm
  • the thickness of the intermediate layer is about 1.2 mm, which is necessary for the refractory of the intermediate layer.
  • the contractibility is about 78%.
  • the contractibility of the refractory constituting the intermediate layer is mainly obtained by a hollow refractory aggregate which is one of constituent materials of the refractory.
  • This hollow refractory aggregate provides shrinkability, and the main mechanisms that relieve stress due to thermal expansion are the following two points.
  • the hollow refractory aggregate is pressurized with a stress greater than its breaking strength due to thermal expansion of the inner hole side layer, the wall surface of the hollow refractory aggregate is destroyed and the volume is reduced, and the space volume generated by the destruction is reduced. It becomes an absorption margin for thermal expansion of the inner hole side layer. This process occurs mainly when a load is applied before the softening of the hollow aggregate particles.
  • the wall of the hollow refractory aggregate softens (the degree of softening varies depending on the temperature), and when the softened hollow refractory aggregate is pressurized, the volume is easily deformed.
  • the space volume generated by the shrinkage and the softening deformation or reduction serves as an absorption margin for the thermal expansion of the inner hole side layer.
  • the lower limit value of the shrinkable ratio can be based on a measured value at 1000 ° C.
  • the upper limit value can be based on a measured value at 1500 ° C. (both in a non-oxidizing atmosphere).
  • the standard of the lower limit of the shrinkable rate can be 1000 ° C.
  • the shrinkability of the refractory including the hollow refractory aggregate is almost caused by the destruction of the hollow refractory aggregate (strictly speaking, the refractory
  • the shrinkage characteristics of the matrix structure are also slightly added), and the characteristics of this destruction are almost the same in the temperature range from room temperature to about 1000 ° C., and the volatile components in the binder component are sufficiently scattered, so that the carbonaceous bond structure is Completion of the connective structure that forms the basis of the matrix of the refractory is considered to indicate that the contractibility is almost the lower limit, so that evaluation with little variation is possible, and from 1000 ° C. This is because, in the high temperature range of 1500 ° C.
  • the softening characteristic of the hollow refractory aggregate is added to the destruction of the hollow refractory aggregate, and the shrinkage rate tends to be higher than 1000 ° C.
  • the reason why the upper limit of the shrinkable ratio can be set to 1500 ° C. is that the temperature of the intermediate layer is about 1500 ° C. with respect to the temperature of the molten steel whose inner hole surface is the maximum temperature.
  • the contractibility of the present invention can be measured by the following method, and this measured value can be equated with the contractibility.
  • a columnar refractory ( ⁇ 20 ⁇ 5 mmt) made of a mixture that has been molded at the same pressure as the molding pressure and has the property of being shrinkable after heat treatment is placed in a carbon-based restraint space having the same shape as the columnar refractory. Then, heat treatment is performed in a predetermined temperature rising pattern in a non-oxidizing atmosphere to eliminate the combustible component, and a cylindrical sample (about ⁇ 20 ⁇ about 5 mmt) is obtained. The columnar sample after this heat treatment is placed between the end faces of two refractory jigs having a shape of ⁇ 20 ⁇ 40 mmL.
  • a cylindrical sample guide made of a refractory material having an inner diameter of 20 mm / outer diameter of 50 mm and a height of 78 mm in order to prevent the sample from peeling from the side surface. May be extrapolated to the sample and used as a measurement sample.
  • the solvent may penetrate into the open pores of the end face of the refractory test piece, so that the shrinkage rate may change, so that the solvent is soaked in advance, wax treatment, etc. It is preferable to use a refractory test piece that is difficult to penetrate through.
  • This measurement sample is placed in a furnace of a material testing machine that can control the temperature, atmosphere, and pressurization rate, heated to a predetermined temperature in a non-oxidizing atmosphere, held until the temperature becomes uniform, and then heated. Start pressure and take measurements. First, the initial thickness t 0 (mm) of the cylindrical sample in a non-pressurized state is measured. Next, after holding the measurement sample at a predetermined temperature, the cylindrical sample is compressed from the up and down direction at a crosshead moving speed of 0.001 to 0.01 mm / sec and pressurized to 2.5 MPa. The displacement amount h 1 (mm) is measured.
  • Core drilling of ⁇ 20mm from the outer peripheral side layer to the central axis at right angles to the refractory central axis, and an integrated inner hole and outer peripheral side of about ⁇ 20mm including the inner hole side layer, intermediate layer and outer peripheral side layer A core sample with a curvature is obtained.
  • the shrinkage ratio of the intermediate layer is such that the upper and lower surfaces of the core sample are processed horizontally and bonded to a refractory jig so that they can be uniformly pressed, or a refractory jig with the same curvature as the upper and lower surfaces of the core sample.
  • the sample for measurement is smaller than the size, it is possible to measure and convert the conditions such as the unit area, unit length, etc. to the same extent as described above by calculation.
  • the initial thickness t 0 (mm) of the intermediate layer in the pressure state is accurately measured, the displacement amount h 1 of the intermediate layer is measured in a non-oxidizing atmosphere at a predetermined temperature, and the intermediate layer has no intermediate layer.
  • the displacement amount h 2 of the blank value to calculate the measured Kachijimi rate K.
  • the contractibility for stress relaxation can be obtained mainly by the hollow refractory aggregate in the intermediate layer as described above.
  • the size of the contractibility is substantially equal to the volume ratio of the hollow refractory aggregate in the refractory for the intermediate layer. That is, when the intermediate layer contains 10% by volume or more and 75% by volume or less of the hollow refractory aggregate, the shrinkable ratio can satisfy the requirement of 10% or more and 80% or less at 1000 ° C.
  • the matrix portion other than the hollow refractory aggregate also has a slight contractibility, but by including 10% by volume or more and 75% by volume or less of the hollow refractory aggregate, there is no difference in the contractibility of the matrix portion. It becomes possible to obtain a stable design contractibility.
  • the volume% of the hollow refractory aggregate is the volume calculated from the average particle density and the weight of the hollow refractory aggregate (that is, the volume of the hollow refractory aggregate itself, the volume of closed pores in the aggregate, and the unevenness of the aggregate surface.
  • the method for calculating the volume% of hollow refractory aggregate is the most accurate method based on the raw material density used during blending, but it is based on the two-dimensional information of the hollow refractory aggregate from micrographs.
  • the numerical value of the volume fraction of the hollow refractory aggregate can be substituted by image analysis such as a line segment method.
  • the volume when the container is filled with each of the hollow refractory aggregate and the remaining matrix part can be used.
  • the hollow refractory aggregate used in the present invention has a space inside and the outer wall is formed by a wall.
  • the compressive strength is less than 1000 ° C. (it can be evaluated at room temperature because there is almost no change to room temperature).
  • the ratio (R / t) of the average radius R of the hollow refractory aggregate to the average wall thickness t (R / t) needs to be 10 or more.
  • R / t is preferably 60 or less. If it exceeds 60, the hollow refractory aggregate may be destroyed by the mechanical impact such as the handling of the nozzle for continuous casting in which the intermediate layer of the present invention is installed or the stability of the intermediate layer may be impaired. This is because it becomes larger.
  • the average radius refers to a value obtained by simply averaging the maximum dimension and the minimum dimension of the projection or the cross section near the center of the hollow refractory aggregate particles alone, or a weighted average value of a plurality of arbitrary points.
  • the size of the hollow refractory aggregate satisfying the above R / t ratio (average radius R of the grains) is also distributed uniformly in the intermediate layer to make the contractible behavior in the intermediate layer uniform. It is better to be fine.
  • the upper limit of the size of such a hollow refractory aggregate particle is a relative value that varies depending on the thickness of the layer (intermediate layer) of the refractory to be installed, its installation (construction) method, and the like. That is not appropriate.
  • the lower limit thickness of the intermediate layer is about 1 mm (generally during installation) In consideration of the workability, quality, etc., as well as the rational structure of the nozzle for continuous casting, etc., it is about several millimeters. It is difficult to uniformly disperse the hollow refractory aggregate in the layer having such a thickness as the diameter increases.
  • the maximum radius of the hollow refractory aggregate particles is preferably 250 ⁇ m or less.
  • the minimum radius of the hollow refractory aggregate is preferably 2.5 ⁇ m or more.
  • the minimum radius is less than 2.5 ⁇ m, it is preferable in terms of uniformity, but the pressure strength tends to be high, and the ratio of not breaking at a compressive stress of 2.5 MPa or less increases, and the shrinkable amount tends to decrease. This is not preferable.
  • the maximum radius means that one side of the mesh passes through a mesh having a set radius particle diameter, or is classified by a method corresponding thereto, and the minimum radius is , One in which one side of the mesh does not pass through a mesh having a diameter of a set radius particle, or one classified by a method equivalent thereto.
  • the outer shape of the hollow refractory aggregate is spherical or rounded. Since the hollow refractory aggregate is spherical or rounded, the aggregate particles are in point contact with each other, and the stress is less variable than in the case of a wide contact surface (here 2.5 MPa or less) The wall of the hollow refractory aggregate breaks down, and it is easy to obtain stable pressure resistance. Also, when the mortar-shaped intermediate layer is filled or applied in the gap between the inner hole side layer and the outer peripheral side layer (continuous casting nozzle body), the fluidity of the intermediate layer in the gap is As a result, it is not necessary to use an excessive amount of solution, and segregation can be reduced. When using a large amount of a liquid containing a large amount of volatile components for the purpose of providing fluidity necessary to obtain workability during filling, there is a risk of lowering the adhesion and strength of the refractory in the intermediate layer. .
  • a hollow refractory aggregate containing vitreous material known by a name such as a glass balloon, a silica balloon, and a shirasu balloon is particularly preferable.
  • the chemical composition of the hollow refractory aggregate containing the vitreous material is a vitreous material containing 70% by mass or more of SiO 2 and 1% by mass or more and 10% by mass or less of alkali metal oxide and alkaline earth metal oxide in total.
  • the balance (parts other than SiO 2 , alkali metal and alkaline earth metal oxides) is composed of a neutral oxide or an acidic oxide component other than SiO 2 , specifically the balance
  • the aluminosilicate system is the best, which consists of Al 2 O 3 .
  • the softening point is 1000 to 1400 ° C. (where “softening” is outside of fracture under pressure of 2.5 MPa or less) This is a state in which the shape is deformed.), And the intermediate layer is likely to be softened and deformed in a high temperature range, so that the amount of heat shrinkage is increased.
  • such a hollow refractory aggregate exhibits a contractibility due to brittle fracture at a pressure of 2.5 MPa or less in a low temperature range before softening, that is, less than about 1000 ° C., but alkali metal oxides and alkaline earth metals.
  • a glassy composition containing 1% by mass or more and 10% by mass or less in total, it becomes easy to soften and deform in a high temperature range of about 1000 ° C. to 1500 ° C. (molten steel temperature), thereby reducing its volume. Thus, it can contribute to the development of stress absorption function and hot strength.
  • the total of alkali metal oxides and alkaline earth metal oxides is more than 10% by mass, or when SiO 2 is 70% by mass or more, alkali metal oxides and alkaline earth metal oxides
  • the total amount is more than 10% by mass, a problem in producing a hollow raw material arises from the viscosity of the molten glass, or a problem occurs in the adhesive force for holding the inner hole side layer because the high temperature viscosity is low.
  • SiO 2 is less than 70% by mass and the total amount of alkali metal oxides is less than 1% by mass, or when SiO 2 is 70% by mass or more and the total amount of alkali metal oxides and alkaline earth metal oxides is 1% by mass. If it is less than%, the viscosity of the glass composition tends to be too high, causing problems in the production of hollow raw materials, softening deformation behavior at high temperatures, and lowering the adhesive strength to retain the inner hole side refractory layer There is a problem to do.
  • composition of the hollow refractory aggregate in the present invention volatile matter and combustible materials in a non-oxidizing atmosphere are not included. Specifically, a sample after heat treatment in a non-oxidizing atmosphere of about 600 ° C. or higher is used as a reference.
  • Such hollow refractory aggregates exist as aggregates having a volume in the refractory structure before the volume is reduced by breaking or softening due to stress. Compared to the above, it is possible to significantly reduce the expression and maintenance of high strength as an intermediate layer, a high stress dispersion function, and the intrusion or passage of fluid such as molten metal or air from the outside. That is, it can also contribute to the stability of the layer itself described later, the stability of the layer structure of the nozzle for continuous casting, and the like.
  • Such an intermediate layer should not cause misalignment, delamination, breakage, etc. of the inner hole side layer due to the external force received at each stage of conveying and installing the continuous casting nozzle, preheating and steel passing. is required.
  • a mortar that simply has a large amount of space in the matrix structure of the refractory destroys the structure after shrinkage, causing weakening of the intermediate layer itself and a decrease in adhesive strength, leading to the collapse of the layer itself. .
  • the risk of causing peeling or destruction of the inner hole side layer, intrusion of molten steel or the like between the layers becomes extremely high.
  • the shrinkability of the refractory material of the intermediate layer of the present invention is realized mainly by the destruction, deformation, etc. of the hollow refractory aggregate, so that the matrix structure portion has higher strength and denseness than the mortar of the prior art. is there. Therefore, the weakening of the structure (decrease in fracture strength) and the decrease in adhesive strength are greatly suppressed.
  • the temperature is 1000 ° C. or higher and 1500 ° C. (molten steel temperature) or lower.
  • the heat in a non-oxidizing atmosphere is deformed by softening, and the stress is relieved by them to prevent breakage of the continuous casting nozzle.
  • the shape as an aggregate constituting the refractory skeleton of the intermediate layer is maintained.
  • the hollow refractory aggregate When the hollow refractory aggregate is broken or softened, the hollow refractory aggregate is deformed by breaking or deforming the wall of only the portion subjected to compressive stress from the surrounding matrix etc. toward the inside of the aggregate particle. Reduce the volume.
  • the deformation due to the breakage or softening of the hollow refractory aggregate does not cause a large local deformation in the matrix structure because small particles of the hollow refractory aggregate are dispersed in the tissue, and the conventional high porosity. Unlike the mortar, the matrix structure is not destroyed to such an extent that the shape retention cannot be maintained.
  • the hollow refractory aggregate remains in an adhesive state with the surrounding tissue, i.e., without generating voids in the surrounding tissue of the hollow refractory aggregate, and as an aggregate in an refractory structure without destruction. It can exist while maintaining the form.
  • the intermediate layer hardly generates pores or spaces on the contact surface with the inner hole side layer and the outer peripheral side layer, and receives an external force due to the expansion of the inner hole side layer while maintaining a healthy dense structure. The adhesion between the inner hole side layer and the outer peripheral side layer can always be maintained.
  • the refractory for the intermediate layer of the present invention is a single metal or alloy of Al, Si, Mg as a balance other than the hollow refractory aggregate of 10 volume% or more and 75 volume% or less in the total amount of the balance. 1 type or multiple types (specific metal) of these is converted into only those metal components, and 0.5 mass% or more and 15 mass% or less in total, and carbon contains 2 mass% or more and 99.5 mass% or less.
  • composition of the hollow refractory aggregate in the present invention volatile matter and combustible materials in a non-oxidizing atmosphere are not included. Specifically, a sample after heat treatment in a non-oxidizing atmosphere of about 600 ° C. to 800 ° C. is used as a reference.
  • the specific metal and carbon are dispersed and coexisted in the remainder, so that in addition to carbon bonds derived from resins etc. used for the purpose of bonding between ordinary constituent materials of refractory or shape retention.
  • the strength and adhesiveness of the intermediate layer as a refractory at a temperature lower than about 800 ° C. are primarily borne by carbon bonds derived from the resin or the like.
  • a high temperature of about 800 ° C. or higher, particularly about 1000 ° C. or higher carbides produced by the reaction of specific metals with carbon, and the connective structure of oxides produced by the above deposits are added to carbon bonds derived from resins, etc. To strengthen the bond.
  • the structure of the matrix structure other than the hollow refractory aggregate is not significantly damaged even if the hollow refractory aggregate is reduced due to destruction or deformation.
  • the recombination tissue is formed, and the connective tissue of the matrix of the intermediate layer itself is regenerated or strengthened. This also contributes to an improvement in adhesive strength between the layer and the outer peripheral side layer. As a result, the adhesive strength is improved without decreasing at a high temperature of about 1000 ° C. or higher.
  • the effect of the present invention by such a hollow refractory aggregate, a specific metal and carbon, etc. can be provided with a large or large size space before the start of receiving steel, and only has bonds derived from the initial resin. This is an advantage that is decisively different from the prior art such as mortar in a form that promotes the destruction of the tissue with shrinkage.
  • the intermediate layer is 0.01 MPa or more between the inner hole side layer and the outer peripheral side layer and in a non-oxidizing atmosphere of 1000 ° C. or more and 1500 ° C. (molten steel temperature) or less. It is preferable to have an adhesive strength of 1.5 MPa or less.
  • middle layer itself has the intensity
  • the adhesive strength is less than 0.01 MPa
  • the ability to hold the inner hole side layer is small, so local melting damage occurs in the inner hole side layer due to impact at the start of steel passing, changes in molten steel flow velocity, etc. If you do, there is a possibility of peeling off.
  • the adhesive strength exceeds 1.5 MPa
  • the intermediate layer internal structure is in a high strength state at the same level as the adhesive strength, and the contractibility of the intermediate layer is impaired. It becomes easy to propagate to an outer peripheral side layer, without thermal expansion being relieved, and it becomes easy to cause the crack of an outer peripheral side layer especially.
  • This adhesive strength can be evaluated as the compressive shear strength S.
  • the compressive shear strength S is obtained by placing a tubular sample having a three-layer structure in which an inner-hole side layer 2 is embedded in an outer peripheral side layer 3 (4) via an intermediate layer 1 on a table 8. After being uniformly heated and held in between, only the upper surface portion of the inner hole side layer 2 is compressed within the range of the moving speed of the crosshead 9 from 0.001 to 0.1 mm / sec, and the maximum load P (N) The displacement is measured and obtained by the following equation 4.
  • S (Pa) P / A Formula 4
  • A represents the adhesion area (m 2 ) of the inner hole side layer to the intermediate layer.
  • the shape of the sample is not particularly limited as long as it is tubular, and can be cut out from an actual nozzle and measured. However, since the maximum load P increases as the adhesion area A increases, the sample height is preferably within 100 mm.
  • the minimum temperature during measurement is 1000 ° C., and the atmosphere is a non-oxidizing atmosphere. 1000 ° C is the temperature at which the volatile components in the organic binder component are sufficiently scattered to complete the carbonaceous connective structure, exhibit stable contractibility and adhesion, and the reaction to deposit of specific metals begins. This is because of the temperature.
  • the content of the specific metal exceeds 15% by mass in the balance, the strength and adhesiveness of the intermediate layer will be strengthened, but on the other hand, the structure of the bonded portion by the metal carbide bond is as a refractory. Since the intermediate layer strength of the entire tissue is increased, the contractibility may be impaired, and the required contractibility may be difficult to obtain. In addition, there is a risk that the specific metal melts from the temperature rising process and flows away from the original location in the matrix, and it may be difficult to obtain uniform strength and adhesive strength throughout the layer. Furthermore, partial collapse of the matrix structure, formation of gaps between layers, and the like are also caused, and intrusion of molten steel or the like easily occurs in a space or the like generated thereby.
  • the content of the specific metal is less than 0.5% in the remainder, the improvement of the strength of the intermediate layer itself and the improvement of the adhesive strength of 0.01 MPa or more in a non-oxidizing atmosphere at 1000 ° C. cannot be obtained or segregated. This is likely to cause destruction of the intermediate layer, peeling of the inner hole side layer, and intrusion of molten steel.
  • the specific metals are limited to Al, Si, and Mg components.
  • Al and Mg have a high affinity with oxygen, and trap oxygen and have corrosion resistance such as Al 2 O 3 and MgO. This is because Si forms a SiC having excellent strength and corrosion resistance by reacting with carbon in the intermediate layer in a high temperature range of about 1300 ° C. or higher.
  • the purity of these specific metals is preferably as high as possible from the viewpoint of reactivity and dispersibility, but may be of low purity as long as the reactivity is not hindered (indicating that each of the specific metal components is the main component) And can be used as long as they are commercially available (industrially produced and generally distributed).
  • the particle size of the specific metal is preferably as small as possible from the viewpoint of reactivity and dispersibility.
  • the smaller the particle size the greater the risk of handling and the more likely oxidation in the air occurs. Therefore, the lower limit value of the particle size is preferably about 5 ⁇ m, and the upper limit value is preferably about 300 ⁇ m. Since the surface area is suddenly increased at 20 ⁇ m or less, the reactivity is increased, and the dispersibility is further increased, 20 ⁇ m or less is more preferable.
  • the carbon component for reacting with the specific metal needs to be 15% by mass or more and 99.5% by mass or less as a proportion of the total amount of the remaining part of the intermediate layer.
  • the carbon source it is possible to use various pitches, carbon black, graphite, carbon fibers, and the like, including thermosetting resins such as phenol resins that retain carbon when the temperature rises, and a plurality of these may be combined.
  • thermosetting resins such as phenol resins that retain carbon when the temperature rises
  • the carbon source includes carbon such as carbon black as small as possible, amorphous carbon derived from a connective tissue, etc. It is preferable that fine carbon ") be included.
  • organic adhesives and resins such as vinyl acetate resins, epoxy resins, acrylic resins, and polyester resins can also be used.
  • the refractory matrix structure of the intermediate layer includes the above-mentioned fine carbon, which is responsible for basic strength and adhesion, as well as graphite and carbon fibers that form a base material for forming a continuous connective structure and matrix structure skeleton.
  • Etc. hereinafter simply referred to as “skeleton base carbon”.
  • graphite has a flat crystal shape in addition to its layered crystal structure, so it can obtain a flexible and continuous three-dimensional structure, and carbon fiber can also obtain a similar three-dimensional structure. Since it is possible, it is more preferable.
  • the specific ratio of the fine carbon and the skeleton base carbon is the ratio of the 15% by mass or more and 99.5% by mass or less of the total carbon, and the effect of increasing the three-dimensional continuity with a large aspect ratio.
  • the proportion of the skeleton base carbon such as graphite or carbon fiber is preferably 70% by mass to 95% by mass. If it is less than 70% by mass, the three-dimensional continuity may be lowered and flexibility may be impaired. On the other hand, if the amount is more than 95% by mass, local damage may occur due to the low adhesive strength.
  • the components include the inner hole side layer and the outer peripheral side layer. Therefore, it is necessary to select a refractory aggregate mainly composed of components that do not cause low melting or volatilization disappearance at casting temperature.
  • the strength of the refractory is reduced to such an extent that the hot adhesive strength is reduced or the compressibility is impaired by excessive sintering. Is not preferable.
  • the inside of the refractory is exposed to a strong reducing atmosphere, for example, in a volatile component such as SiO 2 component that does not form a stable mineral with other components, the loss of the carbon component is caused. Since the component itself volatilizes and disappears, it is not preferable.
  • the aggregates that can be selected include Al 2 O 3 , MgO, ZrO 2 , Al 2 O 3 .MgO-based spinel, etc., so that the contact portion between the intermediate layer and the inner hole side layer does not generate a low-melt material.
  • these components are appropriately selected according to the material of the inner hole side layer.
  • the inner hole side layer is a refractory containing CaO
  • a MgO-quality refractory aggregate is suitable
  • the inner hole side layer is mainly composed of Al 2 O 3 or MgO.
  • Al 2 O 3 , MgO, Al 2 O 3 —MgO-based spinel are preferably Al 2 O 3 , MgO, Al 2 O 3 —MgO-based spinel.
  • the MgO purity of the refractory aggregate in such other components is 90% or more, it is also suitable for the case where the inner hole side layer is an Al 2 O 3 system or a ZrO 2 system, Since it can respond
  • the particle size of the refractory aggregate constituting such other components is 0.5 mm or less when the lower limit thickness of the intermediate layer is 1 mm in order to improve the dispersibility and the uniformity of the above-described functions in the intermediate layer. It is preferable that
  • the case where the corrosion resistance of the intermediate layer is required means that the molten steel or the like is prevented from coming into direct contact with the outer peripheral side layer which is inferior in corrosion resistance when a defect portion of the inner hole side layer occurs due to various actions during operation. This is to prevent this, and in such a case, the intermediate layer itself also has corrosion resistance, wear resistance and the like.
  • the refractory for the intermediate layer of the present invention has inner holes such as an immersion nozzle, an open nozzle, a ladle long nozzle, a sliding nozzle (hereinafter referred to as “SN”), an SN upper nozzle, and an SN lower nozzle (also referred to as a collector).
  • inner holes such as an immersion nozzle, an open nozzle, a ladle long nozzle, a sliding nozzle (hereinafter referred to as “SN”), an SN upper nozzle, and an SN lower nozzle (also referred to as a collector).
  • the material of the inner hole side layer of such a continuous casting nozzle does not need to be particularly limited, and the characteristics required for the continuous casting nozzle according to the operation of each continuous casting, specifically, Refractories containing Al 2 O 3 , MgO, ZrO 2 , etc. having properties suitable for each purpose, such as wear resistance, corrosion resistance of the inner holes, and prevention of inclusions such as Al 2 O 3 in the inner holes (It may contain graphite or other components) can be used as appropriate.
  • there is no need to limit the outer peripheral side layer as well and since the outer peripheral side layer is usually a part constituting the main body of the continuous casting nozzle, a general Al 2 O 3 -graphite or mold powder part is used.
  • a refractory containing high corrosion-resistant ZrO 2 or the like may be used in part or in whole.
  • the use of the refractory for the intermediate layer of the present invention is such that the thermal expansion coefficient of the refractory in the inner hole side layer is the refractory in the outer layer in the inner hole side layer and outer periphery side layer. It is suitable in the case of a combination larger than the thermal expansion coefficient. Even if the inner hole side layer and the outer peripheral side layer are the same material and have the same thermal expansion characteristics, the temperature gradient and the thermal shock are naturally large enough to destroy the continuous casting nozzles composed of these refractories. Can be used.
  • the present inventors have found that there is a unique condition when a CaO—MgO-based refractory is further disposed as the inner hole side layer.
  • the inner hole side layer and the outer peripheral side layer are kept fixed, and the inner hole side layer and the outer peripheral side layer are A measure was taken to prevent damage to the outer peripheral side layer due to thermal expansion of the inner hole side layer without creating a space for the molten metal to enter.
  • the composition of the CaO—MgO refractory disposed as the inner hole side layer was specified. That is, a CaO—MgO system containing a CaO component and a MgO component in a total amount of 80% by mass or more as the inner hole side layer and having a mass ratio of CaO to MgO (CaO / MgO) of 0.2 to 1.5. Place refractory.
  • the alumina clogging prevention function is sufficiently exerted by arranging the inner hole side layer that balances the function of maintaining poor adhesion by the CaO component and the function of maintaining corrosion resistance by the MgO component.
  • the CaO component reacts with the alumina-based deoxidation product in the steel that is in contact with the inner hole surface by the molten steel flow to generate a CaO—Al 2 O 3 -based low melt at the contact interface. It is possible to easily flow down into the mold by the molten steel flow, and the alumina clogging phenomenon in the nozzle can be prevented.
  • the CaO component is increased, the continuous supply of the CaO component from the refractory to the molten steel is performed, so the amount of erosion loss on the refractory side increases and the amount of inclusions in the steel increases to improve the steel quality. Reduce.
  • the MgO component is advantageous in terms of resistance to melting because it does not produce a low melt with the alumina component, but the increase in the MgO component is disadvantageous for the alumina clogging phenomenon.
  • the mass ratio of CaO / MgO and the total amount of the components (CaO + MgO) are important parameters that affect the erosion resistance and the hard adhesion of alumina.
  • the molten steel flow velocity and the alumina content in the steel have an influence on the operational aspect against the erosion resistance and the blocking prevention effect. In general, when the molten steel flow rate is increased, the adhesion is reduced, and a tendency of erosion occurs. As the concentration of alumina in the steel is higher, alumina is more likely to adhere under certain conditions. In short, it is necessary to design a material in a composition range in which adhesion and melting loss are balanced in consideration of such operating conditions and molten steel types.
  • the composition of the inner hole side layer was specified as described above. That is, when the mass ratio (CaO / MgO) of the CaO component amount to the MgO component amount is lower than 0.2, a continuous casting from the inner hole side material layer is possible under general casting conditions with a molten steel flow velocity of 5 t / min or less. Therefore, it becomes impossible to supply a CaO component, and it becomes impossible to maintain difficult adhesion. On the other hand, if CaO / MgO is larger than 1.5, the supply of CaO from the inner hole side layer is intense and the amount of erosion of the inner hole side layer itself increases, resulting in an increase in the amount of inclusions in the steel. Furthermore, by making the total amount of the CaO component and the MgO component 80% by mass or more, it becomes possible to balance the corrosion resistance and the melt resistance.
  • the balance other than the CaO component and the MgO component is preferably composed of a refractory material other than the CaO component and the MgO component, particularly a carbonaceous refractory material, in order to maintain the balance between the above-described corrosion resistance and fusing resistance (adhesion prevention).
  • a carbonaceous refractory material is used for the balance, if the total amount of the CaO component and the MgO component is less than 80%, the amount of the carbon component in the balance increases, so the phenomenon of carbon dissolution in the molten steel becomes significant. There arises a problem that the melt damage of the hole side layer becomes too large, the life is shortened, and the amount of inclusions in the steel is also increased.
  • Dolomite clinker synthetic doloma raw material, magnesia raw material, calcia raw material, etc. can be used as the CaO component source and MgO component source of the refractory in the inner hole side layer.
  • the CaO component in the calcined dolomite clinker is continuously present in the clinker and is preferable from the viewpoint of continuous supply of CaO.
  • the particle size is preferably 0.1 mm to 3 mm. If a large amount of MgO—CaO fine powder finer than 0.1 mm is used, digestion is likely to occur, which causes problems in terms of quality stability and volume stability. If it is larger than 3 mm, segregation phenomenon in terms of the component and particle size of the molded body tends to occur, which is not preferable from the viewpoint of homogeneity.
  • the intermediate layer applied to such a CaO—MgO-based inner hole side layer contains 10% by volume to 75% by volume of hollow refractory aggregate after heat treatment in a non-oxidizing atmosphere at 600 ° C.
  • the total amount of the remainder is 100% by mass, one or more of Al, Ca, Mg single metals or alloys are converted into only those metal components and 0.5 in total.
  • the mass ratio in the inner hole side layer of the CaO content in the inner hole side layer is that containing not less than 15% by mass and not more than 15% by mass, and not less than 2% by mass and not more than 99.5% by mass of carbon.
  • a value obtained by dividing the total amount of Al 2 O 3 , SiO 2 and alkali metal oxide in the intermediate layer by the mass ratio in the intermediate layer is 10 or more.
  • the total amount of CaO and MgO components is 80% by mass or more, and the mass ratio of CaO to MgO (CaO / MgO) is 0.2 to 1.5.
  • a CaO—Al 2 O 3 —SiO 2 -based reactant is generated particularly in a long-time operation, and the reaction of the inner pore side layer occurs in the reaction.
  • the CaO component is consumed, the function of capturing Al 2 O 3 inclusions in the molten steel is reduced, the adhesive part with such an intermediate layer becomes stronger than necessary, and the part is contracted, etc. This is because deformation of the inner hole side layer causes non-uniform tensile stress in the inner hole side layer, and the possibility of causing destruction (cracking) of the inner hole side layer is increased.
  • the refractory as other components excluding the above-mentioned hollow refractory aggregate, carbon and specific metals
  • the aggregate particles it is preferable to use MgO, Al 2 O 3 —MgO-based spinel aggregate, and the content in other components is 50% by mass or more (including 100% by mass). It is preferable to adjust so that.
  • the first reason is to use a combination of materials that hardly cause mutual reactions such as excessive sintering and melting at the boundary between the inner hole side layer and the intermediate layer.
  • the inner hole side layer containing a CaO / MgO mass ratio (CaO / MgO) of 0.2 to 1.5 and containing a CaO component and MgO component of 80% by mass or more in total, the content of MgO A magnesia or spinel (spinel containing Al 2 O 3 and MgO) refractory aggregate adjusted to be 80% by mass or more (including 100% by mass) of a refractory aggregate, It is less likely to cause mutual reaction with the refractory in the hole side layer, and is optimal.
  • the second reason is that the Al 2 O 3 —SiO 2 —C, Al 2 O 3 —C, ZrO 2 —C, or MgO—C refractories generally used as the outer peripheral layer are used. This is because mutual reactions are unlikely to occur.
  • the third reason is that MgO is less likely to react with the glass component, silica component, etc. in the hollow refractory aggregate than other, for example, alumina-silica refractory fine particles. is there.
  • the outer peripheral side layer may be any refractory such as Al 2 O 3 —C, ZrO 2 —C, or MgO—C, and Al 2 O contained therein.
  • 3 , ZrO 2 , MgO and C are not limited in their respective composition ratios and existence forms.
  • the refractory of the present invention is particularly durable by disposing a high-functional layer such as high corrosion resistance and high adhesion prevention on the inner hole side.
  • the inner layer of the inner hole side layer caused by the CaO component is more than necessary. Without causing strong adhesion, it is possible to solve the problems that lead to breakage (cracking) of the inner hole side layer, such as dropping or displacement of the inner hole side layer due to insufficient adhesion, and stable for a long time.
  • the continuous casting operation can be performed.
  • characteristics required for the continuous casting nozzle according to the specific operating conditions of individual continuous casting specifically, for example, wear resistance of the hot water portion
  • a variety of refractory materials with characteristics suitable for each purpose, such as the corrosion resistance of the inner holes and the prevention of inclusions such as inclusions of Al 2 O 3 in the inner holes, can be used appropriately for each required part. And their combinations can be greatly expanded. As a result, it can contribute to extending the life of nozzles for continuous casting, improving the quality of steel, stable operation, and resource saving.
  • the manufacturing method of the refractory of this invention is shown.
  • the refractory material of the present invention itself includes a hollow refractory aggregate, carbon, a specific metal, and other constituents
  • the refractory material particles constituting the constituents are mixed, and the mixture includes organic materials such as phenol resin and vinyl acetate.
  • Forming a binder having such a strength as to give a cohesiveness or adhesiveness between grains by making the admixture wet, such as a resin based resin, and having a shape-retaining property as a molded product after curing Then, an appropriate amount necessary for shape retention is added and kneaded to obtain a kneaded product.
  • the kneaded product is poured into a space provided in advance, filled and molded by an appropriate method such as blowing, and dried at an appropriate temperature of about 110 ° C. to 600 ° C. according to the properties of the binder, It can be obtained by heat treatment such as baking. Details will be described below.
  • the carbonaceous particles, oxide particles, and metal particles derived from scaly graphite, earthy graphite, carbon black, pitch, resin, etc. in the total amount other than the hollow refractory aggregate As a single metal or an alloy (specific metal) of Al, Si, Mg, converted into only those metal components, a total of 0.5 to 15% by mass, and 2% of carbon % And 99.5% by mass or less, and the remainder is blended so as to be composed of a refractory aggregate (including zero) other than the specific metal and carbon.
  • the particle size of this raw material is such that the maximum particle size of the raw material particle size used is 0.5 mm or less in order to make the compressibility of the refractory in the intermediate layer more uniform and to make it a mortar with excellent coating workability. Is preferred.
  • the amount of the hollow refractory aggregate is calculated from the relationship between the thermal expansion coefficient of the inner hole side layer and the outer peripheral side layer and the thickness of the refractory material of the intermediate layer, What is necessary is just to determine by adjusting the ratio of a hollow refractory aggregate and another structural raw material.
  • the ratio of the constituents such as the hollow refractory aggregate and the remaining refractory aggregate is the mass ratio in the inner hole side layer of the CaO content in the combined inner hole side layer, and the Al 2 O 3 in the intermediate layer.
  • the mixing ratio of each raw material may be adjusted so that the value obtained by dividing the total amount of SiO 2 and alkali metal oxide by the mass ratio in the intermediate layer is 10 or more.
  • the blend is wetted to give the mixture a cohesiveness or adhesion between grains, such as phenolic resin, vinyl acetate, and other organic resins.
  • a binder having a strength sufficient to have a suitable amount for the molding is added in an appropriate amount, and they are kneaded using a mixer such as a mortar mixer to form a mortar shape.
  • a mixer such as a mortar mixer to form a mortar shape.
  • the amount of the phenolic resin and other organic resin used may be adjusted according to the required workability within a range of about 40 parts by mass or more and 90 parts by mass or less when the powder mixture is 100 parts by mass. .
  • the mortar-like admixture is filled into a space previously provided between the inner hole side layer and the outer peripheral side layer by an appropriate method such as application, fitting, pouring, or blowing on one or both surfaces. Then, the inner hole side layer and the outer peripheral side layer are integrated. And shape retention ability and interlayer fixing ability are expressed by performing heat processing, such as drying and baking, at an appropriate temperature according to the properties of the binder, such as 110 ° C. or more and 600 ° C. or less.
  • Such an intermediate layer refractory is practically used mainly as a part of a continuous casting nozzle structure as described below as a manufacturing process of a continuous casting nozzle structure as described later, as a single unit continuous casting nozzle of a product. Get as a form.
  • molding using molds, etc., firing in a dry or non-oxidizing atmosphere, forming as a part of any shape such as a cylinder, etc., and assembling and using as a part of a continuous casting nozzle Is also possible.
  • the inner hole side layer is manufactured as a single refractory molded body separately from the continuous casting nozzle body.
  • the inner hole side layer only needs to be prepared in advance as a refractory molded body, and the manufacturing method is not particularly limited.
  • An example of the case where the inner hole side layer includes a CaO component and an MgO component will be described below.
  • a refractory material containing a CaO component and a MgO component for example, a fine powder material of calcined dolomite and a fine powder material of MgO clinker are heat-treated in a non-oxidizing atmosphere at 600 ° C., and then the CaO component and MgO component in the refractory molded body Is contained in an amount of 80% by mass or more, and the content ratio of each raw material is adjusted so that the mass ratio of CaO to MgO (CaO / MgO) is 0.2 to 1.5.
  • These fine powder raw materials are subjected to a heat treatment in a non-oxidizing atmosphere such as phenol resin at 600 ° C., and then a binder component having a binding function and a liquid molding aid for obtaining a wet state suitable for molding, etc. In some cases, it can also function as a molding aid) and is mixed uniformly with a mixer to obtain a molding clay.
  • a non-oxidizing atmosphere such as phenol resin at 600 ° C.
  • the obtained soil is molded with an appropriate molding machine such as CIP (Cold Isostatic Press), hydraulic press, friction press or the like, and dried at a temperature of about 150 ° C. or higher or heat-treated in a non-oxidizing atmosphere. Thereafter, the outer peripheral surface and the like are processed into a suitable shape for mounting on a nozzle body for continuous casting separately prepared as a single unit by an ordinary general manufacturing method or the like, if necessary. It should be noted that general digestion measures for raw materials and molded articles may be appropriately performed according to individual conditions such as raw materials and production.
  • a space having a predetermined thickness as an intermediate layer is formed between the molded body as the inner hole side layer formed in advance as a single unit and the outer peripheral side layer as the continuous casting nozzle body formed in advance as a single unit.
  • the space is filled with the refractory material of the present invention to form an intermediate layer, which is a nozzle having a multilayer structure.
  • the refractory material of the present invention applied to the intermediate layer has a mud-like irregular shape that can be filled in order to fill a narrow space between the inner hole side layer and the outer peripheral side layer.
  • a liquid resin is externally applied to 100 parts by mass of powder mixed with a hollow refractory aggregate, a carbon raw material as a solid, and a refractory material as another component.
  • An amount of about 40 parts by weight to 90 parts by weight is added and kneaded.
  • the refractory for the intermediate layer provided with workability is applied to the outer peripheral surface of the inner hole side layer in which the spacer is installed so that a space with a predetermined intermediate layer thickness can be formed, or the inner hole surface of the outer peripheral side layer.
  • the inner hole side layer is inserted inside the outer peripheral side layer (the main body of the nozzle for continuous casting).
  • the space between the outer peripheral surface of the inner hole side layer and the inner hole surface of the outer peripheral side layer is equal to the thickness of the refractory layer of the intermediate layer.
  • an intermediate layer refractory with improved fluidity is poured into a space of a predetermined thickness provided between the outer peripheral side layer and the inner hole side layer. It can also be filled by such a method.
  • the continuous casting nozzle after being filled with the refractory for the intermediate layer is subjected to heat treatment such as drying and firing to cure the refractory for the intermediate layer and fix the inner hole side layer and the outer peripheral side layer.
  • This curing may be performed at an appropriate temperature according to the characteristics of the binder contained in the refractory material of the intermediate layer, which is about room temperature to 600 ° C.
  • a vinyl type when used, it may be dried at about 150 ° C., and when a phenol resin is used, it is preferably 200 ° C. or higher.
  • it may be fired in a non-oxidizing atmosphere of about 1000 to 1300 ° C., for example. In this way, the molded body of the continuous casting nozzle of the present invention can be obtained.
  • the hollow refractory aggregate used for the refractory for the intermediate layer is not crushed by the external force during installation on the outer peripheral side layer of the inner hole side layer as described above, the thickness of the intermediate layer is reduced by the construction work. Necessary contractibility is not impaired by being excessively small or absorbing the solvent. Furthermore, since this hollow refractory aggregate is formed in a balloon shape, there are few edge parts like crushed grains and it has a rounded outer shape, which improves the fluidity of the refractory in the mud intermediate layer In other words, it is possible to obtain an effect, that is, to reduce the amount of liquid phase to form a dense matrix structure.
  • the refractories for the intermediate layer are intended to retain the shape of the intermediate layer itself, impart strength between room temperature and hot during use, and ensure the moldability of the soil.
  • the inner hole side layer contains MgO-CaO, especially CaO that exists in a single form (not a solid solution or compound)
  • the work caused by the hydration of the CaO component therein In order to prevent the body from collapsing, it is necessary to use a material that does not contain moisture and that does not release moisture during the heating process.
  • a binder suitable for such conditions non-aqueous phenol resins, furan resins, tars, melamine resins, epoxy resins, vinyl acetate resins using alcohol as a solvent, and the like can be used.
  • the molded body of the nozzle for continuous casting after such processing as filling and heating can be processed in the same manner as the processing steps for a general continuous casting nozzle, such as the outer periphery and other molding processes, and the application of an antioxidant. it can.
  • a continuous casting nozzle having an intermediate layer having a shrinkable structure and a continuous structure in which the inner hole side layer and the outer peripheral side layer are integrated can be obtained.
  • FIG. 1 shows an immersion nozzle as an example of the continuous casting nozzle of the present invention.
  • 1 is an intermediate layer
  • 2 is an inner hole side layer made of a refractory based on MgO-CaO
  • 3 is an alumina-graphite layer that forms the main body of a continuous casting nozzle
  • 4 is an outer periphery side.
  • 5 is an inner hole
  • 6 is a molten steel inflow hole
  • 7 is a discharge hole.
  • Example A when an external force of 2.5 MPa was applied to the hollow refractory aggregate, the average radius R of the hollow refractory aggregate and the ratio of the average radius R to the average wall thickness t of the grain (R / t) is the result of an experiment investigating the effect of t) on the destruction.
  • Table 1 shows the configuration and experimental results of each sample of Example A.
  • the sample was selected from those that are generally available on the market and dispersed in water, and then the floating particles were selected, classified, and dried at 110 ° C.
  • the composition of the test sample SiO 2 of 70 wt% or more, alkali metal oxides and less than 10 mass% 1 mass% or more in total of alkaline earth metal oxides, Al 2 O 3 of 5 to 20 mass% And a glassy structure.
  • the size of the sample is 2.5 ⁇ m (preferred minimum radius), 250 ⁇ m (preferred maximum radius), and 35 ⁇ m between them, and each particle is divided into a group of a plurality of particle groups having different wall thicknesses. Classification was performed to obtain samples having different R / t ratios.
  • the test method is as follows.
  • the sample 10 is filled into a cylindrical metal container 11 having an inner diameter of 60 mm so as to have an initial height of 10 mm, and a pressurizing machine (upper liner 12). And the lower liner 13) are pressurized to a static pressure of 2.5 MPa, and then the sample 10 in the container 11 is taken out, dispersed in 1 liter of water, floated, and settled. What separated and floated was collect
  • the crushing rate (%) is obtained by subtracting the total weight of the floating portion from the total weight of the sample 8 initially filled in the cylindrical metal container 11 (hereinafter referred to as “initial total weight”). A value obtained by dividing the value by the above-mentioned initial total weight was displayed as a percentage.
  • the crushing rate of the hollow refractory aggregate is 90% or more, and the requirement for obtaining the required contraction rate It was. Further, in this test method, the fragments of particles broken by pressurization are filled in the spaces between the particles, and the fragments perform a stress distribution function. It can be considered that it becomes difficult to destroy, and some remains without being destroyed. Therefore, it can be determined that particles exhibiting a crushing rate of 90% or higher have the same or higher level of fracture characteristics in the refractory structure.
  • Example B is a result of investigating the influence of the volume ratio of the hollow refractory aggregate in the refractory on the shrinkability and the adhesive strength, and the result of conducting a simulation test of molten steel casting by heating the inner hole It is.
  • Table 2 shows the configuration of each sample of Example B and the experimental results.
  • the hollow refractory aggregate is a powder having the same composition as that used in Example A, a hollow particle having an average radius R of 35 ⁇ m, a wall thickness of 1 ⁇ m, and a crushing rate of 99% at 2.5 MPa.
  • the body (Example 3) was used.
  • the composition of the remainder excluding the hollow refractory aggregate was the same in all examples.
  • the shrinkage rate was measured by the following method. Two test pieces for adhesion having a shape of ⁇ 20 ⁇ 50 mmL, Al 2 O 3 of about 75% by mass, and C of about 25% by mass are manufactured by the same manufacturing method (same molding pressure, The method shown in the means for solving the above-mentioned problems by placing each blended sample in a mortar shape between the planes of the two test specimens for adhesion to each other, by drying, firing, etc.) Then, a measurement sample was molded and dried. For this measurement sample, the contractibility at 1000 ° C. and 1500 ° C. (both in a nitrogen gas atmosphere) was measured.
  • the adhesion strength was measured by the following method. Al 2 O 3 is about 55% by mass, C is about 30% by mass, and SiO 2 is about 14% by mass by the same manufacturing method (same molding pressure, drying, firing, etc.) as a normal continuous casting nozzle.
  • a refractory material generally used for a continuous casting nozzle body which is a cylinder corresponding to the outer peripheral side layer with an inner diameter of ⁇ 95 ⁇ 100 mmL, MgO is about 49 mass%, CaO is 44 mass%, and C is 4
  • a cylinder corresponding to the inner hole side layer having an outer diameter of ⁇ 90 ⁇ 100 mmL is made of dolomite refractory material of mass%, and each blended sample in the form of mortar is placed between these two cylinders with a thickness of 2.5 mm. The sample was dried and a ring-shaped sample for measurement was obtained. With respect to this ring-shaped measurement sample, the adhesive strength at 1000 ° C. and 1500 ° C. (both in a nitrogen gas atmosphere) was measured by the method described with reference to FIG.
  • the cylindrical sample for the inner hole heating test was produced by the following method. First, a cylindrical and tubular molded body was molded by CIP. This molded body was subjected to a drying treatment at 200 ° C. and a heat treatment in a non-oxidizing atmosphere at 1000 ° C., and a sleeve made of a dolomite carbon material having an outer diameter of 90 mm, an inner diameter of 70 mm, and a height of 750 mm was manufactured by outer peripheral processing. The thermal expansion amount of the material at 1500 ° C. was 1.32%.
  • the sleeve Al 2 O 3 is about 55 wt%, C is from about 30 wt%, the thermal expansion amount at SiO 2 is about 14 wt% of Al 2 O 3 -SiO 2 -C material (1500 ° C. 0.55 %)
  • This refractory for the intermediate layer comprises graphite fine powder, Al—Mg alloy powder, MgO fine powder, pitch powder, and hollow refractory aggregate (hollow glass aggregate) as a contractible source, and is a liquid phenolic resin. Were used as a workability imparting agent and a binder. A 200 ° C. drying treatment was applied to obtain a cylindrical sample for heating the inner hole.
  • the inner hole heating test was conducted as follows. From the upper part of the flange part toward the lower part, a combustion gas of propane and oxygen was passed through the inner hole part, and rapid heating was performed from the inner hole part. The cylindrical sample was heated under the condition that the outer surface temperature of the central portion of the cylindrical sample reached 1400 ° C. in 1 hour and held at 1400 ° C. for 1 hour (this rapid heating is relatively severe considering actual operation). Thereafter, the heating was stopped and the mixture was allowed to cool to 300 ° C. or lower. This heat treatment was repeated, and the states of the inner hole side layer and the outer peripheral side layer were observed.
  • Example C the effect of the ratio of the specific metal in the refractory material including the hollow refractory aggregate on the contractibility and the adhesive strength was investigated by experiment, and in each case, the molten steel by inner hole heating was used for each example. This is a result of comparison with a casting simulation test.
  • Table 3 shows the configuration and experimental results of each sample of Example C.
  • the hollow refractory aggregate particles having the same composition and particle size distribution as those used in Example B were used.
  • the composition of the remainder other than the hollow refractory aggregate except for the specific metal was the same in all examples, and the amount of the specific metal was added to the composition.
  • Example D the effect of the proportion of carbon in the balance other than the hollow refractory aggregate on the compressibility and the adhesive strength was experimentally investigated, and a simulation test of molten steel casting by inner hole heating was performed. It is a result.
  • Table 4 shows the configuration and experimental results of each sample of Example D.
  • the same composition and particle size distribution as those used in Examples B and C were used.
  • the specific metal amount and the phenol resin solution (converted as C remaining after heat treatment in a non-oxidizing atmosphere at 1000 ° C.) are basically fixed (except for the case where the carbon amount is 99.5% by mass or more).
  • the amount of carbon was changed by substituting the fine powder of MgO (MgO purity: 95 mass% to 98 mass%, the same in other examples) with the fine graphite powder.
  • Example E shows the results of an experiment investigating the influence of the total amount and mass ratio of CaO and MgO in the refractory for the inner hole side layer on melting loss and adhesion.
  • Each sample was immersed in low-carbon aluminum killed steel held at 1550 to 1570 ° C. for 120 minutes, and the thickness of the alumina deposit on the sample surface after pulling and the amount of erosion of the sample itself were measured. For comparison, a common Al 2 O 3 -graphite material was also tested.
  • Table 5 shows the configuration of each sample of Example D and the experimental results.
  • Examples 30 to 32, 34, 35, 37, and 38 were in a preferable preferable range in which the amount of melt loss and the amount of adhered alumina were balanced.
  • Example 28 which is a general AG material, the adhesion of alumina occurred although no melting phenomenon occurred. In this Example 28, there is a possibility that a blocking problem may occur.
  • the CaO / MgO ratio was 1.7, and the melting loss was large.
  • the CaO / MgO ratio was 0.1, and the alumina adhesion was large.
  • the total amount of (CaO + MgO) was 75%, and the amount of erosion loss of the sample increased due to the effect of the carbon amount.
  • the physical properties as in Examples 28, 29, 33, 36 and 39 may cause problems in long-time operation.
  • the physical properties of the examples are preferable.
  • the inner-hole side layer contains a CaO component and a MgO component in a total amount of 80% by mass or more, and the mass ratio of CaO to MgO (CaO / MgO) is 0.2 to 1.5.
  • the mass ratio in the inner hole side layer of the CaO content in the inner hole side layer is the mass in the intermediate layer of the total amount of Al 2 O 3 , SiO 2 and alkali metal oxide in the intermediate layer. It is the result of investigating the influence which the value divided
  • Table 6 shows the configuration of each sample of Example F and the experimental results.
  • Example 32 in Table 5 containing 16% by mass of CaO component and 79% by mass of MgO component and having a mass ratio of CaO to MgO (CaO / MgO) of 0.2 was used.
  • the hollow refractory aggregate particles having the same composition and particle size distribution as those used in Examples B to D were used.
  • Al 2 O 3 is mainly obtained by changing the content ratio of the hollow refractory aggregate based on the composition of the remaining portion (matrix) except the hollow refractory aggregate of Example 7. The total amount of SiO 2 and alkali metal oxide was adjusted.
  • the mass ratio in the inner hole side layer of the CaO content in the inner hole side layer is the mass of the total amount of Al 2 O 3 , SiO 2 and alkali metal oxide in the intermediate layer in the intermediate layer.
  • the adhesive strength must be 0.1 MPa or more and 1.5 MPa or less. I understand.
  • Intermediate layer (a layer made of a refractory for the intermediate layer of the present invention) 2
  • Inner hole side layer 3
  • Alumina-graphite layer forming the main body of the continuous casting nozzle in the outer peripheral side layer 4
  • Zirconia-graphite layer forming the powder part of the continuous casting nozzle in the outer peripheral side layer 5
  • Inner hole 6
  • Molten steel inflow hole 7
  • Discharge hole 8 units
  • Crosshead 10
  • Container 12 Upper liner (pressurizing jig by lowering) 13
  • Lower liner (Jig for pressurization by ascending)

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Continuous Casting (AREA)

Abstract

 本発明は、内孔側に高耐食性、高い付着防止性等の高機能の層を配置して耐用性を高めた、内挿式の連続鋳造用ノズルにおいて、その内孔側層と本体材質である外周側層との熱膨張差に起因する外周側層の押し割れを防止し、内孔側層を外周側層(連続鋳造用ノズルの本体)に所定の配置での固定をなし得る性状を備えた連続鋳造用ノズルの中間層用の耐火物(モルタル)及びその中間層用の耐火物を使用した連続鋳造用ノズルを提供することを課題とする。その解決手段である本発明の中間層用の耐火物は、粒の平均半径Rと前記粒の平均の壁の厚みtの比がR/t≧10を満たす中空耐火骨材を10体積%以上75体積%以下含むものである。この耐火物を中間層1として、連続鋳造用ノズルの内孔側層2と外周側層3,4との間に配置する。

Description

連続鋳造に使用するノズル用耐火物及び連続鋳造用ノズル
 本発明は、溶鋼が接触する内孔面に外周側層よりも高い熱膨張性を有する内孔側層を配置した連続鋳造用ノズルに関する。
 なお、本発明において「内孔側層」とは、連続鋳造用ノズルの溶鋼通過方向(垂直方向)を全長とするいずれかの位置の水平方向断面において、中間層よりも内孔側に存在する耐火物層を総称するものとし、内孔側層が複数の層からなる場合も含み、その場合の熱膨張率は、その内孔側層の中のいずれかの層の最大の値とする。
 また、本発明において「外周側層」とは、前記断面において、中間層よりも外周側に存在する耐火物層を総称するものとし、外周側層が複数の層からなる場合(例えば、AG質の外にZG質が存在する2層構造等)も含み、その場合の熱膨張率は、その外周側層の中のいずれかの層の最小の値とする。
 さらに本発明は、外周側層と内孔側層とを各々別個に成形し、これら各層をなす耐火物のマトリクスには連続性がない、即ち相互に独立した成形体を、変形可能な状態の中間層用の耐火物で固定した構造(本発明において、「内挿式」ともいう。)の連続鋳造用ノズルに関する。
 取鍋からタンディッシュに溶鋼を排出するロングノズルや、タンディッシュから連続鋳造用モールドに溶鋼を注入する浸漬ノズルなど(以下、総称して「連続鋳造用ノズル」という。)、内部に溶鋼等の高温度物体が滞留又は通過する内孔を有する管状耐火物は、その内孔側と外周側で温度勾配が生じる。とくに溶鋼の排出・通過開始時には、内孔側又は外周側が急激に昇温されるので、その現象は顕著になる。
 このような温度勾配は、耐火物が単層であるか複数層であるかにかかわらず耐火物の内部に応力の歪みを生じさせ、管状耐火物に外部の割れ等の破壊を生じさせる原因の一つになっている。この温度勾配が大きいほど、また内孔側層の熱膨張率が外周側層の熱膨張率よりも大きいほど、熱応力が大きくなってとくに外周側層の破壊の危険性は高くなる。
 この温度勾配(熱応力)に起因する破壊の一般的な対策としては、例えば、連続鋳造用ノズルを構成する耐火物に黒鉛を多量に含有させる、熱膨張量の小さい溶融シリカなどを添加ないし増量するなどの、高熱伝導率化、低膨張化、低弾性率化等による熱応力の低減がある。しかし、黒鉛や溶融シリカの増量は一方で耐酸化性の低下や溶鋼成分等との反応性が増すため、耐摩耗性や耐食性等のとくに内孔側の耐用性の低下を招く弊害がある。
 また、連続鋳造用ノズルの内孔面には溶鋼流が激しく衝突しながら通過するので、とくに内孔面近傍は、溶鋼や溶鋼中の非金属介在物等による摩耗、溶鋼中の酸化性成分等による組織の脆弱化と流失、FeOその他の溶鋼中成分との反応溶損等の損傷が大きい。
 さらに近年は、アルミナ等の溶鋼中の非金属介在物の増加もあって、連続鋳造用ノズルの内孔面にはアルミナを中心とする介在物の付着ないしは内孔の閉塞も、連続鋳造用ノズルの寿命を決定する大きな要素の一つとなっている。
 このような状況の中、連続鋳造用ノズルの高耐用化や安全性(安定鋳造)の要求はますます高まっている。
 これらの要求に応えるため、耐熱衝撃性の優れた材質の耐火物を連続鋳造用ノズルの本体部分即ち外周側層に適用して連続鋳造用ノズルの基本的な骨格となる部分を構成し、溶鋼流と接触する内孔面を有する内孔側層には、耐摩耗性や耐食性等に優れた材質の耐火物を配置することにより、連続鋳造用ノズルの寿命延長が図られてきた。
 とくに内孔側層に関しては多様な高機能化が進められており、最近では、炭素含有量の少ない材質、黒鉛を全く含まない材質や、耐摩耗性、耐溶損性に優れる成分、例えば塩基性成分を含む材質を内孔面に内張りすることも珍しくない。さらには浸漬ノズル内孔面へのアルミナ成分等の付着及び閉塞現象を低減ないし防止するために、浸漬ノズル内孔面にアルミナ成分と反応性の高いCaO成分を含有する耐火物層を内装した浸漬ノズルの適用が進められてきている。
 このような高機能の耐火物は、熱膨張を緩和する機能の大きい黒鉛等の含有量が少なく、高い熱膨張性を有する耐火骨材を多量に含有するので、内孔側層を高膨張化し、また炭素含有量の低減に伴う、内孔側層の外周側層に対する相対的な熱伝導率の上昇による熱勾配の増大も加わって、内孔側層と外周側層の熱膨張量の差及びそれによる熱応力はますます増大する傾向にあり、連続鋳造用ノズルのとくに外周側層の破壊の危険性はいっそう増大している。
 このような高膨張性の内孔側層の熱応力による破壊を防止するための試みとして、例えば特許文献1には、CaOを20質量%以上含有する耐火物製スリーブを内装した連続鋳造用ノズルにおいて、前記スリーブ外周面若しくは前記スリーブが装着される部分の本体内孔壁面の一部または全体、あるいは挿入された前記スリーブと本体内孔壁面間に形成される目地部に対して、耐火性骨材とバインダーとを混合した接着材を施して、乾燥された目地部接着材の気孔率を15~90%に調整した連続鋳造用ノズル内孔用耐火物製スリーブの接合構造が示されている。また、その目地部接着材の気孔率は、接着材を構成する溶剤とバインダーの増減あるいは充填量を変えることで調整することが示されている。これは応力緩和能を、モルタルの気孔率即ちモルタル組織の中の空間によって得ようとするものであって、その程度はモルタル(接着材)を構成する溶剤とバインダーの増減あるいは充填量を変えることで調整しようとするものである。
 しかしながら、このような調整方法で高い応力緩和能を得るためには多量の液(溶剤とバインダー)を要することから、モルタルに流動性が生じ、保形性が著しく低下する等の弊害があり、必要なモルタル層の厚みや充填層を確保することが困難である。具体的には、外周側層である連続鋳造用ノズル本体にこのような高流動性又は保形性の低いモルタルによって内孔側層を設置する作業において、内孔側層が偏ってモルタル層の厚みが殆どない部分や過剰に大きい部分が生じたり、空間部が多数生じたりすることが多い。これらにより応力緩和機能、溶鋼その他の侵入物の抑制機能等を確保できないで、とくに外周側層の破壊や内孔側層の脱落等を生じる。
 また、このようなモルタル層で内孔側層を外周側層(連続鋳造用ノズルの本体)への所定の配置での固定をなし得たとしても、このようなモルタル層では必然的に密度の低い組織及び組織結合の弱い構造となって低強度となっているので、熱間で応力を緩和する際にはもちろん、ノズルのハンドリングの際等の弱い外力でも破壊して、安定した構造体を維持することが困難となる。このため、内孔側層の剥離やずれ等を招来しやすくなる等の問題がある。
 さらには、このようなモルタル層は高気孔率であるとともに組織中の大きな気孔が連続して存在することから、その気孔(破壊して拡張した気孔を含む)を経路としてモルタル層へ溶鋼やスラグ成分等が浸透し、モルタル層の溶損や破壊も生じる等の問題がある。
 加えて、このようなモルタル施工では作業性を得るために液体を多量に含有しているので、液体が接着対象の耐火物中に吸収されて充填されたモルタルの固形分濃度が変化しやすい。このことは、見掛け気孔率の異なる隣接する耐火物材質との接触により、可塑性や結合性を与えているモルタル中の溶媒が吸収されるためにモルタルの可縮率や接着力が部位毎に変化することを意味しており、隣接する材質や、モルタル目地厚さによって可縮性や接着性が安定しない問題を抱えていることになる。更に、吸収や乾燥過程でのモルタル層自体の収縮や亀裂や対象耐火物との間に空隙や剥離を生じたりする問題を生じやすい。また、液体が減少する際に骨材微粒子が相互に凝集してモルタル層内に亀裂や剥離などが発生しやすくなるため接着性に関して問題が発生しやすい。
 また、例えば特許文献2には、内孔側層にのみカーボンを含まない、即ち高熱膨張性、高耐食性の耐火物層を配置し、それ以外の外周側層にカーボン含有の、即ち耐スポ-リング性に優れる耐火物層を配置した2層構造とし、この層間にポリプロピレン、ナイロン等の可燃物を成形時にセットして焼成し、形成される分離層を耐火物層間の接触面の少なくとも80%以上とし、この分離層によって内孔側層と外周側層を相互に分離した鋳造用ノズルが開示されている。
 しかし、この特許文献2の構造では、内孔側層と外周側層との間の20%未満で接着部分を有している。仮に僅かな接着部分であっても、この接着部分を介して内孔側層から外周側層へと押し割り応力の伝達が行われるため割れ現象の起点となってしまう。また、接着部分が0%の場合は、内孔側層を構造体として保持できなくなる基本的な問題が生じる。さらに、特許文献2の分離層のような、いわゆる空間の目地では、その目地部に溶鋼が容易に浸入し、温度変化を受けた際に溶鋼の凝固収縮や加熱時の鋼の膨張により耐火物へ亀裂が発生したり、内孔側層が外周側層と接着していないために剥落するといった問題が発生する。
 さらに、とくに内孔側層にMgO-CaO系の材質を適用する場合には、内孔側層の組成と中間層との組成によっては、内孔側層と中間層とが直接接触する部分では接着を超えて、逆に溶融流出等を生じやすく、ひいては内孔側層の溶損、剥離、固定力の減少、中間層の崩壊や層間の空間化と溶鋼の侵入等を惹き起こす等の問題がある。
 このように、高膨張な内孔側層を内装した連続鋳造用ノズルの応力緩和層には、内孔側層からの熱膨張による応力を緩和する機能に加え、溶鋼やスラグ成分の浸透を抑制するような大きな気孔が連続して存在せず、かつ設置作業において必要な厚みや充填組織を得ることのできる性状と保形性を有し、さらに内孔側層の熱膨張による応力に至らない程度の外力によっては破壊しない程度の強度を備え、また、内孔側層が外周側層から剥落しない程度の支持機能が必要であるが、これらの機能を兼備したモルタル層は未だ得られていない。
国際公開第03/086684号パンフレット 特開平7-232249号公報
 本発明の課題は、内孔側に高耐食性、高い付着防止性等の高機能の層を配置して耐用性を高めた、内挿式の連続鋳造用ノズルにおいて、その内孔側層と本体材質である外周側層との熱膨張差に起因する外周側層の押し割れを防止し、内孔側層を外周側層(連続鋳造用ノズルの本体)に所定の配置での固定をなし得る性状を備えた連続鋳造用ノズルの中間層用の耐火物(モルタル)及びその中間層用の耐火物を使用した連続鋳造用ノズルを提供することにある。
 本発明の他の課題は、上記の性状に加え、鋳造途中の内孔側層の剥落を確実に防止する機能を備えた連続鋳造用ノズルの中間層用の耐火物(モルタル)及びその中間層用の耐火物を使用した連続鋳造用ノズルを提供することにある。
 本発明のさらに他の課題は、内孔側層にMgO-CaO系の材質を適用する場合に好適な中間層用の耐火物(モルタル)を使用した連続鋳造用ノズルを提供することにある。
 本発明は、
(1)粒の平均半径Rと前記粒の平均の壁の厚みtの比がR/t≧10を満たす中空耐火骨材を10体積%以上75体積%以下含む連続鋳造用ノズルの中間層用の耐火物(請求項1)。
(2)前記中空耐火骨材が、SiOを70質量%以上、かつアルカリ金属酸化物及びアルカリ土類金属酸化物を合計で1質量%以上10質量%以下含むガラス質の組織を含む請求項1に記載の連続鋳造用ノズルの中間層用の耐火物(請求項2)。
(3)中空耐火骨材以外の残部の総量に占める割合として、Al、Si、Mgの単体金属若しくは合金の1種又は複数種を、それらの金属成分のみに換算して合計で0.5質量%以上15質量%以下、炭素を2質量%以上99.5質量%以下含む請求項1又は請求項2に記載の連続鋳造用ノズルの中間層用の耐火物(請求項3)。
(4)2.5MPaの加圧下の可縮率が10%以上80%以下である請求項1から請求項3のいずれかに記載の連続鋳造用ノズルの中間層用の耐火物(請求項4)。
(5)1000℃以上1500℃以下の非酸化性雰囲気の熱間において、連続鋳造用ノズルに使用する耐火物と0.01MPa以上1.5MPa以下の接着強度を備える請求項1から請求項4のいずれかに記載の連続鋳造用ノズルの中間層用の耐火物(請求項5)。
(6)溶融金属が通過する内孔を軸方向に有する管状の耐火物構造体からなり、この管状の耐火物構造体の一部又は全部の領域で、内孔側層の耐火物の熱膨張がその半径方向外側の外周側層の耐火物の熱膨張よりも大きい連続鋳造用ノズルにおいて、
 内孔側層と外周側層とは独立した成形体であって、前記内孔側層の成形体は可縮性を有する中間層により外周側層の成形体に固定されており、
 中間層と前記内孔側層の成形体及び前記外周側層の成形体との1000℃以上1500℃以下の非酸化性雰囲気の熱間における接着強度が0.01MPa以上1.5MPa以下であり、
 かつ、
 中間層の可縮率K(%)が、次の式1を満足することを特徴とする連続鋳造用ノズル。
 K ≧ (Di×αi-Do×αo)/(2×Tm) … 式1
  Di:内孔側層の外径(mm)
  Do:外周側層の内径(mm)
  Tm:中間層の室温における初期厚み(mm)
  αi:内孔側層の耐火物の室温から1500℃までの範囲における最大の熱膨張率(%)
  αo:外周側層の耐火物の通鋼開始時の温度における熱膨張率(%)
(請求項6)
(7)前記中間層として、請求項1から請求項5のいずれかに記載の中間層用の耐火物を使用した請求項6に記載の連続鋳造用ノズル(請求項7)。
(8)前記中間層は、粒の平均半径Rと前記粒の平均の壁の厚みtの比がR/t≧10を満たす中空耐火骨材を10体積%以上75体積%以下含み、かつ当該中空耐火骨材以外の残部に占める割合として、Al、Mg、Siの単体金属若しくは合金の1種又は複数種を、それらの金属成分のみに換算して合計で0.5質量%以上15質量%以下、炭素を2質量%以上99.5質量%以下含み、
 前記内孔側層は、CaO成分とMgO成分をその合量で80質量%以上含み、CaOとMgOとの質量比(CaO/MgO)が0.2~1.5であって、
 前記内孔側層中のCaO含有量の当該内孔側層における質量割合を、前記中間層中のAl、SiO及びアルカリ金属酸化物の合量の当該中間層における質量割合で除した値が10以上である請求項6に記載の連続鋳造用ノズル(請求項8)。
(9)前記中間層の耐火物内の中空耐火骨材が、SiOを70質量%以上、アルカリ金属酸化物及びアルカリ土類金属酸化物を合計で1質量%以上10質量%以下を含むガラス質の組織を含む請求項8に記載の連続鋳造用ノズル(請求項9)。
である。
 以下、詳細に述べる。
 内孔側層による外周側層の亀裂や押し割りに起因する連続鋳造用ノズルの破壊は、内孔側層の熱膨張が外周側層の熱膨張よりも大きい場合、とくに内孔側層の耐火物の熱膨張特性(本発明では温度上昇に伴う線膨張率と同義)が外周側層の耐火物の熱膨張特性よりも大きい場合に顕著に生じる。
 内孔側層の熱膨張による応力は、連続鋳造用ノズルの水平方向断面における半径方向の圧縮応力として作用し、さらに連続鋳造用ノズルが長尺側軸方向の端部にも外周側層を有する構造の場合には、その軸方向の圧縮応力としても外周側層に作用する。そしてこれらの圧縮応力は外周側層内にて、半径方向の圧縮応力は円周方向の、軸方向の圧縮応力は同じ軸方向の引張り応力に転化し、外周側層の引張り強度を超えたところで、前者の場合は軸(縦)方向の、後者の場合は水平(横)方向の亀裂を生じて、外周側層を損傷させる。
 このような関係にある内孔側層と外周側層との間に、応力を緩和する機能を付与する手段として、本発明では、予熱終了時以降、少なくとも溶鋼の通鋼開始(本発明においては浸漬ノズル内の鋳造開始、ロングノズルのタンディッシュへの溶鋼注入開始も同義。以下同じ。)時点の状態で可縮性を有する中間層を設置する。
 このような中間層を設置することで、内孔側層の熱膨張は外周側層に直接作用することなく中間層への圧縮応力として作用する。この際、中間層自体が圧縮応力に応じて半径方向の厚み、あるいは軸方向の厚みを小さくする、言い換えるとその体積を縮小することで、内孔側層の膨張による応力を緩和させることが可能となる。本発明において、このような厚みや体積を縮小することができる性質を可縮性という。
 中間層によって得ようとする可縮性の目標範囲について以下に説明する。
 浸漬ノズルの一般的な外周側層の材質であるAl-C質を主とする材料系の耐火物の場合、一般的には外周側層の内壁面に数MPaの圧力を加えると破断する。例えば、最大引張り強度が6MPaのAl-黒鉛材質の外周側層を持ち一般的な連続鋳造用ノズル形状である、円筒状かつ実用上ほぼ最小の径方向の構造を有する耐火物(外周側層の内径φ80mm、外周側層の外径φ135mm)の場合、管内壁面から圧力を負荷していくと、肉圧円筒の式から計算により内壁面に約2.5MPaの圧力を負荷すると破断に至ることになる。
 予熱や鋳造開始ないし途中で、この外周側層の内孔側に中間層と内孔側層とを配した場合で内孔側層の熱膨張に伴う外周側層にかかる応力を緩和するためには、中間層自体が変形挙動を示す必要がある。即ち内孔側層から外周側層にかかる応力は、中間層の変形(縮小)によって2.5MPa以下に止める必要があるということになる。
 以上のことから、内孔側層の加熱ないし通鋼過程で、外周側層内に発生する引張り応力を2.5MPa以下、安全性をより高めるためにはさらにできるだけ小さい引張り応力に抑制することが好ましく、このような引張り応力値になるような圧縮応力値の下で、中間層自体が変形挙動を示す必要がある。
 そして中間層に必要な可縮性は、次式の可縮率K(%)で表すことができる。
 K ≧ (Di×αi-Do×αo)/(2×Tm) … 式1
  Di:内孔側層の外径(mm)
  Do:外周側層の内径(mm)
  Tm:中間層の室温における(初期)厚み(mm)
  αi:内孔側層の耐火物の室温から1500℃までの範囲における最大の熱膨張率(%)
  αo:外周側層の耐火物の通鋼開始時の温度における熱膨張率(%)
 Di及びDoは、軸方向の全域において対象となる部分の、軸方向に水平な方向の断面上の内孔側層及び外周側層の平面形状につき、それぞれ内孔側層の外周側面の位置、外周側層の内孔側面の位置の直径を意味する。またこれらの平面形状が円形ではない場合は、当該平面上の内孔側層の平面形状の中心から放射状に延びる同一直線上において、内孔側層の外周側面の位置をDi、外周側層の内孔側面の位置をDoとして、当該形状全体につき、前記式1を満たせばよい。
 なお、軸方向端部における可縮性は、軸(連続鋳造用ノズル水平方向断面の中心)を通過する軸方向の断面上の内孔側層及び外周側層の平面形状につき、上記式1において、Diを内孔側層の軸方向外側面位置を一端部とする他の端部までの軸方向の長さ、Doを外周側層の軸方向内孔側面位置を一端部とする他の端部までの外周側層の軸方向の長さに置き換えればよい。
 ここでαiは内孔側層の耐火物の室温から1500℃までの範囲における最大の熱膨張率(%)であるということは、実質的に溶鋼温度までにおける内孔側層の耐火物の最大の熱膨張率を意味し、αoは外周側層の耐火物の通鋼開始時の温度における熱膨張率(%)であるということは、予熱条件等の操業条件に応じて溶鋼の通鋼開始時に外周側層が曝される温度であって、その条件は各現場ごとに個別に決定するべきものである。なお、温度上昇に伴う熱膨張率の測定は、JIS R 2207-1又はこれに準じた方法(但し、非酸化雰囲気内)により行うことができる。
 連続鋳造用ノズルを予熱無しで使用する場合には、外周側層は室温(周囲の環境の温度)と同じであって、このときαoは熱膨張率測定の基準点である室温における膨張率、即ちほぼ「ゼロ」とみなすことができ、前記の式1は式2となる。
 K ≧ Di×αi/(2×Tm) … 式2
 この式2を満足する可縮率Kは最も厳しい条件、即ち内孔側層と外周側層との間の熱膨張差が最大になる場合を考慮した可縮率となり、この式2を満足する可縮率以上であれば外周側層が破壊することはないが、より破壊しにくい安全性を確保するためには、全ての操業条件においてこの式2を満足する可縮率Kとすることが好ましい。
 なお、この式1及び式2のKは、いずれも還元性ガスや不活性ガス雰囲気内の非酸化雰囲気又は表面に酸化防止材を塗布して空気等の酸化性のガス雰囲気内等の、対象の耐火物が酸化しない条件での値とする。実際の連続鋳造用ノズルの使用時の中間層は非酸化雰囲気である。(前記Kの測定において対象の試料が酸化すると正確な性状を把握することができない。)
 本発明において、前述の中間層用の耐火物の可縮率は、10%以上80%以下を基準とすることが好ましい。
 中間層の可縮率に応じてその中間層厚さを調整することにより、内孔側層の膨張代を緩和することができるが、10%未満であると内孔側層と外周側層の熱膨張率差から中間層の厚さを厚くせざるを得ず、連続鋳造用ノズルの肉厚に制限があるため、結果として本体材質の肉厚が薄くなり構造体としての強度に問題が生じる。また、80%より大きいと中間層の厚さは薄く設計できるため前述したような問題は生じにくいが、薄い中間層を形成する上での製造上の問題や内孔側層と外周側層との接着の強度低下問題が生じ易くなる。例えば、一般的に使用されている連続鋳造用ノズルの最小サイズ付近である外周側層の内径が約φ80mm、内孔側層の熱膨張率が2.0%、外周側層の熱膨張率が0.8%の条件を想定した場合、中間層の厚みが約4mmで中間層の耐火物に必要な可縮率は10%となり、最大サイズ付近である外周側層の内径が約φ150mm、内孔側層の熱膨張率が2.0%、外周側層の熱膨張率が0.8%の条件を想定した場合、中間層の厚みが約1.2mmで中間層の耐火物に必要な可縮率は約78%となる。
 本発明において、この中間層を構成する耐火物の可縮性は主として、耐火物の構成原料の一つである中空耐火骨材により得る。
 この中空耐火骨材により可縮性が得られ、熱膨張による応力が緩和される主なメカニズムは次の2点である。
(1)内孔側層の熱膨張により中空耐火骨材がその破壊強度以上の応力で加圧され、中空耐火骨材の壁面が破壊して体積が縮小し、その破壊によって生じた空間容積が内孔側層の熱膨張の吸収代となる。この過程は主に中空骨材粒子の軟化前に荷重を受けた場合に発生する。
(2)1000℃を超える高温域では、中空耐火骨材の壁が軟化し(温度により軟化の程度は異なる)、その軟化した中空耐火骨材が加圧されると容易に変形して体積が縮小し、その軟化変形~縮小によって生じた空間容積が内孔側層の熱膨張の吸収代となる。
 ここで、可縮率の下限値は1000℃、上限値は1500℃(いずれも非酸化雰囲気中)における測定値を基準とすることができる。可縮率の下限の基準を1000℃とできるのは、1000℃では、中空耐火骨材を含む耐火物の可縮性は殆ど中空耐火骨材の破壊によってもたらされ(厳密には耐火物のマトリクス組織の可縮性も若干加わる)、この破壊の特性は室温から1000℃程度以下の温度域ではほとんど同じであること、結合材成分中の揮発質成分が十分に飛散し炭素質結合組織が完成し、その耐火物のマトリクスの基本となる結合組織が形成されていること等で可縮率はほぼ下限値を示すと考えられること、そのためばらつきの少ない評価が可能でこと、また1000℃から1500℃(溶鋼温度)の高温度域では、中空耐火骨材の破壊に中空耐火骨材の軟化特性等が加わり、1000℃における可縮率よりも高い傾向となること等の理由による。可縮率の上限の基準を1500℃とできるのは、内孔面が最高温度である溶鋼の温度に対し、中間層の温度が約1500℃程度であるからである。
 本発明の可縮率は、次のような方法により測定することができ、この測定値を前記の可縮率と同視することができる。
 予め、成形圧力と同じ圧力で成形され熱処理後に可縮性を示す特性をもつ混合物からなる円柱状耐火物(φ20×5mmt)を、円柱状耐火物と同じ形状のカーボン質の拘束空間内に入れて、非酸化雰囲気下で所定の昇温パターンで熱処理を加え可燃性成分を消失させ円柱状サンプル(約φ20×約5mmt)を得る。この熱処理後の円柱状サンプルをφ20×40mmLの形状をもつ2本の耐火物製治具の端面間に配置する。さらに、挟み込まれた円柱状サンプルを長手方向から加圧する際に、その側面からのサンプルの剥落を防止するために、内径φ20mm/外径φ50mm高さ78mmの耐火物製で円筒状のサンプル用ガイドを当該サンプルに外挿して測定用サンプルとしてもよい。なお、溶媒を含むモルタルの可縮率を測定する場合、耐火物試験片端面の開孔気孔部に溶媒が浸入し可縮率が変化する恐れがあるため予め溶媒をしみ込ませたり、ワックス処理などをして浸透し難い耐火物試験片を用いる方が好ましい。
 この測定用サンプルを温度、雰囲気、加圧速度が制御できる材料試験機の炉内に設置して、非酸化雰囲気で所定の温度まで昇温して、温度が均一になるまで保持した後、加圧を開始して測定を行う。まず、無加圧の状態での円筒状サンプルの初期厚みt(mm)を測定する。次に、測定用サンプルを所定の温度に保持した後に、クロスヘッド移動速度0.001~0.01mm/secの範囲で円筒状サンプルを上下方向から圧縮して、2.5MPaまで加圧した後、その変位量h(mm)を測定する。また円筒状サンプルを挟み込む耐火物製治具の同荷重、同温度でのブランク値を測定するために、円筒状サンプルを挟まない状態で、同条件で加圧し変位量hを測定する。これらの測定値を次式にて計算することで各温度での可縮率K(%)を得ることができる。
 K = (h-h)/t ×100 (%) … 式3
 また、内孔側層が中間層により外周側層に成形時に一体化され連続した構造の実際の鋳造用ノズルからも測定することが可能である。外周側層より耐火物中心軸に対して直角に中心軸に向かってφ20mmのコアボーリングを行い、内孔側層、中間層及び外周側層を含む一体化した約φ20mmの、内孔及び外周側面に曲率をもったコアサンプルを得る。中間層の可縮率は、均一に加圧できるようにコアサンプルの上下面を水平に加工し耐火物製治具に接着するか、コアサンプル上下面と同じ曲率をもった耐火物製治具に接着するなどして、内孔側層、中間層及び外周側層を含む所定のφ20×80~100mmLの測定用サンプルに加工する(ボーリングサンプルの上下面を均一に加圧できるようにする)。(測定用サンプルが前記大きさより小さい場合は、単位面積、単位長さ等の条件を計算により前記と同程度にして測定し、換算することも可能である。)上述した方法と同じく、無加圧の状態での中間層の初期厚みt(mm)を正確に計測し、また、所定の温度で非酸化雰囲気中で中間層の変位量hを測定すると共に中間層の無い状態でのブランク値での変位量hを計測し可縮率Kを算出する。実際のノズルからサンプリングすることにより、中間層の可縮性を正確に測定することが可能となる。
 本発明において応力緩和のための可縮性は、前述のとおり主として中間層内の中空耐火骨材によって得ることができる。この可縮性の大きさは、中間層用の耐火物内の中空耐火骨材の体積割合にほぼ一致する。即ち中間層が中空耐火骨材を10体積%以上75体積%以下含むことで、可縮率が前記の1000℃において10%以上80%以下の要件を満たすことができる。なお、中空耐火骨材以外のマトリクス部分も若干の可縮性を有するが、中空耐火骨材を10体積%以上75体積%以下含むことで、マトリクス部分の可縮性の大小に異存せずに安定的な設計上の可縮性を得ることが可能となる。
 ここで、中空耐火骨材の体積%は、その平均の粒子密度とその添加重量から算出した体積(即ち、中空耐火骨材自身の体積、骨材内の閉気孔の体積及び骨材表面の凹凸部の空間の体積)を中空耐火骨材の占める体積及びその他残部のマトリックス部の占める体積の和で除した値の百分率をいう。中空耐火骨材の体積%の算出方法は、配合中に使用している原料密度から算出する方法が最も正確であるが、顕微鏡組織写真などからによる中空耐火骨材の2次元的な情報を元に、線分法などの画像解析により、中空耐火骨材の体積分率の数値を代用することもできる。
 また、はい土の製造においては中空耐火骨材及びその他残部のマトリックス部の各々を容器に充填した際の体積を使用することができる。
 本発明で使用する中空耐火骨材は、内部に空間を有し、外郭が壁によって形成されたものである。その耐圧強度は、1000℃未満の温度下(室温までの変化は殆どないので室温下での評価とすることができる。)では、骨材粒子1個当たりを2つの平面間で圧縮した場合に、連続鋳造用ノズルを前提とする設定最大加圧、即ち2.5MPa以下の圧縮応力で破壊するものであることが好ましい。
 この耐圧強度を満足するためには、中空耐火骨材の平均半径Rとの平均の壁の厚みtとの比(R/t)が10以上であることが必要である。R/tが10未満であると2.5MPaの圧力下での破壊率が少なく、必要な可縮率を確保することができないことがある。
またこのR/tは60以下が好ましい。60を超えると、本発明の中間層の施工時やこの中間層を設置した連続鋳造用ノズルのハンドリング等の機械的な衝撃でも中空耐火骨材が破壊して中間層の安定性を損なう可能性が大きくなるからである。
 ここで平均半径とは、中空耐火骨材粒子単体について、投影又は中央付近の断面の、最大寸法と最小寸法を単純平均した値、又は任意の複数の点の加重平均値等をいう。
 前記のR/t比を満足する中空耐火骨材の大きさ(粒の平均半径R)は、中間層の中に均一に分散させて中間層内の可縮性挙動を均一化するためにも、微細である方がよい。このような中空耐火骨材粒子の大きさの上限は、設置する当該耐火物による層(中間層)の厚みやその設置(施工)方法等によっても異なる相対的なものなので、絶対値で特定することは適当ではない。しかし、本発明の耐火物を適用する連続鋳造用ノズルの産業上の現実的な大きさから、その中間層の厚みを考慮すると、中間層の下限厚みは約1mm程度(一般的には設置時の作業性、品質等、さらには連続鋳造用ノズルの合理的な構造等を考慮して数mm程度である。また上限は可縮率の要素もあって広範囲に及ぶ。)であることから、このような厚みの層内に中空耐火骨材を均一に分散させることはその径が大きくなるにしたがい困難になる。例えば内孔側層と外周側層との間に中間層となる耐火物を充填する(目地モルタルと同様な方法や流し込みの方法で充填する)際には、粗大な中空耐火骨材粒子はその施工時から既に分離傾向となって偏析しやすく、さらには平均半径Rが大きいほど割れやすくもなる。これらの結果として中間層内の部分ごとの可縮性にもばらつきが生じる。このような理由から、中空耐火骨材粒子の最大半径は250μm以下であることが好ましい。
 また、中空耐火骨材の最小半径は2.5μm以上が好ましい。最小半径が2.5μm未満であると、均一性の面では好ましいものの、耐圧強度が高くなる傾向となって2.5MPa以下の圧縮応力では破壊しない割合が大きくなり、可縮量が減少する傾向になるので好ましくない。
 なお、本発明において最大半径とは、升目の1辺が設定の半径粒子の直径の大きさを有する網目を通過したもの、又はこれに相当する方法で分級されたものをいい、最小半径とは、升目の1辺が設定の半径粒子の直径の大きさを有する網目を通過しないもの、又はこれに相当する方法で分級されたものをいう。
 また、中空耐火骨材は、その外郭形状が球状あるいは丸みを帯びていることが好ましい。中空耐火骨材が球状あるいは丸みを帯びていることで、骨材粒子相互が点接触となって、接触部が広い面等の場合に比較してばらつきの小さい応力(ここでは2.5MPa以下)で中空耐火骨材の壁が破壊し、安定的な耐圧強度を得やすい。また、内孔側層と外周側層(連続鋳造用ノズル本体部)との間隙に、モルタル状にした中間層を充填又は塗布して配置する場合に、その間隙での中間層の流動性が改善されて溶液を過剰に使用する必要がなく、また偏析を少なくすることもできる。充填時の作業性を得るために必要とする流動性付与を目的とする揮発分を多く含む液を多量に使用する場合は、中間層の耐火物の接着性や強度の低下を招くおそれがある。
 このような中空耐火骨材としては、とくにガラスバルーン、シリカバルーン、シラスバルーンなどの呼称で知られるガラス質を含む中空耐火骨材が好ましい。さらに、このガラス質を含む中空耐火骨材の化学組成は、SiOを70質量%以上、アルカリ金属酸化物及びアルカリ土類金属酸化物を合計で1質量%以上10質量%以下を含むガラス質の組織を含み、残部(SiO、アルカリ金属及びアルカリ土類金属酸化物以外の部分)が中性酸化物やSiO以外の酸性酸化物成分からなるものが好適であり、具体的には残部がAlからなる、アルミノ珪酸塩系が最もよい。
 このような組成、とくに残部がAlからなるアルミノ珪酸塩系では、軟化点が1000~1400℃(ここで「軟化」とは、2.5MPa以下の加圧下で、破壊とは別に外形状に変形を生じる状態をいう。)となり、中間層が高温域で軟化変形を起こしやすくなるため熱間での可縮量の増大をもたらす。
 また、このような中空耐火骨材は、軟化以前の低温域即ち約1000℃未満では2.5MPa以下の加圧時に脆性破壊により可縮性を発現するが、アルカリ金属酸化物及びアルカリ土類金属を合計で1質量%以上10質量%以下を含むガラス質の組成にすることにより、約1000℃以上1500℃(溶鋼温度)以下の高温度域で軟化変形しやすくなることで、その体積を縮小して応力吸収機能や熱間強度の発現に寄与することができる。
 SiOが70質量%未満、アルカリ金属酸化物及びアルカリ土類金属酸化物の合計が10質量%より多い場合や、SiOが70質量%以上、アルカリ金属酸化物及びアルカリ土類金属酸化物が合計で10質量%より多い場合は、溶融ガラスの粘性から中空原料を製造する上での問題が生じたり、高温粘性が低いために内孔側層を保持するための接着力で問題が生じやすい。一方、SiOが70質量%未満で、アルカリ金属酸化物の合計が1質量%未満の場合や、SiOが70質量%以上でアルカリ金属酸化物及びアルカリ土類金属酸化物が合計で1質量%未満の場合は、ガラス組成の粘性が高すぎる傾向があり、中空原料製造上の問題が生じたり、高温域での軟化変形挙動や内孔側耐火物層を保持するための粘着力が低下する問題がある。
 なお、本発明における中空耐火骨材の組成の特定にあたっては、非酸化雰囲気における揮発分や可燃物は含まないものとする。具体的には約600℃以上の非酸化雰囲気での熱処理後の試料を基準にする。
 そして、このような中空耐火骨材は、応力によって破壊や軟化して体積を縮小する以前には、耐火物組織中では体積を有する骨材として存在するので、当初から空間を配置した通常のモルタル等と比較して、中間層としての高い強度の発現や維持、高い応力分散機能、溶融金属や空気等の外部からの流体の侵入ないし通過を大幅に減少させることができる。即ち、後述の層自体の安定性、連続鋳造用ノズルの層構造の安定性等にも寄与することができる。
 このような中間層は、連続鋳造用ノズルの搬送や設置、予熱、通鋼の各々の段階において、それらの各段階で受ける外力によっても内孔側層のずれ、剥離、破壊等を生じさせないことが必要である。
 単に耐火物のマトリクス組織内に空間を多量に存在させたモルタルは、収縮後に組織を破壊するので、中間層自体の脆弱化や接着強度の低下を招き、層自体の崩壊を来すことになる。ひいては内孔側層の剥離や破壊、層間への溶鋼等の侵入等を惹き起こす危険性が極めて高くなる。
 多くの鋳造中の内孔側層に関係するトラブルは、このような中間層の接着性が不足する場合があることが原因であったことが判明した。したがって、中間層に高い接着性が求められる場合には、とくに内孔側層の熱膨張により中間層自体が収縮した後の、高温度での溶鋼の通過中に、中間層を介して一定の強度を保持しながら内孔側層が外周側層と安定した接着性を維持しておく必要がある。
 本発明の中間層の耐火物の可縮性は前述のとおり、主として中空耐火骨材の破壊、変形等により実現するので、マトリクス組織部分は従来技術のモルタルと比較して高強度、緻密質である。したがって、組織の脆弱化(破壊強度の低下)や接着強度の低下を大幅に抑制する。
 また、中空耐火骨材は中間層の耐火物組織中で一定の応力が加わった場合に、その可縮性を必要とする部分のみが破壊するか、1000℃以上1500℃(溶鋼温度)以下の非酸化雰囲気の熱間においては軟化により変形し、それらによって応力を緩和して連続鋳造用ノズルの破壊等を防止する。同時に応力緩和を必要としない部分では、中間層の耐火物の骨格をなす骨材としての形状を維持する。
 中空耐火骨材が破壊や軟化変形を生じる場合には、中空耐火骨材はその周囲のマトリクス等から圧縮応力を受けた部分のみの壁を骨材粒子内部に向かって破壊又は変形させながら外形の体積を縮小する。また、中空耐火骨材の破壊又は軟化による変形は、小さな粒の中空耐火骨材が組織内に分散していることからマトリクス組織に局部的な大きい変形をもたらすことはなく、従来の高気孔率のモルタルのように、保形性を維持できない程度のマトリクス組織の破壊を来すことはない。
 その結果、中空耐火骨材はその周囲の組織との密着性を保った状態のまま、即ち中空耐火骨材の周囲の組織に空隙を生じることなく、破壊のない耐火物組織中で骨材としての形態を維持したまま存在することができる。このことにより、中間層は内孔側層及び外周側層との接触面に気孔や空間が生じることが殆どなく、健全な緻密組織を維持しつつ、内孔側層の膨張による外力を受けながら、常時、内孔側層及び外周側層との間で密着性を保つことができる。
 しかし、中間層と内孔側層及び外周側層との接触面間にはさらに積極的な接着性を付与することが好ましい。
 そこで、本発明では中間層の接着性を強化する手段として、金属の高温度での反応による炭化物等の生成を利用する。即ち、本発明の中間層用の耐火物は、10体積%以上75体積%以下の中空耐火骨材以外の残部として、当該残部の総量に占める割合で、Al、Si、Mgの単体金属若しくは合金の1種又は複数種(特定金属)を、それらの金属成分のみに換算して合計で0.5質量%以上15質量%以下、炭素を2質量%以上99.5質量%以下含む。なお、本発明における中空耐火骨材の組成の特定にあたっては、非酸化雰囲気における揮発分や可燃物は含まないものとする。具体的には約600℃以上800℃以下程度の非酸化雰囲気での熱処理後の試料を基準にする。
 このように前記残部中に特定金属と炭素を分散させて併存させることで、通常の耐火物の構成原料間の結合や保形等の目的で使用される樹脂等に由来する炭素結合等に加えて、約800℃以上、とくに約1000℃以上の熱間において中間層の接着強度及び耐火物組織自体の結合強度を強化することが可能となる。
 この作用は次のように考えられる。これらの特定金属は炭素との共存によって鋳造途中に還元雰囲気に曝されることになるので、特定金属成分であるMg系ガスやAl系ガスなどが蒸発し、一部が金属炭化物や金属酸化物として耐火物組織中の酸素分圧の比較的高いと思われる気孔部分等に析出し接着(以下単に「デポジット」という。)する。またそのような当該耐火物内部の気孔部分以外にも、当該耐火物の隣接部分等、とくに酸素成分を含有する溶鋼と中間層との接触界面近傍の気孔や空隙部分等には、これら特定金属の酸化物が集中してデポジットする。
 約800℃よりも低い温度における中間層の耐火物としての強度、接着性は、第一次的には樹脂等に由来する炭素結合により担う。約800℃以上、とくに約1000℃以上の高温度においては、特定金属と炭素の反応により生成する炭化物、前述のデポジットにより生成する酸化物等による結合組織が樹脂等に由来する炭素結合等に加わって結合を強化する。
 これにより、中間層の耐火物組織内強度が強化され、内孔側層や外周側層との接着力も強化される。さらに中間層中への溶鋼等の浸透を防止する顕著な効果が得られる。(以下これらデポジットによる結合組織を「再結合組織」ともいう。)
 本発明の耐火物では、中空耐火骨材が破壊や変形して縮小しても、中空耐火骨材以外のマトリクス組織の構造が大きく損傷することはない。また、結合組織及びマトリクス組織に部分的な損傷が生じた場合にも、前記の再結合組織が形成され、中間層自体のマトリクスの結合組織を再生又は強化すると共に、当該中間層と内孔側層及び外周側層との間の接着強度向上にも寄与する。この結果、約1000℃以上の高温度において接着強度は低下せず向上する。
 このような中空耐火骨材と特定金属及び炭素による本発明の作用等は、受鋼開始前から多量又は大きいサイズの空間を存在させ、初期の樹脂等に由来する結合のみしか備えない、しかも可縮と共にその組織の破壊を進行させる形態のモルタル等の従来技術と決定的に異なる利点である。
 接着性を接着強度により定量的に示すと、中間層は内孔側層と外周側層のそれぞれと、1000℃以上1500℃(溶鋼温度)以下の非酸化雰囲気の熱間において、0.01MPa以上1.5MPa以下の接着強度を備えることが好ましい。なお、接着強度を備える前提として、中間層自体は接着強度と同程度以上の強度を有していることになるので、以下、接着強度のみについて述べる。
 接着強度が0.01MPa未満の場合、内孔側層を保持する能力が小さいため、通鋼開始時の衝撃や溶鋼流速の変化などにより、また、内孔側層に局所的な溶損が発生した場合に剥落する可能性がある。また、接着強度が1.5MPaを超える場合は、中間層内部組織においても接着強度と同レベルの高強度の状態となって、中間層の可縮性を損なうことになり、内孔側層の熱膨張が緩和されることなく外周側層に伝播されやすくなって、とくに外周側層の割れを惹き起しやすくなる。
 この接着強度は、圧縮剪断強度Sとして評価することができる。圧縮剪断強度Sは図2に示すように外周側層3(4)に中間層1を介して内孔側層2が内装された3層構造を持つ管状サンプルを台8に載せて所定の熱間にて均一に加熱保持したのち、クロスヘッド9の移動速度0.001~0.1mm/secの範囲で内孔側層2の上面部のみを圧縮して、その最大荷重P(N)と変位を測定し、次の式4により求められる。
 S(Pa)=P/A … 式4
 ここで、Aは内孔側層の中間層への接着面積(m)を表す。
 サンプルの形状については管状であればとくに限定はなく、実ノズルから切り出して測定することも可能である。ただし、接着面積Aが大きくなると最大荷重Pも大きくなるため、サンプルの高さは100mm以内が好ましい。測定時の最低温度は1000℃とし、雰囲気は非酸化性雰囲気とする。1000℃が、有機質結合材成分中の揮発質成分が十分に飛散し炭素質結合組織が完成し、安定した可縮性及び接着状態を示す温度であり、さらに特定金属の反応~デポジット等が始まる温度であるためである。
 前記特定金属の含有量が前記残部中で15質量%を超えると、中間層の強度と接着性に関しては強化されることになるが、反面、金属炭化物結合による結合部分の組織が耐火物としての組織全体の中間層強度を高めることになるため、可縮性が損なわれて必要な可縮性を得難くなることがある。また、特定金属が昇温過程から溶融し、マトリクス中の元の存在場所から流失する危険が生じ、層全体に均一な強度や接着力を得ることが困難になることがある。さらに、部分的なマトリクス組織の崩壊、層間の隙間等の形成をも招来して、それにより生じた空間等に溶鋼等の侵入も生じやすくなる。一方、特定金属の含有量が前記残部中で0.5%未満では、中間層自体の強度の向上や1000℃非酸化雰囲気中での0.01MPa以上の接着強度の向上が得られなかったり偏析を生じやすく、中間層の破壊や内孔側層の剥離、さらには溶鋼の浸入等を招来しやすくなる。
 前記特定金属をAl、Si、Mgの成分に限定するのは、これらの特定金属成分のうちAl、Mgは酸素との親和性が高く、酸素を捕捉してAlやMgO等の耐食性に優れるデポジット物を形成すること等の理由により、Siは約1300℃以上の高温度域で中間層内の炭素と反応して強度、耐食性に優れるSiCを形成する等の理由による。またこれらの特定金属の純度は、できるだけ高い方が反応性、分散性の点から好ましいが、反応性を阻害しない限り、純度が低いものでもよい(前記各特定金属成分を主体とする旨を表示して市販されているもの(工業的に生産されて一般に流通しているもの)であれば、使用可能である。)。
 特定金属の粒径は、できるだけ小さい方が反応性、分散性の点から好ましい。しかし、粒径が小さくなるほど取り扱い上の危険性が増し、また空気中での酸化等も生じやすくなるので、粒径の下限値は約5μm、上限値は約300μmが好適であり、粒径が20μm以下で急激に表面積が大きくなって反応性が高まり、また分散性もさらに高まるので20μm以下がさらに好ましい。
 前記特定金属と反応させるための炭素成分は、中間層の前記残部の総量に占める割合として、15質量%以上99.5質量%以下であることが必要である。
 炭素源としては、昇温時に炭素を残留するフェノール樹脂等の熱硬化性樹脂をはじめ、各種ピッチ、カーボンブラック、黒鉛、炭素繊維等を使用することができ、これら複数種を組み合わせることもできる。なかでも、特定金属との反応性を高め、また均一性を高めるために、炭素源にはカーボンブラック等の粒径ができる限り小さい炭素や結合組織に由来する無定形の炭素等(以下単に「微細炭素」という。)が含まれていることが好ましい。なお、室温から数百℃程度までの強度を付与する目的で、酢酸ビニル系樹脂、エポキシ樹脂、アクリル樹脂、ポリエステル樹脂等の有機系接着材や樹脂を使用することもできる。
 中間層の耐火物のマトリクス組織には、基本的な強度、接着力を担う前述の微細炭素に加え、さらに、連続的な結合組織やマトリクス組織の骨格を形成する基材となる黒鉛、炭素繊維等(以下単に「骨格基材炭素」という。)を含ませることが好ましい。とくに黒鉛はその層状の結晶構造に加え、扁平状の粒子形状であることもあって、フレキシブルで連続的な3次元構造を得ることができ、また炭素繊維も同様な3次元構造を得ることができるので、より好ましい。
 このようなフレキシブルで連続的な3次元構造をマトリクスに形成することで、特定金属と反応した後の炭化物の介在する結合組織にも靱性を付与することが可能となり、応力により中空耐火骨材が変形又は破壊した際の、その周囲のマトリクスの崩壊を抑制し、層としての健全性をより高めることができる。
 前記微細炭素と骨格基材炭素の具体的な割合は、前記の15質量%以上99.5質量%以下の全炭素中に占める割合として、アスペクト比が大きく3次元的な連続性を高める効果のある黒鉛やカーボンファイバーなどの骨格基材炭素の割合が70質量%から95質量%以下であることが好ましい。70質量%より少ないと3次元的な連続性が低下し柔軟性が損なわれるおそれがある。また、95質量%より多いと、低い接着強度にとどまることで、局部的な損壊が生じるおそれがある。
 前述した、特定金属と炭素の共存により特定金属の稼働面でのデポジット効果による耐食性改善を補助的に改善する方法として、前記残部の構成物として耐食性に優れる耐火材料を併存させる方法がある。ただし、このような特定金属及び炭素以外の残部に他の成分からなる耐火材料を含む場合のその成分(以下単に、「他の成分」ともいう。)としては、内孔側層や外周側層と鋳造温度で低融化現象や揮発消失現象を起こさない成分を主とする耐火骨材の選定が必要である。鋳造温度で中間層が内孔側層や外周側層との接触により液相を生成すると、熱間接着強度が低下したり、過度な焼結等により可縮性を損なう程度に耐火物の強度が上昇したりするので好ましくない。また、当該耐火物の内部は強い還元雰囲気に曝されることから、例えば他の成分と安定な鉱物を形成していないSiO成分等の揮発性に富む成分では、炭素成分の消失をもたらしながらその成分自体も揮発して消失するので、好ましくない。
 選択可能な骨材としては、Al、MgO、ZrO、Al・MgO系スピネルなどがあり、中間層と内孔側層との接触部分が低融物等を生成しないように、これら成分を内孔側層の材質に合わせて適宜選択する。例えば、内孔側層がCaOを含む系の耐火物である場合、MgO質の耐火骨材が好適であるし、内孔側層の材質がAl質やMgO質を主とする場合は、Al、MgO、Al-MgO系スピネルなどが好適である。また、このような前記他の成分中の耐火骨材のMgO純度が90%以上である場合は、内孔側層がAl系の場合やZrO系の場合にも好適であり、多様な内孔側層の成分に広く対応することができるので、好ましい。
 このような他の成分を構成する耐火骨材の粒径は、分散性と中間層における上述の諸機能の均一性を高めるために、中間層の下限厚みを1mmとする場合は0.5mm以下であることが好ましい。
 ここで、中間層の耐食性が必要となる場合とは、操業中の諸作用により内孔側層の欠損部分が生じた場合に耐食性に劣る外周側層に溶鋼等が直接接触することを抑制ないしは防止すること、及びそのような場合に中間層自体にも耐食性、耐摩耗性等を確保するためである。
 連続鋳造用ノズルには、内孔側層自体の損傷による欠損部分、内孔側層とノズル本体(外周側層)との境界部分、ガス吹き込み用ガスプール部分や層間接合部分等の脆弱な部分の局部的な損傷部分のほか、例えば浸漬ノズルの吐出孔部分等の連続鋳造用ノズルの製造時における加工工程において連続鋳造用ノズルの製品としての状態で既に溶鋼に直接曝される部分が存在する又は存在する可能性がある。このような溶鋼に直接曝される部分の耐食性、耐摩耗性等が弱い場合、その部分の選択的な消失等により、内孔側層と外周側層との間に溶鋼が侵入する等の、連続鋳造の操業上致命的な連続鋳造用ノズルの破壊等を惹き起こすこととなる。
 本発明の中間層用の耐火物は、浸漬ノズル、オープンノズル、取鍋ロングノズル、スライディングノズル(以下「SN」という。)、SN上部ノズル、SN下部ノズル(コレクターともいう)等の、内孔を溶鋼が通過する機能、構造を有する連続鋳造用ノズルに好適である。
 このような連続鋳造用ノズルの内孔側層の材質はとくに制限する必要がなく、それぞれの連続鋳造の操業に応じてその連続鋳造用ノズルに求められる特性、具体的には例えば湯当部の耐摩耗性、内孔の耐食性、内孔へのAl等介在物付着防止等の、それぞれの目的に適う特性を有するAl質、MgO質、ZrO質等を含む耐火物(黒鉛その他の成分を含有していても構わない)を適宜使用することができる。外周側層についても同様にとくに制限する必要がなく、外周側層は通常連続鋳造用ノズルの本体部を構成する部分であることから、一般的なAl-黒鉛質や、モールドパウダー部分に高耐食性のZrO質等を含む耐火物を一部又は全部に使用していても構わない。
 本発明の中間層用の耐火物の使用は、このような内孔側層、外周側層の耐火物材質の中でも、とくに内孔側層の耐火物の熱膨張率が外周側層の耐火物の熱膨張率より大きい組み合わせの場合に好適である。内孔側層と外周側層が同一の材質等で同一の熱膨張特性を有するが温度勾配や熱衝撃が、それら耐火物が構成する連続鋳造用ノズルを破壊する程度に大きい場合にも、当然、使用できる。
 以上の中間層に関する知見を基礎として、さらに内孔側層としてCaO-MgO系耐火物を配置する場合について特異な条件が存在することを本発明者らは見出した。
 例えば特開2003-320444号公報に開示されているように、連続鋳造用ノズルにおいて内孔側層にCaO-MgO系耐火物を配置することで、とくに内孔面へのアルミナを主とする付着と閉塞の問題を解決できる。しかし、CaO-MgO系耐火物を内孔側層に採用することにより、とくに外周側層の押し割りによる破壊、内孔側層の溶損、破壊、剥離、それら層間への地金侵入ないしノズル諸部位の破壊等が新たな問題となった。
 そこで、本発明では、内孔側層がMgO-CaO系耐火物からなる連続鋳造用ノズルにおいて、内孔側層と外周側層との固定を維持し、かつ内孔側層と外周側層との間に溶融金属が侵入するような空間を生じさせることなく、内孔側層の熱膨張による外周側層の損傷を防止する手段を講じた。
 まず、本発明では、内孔側層として配置するCaO-MgO系耐火物の組成を特定した。即ち、内孔側層として、CaO成分とMgO成分をその合量で80質量%以上含み、CaOとMgOとの質量比(CaO/MgO)が0.2~1.5であるCaO-MgO系耐火物を配置する。
 このようにCaO成分による難付着性の維持機能とMgO成分による耐食性維持機能とをバランスさせた内孔側層を配置することでアルミナ閉塞防止機能が十分に発揮される。
 CaO成分は溶鋼流により内孔面に接触した鋼中アルミナ系脱酸生成物と反応することで、接触界面にCaO-Al系低溶融物を生成するため、スラグ化した反応物は溶鋼流により容易にモールド内へ流下することが可能となり、ノズル内でのアルミナ閉塞現象を防止することができる。反面、CaO成分を増加させると、耐火物から溶鋼へのCaO成分の継続的な供給が行われるため、耐火物側の溶損量が増加すると共に、鋼中介在物量が増加して鋼品質を低下させる。
 一方、MgO成分はアルミナ成分と低融物を生成しないため耐溶損性の面では有利になるが、MgO成分の増加はアルミナ閉塞現象に対しては不利となる。
 したがって、CaO/MgOの質量比とその成分の合計量(CaO+MgO)が溶損性とアルミナ難付着性に影響を及ぼす重要なパラメータとなる。また、耐溶損性と閉塞防止効果に対して、操業面では溶鋼流速や鋼中アルミナ含有量が影響を及ぼす。一般的には、溶鋼流速が速くなると付着が少なくなり、溶損傾向となり、鋼中アルミナ濃度が高いほど一定条件ではアルミナが付着しやすくなる。要するに、このような操業条件や溶鋼種類も考慮して付着と溶損のバランスの取れた組成範囲での材料設計が必要となる。
 これらのことを踏まえ、本発明では内孔側層の組成を上述のように特定した。即ち、CaO成分量とMgO成分量の質量比(CaO/MgO)が0.2より低いと、溶鋼流速が5t/min以下での一般的な鋳造条件では、内孔側物層からの継続的なCaO成分の供給ができなくなり、難付着性の維持ができなくなる。また、CaO/MgOが1.5より大きいと、内孔側層中からのCaOの供給が激しく内孔側層自体の溶損量が増加する結果、鋼中介在物量が増加する。さらに、CaO成分とMgO成分の合量を80質量%以上とすることで、耐食性と溶損性のバランスを取ることが可能となる。
 CaO成分とMgO成分以外の残部は、CaO成分とMgO成分以外の耐火材料、とくに炭素質の耐火材料で構成することが前述の耐食性と溶損性(付着防止)のバランスを維持するために好ましい。なお、残部に炭素質の耐火材料を使用した場合、CaO成分とMgO成分の合量が80%未満では、残部の炭素成分量が増加するため溶鋼中への炭素の溶解現象が顕著となり、内孔側層の溶損が大きくなりすぎて寿命が短くなり、鋼中介在物量も増大するという問題が生じる。
 内孔側層の耐火物のCaO成分源やMgO成分源としては、ドロマイトクリンカーや、合成ドロマ原料、マグネシア原料、カルシア原料などを使用できる。とくに焼成ドロマイトクリンカー中のCaO成分は、クリンカー中に連続的に存在しており、CaOの継続供給の観点から好ましい。
 その粒径は、0.1mmから3mm以下が好適である。0.1mmより細かいMgO-CaO質微粉末などを多量に使用すると、消化現象が発生しやすく、品質安定性や容積安定性の面で問題となる。3mmより大きいと成形体の成分的、粒度的な偏析現象が発生しやすくなり均質性の観点から好ましくない。
 このようなCaO-MgO系の内孔側層に対して適用する中間層としては、上述のとおり、600℃非酸化雰囲気の熱処理後において、中空耐火骨材を10体積%以上75体積%以下含み、その残部が、当該残部の総量を100質量%とするときに、Al、Ca、Mgの単体金属若しくは合金の1種又は複数種を、それらの金属成分のみに換算して合計で0.5質量%以上15質量%以下、炭素を2質量%以上99.5質量%以下含むものであって、かつ、前記内孔側層中のCaO含有量の当該内孔側層における質量割合を、前記中間層中のAl、SiO及びアルカリ金属酸化物の合量の当該中間層における質量割合で除した値が10以上であるものを使用する。
 その理由は、CaO成分とMgO成分をその合量で80質量%以上含み、CaOとMgOとの質量比(CaO/MgO)が0.2~1.5である内孔側層の中のCaO成分と、大量のAl、SiOの成分が接触すると、とくに長時間の操業においてCaO-Al-SiO系の反応物を生成して、その反応に内孔側層の中のCaO成分が消費され、溶鋼中のAl介在物を捕捉する機能が低下し、またそのような中間層との接着部分が必要以上に強固となり、かつその部分が収縮等を伴って変形することで内孔側層に不均一な引張り応力を生じ、内孔側層の破壊(亀裂)等を招来する可能性が高まるからである。
 さらにAl-SiO系にアルカリ金属酸化物が加わるとそのような現象が促進され、内孔側層中のCaO含有量の当該内孔側層における質量割合を、当該中間層中のAl、SiO及びアルカリ金属酸化物の合量の当該中間層における質量割合で除した値が10未満であると、そのような現象が顕著になる。
 また、CaO-MgO系の内孔側層に対して適用する中間層の溶鋼への耐食性を向上させるためには、前述の中空耐火骨材、炭素、特定金属を除くその他の構成物としての耐火骨材粒子は、MgO、Al-MgO系スピネル骨材を使用することが好ましく、その他の構成物の中に占める含有量としては、50質量%以上(100質量%を含む)になるように調整することが好ましい。
 その第1の理由は、内孔側層と中間層の境界部分において過度な焼結、溶融等の相互の反応が生じ難い材質の組み合わせとするためである。CaOとMgOとの質量比(CaO/MgO)が0.2~1.5、CaO成分とMgO成分をその合量で80質量%以上含有した内孔側層に対しては、MgOの含有量の合量が80質量%以上(100質量%を含む)になるように調整したマグネシア又はスピネル(AlとMgOを成分とするスピネル)質の耐火骨材の単体又は混合物が、前記内孔側層の耐火物との相互の反応を生じ難く、最適である。
 第2の理由は、外周側層として一般的に使用されるAl-SiO-C系、Al-C系、ZrO-C系、又はMgO-C系耐火物との相互の反応も生じ難いことからである。
 第3の理由は、中空耐火骨材の中のガラス成分、シリカ成分等に対し、MgOが他の、例えばアルミナ-シリカ系の耐火骨材微粒子よりも相対的に相互の反応を生じ難いからである。
 なお、この場合の外周側層(本体部分)は、Al-C系、ZrO-C系、又はMgO-C系等いずれの耐火物であっても、またその中のAl、ZrO、MgOとCの、それぞれの構成比率や存在形態等に制限はない。
 本発明の耐火物を、内孔側層の熱膨張がその外周側層の熱膨張より大きい場合、とくに内孔側に高耐食性、高い付着防止性等の高機能の層を配置して耐用性を高めた連続鋳造用ノズルの中間層に適用することで、その内孔側層と本体材質である外周側層との熱膨張差に起因する外周側層の押し割れを防止すること、及び、鋳造途中の内孔側層の剥落、破壊を防止することができる。
 また、特定金属のデポジットにより安定した接着性を得ることができ、さらには中間層耐火物自体の組織の緻密化及び高強度化も併せて実現でき、複数層構造の安定化と共に中間層の耐食性をも改善することができる。
 さらに、Alを中心とする内孔への介在物の付着抑制効果が顕著に高い内孔側層を提供すると共に、CaO成分に起因する内孔側層の中間層との必要以上の強固な接着を生じさせることなく、また接着不足による内孔側層の脱落やずれ等の、内孔側層の破壊(亀裂)等にも繋がる問題を解決することができ、長時間に亘る安定した連続鋳造の操業を行うことができる。
 また、本発明の連続鋳造用ノズルを使用することにより、個別の連続鋳造の固有の操業条件に応じてその連続鋳造用ノズルに求められる特性、具体的には例えば湯当部の耐摩耗性、内孔の耐食性、内孔へのAl等介在物付着防止等の、それぞれの目的に適う特性を備える多様な材質の耐火物を必要な部位ごとに適宜使用することができ、その材質やそれらの組み合わせの選択肢を大幅に拡大することができる。ひいては連続鋳造用ノズルの寿命延長、鋼の品質向上、安定操業、省資源等にも寄与することができる。
本発明の中間層用の耐火物を使用した連続鋳造用ノズルの一例として、浸漬ノズルを示す軸方向断面図である。 接着強度試験時の試料及び装置の軸方向断面のイメージ図である。 実施例Aにおける中空耐火骨材の破壊試験時の試料及び装置の軸方向断面のイメージ図である。
 まず、本発明の耐火物の製造方法を示す。
 本発明の耐火物自体は、中空耐火骨材、炭素、特定金属、他の構成物を含む場合はその構成物を成す耐火材料粒子を混和し、その混和物にフェノール樹脂、酢酸ビニル系等有機系樹脂等の、前記混和物を湿潤状態にして粒相互の凝集性又は接着性を付与すること及びそれらの硬化後に成形体としての保形性を有する程度の強度を有する結合材を、その成形及び保形に必要な適宜な量を添加して混練して混練物を得る。次にその混練物を、予め設けた空間に流し込み、吹き込み等の適宜な方法で充填して成形し、110℃以上600℃以下程度の、結合材等の特性に応じた適宜の温度で乾燥、焼成等の加熱処理をすることで得ることができる。以下詳細に述べる。
 10~75体積%の中空耐火骨材と、25~90体積%の、鱗状黒鉛、土状黒鉛、カーボンブラック、ピッチ、樹脂等由来の炭素質粒子、例えばマグネシアやジルコニア、コランダム質粒子等の酸化物粒、金属粒子を混和する。
 前記の25~90体積%の、鱗状黒鉛、土状黒鉛、カーボンブラック、ピッチ、樹脂等由来の炭素質粒子、酸化物粒、金属粒子は、当該中空耐火骨材以外の部分の総量に占める割合として、Al、Si、Mgの単体金属若しくは合金の1種又は複数種(特定金属)を、それらの金属成分のみに換算して合計で0.5質量%以上15質量%以下、炭素を2質量%以上99.5質量%以下含み、残部が前記特定金属及び炭素以外の耐火性骨材(ゼロを含む)からなるように配合して混和する。この原料の粒サイズは、中間層の耐火物の可縮能をより均一にするため、及び塗布作業性に優れたモルタル状となすために、使用する原料粒度の最大粒子径は0.5mm以下が好ましい。
 中空耐火骨材の量は、内孔側層と外周側層の熱膨張率と中間層の耐火物の厚みとの関係から必要な可縮率を算出し、その可縮率になるように、中空耐火骨材と他の構成原料との割合を調整することで決定すればよい。
 さらに、中空耐火骨材及び残部の耐火骨材等の構成物の割合は、組み合わせる内孔側層中のCaO含有量の当該内孔側層における質量割合を、当該中間層中のAl、SiO及びアルカリ金属酸化物の合量の当該中間層における質量割合で除した値が10以上になるように、各原料の配合割合を調整すればよい。
 その混和物にフェノール樹脂、酢酸ビニル系等の有機系樹脂等の、前記混和物を湿潤状態にして粒相互の凝集性又は接着性を付与すること及びそれらの硬化後に成形体としての保形性を有する程度の強度を有する結合材を、その成形のために必要な適当な軟度になるように調整した量を添加し、それらをモルタルミキサー等のミキサーを使用して混練してモルタル状の混和物を得る。フェノール樹脂と他の有機系樹脂の使用量は、粉体の混和物を100質量部とするときに40質量部以上90質量部以下程度の範囲で、求められる作業性に応じて調整すればよい。
 次に、そのモルタル状混和物を、内孔側層及び外周側層の間に予め設けた空間に、一方又は両方の面に塗布して嵌合する、流し込む、吹き込む等の適宜な方法で充填して内孔側層と外周側層と一体化する。そして、110℃以上600℃以下程度の、結合材等の特性に応じた適宜の温度で乾燥、焼成等の加熱処理をすることで保形能及び層間固定能を発現させる。
 このような中間層の耐火物は、実用上は主として、前述の工程を後述のような連続鋳造用ノズルの構造体の一部の製造工程として組み込み、製品個体の1単位の連続鋳造用ノズルとしての形態として得る。そのほか、型枠等を使用して成形、乾燥ないし非酸化雰囲気での焼成を行って、例えば筒状等の任意の形状の部品として形成し、連続鋳造用ノズルの一部として組み立てて利用することも可能である。
 次に、前記の中間層の耐火物を適用した連続鋳造用ノズルの製造方法について述べる。
 内孔側層は、連続鋳造用ノズル本体部とは別に、単体の耐火物の成形体として製造しておく。この内孔側層は、予め耐火物の成形体として準備しさえすればよく、この製造方法はとくに限定する必要はない。内孔側層がCaO成分とMgO成分を含む場合の一例を以下に記す。
 CaO成分とMgO成分を含む耐火原料、例えば焼成ドロマイトの微粉原料及びMgOクリンカーの微粉原料を、耐火物成形体を600℃非酸化雰囲気中において熱処理した後にその耐火物成形体内のCaO成分とMgO成分をその合量で80質量%以上含み、かつCaOとMgOとの質量比(CaO/MgO)が0.2~1.5になるように、各原料の含有割合を調整する。これら微粉原料にフェノール樹脂等の600℃非酸化雰囲気中において熱処理した後に結合機能を有する結合材成分及び成形に適した湿潤状態を得るための液体の成形助剤等(前記の結合材が液体である場合には成形助剤としての機能を兼用できる)を加え、ミキサーで均一に混和し、成形用のはい土を得る。
 得られたはい土を、CIP(Cold Isostatic Press)、油圧プレス、フリクションプレス等の適宜の成形機で成形し、約150℃以上の温度で乾燥、又は非酸化雰囲気中において熱処理する。その後、外周面等を、別途通常の一般的な製造方法等で単体として準備した連続鋳造用ノズル本体部に装着するために適当な形状に、必要に応じて加工する。なお、原料や成形体の一般的な消化対策等は、原料や製造等の個別の条件に応じて、適宜行えばよい。
 このように予め単体で成形した内孔側層とする成形体と、予め単体で成形した連続鋳造用ノズル本体となる外周側層との間に、中間層となる所定の厚みの空間を形成しておき、この空間に本発明の耐火物を充填して中間層とし、多層構造からなるノズルとする。
 中間層に適用する本発明の耐火物は、内孔側層と外周側層との間の狭い空間に充填するために充填が可能な程度の泥状の不定形状にする。充填工程での作業性を付与するために、中空耐火骨材、固体としての炭素原料、他の構成物としての耐火材料を混和した粉体100質量部に対し、例えば液状の樹脂を外掛けで40質量部以上90質量部以下程度の量(空間の大きさと施工作業性とを考慮して決定する)を加えて混練する。
 このように施工作業性を付与した中間層用の耐火物を、所定の中間層厚みの空間が形成できるようにスペーサーを設置した内孔側層の外周面、又は外周側層の内孔面に塗布し、外周側層(連続鋳造用ノズルの本体)の内側に内孔側層を挿入する。内孔側層の外周面と外周側層の内孔面との間の空間は中間層の耐火物層の厚みと等しくなる。
 このような塗布による方法のほか、外周側層と内孔側層の間に設けた所定の厚みの空間に、液の添加割合を大きくする等で流動性を高めた中間層の耐火物を流し込み等の方法で充填することもできる。
 この中間層用の耐火物を充填した後の連続鋳造用ノズルを乾燥、焼成等の加熱処理を行って、中間層用の耐火物を硬化させ、内孔側層と外周側層とを固定する。この硬化は、室温以上600℃以下程度の、中間層の耐火物に含まれる結合材の特性に応じた適宜の温度で行えばよい。例えば、ビニル系を使用の場合は、150℃程度の乾燥でよく、また、フェノール樹脂を使用した場合は、200℃以上であることが好ましい。さらにその後、例えば1000~1300℃程度の非酸化雰囲気内で焼成してもよい。このようにして本発明の連続鋳造用ノズルの成形体を得ることができる。
 前記の中間層用の耐火物に使用する中空耐火骨材は、上述のような内孔側層の外周側層への設置施工時の外力によっては潰れないので、施工作業によって中間層の厚みが過度に小さくなったり、溶媒が吸収されるなどして必要な可縮性が損なわれることはない。さらに、この中空耐火骨材は風船状に形成されているので、破砕粒のようなエッジ部が少なく、丸みを帯びた外形状であるので、泥状の中間層の耐火物の流動性を向上させる効果を得ること、即ち液相量を減じて緻密なマトリクス組織にすることも可能となる。
 ただし、いずれの方法であっても成形時その他の施工時に中空耐火骨材の強度を超える圧力で加圧をすると中空耐火骨材が破壊して応力を緩和する機能を損なってしまう。したがって、中空耐火骨材が破壊する、少なくとも2.5MPaをはるかに超える加圧を前提とする連続鋳造用ノズルの一般的な同時・一体的な静圧成形(CIP)その他の各種の高圧のプレス成形をすることはできない。
 前記の製造方法において、中間層用の耐火物の中には中間層自体の保形性及び常温から使用時の熱間までの間における強度の付与、及びはい土の成形性の確保等を目的として結合材を使用するが、内孔側層にMgO-CaO系、とくに単独の形態で存在する(固溶体や化合物ではない)CaOを含む場合は、その中のCaO成分の水和に起因する施工体の崩壊等を防止するために、結合材には水分を含まず、また昇温過程での水分の放出の少ない材料を使用することが必要である。このような条件に適う結合材として、非水系フェノール樹脂やフラン樹脂、タール類、メラミン樹脂、エポキシ樹脂、アルコールを溶媒とする酢酸ビニル系樹脂等を使用することができる。
 なお、この結合材に由来し600℃以上で残留する炭素量は、前記中間層の耐火物の炭素成分としての組成の一部となる。
 このような充填及び加熱等処理後の連続鋳造用ノズルの成形体は、外周その他の成形加工、酸化防止材の塗布等の一般的な連続鋳造用ノズルにおける加工工程と同様の加工を行うことができる。
 上述の製造方法により、可縮性を有し、しかも内孔側層と外周側層との一体である連続構造の、中間層を有する連続鋳造用ノズルを得ることができる。
 図1に、本発明の連続鋳造用ノズルの一例として浸漬ノズルを示す。図1において、1は中間層、2はMgO-CaO系の耐火物からなる内孔側層、3は外周側層のうち連続鋳造用ノズルの本体をなすアルミナ-黒鉛質の層、4は外周側層のうち連続鋳造用ノズルのパウダー部をなすジルコニア-黒鉛質の層、5は内孔、6は溶鋼流入孔、7は吐出孔である。
 以下に実施例を示す。
<実施例A>
 実施例Aは、中空耐火骨材に2.5MPaの外力を加えた場合に、中空耐火骨材の平均半径R、及び平均半径Rとその粒の平均の壁の厚みtとの比(R/t)が、その破壊に及ぼす影響を実験により調査した結果である。
 表1に実施例Aの各試料の構成及び実験結果を示す。
Figure JPOXMLDOC01-appb-T000001
 供試料は、一般的に市販されていて入手可能なものから選択し、水中に分散させた後、浮上した粒子を選別、分級し110℃で乾燥することで得た。供試料の組成は、SiOを70質量%以上、アルカリ金属酸化物及びアルカリ土類金属酸化物を合計で1質量%以上10質量%以下、Alを5質量%以上20質量%以下を含み、ガラス質の組織を含むものである。
 供試料の大きさは、平均半径が2.5μm(好ましい最小半径)、250μm(好ましい最大半径)、及びその中間の35μmとし、各粒子につき、壁の厚さが異なる複数の粒子群の集団に分級して、R/t比が異なる試料を得た。
 試験方法は、図3に示すように、供試料10を内径60mmの円筒形の金属製の容器11内に高さ10mm厚さの初期高さになるように充填し、加圧機(上部ライナー12及び下部ライナー13)により2.5MPa圧力で静止するまでの加圧を行い、その後、容器11内の供試料10を取り出した後に、1リットルの水中へ分散させ浮上したものと沈降するものとを分離し、浮上したものを回収し、乾燥した後にその重量を測定した。
 破砕率(%)は、円筒形の金属製の容器11内に最初に充填した供試料8の総重量(以下、「当初総重量」という。)から前記の浮上分の総重量を差し引き、その値を前記の当初総重量で除した値を100分率で表示した。
 本実施例Aにおいては、マトリクス部も若干の可縮性を示すことを考慮して、この中空耐火骨材の破砕率が90%以上であることを、必要な可縮率を得るための要件とした。また、本試験方法では、加圧によって破壊した粒の破片が粒間の空間へ充填してその破片が応力分散機能を果たすことになり、加圧時間に伴い破壊せずに残留している粒が破壊しにくい状態となって、一部が破壊せずに残ることも考えられる。したがって、90%以上の破砕率を示す粒子は、耐火物の組織内では同一レベル以上の破壊の特性を有すると判断することができる。
 好ましい最小半径であるRが2.5μmから、好ましい最大半径であるRが250μmの範囲の各試料で、前記のR/t比が10以上の場合に90%以上の破壊率を示した。
<実施例B>
 実施例Bは、耐火物中に占める中空耐火骨材の体積割合が、可縮性及び接着強度に及ぼす影響を実験により調査した結果、並びに内孔加熱による溶鋼の鋳造のシミュレーション試験を行った結果である。
 表2に実施例Bの各試料の構成及び実験結果を示す。
Figure JPOXMLDOC01-appb-T000002
 中空耐火骨材は、前記実施例Aに使用したものと同じ組成で、平均半径Rが35μm、壁の厚さが1μmの中空粒子であって、2.5MPaで99%の破砕率を有する粉体(実施例3)を使用した。中空耐火骨材を除く残部の組成は何れの例も同一とした。
 可縮率の測定は、次の方法により行った。形状がφ20×50mmL、Alが約75質量%、Cが約25質量%の被接着用の試験片2つを通常の連続鋳造用ノズルの製造方法と同じ製造方法(同じ成形圧、乾燥、焼成等)で作製し、その2つの被接着用の試験片の平面間にモルタル状にした各配合試料を2mm厚みで設置して、前述の課題を解決するための手段に示した方法により測定用サンプルを成形し、乾燥処理をした。この測定用サンプルにつき、1000℃、1500℃(共に窒素ガス雰囲気中)での可縮率を測定した。
 接着強度の測定は、次の方法により行った。通常の連続鋳造用ノズルの製造方法と同じ製造方法(同じ成形圧、乾燥、焼成等)によって、Alが約55質量%、Cが約30質量%、SiOが約14質量%の連続鋳造用ノズルの本体に一般的に使用されている耐火物で内径φ95×100mmLの外周側層に相当する円筒を作製すると共に、MgOが約49質量%、CaOが44質量%、Cが4質量%のドロマイト質耐火物で外径φ90×100mmLの内孔側層に相当する円筒を作製し、これらの2つの円筒の間にモルタル状にした各配合試料を2.5mm厚みで設置して乾燥処理をし、リング状の測定用試料を得た。このリング状の測定用試料につき、図2で説明した前述の方法で、1000℃、1500℃(共に窒素ガス雰囲気中)での接着強度を測定した。
 内孔加熱試験用の円筒状試料は、次の方法により作製した。まず、円筒状で管状の成形体をCIPにより成形した。この成形体に200℃の乾燥処理、1000℃の非酸化雰囲気での熱処理を施し、後に外周加工により外径φ90mm、内径φ70mm、高さ750mmのドロマイトカーボン質材質のスリーブを作製した。当該材質の1500℃での熱膨張量は1.32%であった。このスリーブをAlが約55質量%、Cが約30質量%、SiOが約14質量%のAl-SiO-C材質(1500℃での熱膨張量は0.55%)で構成されたフランジ部を持つ円筒状耐火物(内径95mm、外径140mm、高さ750mm)の内側に、目地厚さ2.5mmで、表2に示すモルタル状の中間層用の耐火物を介して均一に内装した。この中間層用の耐火物は、黒鉛微粉、Al-Mg合金粉、MgO微粉、ピッチ粉末、及び可縮源として中空耐火骨材(中空状ガラス骨材)を配合してなり、液状のフェノール樹脂を施工作業性付与剤及び結合材とした。200℃の乾燥処理を施し内孔加熱用の円筒状試料とした。
 内孔加熱試験は次のように実施した。フランジ部上部から下部に向かって、内孔部をプロパンと酸素による燃焼ガスを通過させ内孔部から急速加熱を行った。円筒状試料の中央部の外表面温度が1時間で1400℃になる条件で加熱し、1400℃で1時間保持した(この急熱は実操業を考慮すると比較的厳しい。)。その後、加熱をやめ300℃以下になるまで放冷した。この熱処理を繰り返し、内孔側層及び外周側層の状態を観察した。
 表2に示す測定結果より、中空耐火骨材の体積割合とほぼ同じ可縮率が得られることがわかる。そして、中空耐火骨材が10体積%以上75体積%以下で、可縮率が1000℃において10%以上、1500℃において80%以下を満足することできることがわかる。
 内孔加熱試験では、中空耐火骨材が10体積%未満の場合(比較例3~5)は亀裂が発生し、中空耐火骨材が75体積%を超える場合(比較例6、7)は内孔側層の緩みが発生し、脱落する傾向となった。
<実施例C>
 実施例Cは、中空耐火骨材を含む耐火物中に占める特定金属の割合が、可縮性及び接着強度に及ぼす影響を実験により調査した結果、並びに併せて各例につき内孔加熱による溶鋼の鋳造のシミュレーション試験との対比を行った結果である。
 表3に実施例Cの各試料の構成及び実験結果を示す。
Figure JPOXMLDOC01-appb-T000003
 中空耐火骨材粒子は、前記実施例Bに使用したものと同じ組成、粒子サイズ分布のものを使用した。特定金属を除いて中空耐火骨材以外の残部の組成は何れの例も同一とし、その中に特定金属の量を変化させて添加した。
 可縮率及び接着強度の測定、並びに内孔加熱による溶鋼の鋳造のシミュレーション試験は、前記実施例Bと同じ方法により行った。
 表3に示す測定結果より、特定金属の含有量が0.5質量%以上15質量%以下の範囲で、特定金属の添加による好ましい効果としての接着強度0.01MPa以上1.5MPa以下の強度範囲を満足することができることがわかる。
 内孔加熱試験では、特定金属の含有量が0.5質量%以上15質量%以下の範囲の場合に、好ましい結果となっており、この傾向は主として接着強度の所定の値の範囲と一致していることがわかる。
<実施例D>
 実施例Dは、中空耐火骨材以外の残部中に占める炭素の割合が、可縮性及び接着強度に及ぼす影響を実験により調査した結果、並びに内孔加熱による溶鋼の鋳造のシミュレーション試験を行った結果である。
 表4に実施例Dの各試料の構成及び実験結果を示す。
Figure JPOXMLDOC01-appb-T000004
 中空耐火骨材は、前記実施例B及び実施例Cに使用したものと同じ組成、粒子サイズ分布のものを使用した。
 本実施例では、基本的に(炭素量99.5質量%以上の例を除き)特定金属量及びフェノール樹脂溶液(1000℃非酸化雰囲気中での熱処理後に残留するCとして換算)を固定して、MgO微粉(MgO純度95質量%~98質量%、他の実施例においても同じ)を黒鉛微粉と置き換えることにより炭素量を変化させた。
 可縮率及び接着強度の測定、並びに内孔加熱による溶鋼の鋳造のシミュレーション試験も、前記実施例B、Cと同じ方法により行った。
 表4に示す測定結果より、残部中の炭素含有量が2質量%以上99.5質量%以下の範囲で、接着強度0.01MPa以上1.5MPa以下の好ましい範囲を得ることができることがわかる。
 内孔加熱試験では、炭素含有量が2質量%以上99.5質量%以下の範囲の場合に、好ましい結果となっており、前記の実施例Cと同様に、この傾向は主として接着強度の所定の値の範囲と一致していることがわかる。
<実施例E>
 実施例Eは、内孔側層用の耐火物中のCaOとMgOの合量及びその質量比が、溶損及び付着に及ぼす影響を実験により調査した結果を示す。
 (CaO/MgO)質量比、(CaO+MgO)含有量の異なる、各種CaO+MgO材質を冷間等方圧加圧法(CIP)により98MPaで成形後、非酸化雰囲気にて熱処理を行い棒状試料(20×20×160mm)を切り出し供試料とした。
 そして、各試料を1550~1570℃で保持された低炭アルミキルド鋼中に120分間浸漬し、引き上げ後の試料表面のアルミナ付着物層の厚さや試料自体の溶損量を測定した。比較のために一般的なAl-黒鉛材質も同時に試験した。
 表5に実施例Dの各試料の構成及び実験結果を示す。
Figure JPOXMLDOC01-appb-T000005
 実施例30~32、34、35、37、38は、溶損量ならびにアルミナ付着量のバランスが取れた良好な好ましい範囲であった。これに対し一般的なAG材質である実施例28は、溶損現象は発生しないものの、アルミナ付着が発生した。この実施例28では閉塞問題が生じるおそれがある。実施例29はCaO/MgO比が1.7であり、溶損が大となった。実施例33はCaO/MgO比が0.1であり、アルミナ付着が大となった。実施例36及び実施例39は(CaO+MgO)の合量が75%であり、炭素量の影響により試料の溶損量が大きくなった。
 本発明の連続鋳造用ノズルを使用する操業条件によっては、実施例28、29、33、36及び39のような物性の場合には長時間の操業に問題を生じる虞はあるので、前記の好ましい実施例の物性であることが好ましい。
<実施例F>
 実施例Fは、内孔側層がCaO成分とMgO成分をその合量で80質量%以上含み、CaOとMgOとの質量比(CaO/MgO)が0.2~1.5である連続鋳造用ノズルにおいて、前記内孔側層中のCaO含有量の当該内孔側層における質量割合を、中間層中のAl、SiO及びアルカリ金属酸化物の合量の当該中間層における質量割合で除した値が、接着強度に及ぼす影響を調査した結果、並びに内孔加熱による溶鋼の鋳造のシミュレーション試験を行った結果である。
 表6に実施例Fの各試料の構成及び実験結果を示す。
Figure JPOXMLDOC01-appb-T000006
 内孔側層の耐火物としては、CaO成分を50質量%、MgO成分を45質量%含み、CaOとMgOとの質量比(CaO/MgO)が1.1である表5の実施例31と、CaO成分を16質量%、MgO成分を79質量%含み、CaOとMgOとの質量比(CaO/MgO)が0.2である表5の実施例32を用いた。
 中空耐火骨材粒子は、前記実施例Bないし実施例Dに使用したものと同じ組成、粒子サイズ分布のものを使用した。
 中間層用の耐火物については、前記の実施例7の中空耐火骨材を除く残部(マトリクス)部分の組成を基本に、主として中空耐火骨材の含有割合を変化させることで、Al、SiO及びアルカリ金属酸化物の合量を調整した。
 接着強度の測定、及び内孔加熱による溶鋼の鋳造のシミュレーション試験は、前記実施例BないしDと同じ方法により行った。
 この実験の結果、内孔側層中のCaO含有量の当該内孔側層における質量割合を、中間層中のAl、SiO及びアルカリ金属酸化物の合量の当該中間層における質量割合で除した値(以下「C/I比」という。)が10以上である実施例41~45、47、48のいずれの場合にも、接着強度0.1MPa以上1.5MPa以下を満足できることがわかる。
 内孔加熱による溶鋼の鋳造のシミュレーション試験でも、いずれの実施例も好ましい結果となっていることがわかる。
 これら好ましい実施例に対し、C/I比が10未満である実施例40及び46では、1500℃での接着強度が0.01MPa未満となって0.1MPa以上の条件を満足できず、内孔加熱による溶鋼の鋳造のシミュレーション試験結果でも2回目に脱落を生じている。
 本発明の連続鋳造用ノズルを使用する操業条件によっては、実施例40及び46のような物性の場合には長時間の操業に問題を生じる虞はあるので、前記の好ましい実施例の物性であることが好ましい。
 1 中間層(本発明の中間層用の耐火物からなる層)
 2 内孔側層
 3 外周側層のうち連続鋳造用ノズルの本体をなすアルミナ-黒鉛質の層
 4 外周側層のうち連続鋳造用ノズルのパウダー部をなすジルコニア-黒鉛質の層
 5 内孔
 6 溶鋼流入孔
 7 吐出孔
 8 台
 9 クロスヘッド
 10 供試料(中空耐火骨材)
 11 容器
 12 上部ライナー(下降による加圧用治具)
 13 下部ライナー(上昇による加圧用治具)

Claims (9)

  1.  粒の平均半径Rと前記粒の平均の壁の厚みtの比がR/t≧10を満たす中空耐火骨材を10体積%以上75体積%以下含む連続鋳造用ノズルの中間層用の耐火物。
  2.  前記中空耐火骨材が、SiOを70質量%以上、かつアルカリ金属酸化物及びアルカリ土類金属酸化物を合計で1質量%以上10質量%以下含むガラス質の組織を含む請求項1に記載の連続鋳造用ノズルの中間層用の耐火物。
  3.  中空耐火骨材以外の残部の総量に占める割合として、Al、Si、Mgの単体金属若しくは合金の1種又は複数種を、それらの金属成分のみに換算して合計で0.5質量%以上15質量%以下、炭素を2質量%以上99.5質量%以下含む請求項1又は請求項2に記載の連続鋳造用ノズルの中間層用の耐火物。
  4.  2.5MPaの加圧下の可縮率が10%以上80%以下である請求項1から請求項3のいずれかに記載の連続鋳造用ノズルの中間層用の耐火物。
  5.  1000℃以上1500℃以下の非酸化性雰囲気の熱間において、連続鋳造用ノズルに使用する耐火物と0.01MPa以上1.5MPa以下の接着強度を備える請求項1から請求項4のいずれかに記載の連続鋳造用ノズルの中間層用の耐火物。
  6.  溶融金属が通過する内孔を軸方向に有する管状の耐火物構造体からなり、この管状の耐火物構造体の一部又は全部の領域で、内孔側層の耐火物の熱膨張がその半径方向外側の外周側層の耐火物の熱膨張よりも大きい連続鋳造用ノズルにおいて、
     内孔側層と外周側層とは独立した成形体であって、前記内孔側層の成形体は可縮性を有する中間層により外周側層の成形体に固定されており、
     中間層と前記内孔側層の成形体及び前記外周側層の成形体との1000℃以上1500℃以下の非酸化性雰囲気の熱間における接着強度が0.01MPa以上1.5MPa以下であり、
     かつ、
     中間層の可縮率K(%)が、次の式1を満足することを特徴とする連続鋳造用ノズル。
     K ≧ (Di×αi-Do×αo)/(2×Tm) … 式1
      Di:内孔側層の外径(mm)
      Do:外周側層の内径(mm)
      Tm:中間層の室温における初期厚み(mm)
      αi:内孔側層の耐火物の室温から1500℃までの範囲における最大の熱膨張率(%)
      αo:外周側層の耐火物の通鋼開始時の温度における熱膨張率(%)
  7.  前記中間層として、請求項1から請求項5のいずれかに記載の中間層用の耐火物を使用した請求項6に記載の連続鋳造用ノズル。
  8.  前記中間層は、粒の平均半径Rと前記粒の平均の壁の厚みtの比がR/t≧10を満たす中空耐火骨材を10体積%以上75体積%以下含み、かつ当該中空耐火骨材以外の残部に占める割合として、Al、Mg、Siの単体金属若しくは合金の1種又は複数種を、それらの金属成分のみに換算して合計で0.5質量%以上15質量%以下、炭素を2質量%以上99.5質量%以下含み、
     前記内孔側層は、CaO成分とMgO成分をその合量で80質量%以上含み、CaOとMgOとの質量比(CaO/MgO)が0.2~1.5であって、
     前記内孔側層中のCaO含有量の当該内孔側層における質量割合を、前記中間層中のAl、SiO及びアルカリ金属酸化物の合量の当該中間層における質量割合で除した値が10以上である請求項6に記載の連続鋳造用ノズル。
  9.  前記中間層の耐火物内の中空耐火骨材が、SiOを70質量%以上、アルカリ金属酸化物及びアルカリ土類金属酸化物を合計で1質量%以上10質量%以下を含むガラス質の組織を含む請求項8に記載の連続鋳造用ノズル。
PCT/JP2009/063371 2008-07-28 2009-07-27 連続鋳造に使用するノズル用耐火物及び連続鋳造用ノズル WO2010013686A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020117003481A KR101310737B1 (ko) 2008-07-28 2009-07-27 연속 주조용 노즐
EP09802929.1A EP2322300B8 (en) 2008-07-28 2009-07-27 Refractory for nozzle used in continuous casting and nozzle for continuous casting
CN200980137914.XA CN102164695B (zh) 2008-07-28 2009-07-27 用于连续铸造的浇注嘴用耐火物及连续铸造用浇注嘴
BRPI0916819-2A BRPI0916819B1 (pt) 2008-07-28 2009-07-27 Material refratário para uma camada intermediária de um bocal de lingotamento contínuo e bocal de lingotamento contínuo

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2008-193734 2008-07-28
JP2008193730A JP5134463B2 (ja) 2008-07-28 2008-07-28 連続鋳造用ノズルの中間層用の耐火物及び連続鋳造用ノズル
JP2008193734A JP5134464B2 (ja) 2008-07-28 2008-07-28 連続鋳造に使用するノズル用耐火物及び連続鋳造用ノズル
JP2008-193730 2008-07-28
JP2008203386A JP5129684B2 (ja) 2008-08-06 2008-08-06 連続鋳造用ノズル
JP2008-203386 2008-08-06

Publications (1)

Publication Number Publication Date
WO2010013686A1 true WO2010013686A1 (ja) 2010-02-04

Family

ID=41610386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/063371 WO2010013686A1 (ja) 2008-07-28 2009-07-27 連続鋳造に使用するノズル用耐火物及び連続鋳造用ノズル

Country Status (6)

Country Link
US (1) US8172114B2 (ja)
EP (1) EP2322300B8 (ja)
KR (1) KR101310737B1 (ja)
CN (1) CN102164695B (ja)
BR (1) BRPI0916819B1 (ja)
WO (1) WO2010013686A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9221099B2 (en) * 2011-12-01 2015-12-29 Krosakiharima Corporation Refractory material and casting nozzle
CN103115497A (zh) * 2012-11-09 2013-05-22 江苏熙友磁电科技有限公司 保温炉出口浇嘴
JP6027676B2 (ja) * 2013-03-21 2016-11-16 黒崎播磨株式会社 耐火物及び鋳造用ノズル
JP6663230B2 (ja) 2016-01-25 2020-03-11 黒崎播磨株式会社 ノズル構造体
CN109732073B (zh) * 2019-01-24 2021-04-30 北京利尔高温材料股份有限公司 一种连铸用梯度复合中包水口及其制备方法
CN113773708B (zh) * 2021-09-08 2022-03-25 浙江自立高温科技股份有限公司 一种中间包多功能衬及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07232249A (ja) 1993-12-28 1995-09-05 Sumitomo Metal Ind Ltd 溶融金属の鋳造用ノズル
JPH1133685A (ja) * 1997-07-22 1999-02-09 Toshiba Ceramics Co Ltd 連続鋳造用ノズル
JP2003320444A (ja) 2002-04-30 2003-11-11 Kurosaki Harima Corp アルミキルド鋼の鋳造方法
JP2005112651A (ja) * 2003-10-06 2005-04-28 Sumitomo Metal Ind Ltd キャスタブル耐火物及びその製造法
JP2006130555A (ja) * 2004-10-04 2006-05-25 Kurosaki Harima Corp 連続鋳造用ロングノズル及び連続鋳造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5252526A (en) * 1988-03-30 1993-10-12 Indresco Inc. Insulating refractory
DE4003608C1 (ja) * 1990-02-07 1991-06-27 Didier-Werke Ag, 6200 Wiesbaden, De
US5602063A (en) * 1995-03-30 1997-02-11 Minteq International, Inc. Lightweight sprayable tundish lining composition
JPH0941024A (ja) * 1995-05-25 1997-02-10 Japan Casting & Forging Corp 溶融金属へのガス吹込みノズル及びその使用方法
FR2779716B1 (fr) * 1998-06-15 2000-08-18 Vesuvius France Sa Materiau refractaire isolant, procede de preparation et pieces a base de ce materiau
US7090918B2 (en) * 2001-01-11 2006-08-15 Vesuvius Crucible Company Externally glazed article
AU2003221070A1 (en) 2002-04-02 2003-10-27 Krosakiharima Corporation Binding structure of refractory sleeve for inner hole of nozzle for continuous casting
JP4800826B2 (ja) * 2006-04-20 2011-10-26 黒崎播磨株式会社 溶鉱炉々壁の羽口構造体
CN101821037B (zh) * 2007-10-09 2012-07-25 黑崎播磨株式会社 连续铸造用浇注嘴及其制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07232249A (ja) 1993-12-28 1995-09-05 Sumitomo Metal Ind Ltd 溶融金属の鋳造用ノズル
JPH1133685A (ja) * 1997-07-22 1999-02-09 Toshiba Ceramics Co Ltd 連続鋳造用ノズル
JP2003320444A (ja) 2002-04-30 2003-11-11 Kurosaki Harima Corp アルミキルド鋼の鋳造方法
JP2005112651A (ja) * 2003-10-06 2005-04-28 Sumitomo Metal Ind Ltd キャスタブル耐火物及びその製造法
JP2006130555A (ja) * 2004-10-04 2006-05-25 Kurosaki Harima Corp 連続鋳造用ロングノズル及び連続鋳造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2322300A4 *

Also Published As

Publication number Publication date
EP2322300A1 (en) 2011-05-18
KR20110053223A (ko) 2011-05-19
EP2322300A4 (en) 2011-09-07
CN102164695B (zh) 2014-03-12
US8172114B2 (en) 2012-05-08
EP2322300B1 (en) 2013-09-11
BRPI0916819B1 (pt) 2018-03-06
CN102164695A (zh) 2011-08-24
US20100084441A1 (en) 2010-04-08
KR101310737B1 (ko) 2013-09-25
EP2322300B8 (en) 2013-10-16
BRPI0916819A2 (pt) 2016-02-10

Similar Documents

Publication Publication Date Title
WO2010013686A1 (ja) 連続鋳造に使用するノズル用耐火物及び連続鋳造用ノズル
JP4644044B2 (ja) 連続鋳造用ロングノズル
KR101171367B1 (ko) 연속 주조용 노즐 및 그 제조방법
WO2008056655A1 (fr) Manchons durables
JP5129684B2 (ja) 連続鋳造用ノズル
JP5166302B2 (ja) 連続鋳造用ノズル
JP5134463B2 (ja) 連続鋳造用ノズルの中間層用の耐火物及び連続鋳造用ノズル
JP5134464B2 (ja) 連続鋳造に使用するノズル用耐火物及び連続鋳造用ノズル
JP4589425B2 (ja) 連続鋳造用ノズル及びその製造方法
JP4751277B2 (ja) 難付着性連続鋳造用ノズル
JP6021667B2 (ja) 耐火物,耐火物の製造方法,及び連続鋳造用浸漬ノズル
JP2012062232A (ja) 通気性耐火物及びその製造方法
JP4456443B2 (ja) ピッチ含有難付着性連続鋳造ノズル
JP4589151B2 (ja) 連続鋳造用ノズルおよび連続鋳造方法
JP6204825B2 (ja) 浸漬ノズル
JP6855646B1 (ja) スライディングノズルプレート用耐火物及びその製造方法
CA3158450C (en) Refractory product
JP2011200911A (ja) ジルコニア−炭素含有耐火物およびその耐火物を配設した浸漬ノズル
JP2006068805A (ja) ジルコニア含有難付着性連続鋳造ノズル

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980137914.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09802929

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 617/KOLNP/2011

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20117003481

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009802929

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0916819

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110128