WO2010013645A1 - プリプレグ、プリフォーム、成形品およびプリプレグの製造方法 - Google Patents

プリプレグ、プリフォーム、成形品およびプリプレグの製造方法 Download PDF

Info

Publication number
WO2010013645A1
WO2010013645A1 PCT/JP2009/063240 JP2009063240W WO2010013645A1 WO 2010013645 A1 WO2010013645 A1 WO 2010013645A1 JP 2009063240 W JP2009063240 W JP 2009063240W WO 2010013645 A1 WO2010013645 A1 WO 2010013645A1
Authority
WO
WIPO (PCT)
Prior art keywords
prepreg
reinforcing fiber
slurry
reinforcing
mass
Prior art date
Application number
PCT/JP2009/063240
Other languages
English (en)
French (fr)
Inventor
土谷 敦岐
本間 雅登
英晃 佐々木
村井 彰児
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008198458A external-priority patent/JP5304086B2/ja
Priority claimed from JP2008198457A external-priority patent/JP5304085B2/ja
Priority claimed from JP2008198456A external-priority patent/JP2010037358A/ja
Priority claimed from JP2008197812A external-priority patent/JP5304084B2/ja
Priority claimed from JP2009085469A external-priority patent/JP4862913B2/ja
Priority to CN2009801217041A priority Critical patent/CN102056971B/zh
Priority to ES09802888.9T priority patent/ES2524476T3/es
Priority to KR1020107026471A priority patent/KR101146612B1/ko
Priority to KR1020127004289A priority patent/KR101445169B1/ko
Priority to CA2731283A priority patent/CA2731283C/en
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to EP14180444.3A priority patent/EP2803694B1/en
Priority to US12/737,619 priority patent/US8071205B2/en
Priority to EP20090802888 priority patent/EP2314642B1/en
Publication of WO2010013645A1 publication Critical patent/WO2010013645A1/ja
Priority to US13/200,340 priority patent/US20120012263A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B11/00Making preforms
    • B29B11/14Making preforms characterised by structure or composition
    • B29B11/16Making preforms characterised by structure or composition comprising fillers or reinforcement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/08Fibrous reinforcements only comprising combinations of different forms of fibrous reinforcements incorporated in matrix material, forming one or more layers, and with or without non-reinforced layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • B29C70/20Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in a single direction, e.g. roofing or other parallel fibres
    • B29C70/205Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in a single direction, e.g. roofing or other parallel fibres the structure being shaped to form a three-dimensional configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/50Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • C08J3/21Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase
    • C08J3/212Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase and solid additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/247Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using fibres of at least two types
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21FPAPER-MAKING MACHINES; METHODS OF PRODUCING PAPER THEREON
    • D21F1/00Wet end of machines for making continuous webs of paper
    • D21F1/02Head boxes of Fourdrinier machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2793/00Shaping techniques involving a cutting or machining operation
    • B29C2793/0036Slitting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249924Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
    • Y10T428/24994Fiber embedded in or on the surface of a polymeric matrix

Definitions

  • the present invention relates to a prepreg in which a fiber reinforced base material is impregnated with a resin, and a preform obtained by laminating the prepreg. More specifically, the present invention relates to a prepreg in which a reinforcing fiber has a specific two-dimensional orientation angle and a specific thickness, and a preform obtained by laminating the prepreg. The present invention also relates to a method for producing a prepreg.
  • Fiber Reinforced Plastic is lightweight and has excellent mechanical properties, such as electrical / electronic equipment, civil engineering / architecture, machinery / mechanical parts, robot, motorcycle / automobile, space / aviation, etc.
  • metal fibers such as aluminum fibers and stainless fibers
  • organic fibers such as aramid fibers and PBO fibers
  • inorganic fibers such as silicon carbide fibers
  • carbon fibers are used.
  • carbon fiber is preferably used from the viewpoint of being particularly excellent in specific strength and specific rigidity and obtaining excellent lightness.
  • FRP carbon fiber reinforced plastic
  • CFRP carbon fiber reinforced plastic
  • a molded product obtained by press-molding a preform obtained by laminating a prepreg (a molding method in which defoaming and shaping under pressure) is performed.
  • the prepreg is generally manufactured by impregnating a reinforcing fiber base material in which continuous reinforcing fibers are arranged in one direction or woven with a resin.
  • the molded product using this prepreg has excellent mechanical properties.
  • the reinforcing fiber is used as a continuous body, it is not suitable for forming a complicated shape.
  • the prepreg since the effect of the prepreg lamination angle on the characteristics is large, the prepreg must be laminated while paying attention to the lamination angle. In other words, the laminating process requires time and effort, and the cost is increased correspondingly (the economic burden of the laminating process is increased), so the usage is limited.
  • Patent Document 1 proposes a prepreg effective for forming a complicated shape by cutting a reinforcing fiber into a specific length. However, since the same labor and time are required for the lamination process, the economic burden has not been solved.
  • a sheet molding compound (SMC) and a glass mat substrate (GMT) are materials suitable for press molding.
  • the mechanical properties such as specific strength and specific rigidity are low, it is difficult to handle thin molded products such as prepregs, and isotropic mechanical properties are obtained because the resin flows greatly during molding.
  • the usage is limited due to the large variation in characteristics.
  • Patent Documents 2 and 3 propose sheet materials that can obtain more isotropic characteristics by dispersing reinforcing fibers in a bundle.
  • Patent Document 4 proposes a sheet material having excellent mechanical properties by uniformly dispersing carbon fibers. However, none of them can be processed into a thin wall like a prepreg, and since the resin flows greatly during molding, the isotropic characteristics may be impaired and the mechanical characteristics may be deteriorated.
  • Patent Document 5 proposes a molded product in which carbon fibers are randomly dispersed and fixed in a single yarn shape. Even in this method, there is a limit to processing the prepreg into a thin wall, and the degree of freedom for stacking the preform is limited. Furthermore, since the preform cannot be manufactured in large quantities, the economic burden has not been solved.
  • JP 2007-146151 A Japanese Patent No. 2507565 Japanese Patent No. 1761874 JP-A-6-99431 International Publication No. 2007/97436 Pamphlet
  • the present invention can cope with a thin molded product that is not suitable for a laminated molded product, and can obtain a molded product having a complicated shape with isotropic mechanical characteristics. And to provide a preform.
  • the prepreg of the present invention is a prepreg in which a reinforcing fiber base material is impregnated with a thermoplastic resin,
  • the reinforcing fiber base material is a reinforcing fiber having a fiber length of 10 to 50% by weight, a reinforcing fiber having a fiber length of 2 to 10 mm, a reinforcing fiber of 50 to 100% by weight, and a fiber length of less than 2 mm. Is composed of 0 mass% or more and 50 mass% or less,
  • the average value of the two-dimensional orientation angle formed by the reinforcing fiber single yarn (a) contained in the prepreg and the reinforcing fiber single yarn (b) intersecting the reinforcing fiber single yarn (a) is 10 degrees.
  • the prepreg has a thickness h0 (mm) at 23 ° C. of 0.03 mm to 1 mm and a tensile strength ⁇ of 0.01 MPa or more.
  • the preform of the present invention is at least impregnated with a thermoplastic resin in a reinforcing fiber base,
  • the average value of the two-dimensional orientation angle formed by the reinforcing fiber single yarn (a) and the reinforcing fiber single yarn (b) intersecting the reinforcing fiber single yarn (a) is 10 degrees or more and 80 degrees or less, and 23 ° C.
  • the reinforcing fiber has a specific fiber length and a specific two-dimensional orientation angle, so that when the prepreg is laminated, the lamination angle is not greatly restricted, and isotropically excellent in mechanical properties.
  • a molded product can be obtained.
  • the prepreg of the present invention can be used not only for thin molded products that are not suitable for conventional laminated molded products, but also by reducing the proportion of reinforcing fibers in the in-layer thickness direction. The reinforcing effect can be further enhanced. Furthermore, since the prepreg of the present invention has a specific tensile strength, it is excellent in workability at the time of lamination and is effective in applying to a wide range of uses.
  • the reinforcing fibers contained in the prepreg have a specific two-dimensional orientation angle, and the prepreg has a specific thickness, thereby suppressing the ratio of reinforcing fibers in the thickness direction and preventing interference between layers. It can reduce and can improve the shaping property in press molding. As a result, it is possible to obtain a molded product satisfying moldability and mechanical properties of a complicated shape, which is not suitable for a conventional laminated molded product.
  • FIG. 1 is a schematic view showing an example of a dispersion state of reinforcing fibers in the prepreg of the present invention.
  • FIG. 2 is a schematic view showing an example of a burning jig for measuring a two-dimensional orientation angle of a prepreg.
  • FIG. 3 is a schematic diagram illustrating an example of a manufacturing apparatus for a reinforcing fiber base (papermaking base).
  • FIG. 4 is a schematic view showing an example of a box-shaped molded product obtained by using the prepreg and preform of the present invention.
  • FIG. 5 is a schematic view showing an example of a box-shaped molded product obtained using the prepreg and preform of the present invention.
  • FIG. 1 is a schematic view showing an example of a dispersion state of reinforcing fibers in the prepreg of the present invention.
  • FIG. 2 is a schematic view showing an example of a burning jig for measuring a two-dimensional orientation angle of a prepreg.
  • FIG. 6 is a schematic view of a laminate using the prepreg of the present invention and GMT.
  • FIG. 7 is a schematic view of a cut-in carbon fiber prepreg.
  • FIG. 8 is a schematic view of an automobile bonnet molded product.
  • FIG. 9 is a schematic diagram illustrating an example of a prepreg manufacturing apparatus.
  • FIG. 10 is a schematic diagram illustrating an example of a prepreg manufacturing apparatus.
  • FIG. 11 is a schematic diagram illustrating an example of a prepreg manufacturing apparatus.
  • FIG. 12 is a schematic diagram illustrating an example of a prepreg manufacturing apparatus.
  • FIG. 13 is a schematic diagram illustrating an example of a positional relationship when the dispersion tank, the papermaking tank, and the transport unit are viewed from the horizontal direction.
  • FIG. 13 is a schematic diagram illustrating an example of a positional relationship when the dispersion tank, the papermaking tank, and the transport unit are viewed from the horizontal direction.
  • FIG. 14 is a schematic diagram illustrating an example of a positional relationship when the dispersion tank, the papermaking tank, and the transport unit are viewed from the horizontal direction.
  • FIG. 15 is a schematic diagram illustrating an example of a positional relationship when the dispersion tank, the papermaking tank, and the transport unit are viewed from the horizontal direction.
  • FIG. 16 is a schematic diagram illustrating an example of a positional relationship when the dispersion tank, the papermaking tank, and the transport unit are viewed from the horizontal direction.
  • FIG. 17 is a schematic diagram showing an example of a positional relationship when the dispersion tank, the papermaking tank, and the transport section are viewed from the horizontal direction.
  • FIG. 18 is a schematic diagram illustrating an example of a positional relationship when the dispersion tank, the papermaking tank, and the transport unit are viewed from the horizontal direction.
  • FIG. 19 is a schematic diagram illustrating an example of a positional relationship when the dispersion tank, the papermaking tank, and the transport unit are viewed from the horizontal direction.
  • FIG. 20 is a schematic diagram illustrating an example of a positional relationship when the dispersion tank, the papermaking tank, and the transport unit are viewed from the horizontal direction.
  • FIG. 20 is a schematic diagram illustrating an example of a cross-sectional shape of the transport portion.
  • FIG. 22 is a schematic diagram illustrating an example of a manufacturing apparatus for a reinforcing fiber base (papermaking base).
  • FIG. 23 is a schematic diagram illustrating an example of a manufacturing apparatus for a reinforcing fiber base (papermaking base).
  • FIG. 24 is a schematic diagram illustrating an example of a manufacturing apparatus for a reinforcing fiber base (papermaking base).
  • FIG. 25 is a schematic diagram illustrating an example of a manufacturing apparatus for a reinforcing fiber base (papermaking base).
  • FIG. 26 is a schematic diagram illustrating an example of a manufacturing apparatus for a reinforcing fiber base (papermaking base).
  • FIG. 27 is a schematic diagram illustrating an example of a manufacturing apparatus for a reinforcing fiber base (papermaking base).
  • FIG. 28 is a schematic diagram illustrating an example of a manufacturing apparatus for a reinforcing fiber base (papermaking base).
  • FIG. 29 is a schematic diagram illustrating an example of a manufacturing apparatus for a reinforcing fiber base (papermaking base).
  • FIG. 30 is a schematic diagram of a slurry containing reinforcing fibers.
  • the prepreg of the present invention is a prepreg in which a reinforcing fiber base material is impregnated with a thermoplastic resin,
  • the reinforcing fiber base material is a reinforcing fiber having a fiber length of 10 to 50% by weight, a reinforcing fiber having a fiber length of 2 to 10 mm, a reinforcing fiber of 50 to 100% by weight, and a fiber length of less than 2 mm. Is composed of 0 mass% or more and 50 mass% or less,
  • the average value of the two-dimensional orientation angle formed by the prepreg of the reinforcing fiber single yarn (a) and the reinforcing fiber single yarn (b) intersecting the reinforcing fiber single yarn (a) is 10 degrees or more and 80 degrees or less.
  • the prepreg has a thickness h0 (mm) at 23 ° C. of 0.03 mm to 1 mm and a tensile strength ⁇ of 0.01 MPa or more.
  • the reinforcing fiber base in the present invention means a precursor obtained by processing reinforcing fibers into a sheet shape, a fabric shape, a web shape or the like.
  • the reinforcing fiber base is not particularly limited in its form and shape as long as it has voids impregnated with resin between the reinforcing fibers.
  • the reinforcing fiber may be mixed with an organic fiber, an organic compound, or an inorganic compound, the reinforcing fibers may be bonded with other components, or the reinforcing fiber may be bonded to the resin component.
  • the reinforcing fiber is sufficiently opened and reinforced in a non-woven form obtained by a dry method or a wet method.
  • the base material by which the fibers were meshed with the organic compound can be illustrated.
  • the reinforcing fiber base used in the present invention has a sufficient space for impregnating the resin component serving as a matrix.
  • the reinforcing fiber base preferably has air permeability.
  • the air permeability can be measured, for example, by the Gurley type tester method based on JIS P8117 or the Frazier type method based on ASTM D737.
  • the preferred amount of air in the fragile method based on ASTM D737 is 50 or more, more preferably 70 or more, and particularly preferably 100 or more. Moreover, although there is no restriction
  • the reinforcing fiber used in the prepreg of the present invention is not particularly limited, and for example, carbon fiber, glass fiber, aramid fiber, alumina fiber, silicon carbide fiber, boron fiber, metal fiber, natural fiber, mineral fiber, etc. can be used. These may be used alone or in combination of two or more.
  • PAN-based, pitch-based and rayon-based carbon fibers are preferably used from the viewpoints of high specific strength and specific rigidity and a light weight reduction effect.
  • glass fibers can be preferably used from the viewpoint of improving the economical efficiency of the obtained molded product, and in particular, it is preferable to use carbon fibers and glass fibers in combination from the balance of mechanical properties and economy.
  • aramid fibers can be preferably used from the viewpoint of improving the impact absorbability and formability of the obtained molded article, and it is particularly preferable to use carbon fibers and aramid fibers in combination from the balance of mechanical properties and impact absorbability.
  • reinforcing fibers coated with a metal such as nickel, copper, or ytterbium can be used from the viewpoint of increasing the conductivity of the obtained molded product.
  • the carbon fiber preferably has a surface oxygen concentration ratio O / C measured by X-ray photoelectron spectroscopy of 0.05 or more and 0.5 or less, more preferably 0.06 or more and 0.3 or less. And more preferably 0.07 or more and 0.2 or less.
  • O / C measured by X-ray photoelectron spectroscopy
  • the surface oxygen concentration ratio is 0.05 or more, the amount of polar functional groups on the surface of the carbon fiber is ensured and the affinity with the thermoplastic resin composition is increased, so that stronger adhesion can be obtained.
  • the surface oxygen concentration ratio is 0.5 or less, it is possible to reduce a decrease in strength of the carbon fiber itself due to surface oxidation.
  • the surface oxygen concentration ratio means the ratio of the number of oxygen (O) and carbon (C) atoms on the fiber surface.
  • the procedure for obtaining the surface oxygen concentration ratio by X-ray photoelectron spectroscopy will be described below with an example.
  • the sizing agent adhering to the carbon fiber surface is removed with a solvent.
  • the carbon fibers are cut into 20 mm, and are spread and arranged on a copper sample support.
  • A1K ⁇ 1 and 2 are used as the X-ray source, and the inside of the sample chamber is kept at 1 ⁇ 10 8 Torr.
  • the kinetic energy value (KE) of the main peak of C 1s is adjusted to 1202 eV as a peak correction value associated with charging during measurement.
  • O 1s peak area E Is obtained by drawing a straight base line in the range of 947 to 959 eV.
  • the surface oxygen concentration ratio is calculated as an atomic ratio from the ratio of the O 1s peak area to the C 1s peak area using a sensitivity correction value unique to the apparatus.
  • a sensitivity correction value unique to the apparatus.
  • a model ES-200 manufactured by Kokusai Electric Inc. can be used, and the sensitivity correction value can be calculated as 1.74.
  • Means for controlling the surface oxygen concentration O / C of the carbon fiber to 0.05 or more and 0.5 or less is not particularly limited, but there are techniques such as electric field oxidation treatment, chemical solution oxidation treatment, and vapor phase oxidation treatment. Illustrated. Of these, electric field oxidation treatment is preferred because it is easy to handle.
  • aqueous solutions of the following compounds are preferably used.
  • Inorganic acids such as sulfuric acid, nitric acid, hydrochloric acid, inorganic hydroxides such as sodium hydroxide, potassium hydroxide and barium hydroxide, inorganic metal salts such as ammonia, sodium carbonate, sodium hydrogen carbonate, sodium acetate, sodium benzoate, etc.
  • Organic salts, and in addition to these sodium salts, potassium salts, barium salts and other metal salts, ammonium salts, and other organic compounds such as hydrazine.
  • an inorganic acid is preferable as the electrolytic solution, and sulfuric acid and nitric acid are particularly preferably used.
  • the degree of the electric field treatment can control O / C on the surface of the carbon fiber by setting the amount of electricity flowing in the electric field treatment.
  • the prepreg of the present invention can retain its shape as a prepreg by impregnating a resin in the voids of the reinforcing fiber base. And a prepreg can be laminated
  • the isotropy of the molded product can be ensured even if the prepreg is simply laminated. Furthermore, by setting the length of the reinforcing fiber within a specific range, not only the mechanical properties of the resulting molded product are excellent, but also the size and shape of the prepreg or the preform obtained by laminating it are suppressed. It can be transferred without restriction and used for the molding process.
  • isotropic in the present invention refers to molding in which various properties such as specific strength, specific rigidity, and linear expansion coefficient are measured when a prepreg or a preform obtained by laminating the prepreg is used as a molded product. It refers to showing uniform characteristics regardless of the in-plane direction of the product.
  • the reinforcing fiber base material in the present invention includes 0% by mass to 50% by mass of reinforcing fibers having a fiber length exceeding 10 mm, 50% by mass to 100% by mass of reinforcing fibers having a fiber length of 2 mm to 10 mm, and a fiber length. It is important that the reinforcing fibers of less than 2 mm are composed of 0% by mass or more and 50% by mass or less. If the reinforcing fiber having a fiber length longer than 10 mm exceeds 50% by mass, the expansion of the thickness in the laminating process or the molding process may increase and the handling property may be impaired.
  • the reinforcing fiber base is composed of 80% by mass or more and 100% by mass or less of reinforcing fibers having a fiber length of 3 mm or more and 8 mm or less.
  • the reinforcing fiber base has at least two peaks in the fiber length distribution, at least one peak is in the range of 5 mm to 10 mm, and at least one other peak has a fiber length of 2 mm to 5 mm. It is more preferable to be within the following range.
  • the mass ratio of a reinforced fiber here represents the ratio of the fiber length in a number average when the total reinforced fiber which comprises a reinforced fiber base material is 100 mass%.
  • Examples of the method for measuring the fiber length of the reinforcing fiber include a method in which the reinforcing fiber is directly extracted from the reinforcing fiber base, or a solvent that dissolves only the resin of the prepreg is dissolved, and the remaining reinforcing fiber is filtered and observed with a microscope. There is a method of measuring by (dissolution method). When there is no solvent for dissolving the resin, there is a method in which only the resin is burned off in a temperature range in which the reinforcing fibers are not oxidized and weighted, and the reinforcing fibers are separated and measured by microscopic observation (burning method).
  • reinforcing fibers are selected at random, and the length is measured with an optical microscope up to a unit of 1 ⁇ m, and the fiber length and its ratio can be measured.
  • the results obtained by appropriately selecting the conditions There is no special difference.
  • the orientation of the reinforcing fiber in the present invention can be defined by a two-dimensional orientation angle.
  • the reinforcing fiber base is often configured by a bundle of reinforcing fibers, so it is difficult to ensure isotropy as a prepreg, and the resin impregnation into the bundle is not sufficient, It may cause a decrease in strength of the molded product. Even if the reinforcing fiber bundle is dispersed in the single yarn, the same result is obtained if the single yarns of the reinforcing fibers come in contact with each other in parallel. Furthermore, the fiber orientation in the thickness direction causes a thickness expansion of the prepreg or a preform obtained by laminating the prepreg, and the handling property and moldability may be significantly impaired.
  • FIG. 1 is a schematic view showing a dispersion state of reinforcing fibers when only reinforcing fibers of an example of the prepreg of the present invention are observed from the surface direction. Focusing on the reinforcing fiber single yarn 1, the reinforcing fiber single yarn 1 intersects with the reinforcing fiber single yarns 2-7. Crossing here means a state in which the reinforcing fiber single yarn (a) focused on the observed two-dimensional plane intersects with another reinforcing fiber single yarn (b).
  • the reinforcing fiber 1 and the reinforcing fibers 2 to 7 are not necessarily in contact with each other.
  • the two-dimensional orientation angle is defined as an angle 8 of 0 degree or more and 90 degrees or less among two angles formed by two intersecting reinforcing fiber single yarns.
  • the method of measuring the average value of the two-dimensional orientation angle from the prepreg there is no particular limitation on the method of measuring the average value of the two-dimensional orientation angle from the prepreg, but for example, a method of observing the orientation of the reinforcing fiber from the surface of the prepreg can be exemplified. In this case, it is preferable to polish the surface of the prepreg to expose the fibers because the reinforcing fibers can be more easily observed. Moreover, the method of observing the orientation of a reinforced fiber using transmitted light for a prepreg can be illustrated. In this case, it is preferable to slice the prepreg thinly because it becomes easier to observe the reinforcing fibers.
  • a method of photographing the orientation image of the reinforcing fiber by observing the prepreg through X-ray CT can be exemplified.
  • reinforcing fibers with high X-ray permeability it is easier to observe reinforcing fibers by mixing tracer fibers with reinforcing fibers or applying tracer chemicals to reinforcing fibers. preferable.
  • the average value of the two-dimensional orientation angle in the present invention is measured by the following procedures I and II.
  • I. Randomly selected reinforcing fiber single yarn (a) (reinforcing fiber single yarn 1 in FIG. 1) and all reinforcing fiber single yarns (b) crossing this reinforcing fiber single yarn (a) (in FIG. 1) The two-dimensional orientation angle with the reinforcing fiber single yarn 2 to 7) is measured, and the average value is obtained.
  • an average value obtained by randomly selecting and measuring 20 reinforcing fiber single yarns (b) may be substituted.
  • II. The measurement of I is repeated a total of 5 times while paying attention to another reinforcing fiber single yarn (a), and the average value is calculated as the average value of the two-dimensional orientation angle.
  • the average value of the two-dimensional orientation angle of the reinforcing fiber in the present invention is 10 degrees or more and 80 degrees or less, preferably 20 degrees or more and 70 degrees or less, more preferably 30 degrees or more and 60 degrees or less, which is ideal. The closer to 45 degrees that is the angle, the better.
  • the average value of the two-dimensional orientation angle is less than 10 degrees or greater than 80 degrees, it means that many reinforcing fibers are present in a bundle shape and the mechanical properties are deteriorated.
  • the two-dimensional isotropic property is impaired, in order to ensure the isotropic property of the molded product, it is necessary to laminate a large number of prepregs so that the orientation of the reinforcing fibers is directed in each direction. When reinforcing fibers in the thickness direction cannot be ignored, the prepreg becomes thick, making it difficult to handle the placement and transfer of the prepreg during lamination, which may increase the economic burden in the lamination process.
  • a dry method or a wet method can be used.
  • the dry method is a method of dispersing reinforcing fiber bundles in the air.
  • the wet method is a method in which the reinforcing fiber bundle is dispersed in water. Examples of the dry method include a method of providing an opening bar, a method of further vibrating the opening bar, a method of making the card finer, and a method of adjusting the rotation speed of the card.
  • Examples of the wet method include a method of adjusting the stirring conditions when dispersing the reinforcing fibers, a method of diluting the concentration, a method of adjusting the solution viscosity, and a method of suppressing eddy currents when the dispersion is transferred.
  • the dry method can be exemplified by a method of using static electricity, a method of using rectified air, a method of adjusting the take-up speed of the conveyor, etc. when collecting reinforcing fibers.
  • the wet method include a method for preventing reaggregation of reinforcing fibers dispersed by ultrasonic waves, a method for adjusting a filtration speed, a method for adjusting a mesh diameter of a conveyor, a method for adjusting a take-up speed of a conveyor, and the like. These methods are not particularly limited, and can also be achieved by controlling other production conditions while confirming the state of the reinforcing fiber substrate.
  • the basis weight of the obtained reinforcing fiber substrate can be increased.
  • the basis weight can be adjusted by adjusting the flow rate (flow rate) of the dispersion and the speed of the mesh conveyor.
  • the basis weight of the reinforcing fiber base obtained by increasing the flow rate of the dispersion liquid while keeping the speed of the mesh conveyor constant can be increased.
  • the basis weight of the resulting reinforcing fiber substrate can be reduced by making the speed of the mesh conveyor constant and reducing the flow rate of the dispersion liquid.
  • the fiber orientation can be controlled by adjusting the speed of the mesh conveyor with respect to the flow rate of the dispersion. For example, by increasing the speed of the mesh conveyor with respect to the flow rate of the dispersion liquid, the orientation of the fibers in the obtained reinforcing fiber base is easily oriented in the take-up direction of the mesh conveyor. Thus, various parameters can be adjusted and a reinforced fiber base material can be manufactured.
  • the mass ratio of the reinforcing fiber base in the prepreg of the present invention is preferably 5% by mass or more and 60% by mass or less, more preferably 10% by mass or more, with respect to 100% by mass of the prepreg from the viewpoint of achieving both mechanical properties and moldability. It is 60 mass% or less, More preferably, it is 10 mass% or more and 50 mass% or less, Most preferably, it is 15 mass% or more and 40 mass% or less.
  • the impregnation ratio is preferably 30% or more and 100% or less, more preferably 40% or more and 100% or less, Preferably they are 50% or more and 100% or less.
  • the prepreg can be used without impairing the handling property and moldability, which are the effects of the present invention.
  • the volume ratio of the reinforcing fibers is preferably 50% or less when the resin impregnation rate is converted to 100%. Preferably it is 40% or less, More preferably, it is 10% or more and 30% or less.
  • gap part in a cross section and the area of the whole cross section is demonstrated concretely. That is, the prepreg is embedded with a thermosetting resin such as epoxy, the surface corresponding to the end of the cross section of the prepreg is polished, and a range of about 500 ⁇ m to 1000 ⁇ m in width is observed with an optical microscope or an electron microscope.
  • the bulk density of a prepreg can be calculated
  • the preferred bulk density of the prepreg of the present invention is 0.8 or more and 1.5 or less, more preferably 0.9 or more and 1.4 or less, and further preferably 1.0 or more and 1.3 or less. If the bulk density is in a preferred range, a molded product using the prepreg of the present invention can ensure sufficient lightness.
  • the basis weight of the prepreg is preferably 10 g / m 2 or more and 500 g / m 2 or less, more preferably 30 g / m 2 or more and 400 g / m 2 or less, and further preferably 100 g / m 2 or more and 300 g / m 2 or less. m 2 or less.
  • the thickness of the prepreg of the present invention is such that the thickness h0 at 23 ° C. is 0.03 mm or more and 1 mm or less, preferably 0.05 mm or more and 0.8 mm or less, from the viewpoint of handleability in the step of laminating and forming a preform. More preferably, it is 0.1 mm or more and 0.6 mm or less. If h0 is less than 0.03 mm, the prepreg may be broken, and if it exceeds 1 mm, the formability may be impaired.
  • the prepreg of the present invention is preferable because it can be stably transferred to a mold by suppressing the expansion of the thickness at the time of molding when it is formed into a preform.
  • preheating may be performed from the viewpoint of controlling the formability and adhesiveness. Therefore, the thickness hn (mm) at (n ⁇ 100) ° C. of the prepreg is h0 ⁇ hn ⁇ h0 ⁇ (2n + 1) (n is at least one natural number selected from 1, 2, 3, 4). More preferably, h0 ⁇ hn ⁇ h0 ⁇ 2n, and particularly preferably h0 ⁇ hn ⁇ h0 ⁇ (2n ⁇ 1).
  • the thickness of the prepreg at (n ⁇ 100) ° C. is measured using existing measuring means such as a caliper, a laser displacement meter, and measuring the thickness by photographing with a camera after leaving the prepreg in a temperature atmosphere for measuring the prepreg for 10 minutes. Can be measured.
  • the prepreg shows a tendency for the thickness expansion to increase as the ambient temperature increases. This is interference in the thickness direction between the reinforcing fibers in addition to simple volume expansion, and this phenomenon becomes more prominent as the viscosity of the resin is lowered, and thus the temperature dependence is higher. Furthermore, the expansion of the thickness by decomposition
  • N 1 (atmospheric temperature 100 ° C.) is a drying temperature and a general temperature used in the lamination process. When the thickness at this temperature is 3 times or less of h0, the thickness of the preform can be stably reduced, which is preferable from the viewpoint of reducing the load of the lamination process.
  • n 2 (atmosphere temperature 200 ° C.) is a processing temperature of a general thermosetting resin or a low melting point thermoplastic resin. When the thickness at this temperature is 5 times or less of h0, it is preferable from the viewpoint of securing handling properties such as transfer to a mold in the molding process and stable shaping properties.
  • n 3 (atmosphere temperature 300 ° C.) corresponds to the upper limit of the processing temperature of general general-purpose engineering plastics. A thickness at this temperature of 7 times or less of h0 is preferable from the viewpoint of less resin decomposition and safe and stable handling of the prepreg or preform.
  • n 4 (atmosphere temperature 400 ° C.) is a processing temperature of general super engineering plastics, and other thermoplastic resins and thermosetting resins are accelerated in decomposition, and the thickness expansion of the reinforcing fiber base material Is close to the maximum point. Therefore, when the thickness at this temperature is 9 times or less of h0, the arrangement ratio of the reinforcing fibers in the thickness direction is suppressed, which is preferable from the viewpoint of stable handling of the prepreg.
  • the method for suppressing the arrangement ratio of the reinforcing fibers in the thickness direction can be achieved by dispersing the reinforcing fibers and arranging them in a plane when the reinforcing fiber substrate is manufactured.
  • the dry method can be exemplified by a method of using static electricity, a method of using rectified air, a method of adjusting the take-up speed of the conveyor, and the like when collecting reinforcing fibers.
  • Examples of the wet method include a method for preventing reaggregation of reinforcing fibers dispersed by ultrasonic waves, a method for adjusting a filtration speed, a method for adjusting a mesh diameter of a conveyor, a method for adjusting a take-up speed of a conveyor, and the like.
  • the method of pulling the reinforcing fiber substrate continuously while sucking the reinforcing fiber with the conveyor while maintaining a particularly good dispersion state is to force the reinforcing fiber to fall on the conveyor in a direction parallel to the conveyor plane in accordance with the flow of the conveyor. Therefore, it is preferable as a method for suppressing the arrangement ratio of reinforcing fibers in the thickness direction.
  • the temperature atmosphere to be measured is very high and it is difficult to measure directly, measure the temperature after adjusting the temperature so that the thickness can be kept stable. Also good.
  • the resin flows in a high temperature atmosphere at a melting point or a softening point or higher. However, by cooling to room temperature, the prepreg resin is solidified and the thickness can be measured.
  • the two points X and Y in the prepreg are determined so that the linear distance XY is the longest in the plane of the prepreg.
  • each dividing point excluding both ends XY when the straight line XY is divided into 10 or more equal parts is taken as a thickness measurement point.
  • the average value of the thickness in each measurement point be the thickness of a prepreg.
  • the resin used for the prepreg is not particularly limited as long as the resin has an impregnating property to the reinforcing fiber base and can achieve the tensile strength for ensuring the handleability in the laminating process.
  • the thermoplastics shown below Resin and uncured thermosetting resin can be used.
  • the prepreg of the present invention uses a thermoplastic resin.
  • the tensile strength ⁇ for ensuring the handleability in the lamination process is higher, the tensile strength ⁇ can be used for a lamination process and a molding process that are faster and more economical.
  • the tensile strength ⁇ of the prepreg needs to be at least 0.01 MPa. If it is less than 0.01 MPa, problems such as tearing of the prepreg may occur in the operation during lamination or molding.
  • the tensile strength ⁇ is preferably ⁇ Max ⁇ ⁇ Min ⁇ 2, more preferably ⁇ Max ⁇ ⁇ Min, in the relationship between the maximum tensile strength ⁇ Max and the minimum tensile strength ⁇ Min depending on the measurement direction. ⁇ 1.8, and more preferably ⁇ Max ⁇ ⁇ Min ⁇ 1.5. Higher isotropicity of ⁇ is preferable from the viewpoint of reducing the economic load in the stacking process.
  • the tensile strength of the prepreg is obtained by cutting a test piece from the prepreg and measuring the tensile properties according to the ISO527-3 method (1995).
  • the test piece is measured in four directions of +45 degrees, ⁇ 45 degrees, and 90 degrees with an arbitrary direction as 0 degrees.
  • the maximum value is ⁇ Max, and the minimum value is ⁇ Min.
  • thermoplastic resin used in the prepreg of the present invention examples include “polyesters such as polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polytrimethylene terephthalate (PTT), polyethylene naphthalate (PEN), and liquid crystal polyester.
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • PTT polytrimethylene terephthalate
  • PEN polyethylene naphthalate
  • liquid crystal polyester liquid crystal polyester
  • polyolefins such as polyethylene (PE), polypropylene (PP) and polybutylene, polyarylene sulfides such as polyoxymethylene (POM), polyamide (PA), and polyphenylene sulfide (PPS), polyketone (PK), polyetherketone ( PEK), polyether ether ketone (PEEK), polyether ketone ketone (PEKK), polyether nitrile (PEN), polytetrafluoroethylene and other fluororesins, liquid crystal polymers (LCP) "and other crystalline resins, in addition to styrene resins, polycarbonate (PC), polymethyl methacrylate (PMMA), polyvinyl chloride (PVC), polyphenylene ether (PPE), polyimide (PI), polyamideimide ( PAI), polyetherimide (PEI), polysulfone (PSU), polyethersulfone, polyarylate (PAR) "and other amorphous resins, phenolic resins, phenoxy
  • polyolefin is preferable from the viewpoint of light weight of the obtained molded product
  • polyamide is preferable from the viewpoint of strength
  • amorphous resin such as polycarbonate and styrene resin is preferable from the viewpoint of surface appearance
  • heat resistance is preferable.
  • polyarylene sulfide polyether ether ketone is preferred from the viewpoint of continuous use temperature, and fluorine resin is preferably used from the viewpoint of chemical resistance.
  • a high tensile strength ⁇ can be obtained, which is advantageous for economics of the lamination process and the molding process.
  • the preferable ⁇ in this case is 1 MPa or more, more preferably 10 MPa or more, and further preferably 50 MPa or more. Although there is no restriction
  • thermosetting resin used in the prepreg of the present invention examples include, for example, unsaturated polyester, vinyl ester, epoxy, phenol (resol type), urea melamine, polyimide, copolymers thereof, modified products, and And a resin obtained by blending at least two of these.
  • an epoxy resin is preferably used from the viewpoint of mechanical properties of the obtained molded product.
  • the glass transition temperature of the thermosetting resin used is preferably 80 ° C. or lower, more preferably 70 ° C. or lower, and further preferably 60 ° C. or lower.
  • thermosetting resin when used for the prepreg, it becomes more difficult to ensure the tensile strength ⁇ .
  • the preferable ⁇ in this case is 0.05 MPa or more, more preferably 0.1 MPa or more, and further preferably 1 MPa or more. Although there is no restriction
  • the means for securing the tensile strength ⁇ is not particularly limited. For example, a method using a high-viscosity type thermosetting resin, a method using a high-adhesion type thermosetting resin, or an organic compound in advance on a fiber-reinforced substrate. It can be achieved by a method that keeps eyes on and the like.
  • the resin component used in the present invention may be a blend obtained by mixing a thermosetting resin with the above thermoplastic resin matrix.
  • the resin component may further include a filler, a conductivity imparting material, a flame retardant, a flame retardant aid, a pigment, a dye, a lubricant, a release agent, a compatibilizer, a dispersant, a crystal nucleating agent.
  • Plasticizers, heat stabilizers, antioxidants, anti-coloring agents, UV absorbers, fluidity modifiers, foaming agents, antibacterial agents, vibration damping agents, deodorants, sliding property modifiers, and antistatic agents Etc. may be added.
  • thermoplastic resin when the application is an electric / electronic device, an automobile, an aircraft, or the like, flame retardancy may be required, and a phosphorus flame retardant, a nitrogen flame retardant, and an inorganic flame retardant are preferably added.
  • a phosphorus flame retardant, a nitrogen flame retardant, and an inorganic flame retardant are preferably added.
  • the content of the thermoplastic resin in the resin component is 60 mass so that the effect using the thermoplastic resin is not impaired. % Or more.
  • the prepreg of the present invention is preferably long from the viewpoint of economy, and the length in the longitudinal direction is preferably 500 mm or more, more preferably 800 mm or more, and still more preferably 1000 mm or more. Although there is no restriction
  • the reinforcing fiber of the fiber reinforced thermoplastic resin molded body is a monofilament carbon fiber having a mass average fiber length of 0.5 mm or more and 10 mm or less,
  • a carbon fiber having an orientation parameter of ⁇ 0.25 or more and 0.25 or less is used, a molded body having excellent mechanical properties and isotropic mechanical properties can be obtained.
  • This fiber-reinforced thermoplastic resin molded article is obtained by (1) a step of heating and melting a thermoplastic resin contained in a molding material, (2) a step of placing the molding material in a mold, and (3) adding a molding material with the mold. The step of pressing, (4) the step of solidifying the molding material in the mold, and (5) the step of opening the mold and demolding the fiber-reinforced thermoplastic resin molded body.
  • Japanese Patent Application Laid-Open No. 9-94826 discloses a method of controlling the flow direction of a dispersion when making a dispersion containing discontinuous reinforcing fibers and a thermoplastic resin in producing a fiber-reinforced resin sheet. Randomly orienting the fibers in the web to obtain a randomly oriented fiber reinforced resin sheet that is lightweight, has isotropically high mechanical strength in each direction, and exhibits excellent properties for forming thin, large products It is described that
  • Japanese Patent Application Laid-Open No. 2004-217879 discloses that a stampable sheet is manufactured by (1) forming a reinforcing fiber and a thermoplastic resin into a sheet shape by a wet dispersion method, and then drying the sheet in a substantially plane direction of the sheet. A web having a matrix structure in which oriented reinforcing fibers are partially bound with a thermoplastic resin is manufactured, and (2) the obtained web is needled so that a part of the reinforcing fibers in the matrix are arranged in the thickness direction. After the orientation and forming the needling mat, (3) a manufacturing method is described in which one side of the needling mat is heated and compressed at a temperature that is abnormal for the melting point of the thermoplastic resin in the matrix.
  • reinforcing fibers are made with resin, and in order to increase the number of resin types, it is necessary to clean the apparatus and increase the number of apparatuses. Moreover, it is necessary to control the orientation of the carbon fibers, and for that purpose, it is necessary to set detailed conditions for each process. Therefore, time and labor are required for production, and there is a problem in application to efficient production of a prepreg.
  • a prepreg by the following method. That is, in the step (I) of obtaining a reinforcing fiber substrate by dispersing the reinforcing fiber bundle, the step (II) of applying a binder to the reinforcing fiber substrate obtained in the step (I), and the step (II) And a step (III) of combining a matrix resin with a reinforcing fiber substrate to which a binder is applied, wherein the steps (I) to (II) are performed online.
  • the content of the reinforcing fiber bundle with respect to the entire prepreg is 10% by mass to 80% by mass, the content of the binder is 0.1% by mass to 10% by mass, and the content of the matrix resin is 10% by mass.
  • This is a method for producing a prepreg of 80% by mass or less. According to the method for producing a prepreg of the present invention, it is possible to obtain a prepreg excellent in the dispersion state of reinforcing fibers and having excellent mechanical properties when formed into a molded product in a short time.
  • step (I) a reinforcing fiber bundle is dispersed to obtain a reinforcing fiber substrate.
  • the reinforcing fiber bundle means a fiber bundle composed of reinforcing fibers.
  • the reinforcing fiber bundle may be composed of continuous reinforcing fibers or discontinuous reinforcing fibers, but in order to achieve a better dispersion state, the discontinuous reinforcing fiber bundles Preferably, chopped fibers obtained by cutting continuous reinforcing fiber bundles are more preferable.
  • the reinforcing fiber bundle is preferably a fiber bundle (carbon fiber bundle) composed of carbon fibers, and more preferably chopped carbon fibers.
  • the number of single fibers constituting the reinforcing fiber bundle is not particularly limited, but is preferably 24,000 or more, more preferably 48,000 or more from the viewpoint of productivity.
  • the upper limit of the number of single fibers is not particularly limited, but considering the balance between dispersibility and handleability, productivity, dispersibility, and handleability can be kept good if there are about 300,000. .
  • the length of the reinforcing fiber bundle that is the raw material of the reinforcing fiber base is preferably 1 mm or more and 50 mm or less, and more preferably 3 mm or more and 30 mm or less. If the length of the reinforcing fiber bundle is less than 1 mm, it may be difficult to efficiently exert the reinforcing effect by the reinforcing fibers. If the length of the reinforcing fiber bundle exceeds 50 mm, it may be difficult to maintain good dispersion.
  • the length of the reinforcing fiber bundle means the length of the single fiber constituting the reinforcing fiber bundle.
  • the length of the reinforcing fiber bundle in the fiber axis direction is measured with a caliper, or the single fiber is taken out from the reinforcing fiber bundle and observed with a microscope. Can be measured.
  • the carbon fiber can be separated from the prepreg and measured as follows. A part of the prepreg is cut out, and the thermoplastic resin is sufficiently dissolved by a solvent that dissolves the bound thermoplastic resin. Thereafter, the carbon fiber is separated from the thermoplastic resin by a known operation such as filtration. Alternatively, a part of the prepreg is cut out and heated at a temperature of 500 ° C.
  • thermoplastic resin for 2 hours to burn off the thermoplastic resin and separate the carbon fibers from the thermoplastic resin. 400 separated carbon fibers are randomly extracted, and the length is measured to the unit of 10 ⁇ m with an optical microscope or a scanning electron microscope, and the average value is defined as the fiber length.
  • step (I) either a wet method or a dry method can be used to disperse the reinforcing fiber bundle to obtain the reinforcing fiber substrate.
  • a reinforcing fiber base material can be obtained by making a slurry obtained by dispersing the reinforcing fiber bundle in water.
  • water for dispersing the reinforcing fiber bundle
  • water such as distilled water and purified water can be used in addition to normal tap water.
  • a surfactant can be mixed with water as needed.
  • Surfactants are classified into a cation type, an anion type, a nonionic type, and an amphoteric type. Of these, nonionic surfactants are preferably used, and polyoxyethylene lauryl ether is more preferably used. .
  • the concentration of the surfactant when mixing the surfactant with water is usually 0.0001% by mass or more and 0.1% by mass or less, preferably 0.0005% by mass or more and 0.05% by mass or less.
  • the amount of reinforcing fiber bundle added to water (dispersion) can be adjusted in the range of usually 0.1 g or more and 10 g or less, preferably 0.3 g or more and 5 g or less, based on 1 L of water (dispersion). By setting it to 0.1 g or more and 10 g or less, the reinforcing fiber bundle is efficiently dispersed in water (dispersion), and a uniformly dispersed slurry can be obtained in a short time. When the reinforcing fiber bundle is dispersed in water (dispersion), stirring is performed as necessary.
  • Slurry refers to a suspension in which solid particles are dispersed.
  • the solid content concentration (mass content of reinforcing fibers in the slurry) in the slurry is preferably 0.01% by mass or more and 1% by mass or less, and preferably 0.03% by mass or more and 0.5% by mass or less. More preferred. Papermaking can be efficiently performed by being 0.01 mass% or more and 1 mass% or less.
  • the slurry can be made by sucking water from the slurry.
  • Slurry papermaking can be performed according to a so-called papermaking method.
  • the slurry can be poured into a tank having a papermaking surface at the bottom and capable of sucking water from the bottom, and the water can be sucked.
  • the Kumagaya Riki Kogyo Co., Ltd. make, No.
  • An example is a tank provided with a mesh conveyor having a papermaking surface of 2553-I (trade name) and a width of 200 mm at the bottom. In this way, a reinforcing fiber substrate is obtained.
  • the moisture content of the reinforcing fiber substrate obtained after dispersion is adjusted to 10% by mass or less, preferably 5% by mass or less before applying the binder in the binder application step of step (II).
  • the time which process (II) requires can be shortened and a prepreg can be obtained in a short time.
  • the reinforcing fiber bundle can be dispersed in the gas phase to obtain a reinforcing fiber substrate. That is, the reinforcing fiber bundle can be dispersed in the gas phase, and the dispersed reinforcing fiber bundle can be deposited to obtain a reinforcing fiber substrate.
  • Dispersion of reinforcing fiber bundles in the gas phase is a method in which the reinforcing fiber bundles are opened in a non-contact manner and the opened reinforcing fiber bundles are deposited (non-contact method).
  • a method in which the spread of the reinforcing fiber bundles is applied by a contact (open air flow method), a method of opening the reinforcing fiber bundles in a contact manner, and a method of depositing the opened reinforcing fiber bundles There are three types of contact method.
  • the non-contact method is a method of opening a reinforcing fiber bundle without bringing a solid or a fiber opening device into contact therewith.
  • a method of spraying a gas such as air or an inert gas onto the reinforcing fiber bundle particularly a method of pressurizing and spraying air advantageous in terms of cost is preferable.
  • the conditions for applying the air flow to the reinforcing fiber bundle are not particularly limited.
  • pressurized air usually an air flow that applies a pressure of 0.1 MPa to 10 MPa, preferably 0.5 MPa to 5 MPa
  • an apparatus that can be used is not particularly limited, and examples thereof include a container that includes an air tube and that can suck air and can contain a reinforcing fiber bundle. By using such a container, it is possible to open and deposit the reinforcing fiber bundle in one container.
  • the contact method is a method in which a solid or a fiber opening device is physically contacted with a reinforcing fiber bundle to open the fiber.
  • Examples of the contact method include carding, needle punching, and roller opening. Of these, carding and needle punching are preferable, and carding is more preferable.
  • the conditions for carrying out the contact method are not particularly limited, and conditions for opening the reinforcing fiber bundle can be determined as appropriate.
  • the proportion of reinforcing fibers in the reinforcing fiber base is preferably 80% by mass or more and 100% by mass or less, and more preferably 90% by mass or more and 100% by mass or less. By being 80 mass% or more and 100 mass% or less, a reinforcement effect can be efficiently expressed, when it makes it composite with a matrix resin using a reinforced fiber base material.
  • the basis weight of the reinforcing fiber base is preferably 10 g / m 2 or more and 500 g / m 2 or less, and more preferably 50 g / m 2 or more and 300 g / m 2 or less. If it is less than 10 g / m 2 , there is a risk of problems in handling such as tearing of the substrate. If it exceeds 500 g / m 2 , it takes a long time to dry the substrate in the wet method, or the web in the dry method. May become thick, and handling may be difficult in subsequent processes.
  • step (II) a binder is applied to the reinforcing fiber base obtained in step (I).
  • the binder means a binder that is interposed between the reinforcing fiber substrate and the matrix resin and connects the two.
  • the binder is usually a thermoplastic resin.
  • the thermoplastic resin include acrylic polymers, vinyl polymers, polyurethanes, polyamides, and polyesters. In the present invention, one or two or more selected from these examples are preferably used.
  • the thermoplastic resin preferably has at least one functional group selected from an amino group, an epoxy group, a carboxyl group, an oxazoline group, a carboxylate group, and an acid anhydride group, and has two or more types. May be. Among these, a thermoplastic resin having an amino group is more preferable.
  • the application of the binder to the reinforcing fiber base is preferably performed in the form of an aqueous solution, emulsion or suspension of a binder (for example, the above thermoplastic resin).
  • An aqueous solution means a solution that is almost completely dissolved in water
  • an emulsion means a solution (emulsion) in which two liquids that are not completely dissolved form fine particles in the liquid.
  • Suspension means a solution (suspension) in a state of being suspended in water.
  • the component particle sizes in the liquid are in the order of aqueous solution ⁇ emulsion ⁇ suspension.
  • the application method is not particularly limited.
  • a method of immersing the carbon fiber substrate in an aqueous solution, emulsion or suspension of a thermoplastic resin, a shower method, or the like can be used. After the contact, before the drying step, it is preferable to remove excess binder, for example, by suction or absorption into an absorbent material such as absorbent paper.
  • the reinforcing fiber base is preferably heated after the binder is applied.
  • the heating temperature can set suitably the temperature which the reinforced fiber base material after binder provision dries, It is preferable that it is 100 to 300 degreeC, and it is more preferable that it is 120 to 250 degreeC.
  • step (III) the reinforcing fiber substrate provided with the binder obtained in step (II) is impregnated with a matrix resin, and the reinforcing fiber substrate and the matrix resin are combined.
  • the composite of the matrix resin to the reinforcing fiber substrate to which the binder is applied can be performed by bringing the matrix resin into contact with the reinforcing fiber substrate.
  • the form of the matrix resin in this case is not particularly limited.
  • the matrix resin is a thermoplastic resin, it is preferably at least one selected from a fabric, a nonwoven fabric, and a film, and more preferably a nonwoven fabric.
  • the contact method is not particularly limited, and examples thereof include a method of preparing two matrix resin fabrics, non-woven fabrics, or films and arranging them on the upper and lower surfaces of the reinforcing fiber base to which a binder has been applied.
  • Compounding is preferably performed by pressurization and / or heating, and more preferably both pressurization and heating are performed simultaneously.
  • the pressurization condition is preferably 0.01 MPa or more and 10 MPa or less, and more preferably 0.05 MPa or more and 5 MPa or less.
  • the heating condition is preferably a temperature at which the matrix resin to be used can be melted or flowed, and is preferably 50 ° C. or higher and 400 ° C. or lower, more preferably 80 ° C. or higher and 350 ° C. or lower in the temperature range.
  • the pressurization and / or heating can be performed in a state where the matrix resin is brought into contact with the reinforcing fiber base to which the binder is applied.
  • two matrix resin fabrics, non-woven fabrics or films are prepared, arranged on both upper and lower surfaces of a reinforcing fiber base to which a binder is applied, and heated and / or heated from both sides (a method of sandwiching with a double belt press device, etc.) ) Method.
  • a prepreg is obtained by the step (III).
  • step (IV) may be further included in addition to steps (I) to (III).
  • Step (IV) is a step of taking the prepreg obtained in the step (III).
  • the prepreg can be taken up by being wound on a roll.
  • the take-up speed is preferably 10 m / min or more.
  • the upper limit of the take-up speed is usually 100 m / min or less.
  • the steps (I) to (III) and the step (IV) performed as necessary are preferably performed online. Furthermore, it is more preferable that all of the steps (I) to (III) and the step (IV) performed as necessary be performed on-line.
  • Online is a system in which each process is continuously performed, and is an antonym of offline. That is, online means a process in which each process is performed as a series of flows, and is different from a process in which each process is independent.
  • the compounding amount of the reinforcing fiber bundle, the binder and the matrix resin with respect to the whole prepreg is 10% by mass to 80% by mass of the reinforcing fiber bundle, 0.1% by mass to 10% by mass of the binder, and 10% by mass to 80% of the matrix resin. It is preferable that it is below mass%. By setting it as this range, the shaping
  • step (I) of obtaining the reinforcing fiber substrate by dispersing the above-described reinforcing fiber bundle it is preferable to obtain the reinforcing fiber substrate by a wet method.
  • the step (i) of feeding the reinforcing fiber bundle into the dispersion medium the step (ii) of preparing a slurry in which the reinforcing fibers constituting the reinforcing fiber bundle are dispersed in the dispersion medium, and the step of transporting the slurry (Iii) and a step (iv) of obtaining a papermaking substrate containing reinforcing fibers by removing a dispersion medium from the slurry, and a method for producing a reinforcing fiber substrate.
  • step (i) a reinforcing fiber bundle is introduced into the dispersion medium.
  • Dispersion medium means a medium that can disperse reinforcing fiber bundles.
  • the dispersion medium include so-called solvents such as water and alcohol, with water being preferred.
  • solvents such as water and alcohol
  • water in addition to normal tap water, water such as distilled water and purified water can be used.
  • a surfactant may be mixed in the water as necessary.
  • Surfactants are classified into a cation type, an anion type, a nonionic type, and an amphoteric type. Of these, nonionic surfactants are preferably used, and polyoxyethylene lauryl ether is more preferably used. .
  • the concentration of the surfactant when mixing the surfactant with water is usually 0.0001% by mass or more and 0.1% by mass or less, preferably 0.0005% by mass or more and 0.05% by mass or less.
  • a polymer compound can be dissolved in the dispersion medium to adjust the viscosity of the dispersion medium.
  • a water-soluble polymer or an organic-soluble polymer can be preferably used depending on the type of the solvent.
  • the dispersion medium is water, starch, polyvinyl alcohol and polyethylene oxide are more preferably used.
  • the concentration of the polymer compound is preferably 0.01% by mass to 5% by mass, more preferably 0.05% by mass to 1% by mass.
  • the solvent, the surfactant, and the polymer compound constituting the dispersion medium may be one type or two or more types.
  • the dispersion medium has a viscosity measured by a B-type viscometer of preferably 2 mPa ⁇ s to 100 mPa ⁇ s, more preferably 2 mPa ⁇ s to 80 mPa ⁇ s, and more preferably 3 mPa ⁇ s to 50 mPa ⁇ s. Even more preferably, it is s or less.
  • the viscosity is 1 mPa ⁇ s or more, re-aggregation of reinforcing fibers can be suppressed, and a fiber-reinforced base material excellent in dispersibility can be obtained.
  • step (ii) a slurry in which reinforcing fibers constituting the reinforcing fiber bundle are dispersed in a dispersion medium is prepared.
  • an aqueous slurry is preferable.
  • Step (ii) is usually performed in a dispersion tank.
  • the dispersion tank is a tank (container) that can contain slurry.
  • the dispersion medium and the reinforcing fiber bundle in the step (i) are directly charged into the dispersion tank.
  • the dispersion medium and the reinforcing fiber bundle may first be put into a tank other than the dispersion tank, and the contents of the tank may be transferred to the dispersion tank to perform step (ii).
  • stirring may be performed as necessary. That is, the dispersion tank may include a stirring device as necessary.
  • step (iii) the slurry obtained in step (ii) is transported.
  • Step (iii) is usually performed in a transport section that connects a dispersion tank in which step (ii) is performed and a papermaking tank in which step (iv) is performed.
  • the width of the transport portion is not particularly defined, but the ratio W1 / W2 between the width W1 of the transport portion and the width W2 of the reinforcing fiber base is preferably 0.5 or more and 1.0 or less, and 0.7 or more and 1 More preferably, it is 0.0 or less. If W1 / W2 is less than 0.5, it may take a long time for transportation in the step (iii), and if a pump is not used in the transportation section, the slurry flows when the slurry flows from the transportation section to the step (iv). Since the width of the part becomes large, there is a possibility that the slurry is loaded and the dispersion state becomes insufficient.
  • the “width of the transport part” means the major axis of the cross section of the transport part. For example, when the cross section of the transport part is rectangular, it means the longer diameter.
  • “Width of reinforcing fiber substrate” means the width (the shorter of the length) of the length, width, and thickness of the reinforcing fiber substrate obtained in step (iv). In addition, when each width changes with parts, it shall mean the average value.
  • the width of the transport section is usually in the range of 0.1 m to 2 m.
  • the width of the reinforcing fiber base is usually 0.2 m or more and 2 m or less.
  • the shape of the transport part is not particularly limited as long as it is a shape capable of transporting the slurry, and is usually tubular. If necessary, a liquid feed pump can be provided in the middle of the transport section.
  • the liquid feed pump is preferably a low shear pump such as a diaphragm pump or a snake pump.
  • Step (iii) may be performed by an overflow method. Thereby, it is possible to prevent the reinforcing fibers in the transported slurry from being sheared and to settle and aggregate, and to maintain dispersibility in the slurry. Moreover, it can be transported economically without using power such as a pump.
  • the overflow method means a method of feeding liquid overflowing from a container (tank) to the next container (tank) using gravity.
  • this is a system for feeding liquid without substantially using power such as a liquid feed pump.
  • the transport section is preferably inclined. That is, when the transport section is viewed from the horizontal direction, it is preferable that the connection point between the dispersion tank and the transport section is higher than the connection point between the papermaking tank and the transport section.
  • the inclination angle is preferably 30 ° or more and 60 ° or less, and more preferably 40 ° or more and 55 ° or less. If the inclination angle is less than 30 °, the transportation in the step (iii) may take a long time.
  • the tilt angle exceeds 60 °, the flow rate at the time of transport of the slurry increases when the overflow method is used, so that excessive shear is applied to the slurry when reaching the step (iv), and the slurry in the step (iv) There is a possibility that the dispersion state becomes insufficient.
  • the inclination angle means the angle on the vertically lower side of the portion where the center line of the pipe of the transport section and the line parallel to the direction of gravity intersect.
  • connection part with the dispersion tank of a transport part is located in the wall surface of a dispersion tank, especially upwards.
  • the transport portion is preferably linear, that is, a shape having no direction change point such as a curved portion or a bent portion.
  • the height of the transport part is 60 mm or more, preferably 100 mm or more.
  • the contact area between the wall surface of the transport section and the slurry can be made relatively small with respect to the amount of slurry to be transported, and re-aggregation of the dispersed fibers due to the generation of shearing force on the slurry when contacting the wall surface.
  • the height of the transport section means the diameter of the transport section when the transport section is viewed from the horizontal direction.
  • the transport portion is rectangular (the long side is the base material width direction and the short side is the base material thickness direction), the length of the short side corresponds to the “height of the transport portion”.
  • the upper limit of the height of a transport part is not specifically limited, Usually, it is 500 mm or less. If there is a difference in the height of the transport section depending on the part, the average value is meant.
  • the shape of the transport section will be described with reference to FIGS. 13 to 20 as an example.
  • the steps (i) and (ii) are performed in a dispersion tank, the step (iv) is performed in a papermaking tank, and the step (iii) is connected to the dispersion tank and the papermaking tank.
  • the transport portion 213 in FIGS. 13 to 18 and FIG. 20 has a linear shape.
  • the inclination angle of the transport portion means an angle r formed by the center line q of the transport portion 213 and the line p extending in the direction of gravity in the vertical direction in each figure.
  • the transport section 213 in FIGS. 13, 17 and 18 is inclined from the dispersion tank 211 toward the papermaking tank 212, and the inclination angle is not less than 30 ° and not more than 60 °.
  • the transport unit 213 in FIG. 14 connects the dispersion tank 211 and the papermaking tank 212 horizontally, and the inclination angle is approximately 90 °.
  • the transport section 213 in FIG. 15 is inclined from the dispersion tank 211 toward the papermaking tank 212, and the inclination angle is 30 ° or more and 60 ° or less.
  • the transport unit 213 in FIG. 16 connects the dispersion tank 211 and the papermaking tank 212 in the direction of gravity, and the inclination angle is approximately 0 °.
  • the transport section 213 in FIG. 20 has an inclination angle of about 0 ° as in FIG. 16 and includes a pump 225 in the middle of the transport section 213.
  • connection part 214 with the dispersion tank 211 of the transport part 213 is located above the wall surface of the dispersion tank 211. Therefore, if the positional relationship among the dispersion tank, papermaking tank, and transport section as shown in FIG.
  • step (iv) the dispersion medium is removed from the slurry to obtain a papermaking substrate containing reinforcing fibers, that is, a reinforcing fiber substrate.
  • the papermaking tank is a tank (container) that can contain slurry and has a papermaking surface capable of sucking moisture.
  • the papermaking surface is generally provided near the bottom surface, and the material is exemplified by a mesh sheet.
  • the reinforcing fiber base obtained in step (iv) can be taken up.
  • the reinforcing fiber substrate can be taken up by being wound on a roll.
  • the take-up speed is preferably 10 m / min or more.
  • the upper limit of the take-up speed is usually 100 m / min or less.
  • Step (i) to step (iv) are preferably performed online.
  • the height H1 of the slurry liquid level in the step (ii) is preferably higher than the height H2 of the slurry liquid level in the step (iv).
  • the height of the liquid level of the slurry means the position of the liquid level when the slurry is viewed from the horizontal direction. “At a high position” means that when the height of two liquid levels is expressed as a measured value as a distance from a reference located vertically below the height, one height is higher than the other. That is, it means that one of the two liquid surface heights is located vertically below the other.
  • the difference H1-H2 between the height H1 of the slurry level in the step (ii) and the height H2 of the slurry level in the step (iv) is 0.1 m or more and 5 m or less. Preferably, it is 0.5 m or more and 2 m or less. If it is less than 0.1 m, it may take a long time for transportation in the step (iii). On the other hand, if it exceeds 5 m, the dispersion state of the slurry in step (iv) may be insufficient.
  • the height H1 of the slurry liquid level in step (ii) and the height H2 of the slurry liquid level in step (iv) will be described with reference to FIGS.
  • the liquid surface height H1 of the slurry (shaded portion) in the dispersion tank 211 is represented by a distance H1 of the liquid surface position B with respect to the reference A positioned vertically below H1 and H2.
  • the liquid surface height H2 of the slurry (shaded portion) in the papermaking tank 212 is represented by a distance H2 of the liquid surface position C with respect to the liquid surface reference A.
  • the dispersion tank 211 and the papermaking tank 212 are displaced with respect to the direction of gravity. 14, 17, and 18, as shown in FIGS. 14, 17, and 18, dispersion can be achieved by adjusting the height of the slurry liquid level in each tank according to the amount of slurry and the size of the tank.
  • the positions in the gravity direction of the tank 211 and the papermaking tank 212 may be horizontal.
  • the process (ii) is a dispersion tank, and the process (iv) )
  • the process (ii) In a papermaking tank, it is preferable to install these two tanks so that the position of the bottom surface of the dispersion tank is located vertically above the position of the top surface of the papermaking tank.
  • the time required from the step (i) to the start of the step (iv) is preferably within 10 minutes. If it exceeds 10 minutes, depending on the type of reinforcing fiber, the reinforcing fiber dispersed in the slurry may be re-agglomerated.
  • the lower limit of the time required from the step (i) to the start of the step (iv) is not particularly limited, but is usually 1 minute or more.
  • step (i) it is preferable that the dispersion medium and the reinforcing fiber bundle are continuously added and the steps (i) to (iv) are continuously performed.
  • a reinforced fiber base material can be obtained in a shorter time.
  • a large amount of slurry is added at once, a part of the slurry may take a long time to be paper-made, and the dispersion state may be deteriorated. Can be made in small amounts efficiently while maintaining the dispersed state.
  • Continuous input” and “Continuously execute” means continuous input, and sequentially or continuously execute steps (ii) to (iv) for the raw material to be administered in step (i). Means that.
  • the method of continuously charging and executing include a method other than the batch method, a method of charging at a constant speed, and a method of charging a substantially constant amount at a predetermined interval.
  • the conditions for feeding at a constant rate are 1 ⁇ 10 3 g / min to 1 ⁇ 10 7 g / min for the dispersion medium, and 0.1 g / min to 1 ⁇ 10 5 g / min for the reinforcing fiber bundle. The conditions to do are illustrated.
  • the conditions for introducing a substantially constant amount at predetermined intervals are 1 ⁇ 10 3 g or more and 1 ⁇ 10 7 g or less for the dispersion medium every 1 to 5 minutes, and 0.1 g or more and 1 ⁇ 10 5 g for the reinforcing fiber bundle.
  • the following conditions are exemplified.
  • the height H1 of the liquid level of the slurry in the step (ii) is maintained at substantially the same height throughout the step (ii).
  • the level H1 of the slurry liquid level in the step (ii) is kept substantially the same throughout the step (ii). It is preferable.
  • step (ii) “Keep substantially the same height throughout step (ii)” means that the height variation is within 100 mm, preferably within 50 mm, more preferably the variation during the execution of step (ii). It means not (0 mm).
  • step (i) it is preferable to perform step (i) continuously. For example, when the step (ii) is performed in the dispersion tank, it is preferable that the dispersion medium and the reinforcing fiber are continuously supplied to the dispersion tank, and the process (i) to the process (iv) are continuously performed. .
  • the reinforcing fiber substrate by the following method. That is, a step (ia) of introducing a reinforcing fiber bundle into a dispersion medium, a step (ii-a) of preparing a slurry in which the reinforcing fibers constituting the reinforcing fiber bundle are dispersed in the dispersion medium, A step (iii-a) of transporting the slurry, and a step (iv-a) of obtaining a papermaking substrate containing reinforcing fibers by removing the dispersion medium from the slurry, wherein the step (ii-a) When the mass content of reinforcing fibers in the prepared slurry is C1, and the mass content of reinforcing fibers in the slurry at the start of the step (iv-a) is C2, C1 / C2 is 0.8 or more.
  • the reinforced fiber base material which is the range below 1.2. According to this method for producing a reinforcing fiber base, it can be applied to reinforcing fibers having a low affinity for the dispersion medium during slurry adjustment, retains the fiber dispersibility of the reinforcing fibers at the time of papermaking, and contains a resin or the like. When formed into a molded product, a reinforcing fiber substrate having excellent mechanical properties of the molded product can be obtained in a short time.
  • manufacturing method a the manufacturing method of this reinforcing fiber base material is referred to as manufacturing method a.
  • the mass content of reinforcing fibers in the slurry prepared in step (ii-a) is C1
  • the mass content of reinforcing fibers in the slurry at the start of step (iv-a) is C2.
  • C1 / C2 is set in the range of 0.8 to 1.2.
  • C1 / C2 is preferably in the range of 0.9 to 1.1.
  • C1 / C2 is less than 0.8, in order to increase C2, it is necessary to remove only the dispersion medium or to introduce only reinforcing fibers, which complicates the process and that the dispersion state of the slurry is insufficient. There is a risk. If C1 / C2 exceeds 1.2, the dispersion state of the slurry in step (iv-a) may be insufficient.
  • the time required for the step (ii-a) is preferably within 10 minutes, more preferably within 5 minutes, and even more preferably within 3 minutes. If it exceeds 10 minutes, depending on the type of reinforcing fiber, the reinforcing fiber dispersed in the slurry may reaggregate.
  • the lower limit of the time required for step (ii-a) is not particularly limited, but is usually 1 minute or longer.
  • the feed rate of the slurry in the step (iii-a), i.e., the slurry flow rate to the step (iv-a) is preferably at 0.001 m 3 / sec 0.1 m 3 / sec or less, 0.005 m and more preferably 3 / sec or more 0.05 m 3 / sec or less. If the flow rate is less than 0.001 m 3 / sec, the supply amount is small and the process takes time, and therefore the productivity may be deteriorated. If the flow rate exceeds 0.1 m 3 / sec, the flow rate of the slurry is high. Tends to be applied and the dispersion state may be insufficient.
  • nL 3 the fiber concentration parameter nL 3 in the range of (0 ⁇ ) nL 3 ⁇ L / D.
  • each parameter is as follows. n: Number of reinforcing fibers contained per unit volume of slurry L: Length of reinforcing fibers D: Diameter of reinforcing fibers.
  • FIG. 30 shows a schematic diagram of a slurry containing reinforcing fibers.
  • the fiber concentration parameter nL 3 is dilute when nL 3 ⁇ 1, and is semi-lean when 1 ⁇ nL 3 ⁇ L / D. The state is described.
  • the fiber concentration parameter nL 3 is less than L / D, the reinforcing fibers dispersed in the slurry are difficult to mechanically interfere with each other. Therefore, reaggregation of the reinforcing fibers is suppressed, and the dispersibility of the reinforcing fibers in the slurry is reduced. It is preferable to increase the value.
  • a step (ib) of introducing a reinforcing fiber bundle into a dispersion medium a step (ii-b) of preparing a slurry in which the reinforcing fibers constituting the reinforcing fiber bundle are dispersed in the dispersion medium, and the slurry
  • a step (iii-b) for removing the dispersion medium At least a step (iii-b) for removing the dispersion medium, and a step (iv-b) for obtaining a papermaking substrate containing reinforcing fibers by removing the dispersion medium from the slurry, wherein the steps (ib) to ( iv-b) is performed online, and the level H1 of the slurry liquid level in the step (ii-b) is higher than the height H2 of the slurry liquid level in the step (iv-b).
  • this method for producing a reinforcing fiber base it is not necessary to use a liquid feed pump as power for transporting the slurry in step (iii-b). Therefore, shearing of the slurry hardly occurs and the dispersed state can be maintained for a long time. Further, when the fiber aggregation is suppressed and a thermoplastic resin is blended into a molded product, a reinforced fiber base material having excellent mechanical properties of the molded product can be obtained in a short time.
  • manufacturing method b the manufacturing method of this reinforced fiber base material
  • the level H1 of the slurry level in the step (ii-b) is set higher than the level H2 of the level of the slurry in the step (iv-b).
  • H1 By setting H1 to a position higher than H2, it is not necessary to use a liquid feed pump to transport the slurry in step (iii-b). That is, as shown in FIG. 308, it is not necessary to install a liquid feed pump in the transport section.
  • a step (ic) of introducing a reinforcing fiber bundle into a dispersion medium, a step (ii-c) of preparing a slurry in which reinforcing fibers constituting the reinforcing fiber bundle are dispersed in the dispersion medium, and the slurry At least a step (iii-c) for transporting a paper and a step (iv-c) for obtaining a papermaking substrate containing reinforcing fibers by removing a dispersion medium from the slurry, wherein the step (ic) and the step (Ii-c) is carried out in a dispersion tank, the step (iv-c) is carried out in a papermaking tank, and the step (iii-c) is carried out in a transport section connecting the dispersion tank and the papermaking tank.
  • the slurry is transported in a laminar flow state or a transition zone state from laminar flow to turbulent flow.
  • the slurry is transported in a laminar flow state or a transition region from a laminar flow to a turbulent flow in a predetermined process in the manufacturing process, whereby the reinforcing fiber is regenerated. Aggregation is suppressed, and a fiber-reinforced base material excellent in dispersion can be obtained.
  • manufacturing method c the manufacturing method of this reinforcing fiber base material
  • the slurry is transported in a laminar flow state or a transition zone state from laminar flow to turbulent flow in the transport section in step (iii-c).
  • the laminar flow is a state in which the slurry flowing through the transport section flows parallel to the tube axis of the passage of the transport section.
  • Turbulent flow is a state in which the slurry flowing through the transport section can irregularly create various vortices in the transport section.
  • the transition region from laminar flow to turbulent flow is a state in which the slurry flowing through the transport section is mixed with a laminar flow state and a turbulent flow state in the transport section.
  • the transport section when the slurry is transported in a laminar flow state or a transition zone from laminar flow to turbulent flow, the slurry in which the reinforcing fibers obtained in the dispersion tank are dispersed is transported to the papermaking tank while maintaining the dispersion state of the reinforcing fibers.
  • re-aggregation of the reinforcing fibers is suppressed, and a fiber-reinforced base material excellent in dispersibility can be obtained.
  • the slurry is transported in a laminar flow state in the transport section.
  • the flow rate of the slurry in the transport section is preferably 0.01 m / s or more and 10 m / s or less. When the flow rate of the slurry is within this range, the flow rate distribution in the passage of the transport section is small, and the slurry in which the reinforcing fibers obtained in the dispersion tank are dispersed can be transported to the papermaking tank while maintaining the dispersion state of the reinforcing fibers. And can be preferable.
  • the cross-sectional shape of the transporting part is not particularly limited, but from the viewpoint of preventing re-aggregation of the reinforcing fibers in the step (iii-c) of transporting the slurry to the step (iv-c), it is circular or polygonal (3 to 10
  • the cross-sectional shape of the transport portion may be an open passage as shown in FIGS. 21 (c) and 21 (d).
  • FIGS. 21A to 21D are diagrams schematically showing the cross-sectional shape of the transport portion. From the viewpoint of contamination of the transport part, the cross-sectional shape of the transport part is more preferably circular or polygonal.
  • the cross-sectional shape of the transport part is preferably a constant cross-section so that no vortex is generated in the transport part passage from the viewpoint of preventing re-aggregation of the reinforcing fibers. Further, from the viewpoint of preventing re-aggregation of the reinforcing fibers, it may be a transport part that does not have a direction change point such as a curved part or a bent part in which a vortex is likely to occur in the pipe of the transport part.
  • the state of the slurry flow is expressed from the viewpoint of preventing re-aggregation of the reinforcing fibers.
  • the Reynolds number is preferably 4000 or less, more preferably 3000 or less, and further preferably 2000 or less.
  • the Reynolds number representing the flow state of the slurry is 500,000 or less from the viewpoint of preventing re-aggregation of the reinforcing fibers. Is preferably 300,000 or less, more preferably 100,000 or less.
  • the Reynolds number Re in the transport section is the dispersion specific gravity ⁇ (kg / m 3 ), the maximum length L (m) of the cross section of the transport section, the slurry flow velocity (m / s) in the transport section, and the viscosity ⁇ ( (Pa ⁇ s) was obtained from the following equation.
  • (Formula) Re ⁇ LU / ⁇ .
  • the method of transporting the slurry in a laminar flow state or a transition zone state from laminar flow to turbulent flow is not particularly limited, but for example, the potential energy is utilized by placing the dispersion tank higher than the papermaking tank.
  • Such a transport method that does not use a liquid feed pump is preferable because it can reduce generation of turbulent flow in the transport section, prevent re-aggregation of reinforcing fibers, and maintain dispersibility in the slurry.
  • the preform of the present invention is a preform containing, as a laminate unit, at least a prepreg in which a reinforcing fiber base material is impregnated with a thermoplastic resin,
  • the average value of the two-dimensional orientation angles formed by the reinforcing fiber single yarn (a) contained in the prepreg and the reinforcing fiber single yarn (b) intersecting the reinforcing fiber single yarn (a) is 10
  • the preform has a thickness h0 (mm) at 23 ° C. of 0.03 mm to 1 mm and a tensile strength ⁇ of 0.01 MPa or more.
  • the preform of the present invention is formed by laminating at least two or more molding materials, and is subjected to a molding process directly or through a secondary processing process, and is in a state before being processed into a molded product.
  • a cutting process for cutting the preform into a predetermined size and shape a bonding process for bonding the prepregs together to improve the handling of the preform, and air from the preform. Examples thereof include a defoaming step for extracting and a surface treatment step for activating the preform by plasma treatment or the like.
  • the preform of the present invention it is important to use at least a prepreg in which a reinforcing fiber base is impregnated with a resin from the viewpoint of the lightness and mechanical properties of the obtained molded product.
  • the definition used in the description of the prepreg can be applied to the two-dimensional orientation angle.
  • the average value of the two-dimensional orientation angle When the average value of the two-dimensional orientation angle is less than 10 degrees, there is no resistance to stress in the direction perpendicular to the longitudinal direction of the fiber, such as unidirectional reinforcing fiber, and the process of transferring and molding the preform at high speed May break the preform. If the average value of the two-dimensional orientation angle exceeds 80 degrees, the reinforcing fiber stretches in two directions, such as a two-way reinforcing fiber fabric, so that sufficient stretchability cannot be obtained in the molding process, resulting in molding failure or molding. The quality of the product may be impaired.
  • these unidirectional reinforcing fibers and bi-directional reinforcing fiber fabrics have a narrow gap between the reinforcing fibers, and the impregnation of the resin in the molding process may be insufficient, resulting in a decrease in mechanical properties.
  • the closer the prepreg is isotropic the less the labor in the laminating process can be performed at a high speed, and the material loss is small.
  • the two-dimensional orientation angle of the reinforcing fibers of the prepreg used in the present invention is preferably 20 degrees or more and 70 degrees or less, more preferably 30 degrees or more and 60 degrees or less, and the closer to the ideal angle of 45 degrees, the closer it is. preferable.
  • the thickness h0 (mm) at 23 ° C. of the prepreg is 0.03 mm or more and 1 mm or less. If h0 is less than 0.03 mm, the preform may be broken in the process of transferring or molding the preform at high speed. When h0 exceeds 1 mm, the fiber orientation in the thickness direction increases, and the preform undergoes thickness expansion during the molding process, and the quality of the molded product is impaired due to mold loss, or the transfer to the mold is hindered. There is.
  • the thickness h0 at 23 ° C. of the prepreg used in the present invention is preferably 0.05 mm or more and 0.8 mm or less, more preferably 0.1 mm or more and 0.6 mm or less.
  • the tensile strength ⁇ of the prepreg is 0.01 MPa or more, preferably 0.1 MPa or more, more preferably 1 MPa or more. Although there is no restriction
  • the reinforcing fiber and resin constituting the prepreg used in the preform of the present invention are not particularly limited, but from the viewpoint of obtaining a molded product satisfying the moldability and mechanical properties of a complex shape, the above-described prepreg (hereinafter referred to as prepreg ( A)) is preferred.
  • the prepreg (A) constitutes a plurality of laminated units, and at least one element of each element of the prepreg is substantially It is preferable that at least two different prepregs (A) are used for the preform.
  • each element of the prepreg will be described.
  • the volume ratio of reinforcing fibers As the volume ratio of the reinforcing fiber increases, the elastic modulus, strength, and dimensional stability of the obtained molded product are improved. On the other hand, the appearance quality of a molded product tends to decrease as the volume ratio of reinforcing fibers increases. Therefore, it is preferable to combine and laminate a prepreg having a high ratio of reinforcing fibers and a low prepreg from the viewpoint of achieving both lightweight and appearance quality of the molded product.
  • a prepreg having a higher ratio of reinforcing fibers is laminated on the outer side, and a prepreg having a lower reinforcing fiber is laminated on the inner side, or for the purpose of improving the appearance quality of the molded product.
  • a method of laminating a prepreg having a low ratio of reinforcing fibers is substantially different from the difference in the volume ratio of the reinforcing fibers between the prepreg having a high volume ratio of the reinforcing fibers and the prepreg having a low volume ratio of the reinforcing fibers is 5% by volume or more. is there.
  • the length of the reinforcing fiber The longer the reinforcing fiber, the better the elastic modulus, strength, and dimensional stability of the resulting molded product.
  • the longer the reinforcing fiber the lower the handleability of the preform and the appearance quality of the molded product. Therefore, it is preferable to combine and laminate a prepreg having a long fiber length of the reinforcing fiber and a prepreg having a short fiber length from the viewpoint of achieving both the handleability of the preform and the mechanical properties and appearance quality of the molded product.
  • a method of laminating a prepreg with a long fiber length of the reinforcing fiber on the outer side and a prepreg with a short fiber length on the inner side, or for the purpose of improving the appearance quality of the molded product For example, a method of laminating a prepreg having a short fiber length on the outside may be used.
  • the length of the reinforcing fiber is substantially different from the ratio of the fiber length of the reinforcing fiber having a long fiber length and the reinforcing fiber having a short fiber length (long reinforcing fiber length / short reinforcing fiber length). It is 1.5 or more.
  • the tensile modulus of the reinforcing fiber is the higher the tensile elastic modulus, the higher the elastic modulus of the obtained molded product.
  • the higher the tensile modulus the worse the processability of the fiber, which may result in a decrease in the handleability of the preform and a disadvantage in economic efficiency. Therefore, it is preferable to combine and laminate a prepreg having a high tensile modulus of the reinforcing fiber and a prepreg having a low tensile modulus from the viewpoint of achieving both the handleability of the preform and the rigidity of the molded product.
  • a method of laminating a prepreg having a high tensile elastic modulus such as carbon fiber on the outer side, and a method of laminating a prepreg having a low tensile elastic modulus such as glass fiber on the inner side examples include a method of laminating a prepreg using carbon fibers having a high tensile elastic modulus on the outer side and laminating a prepreg using carbon fibers having a lower tensile elastic modulus on the inner side.
  • the tensile elastic modulus of the reinforcing fiber is substantially different from the ratio of the tensile elastic modulus between the reinforcing fiber having a high tensile elastic modulus and the reinforcing fiber having a low tensile elastic modulus (tensile elastic modulus of the high reinforcing fiber / low reinforcement).
  • the tensile modulus of the fiber is 1.2 or more.
  • the basis weight of the prepreg Since the thickness of the prepreg tends to increase as the basis weight increases, the number of layers to be stacked and the labor to stack can be reduced. On the other hand, the greater the basis weight, the lower the followability to the thickness and shape of the molded product. Therefore, it is preferable to combine and laminate a prepreg having a large basis weight and a prepreg having a small basis weight from the viewpoint of achieving both the handleability and shape following property of the preform and the economy. For the same reason, the prepreg thickness is preferably laminated by combining a prepreg having a large thickness h0 and a prepreg having a small h0 at 23 ° C.
  • the basis weights are substantially different from each other when the basis weight ratio between the prepreg having a large basis weight and the prepreg having a small basis weight (the basis weight of the prepreg having a large basis weight / the prepreg basis weight having a small basis weight) is 1.2 or more.
  • the thickness h0 at 23 ° C. is substantially different from the ratio of h0 between a prepreg having a large h0 and a prepreg having a small h0 (a h0 of a prepreg having a large h0 and a small prepreg having a small h0) of 1.2 or more. That is.
  • the interlayer shear strength between the prepreg and the laminated unit adjacent to the prepreg is preferably 0 MPa or more and 50 MPa or less, more preferably 0 MPa or more and 40 MPa or less from the viewpoint of moldability.
  • the preform can be expanded and contracted in the molding step with interlaminar displacement, thereby making it possible to further enhance the shaping into the uneven shape.
  • the interlaminar shear strength of the preform can be measured by cutting a test piece from the preform and performing a three-point bending test based on ASTM-D-2344. In the case where the preform is partially bonded or sealed, a test piece can be prepared and measured so as to include the bonded portion and the sealed portion.
  • the prepreg (A) and other lamination units (B) are laminated for the purpose of satisfying the specifications of the obtained molded product.
  • a preferable aspect is demonstrated about another lamination
  • the laminate unit (B) is a base material containing reinforcing fibers from the viewpoint of further enhancing the reinforcing effect of the obtained molded product.
  • continuous reinforcing fibers are preferable from the viewpoint of increasing the impact strength of the molded product.
  • forms such as a unidirectional base material, a textile base material, and a mat base material can be used.
  • discontinuous reinforcing fibers are preferable from the viewpoint of improving the shape followability of the molded product. Examples thereof include a unidirectional substrate, that is, a substrate in which cut reinforcing fibers are arranged in one direction, a mat substrate, a sheet molding compound (SMC) substrate, and an extruded sheet substrate.
  • SMC sheet molding compound
  • the reinforcing fiber constituting the laminated unit (B) there is no particular limitation on the reinforcing fiber constituting the laminated unit (B), and it can be selected in the same manner as the reinforcing fiber constituting the prepreg.
  • PAN-based, pitch-based and rayon-based carbon fibers are preferably used from the viewpoints of high specific strength and specific rigidity and a light weight reduction effect.
  • the laminated unit (B) is preferably impregnated with a thermoplastic resin or a thermosetting resin for the purpose of maintaining the form of the reinforcing fiber from the viewpoint of improving the handleability of the preform.
  • limiting in particular as a thermoplastic resin and a thermosetting resin to be used It can select similarly to the thermoplastic resin and thermosetting resin which comprise the said prepreg.
  • limiting in particular also about the impregnation rate of resin For the purpose of maintaining the form of a reinforced fiber, 30% or more and 100% or less are preferable like the said prepreg.
  • the laminated unit (B) it is preferable to use a sheet-like base material from the viewpoint of securing a predetermined thickness in the molded product and from the viewpoint of uniformly maintaining the thickness of the molded product. Moreover, it is preferable to use a nonwoven fabric-like base material from the viewpoint of enhancing the stretchability of the preform and enhancing the followability to the concavo-convex shape. Furthermore, it is preferable to use a porous substrate from the viewpoint of increasing the lightness of the obtained molded product.
  • a material which comprises these base materials From the viewpoint of the workability to a base material, the thermoplastic resin which comprises the said prepreg is used more preferable.
  • thermoplastic resins may contain alloy components, blends, additives, and the like as necessary, similarly to the thermoplastic resin constituting the prepreg.
  • the bulk density of the sheet-like substrate, nonwoven fabric-like substrate, and porous substrate is preferably 0.01 or more and 1.0 or less, and 0.05 or more and 0 or less. .9 or less is more preferable, and 0.1 or more and 0.8 or less is particularly preferable.
  • the resin film As the resin, it is preferable to use a thermoplastic resin because the processability to the film and the adhesiveness to the preform are simple, and it is preferable to use a thermosetting resin because the surface smoothness of the primer, paint, gel coat and the like can be improved.
  • the flame retardancy of the film is preferably UL-94 standard VTM-1 or higher, more preferably VTM-0 or higher.
  • the method for ensuring the flame retardancy of the film is not particularly limited, and a method for forming a film with a resin having excellent flame retardancy such as PPS, PEI, PEEK, or phenol resin, a resin having excellent flame retardancy for a thermoplastic resin.
  • a method for blending a film to form a film and a method of mixing a flame retardant with a thermoplastic resin to form a film.
  • the laminate unit (B) it is preferable to use at least one selected from a decorative film, a transparent film, and a color film from the viewpoint of improving the design of the obtained molded product.
  • a decorative film a film having a design and / or a geometric pattern on the film surface is preferable.
  • the transparent film a film having a visible light transmittance of 80% or more and 100% or less is preferable.
  • a color tone film a film containing an organic and / or inorganic pigment or colorant is preferable.
  • a gloss film, a print film, an antistatic film, a light-shielding film, a heat-resistant film, or the like can be used as the lamination unit (B) as necessary.
  • other laminated units (B) include metal plates, metal foils, metal meshes, graphite sheets, heat dissipation sheets, honeycomb materials, chemical resistant films, gas barrier films, cold resistant films, antibacterial sheets, A film, a foam sheet, a rubber sheet, or the like may be used.
  • One or two or more of the other laminate units (B) may be used in combination as necessary.
  • a sandwich structure comprising a skin layer and a core layer can be exemplified as a preferred embodiment of the preform comprising the prepreg (A) and another laminated unit (B).
  • the skin layer is composed of the prepreg (A)
  • the obtained molded product exhibits isotropic properties and can follow the complicated shape.
  • a sheet-like substrate, a porous substrate, a honeycomb material, a mat substrate containing reinforcing fibers, or the like having a lower bulk density than the prepreg (A) is used as the core layer. Is more preferable.
  • the core layer is composed of the prepreg (A) because the thickness of the obtained molded product can be made more uniform and functionality can be easily secured.
  • the core layer is more preferable to use a unidirectional substrate, a woven fabric substrate, or the like including continuous reinforcing fibers as the core layer.
  • a flame retardant film, a decorative film, etc. from the viewpoint of imparting a function to the surface of the molded product.
  • thermosetting resin to perform RTM resin transfer molding
  • a method of setting a preform obtained by laminating a reinforcing fiber base material, a unidirectional base material, a woven base material, and a mat base material used in the prepreg of the invention in a mold, and impregnating the thermosetting resin to perform RTM molding it is possible to obtain a molded article having excellent mechanical properties and following a complicated shape, and the same effect as that of the present invention can be expected.
  • the preform of the present invention ensures the stable workability in the laminating process and the viewpoint of the handleability of the preform in the molding process, such as stable transfer to the mold, in the same manner as the description of the prepreg handling described above. Therefore, it is preferable to suppress the thickness expansion, and the thickness hpn (mm) at (n ⁇ 100) ° C.
  • n is hp0 ⁇ hpn ⁇ hp0 ⁇ (2n + 1) (hp0 (mm) is the thickness of the preform at 23 ° C., n Is at least one natural number selected from 1, 2, 3, and 4.), more preferably hp0 ⁇ hpn ⁇ hp0 ⁇ 2n, and particularly preferably hp0 ⁇ hpn ⁇ hp0 ⁇ (2n ⁇ 1). ).
  • the selection criterion of n is the same as that of the prepreg, and an appropriate natural number can be selected from the materials used.
  • the thickness hp0 (mm) of the preform of the present invention is not particularly limited, but is preferably 0.8 mm or more and 100 mm or less, more preferably 1.2 mm or more and 10 mm or less, particularly from the viewpoint of handleability during molding. Preferably they are 1.5 mm or more and 5 mm or less.
  • the number of prepregs used in the preform of the present invention and other lamination units is not particularly limited, but from the viewpoint of productivity and economical efficiency in the lamination process, 2 or more and 100 or less layers are preferable. Preferably they are 4 layers or more and 50 layers or less, Especially preferably, they are 8 layers or more and 30 layers or less. Increasing the number of layers increases the load in the layering process, but the degree of design freedom of the molded product of the present invention can be further increased within the preferred range.
  • the molded product obtained by molding the prepreg or preform of the present invention can be used for various parts and members, and in order to expand its usage, the molded product is lightweight, rigid and strong. It is preferable to be excellent. Furthermore, it is preferable that the coefficient of linear expansion, which is an index of dimensional stability, is also excellent.
  • specific rigidity which is one parameter indicating lightness, is expressed by Ec 1/3 ⁇ ⁇ ⁇ 1 when the bending elastic modulus of the molded product is Ec and the specific gravity is ⁇ . It is preferably 1.5 or more and 5 or less. In general, the specific rigidity of steel or aluminum is 1.5 or less, which is a region of specific rigidity superior to these metal materials. Therefore, the specific rigidity is preferably 1.5 or more. Further, it is more preferably 2.0 or more and 5 or less, more preferably 2.5 or more and 5 or less, exceeding 2.0, which is a general specific strength of magnesium. In order to facilitate the design of the molded product, it is preferable that the specific rigidity is isotropic.
  • the bending elastic modulus Ec is the maximum depending on the measurement direction.
  • EcMax ⁇ EcMin ⁇ 2. More preferably, EcMax ⁇ EcMin ⁇ 1.8, and even more preferably EcMax ⁇ EcMin ⁇ 1.5.
  • ⁇ c / ⁇ is preferably 100 or more and 500 or less, assuming that the molded product has a tensile strength ⁇ c and a specific gravity ⁇ . More preferably, it is 200 or more and 500 or less, More preferably, it is 300 or more and 500 or less.
  • the tensile strength ⁇ c is an index of isotropic tensile strength, and ⁇ cMax ⁇ ⁇ cMin in the relationship between the maximum tensile strength ⁇ cMax and the minimum tensile strength ⁇ cMin according to the measurement direction. X2. More preferably, ⁇ cMax ⁇ ⁇ cMin ⁇ 1.8, and even more preferably ⁇ cMax ⁇ ⁇ cMin ⁇ 1.5.
  • the linear expansion coefficient Cc of the molded body is 1 ⁇ 10 ⁇ 6 / K or more and 20 ⁇ 10 ⁇ 5 / K or less. It is preferable that More preferably 1 ⁇ 10 -6 / K or 15 ⁇ 10 -5 / K, more preferably not more than 1 ⁇ 10 -6 / K or 10 ⁇ 10 -5 / K.
  • the linear expansion coefficient Cc is used as an isotropic index of the linear expansion coefficient in the relationship between the maximum linear expansion coefficient CcMax and the minimum linear expansion coefficient CcMin according to the measurement direction.
  • CcMax ⁇ CcMin ⁇ 2. More preferably, CcMax ⁇ CcMin ⁇ 1.8, and further preferably CcMax ⁇ CcMin ⁇ 1.5.
  • the molded product obtained by molding the prepreg or preform of the present invention preferably has a maximum thickness of 2 mm or less in consideration of thinness and lightness. More preferably, it is 1.5 mm or less, More preferably, it is 1.2 mm or less.
  • the maximum thickness demonstrated here means the largest thickness among the thickness of each plane part which comprises a molded article. The maximum thickness is determined by measuring the thickest part in the flat surface part constituting the molded product.
  • the thickness of the molded product may vary from the degree of freedom in shape design.
  • the thickness change is more preferably continuously changed.
  • “continuously” means that the thickness changes in a tapered shape.
  • the molded product has a concavo-convex shape in order to enhance the effect of improving the rigidity by the shape or to have the design effect by the shape.
  • the height difference from the reference surface of the molded product to the uneven surface forming the uneven shape is preferably 3 mm or more.
  • a reference plane means a plane part with the largest area among the plane parts which form a molded article.
  • the concavo-convex surface forming the concavo-convex shape with the reference surface is a flat portion formed substantially parallel to the reference surface and separated from the reference surface by one or more flat portions.
  • substantially parallel means that the angle formed between the reference plane and the target plane portion is 20 ° or less.
  • the difference in height between the reference surface and the concavo-convex surface can be measured as it is, but when the reference surface and the concavo-convex surface form an angle, the reference surface and the concavo-convex surface Among the height differences from the point P on the surface, the one having the largest height difference is defined as the height difference between the reference surface and the uneven surface.
  • the difference in height from the reference surface to the uneven surface is more preferably 5 mm or more.
  • the flat portions are connected to each other by a bent portion, but the radius of curvature of the R portion in the bent portion is small to represent the degree of bending.
  • the radius of curvature of the R portion is preferably 5 mm or less.
  • the number of the bent portions is preferably 3 or more.
  • the bent shape of a simple molded product there is one bent portion, and in the U-shape or simple S-shape, there are two bent portions.
  • most of the molded products having complicated shapes such as members have a larger number of bent portions, and the number of bent portions is preferably 3 or more.
  • the molded product has an apex composed of three plane portions divided by bent portions from the viewpoint of expanding the range of application to various cases, cases and members.
  • the vertex composed of the three plane surfaces divided by the bent portion is a corner portion composed of the three plane surfaces.
  • ribs may be formed on the molded product from the viewpoint of increasing rigidity.
  • shape of a rib is not specifically limited, A linear rib, a T-shaped rib, a cross rib etc. are mentioned preferably.
  • the height of the rib is set according to the need of the molded product, but is preferably 10 mm or less from the viewpoint of the thinness of the molded product. More preferably, it is 5 mm or less.
  • the molded product may be a hollow body from the viewpoint of securing light weight.
  • a hollow molded body may be formed by joining several molded products according to the shape of the molded product.
  • a fiber-reinforced composite material having continuous reinforcing fibers and a resin is bonded.
  • a fiber reinforced composite material composed of a thermosetting resin such as epoxy resin or a thermoplastic resin such as polypropylene or polyamide.
  • the molded products obtained by molding the prepreg or preform of the present invention may be joined and integrated.
  • the other fiber mass content can be increased and integrated as a high strength.
  • molded bodies having complex shapes examples include complex-shaped injection molded bodies such as edges, frames, bosses, ribs, hinges, and mounts. Applications that can utilize the excellent mechanical properties of molded products can be expanded.
  • the method for integrating is not particularly limited, and examples thereof include an adhesive, heat welding, vibration welding, ultrasonic welding, and laser welding. Of these, thermal welding, vibration welding, ultrasonic welding, and laser welding are preferred because of the ease of the process and the short molding cycle.
  • the type of press molding can be selected according to the obtained molded product.
  • the press molding is a method of obtaining a molded body by applying deformation such as bending, shearing, compression, etc. to the laminated preform using a processing machine and a die, a tool or other molding jigs or auxiliary materials.
  • examples of the forming form include drawing, deep drawing, flange, call gate, edge curling, and stamping.
  • an autoclave method often used for producing a molded product member such as a large aircraft, or a mold having a relatively simple process.
  • the pressing method is preferred, but from the viewpoint of energy consumption in equipment and molding process, simplification of jigs and auxiliary materials used, molding pressure, and flexibility of temperature, a metal mold is used. It is more preferable to use a die press method in which molding is performed.
  • the prepreg or preform is placed in the mold in advance, pressed and heated together with the mold clamping, and then the mold is cooled while cooling the mold.
  • the prepreg or preform resin is a thermoplastic resin
  • the prepreg or preform is preliminarily heated above the melting temperature of the thermoplastic resin, Heat with a heating device exemplified by a heating plate, high-temperature oven, dielectric heating, etc., and place the thermoplastic resin in a molten and softened state on the lower mold of the mold, and then close the mold Stamping molding, which is a method of performing mold clamping and then pressurizing and cooling, can be employed.
  • the press molding method is not particularly limited, but stamping molding is preferred from the viewpoint of increasing the productivity by increasing the molding cycle.
  • the resin is preferably a thermoplastic resin so that the prepreg or preform can be shaped by the preheating.
  • the preheating temperature is preferably equal to or higher than the melting point or softening point of the thermoplastic resin.
  • the required time from the preheating of the prepreg or the preform to the mold to start pressing by press molding is preferably within 1 minute, more preferably within 30 seconds. More preferably, it is within 15 seconds.
  • the pressurizing force is preferably 0.1 MPa or more from the viewpoint of satisfactorily shaping the prepreg or preform. More preferably, it is 1 MPa or more, More preferably, it is 10 MPa or more.
  • the pressurizing force is a preferable range that it is 100 Mpa or less.
  • thermoplastic resin when used as the resin constituting the prepreg or preform, from the viewpoint of sufficiently cooling the preheated preform,
  • the surface temperature of the mold is preferably set below the melting point or softening point of the thermoplastic resin. Further, from the viewpoint of demolding and shortening the molding cycle, it is preferable to lower the mold temperature by 30 ° C. or more than the melting point or softening point of the thermoplastic resin. More preferably, it is lowered by 50 ° C. or more.
  • the charge rate represented by the following formula is set to be greater than 100% and placed in the mold.
  • Charge rate (%) 100 ⁇ (area of prepreg or preform) / (total mold cavity area).
  • the charge rate is 105% or more, more preferably 110% or more.
  • the upper limit of the charge rate is not particularly limited, but is preferably 150% or less from the viewpoint of effectively using materials and eliminating waste.
  • the molds are roughly classified into two types, one is a sealed mold used for casting, injection molding and the like, and the other is an open mold used for press molding and forging.
  • the hermetically sealed mold is a mold mainly formed by pouring a material into the interior, and the open mold is a mold formed mainly by deforming without flowing the material. Pre-preg without undue flow of the base material during molding, while suppressing the fiber orientation of the prepreg or preform during molding or suppressing the occurrence of anisotropy in the fiber orientation due to flow during molding.
  • An open mold is also preferable from the viewpoint of eliminating decomposition gas and mixed air from the mold during molding.
  • the mold is preferably a mold having at least one selected from a punching mechanism, a punching mechanism, and a tapping mechanism.
  • the molded product obtained by press molding may be press-molded with a prepreg or preform charge rate larger than 100% of the total cavity area of the mold. May have a portion (end). Therefore, in order to finish the shape of the molded product after molding, a step of removing this end portion may be necessary.
  • the purpose is to provide gas and heat exchange vents and exhaust ports, gripping parts of molded products, screw holes for processing, holes for bolt connection, and design. It is assumed to be processed into a molded product having a hole portion used for the hole or punching pattern.
  • Examples of uses of the prepreg or the molded article obtained by using the preform of the present invention include, for example, electrical equipment parts, electronic equipment parts, civil engineering parts, building material parts, automotive structural parts, motorcycle structural parts, Examples include automotive parts, motorcycle parts, and aircraft parts. From the viewpoint of mechanical properties, it is preferably used for electrical and electronic equipment casings, civil engineering, building material panels, automotive structural parts, and aircraft parts. In particular, it is preferably used for structural parts for automobiles and motorcycles from the viewpoint of mechanical properties and isotropy.
  • orientation angle an angle of 0 ° or more and 90 ° or less (acute angle side) among two angles formed by two reinforcing fiber single yarns intersecting each other was adopted.
  • the same measurement was performed by selecting a total of five reinforcing fiber single yarns, and the average value was taken as the two-dimensional orientation angle.
  • Air volume of reinforcing fiber base (Fragile method) Using the reinforcing fiber base material obtained in the same manner as in (2), the air amount measured by the Frazier method based on ASTM D737 (2008 edition) was measured.
  • the prepreg or preform was allowed to stand at the temperature to be measured in air for 10 minutes, and then cooled to room temperature.
  • two points X and Y are determined so that the linear distance XY is the longest, and the thickness is measured at each dividing point excluding both ends XY when the straight line XY is divided into 10 equal parts, and the average value thereof
  • the thickness of the prepreg or preform was set to hn, hpn.
  • Resin impregnation percentage of prepreg% The thickness direction cross section of the prepreg was observed and measured as follows. The prepreg was embedded with an epoxy resin, and the surface corresponding to the cross-sectional end of the prepreg was polished. Using this ultra-deep color 3D shape measuring microscope VK-9500 (controller part) / VK-9510 (measuring part) (manufactured by Keyence Corporation), an enlargement magnification of 400 ⁇ Taken with In the photographed image, the area of the part impregnated with the resin and the area of the part not impregnated with the resin were obtained, and the resin impregnation rate was calculated by the following formula.
  • the specific strength of the molded product was calculated by the following formula.
  • the specific strength of the molded product ⁇ c / ⁇ .
  • AAA Specific rigidity of 3.00 or more
  • A Specific rigidity 2.50 or more and less than 3.00
  • A Specific rigidity 2.20 or more and less than 2.50
  • B Specific rigidity 2.00 or more and less than 2.20
  • C Specific rigidity 1.50 or more and less than 2.00
  • D Specific rigidity less than 1.50.
  • Carbon fiber 1 Spinning, firing treatment, and surface oxidation treatment were carried out from a copolymer containing polyacrylonitrile as a main component to obtain continuous carbon fibers having a total number of 12,000 single yarns.
  • the characteristics of this continuous carbon fiber were as follows. ⁇ Single fiber diameter: 7 ⁇ m -Mass per unit length: 1.6 g / m ⁇ Specific gravity: 1.8 ⁇ Tensile strength: 4600 MPa -Tensile modulus: 220 GPa.
  • Carbon fiber 2 Spinning, firing treatment, and surface oxidation treatment were carried out from a copolymer containing polyacrylonitrile as a main component to obtain continuous carbon fibers having a total number of 12,000 single yarns.
  • the characteristics of this continuous carbon fiber were as follows. ⁇ Single fiber diameter: 7 ⁇ m -Mass per unit length: 1.6 g / m ⁇ Specific gravity: 1.8 ⁇ Tensile strength: 4100 MPa -Tensile modulus: 420 GPa.
  • Carbon fiber sheet molding compound (Material 11) Carbon fiber sheet molding compound (SMC) The trading card T700S-12K-50C of Material 3 was cut to a length of 25 mm, and the cut carbon fiber bundles were dispersed so that the carbon fiber bundles were distributed in random directions, thereby producing a carbon fiber bundle random orientation base material. 60 parts by mass of the carbon fiber bundle random orientation base material was impregnated with 40 parts by mass of the following vinyl ester resin for carbon fiber sheet molding compound to prepare a carbon fiber sheet molding compound base material (SMC). Thickness 2mm. -Vinyl ester resin: Lipoxy H600 manufactured by Showa Polymer Co., Ltd.
  • Carbon fiber prepreg with slits Toray Corp.'s TORAYCA prepreg P3052S-17 is inserted regularly into the trading card as shown in FIG. A notched carbon fiber prepreg having a notch was obtained.
  • the cutting direction is the fiber orthogonal direction 13
  • the cutting length 17 is 5.1 mm
  • the interval 18 (fiber length) is 30 mm. 19 in which the cuts in adjacent rows cut into each other is 0.1 mm.
  • Epoxy resin 1 As epoxy resin, 40 parts by mass of Epototo YD128 (manufactured by Toto Kasei Co., Ltd.), 20 parts by mass of Epototo YD128G (manufactured by Toto Kasei Co., Ltd.), 20 parts by mass of Epicoat 1001 (manufactured by Japan Epoxy Resin Co., Ltd.), 20 parts by mass of Epicoat 1009 (manufactured by Japan Epoxy Resin Co., Ltd.), 4 parts by mass of DICY7 (manufactured by Japan Epoxy Resin Co., Ltd., dicyandiamide) as a curing agent, DCMU99 (manufactured by Hodogaya Chemical Co., Ltd., 3- (3,4) -Dichlorophenyl) -1,1-dimethylurea) 3 parts by weight, and other parts containing 5 parts by weight of Vinylec K (produced by Chisso Corporation, polyvinyl formal).
  • Epoxy resin 2 As epoxy resin, 70 parts by mass of Epototo YD128G (manufactured by Toto Kasei Co., Ltd.), 30 parts by mass of Epicoat 1009 (manufactured by Japan Epoxy Resin Co., Ltd.) and DICY7 (manufactured by Japan Epoxy Resin Co., Ltd., dicyandiamide) as a curing agent 4 parts by mass, DCMU99 (manufactured by Hodogaya Chemical Co., Ltd., 3 parts by mass of 3- (3,4-dichlorophenyl) -1,1-dimethylurea), and vinylec K (manufactured by Chisso Corporation, polyvinyl formal) as other additives A blend of 5 parts by weight. A viscosity of 600 Pa ⁇ s when the glass transition temperature of the uncured resin is 60 ° C.
  • Nylon 6 resin chopped fiber Nylon 6 resin fiber (single fiber fineness 3 dtex) obtained by spinning CM1007 (nylon 6 resin) manufactured by Toray Industries, Inc. was cut to 5.0 mm with a cartridge cutter, and nylon Six resin chopped fibers were obtained.
  • Example 1 The carbon fiber 1 obtained with the material 1 was cut into 6 mm with a cartridge cutter to obtain a chopped carbon fiber.
  • a dispersion liquid having a concentration of 0.1% by mass composed of water and a surfactant (manufactured by Nacalai Tex Co., Ltd., polyoxyethylene lauryl ether (trade name)) was prepared.
  • a carbon fiber substrate was produced using the reinforcing fiber substrate (papermaking substrate) production apparatus of FIG.
  • the manufacturing apparatus includes a dispersion tank 21, a papermaking tank 22, and a conveyor 32.
  • the dispersion tank 21 is a cylindrical container having a diameter of 1000 mm, and includes a linear transport section (an inclination angle of 30 °) with an open cock at the lower part of the container.
  • the transport section connects the dispersion tank and the papermaking tank.
  • a stirrer is attached to the opening on the upper surface of the dispersion tank, and chopped carbon fiber and dispersion liquid (dispersion medium) can be input from the opening.
  • the papermaking tank is provided with a mesh conveyor having a papermaking surface having a width of 500 mm at the bottom.
  • the conveyor 32 is arranged following the mesh conveyor 31 and conveys the carbon fiber substrate 30. Papermaking was performed with a carbon fiber concentration in the dispersion of 0.05% by mass.
  • the paper-made carbon fiber substrate was dried in a drying furnace at 200 ° C. for 30 minutes.
  • the resulting width of the carbon fiber base material 500 mm, length 500 mm, and the basis weight was 50 g / m 2.
  • the properties of the reinforcing fiber base are shown in Table 1.
  • a preform (A) in which 8 prepregs (1) were laminated was prepared and preheated to 280 ° C. in a nitrogen atmosphere in a far infrared heating furnace.
  • the preform (A) is placed in a stamping mold having a cavity surface temperature of 120 ° C. and a B5 size L-shaped cavity as shown in FIG. 4 having a thickness of 1.1 mm (charge rate 110%).
  • the mold was closed, pressurized at a molding pressure of 30 MPa, and held for 2 minutes. Thereafter, the mold was opened and removed to obtain an L-shaped molded product.
  • the preform (A) was well shaped according to the shape of the mold, and a molded product with good shape quality was obtained. The characteristics of the molded product are shown in Tables 3 and 10.
  • Example 2 A prepreg (2) was produced in the same manner as in Example 1 except that the nylon 6 resin film impregnated in the carbon fiber substrate was adjusted so that the fiber mass content was 52%. The properties of the prepreg are shown in Table 2.
  • An L-shaped molded product was produced in the same manner as in Example 1 except that a preform in which 17 prepregs (2) were laminated was produced. The preform was well shaped according to the shape of the mold, and a molded product with good shape quality was obtained. Table 3 shows the characteristics of the molded product.
  • Example 3 A carbon fiber substrate was produced in the same manner as in Example 1 except that the flow rate of the dispersion during papermaking and the speed of the mesh conveyor were adjusted so that the basis weight of the carbon fiber substrate was 70 g / m 2 .
  • the properties of the reinforcing fiber base are shown in Table 1.
  • the nylon 6 resin film to be impregnated into the carbon fiber base material is adjusted so that the fiber mass content is 65%, and the pressure of 5 MPa is applied to the carbon fiber base material at a temperature of 270 ° C. for 3 minutes.
  • An impregnated prepreg (3) was produced. Due to the high fiber mass content, impregnation of the resin was somewhat difficult.
  • the properties of the prepreg are shown in Table 2.
  • An L-shaped molded product was produced in the same manner as in Example 1 except that a preform in which 17 prepregs (3) were laminated was produced.
  • the preform was well shaped according to the shape of the mold, and a molded product with good shape quality was obtained.
  • Table 3 shows the characteristics of the molded product.
  • Example 4 A prepreg (4) was produced in the same manner as in Example 1 except that the nylon 6 resin film impregnated into the carbon fiber substrate was adjusted so that the fiber mass content was 15%. The properties of the prepreg are shown in Table 2.
  • An L-shaped molded product was produced in the same manner as in Example 1 except that a preform in which four prepregs (4) were laminated was produced. The preform was well shaped according to the shape of the mold, and a molded product with good shape quality was obtained. Table 3 shows the characteristics of the molded product.
  • Example 5 A prepreg (5) was produced in the same manner as in Example 1, except that the nylon 6 resin film impregnated in the carbon fiber substrate was adjusted so that the fiber mass content was 8%.
  • the properties of the prepreg are shown in Table 2.
  • An L-shaped molded product was produced in the same manner as in Example 1 except that a preform in which two prepregs (5) were laminated was produced. The preform was well shaped according to the shape of the mold, and a molded product with good shape quality was obtained. Table 3 shows the characteristics of the molded product.
  • Example 6 A carbon fiber substrate was produced in the same manner as in Example 1 except that the speed of the mesh conveyor during papermaking was adjusted to a speed four times the flow rate of the dispersion.
  • the properties of the reinforcing fiber base are shown in Table 1.
  • a prepreg (6) impregnated with nylon 6 resin was produced in the same manner as in Example 1.
  • the properties of the prepreg are shown in Table 2.
  • An L-shaped molded product was produced in the same manner as in Example 1 except that the prepreg (6) was used. The preform was well shaped according to the shape of the mold, and a molded product with good shape quality was obtained. Table 3 shows the characteristics of the molded product.
  • Example 7 A carbon fiber substrate was produced in the same manner as in Example 1 except that the flow rate of the dispersion during papermaking and the speed of the mesh conveyor were adjusted so that the basis weight of the carbon fiber substrate was 20 g / m 2 .
  • the properties of the reinforcing fiber base are shown in Table 1.
  • the nylon 6 resin film impregnated in the carbon fiber base is adjusted so that the fiber mass content is 20%, and the nylon 6 resin is applied to the carbon fiber base over a period of 2 minutes at a temperature of 250 ° C. and a pressure of 5 MPa.
  • An impregnated prepreg (7) was produced.
  • the properties of the prepreg are shown in Table 2.
  • a preform is prepared by laminating eight prepregs (7), and a stamping mold having the same shape (B5 size L-shaped box shape) as shown in FIG. 4 and a cavity having a thickness of 0.4 mm is used. Except that, an L-shaped molded product was produced in the same manner as in Example 1. The preform was well shaped according to the shape of the mold, and a molded product with good shape quality was obtained. Table 3 shows the characteristics of the molded product.
  • Example 8 A carbon fiber substrate was produced in the same manner as in Example 1 except that the dispersion flow rate during paper making and the mesh conveyor speed were adjusted so that the basis weight of the carbon fiber substrate was 10 g / m 2 .
  • the properties of the reinforcing fiber base are shown in Table 4.
  • the nylon 6 resin film impregnated in the carbon fiber base is adjusted so that the fiber mass content is 20%, and the nylon 6 resin is applied to the carbon fiber base over a period of 2 minutes at a temperature of 250 ° C. and a pressure of 5 MPa.
  • An impregnated prepreg (8) was produced. Table 5 shows the characteristics of the prepreg.
  • An L-shaped molded product was produced in the same manner as in Example 7 except that a preform in which 16 prepregs (8) were laminated was produced. Since the prepreg (8) was extremely thin, the number of laminated layers increased and it took a long time to laminate, but the preform was shaped well according to the shape of the mold, and a molded product with good shape quality was obtained. . Table 6 shows the characteristics of the molded product.
  • Example 9 A carbon fiber substrate was produced in the same manner as in Example 1 except that the flow rate of the dispersion during papermaking and the speed of the mesh conveyor were adjusted so that the basis weight of the carbon fiber substrate was 200 g / m 2 .
  • the properties of the reinforcing fiber base are shown in Table 4.
  • the nylon 6 resin film impregnated in the carbon fiber base is adjusted so that the fiber mass content is 20%, and the nylon 6 resin is applied to the carbon fiber base over a period of 2 minutes at a temperature of 250 ° C. and a pressure of 5 MPa.
  • An impregnated prepreg (9) was produced. Table 5 shows the characteristics of the prepreg.
  • An L-shaped molded product was produced in the same manner as in Example 1 except that a preform in which two prepregs (9) were laminated was produced.
  • the preform was well shaped according to the shape of the mold, and a molded product with good shape quality was obtained.
  • Table 6 shows the characteristics of the molded product.
  • Example 10 A carbon fiber substrate was prepared in the same manner as in Example 1 except that chopped carbon fiber in which 6 mm long chopped carbon fiber and 3 mm long chopped carbon fiber were mixed at a mass ratio of 1: 1 was used at the time of papermaking.
  • the properties of the reinforcing fiber base are shown in Table 4.
  • a prepreg (10) impregnated with nylon 6 resin was produced in the same manner as in Example 1.
  • Table 5 shows the characteristics of the prepreg.
  • An L-shaped molded product was produced in the same manner as in Example 1 except that the prepreg (10) was used. The preform was well shaped according to the shape of the mold, and a molded product with good shape quality was obtained.
  • Table 6 shows the characteristics of the molded product.
  • Example 11 A carbon fiber substrate was prepared in the same manner as in Example 1 except that chopped carbon fiber in which 6 mm long chopped carbon fiber 2 and 3 mm long chopped carbon fiber 1 were mixed at a mass ratio of 3: 1 was used during papermaking. did.
  • the properties of the reinforcing fiber base are shown in Table 4.
  • a prepreg (11) impregnated with nylon 6 resin was produced in the same manner as in Example 1.
  • Table 5 shows the characteristics of the prepreg.
  • An L-shaped box-shaped molded product was produced in the same manner as in Example 1 except that the prepreg (11) was used. The preform was well shaped according to the shape of the mold, and a molded product with good shape quality was obtained.
  • Table 6 shows the characteristics of the molded product.
  • Example 12 A prepreg (12) was produced in the same manner as in Example 1, except that when the carbon fiber substrate was impregnated with the nylon 6 resin film, the pressure and time were adjusted so that the resin impregnation rate was 20%.
  • Table 5 shows the characteristics of the prepreg. L-shaped box-shaped molded product in the same manner as in Example 1 except that the prepreg (12) was used, the mold cavity surface temperature was set to 270 ° C., the molding pressure was increased to 35 MPa, and the pressure was maintained for 10 minutes. Was made. Since the resin impregnation rate of the preform was low, it was necessary to increase the molding temperature, increase the pressure, and lengthen the time, but the molded product was shaped well according to the shape of the mold. A molded product with good quality was obtained. Table 6 shows the characteristics of the molded product.
  • Example 13 Using the carbon fiber base material of Example 1 and two films of the same thickness of A900 (PPS resin) manufactured by Toray Industries, Inc., the film was laminated to be a film / carbon fiber base material / film, 300 A prepreg (13) in which a carbon fiber base material was impregnated with a PPS resin was produced at a temperature of 5 ° C. under a pressure of 5 MPa for 2 minutes. Table 5 shows the characteristics of the prepreg. An L-shaped molded product was produced in the same manner as in Example 1 except that the prepreg (13) was used and the cavity surface temperature of the mold was changed to 300 ° C. The molded product was well shaped according to the shape of the mold, and a molded product with good shape quality was obtained. Table 6 shows the characteristics of the molded product.
  • Example 14 Carbon fiber base material of Example 1, unmodified polypropylene resin (“Prime Polypro” J105G manufactured by Prime Polymer Co., Ltd.) 50% by mass and acid-modified polypropylene resin (“Admer” QB510 manufactured by Mitsui Chemicals, Inc.) Two films having the same thickness made from a resin kneaded with 50% by mass are laminated so as to be film / carbon fiber substrate / film, and a pressure of 5 MPa is applied at a temperature of 230 ° C. for 2 minutes. A prepreg (14) in which a carbon fiber base material was impregnated with PP resin was produced. Table 5 shows the characteristics of the prepreg.
  • An L-shaped molded product was produced in the same manner as in Example 1 except that the prepreg (14) was used and the cavity surface temperature of the mold was changed to 230 ° C.
  • the molded product was well shaped according to the shape of the mold, and a molded product with good shape quality was obtained. Table 6 shows the characteristics of the molded product.
  • the mold cavity surface temperature was set to 150 ° C.
  • the molding pressure was set to 10 MPa
  • the molding time was set to 30 minutes
  • the mold was removed to produce an L-shaped box-shaped molded product.
  • the molded product was well shaped according to the shape of the mold, and a molded product with good shape quality was obtained. Table 9 shows the characteristics of the molded product.
  • Example 15 Nylon 6 resin obtained by blending and kneading 10 parts by mass of NOBARED 120 (average particle size 25 ⁇ m, phosphorus content 85%) manufactured by Rin Kagaku Kogyo with 100 parts by mass of CM1007 (nylon 6 resin) manufactured by Toray Industries, Inc. A film using was prepared.
  • a prepreg (17) was prepared in the same manner as in Example 1 except that the carbon fiber substrate of Example 1 and the two films having the same thickness were used to laminate the film / carbon fiber substrate / film. ) was produced.
  • Table 8 shows the characteristics of the prepreg.
  • An L-shaped box-shaped molded product was produced in the same manner as in Example 1 except that the prepreg (17) was used.
  • the preform was well shaped according to the shape of the mold, and a molded product with good shape quality was obtained. It became a molded product to which flame retardancy was imparted by blending red phosphorus. The flame retardancy was UL94V-0. Table 9 shows the characteristics of the molded product.
  • Example 16 A prepreg (18) was produced in the same manner as in Example 1 except that the size of the prepreg was 1000 mm ⁇ 500 mm.
  • Table 8 shows the characteristics of the prepreg.
  • a preform formed by laminating 24 prepregs (18) was produced, and a molded product of an automobile bonnet was produced in the same manner as in Example 1 except that a mold for an automobile bonnet molded product shown in FIG. 8 was used. did. Although it was a large-sized preform, it could be handled without problems in lamination, transportation, etc., and was shaped well according to the shape of the mold, and a molded product with good shape quality was obtained.
  • Table 9 shows the characteristics of the molded product.
  • Example 17 A glass fiber substrate was obtained in the same manner as in Example 1 except that the chopped glass fiber obtained by cutting the glass fiber obtained from the material 4 into 6 mm with a cartridge cutter was used instead of the chopped carbon fiber.
  • the basis weight of the glass fiber substrate was 100 g / m 2 .
  • Table 7 shows the characteristics of the glass fiber substrate. Except having used the said glass fiber base material, it carried out similarly to Example 1, and produced the prepreg (19) which impregnated nylon 6 resin to the glass fiber base material.
  • Table 8 shows the characteristics of the prepreg.
  • An L-shaped molded product was produced in the same manner as in Example 1 except that a preform in which six prepregs (19) were laminated was produced. The preform was well shaped according to the shape of the mold, and a molded product with good shape quality was obtained.
  • Table 9 shows the characteristics of the molded product.
  • Example 18 A prepreg (20) was produced in the same manner as in Example 2, except that the chopped carbon fiber was a chopped carbon fiber obtained by cutting the carbon fiber 2 obtained from the material 2 into 6 mm with a cartridge cutter. Table 8 shows the characteristics of the prepreg.
  • An L-shaped molded product was produced in the same manner as in Example 1 except that a preform in which 17 prepregs (20) were laminated was produced. The preform was well shaped according to the shape of the mold, and a molded product with good shape quality was obtained. Table 9 shows the characteristics of the molded product.
  • Example 19 A prepreg (21) was produced in the same manner as in Example 14 except that the PP resin film impregnated in the carbon fiber substrate was adjusted so that the fiber mass content was 40%. Table 8 shows the characteristics of the prepreg.
  • An L-shaped molded product was produced in the same manner as in Example 14 except that a preform in which 17 prepregs (21) were laminated was produced. The preform was well shaped according to the shape of the mold, and a molded product with good shape quality was obtained. Table 9 shows the characteristics of the molded product.
  • Example 20 After preparing the laminated preform (A) by laminating eight prepregs (1), the preform (A) was pressurized at a temperature of 250 ° C. for 1 minute at a pressure of 5 MPa, and the prepregs (1) were A bonded preform (B) was produced. The properties of the preform are shown in Table 10. Using this preform (B), a B5-sized L-shaped molded product was produced in the same manner as in the molding of Example 1. Since the prepregs (1) are bonded to each other, the shape of the L-shaped box-shaped molded product is slightly difficult to form, such as the thickness of the standing wall is slightly reduced and the surface is slightly faded. The molded product was usable. Table 10 shows the characteristics of the molded product.
  • Example 21 A total of 8 prepregs (1) and prepregs (2) were laminated as [(2) / (1) ⁇ 6 / (2)] to prepare a laminated preform (C).
  • the properties of the preform are shown in Table 10.
  • An L-shaped molded product was produced in the same manner as in Example 1 except that this preform was used.
  • the molded product was well shaped according to the shape of the mold, and a molded product with good shape quality was obtained.
  • Table 10 shows the characteristics of the molded product.
  • Example 22 A total of 8 prepregs (1) and prepregs (20) were laminated as [(20) / (1) ⁇ 6 / (20)] to prepare a laminated preform (D).
  • the properties of the preform are shown in Table 10.
  • An L-shaped molded product was produced in the same manner as in Example 1 except that this preform was used.
  • the molded product was well shaped according to the shape of the mold, and a molded product with good shape quality was obtained.
  • Table 10 shows the characteristics of the molded product.
  • Example 23 A total of six prepregs (1) and prepregs (19) were laminated as [(1) / (19) ⁇ 4 / (1)] to prepare a laminated preform (E).
  • the properties of the preform are shown in Table 10.
  • An L-shaped molded product was produced in the same manner as in Example 1 except that this preform was used.
  • the molded product was well shaped according to the shape of the mold, and a molded product with good shape quality was obtained.
  • Table 10 shows the characteristics of the molded product.
  • Example 24 A total of 8 prepregs (1) and the trecap prepregs of the material 10 were laminated as [Tracaprepreg / (1) ⁇ 7 sheets] to produce a laminated preform (F).
  • the properties of the preform are shown in Table 10.
  • the trecap prepreg is arranged so as to reinforce the top surface portion of the molded product of FIG.
  • An L-shaped molded product was produced in the same manner as in Example 1 except that this preform was used.
  • the molded product was well shaped according to the shape of the mold, and a molded product with good shape quality was obtained.
  • Table 10 shows the characteristics of the molded product.
  • Example 25 A total of three prepregs (1) and GMT of the material 5 were laminated as [(1) / GMT / (1)] to produce a laminated preform (G).
  • the properties of the preform are shown in Table 11.
  • the charge rate of the base material was set to 110% for the prepreg (1) and 50% for GMT.
  • An L-shaped molded product was produced in the same manner as in Example 1 except that this preform was used. The molded product was well shaped according to the shape of the mold, and a molded product with good shape quality was obtained. Table 11 shows the characteristics of the molded product.
  • Example 26 A total of three prepregs (21) and the PP resin sheet of material 6 were laminated as in [(21) / PP resin sheet / (21)] to prepare a laminated preform (H).
  • the properties of the preform are shown in Table 11.
  • An L-shaped molded product was produced in the same manner as in Example 1 except that this preform was used.
  • the molded product was well shaped according to the shape of the mold, and a molded product with good shape quality was obtained.
  • Table 11 shows the characteristics of the molded product.
  • Example 27 A total of three prepregs (21) and the foamed PP resin sheet of material 7 were laminated as in [(21) / foamed PP resin sheet / (21)] to produce a laminated preform (I).
  • the properties of the preform are shown in Table 11.
  • An L-shaped molded product was produced in the same manner as in Example 1 except that this preform was used.
  • the molded product was well shaped according to the shape of the mold, and a molded product with good shape quality was obtained.
  • Table 11 shows the characteristics of the molded product.
  • Example 28 A total of nine prepregs (1) and a transparent nylon resin film of material 8 were laminated as in [transparent nylon resin sheet / (1) ⁇ 8] to produce a laminated preform (J).
  • the properties of the preform are shown in Table 11.
  • An L-shaped molded product was produced in the same manner as in Example 1 except that this preform was used.
  • the molded product was well shaped according to the shape of the mold, and a molded product with good shape quality was obtained.
  • the surface is glossy and transparent because of the transparent nylon resin sheet.
  • Table 11 shows the characteristics of the molded product.
  • Example 29 A total of nine prepregs (1) and the nylon resin flame retardant film of material 9 were laminated as in [Nylon resin flame retardant sheet / (1) ⁇ 8] to prepare a laminated preform (K).
  • the properties of the preform are shown in Table 11.
  • An L-shaped molded product was produced in the same manner as in Example 1 except that this preform was used.
  • the molded product was well shaped according to the shape of the mold, and a molded product with good shape quality was obtained.
  • Table 11 shows the characteristics of the molded product.
  • the flame height of the burner was adjusted to 19 mm, and the surface of the molded nylon resin flame retardant sheet was exposed to flame. After leaving, the flame was extinguished.
  • Example 30 An L-shaped box is formed in the same manner as in Example 1 except that a stamping mold having a B5 size L-shaped box-shaped cavity is a mold having a punching mechanism for punching the remaining portion of the molded product. Molded products were produced. By simultaneously forming and punching, the process could be shortened.
  • Example 1 A carbon fiber substrate was produced in the same manner as in Example 1 except that the dispersion flow rate during paper making and the mesh conveyor speed were adjusted so that the basis weight of the carbon fiber substrate was 410 g / m 2 .
  • Table 12 shows the characteristics of the carbon fiber substrate.
  • the nylon 6 resin film impregnated in the carbon fiber base is adjusted so that the fiber mass content is 20%, and the nylon 6 resin is applied to the carbon fiber base over a period of 2 minutes at a temperature of 250 ° C. and a pressure of 5 MPa.
  • An impregnated prepreg (22) was produced.
  • Table 13 shows the characteristics of the prepreg.
  • An L-shaped molded product was produced in the same manner as in Example 1 except that one prepreg (22) was used as a preform. The preform was difficult to shape according to the shape of the mold, and the standing wall portion did not have a uniform wall thickness and was partially torn.
  • Table 15 shows the characteristics of the molded product.
  • Example 2 Comparative Example 2
  • Example 1 except that the chopped carbon fiber used in Example 1 and the nylon 6 resin chopped fiber of material 15 were added to the dispersion at a time of papermaking in such a formulation that the fiber mass content was 20%.
  • Papermaking was performed in the same manner as above to obtain a prepreg (23) in which carbon fiber and nylon 6 fiber were mixed.
  • Table 13 shows the characteristics of the prepreg.
  • the basis weight of only the carbon fiber was 50 g / m 2 .
  • an attempt was made to form an automobile bonnet in the same manner as in Example 16, but because the tensile strength of the prepreg (23) was low, 24 prepregs (23) were laminated.
  • the prepreg (23) was torn by transportation, lamination, and movement when producing the preform, and could not be molded.
  • Example 3 An L-shaped box-shaped molded article was produced in the same manner as in Example 1 except that one GMT (prepreg (24)) of material 5 was used and arranged at a charge rate of 50%. Since the thickness of GMT was large, it was not possible to mold the molded article to a thickness of 1.1 mm, and a molded article having a good target thickness could not be obtained. Table 14 shows the characteristics of the molded product.
  • Example 4 An L-shaped box-shaped molded product was produced in the same manner as in Example 13 except that one CF-SMC (prepreg (25)) of material 11 was used and placed at a charge rate of 50%. The molded product was shaped well according to the shape of the mold, and a molded product with good shape quality was obtained, but because the carbon fibers are bundled and dispersed, the specific strength is low and isotropic It was also inferior result. Table 14 shows the characteristics of the molded product.
  • Example 5 A [0/45/90 / -45] s pseudo-isotropic laminated preform was produced using eight cut carbon fiber prepregs (prepreg (26)) of material 12, and the same as in Example 13. A box-shaped molded product was produced. The molded product was shaped well according to the shape of the mold, and a molded product with good shape quality was obtained, but the carbon fiber was dispersed in bundles, resulting in inferior isotropy. It was. Table 14 shows the characteristics of the molded product.
  • Example 1 an isotropic prepreg having good fiber length distribution, thickness, and tensile strength of the reinforcing fiber of the prepreg and having a two-dimensional orientation angle of the fiber of 10 ° to 80 ° is Good characteristics are exhibited when a molded product is produced.
  • the laminated preforms of Example 1 and Examples 20 to 30 produced using these prepregs also show good characteristics.
  • Comparative Example 1 which is a prepreg with a large thickness, shape shaping was difficult, and some defects were caused in the molded product. Furthermore, in Comparative Example 2 using a prepreg having a low tensile strength, tearing occurred during the preparation of the preform. Moreover, in Comparative Example 3 using GMT, the thickness was large, and thin-wall molding was very difficult. Moreover, it flowed and the result was inferior to the isotropy of mechanical characteristics. In Comparative Example 4 using CF-SMC, the two-dimensional orientation angle of the fiber was small, resulting in poor mechanical properties and its isotropy.
  • Comparative Example 5 using the cut carbon fiber prepreg, the mechanical properties were improved, but the fibers were in a bundle shape, and the results were still inferior in isotropic properties.
  • Comparative Example 6 using a continuous fiber prepreg it was difficult to create a shape.
  • Carbon fiber A1 PAN-based carbon fiber Carbon fiber A1 was produced as follows. Using a copolymer composed of 99.4 mol% of acrylonitrile (AN) and 0.6 mol% of methacrylic acid, an acrylic fiber bundle having a single fiber denier 1d and a filament number of 12,000 was obtained by a dry and wet spinning method. The obtained acrylic fiber bundle is heated at a draw ratio of 1.05 in air at a temperature of 240 to 280 ° C. to convert to a flameproof fiber, and then heated in a temperature range of 300 to 900 ° C. in a nitrogen atmosphere.
  • AN acrylonitrile
  • methacrylic acid methacrylic acid
  • This carbon fiber bundle is an aqueous solution containing sulfuric acid as an electrolyte, and is subjected to an electrolytic surface treatment of 3 coulombs per gram of carbon fiber, further provided with a sizing agent by an immersion method, and dried in heated air at a temperature of 120 ° C. Fiber was obtained.
  • Carbon fiber A2 PAN-based carbon fiber Carbon fiber A2 was produced as follows. Using a copolymer composed of 99.4 mol% of acrylonitrile (AN) and 0.6 mol% of methacrylic acid, an acrylic fiber bundle having a single fiber denier 1d and a filament number of 12,000 was obtained by a dry and wet spinning method. The obtained acrylic fiber bundle is heated at a draw ratio of 1.05 in air at a temperature of 240 to 280 ° C. to convert to a flameproof fiber, and then heated in a temperature range of 300 to 900 ° C. in a nitrogen atmosphere. After 10% stretching at a rate of 200 ° C./min, the temperature was raised to a temperature of 1,300 ° C. and fired.
  • AN acrylonitrile
  • methacrylic acid methacrylic acid
  • a sizing agent was applied by an immersion method and dried in heated air at a temperature of 120 ° C. to obtain a PAN-based carbon fiber.
  • ⁇ Total number of filaments 12,000 ⁇
  • Single fiber diameter 7 ⁇ m ⁇
  • Mass per unit length 0.8g / m ⁇ Specific gravity 1.8g / cm 3 ⁇
  • Tensile strength (Note 1) 4.2 GPa ⁇
  • Tensile modulus (Note 2) 230 GPa ⁇ O / C (Note 3)
  • Carbon fiber A3 PAN-based carbon fiber Carbon fiber A3 was produced as follows. Using a copolymer composed of 99.4 mol% of acrylonitrile (AN) and 0.6 mol% of methacrylic acid, an acrylic fiber bundle having a single fiber denier 1d and a filament number of 12,000 was obtained by a dry and wet spinning method. The obtained acrylic fiber bundle is heated at a draw ratio of 1.05 in air at a temperature of 240 to 280 ° C. to convert to a flameproof fiber, and then heated in a temperature range of 300 to 900 ° C. in a nitrogen atmosphere. After 10% stretching at a rate of 200 ° C./min, the temperature was raised to a temperature of 1,300 ° C. and fired.
  • AN acrylonitrile
  • methacrylic acid methacrylic acid
  • a sizing agent was applied by an immersion method and dried in heated air at a temperature of 120 ° C. to obtain a PAN-based carbon fiber.
  • ⁇ Total number of filaments 48,000 ⁇
  • Single fiber diameter 7 ⁇ m ⁇ Mass per unit length 0.8g / m ⁇ Specific gravity 1.8g / cm 3 ⁇
  • Tensile strength (Note 1) 4.2 GPa ⁇ Tensile modulus (Note 2) 230 GPa ⁇ O / C (Note 3)
  • Microx Resin B1 Acid-Modified Polypropylene Resin “Admer” (registered trademark) QE510 manufactured by Mitsui Chemicals, Inc. was used as the matrix resin B1.
  • the physical properties are as follows. ⁇ Specific gravity 0.91 Melting point 160 ° C.
  • Microx Resin B2 Nylon 6 Resin “Amilan” (registered trademark) CM1001 manufactured by Toray Industries, Inc. was used as the matrix resin B2.
  • the physical properties are as follows. ⁇ Specific gravity 1.13 Melting point: 225 ° C.
  • Epoxy resin “Epicoat” (registered trademark) 828 bisphenol A type epoxy resin, Japan Epoxy Resin Co., Ltd.) 30 parts by mass
  • “Epicoat” (registered trademark) 1002 Bisphenol A type epoxy resin, Japan Epoxy Resin Co., Ltd.) 30 parts by mass
  • “Epicoat” (registered trademark) 154 phenol novolac type epoxy resin, Japan Epoxy Resin Co., Ltd.) 40 parts by mass
  • DICY7 Diaandiamide, Japan Epoxy Resin Co., Ltd.
  • DCMU-99 3,4-dichlorophenyl-1,1-dimethylurea, Hodogaya Chemical Co., Ltd.
  • Binder component C1 “Polyment” (registered trademark) SK-1000 manufactured by Nippon Shokubai Co., Ltd. was used as a binder component constituting the binder.
  • the main component is an acrylic polymer having an aminoalkylene group in the side chain.
  • Binder component C2 As the binder component constituting the binder, “Epocross” (registered trademark) WS-700 manufactured by Nippon Shokubai Co., Ltd. was used.
  • the main component is an acrylic polymer having an oxazoline group in the side chain.
  • the surface oxygen concentration was calculated as an atomic number ratio from the ratio of the O 1s peak area to the C 1s peak area using a sensitivity correction value unique to the apparatus.
  • a model ES-200 manufactured by Kokusai Electric Inc. was used as the X-ray photoelectron spectroscopy apparatus, and the sensitivity correction value was set to 1.74.
  • the evaluation criteria of the carbon fiber base material obtained in each example are as follows.
  • the apparatus 101 includes a dispersion tank 111, a papermaking tank 112, and a binder tank 126.
  • the dispersion tank 111 is a cylindrical container having a diameter of 300 mm, and includes a slurry transporting part 113 having an opening cock 115 at the lower part of the container.
  • a large square sheet machine No. 2553-I (trade name) manufactured by Kumagai Riki Kogyo Co., Ltd.
  • the binder tank 126 includes a binder transport section 127 with an opening cock 128 at the bottom of the container.
  • the opening of the binder transport unit 127 is located on the papermaking tank 112.
  • the binder transport part 127 is movable and can uniformly spread the binder on the reinforcing fiber substrate 120.
  • a stirrer 116 is attached to the opening on the upper surface of the dispersion tank 111, and the carbon fiber bundle 117 and the dispersion medium 118 can be introduced from the opening.
  • the bottom of the papermaking tank 12 has a papermaking surface (made of a mesh sheet) 119 having a length of 400 mm and a width of 400 mm, and the reinforcing fiber base 120 is obtained on the papermaking surface 119.
  • Carbon fiber A1 was cut to 6.4 mm with a cartridge cutter to obtain chopped carbon fiber (A1-1).
  • a 1% by mass aqueous dispersion (emulsion) of C1 was prepared as a binder liquid and placed in a binder tank 126.
  • 20 liters of a dispersion solution having a concentration of 0.1% by mass composed of water and a surfactant was prepared and transferred to the dispersion tank 111.
  • a surfactant manufactured by Nacalai Tex Co., Ltd., polyoxyethylene lauryl ether (trade name)
  • the opening cock 115 at the bottom of the dispersion vessel was opened, the slurry was poured into the papermaking vessel 112, and water was sucked to obtain a carbon fiber substrate having a length of 400 mm and a width of 400 mm (step (I)).
  • the opening cock 128 of the binder tank 126 was opened, and 200 g of binder liquid was sprayed from the upper surface of the carbon fiber base material.
  • sucked the excess binder liquid and provided the binder component was obtained.
  • the carbon fiber substrate 120 was taken out from the production apparatus 101 and dried at 150 ° C. for 20 minutes to obtain a carbon fiber substrate W1 (step (II)).
  • the basis weight of the carbon fiber substrate W1 was 60 g / m 2 .
  • a non-woven fabric of B1 (resin weight 30 g / m 2 ) is disposed on the upper and lower surfaces of the carbon fiber substrate W1 as a matrix resin, pressurized at 220 ° C. and 10 MPa, and a prepreg P1 impregnated with the matrix resin on the carbon fiber substrate is obtained. Obtained (step (III)).
  • Table 15 shows the implementation conditions in each step and the evaluation results of the obtained prepreg.
  • the apparatus 102 includes a dispersion layer 111, a papermaking tank 112, a binder tank 126, a conveyor 122, a dryer 138, a double belt press 131, and a winding device 133.
  • the dispersion tank 111 is a cylindrical container having a diameter of 300 mm, and includes a slurry transport unit 113 having an opening cock 115 at the lower part of the container, and a pressurized air pipe 129 for sending pressurized air into the tank. Yes.
  • the binder tank 126 includes a binder transport part 127 having an opening cock 128 at the lower part of the container, and a pressurized air pipe 130 for sending pressurized air into the tank.
  • the papermaking tank 112 includes a mesh conveyor 121 having a papermaking surface 119 with a width of 200 mm at the bottom.
  • the conveyor 122 is arranged after the mesh conveyor 121 and conveys the reinforcing fiber base material.
  • the opening of the binder transport part 127 is located on the conveyor 122.
  • the dryer 138 dries the reinforcing fiber substrate 120 on the conveyor 122.
  • the double belt press 131 introduces the reinforcing fiber substrate 120 conveyed by the conveyor 122 in the horizontal direction.
  • the double belt press 131 is supplied with matrix resin 135 from the rolls 136 and 137 toward the both side surfaces of the reinforcing fiber substrate 120 together with the reinforcing fiber substrate 120.
  • the winding device 133 winds up the obtained prepreg 132.
  • Carbon fiber A1 was cut to 6.4 mm with a cartridge cutter to obtain chopped carbon fiber (A1-1).
  • a 1% by mass aqueous dispersion (emulsion) of C1 was prepared as a binder liquid and placed in a binder tank 126.
  • 40 liters of a dispersion having a concentration of 0.1% by mass composed of water and a surfactant was prepared and transferred to the dispersion tank 111.
  • a surfactant manufactured by Nacalai Tex Co., Ltd., polyoxyethylene lauryl ether (trade name)
  • the opening cock 115 at the bottom of the dispersion vessel was opened, and the slurry was poured into a mesh conveyor 121 having a paper surface of 200 mm in width while introducing pressurized air into the slurry container to keep the slurry flow rate constant.
  • the slurry was taken up at a speed of 1 m / min while sucking water with a mesh conveyor 121 to obtain a carbon fiber substrate 120 having a length of 5 m and a width of 200 mm (step (I)).
  • the opening cock 128 of the binder tank 126 was opened, and 200 g of the binder liquid was sprayed on the upper surface of the carbon fiber substrate 120.
  • step (II) After the excess binder liquid was sucked, it was passed through a dryer 138 at 200 ° C. for 3 minutes to obtain a carbon fiber substrate W2 (step (II)).
  • the basis weight of the carbon fiber substrate W2 was 20 g / m 2 .
  • the carbon fiber substrate W2 was sent to the double belt press 131 by the conveyer 122 while online.
  • a non-woven fabric of B1 (resin weight 15 g / m 2 ) is disposed on the upper and lower surfaces of the carbon fiber substrate as a matrix resin, and a pressure of 5 MPa is applied at 220 ° C. using a double belt press device 131, and the matrix is applied to the carbon fiber substrate.
  • a prepreg P2 impregnated with resin was produced (step (III)). As it was, it was wound into a roll shape with a winding device 133 at a winding speed of 1 m / min (step (IV)).
  • Table 15 shows the implementation conditions in each step
  • Example 103 Production of prepreg P3 by wet process A prepreg P3 was obtained in the same manner as in Example 101 except that the moisture content of the reinforcing fiber substrate in step (II) was 20% by mass. Table 15 shows the implementation conditions in each step and the evaluation results of the obtained prepreg P3.
  • Example 104 Manufacture of prepreg P4 by wet process A prepreg P4 was obtained in the same manner as in Example 102 except that the pressurization and heating in the step (III) were not performed. The execution conditions in each step and the evaluation results of the obtained prepreg P4 are shown in Table 15.
  • Example 105 Production of prepreg P5 by wet process As in Example 101, except that a double belt press was performed at 250 ° C using a non-woven fabric of B2 (30 g / m 2 ) as a matrix resin in the step (III). Processing was performed to obtain a prepreg P5. The execution conditions in each step and the evaluation results of the obtained prepreg P5 are shown in Table 15.
  • Example 106 Manufacture of prepreg P6 by wet process As in Example 101, except that a double belt press was performed at 300 ° C using a non-woven fabric of B3 (30 g / m 2 ) as a matrix resin in step (III). Processing was performed to obtain a prepreg P6. The execution conditions in each step and the evaluation results of the obtained prepreg P6 are shown in Table 16.
  • Example 107 Manufacture of prepreg P7 by wet process As in Example 101, except that a double belt press was performed at 80 ° C using a B4 film (30 g / m 2 ) as the matrix resin in step (III). Processing was performed to obtain prepreg P7. The execution conditions in each step and the evaluation results of the obtained prepreg P7 are shown in Table 16.
  • Example 108 Production of Prepreg P8 by Wet Process Carbon fiber A3 was cut to 6.4 mm with a cartridge cutter to obtain chopped carbon fiber (A3-1). A prepreg P8 was obtained in the same manner as in Example 101 except that A3-1 was used as the chopped carbon fiber in the step (I). The execution conditions in each step and the evaluation results of the obtained prepreg P8 are shown in Table 16.
  • Example 109 Manufacture of prepreg P9 by wet process Except having used C2 as a binder of process (II), it processed like Example 101 and obtained prepreg P9.
  • the execution conditions in each step and the evaluation results of the obtained prepreg P9 are shown in Table 16.
  • the prepreg could be obtained in a shorter time by performing all of the steps (I) to (III) and the step (IV) that can be provided as necessary online (Examples 101 and 102). And 104).
  • the heating step after application of the binder can be completed in a short time by adjusting the water content of the carbon fiber substrate in step (II) to 10% by mass or less (see Examples 101 and 103).
  • the manufacturing apparatus 103 includes a binder tank 126 and a dispersed paper making tank 134.
  • the distributed papermaking tank 134 is a container having a length of 400 mm, a width of 400 mm, and a height of 400 mm, and includes a pressurized air pipe 29 capable of air suction and a papermaking surface 119 at the bottom.
  • the papermaking surface 119 is a mesh sheet having a length of 400 mm ⁇ width of 400 mm, and the carbon fiber substrate 120 is obtained on the papermaking surface 119.
  • the binder tank 126 includes a binder transport part 127 with an opening cock 128.
  • the opening of the binder transport unit 127 is located on the dispersed papermaking tank 112.
  • the binder transport part 127 is movable, and can uniformly spread the binder on the carbon fiber substrate 120 in the dispersion papermaking tank 134.
  • Carbon fiber A2 was cut to 6.4 mm with a cartridge cutter to obtain chopped carbon fiber (A2-1).
  • a 1% by mass aqueous dispersion of C1 was prepared as a binder liquid and placed in a binder tank 126.
  • 9.6 g of chopped carbon fiber (A2-1) is put into the dispersion paper making tank 134, and after opening the chopped carbon fiber by blowing pressurized air, the air is sucked from the bottom to open the carbon.
  • the fibers were deposited on the bottom surface to obtain a carbon fiber substrate having a length of 400 mm and a width of 400 mm (step (I)).
  • the opening cock 128 of the binder tank 126 was opened, and 200 g of binder was sprayed from the upper surface of the carbon fiber substrate.
  • sucking the excess binder liquid was obtained.
  • the carbon fiber substrate was taken out and dried at 150 ° C. for 20 minutes to obtain a carbon fiber substrate W11 (step (II)).
  • the basis weight of the carbon fiber base material W11 was 60 g / m 2 .
  • a non-woven fabric of B-1 as a matrix resin (resin weight 30 g / m 2 ) is placed on the upper and lower surfaces of the carbon fiber base material, and pressurized at 10 MPa at 220 ° C.
  • a prepreg P5 impregnated with a matrix resin was obtained (step (III)).
  • Table 17 shows the implementation conditions in each step and the evaluation results of the obtained prepreg P11.
  • the manufacturing apparatus 104 includes a carding device 139 that disperses reinforcing fiber bundles, a mesh conveyor 121 having a papermaking surface 119 having a width of 200 mm at the bottom, and an opening cock 128 at the bottom of the container.
  • a binder tank 126 having a section 127, a double belt press 131 capable of horizontally introducing the carbon fiber substrate 120 conveyed by the conveyor 122, a dryer 138 for drying the carbon fiber substrate 120 on the conveyor 122, and
  • a take-up roll 133 capable of winding up the obtained prepreg 132 is provided.
  • Carbon fiber A2 was cut into 6.4 mm with a cartridge cutter to obtain chopped carbon fiber (A2-1).
  • a 1% by mass aqueous dispersion of C1 was prepared as a binder liquid and placed in a binder tank 126.
  • 6 g of A2-1 (chopped carbon fiber) was uniformly introduced into the carding device 139 in 30 seconds, and a carbon fiber substrate having a width of 200 mm was taken up while maintaining the carding speed at 1 m / min.
  • the opening cock 128 of the binder tank 126 was opened, and 200 g of the binder was uniformly sprayed over the upper surface of the carbon fiber substrate flowing on the conveyor over 30 seconds. After surplus binder liquid was sucked online, it was passed through a drying furnace at 200 ° C.
  • the basis weight of the carbon fiber substrate W12 was 60 g / m 2 .
  • B-1 non-woven fabric resin weight 15 g / m 2
  • 5 MPa was applied at 220 ° C. using a double belt press.
  • a prepreg P6 in which a carbon fiber base material was impregnated with a matrix resin was produced.
  • the film was wound as it was with a winding device 133 in a roll shape at a winding speed of 1 m / min.
  • Table 17 shows the implementation conditions in each step and the evaluation results of the obtained prepreg P12.
  • Example 112 Manufacture of prepreg P13 by dry process A prepreg P13 was obtained in the same manner as in Example 106 except that the pressurization and heating in the step (III) were not performed. Table 17 shows the implementation conditions in each step and the evaluation results of the obtained prepreg P13.
  • the prepreg could be obtained in a shorter time by carrying out all of the steps (I) to (III) and the step (IV) that can be provided as necessary on-line (Examples 110 to 112). reference).
  • This carbon fiber bundle is an aqueous solution containing sulfuric acid as an electrolyte, and is subjected to an electrolytic surface treatment of 3 coulombs per gram of carbon fiber, further provided with a sizing agent by an immersion method, and dried in heated air at a temperature of 120 ° C. Fiber A4 was obtained.
  • Carbon fiber A5 PAN-based carbon fiber A monofilament denier 1d and a filament number of 12,000 by a dry and wet spinning method using a copolymer composed of 99.4 mol% of acrylonitrile (AN) and 0.6 mol% of methacrylic acid.
  • An acrylic fiber bundle was obtained.
  • the obtained acrylic fiber bundle is heated at a draw ratio of 1.05 in air at a temperature of 240 to 280 ° C. to convert to a flameproof fiber, and then heated in a temperature range of 300 to 900 ° C. in a nitrogen atmosphere. After 10% stretching at a rate of 200 ° C./min, the temperature was raised to a temperature of 1,300 ° C. and fired.
  • a sizing agent was applied by an immersion method and dried in heated air at a temperature of 120 ° C. to obtain a PAN-based carbon fiber A5.
  • ⁇ Total number of filaments 12,000 ⁇
  • Single fiber diameter 7 ⁇ m ⁇ Mass per unit length 0.8g / m ⁇ Specific gravity 1.8g / cm 3 ⁇
  • Tensile strength (Note 5)
  • Tensile modulus (Note 6)
  • 230 GPa ⁇ O / C (Note 7)
  • 0.05 -Sizing type Polyoxyethylene oleyl ether-Sizing adhesion amount (Note 8) 1.5% by mass.
  • Acid-modified polypropylene resin film Acid-modified polypropylene resin “Admer” (registered trademark) QE510 (specific gravity 0.91, melting point 160 ° C.) manufactured by Mitsui Chemical Co., Ltd. is press-molded at a temperature of 200 ° C. and a pressure of 20 Mpa for 1 minute. Then, an acid-modified polypropylene resin film F having a thickness of 50 ⁇ m was produced.
  • Admer registered trademark
  • QE510 specific gravity 0.91, melting point 160 ° C.
  • the evaluation result of bending strength was described as a relative value with Example 1 as 100.
  • variation in the evaluation result was described by the coefficient of variation (CV value).
  • the manufacturing apparatus 201 includes a dispersion tank 211, a papermaking tank 212, and a transport unit 213.
  • the dispersion tank 211 is a cylindrical container having a diameter of 300 mm.
  • the dispersion tank 211 is provided with a stirrer 216 at the opening on the upper surface, and the carbon fiber bundle 217 and the dispersion liquid (dispersion medium) 218 can be input from the opening.
  • a large-sized square sheet machine No.
  • the transport unit 213 is a horizontal and linear flow path that connects the dispersion tank 211 and the papermaking tank 212, and includes a liquid feed pump (diaphragm pump) 225 in the middle of the flow path.
  • Carbon fiber A4 was cut to 6.4 mm with a cartridge cutter to obtain chopped carbon fiber A4-1.
  • 20 liters of a dispersion solution having a concentration of 0.1% by mass composed of water and a surfactant (manufactured by Nacalai Tex Co., Ltd., polyoxyethylene lauryl ether (trade name)) was prepared and transferred to the dispersion vessel 211.
  • a surfactant manufactured by Nacalai Tex Co., Ltd., polyoxyethylene lauryl ether (trade name)
  • step (i) 9.6 g of chopped carbon fiber A4-1 was added (step (i)).
  • a slurry was prepared by stirring for 10 minutes (step (ii)).
  • step (iii) water was sucked to obtain a carbon fiber base material 220 having a length of 400 mm and a width of 400 mm (step (iv)).
  • the basis weight of the carbon fiber base material was 60 g / m 2 .
  • Table 18 shows the implementation conditions in each step and the evaluation results of the obtained carbon fiber substrate.
  • the manufacturing apparatus 202 includes a dispersion tank 211, a papermaking tank 212, a transport unit 213, and a conveyor 222.
  • the dispersion tank 211 and the transport unit 213 are the same as the manufacturing apparatus 201.
  • the papermaking tank 212 includes a mesh conveyor 221 having a papermaking surface 219 having a width of 200 mm at the bottom.
  • a carbon fiber substrate 220 is obtained on the paper surface 219.
  • the conveyor 222 is arranged following the mesh conveyor 221 and conveys the reinforcing fiber substrate 220.
  • Carbon fiber A4 was cut to 6.4 mm with a cartridge cutter to obtain chopped carbon fiber A4-1.
  • a dispersion liquid having a concentration of 0.1% by mass composed of water and a surfactant (manufactured by Nacalai Tex Co., Ltd., polyoxyethylene lauryl ether (trade name)) was prepared.
  • the introduction of the dispersion and chopped carbon fiber A4-1 into the dispersion tank 211 was started. While manufacturing, continuously adjusting the input amount so that the carbon fiber concentration in the slurry in the dispersion tank becomes a constant concentration and the height H1 of the liquid level of the slurry in the dispersion tank becomes constant.
  • the above dispersion and chopped carbon fiber were continuously charged (step (i)).
  • the reinforcing fiber base material was manufactured using the reinforcing fiber base material (papermaking base material) manufacturing apparatus 203 of FIG.
  • the manufacturing apparatus 203 includes a dispersion tank 211, a papermaking tank 212, a transport unit 213, and a conveyor 222.
  • the papermaking tank 212 and the conveyor 222 are the same as those of the manufacturing apparatus 202.
  • the dispersion tank 211 has a concave shape having two openings (a wide-mouth opening 223 and a narrow-mouth opening 224) on the upper surface, and includes a stirrer 216 on the wide-mouth opening 223 side.
  • the transport unit 213 is inclined downward from the dispersion tank 211 toward the papermaking tank 212 (an inclination angle of 45 °), and is not provided with the liquid feed pump 225 in the middle.
  • a connection part 214 between the dispersion tank 211 and the transport part 213 is located in the upper part (near the opening) of the dispersion tank 211, and liquid feeding from the dispersion tank 211 to the papermaking tank 212 is performed by an overflow method.
  • a dispersion liquid having a concentration of 0.1% by mass composed of chopped carbon fiber A4-1, water, and a surfactant (manufactured by Nacalai Tex Co., Ltd., polyoxyethylene lauryl ether (trade name)) was introduced from the narrow opening. Thereafter, the same treatment as in Example 203 was performed to obtain a carbon fiber substrate.
  • the basis weight of the obtained carbon fiber substrate was 20 g / m 2 .
  • Table 18 shows the implementation conditions in each step and the evaluation results of the obtained carbon fiber substrate.
  • the dispersion state of the carbon fiber base material could be further increased (see Production Example 204 and Production Example 205).
  • the manufacturing apparatus 301 includes a dispersion tank 311, a papermaking tank 212, and a transport unit 313.
  • the dispersion tank 311 is a cylindrical container having a diameter of 300 mm, and includes an opening cock 315 at the bottom of the container and a stirrer 316 at the opening on the top surface.
  • a carbon fiber bundle 317 and a dispersion liquid (dispersion medium) 318 can be introduced from this opening.
  • the transport unit 313 is a linear flow path that connects the dispersion tank 311 and the papermaking tank 312, and is inclined downward from the dispersion tank 311 toward the papermaking tank 312 (tilt angle 45 °).
  • the dispersion tank 311 and the transport unit 313 are connected via an opening cock 315.
  • Carbon fiber A4 was cut to 6.4 mm with a cartridge cutter to obtain chopped carbon fiber A4-1.
  • 20 liters of a dispersion having a concentration of 0.1% by mass composed of water and a surfactant (manufactured by Nacalai tex Co., Ltd., polyoxyethylene lauryl ether (trade name)) was prepared and transferred to a dispersion tank 311.
  • a surfactant manufactured by Nacalai tex Co., Ltd., polyoxyethylene lauryl ether (trade name)
  • step (i) 9.6 g of chopped carbon fiber A4-1 was added (step (i)).
  • a slurry was prepared by stirring for 10 minutes (step (ii)).
  • the opening cock 315 at the bottom of the container was opened and poured into the papermaking tank 312 via the transport unit 313 (step (iii)).
  • the height H1 of the slurry liquid level in the dispersion tank was 50 cm higher than the slurry liquid level H2 in the papermaking tank.
  • water was sucked from the papermaking surface 319 of the papermaking tank to obtain a carbon fiber substrate 320 having a length of 400 mm and a width of 400 mm (step (iv)).
  • the basis weight of the carbon fiber substrate was 60 g / m 2 .
  • Table 20 shows the implementation conditions in each step and the evaluation results of the obtained carbon fiber substrate.
  • the manufacturing apparatus 302 includes a dispersion tank 311, a papermaking tank 312, a transport unit 313, and a conveyor 322.
  • the dispersion tank 311 and the transport unit 313 are the same as the manufacturing apparatus 301.
  • the papermaking tank 312 includes a mesh conveyor 321 having a papermaking surface 319 having a width of 200 mm at the bottom.
  • a carbon fiber substrate 320 is obtained on the paper surface 319.
  • the conveyor 322 is arranged following the mesh conveyor 321 and conveys the reinforcing fiber base 320.
  • Carbon fiber A4 was cut to 6.4 mm with a cartridge cutter to obtain chopped carbon fiber A4-1.
  • a dispersion liquid having a concentration of 0.1% by mass composed of water and a surfactant (manufactured by Nacalai Tex Co., Ltd., polyoxyethylene lauryl ether (trade name)) was prepared.
  • the introduction of the dispersion and chopped carbon fiber A4-1 into the dispersion tank 311 was started. While manufacturing, continuously adjusting the input amount so that the carbon fiber concentration in the slurry in the dispersion tank becomes a constant concentration and the height H1 of the liquid level of the slurry in the dispersion tank becomes constant.
  • the above dispersion and chopped carbon fiber were continuously charged (step (i)).
  • the manufacturing apparatus 303 includes a dispersion tank 311, a papermaking tank 312, a transport unit 313, and a conveyor 322.
  • the papermaking tank 312, the transport unit 313, and the conveyor 322 are the same as the manufacturing apparatus 302.
  • the dispersion tank 311 has a concave shape having two openings (a wide-mouth opening 323 and a narrow-mouth opening 324) on the upper surface, and includes a stirrer 316 on the wide-mouth opening 323 side.
  • connection part 314 between the dispersion tank 311 and the transport part 313 is located in the upper part (near the opening) of the dispersion tank 311, and liquid feeding from the dispersion tank 311 to the papermaking tank 312 is performed by an overflow method.
  • the connecting portion 314 is not provided with an opening cock.
  • a dispersion liquid having a concentration of 0.1% by mass composed of chopped carbon fiber A4-1, water, and a surfactant (manufactured by Nacalai Tex Co., Ltd., polyoxyethylene lauryl ether (trade name)) was introduced from the narrow opening 324. Thereafter, the same treatment as in Production Example 302 was performed to obtain a carbon fiber substrate.
  • the basis weight of the obtained carbon fiber substrate was 20 g / m 2 .
  • Table 20 shows the implementation conditions in each step and the evaluation results of the obtained carbon fiber substrate.
  • the reinforcing fiber base material was manufactured using the reinforcing fiber base material (papermaking base material) manufacturing apparatus 304 of FIG.
  • the manufacturing apparatus 304 includes a dispersion tank 311, a papermaking tank 312, a transport unit 313, and a conveyor 322.
  • the dispersion tank 311, the papermaking tank 312, and the conveyor 322 are the same as the manufacturing apparatus 303.
  • the transport portion 313 is a four-folded right-angled structure, and has an angle of 45 ° as a whole.
  • a carbon fiber substrate was obtained in the same manner as in Production Example 303.
  • the basis weight of the obtained carbon fiber base material was 20 g / m 2 .
  • Table 20 shows the implementation conditions in each step and the evaluation results of the obtained carbon fiber substrate.
  • a manufacturing apparatus 301 was used.
  • a carbon fiber base material was obtained in the same manner as in Production Example 301 except that only steps (i) to (ii) were performed online and steps (iii) to (iv) were performed offline.
  • the basis weight of the obtained carbon fiber substrate was 60 g / m 2 .
  • the execution conditions in each step and the evaluation results of the obtained carbon fiber substrate are shown in Table 21.
  • the transport part By making the transport part linear and further setting the inclination angle to 30 ° or more and 60 ° or less, or by setting the W1 / W2 ratio to 0.5 or more and 1.0 or less, the dispersion state of the carbon fiber base material is changed. (See Production Example 301 to Production Example 304 and Production Example 307).
  • the manufacturing apparatus 401 includes a dispersion tank 411, a papermaking tank 412, and a transport unit 413.
  • the dispersion tank 411 is a cylindrical container having a diameter of 300 mm, and is provided with an opening cock 415 at the lower part of the container and an agitator 416 at the opening part on the upper surface.
  • the carbon fiber bundle 417 and the dispersion liquid (dispersion medium) 418 can be input from this opening.
  • As the papermaking tank 412 a large square sheet machine (No.
  • the transport unit 413 is a linear flow path connecting the dispersion tank 411 and the papermaking tank 412, and is inclined downward (inclination angle r: 88 °) from the dispersion tank 411 toward the papermaking tank 412.
  • the cross-sectional shape of 413 is a circle having a diameter of 0.01 m.
  • Carbon fiber A1 was cut to 6.4 mm with a cartridge cutter to obtain chopped carbon fiber A4-1.
  • 20 liters of a dispersion liquid having a concentration of 0.25% by mass composed of water and a water-soluble polymer (manufactured by Sumitomo Seika Co., Ltd., PEO-8Z (trade name)) was prepared and transferred to the dispersion tank 411.
  • the viscosity of the dispersion was 10 mPa ⁇ s.
  • 9.6 g of chopped carbon fiber A4-1 was added (step (i)).
  • a slurry was prepared by stirring for 10 minutes (step (ii)).
  • step (iii) the opening cock 415 at the bottom of the container was opened and poured into the papermaking tank 412 via the transporting part 413 (step (iii)). Subsequently, water was sucked from the papermaking surface 419 of the papermaking tank to obtain a carbon fiber substrate 420 having a length of 400 mm and a width of 400 mm (step (iv)).
  • the basis weight of the carbon fiber base material was 60 g / m 2 . Table 22 shows the implementation conditions in each step and the evaluation results of the obtained carbon fiber substrate.
  • step (i) Cut carbon fiber A5 to 6.4 mm with a cartridge cutter to obtain chopped carbon fiber A5-1.
  • step (i) 9.6 g of chopped carbon fiber A5-1 was added to the dispersion.
  • the treatment was performed in the same manner as in Example 401 to obtain a carbon fiber substrate.
  • the basis weight of the obtained carbon fiber substrate was 60 g / m 2 .
  • Table 23 shows the implementation conditions in each step and the evaluation results of the obtained carbon fiber substrate.
  • the viscosity of the dispersion medium is 1 mPa ⁇ s or more and 100 mPa ⁇ s or less, it is expected that the mechanical properties of the carbon fiber substrate or the molded product can be further improved. (See Production Example 402, Production Example 403, and Production Example 404).
  • Example 501 A prepreg was manufactured using the apparatus 102 of FIG. Carbon fiber A1 was cut into 6.4 mm with a cartridge cutter to obtain chopped carbon fiber.
  • a 1% by mass aqueous dispersion (emulsion) of C1 was prepared as a binder liquid and placed in a binder tank 126. 40 liters of a dispersion having a concentration of 0.1% by mass composed of water and a surfactant (manufactured by Nacalai Tex Co., Ltd., polyoxyethylene lauryl ether (trade name)) was prepared and transferred to the dispersion tank 111. To this dispersion, 50 g of chopped carbon fiber was added and stirred for 10 minutes to prepare a slurry.
  • a surfactant manufactured by Nacalai Tex Co., Ltd., polyoxyethylene lauryl ether (trade name)
  • the opening cock 115 at the bottom of the dispersion layer container was opened, and the slurry was poured into a mesh conveyor having a paper surface of 200 mm width while introducing a pressurized air into the slurry container to keep the slurry flow rate constant.
  • the slurry was taken up at a speed of 1 m / min while sucking water with a mesh conveyor to obtain a carbon fiber substrate 120 having a length of 5 m and a width of 200 mm (step (I)).
  • the opening cock 128 of the binder tank 126 was opened, and 200 g of the binder solution on the upper surface of the carbon fiber substrate 120 was sprayed. After the excess binder liquid was sucked, it was passed through a dryer 138 at 200 ° C.
  • a carbon fiber substrate W2 (step (II)).
  • the basis weight of the carbon fiber substrate W2 was 50 g / m 2 .
  • the carbon fiber substrate W2 was sent to the double belt press device 131 by a conveyor while online.
  • Two films of CM1007 (nylon 6 resin) manufactured by Toray Industries, Inc. as the matrix resin having the same thickness are laminated so as to be film / carbon fiber base material / film, and 250 ° C. using a double belt press device 131.
  • a prepreg (28) in which a carbon fiber base material was impregnated with a matrix resin was produced at a temperature of 5 MPa under a pressure of 5 MPa (step (III)).
  • step (IV) As it was, it was wound into a roll shape with a winding device 133 at a winding speed of 1 m / min (step (IV)).
  • the properties of the prepreg are shown in Table 25.
  • An L-shaped molded product was produced in the same manner as in Example 1 except that a preform in which eight prepregs (28) were laminated was produced. The preform was well shaped according to the shape of the mold, and a molded product with good shape quality was obtained. Table 26 shows the characteristics of the molded product.
  • Example 502 In the apparatus 102 of FIG. 10, a prepreg was manufactured by using the apparatus 202 of FIG. 23 in the papermaking apparatus in front of the dryer 138. Using the above manufacturing apparatus, a chopped solution using water and a surfactant (manufactured by Nacalai Tex Co., Ltd., polyoxyethylene lauryl ether (trade name)) having a concentration of 0.1% by mass and carbon fiber A1 Carbon fiber was introduced from the narrow opening. Thereafter, the same treatment as in Example 501 was performed to obtain a prepreg (29). The carbon fiber content in the slurry was 0.05% by mass, and the carbon fiber concentration difference C1 / C2 in the slurry was 1.0.
  • a surfactant manufactured by Nacalai Tex Co., Ltd., polyoxyethylene lauryl ether (trade name)
  • Example 503 In the apparatus 102 shown in FIG. 10, a prepreg was manufactured using the apparatus 303 shown in FIG. 27 as a paper making apparatus in front of the dryer 138. Using the above manufacturing apparatus, a chopped solution using water and a surfactant (manufactured by Nacalai Tex Co., Ltd., polyoxyethylene lauryl ether (trade name)) having a concentration of 0.1% by mass and carbon fiber A1 Carbon fiber was introduced from the narrow opening. Thereafter, the same treatment as in Example 501 was performed to obtain a prepreg (30). The liquid surface height H1-H2 of the slurry was 0.5 m, the shape of the transport section was a straight line, and the tilt angle of the transport section was 45 °.
  • a surfactant manufactured by Nacalai Tex Co., Ltd., polyoxyethylene lauryl ether (trade name)
  • Example 504 In the apparatus 102 shown in FIG. 10, a prepreg was manufactured using the apparatus 303 shown in FIG. 27 as a paper making apparatus in front of the dryer 138. However, the cross-sectional shape of the transport part 313 (inclination angle r: 88 °) of the device 303 is a circle having a diameter of 0.01 m.
  • a chopped solution using water and a water-soluble polymer manufactured by Sumitomo Seika Co., Ltd., PEO-8Z (trade name)
  • Carbon fiber was introduced from the narrow opening. Thereafter, the same treatment as in Example 501 was performed to obtain a prepreg (31).
  • the dispersion medium had a viscosity of 10 mPa ⁇ s, the transport state was a laminar flow, the flow rate was 1 m / s, and the Reynolds number was 1000.
  • the properties of the obtained prepreg are shown in Table 25.
  • An L-shaped molded product was produced in the same manner as in Example 1 except that a preform in which eight prepregs (31) were laminated was produced. The preform was well shaped according to the shape of the mold, and a molded product with good shape quality was obtained. Table 26 shows the characteristics of the molded product.
  • the prepregs produced in Examples 501 to 504 have good fiber length distribution, thickness, and tensile strength of the reinforcing fibers, and are isotropic within the range where the two-dimensional orientation angle of the fibers is 10 ° or more and 80 ° or less. There are good characteristics when a molded product is produced. In addition, laminated preforms produced using these prepregs also show good characteristics. Furthermore, a continuous prepreg can be obtained in the form of a roll, which is preferable when industrially implemented.
  • the prepreg of the present invention and the laminate thereof are suitably used as a fiber reinforced preform capable of achieving both mechanical properties and moldability, and in particular, the reinforcing fibers constituting the thin prepreg are two-dimensionally oriented isotropically. Therefore, the reinforcing effect in the surface direction is excellent, the interference of reinforcing fibers in the thickness direction in the layer is suppressed, and the interlayer interaction is also small, so that the shape shaping at the time of molding is excellent.
  • These can be applied to a wide range of industrial fields such as electrical / electronic devices, robots, two-wheeled vehicles, automobiles, aircraft members, parts and casings.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Textile Engineering (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

 本発明は、強化繊維基材に熱可塑性樹脂が含浸され、繊維長10mmを越える強化繊維が0質量%以上50質量%以下、繊維長2mm以上10mm以下の強化繊維が50質量5以上100質量%以下および繊維長2mm未満の強化繊維が0質量%以上50質量%以下であり、強化繊維単糸(a)と該強化繊維単糸(a)に交差する強化繊維単糸(b)とで形成される二次元配向角の平均値が10度以上80度以下であり、23℃での厚みh0(mm)が0.03mm以上1mm以下であり、引張強度σが0.01MPa以上であるプリプレグに関する。本発明により、積層成形品には不向きであった薄型成形品にも対応でき、等方的に力学特性に優れた、複雑形状の成形品を得ることができるプリプレグが提供される。

Description

プリプレグ、プリフォーム、成形品およびプリプレグの製造方法
 本発明は、繊維強化基材に樹脂が含浸したプリプレグ、およびそれを積層して得られるプリフォームに関する。さらに詳しくは、強化繊維が特定の二次元配向角を有し、特定の厚みを有するプリプレグ、およびそれを積層して得られるプリフォームに関する。また、本発明はプリプレグの製造方法に関する。
 繊維強化プラスチック(FRP)は、軽量で優れた力学特性を有しており、電気・電子機器用途、土木・建築用途、機械・機構部品用途、ロボット用途、二輪車・自動車用途、宇宙・航空用途等に広く用いられている。これらのFRPに用いられる強化繊維には、アルミニウム繊維やステンレス繊維などの金属繊維、アラミド繊維やPBO繊維などの有機繊維、およびシリコンカーバイド繊維などの無機繊維や炭素繊維などが使用されている。これらの中でも、比強度、比剛性にとりわけ優れ、抜群の軽量性が得られる観点から炭素繊維が好適に用いられる。
 ここで、炭素繊維強化プラスチック(CFRP)などFRPの代表的な形態として、プリプレグを積層して得られるプリフォームをプレス成形(加圧力の下で脱泡し賦形する成形方法)した成形品が挙げられる。このプリプレグは、連続した強化繊維を一方向に配列させるか、織物加工させるかをした強化繊維基材に、樹脂を含浸して製造する方法が一般的である。
 このプリプレグを用いた成形品は優れた力学特性が得られる。一方で、強化繊維が連続体のまま使用されるために、複雑な形状を成形するには不向きである。また、プリプレグの積層角度による特性への影響が大きいため、積層角度に留意しながらプリプレグを積層しなければならない。つまり、積層工程に手間や時間を要し、その分コストが高くなるので(積層工程の経済的負担が高くなる)、使用用途が制限されている。
 特許文献1には、強化繊維を特定の長さに切断することで、複雑な形状の成形に有効なプリプレグが提案されている。しかし、積層工程に同じような手間や時間を必要とするために、経済的負担を解消するには至っていない。
 一方で、不連続な強化繊維を用いたFRPも提案されている。シートモールディングコンパウンド(SMC)や、ガラスマット基材(GMT)は、プレス成形に適した材料である。しかし、比強度、比剛性などの力学特性が低いこと、プリプレグのような薄肉の成形品への対応が困難であること、また成形時に樹脂が大きく流動するため等方的な力学特性が得られず、かつ特性のバラツキが大きいことなどのため、使用用途が制限されている。
 特許文献2、3には、強化繊維を束状に分散させることで、より等方的な特性が得られるシート材料が提案されている。また、特許文献4には、炭素繊維を均一分散させることで力学特性に優れたシート材料が提案されている。しかしながら、いずれもプリプレグにように薄肉に加工することができず、また成形時に樹脂が大きく流動するため等方的な特性を損ない、力学特性も低下する場合がある。
 さらに、特許文献5には、炭素繊維を単糸状にランダム分散させて固定した成形品が提案されている。この方法でも、プリプレグとして薄肉に加工するには限界があり、プリフォームの積層の自由度が制限される。さらに、プリフォームを大量に製造することができないため経済的負担を解消するには至っていない。
特開2007-146151号公報 特許第2507565号公報 特許第1761874号公報 特開平6-99431号公報 国際公開第2007/97436号パンフレット
 本発明は、従来技術の背景に鑑み、積層成形品には不向きであった薄型成形品にも対応でき、等方的に力学特性に優れた、複雑な形状の成形品を得ることができるプリプレグ、ならびにプリフォームを提供することを目的とする。
 本発明のプリプレグは、強化繊維基材に熱可塑性樹脂が含浸されたプリプレグであって、
該強化繊維基材が、繊維長10mmを越える強化繊維が0質量%以上50質量%以下、繊維長2mm以上10mm以下の強化繊維が50質量%以上100質量%以下および繊維長2mm未満の強化繊維が0質量%以上50質量%以下から構成され、
該プリプレグが、該プリプレグに含まれる強化繊維単糸(a)と該強化繊維単糸(a)に交差する強化繊維単糸(b)とで形成される二次元配向角の平均値が10度以上80度以下であり、23℃での厚みh0(mm)が0.03mm以上1mm以下であり、引張強度σが0.01MPa以上のプリプレグである。
 また、本発明のプリフォームは、少なくとも、強化繊維基材に熱可塑性樹脂が含浸され、
強化繊維単糸(a)と該強化繊維単糸(a)に交差する強化繊維単糸(b)とで形成される二次元配向角の平均値が10度以上80度以下であり、23℃での厚みh0(mm)が0.03mm以上1mm以下であり、引張強度σが0.01MPa以上であるプリプレグを積層単位として含むプリフォームである。 
 本発明のプリプレグは、強化繊維が特定の繊維長と特定の二次元配向角を有するため、プリプレグを積層する際に積層角度に大きな制約を受けることがなく、等方的に力学特性に優れた成形品を得ることができる。本発明のプリプレグは、特定の厚みとすることで、従来の積層成形品には不向きであった薄型成形品にも対応できるだけでなく、層内厚み方向の強化繊維の割合を抑えて面内の補強効果をより高めることができる。さらに本発明のプリプレグは、特定の引張強度を有することで、積層する際の作業性に優れ、幅広い用途に適用するうえで有効である。
 また、本発明のプリフォームは、プリプレグに含まれる強化繊維が特定の二次元配向角を有し、プリプレグが特定の厚みとすることで、厚み方向の強化繊維の割合を抑え、層間の干渉を低減して、プレス成形における賦形性を高めることができる。これにより、従来の積層成形品には不向きであった、複雑な形状の成形性と力学特性を満足する成形品を得ることができる。
図1は、本発明のプリプレグにおける強化繊維の分散状態の一例を示す模式図である。 図2は、プリプレグの二次元配向角測定用の焼き飛ばし治具の一例を示す模式図である。 図3は、強化繊維基材(抄紙基材)の製造装置の一例を示す模式図である。 図4は、本発明のプリプレグ、プリフォームを用いて得られる箱型形状成形品の一例を示す模式図である。 図5は、本発明のプリプレグ、プリフォームを用いて得られる箱型形状成形品の一例を示す模式図である。 図6は、本発明のプリプレグとGMTとを用いた積層の模式図である。 図7は、切り込み入り炭素繊維プリプレグの模式図である。 図8は、自動車ボンネット成形品の模式図である。 図9は、プリプレグの製造装置の一例を示す模式図である。 図10は、プリプレグの製造装置の一例を示す模式図である。 図11は、プリプレグの製造装置の一例を示す模式図である。 図12は、プリプレグの製造装置の一例を示す模式図である。 図13は、分散槽、抄紙槽及び輸送部を水平方向から見た位置関係の一例を示す模式図である。 図14は、分散槽、抄紙槽及び輸送部を水平方向から見た位置関係の一例を示す模式図である。 図15は、分散槽、抄紙槽及び輸送部を水平方向から見た位置関係の一例を示す模式的図である。 図16は、分散槽、抄紙槽及び輸送部を水平方向から見た位置関係の一例を示す模式図である。 図17は、分散槽、抄紙槽及び輸送部を水平方向から見た位置関係の一例を示す模式図である。 図18は、分散槽、抄紙槽及び輸送部を水平方向から見た位置関係の一例を示す模式図である。 図19は、分散槽、抄紙槽及び輸送部を水平方向から見た位置関係の一例を示す模式図である。 図20は、分散槽、抄紙槽及び輸送部を水平方向から見た位置関係の一例を示す模式図である。 図20は、輸送部の断面形状の一例を示す模式図である。 図22は、強化繊維基材(抄紙基材)の製造装置の一例を示す模式図である。 図23は、強化繊維基材(抄紙基材)の製造装置の一例を示す模式図である。 図24は、強化繊維基材(抄紙基材)の製造装置の一例を示す模式図である。 図25は、強化繊維基材(抄紙基材)の製造装置の一例を示す模式図である。 図26は、強化繊維基材(抄紙基材)の製造装置の一例を示す模式図である。 図27は、強化繊維基材(抄紙基材)の製造装置の一例を示す模式図である。 図28は、強化繊維基材(抄紙基材)の製造装置の一例を示す模式図である。 図29は、強化繊維基材(抄紙基材)の製造装置の一例を示す模式図である。 図30は、強化繊維を含むスラリーの模式図である。
 本発明のプリプレグは、強化繊維基材に熱可塑性樹脂が含浸されたプリプレグであって、
該強化繊維基材が、繊維長10mmを越える強化繊維が0質量%以上50質量%以下、繊維長2mm以上10mm以下の強化繊維が50質量%以上100質量%以下および繊維長2mm未満の強化繊維が0質量%以上50質量%以下から構成され、
該プリプレグが、強化繊維単糸(a)と、該強化繊維単糸(a)に交差する強化繊維単糸(b)とで形成される二次元配向角の平均値が10度以上80度以下であり、23℃での厚みh0(mm)が0.03mm以上1mm以下であり、引張強度σが0.01MPa以上であるプリプレグである。
まず、これらの構成要素について説明する。
 [ 強化繊維基材 ]
 本発明における強化繊維基材とは、強化繊維をシート状、布帛状またはウェブ状などの形態に加工した前駆体を意味するものである。強化繊維基材は、強化繊維の間に樹脂の含浸する空隙を有していれば、その形態や形状には特に制限はない。例えば、強化繊維が有機繊維、有機化合物や無機化合物と混合されていたり、強化繊維同士が他の成分で目留めされていたり、強化繊維が樹脂成分と接着されていたりしてもよい。強化繊維基材の好ましい形態としては、本発明における強化繊維の二次元配向を容易に製造する観点から、乾式法や湿式法で得られる不織布形態で、強化繊維が十分に開繊され、かつ強化繊維同士が有機化合物で目留めされた基材が例示できる。
 また、本発明で用いられる強化繊維基材には、マトリックスとなる樹脂成分を含浸させるために十分な空隙を有することが好ましく、このため強化繊維基材には通気性を確保することが好ましい。通気性は、例えばJIS P8117に基づくガーレー式試験機法、あるいはASTM D737に基づくフラジール形法で測定することができる。このうち、より通気性に優れた材料を評価する目的で、ASTM D737に基づくフラジール形法で測定される空気量(cm/cm・s)を目安とすることが好ましい。ASTM D737に基づくフラジール形法における好ましい空気量としては50以上であり、より好ましくは70以上であり、とりわけ好ましくは100以上である。また、空気量の上限には特に制限はないが、1000以下が一般的に例示できる。
 [ 強化繊維 ]
 本発明のプリプレグに用いられる強化繊維としては特に制限はなく、例えば、炭素繊維、ガラス繊維、アラミド繊維、アルミナ繊維、炭化珪素繊維、ボロン繊維、金属繊維、天然繊維、鉱物繊維などが使用でき、これらは1種または2種以上を併用してもよい。中でも、比強度、比剛性が高く軽量化効果の観点から、PAN系、ピッチ系、レーヨン系などの炭素繊維が好ましく用いられる。また、得られる成形品の経済性を高める観点から、ガラス繊維が好ましく用いることができ、とりわけ力学特性と経済性のバランスから炭素繊維とガラス繊維を併用することが好ましい。さらに、得られる成形品の衝撃吸収性や賦形性を高める観点から、アラミド繊維が好ましく用いることができ、とりわけ力学特性と衝撃吸収性のバランスから炭素繊維とアラミド繊維を併用することが好ましい。また、得られる成形品の導電性を高める観点から、ニッケルや銅やイッテルビウムなどの金属を被覆した強化繊維を用いることもできる。
 [ 炭素繊維 ]
 炭素繊維は、そのX線光電子分光法により測定される表面酸素濃度比O/Cが0.05以上0.5以下であるものが好ましく、0.06以上0.3以下であるものがより好ましく、0.07以上0.2以下であるものがさらにより好ましい。表面酸素濃度比が0.05以上であることにより、炭素繊維表面の極性官能基量を確保し、熱可塑性樹脂組成物との親和性が高くなるので、より強固な接着を得ることができる。また、表面酸素濃度比が0.5以下であることにより、表面酸化による炭素繊維自身の強度の低下を少なくすることができる。
 表面酸素濃度比とは、繊維表面の酸素(O)と炭素(C)の原子数の比を意味する。表面酸素濃度比をX線光電子分光法により求める場合の手順を、以下に一例を挙げて説明する。まず、溶剤で炭素繊維表面に付着しているサイジング剤などを除去する。次いで、炭素繊維を20mmにカットして、銅製の試料支持台に拡げて並べる。次いで、X線源としてA1Kα1、2を用い、試料チャンバー中を1×10Torrに保つ。測定時の帯電に伴うピークの補正値としてC1sの主ピークの運動エネルギー値(K.E.)を1202eVに合わせる。C1sピーク面積をK.E.として1191ev以上1205eV以下の範囲で直線のベースラインを引くことにより求める。O1sピーク面積をK.E.として947~959eVの範囲で直線のベースラインを引くことにより求める。
 表面酸素濃度比は、上記O1sピーク面積とC1sピーク面積の比から装置固有の感度補正値を用いて原子数比として算出したものである。X線光電子分光法装置として、国際電気社製モデルES-200を用い、感度補正値を1.74として算出し得る。
 炭素繊維の表面酸素濃度O/Cを0.05以上0.5以下に制御する手段としては、特に限定されるものではないが、電界酸化処理、薬液酸化処理、気相酸化処理などの手法が例示される。中でも電界酸化処理が取り扱いやすく好ましい。
 電界酸化処理に用いられる電解液としては、以下に挙げる化合物の水溶液が好ましく用いられる。硫酸、硝酸、塩酸等の無機酸、水酸化ナトリウム、水酸化カリウム及び水酸化バリウム等の無機水酸化物、アンモニア、炭酸ナトリウム、炭酸水素ナトリウム等の無機金属塩類、酢酸ナトリウム、安息香酸ナトリウム等の有機塩類、さらにこれらナトリウム塩の代わりにカリウム塩、バリウム塩その他の金属塩、アンモニウム塩、その他にはヒドラジンなどの有機化合物である。これらの中でも電解液としては無機酸が好ましく、硫酸及び硝酸が特に好ましく使用される。電界処理の程度は、電界処理で流れる電気量を設定することにより炭素繊維表面のO/Cを制御することができる。
 [ プリプレグ ]
 本発明のプリプレグは、前記強化繊維基材の空隙に樹脂が含浸されることで、プリプレグとしての形状を保持できる。そして、強化繊維を固定した状態で安定してプリプレグを積層し、プリフォームを製造することができる。つまり、積層工程における手間や時間を減らし、経済的負担を低減することができる。とりわけ、プリプレグを積層する際のプリプレグの取扱い性をさらに高め、かつさらに作業の手間を削減する観点から、強化繊維の配向を特定の範囲とすることが重要である。これにより厚み方向の干渉を防ぎ、プリプレグを簡易に積層しても成形品の等方性を確保することができる。さらには、強化繊維の長さを特定の範囲とすることで、得られる成形品の力学特性が優れるだけでなく、プリプレグまたはこれを積層して得られるプリフォームの厚み膨張をおさえ、サイズや形状の制約なく移送し、成形工程に供することが可能となる。
 ここで、本発明における「等方性」とは、プリプレグまたはこれを積層して得られるプリフォームを成形品とした場合に、比強度や比剛性、線膨張係数などの諸特性が測定する成形品の面内の方向によらず、均一な特性を示すことをいう。
 ここで、本発明における強化繊維基材は、繊維長10mmを越える強化繊維が0質量%以上50質量%以下、繊維長2mm以上10mm以下の強化繊維が50質量%以上100質量%以下および繊維長2mm未満の強化繊維が0質量%以上50質量%以下から構成されることが重要である。繊維長10mmより長い強化繊維が50質量%を越えると、積層工程ないし成形工程での厚み膨張が大きくなり取扱い性を損なう場合がある。また、繊維長2mm未満の強化繊維が50質量%を越えると、得られる成形品の力学特性が低下する場合があるばかりか、プリプレグまたはそれを積層して得られるプリフォームに十分な強度が確保できずに成形性を損なう場合がある。これらの観点から、強化繊維基材は繊維長3mm以上8mm以下の強化繊維が80質量%以上100質量%以下から構成されることが好ましい。さらに、強化繊維基材は、繊維長の分布が少なくとも2つのピークを有し、少なくとも1つのピークが繊維長5mm以上10mm以下の範囲内にあり、他の少なくとも1つのピークが繊維長2mm以上5mm以下の範囲内にあることがより好ましい。繊維長の分布をより好ましい範囲とすることで、力学特性を確保するための強化繊維と、積層工程ないし成形工程でのプリフォームの取扱い性を確保するための強化繊維とを併用でき、両方の特性を容易に両立することができる。なお、ここでの強化繊維の質量割合は、強化繊維基材を構成する全強化繊維を100質量%としたときの、数平均での繊維長の割合を表す。
 強化繊維の繊維長の測定方法としては、例えば、強化繊維基材から直接強化繊維を摘出する方法や、プリプレグの樹脂のみを溶解する溶剤を用いて溶解させ、残った強化繊維を濾別して顕微鏡観察により測定する方法がある(溶解法)。樹脂を溶解する溶剤がない場合には、強化繊維が酸化減量しない温度範囲において樹脂のみを焼き飛ばし、強化繊維を分別して顕微鏡観察により測定する方法がある(焼き飛ばし法)。測定は強化繊維を無作為に400本選び出し、その長さを1μm単位まで光学顕微鏡にて測定し、繊維長とその割合を測定することができる。なお、強化繊維基材から直接強化繊維を摘出する方法と、プリプレグから焼き飛ばし法や溶解法で強化繊維を摘出する方法とを比較した場合、条件を適切に選定することで、得られる結果に特別な差異を生じることはない。
 さらに、本発明における強化繊維の配向としては、二次元配向角で定義することができる。一般的に強化繊維基材は強化繊維が束状になって構成されているケースが多く、このためプリプレグとして等方性を確保するのが難しく、かつ束内への樹脂含浸が十分でなく、成形品の強度低下の原因となる場合がある。強化繊維束が単糸に分散したとしても、強化繊維の単糸同士が平行して接触してしまうと同様の結果となる。さらには、厚み方向への繊維配向は、プリプレグまたはそれを積層して得られるプリフォームの厚み膨張の原因となり、取扱い性や成形性を著しく損なう場合がある。
 ここで、本発明における、強化繊維単糸(a)と、該強化繊維単糸(a)に交差する強化繊維単糸(b)とで形成される二次元配向角について図面を用いて説明する。図1は本発明のプリプレグの一例の強化繊維のみを面方向から観察した場合の、強化繊維の分散状態を表した模式図である。強化繊維単糸1に着目すると、強化繊維単糸1は強化繊維単糸2~7と交差している。ここで交差とは、観察した二次元平面において着目した強化繊維単糸(a)が他の強化繊維単糸(b)と交わって観察される状態のことを意味する。ここで実際のプリプレグにおいて、強化繊維1と強化繊維2~7が必ずしも接触している必要はない。二次元配向角は交差する2つの強化繊維単糸が形成する2つの角度のうち、0度以上90度以下の角度8と定義する。
 具体的にプリプレグから二次元配向角の平均値を測定する方法には特に制限はないが、例えば、プリプレグの表面から強化繊維の配向を観察する方法が例示できる。この場合プリプレグ表面を研磨して繊維を露出させることで、より強化繊維を観察しやすくなるため好ましい。また、プリプレグに透過光を利用して強化繊維の配向を観察する方法が例示できる。この場合プリプレグを薄くスライスすることで、より強化繊維を観察しやすくなるため好ましい。さらに、プリプレグをX線CT透過観察して強化繊維の配向画像を撮影する方法も例示できる。X線透過性の高い強化繊維の場合には、強化繊維にトレーサ用の繊維を混合しておく、あるいは強化繊維にトレーサ用の薬剤を塗布しておくと、より強化繊維を観察しやすくなるため好ましい。
 また、上記方法で測定が困難な場合には、強化繊維の構造を崩さないように樹脂を除去した後に強化繊維の配向を観察する方法が例示できる。例えば図2(a)に示すように、プリプレグを2枚のステンレス製メッシュに挟み、プリプレグが動かないようにネジなどで固定してから樹脂成分を焼き飛ばし、得られる強化繊維基材(図2(b))を光学顕微鏡または電子顕微鏡で観察して測定することができる。
 本発明での二次元配向角の平均値は、以下の手順I、IIで測定する。
I.無作為に選択した強化繊維単糸(a)(図1における強化繊維単糸1)と、この強化繊維単糸(a)に交差している全ての強化繊維単糸(b)(図1における強化繊維単糸2~7)との二次元配向角を測定し、平均値を求める。強化繊維単糸(a)に交差する強化繊維単糸(b)が多数の場合には、交差する強化繊維単糸(b)を無作為に20本選び測定した平均値を代用してもよい。
II.上記Iの測定を別の強化繊維単糸(a)に着目して合計5回繰り返し、その平均値を二次元配向角の平均値として算出する。
 本発明での強化繊維の二次元配向角の平均値は10度以上80度以下であり、好ましくは20度以上70度以下であり、より好ましくは30度以上60度以下であり、理想的な角度である45度に近づくほど好ましい。二次元配向角の平均値が10度未満または80度より大きいと、強化繊維が束状のまま多く存在していることを意味しており、力学特性が低下する。さらに、二次元の等方性が損なわれる場合には、成形品特性の等方性を確保するために、強化繊維の配向が各方向へ向かうように、多数のプリプレグを積層する必要がある。また厚み方向の強化繊維が無視できない場合には、プリプレグが厚くなるために積層の際のプリプレグの配置、移送などの取り扱いが困難になり、積層工程での経済的負担が大きくなる場合がある。
 二次元配向角を理想的な角度に近づけるには、強化繊維基材を製造する際に、強化繊維を分散させ、かつ平面的に配置することで達成できる。強化繊維の分散を高めるために、乾式法や湿式法を用いることができる。乾式法とは強化繊維束の分散を空気中で行う方法である。湿式法とは強化繊維束の分散を水中で行う方法である。乾式法では、開繊バーを設ける方法やさらに開繊バーを振動させる方法、さらにカードの目を細かくする方法や、カードの回転速度を調整する方法などが例示できる。湿式法でも、強化繊維を分散させる際の攪拌条件を調整する方法、濃度を希薄化する方法、溶液粘度を調整する方法、分散液を移送させる際に渦流を抑制する方法などが例示できる。
 また平面的に配置するために、乾式法では、強化繊維を集積する際に、静電気を用いる方法、整流化したエアを用いる方法、コンベアの引取速度を調整する方法などが例示できる。湿式法でも、超音波などで分散した強化繊維の再凝集を防止する方法、濾過速度を調整する方法、コンベアのメッシュ径を調整する方法、コンベアの引取速度を調整する方法などが例示できる。これらの方法は、特に限定されるものではなく、強化繊維基材の状態を確認しながら、その他の製造条件を制御することでも達成できる。
 特に湿式法で製造する場合には、例えば図3に例示するような抄紙基材の製造装置を用いる方法が例示できる。投入繊維の濃度を増やすことで、得られる強化繊維基材の目付を増やすことができる。さらに、分散液の流速(流量)とメッシュコンベアの速度を調整することでも目付を調整することができる。例えば、メッシュコンベアの速度を一定にして、分散液の流速を増やすことで得られる強化繊維基材の目付を増やすことができる。逆にメッシュコンベアの速度を一定にして、分散液の流速を減らすことで、得られる強化繊維基材の目付を減らすこともできる。さらには、分散液の流速に対して、メッシュコンベアの速度を調整することで、繊維の配向をコントロールすることも可能である。例えば、分散液の流速にたいして、メッシュコンベアの速度を速くすることで、得られる強化繊維基材中の繊維の配向がメッシュコンベアの引き取り方向に向きやすくなる。このように各種パラメータを調整し、強化繊維基材の製造が可能である。
 本発明のプリプレグにおける強化繊維基材の質量割合は、力学特性と成形性を両立する観点から、プリプレグ100質量%に対して5質量%以上60質量%以下が好ましく、より好ましくは10質量%以上60質量%以下であり、さらに好ましくは10質量%以上50質量%以下であり、特に好ましくは15質量%以上40質量%以下である。本発明のプリプレグでは、強化繊維基材の空隙に樹脂を含浸させる必要があるが、その含浸率は好ましくは30%以上100%以下であり、より好ましくは40%以上100%以下であり、さらに好ましくは50%以上100%以下である。含浸率が好ましい範囲であれば、本発明の効果である、プリプレグの取扱い性や、成形性を損なうことなく使用できる。また、本発明のプリプレグを用いて得られる成形品の軽量性を高める観点から、樹脂の含浸率を100%と換算したときの、強化繊維の体積割合は50%以下であることが好ましく、より好ましくは40%以下であり、さらに好ましくは10%以上30%以下である。
 含浸率の測定方法としては、特に制限はなく、例えば以下に示す簡便な方法で測定することができる。まず、プリプレグの断面観察を行い顕微鏡写真から空隙の総面積を計算して強化繊維基材の面積で除する方法、プリプレグの23℃での厚みh0とそれをプレス成形した後の23℃での厚みhc0との比(hc0/h0)から求める方法、また各材料の使用割合から求めた理論密度とプリプレグの嵩密度との比から求める方法などが例示できる。ここでは、プリプレグの厚み方向断面を観察して、断面における空隙部分の面積と断面全体の面積とを測定して算出する方法を具体的に説明する。すなわち、プリプレグをエポキシなどの熱硬化性樹脂で包埋し、プリプレグの断面端部にあたる面を研磨し、幅500μm以上1000μm以下程度の範囲を光学顕微鏡または電子顕微鏡で観察し、コントラスト比において、樹脂が含浸している部位と、樹脂が含浸していない部位の面積を求め、次式により樹脂含浸率を算出する方法である。
・樹脂含浸率(%)=100×(樹脂が含浸している部位の総面積)/(プリプレグの観察部位の断面積のうち強化繊維部分を除いた総面積)。
 また、プリプレグの嵩密度は、プリプレグの23℃での体積と、質量から求めることができる。本発明のプリプレグの好ましい嵩密度は0.8以上1.5以下であり、より好ましくは0.9以上1.4以下、さらに好ましくは1.0以上1.3以下である。嵩密度が好ましい範囲であれば、本発明のプリプレグを用いた成形品が十分な軽量性を確保することができる。同じ理由で、プリプレグの目付としては好ましくは10g/m以上500g/m以下であり、より好ましくは30g/m以上400g/m以下であり、さらに好ましくは100g/m以上300g/m以下である。
 本発明のプリプレグの厚みは、積層してプリフォーム化する工程での取扱い性の観点から、23℃での厚みh0が0.03mm以上1mm以下であり、好ましくは0.05mm以上0.8mm以下であり、より好ましくは0.1mm以上0.6mm以下である。h0が0.03mm未満ではプリプレグが破ける場合があり、1mmを越えると賦形性を損なう場合がある。
 本発明のプリプレグは、プリフォームにした場合の成形時の厚み膨張を抑えることで、金型への安定した移送を行うことができ好ましい。プリプレグの積層工程や、プリフォームの成型工程では、賦形性や接着性を制御する観点から予熱を行う場合がある。したがって、プリプレグの(n×100)℃での厚みhn(mm)が、h0≦hn≦h0×(2n+1)(nは、1,2,3,4から選ばれる少なくとも一つの自然数。)であることが好ましく、より好ましくはh0≦hn≦h0×2nであり、とりわけ好ましくはh0≦hn≦h0×(2n―1)である。なお、(n×100)℃におけるプリプレグの厚みは、プリプレグを測定する温度雰囲気下に10分間放置したのちにノギスやレーザー変位計、厚みをカメラ撮影して計測するなどの既存の計測手段を用いて測定できる。
 ここで、nが大きいほど使用される雰囲気温度が高いことを意味しており、プリプレグは雰囲気温度が高くなるほど厚み膨張が大きくなる傾向を示す。これは、単純な体積膨張に加え、強化繊維同士の厚み方向の干渉であり、この現象は樹脂が低粘度化するほど顕著になるため、より雰囲気温度依存性が高い。さらには、使用される樹脂の分解や発泡による厚み膨張も挙げられる。従って、nについては、使用される材料によって適切な数字を選択することができる。
 n=1(雰囲気温度100℃)は、乾燥温度および積層工程時に用いる一般的な温度である。この温度での厚みがh0の3倍以下であると、プリフォームの厚みを安定して小さくでき、積層工程の負荷を低減する観点から好ましい。また、n=2(雰囲気温度200℃)は、一般的な熱硬化性樹脂の硬化や、低融点の熱可塑性樹脂の加工温度である。この温度での厚みがh0の5倍以下であると、成形工程における金型への移送などの取扱性や安定した賦形性を確保する観点から好ましい。さらに、n=3(雰囲気温度300℃)は、一般的な汎用エンジニアリングプラスチックの加工温度の上限にあたる。この温度での厚みがh0の7倍以下であると、樹脂分解が少なく、プリプレグまたはプリフォームを安全に安定して取扱える観点から好ましい。最後に、n=4(雰囲気温度400℃)は、一般的なスーパーエンジニアリングプラスチックの加工温度であり、それ以外の熱可塑性樹脂や熱硬化性樹脂は分解が促進され、強化繊維基材の厚み膨張は最大点に近くなる。従って、この温度での厚みがh0の9倍以下であると、強化繊維の厚み方向の配置割合を抑え、プリプレグの安定した取扱い性の観点から好ましい。
 強化繊維の厚み方向の配置割合を抑える方法としては、上述のとおり、強化繊維基材を製造する際に、強化繊維を分散させ、かつ平面的に配置することで達成できる。平面的に配置するために、乾式法では、強化繊維を集積する際に、静電気を用いる方法、整流化したエアを用いる方法、コンベアの引取速度を調整する方法などが例示できる。湿式法でも、超音波などで分散した強化繊維の再凝集を防止する方法、濾過速度を調整する方法、コンベアのメッシュ径を調整する方法、コンベアの引取速度を調整する方法などが例示できる。特に良好な分散状態を維持したままコンベアで強化繊維基材を吸引しながら連続的に引取る方法は、コンベアの流れに合わせてコンベア上にコンベア平面と平行な方向に強化繊維を強制的に倒して強化繊維基材を作製できることから、強化繊維の厚み方向の配置割合を抑える方法として好ましい。
 測定する温度雰囲気が非常に高温の場合で、直接測定することが困難なときは、厚みが安定した状態を維持できるように処置してから、測定が可能な温度に調整してから測定してもよい。例えば熱可塑性樹脂のプリプレグであれば、融点または軟化点以上の高温雰囲気下では樹脂が流動しているが、室温まで冷却することで、プリプレグの樹脂が固化し厚みを固定した状態で測定できる。
 厚みの測定部位については、プリプレグにおいて2点X、Yを、該プリプレグの面内において直線距離XYが最も長くなるように決定する。次に該直線XYを10等分以上した際の両端XYを除く各分割点を厚みの測定点とする。各測定点における厚みの平均値をプリプレグの厚みとする。
 [ 樹脂 ]
 プリプレグに使用される樹脂としては、強化繊維基材に含浸性を有し、積層工程での取扱い性を確保するための引張強度が達成できる樹脂であれば特に制限はなく、以下に示す熱可塑性樹脂、未硬化状態の熱硬化性樹脂が使用できる。このうち、本発明のプリプレグでは、熱可塑性樹脂を使用する。
 積層工程での取扱い性を確保するための引張強度σは、数値が高いほど、高速かつ経済性に優れた積層工程、成形工程に供することができる。プリプレグの引張強度σは少なくとも0.01MPaが必要である。0.01MPa未満では積層時、または成形時の操作においてプリプレグが破けるなどの問題が発生する場合がある。また、プリプレグの等方性の指標として、引張強度σが、測定方向による最大引張強度σMaxと最小引張強度σMinとの関係において、σMax≦σMin×2であることが好ましく、より好ましくはσMax≦σMin×1.8であり、さらに好ましくはσMax≦σMin×1.5である。σの等方性が高いほど、積層工程での経済的負荷を削減することができる観点から好ましい。
 プリプレグの引張強度は、プリプレグから試験片を切り出し、ISO527-3法(1995)に従い引張特性を測定して求める。試験片は、任意の方向を0度方向とし、+45度、-45度、90度方向の4方向について測定する。それぞれの方向について測定数はn=5以上とし、全測定結果の平均値を引張強度とする。各測定方向での引張強度のうち、最大値をσMaxとし、最小値をσMinとする。
 本発明のプリプレグに使用される熱可塑性樹脂としては、例えば、「ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリトリメチレンテレフタレート(PTT)、ポリエチレンナフタレート(PEN)、液晶ポリエステル等のポリエステルや、ポリエチレン(PE)、ポリプロピレン(PP)、ポリブチレン等のポリオレフィンや、ポリオキシメチレン(POM)、ポリアミド(PA)、ポリフェニレンスルフィド(PPS)などのポリアリーレンスルフィド、ポリケトン(PK)、ポリエーテルケトン(PEK)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルケトンケトン(PEKK)、ポリエーテルニトリル(PEN)、ポリテトラフルオロエチレンなどのフッ素系樹脂、液晶ポリマー(LCP)」などの結晶性樹脂、「スチレン系樹脂の他、ポリカーボネート(PC)、ポリメチルメタクリレート(PMMA)、ポリ塩化ビニル(PVC)、ポリフェニレンエーテル(PPE)、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリエーテルイミド(PEI)、ポリサルホン(PSU)、ポリエーテルサルホン、ポリアリレート(PAR)」などの非晶性樹脂、その他、フェノール系樹脂、フェノキシ樹脂、更にポリスチレン系、ポリオレフィン系、ポリウレタン系、ポリエステル系、ポリアミド系、ポリブタジエン系、ポリイソプレン系、フッ素系樹脂、およびアクリロニトリル系等の熱可塑エラストマー等や、これらの共重合体および変性体等から選ばれる熱可塑性樹脂が挙げられる。中でも、得られる成形品の軽量性の観点からはポリオレフィンが好ましく、強度の観点からはポリアミドが好ましく、表面外観の観点からポリカーボネートやスチレン系樹脂のような非晶性樹脂が好ましく、耐熱性の観点からポリアリーレンスルフィドが好ましく、連続使用温度の観点からポリエーテルエーテルケトンが好ましく、さらに耐薬品性の観点からフッ素系樹脂が好ましく用いられる。
 本発明のプリプレグに熱可塑性樹脂を使用すると、高い引張強度σが得られるため、積層工程、成形工程の経済性に有利である。この場合の好ましいσは1MPa以上であり、より好ましくは10MPa以上であり、さらに好ましくは50MPa以上である。σの上限については特に制限はないが、1000MPa以下が一般的に例示できる。
 本発明のプリプレグに使用される熱硬化性樹脂としては、例えば、例えば、不飽和ポリエステル、ビニルエステル、エポキシ、フェノール(レゾール型)、ユリア・メラミン、ポリイミド、これらの共重合体、変性体、および、これらの少なくとも2種類をブレンドした樹脂が挙げられる。中でも、得られる成形品の力学特性の観点からエポキシ樹脂が好ましく用いられる。また、プリプレグは成形工程で硬化させるため、用いる熱硬化性樹脂のガラス転移温度は80℃以下が好ましく、70℃以下がより好ましく、60℃以下がさらに好ましい。
 なお、プリプレグに熱硬化性樹脂を使用すると、引張強度σを確保することがより困難となる。この場合の好ましいσは0.05MPa以上であり、より好ましくは0.1MPa以上であり、さらに好ましくは1MPa以上である。σの上限については特に制限はないが、10MPa以下が一般的に例示できる。引張強度σを確保する手段としては、特に制限はなく、例えば高粘度タイプの熱硬化性樹脂を使用する方法、高接着タイプの熱硬化性樹脂を使用する方法、繊維強化基材に予め有機化合物などで目留めをしておく方法などで達成することができる。
 本発明で使用される樹脂成分には、上記熱可塑性樹脂マトリックスに熱硬化性樹脂を混合したブレンド物を使用してもよい。さらに樹脂成分には、その用途に応じて、更に、充填材、導電性付与材、難燃剤、難燃助剤、顔料、染料、滑剤、離型剤、相溶化剤、分散剤、結晶核剤、可塑剤、熱安定剤、酸化防止剤、着色防止剤、紫外線吸収剤、流動性改質剤、発泡剤、抗菌剤、制振剤、防臭剤、摺動性改質剤、および帯電防止剤等を添加しても良い。とりわけ、用途が電気・電子機器、自動車、航空機などの場合には、難燃性が要求される場合があり、リン系難燃剤、窒素系難燃剤、無機系難燃剤が好ましく添加される。このように、樹脂成分の中に、熱可塑性樹脂以外の成分が含まれる場合、熱可塑性樹脂を用いた効果が損なわれないようにするため、樹脂成分中の熱可塑性樹脂の含有量は60質量%以上とする。
 本発明のプリプレグは、経済性の観点から長尺であることが好ましく、長尺方向の長さは好ましくは500mm以上、より好ましくは800mm以上、さらに好ましくは1000mm以上である。長尺方向の長さの上限については特に制限はないが、4000m以下が一般的に例示できる。
 [プリプレグの製造方法]
 本発明のプリプレグのように強化繊維が均一に分散したプリプレグを製造する方法については、これまで様々な検討がなされている。
 例えば、前述の国際公開第2007/97436号パンフレットには、繊維強化熱可塑性樹脂成形体の強化繊維として、単繊維状の炭素繊維であって質量平均繊維長が0.5mm以上10mm以下であり、かつ、配向パラメータが-0.25以上0.25以下である炭素繊維を用いると、力学特性に優れ、等方的な力学特性を有する成形体が得られることが記載されている。この繊維強化熱可塑性樹脂成形体は、(1)成形材料に含まれる熱可塑性樹脂を加熱溶融する工程、(2)金型に成形材料を配置する工程、(3)金型で成形材料を加圧する工程、(4)金型内で成形材料を固化する工程、(5)金型を開き、繊維強化熱可塑性樹脂成形体を脱型する工程により製造される。
 また、特開平9-94826号公報には、繊維強化樹脂シートを製造するにあたり、不連続補強繊維と熱可塑性樹脂とを含む分散液を抄造する際に分散液の流れ方向を制御することにより、ウェブ中の繊維の配向をランダム化して、軽量で各方向に等方的に高い機械的強度を有し、且つ薄物大型品の成形性に優れた特性を発揮するランダム配向繊維強化樹脂シートが得られることが記載されている。
 また、特開2004-217879号公報には、スタンパブルシートの製法として、(1)強化繊維と熱可塑性樹脂とを湿式分散法によりシート状に抄造した後、乾燥し、シートの略平面方向に配向した強化繊維が部分的に熱可塑性樹脂で結着されたマトリックス構造のウェブを製造し、(2)得られたウェブをニードリングして、前記マトリックス中の強化繊維の一部を厚み方向に配向させ、ニードリングマットを形成した後、(3)ニードリングマットの片面をマトリックス中の熱可塑性樹脂の融点異常の温度で加熱・圧縮する製法が記載されている。
 これら特許文献のプリプレグの製法においては、いずれも樹脂込みで強化繊維を抄紙しており、樹脂種を増やすには装置の洗浄、装置台数の増加などが必要である。また、炭素繊維の配向を制御する必要があり、そのために工程ごとに詳細な条件を設定する必要がある。そのため、製造に時間および手間を要し、プリプレグの効率的な製造への適用には問題がある。
 また、特開平9-94826号公報、特開2004-217879号公報記載のプレプリグの製造方法では、強化繊維と熱可塑性樹脂を混抄する必要があり、熱可塑性樹脂を変更した成形基材を作成するためには、樹脂を変更して抄紙する必要があるため、撹拌槽や抄紙槽の洗浄または製造ラインの増設などの多くの手間がかかることとなり、効率的な製造への適用には問題がある。
 そこで、本発明では、以下の方法によりプリプレグを製造することが好ましい。すなわち、強化繊維束を分散させて強化繊維基材を得る工程(I)と、前記工程(I)で得られる強化繊維基材にバインダーを付与する工程(II)と、前記工程(II)において得られるバインダーの付与された強化繊維基材にマトリックス樹脂を複合化する工程(III)とを有してなるプリプレグの製造方法であって、前記工程(I)~(II)がオンラインで実施されてなり、プレプリグ全体に対する前記強化繊維束の含有率が10質量%以上80質量%以下、前記バインダーの含有率が0.1質量%以上10質量%以下および前記マトリックス樹脂の含有率が10質量%以上80質量%以下であるプリプレグの製造方法である。本発明のプリプレグの製造方法によれば、強化繊維の分散状態に優れ、成形品とした場合に力学特性に優れるプリプレグを短時間で得ることができる。
 工程(I)では強化繊維束を分散させて強化繊維基材を得る。
 強化繊維束とは、強化繊維から構成される繊維束を意味する。強化繊維束は、連続した強化繊維から構成されるもの、あるいは不連続な強化繊維から構成されるもののどちらでも良いが、より良好な分散状態を達成するためには、不連続な強化繊維束が好ましく、連続した強化繊維束をカットしたチョップド繊維がより好ましい。
 強化繊維束は、炭素繊維により構成される繊維束(炭素繊維束)であることが好ましく、チョップド炭素繊維であることがより好ましい。
 また、強化繊維束を構成する単繊維の本数には、特に制限はないが、生産性の観点からは24,000本以上が好ましく、48,000本以上がさらに好ましい。単繊維の本数の上限については特に制限はないが、分散性や取り扱い性とのバランスも考慮して、300,000本程度もあれば生産性と分散性、取り扱い性を良好に保つことができる。
 強化繊維基材の原料である強化繊維束の長さは、1mm以上50mm以下であることが好ましく、3mm以上30mm以下であることがより好ましい。強化繊維束の長さが1mm未満であると、強化繊維による補強効果を効率良く発揮することが困難となるおそれがある。強化繊維束の長さが50mmを超えると、分散を良好に保つのが困難となるおそれがある。強化繊維束の長さとは、強化繊維束を構成する単繊維の長さをいい、強化繊維束の繊維軸方向の長さをノギスで測定する、あるいは強化繊維束から単繊維を取り出し顕微鏡で観察して測定できる。また強化繊維基材中より強化繊維長を測定するには、以下のようにしてプリプレグから炭素繊維を分離して測定され得る。プリプレグの一部を切り出し、結着している熱可塑性樹脂を溶解させる溶媒により、熱可塑性樹脂を充分溶解させる。その後濾過などの公知の操作により熱可塑性樹脂から炭素繊維を分離する。或いは、プリプレグの一部を切り出し、500℃の温度で2時間加熱し、熱可塑性樹脂を焼き飛ばして熱可塑性樹脂から炭素繊維を分離する。分離された炭素繊維を無作為に400本抽出し、光学顕微鏡もしくは走査型電子顕微鏡にてその長さを10μm単位まで測定し、その平均値を繊維長とする。
 工程(I)では、強化繊維束を分散させて強化繊維基材を得るにあたり、湿式法、或いは乾式法のいずれかを用いることができる。
 湿式法により工程(I)を行う場合、強化繊維束の分散を水中で行い得られるスラリーを抄造して強化繊維基材を得ることができる。
 強化繊維束を分散させる水(分散液)は、通常の水道水のほか、蒸留水、精製水等の水を使用することができる。水には必要に応じて界面活性剤を混合できる。界面活性剤は、陽イオン型、陰イオン型、非イオン型、両性の各種に分類されるが、このうち非イオン性界面活性剤が好ましく用いられ、中でもポリオキシエチレンラウリルエーテルがより好ましく用いられる。界面活性剤を水に混合する場合の界面活性剤の濃度は、通常は0.0001質量%以上0.1質量%以下、好ましくは0.0005質量%以上0.05質量%以下である。
 水(分散液)に対する強化繊維束の添加量は、水(分散液)1Lに対する量として、通常0.1g以上10g以下、好ましくは0.3g以上5g以下の範囲で調整し得る。0.1g以上10g以下とすることにより、強化繊維束が水(分散液)に効率よく分散し、均一に分散したスラリーを短時間で得ることができる。水(分散液)に対し強化繊維束を分散させる際には、必要に応じて撹拌を行う。
 スラリーとは固体粒子が分散している懸濁液をいう。スラリーにおける固形分濃度(スラリー中の強化繊維の質量含有量)は、0.01質量%以上1質量%以下であることが好ましく、0.03質量%以上0.5質量%以下であることがより好ましい。0.01質量%以上1質量%以下であることにより、抄造を効率よく行うことができる。
 スラリーの抄造は、上記スラリーから水を吸引して行うことができる。スラリーの抄造は、いわゆる抄紙法に倣って行うことができる。一例を挙げて説明すると、底部に抄紙面を有し水を底部から吸引できる槽に、スラリーを流し込み水を吸引して行うことができる。前記槽としては、熊谷理機工業株式会社製、No.2553-I(商品名)、底部に幅200mmの抄紙面を有するメッシュコンベアを備える槽が例示される。このようにして強化繊維基材が得られる。
 分散後得られる強化繊維基材の含水率は、工程(II)のバインダー付与工程においてバインダーを付与する前に、10質量%以下、好ましくは5質量%以下に調整されることが好ましい。これにより、工程(II)に要する時間を短縮し、プリプレグを短時間で得ることができる。
 乾式法により工程(I)を行う場合、強化繊維束を気相中で分散させて強化繊維基材を得ることができる。すなわち、強化繊維束を気相中で分散させて、分散後の強化繊維束を堆積させて、強化繊維基材を得ることができる。
 強化繊維束の気相中での分散は、強化繊維束を非接触式で開繊し、開繊した強化繊維束を堆積させて行う方法(非接触式法)、強化繊維束に空気流を当てて開繊し、開繊した強化繊維束を堆積させて行う方法(空気流を用いる方法)、強化繊維束を接触式で開繊し、開繊した強化繊維束を堆積させて行う方法(接触式法)の3種類がある。
 非接触式法は、強化繊維束に固体や開繊装置を接触させることなく開繊させる方法である。例えば、空気や不活性ガスなどの気体を強化繊維束に吹き付ける方法、なかでもコスト面で有利な空気を加圧して吹き付ける方法が好ましく挙げられる。
 空気流を用いる方法において、強化繊維束に対し空気流を当てる条件は特に限定されない。一例を挙げると、加圧空気(通常0.1MPa以上10MPa以下、好ましくは0.5MPa以上5MPa以下の圧力がかかるような空気流)を強化繊維束が開繊するまで当てる。空気流を用いる方法において、使用し得る装置は特に限定されないが、空気管を備え、空気吸引が可能であり、強化繊維束を収容し得る容器が例示できる。かかる容器を用いることにより、強化繊維束の開繊と堆積を一つの容器内で行うことができる。
 接触式法とは、強化繊維束に固体や開繊装置を物理的に接触させて開繊させる方法である。接触式法としては、カーディング、ニードルパンチ、ローラー開繊が例示される。このうちカーディング、ニードルパンチによることが好ましく、カーディングによることがより好ましい。接触式法の実施条件は特に限定されず、強化繊維束が開繊する条件を適宜定めることができる。
 強化繊維基材に占める強化繊維の割合は、80質量%以上100質量%以下であることが好ましく、90質量%以上100質量%以下であることがより好ましい。80質量%以上100質量%以下であることにより、強化繊維基材を用いてマトリックス樹脂と複合させた場合に、効率的に補強効果を発現することができる。
 強化繊維基材の目付は、10g/m以上500g/m以下であることが好ましく、50g/m以上300g/m以下あることがより好ましい。10g/m未満であると基材の破れなどの取り扱い性に不具合を生じるおそれがあり、500g/mを超えると、湿式法では基材の乾燥に長時間かかることや、乾式法ではウェブが厚くなる場合があり、その後のプロセスで取り扱い性が難しくなるおそれがある。
 工程(II)では工程(I)において得られる強化繊維基材に、バインダーを付与する。
 バインダーとは、強化繊維基材とマトリックス樹脂との間に介在し両者を連結するバインダーを意味する。バインダーは通常、熱可塑性樹脂である。熱可塑性樹脂としては、アクリル系重合体、ビニル系重合体、ポリウレタン、ポリアミド及びポリエステルが例示される。本発明においてはこれらの例より選ばれる1種、または2種以上が好ましく用いられる。また、熱可塑性樹脂は、アミノ基、エポキシ基、カルボキシル基、オキサゾリン基、カルボン酸塩基及び酸無水物基から選択される少なくとも1種の官能基を有することが好ましく、2種以上を有していてもよい。中でも、アミノ基を有する熱可塑性樹脂がより好ましい。
 バインダーの強化繊維基材への付与は、バインダー(例えば上記熱可塑性樹脂)の水溶液、エマルジョンまたはサスペンジョンの形態で行うことが好ましい。水溶液とは水にほぼ完全に溶解した状態の溶液を意味し、エマルジョンとは完全に溶解しない2つの液体が液中で微細粒子を形成している状態の溶液(乳濁液)を意味し、サスペンジョンとは水に懸濁した状態の溶液(懸濁液)を意味する。液中の成分粒径の大きさは、水溶液<エマルジョン<サスペンジョンの順である。付与方式は特に問わないが、例えば熱可塑性樹脂の水溶液、エマルジョンまたはサスペンジョンに炭素繊維基材を浸漬する方式、シャワー式等によることができる。接触後は乾燥工程の前に、例えば吸引または吸収紙などの吸収材へ吸収させるなどで、過剰分のバインダーを除去しておくことが好ましい。
 前記工程(II)において、強化繊維基材は、バインダーの付与後に加熱されることが好ましい。これにより、工程(III)に要する時間を短縮し、プリプレグを短時間で得ることができる。加熱温度は、バインダー付与後の強化繊維基材が乾燥する温度を適宜設定することができ、100℃以上300℃以下であることが好ましく、120℃以上250℃以下であることがより好ましい。
 工程(III)では工程(II)において得られるバインダーの付与された強化繊維基材にマトリックス樹脂を含浸させ、強化繊維基材とマトリックス樹脂とを複合化する。
 バインダーの付与された強化繊維基材へのマトリックス樹脂の複合化は、マトリックス樹脂を強化繊維基材に接触させることにより行うことができる。この場合のマトリックス樹脂の形態は特に限定されないが、例えばマトリックス樹脂が熱可塑性樹脂の場合、布帛、不織布及びフィルムから選択される少なくとも1種の形態であることが好ましく、不織布であることがより好ましい。接触の方式は特に限定されないが、マトリックス樹脂の布帛、不織布またはフィルムを2枚用意し、バインダーの付与された強化繊維基材の上下両面に配置する方式が例示される。
 複合化は、加圧および/または加熱により行われることが好ましく、加圧と加熱の両方が同時に行われることがより好ましい。加圧の条件は0.01MPa以上10MPa以下であることが好ましく、0.05MPa以上5MPa以下であることがより好ましい。加熱の条件は用いるマトリックス樹脂が溶融または流動可能な温度であることが好ましく、温度領域では50℃以上400℃以下であることが好ましく、80℃以上350℃以下であることがより好ましい。加圧および/または加熱は、マトリックス樹脂をバインダーの付与された強化繊維基材に接触させた状態で行うことができる。例えば、マトリックス樹脂の布帛、不織布またはフィルムを2枚用意し、バインダーの付与された強化繊維基材の上下両面に配置し、両面から加熱および/または加熱を行う(ダブルベルトプレス装置で挟み込む方法等)方法が挙げられる。
 工程(III)により、プリプレグが得られる。
 本発明においては、上記工程(I)~(III)のほかにさらに工程(IV)を有していてもよい。工程(IV)は、前記工程(III)で得られたプリプレグを引き取る工程である。プリプレグの引き取りは、ロールに巻き取って行うことができる。引取速度は10m/分以上であることが好ましい。引取速度の上限は通常は、100m/分以下である。
 上記工程(I)~工程(III)および必要に応じて行う工程(IV)のうち、工程(I)~(II)はオンラインで実施されることが好ましい。さらに、工程(I)~工程(III)および必要に応じて行う工程(IV)のすべてがオンラインで実施されることがより好ましい。オンラインとは、各工程の間が連続的に実施される方式であり、オフラインの反対語である。すなわちオンラインとは、各工程が一連の流れとして行われるプロセスを意味し、それぞれが独立した状態のプロセスとは異なる。工程(I)~(II)をオンラインで実施することにより、プリプレグを短時間で得ることができる。
 プリプレグ全体に対する強化繊維束、バインダー及びマトリックス樹脂の配合量は、強化繊維束が10質量%以上80質量%以下、バインダーが0.1質量%以上10質量%以下、マトリックス樹脂が10質量%以上80質量%以下であることが好ましい。この範囲とすることにより、強化繊維の補強を効率良く発揮可能な成形基材が得られ易い。より好ましくは、強化繊維束が10質量%以上60質量%以下、バインダーが0.5質量%以上10質量%以下、マトリックス樹脂が30質量%以上80質量%以下である。さらに好ましくは、強化繊維束が20質量%以上60質量%以下、バインダーが1質量%以上8質量%以下、マトリックス樹脂が32質量%以上79質量%以下である。
 [ 湿式法による強化繊維基材の製造方法 ]
 前述の強化繊維束を分散させて強化繊維基材を得る工程(I)では、湿式法により強化繊維基材を得ることが好ましい。特に、以下の工程(i)~(iv)で強化繊維基材を得ることが好ましい。すなわち、分散媒体に強化繊維束を投入する工程(i)と、前記強化繊維束を構成する強化繊維が前記分散媒体中に分散したスラリーを調製する工程(ii)と、前記スラリーを輸送する工程(iii)と、前記スラリーより分散媒体を除去して強化繊維を含む抄紙基材を得る工程(iv)とを有する強化繊維基材の製造方法である。
 工程(i)では、分散媒体に強化繊維束を投入する。
 分散媒体(分散液)とは、強化繊維束を分散させ得る媒体を意味する。分散媒体の例としては水、アルコールなどのいわゆる溶媒が挙げられるが、水が好ましい。水としては、通常の水道水のほか、蒸留水、精製水等の水を使用することができる。水には必要に応じて界面活性剤を混合し得る。界面活性剤は、陽イオン型、陰イオン型、非イオン型、両性の各種に分類されるが、このうち非イオン性界面活性剤が好ましく用いられ、中でもポリオキシエチレンラウリルエーテルがより好ましく用いられる。界面活性剤を水に混合する場合の界面活性剤の濃度は、通常は0.0001質量%以上0.1質量%以下、好ましくは0.0005質量%以上0.05質量%以下である。また、分散媒体には必要に応じて高分子化合物を溶解させ、分散媒体の粘度を調整し得る。高分子化合物は、溶媒の種類に応じて水溶性高分子、有機溶性高分子を好ましく用いることができる。分散媒体が水の場合は、デンプン、ポリビニルアルコール、ポリエチレンオキシドがより好ましく用いられる。高分子化合物を分散媒体に溶解する場合の高分子化合物の濃度は、好ましくは0.01質量%以上5質量%以下、より好ましくは0.05質量%以上1質量%以下である。
 分散媒体を構成する溶媒、界面活性剤、および高分子化合物は1種類であってもよいし、2種類以上であってもよい。
 分散媒体は、B型粘度計により測定される粘度が、2mPa・s以上100mPa・s以下であることが好ましく、2mPa・s以上80mPa・s以下であることがより好ましく、3mPa・s以上50mPa・s以下であることがさらにより好ましい。粘度が1mPa・s以上であることにより、強化繊維の再凝集を抑制し、分散性に優れた繊維強化基材を得ることができる。また、表面酸素濃度比が100mPa・s以下であることにより、分散媒体中に含まれる界面活性剤や高分子化合物の強化繊維への付着が少なくなり、熱可塑性樹脂組成物との強固な接着を得ることができる。
 工程(ii)では、強化繊維束を構成する強化繊維が分散媒体中に分散したスラリーを調製する。本発明においては水系スラリーであることが好ましい。
 工程(ii)は、通常分散槽で実施される。分散槽はスラリーを収容可能な槽(容器)である。分散槽を用いる場合、工程(i)における分散媒体と強化繊維束とを、直接分散槽に投入することが好ましい。もちろん先に分散槽以外の槽に分散媒体と強化繊維束とを投入し、かかる槽の中身を分散槽に移して工程(ii)を行ってもよい。分散媒体(分散液)に強化繊維束を分散させる際には、必要に応じて攪拌を行ってもよい。つまり、分散槽は、必要に応じて撹拌装置を備えるものであってもよい。
 工程(iii)では、工程(ii)で得られるスラリーを輸送する。
 工程(iii)は、通常、工程(ii)が行われる分散槽と工程(iv)が行われる抄紙槽とを接続する輸送部で行われる。
 輸送部の幅は特に規定されないが、輸送部の幅W1と強化繊維基材の幅W2との比W1/W2が、0.5以上1.0以下であることが好ましく、0.7以上1.0以下であることがより好ましい。W1/W2が0.5未満であると工程(iii)における輸送に長時間を要するおそれや、輸送部においてポンプを用いない場合、輸送部から工程(iv)へスラリーが流れる際に、スラリー流動部の幅が大きくなるためにスラリーに負荷がかかり分散状態が不十分となるおそれがある。W1/W2が1.0を超えると工程(iv)におけるスラリーの分散状態が不十分となるおそれがある。ここで「輸送部の幅」とは輸送部の断面の長径を意味し、例えば輸送部の断面が長方形の場合には長いほうの径を意味する。「強化繊維基材の幅」とは工程(iv)において得られる強化繊維基材の長さ、幅、及び厚みのうち幅(長さより短い方)を意味する。尚、各幅が部位により異なる場合にはその平均値を意味するものとする。
 輸送部の幅は、通常は0.1m以上2m以下の範囲である。強化繊維基材の幅は、通常0.2m以上2m以下である。
 輸送部の形状はスラリーを輸送できる形状であれば特には限定されず、通常は管状である。必要に応じて、輸送部の途中に送液ポンプを備えることができる。送液ポンプは、例えばダイアフラムポンプ、スネークポンプ等の低剪断ポンプであることが好ましい。
 工程(iii)はオーバーフロー方式で行われるものであってもよい。これにより、輸送されるスラリー中の強化繊維に剪断力がかかり沈降、凝集することを防ぎ、スラリー中の分散性を保つことができる。また、ポンプなど動力を使わずに経済的に輸送が可能である。
 オーバーフロー方式とは、容器(槽)から溢れる液体を、重力を利用して次の容器(槽)へ送液する方式を意味する。すなわち、送液ポンプなどの動力を実質的に用いずに送液する方式である。
 オーバーフロー方式とする場合には、輸送部は傾斜していることが好ましい。すなわち、輸送部を水平方向から見る場合に、分散槽と輸送部との接続点が抄紙槽と輸送部との接続点よりも高い位置にあることが好ましい。その傾斜角は30°以上60°以下であることが好ましく、40°以上55°以下であることがより好ましい。傾斜角が30°未満であると工程(iii)における輸送に長時間を要するおそれがある。傾斜角が60°を超えると、オーバーフロー方式とした場合、スラリーの輸送時の流速が大きくなるために、工程(iv)への到達時にスラリーに過剰の剪断が加わり、工程(iv)におけるスラリーの分散状態が不十分となるおそれがある。
 ここで、傾斜角とは、輸送部の管の中心線と、重力方向と平行な線とが交差する部分の鉛直下方側の角度を意味する。
 尚、工程(iii)をオーバーフロー方式で行う場合には、輸送部の分散槽との接続部は分散槽の壁面、特に上方に位置することが好ましい。
 オーバーフロー方式とする場合には、輸送部は直線状であること、すなわち、湾曲部、屈曲部などの方向変換点を途中に有しない形状であることが好ましい。
 オーバーフロー方式とする場合には、輸送部の高さは60mm以上、好ましくは100mm以上であることが好ましい。60mm以上であることにより、輸送するスラリー量に対して輸送部壁面とスラリーとの接触面積を相対的に小さくすることができ、壁面接触時のスラリーへの剪断力発生による分散繊維の再凝集を少なくすることができる。ここで輸送部の高さとは、輸送部を水平方向から見る場合に、輸送部の径の大きさのことを意味する。輸送部が長方形(長辺が基材幅方向、短辺が基材厚み方向)の場合、短辺の長さが「輸送部の高さ」に該当する。輸送部の高さの上限は特に限定されないが、通常は500mm以下である。尚、輸送部の高さに部位により差がある場合にはその平均値を意味するものとする。
 輸送部の形状について、図13~図20を例にとって説明する。図13~図20は、工程(i)および工程(ii)は分散槽で行われ、前記工程(iv)は抄紙槽で行い、前記工程(iii)を前記分散槽と抄紙槽とを接続する輸送部で行う場合の、分散槽、抄紙槽及び輸送部の水平方向から見た位置付けを模式的に示す図である。図13~図18および図20中の輸送部213は、直線状を呈している。
 輸送部の傾斜角は、各図において輸送部213の中心線qと、重力方向に伸びる線pとが鉛直下方側に形成する角度rを意味する。図13、図17および図18中の輸送部213は、分散槽211から抄紙槽212に向けて傾斜しており、傾斜角が30°以上60°以下である。図14中の輸送部213は、分散槽211と抄紙槽212を水平に接続しており、傾斜角は略90°である。図15中の輸送部213は、分散槽211から抄紙槽212に向けて傾斜しており、傾斜角が30°以上60°以下である。図16中の輸送部213は、分散槽211と抄紙槽212とを重力方向で接続しており、傾斜角は略0°である。図20中の輸送部213も図16と同様に傾斜角は略0°であり、輸送部213の途中にポンプ225を備える。
 図13、図17および図18中、輸送部213の分散槽211との接続部214は、分散槽211の壁面の上方に位置する。そのため、図13のような分散槽、抄紙槽及び輸送部の位置関係であれば、工程(iii)をオーバーフロー方式により行うことが可能となる。
 工程(iv)では、スラリーより分散媒体を除去して強化繊維を含む抄紙基材、つまり強化繊維基材を得る。
 工程(iv)は、通常抄紙槽で実施される。抄紙槽はスラリーを収容可能であり、水分吸引可能な抄紙面を有する槽(容器)である。抄紙面は一般に底面付近に設けられ、その材料としてはメッシュシートなどが例示される。
 本発明においては、工程(iv)において得られる強化繊維基材を引き取ることができる。強化繊維基材の引き取りは、ロールに巻き取って行うことができる。引取速度は10m/分以上であることが好ましい。引取速度の上限は通常は、100m/分以下である。
 工程(i)~工程(iv)はオンラインで実施されることが好ましい。
 工程(ii)におけるスラリーの液面の高さH1は、工程(iv)におけるスラリーの液面の高さH2よりも高い位置にあることが好ましい。「スラリーの液面の高さ」とはスラリーを水平方向から見た場合の液面の位置を意味する。「高い位置にある」とは、2つの液面の高さを、該高さよりも鉛直下方に位置する基準からの距離としての測定値として表現した場合に、一方の高さが他方よりも高い位置にあること、すなわち、2つの液面の高さのうち一方が他方の鉛直下方に位置することを意味する。
 中でも、前記工程(ii)におけるスラリーの液面の高さH1が、前記工程(iv)におけるスラリーの液面の高さH2との差H1-H2が、0.1m以上5m以下であることが好ましく、0.5m以上2m以下であることがより好ましい。0.1m未満であると工程(iii)における輸送に長時間を要するおそれがある。一方、5mを超えると工程(iv)におけるスラリーの分散状態が不十分となるおそれがある。
 工程(ii)におけるスラリーの液面の高さH1と工程(iv)におけるスラリーの液面の高さH2について、図13~図20に基づき説明する。分散槽211のスラリー(斜線部分)の液面の高さH1は、H1及びH2よりも鉛直下方に位置する基準Aに対する液面の位置Bの距離H1で表される。抄紙槽212のスラリー(斜線部分)の液面の高さH2は、液面基準Aに対する液面の位置Cの距離H2で表される。スラリーの液面の高さH1およびH2の差を維持するためには、図13、図15、図16及び図19に示すように分散槽211と抄紙槽212とが重力方向を基準としてずれて位置していることが好ましいが、図14、図17及び図18に示すように、スラリーの量や槽の大きさなどにより、各槽内のスラリーの液面の高さを調整すれば、分散槽211と抄紙槽212の重力方向における位置が水平であってもよい。
 工程(ii)におけるスラリーの液面の高さH1を工程(iv)におけるスラリーの液面の高さH2よりも高い位置に保つためには、例えば工程(ii)を分散槽で、工程(iv)を抄紙槽で行う場合に、これら2つの槽を、分散槽の底面の位置が抄紙槽の上面の位置よりも鉛直上方に位置するように設置することが好ましい。
 工程(i)から工程(iv)の開始までの所要時間は、10分以内であることが好ましい。10分を超えると、強化繊維の種類によっては、スラリー中で分散した強化繊維が再凝集するとなるおそれがある。工程(i)から工程(iv)の開始までの所要時間の下限は特に限定されないが、通常は1分以上である。
 工程(i)において、分散媒体と強化繊維束とが継続的に投入され、前記工程(i)から工程(iv)までが継続的に実施されることが好ましい。これにより、強化繊維基材をより短時間で得ることができる。また、一度にスラリーを大量に投入すると、スラリーの一部は抄紙されるまでに長時間かかり分散状態が不良になってしまう可能性があるが、継続的に投入、実施を行うことにより、スラリーを少量ずつ効率よく、分散状態を保持しつつ抄紙することが可能である。「継続的に投入する」「継続的に実施する」とは連続的に投入すること、工程(i)において投与される原料について順次、或いは連続的に工程(ii)~(iv)を実施することを意味する。言い換えれば一連の工程において、分散スラリーの原料の供給、及びスラリー供給を継続しながら実施する状態を意味し、最初に一定量のスラリーを作製するプロセスより量産を考慮したプロセスを意味する。継続的に投入、実施を行う方法としては、バッチ式以外の方法、一定の速度で投入する方法、所定の間隔に略一定量を投入する方法が例示される。一定の速度で投入する条件としては、分散媒体を1×10g/分以上1×10g/分以下、強化繊維束を0.1g/分以上1×10g/分以下で投入する条件が例示される。所定の間隔に略一定量を投入する条件としては、1~5分おきに分散媒体を1×10g以上1×10g以下ずつ、強化繊維束を0.1g以上1×10g以下ずつ投入する条件が例示される。
 工程(ii)におけるスラリーの液面の高さH1は、工程(ii)を通じて実質的に同じ高さに保たれることが好ましい。工程(i)から工程(iv)を継続的に実施する場合には特に、工程(ii)におけるスラリーの液面の高さH1は、工程(ii)を通じて実質的に同じ高さに保たれることが好ましい。
 「工程(ii)を通じて実質的に同じ高さに保たれる」とは、工程(ii)を実施する間に高さの変動が100mm以内であること、好ましくは50mm以内、より好ましくは変動がないこと(0mm)を意味する。工程(ii)におけるスラリーの液面の高さH1を工程(ii)を通じて実質的に同じ高さに保つためには、工程(i)を継続的に行うことが好ましい。例えば工程(ii)を分散槽で行う場合、分散槽への分散媒体と強化繊維の供給を継続的に行うと共に、工程(i)から工程(iv)までが継続的に実施されることが好ましい。
 さらに、本発明における湿式法による強化繊維基材の製造方法において、以下の製造方法a、b、cのいずれか、またはこれらを組み合わせることが好ましい。
 [ 湿式法による強化繊維基材の製造方法a ]
 固形成分が均一に配合された抄造体の製法において、原料スラリーを抄造工程に供給する前にスラリー濃度を希釈することが提案されている(特開2006-104608号公報)。具体的には、スラリーにおける強化繊維の分散性を保つために、強化繊維濃度の高いスラリーを作成し、これを希釈して強化繊維濃度の低いスラリーとすることが提案されている。しかし、2段階を踏むことにより作業が煩雑となるとともに、スラリーの分散媒体への親和性の低い強化繊維の場合、強化繊維濃度の高いスラリーの作製は非常に難しいと言う問題点がある。
 そこで、本発明における湿式法による強化繊維基材の製造方法において、さらに次の方法で製造することが好ましい。すわち、分散媒体に強化繊維束を投入する工程(i-a)と、前記強化繊維束を構成する強化繊維が前記分散媒中に分散したスラリーを調製する工程(ii-a)と、前記スラリーを輸送する工程(iii-a)と、前記スラリーより分散媒体を除去して強化繊維を含む抄紙基材を得る工程(iv-a)とを少なくとも有し、前記工程(ii-a)で調製されるスラリー中の強化繊維の質量含有率をC1とし、前記工程(iv-a)開始時のスラリー中の強化繊維の質量含有率をC2とした場合に、C1/C2が0.8以上1.2以下の範囲である強化繊維基材の製造方法である。この強化繊維基材の製造方法によれば、スラリー調整の際の分散媒体への親和性の低い強化繊維にも適用でき、抄造時の強化繊維の繊維分散性を保持し、樹脂等を配合し成形品とした場合に成形品の力学特性に優れる強化繊維基材を短時間で得ることができる。以下、この強化繊維基材の製造方法を製造方法aとする。
 製造方法aでは、工程(ii-a)で調製されるスラリー中の強化繊維の質量含有率をC1とし、工程(iv-a)開始時のスラリー中の強化繊維の質量含有率をC2とした場合に、C1/C2を0.8以上1.2以下の範囲とする。C1/C2は0.9以上1.1以下の範囲であることが好ましい。C1/C2が0.8未満であるとC2を増やすために、分散媒体のみを除去したり、強化繊維のみを投入する必要があり、工程が煩雑になるうえ、スラリーの分散状態が不十分となるおそれがある。C1/C2が1.2を超えると工程(iv-a)におけるスラリーの分散状態が不十分となるおそれがある。
 工程(ii-a)の所要時間は10分以内であることが好ましく、より好ましくは5分以内であり、さらに好ましくは3分以内である。10分を超えると、強化繊維の種類によっては、スラリー中で分散した強化繊維が再凝集するおそれがある。工程(ii-a)の所要時間の下限は特に限定されないが、通常は1分以上である。
 工程(iii-a)におけるスラリーの供給速度、すなわち、工程(iv-a)へのスラリーの流量は、0.001m/秒以上0.1m/秒以下であることが好ましく、0.005m/秒以上0.05m/秒以下であることがより好ましい。0.001m/秒未満であると供給量が少なく、プロセスに時間がかかるために生産性が悪くなるおそれがあり、0.1m/秒を超えるとスラリーの流速が速いため、スラリーに剪断がかかりやすくなり分散状態が不十分となるおそれがある。
 工程(ii-a)~(iv―a)において、繊維濃度パラメータnLを(0<)nL<L/Dの範囲として抄造することが好ましい。ここで各パラメータは以下の通りである。
n:スラリー単位体積当たりに含まれる強化繊維の本数
L:強化繊維の長さ
D:強化繊維の直径。
 図30に強化繊維を含むスラリーの模式図を示す。Doi, M..and Edwards, S.F., The Theory of Polymer Dynamics 324(1986)では繊維濃度パラメータnLが、nL<1の場合に希薄状態、1<nL<L/Dの場合に準希薄状態と記載されている。繊維濃度パラメータnLがL/D未満であると、スラリー中に分散した各強化繊維同士が力学的に干渉しにくくなるため、強化繊維の再凝集を抑え、スラリー中での強化繊維の分散性を高めるうえで好ましい。強化繊維の濃度は低いほど強化繊維の分散性を高めることができ好ましいが、得られる強化繊維基材の目付や厚みを確保したい場合や、強化繊維基材の生産性を高めたい場合には、強化繊維の濃度を高めるのがよく、準希薄状態である1<nL<L/Dの強化繊維濃度で抄造することが好ましい。 
 [ 湿式法による強化繊維基材の製造方法b ]
 繊維強化熱可塑性樹脂シートの湿式製造方法において、分散液の通過するヘッドボックス内の構造や、ヘッドボックスから分散液をメッシュベルト上に供給する際の条件を制御することが記載されている(特開平8-232187号公報及び特開平9-136969号公報)。これにより、局部的な目付けの不均一や補強繊維の異常配向がない繊維強化熱可塑性樹脂シートが得られることや、幅方向目付分布のバラツキのない繊維強化熱可塑性樹脂シートが得られることが記載されている。
 しかし、特開平8-232187号公報及び特開平9-136969号公報の方法ではスラリーを輸送するための動力として送液ポンプを利用する必要があり、そのため剪断が起こりやすくなり、分散状態を長時間保持することが困難であった。
 そこで、本発明における湿式法による強化繊維基材の製造方法において、さらに次の方法で製造することも好ましい。すなわち、分散媒体に強化繊維束を投入する工程(i-b)と、前記強化繊維束を構成する強化繊維が前記分散媒体中に分散したスラリーを調製する工程(ii-b)と、前記スラリーを輸送する工程(iii-b)と、前記スラリーより分散媒体を除去して強化繊維を含む抄紙基材を得る工程(iv-b)とを少なくとも有し、前記工程(i-b)~(iv-b)がオンラインで実施されてなり、前記工程(ii-b)におけるスラリーの液面の高さH1が、前記工程(iv-b)におけるスラリーの液面の高さH2よりも高い位置にある、強化繊維基材の製造方法である。この強化繊維基材の製造方法によれば、工程(iii-b)においてスラリーを輸送するための動力として送液ポンプを利用する必要がない。そのため、スラリーの剪断が起こりにくくなり、分散状態を長時間保持することができる。また、繊維凝集が抑制され、熱可塑性樹脂を配合し成形品とした場合に成形品の力学特性に優れる強化繊維基材を短時間で得ることができる。以下、この強化繊維基材の製造方法を製造方法bとする。
 製造方法bでは、工程(ii―b)におけるスラリーの液面の高さH1を、工程(iv-b)におけるスラリーの液面の高さH2よりも高い位置とする。H1をH2よりも高い位置とすることで、工程(iii-b)でスラリーを輸送するために、送液ポンプを利用する必要がない。つまり、図308のように、輸送部に送液ポンプを設置する必要はない。
 [ 湿式法による強化繊維基材の製造方法c ]
 また、前述の特開平8-232187号公報及び特開平9-136969号公報の方法では強化繊維と熱可塑性樹脂とを含むスラリーを抄紙槽に送る時、スラリーを輸送するための動力として送液ポンプを利用する必要があり、送液ポンプ部で発生する乱流により、分散液内で一度分散した強化繊維が再凝集し、抄紙基材での強化繊維の分散状態が悪化する問題があった。
 さらに、特開平8-232187号公報及び特開平9-136969号公報の方法では強化繊維と熱可塑性樹脂とを含むスラリーを抄紙槽に送る時、多岐管構造の輸送部を通路としてスラリーを送っているため、多岐管構造の分岐点において乱流が発生し、分散液内で一度分散した強化繊維が再凝集し、抄紙基材での強化繊維の分散状態が悪化する問題があった。
 そこで、本発明における湿式法による強化繊維基材の製造方法において、さらに次の方法で製造することも好ましい。すなわち、分散媒体に強化繊維束を投入する工程(i-c)と、前記強化繊維束を構成する強化繊維が前記分散媒体中に分散したスラリーを調製する工程(ii-c)と、前記スラリーを輸送する工程(iii-c)と、前記スラリーより分散媒体を除去して強化繊維を含む抄紙基材を得る工程(iv-c)とを少なくとも有し、前記工程(i-c)および工程(ii-c)は分散槽で行われ、前記工程(iv-c)は抄紙槽で行われ、前記工程(iii-c)は前記分散槽と前記抄紙槽とを接続する輸送部で行われ、前記輸送部において前記スラリーが層流状態または層流から乱流への遷移域の状態で輸送される、強化繊維基材の製造方法である。この強化繊維基材の製造方法によれば、製造工程中の所定の工程における、スラリーの輸送を層流状態または層流から乱流への遷移域の状態で輸送することで、強化繊維の再凝集が抑制され、分散状態に優れた繊維強化基材を得ることができる。以下、この強化繊維基材の製造方法を製造方法cとする。
 製造方法cでは、工程(iii-c)における輸送部において、スラリーが層流状態または層流から乱流への遷移域の状態で輸送される。層流とは、輸送部を流れるスラリーが、輸送部の通路の管軸に平行に流れる状態のことである。乱流とは、輸送部を流れるスラリーが、輸送部で大小さまざまな渦が不規則にできる状態のことである。また、層流から乱流への遷移域とは、輸送部を流れるスラリーが、輸送部で層流状態と乱流状態が入り交じった状態のことである。輸送部において、スラリーを層流状態または層流から乱流への遷移域の状態で輸送すると、分散槽で得られる強化繊維が分散したスラリーを、強化繊維の分散状態を維持し抄紙槽へ輸送することができ、強化繊維の再凝集が抑制され、分散性に優れた繊維強化基材を得ることができる。強化繊維の再凝集抑制の観点から、輸送部において、スラリーが層流状態で輸送されることがより好ましい。
 輸送部におけるスラリーの流速が0.01m/s以上10m/s以下であるとよい。スラリーの流速がこの範囲内であると輸送部の通路内における流速分布が小さく、分散槽で得られる強化繊維が分散したスラリーを、強化繊維の分散状態を維持し抄紙槽へ輸送することができとすることでき好ましい。輸送部のスラリー流速は、0.01mのスラリーを輸送するのにかかった時間T(秒)、スラリーの輸送量(0.01m)、輸送部の断面積S(m)を用い、次の式より求めることができる。
(式)スラリー流速(m/s)=0.01/(S×T)。
 輸送部の断面形状は特に限定はないが、スラリーを工程(iv-c)に輸送する工程(iii-c)での強化繊維の再凝集防止の観点から、円形、または多角形(3~10角形)であるとよく、例えば、図21(a)、図21(b)に示すような断面形状などがある。また、輸送部の断面形状は図21(c)、図21(d)に示すような開放系の通路であってもよい。ここで、図21(a)~図21(d)は輸送部の断面形状を模式的に示す図である。輸送部における異物混入なお観点から、輸送部の断面形状が円形、または多角形であるとさらに好ましい。
 輸送部の断面形状は、強化繊維の再凝集防止の観点から、輸送部通路で渦が発生しないよう、一定断面であることよい。また強化繊維の再凝集防止の観点から、輸送部の管内で渦が発生しやすい湾曲部、屈曲部などの方向変換点を途中に有しない輸送部であることよい。
 輸送部における、輸送部の断面形状が図21(a)、図21(b)に示すような円形または多角形の場合は、強化繊維の再凝集防止の観点から、スラリーの流れの状態を表すレイノルズ数が4000以下であることが好ましく、3000以下であるとより好ましく、2000以下であるとさらに好ましい。輸送部における、輸送部の断面形状が図403、図404に示すような開放系の通路である場合は、強化繊維の再凝集防止の観点から、スラリーの流れの状態を表すレイノルズ数が500000以下であることが好ましく、300000以下であるとより好ましく、100000以下であるとさらに好ましい。ここで輸送部におけるレイノルズ数Reは、分散液比重ρ(kg/m)、輸送部断面の最大長さL(m)、輸送部におけるスラリー流速(m/s)、分散媒体の粘度η(Pa・s)を用いて次の式により求めた。
(式)Re=ρLU/η。
 輸送部において、スラリーを層流状態または層流から乱流への遷移域の状態で輸送する方法は特に限定されないが、例えば分散槽を抄紙槽より高い位置に配置することで、位置エネルギーを利用して、分散槽から輸送部を介して抄紙槽へスラリーを輸送する方法や、スラリーの入った分散槽内に気体を注入し分散槽内の内圧を高くすることで、分散槽から輸送部を介して抄紙槽へスラリーを輸送する方法などを挙げることができる。このような送液ポンプを使わない輸送方法は、輸送部における乱流発生を少なくでき、強化繊維の再凝集を防ぎ、スラリー中の分散性を保つことができ好ましい。
 輸送部を複数配置することで、スラリーが層流状態または層流から乱流への遷移域の状態で、大量のスラリーを分散槽から抄紙槽へ輸送する必要があるときは、輸送部を複数配置し、分散槽から抄紙槽へのスラリー輸送量を増やしてもよい。
 [プリフォーム]
 本発明のプリフォームは、少なくとも強化繊維基材に熱可塑性樹脂が含浸されたプリプレグを積層単位として含むプリフォームであって、
該プリプレグが、該プリプレグに含まれる強化繊維単糸(a)と、該強化繊維単糸(a)に交差する強化繊維単糸(b)とで形成される二次元配向角の平均値が10度以上80度以下であり、23℃での厚みh0(mm)が0.03mm以上1mm以下であり、引張強度σが0.01MPa以上であるプリフォームである。
これらの構成要素について説明する。
 本発明のプリフォームとは、少なくとも2つ以上の成形材料が積層されてなり、直接もしくは二次加工工程を経て、成形工程に供されるものであり、成形品に加工される前の状態を意味する。なお、二次加工工程には特に制限はないが、プリフォームを所定のサイズや形状にカットする切削工程、プリプレグ同士を接着してプリフォームの取扱性を向上させるボンディング工程、プリフォームからエアを抜く脱泡工程、プラズマ処理などによりプリフォームを活性化させる表面処理工程などが例示できる。
 本発明のプリフォームには、少なくとも強化繊維基材に樹脂が含浸したプリプレグを用いることが、得られる成形品の軽量性と力学特性の観点から重要である。また、プリフォームの取扱性の観点から、プリプレグに含まれる強化繊維単糸(a)と、該強化繊維単糸(a)に交差する強化繊維単糸(b)とで形成される二次元配向角の平均値が10度以上80度以下であることが重要である。ここで、二次元配向角については、前記プリプレグでの説明で用いた定義が適用できる。二次元配向角の平均値が10度未満であると、一方向の強化繊維など、繊維長手方向に対して直交方向の応力に対して抵抗力がなくプリフォームを高速で移送したり成形する過程でプリフォームが破れる場合がある。二次元配向角の平均値が80度を越えると、二方向の強化繊維織物など、二方向で強化繊維が突っ張るため、成形工程において十分な伸縮性が得られず、成形不良となる場合や成形品の品質を損なう場合がある。また、これら一方向の強化繊維や、二方向の強化繊維織物は、強化繊維同士の間隙が狭く、成形工程において樹脂の含浸が不十分となり力学特性が低下する場合がある。さらに、プリプレグが等方性に近いほど積層工程での労力を抑えて高速でプリフォーム化でき、材料ロスも小さいことから、経済的負担を軽減でき好ましい。本発明で用いられるプリプレグの強化繊維の二次元配向角は、好ましくは20度以上70度以下であり、より好ましくは30度以上60度以下であり、理想的な角度である45度に近づくほど好ましい。
 また、本発明のプリフォームの取扱性の観点から、プリプレグの23℃での厚みh0(mm)が0.03mm以上1mm以下であることも重要である。h0が0.03mm未満であると、プリフォームを高速で移送したり成形する過程でプリフォームが破れる場合がある。h0が1mmを越えると、厚み方向への繊維配向が大きくなり、成形する工程でプリフォームが厚み膨張を起こし、型くずれにより成形品の品質を損なう場合や、金型への移送が阻害される場合がある。本発明で用いられるプリプレグの23℃での厚みh0は、好ましくは0.05mm以上0.8mm以下であり、より好ましくは0.1mm以上0.6mm以下である。
 さらに、本発明のプリフォームの取扱性の観点から、プリプレグの引張強度σは0.01MPa以上であり、好ましくは0.1MPa以上であり、より好ましくは1MPa以上である。σの上限については特に制限はないが、1000MPa以下が一般的に例示できる。引張強度σが0.01MPa未満であると、成形時の操作においてプリプレグが破けるなどの問題が発生する場合がある。
 本発明のプリフォームに用いられるプリプレグを構成する強化繊維および樹脂については特に制限はないが、複雑形状の成形性と力学特性を満足する成形品を得る観点から、上述のプリプレグ(以下、プリプレグ(A)と称する)を用いることが好ましい。
 また、本発明のプリフォームにおいては、得られる成形品の仕様を満足する目的で、プリプレグ(A)が複数の積層単位を構成し、かつプリプレグの各要素のうちの少なくとも1つの要素が実質的に異なる少なくとも2種類のプリプレグ(A)がプリフォームに用いられることが好ましい。ここで、前記プリプレグの各要素について説明する。
 まず、強化繊維の体積割合である。強化繊維の体積割合が増加するほど、得られる成形品の弾性率、強度、寸法安定性は向上する。一方で、強化繊維の体積割合が増加するほど、成形品の外観品位は低下する傾向がある。そこで、強化繊維の割合が高いプリプレグと、低いプリプレグを組み合わせて積層することが、成形品の軽量性や外観品位を両立する観点で好ましい。例えば、成形品の剛性を高める目的で、より外側に強化繊維の割合が高いプリプレグを積層し、内側に強化繊維の低いプリプレグを積層する方法や、成形品の外観品位を高める目的で、さらに外側に強化繊維の割合が低いプリプレグを積層する方法などが挙げられる。ここで、強化繊維の体積割合が実質的に異なるとは、強化繊維の体積割合が高いプリプレグと強化繊維の体積割合が低いプリプレグとの強化繊維の体積割合の差が5体積%以上のことである。
 次に、強化繊維の長さである。強化繊維が長いほど、得られる成形品の弾性率、強度、寸法安定性は向上する。一方で、強化繊維が長いほど、プリフォームの取扱性や成形品の外観品位は低下する傾向がある。そこで、強化繊維の繊維長が長いプリプレグと、繊維長が短いプリプレグを組み合わせて積層することが、プリフォームの取扱性と成形品の力学特性や外観品位を両立する観点で好ましい。例えば、成形品の剛性を高める目的で、より外側に強化繊維の繊維長が長いプリプレグを積層し、内側に繊維長が短いプリプレグを積層する方法や、成形品の外観品位を高める目的で、さらに外側に繊維長が短いプリプレグを積層する方法などが挙げられる。ここで強化繊維の長さが実質的に異なるとは、繊維長の長い強化繊維と繊維長の短い強化繊維との繊維長の比(長い強化繊維の長さ/短い強化繊維の長さ)が1.5以上のことである。
 次に、強化繊維の引張弾性率である。引張弾性率が高いほど、得られる成形品の弾性率は向上する。一方で、引張弾性率が高いほど、繊維の加工性が悪化することで、プリフォームの取扱性が低下したり経済性で不利となる場合がある。そこで、強化繊維の引張弾性率が高いプリプレグと、引張弾性率が低いプリプレグを組み合わせて積層することが、プリフォームの取扱性と成形品の剛性を両立する観点で好ましい。例えば、成形品の剛性と経済性を両立する目的で、より外側に炭素繊維などの引張弾性率が高いプリプレグを積層し、内側にガラス繊維などの引張弾性率が低いプリプレグを積層する方法や、より外側に引張弾性率の高い炭素繊維を用いたプリプレグを積層し、内側に引張弾性率のより低い炭素繊維を用いたプリプレグを積層する方法などが挙げられる。ここで、強化繊維の引張り弾性率が実質的に異なるとは、引張弾性率が高い強化繊維と引張弾性率が低い強化繊維との引張弾性率の比(高い強化繊維の引張弾性率/低い強化繊維の引張弾性率)が1.2以上のことである。
 次に、プリプレグの目付である。目付が大きいほどプリプレグの厚みが厚くなる傾向があるため、積層する数量や積層する労力の低減が図れる。一方で、目付が大きいほど、成形品の厚みや形状に対する追随性が低下する。そこで、目付の大きいプリプレグと、目付の小さいプリプレグを組み合わせて積層することが、プリフォームの取扱性や形状追随性と、経済性を両立する観点で好ましい。同じ理由で、プリプレグの厚みについても、23℃での厚みh0の大きなプリプレグと、h0の小さなプリプレグを組み合わせて積層することが好ましい。ここで、目付が実質的に異なるとは、目付けの大きいプリプレグと目付けの小さいプリプレグとの目付の比(目付の大きいプリプレグの目付/目付の小さいプリプレグ目付)が1.2以上のことである。また、23℃での厚みh0が実質的に異なるとは、h0の大きいプリプレグとh0の小さいプリプレグとのh0の比(h0の大きいプリプレグのh0/h0の小さいプリプレグのh0)が1.2以上のことである。
 本発明のプリフォームは、成形性の観点から、プリプレグと、そのプリプレグに隣接する積層単位との層間剪断強度が0MPa以上50MPa以下であることが好ましく、より好ましくは0MPa以上40MPa以下である。層間剪断強度が好ましい範囲内であると、成形工程においてプリフォームが層間ズレを伴いながら伸縮することで、凹凸形状への賦形をより高めることができる。プリフォームの層間剪断強度は、プリフォームから試験片を切り出し、ASTM-D-2344に基づき3点曲げ試験を行い、測定することができる。プリフォームが部分的に接着されている場合や、目留めされている場合には、当該接着部分、目留め部分を含むよう試験片を調製して測定できる。
 さらに、本発明のプリフォームは、得られる成形品の仕様を満足する目的で、プリプレグ(A)と、他の積層単位(B)とが積層されていることが好ましい。ここで、他の積層単位(B)について好ましい態様を説明する。 
 まず、前記積層単位(B)が強化繊維を含む基材であると、得られる成形品の補強効果をさらに高める観点から好ましい。中でも、連続した強化繊維は、成形品の衝撃強度を高める観点から好ましい。例えば、一方向基材、織物基材、マット基材などの形態が挙げられる。また、不連続状の強化繊維は、成形品の形状追随性を高める観点から好ましい。例えば、一方向基材、すなわちカットされた強化繊維が一方向に配列された基材や、マット基材、シートモールディングコンパウンド(SMC)基材、押出シート基材などの形態が挙げられる。
 この積層単位(B)を構成する強化繊維には特に制限はなく、前記プリプレグを構成する強化繊維と同様に選択することができる。とりわけ、比強度、比剛性が高く軽量化効果の観点から、PAN系、ピッチ系、レーヨン系などの炭素繊維が好ましく用いられる。さらに当該積層単位(B)には、プリフォームの取扱い性を高める観点から、強化繊維の形態を維持する目的で熱可塑性樹脂または熱硬化性樹脂が含浸されていることが好ましい。ここで、使用される熱可塑性樹脂、および熱硬化性樹脂としては特に制限はなく、前記プリプレグを構成する熱可塑性樹脂、および熱硬化性樹脂と同様に選択することができる。また、樹脂の含浸率についても特に制限はなく、強化繊維の形態を維持する目的で前記プリプレグと同様に30%以上100%以下が好ましい。
 次に、前記積層単位(B)として、成形品に所定の厚みを確保する観点から、また成形品の厚みを均一に保持する観点から、シート状の基材を用いることが好ましい。また、プリフォームの伸縮性を高め、凹凸形状への追随性を高める観点から、不織布状の基材を用いることが好ましい。さらには、得られる成形品の軽量性を高める観点から、多孔質の基材を用いることが好ましい。これらの基材を構成する材料としては特に制限はないが、基材への加工性の観点から、前記プリプレグを構成する熱可塑性樹脂がより好ましく用いられる。また、これらの熱可塑性樹脂には、前記プリプレグを構成する熱可塑性樹脂と同様に、必要に応じてアロイ成分、ブレンド物、添加剤などを含んでも良い。さらに、得られる成形品の軽量性を一層高める観点から、前記シート状基材、不織布状基材、多孔質基材の嵩密度は0.01以上1.0以下が好ましく、0.05以上0.9以下がより好ましく、0.1以上0.8以下がとりわけ好ましい。
 さらに、前記積層単位(B)として、得られる成形品の表面の改質および機能付与を容易に行う観点から、樹脂からなるフィルムを、該プリフォームの最外層に配置することが好ましい。樹脂としては、熱可塑性樹脂を用いるとフィルムへの加工性やプリフォームとの接着性が簡便で好ましく、熱硬化性樹脂を用いるとプライマー、塗料やゲルコートなどの表面平滑性の改善できるため好ましい。得られる成形品を電子機器などに使用する場合、フィルムの難燃性がUL-94規格のVTM-1以上であることが好ましく、VTM-0以上であることがより好ましい。フィルムの難燃性を確保する方法については特に制限はなく、PPS、PEI、PEEK、フェノール樹脂などの難燃性に優れた樹脂をフィルム化する方法、熱可塑性樹脂に難燃性に優れた樹脂をブレンドしてフィルム化する方法、熱可塑性樹脂に難燃剤を混合してフィルム化する方法などが例示できる。
 また、前記積層単位(B)として、得られる成形品の意匠性を改善する観点から、加飾フィルム、透明フィルム、色調フィルムから選択される少なくとも一種を用いることが好ましい。ここで、加飾フィルムとしては、当該フィルム表面に、意匠および/または幾何学的紋様を有しているフィルムが好ましい。透明フィルムとしては、当該フィルムの可視光線の透過率が80%以上100%以下のフィルムが好ましい。色調フィルムとしては、有機系および/または無機系の顔料や着色剤を含有するフィルムが好ましい。その他、必要に応じ、光沢フィルム、プリントフィルム、帯電防止フィルム、遮光フィルム、耐熱フィルムなどを積層単位(B)として用いることができる。
 上記に例示した以外にも、他の積層単位(B)として、金属板、金属箔、金属メッシュ、グラファイトシート、放熱シート、ハニカム材料、耐薬品性フィルム、ガスバリヤーフィルム、耐寒フィルム、抗菌シートやフィルム、発泡シート、ゴムシートなどを用いてもよい。以上の他の積層単位(B)は、必要に応じ、一種または二種以上を併用してもよい。
 また、前記プリプレグ(A)と、他の積層単位(B)からなるプリフォームの好ましい態様として、スキン層とコア層からなるサンドイッチ構造体が例示できる。
 前記サンドイッチ構造体のうち、スキン層が前記プリプレグ(A)で構成されている場合、得られる成形品が等方的特性を発現し、かつ複雑形状への追随性も確保できるため好ましい。この場合、これらの効果を一層高める観点から、コア層としてプリプレグ(A)よりも嵩密度の低い、シート状基材、多孔質基材、ハニカム材料、強化繊維を含むマット基材などを用いることがより好ましい。
 また、前記サンドイッチ構造体のうち、コア層が前記プリプレグ(A)で構成されている場合、得られる成形品の厚みがより均質化でき、かつ機能性付与が容易に確保できるため好ましい。この場合、剛性効果を高める観点から、コア層として連続した強化繊維を含む一方向基材、織物基材などを用いることがより好ましい。また、成形品表面への機能付与の観点から、難燃性を有するフィルム、加飾フィルムなどを用いることがより好ましい。
 ここで、本発明のプリプレグに用いられる強化繊維基材を積層することによって得られるプリフォームを金型にセットし、熱硬化性樹脂を含浸させてRTM(レジントランスファーモールディング)成型する方法や、本発明のプリプレグに用いられる強化繊維基材と一方向基材、織物基材、マット基材を積層して得られるプリフォームを金型にセットし、熱硬化性樹脂を含浸させてRTM成型する方法によっても、力学特性に優れ、複雑な形状に追随した成形品を得ることができ、本発明と同様の効果が期待できる。
 本発明のプリフォームは、前述したプリプレグの取扱い性の説明と同様に、積層工程での安定した作業性を確保し、金型への安定した移送など成形工程でのプリフォームの取扱い性の観点から、厚み膨張を抑えることが好ましく、(n×100)℃での厚みhpn(mm)が、hp0≦hpn≦hp0×(2n+1)(hp0(mm)は23℃での該プリフォーム厚み、nは1,2,3,4から選択される少なくとも一つの自然数。)であることが好ましく、より好ましくはhp0≦hpn≦hp0×2nであり、とりわけ好ましくはhp0≦hpn≦hp0×(2n-1)である。ここでの、nの選択基準は前記プリプレグと同様であり、使用する材料から適切な自然数を選択することができる。
 本発明のプリフォームの厚みhp0(mm)には特に制限はないが、成形時の取扱い性の観点から、0.8mm以上100mm以下が好ましく、より好ましくは1.2mm以上10mm以下であり、とりわけ好ましくは1.5mm以上5mm以下である。また、本発明のプリフォームに用いられるプリプレグおよび他の積層単位の積層数にも特に制限はないが、積層工程での生産性および経済性の観点から、2層以上100層以下が好ましく、より好ましくは4層以上50層以下であり、とりわけ好ましくは8層以上30層以下である。積層数を多くすると、積層工程での負荷が大きくなるものの、好ましい範囲内であれば本発明の成形品の設計自由度をより高めることができる。
 [ 成形品 ]
 本発明のプリプレグまたはプリフォームを成形して得られる成形品は、各種部品、部材に使用することが可能であり、その使用用途を広げるために、前記成形品は軽量でありかつ剛性、強度に優れることが好ましい。さらに寸法安定性の指標である線膨張係数にも優れることが好ましい。
 具体的な指標としては、前記成形品の曲げ弾性率をEc、比重をρとしたときに、Ec1/3・ρ-1で表される、軽量性を示すひとつのパラメータである比剛性が1.5以上5以下であることが好ましい。一般的にスチールやアルミニウムの比剛性は1.5以下であり、これらの金属材料よりも優れた比剛性の領域となるため、1.5以上であることが好ましい。また、より好ましくはマグネシウムの一般的な比強度である2.0を超える2.0以上5以下、さらに好ましくは2.5以上5以下である。また、成形品の設計を容易にするために、比剛性は等方性を有していることが好ましく、前記比剛性の等方性の指標として、前記曲げ弾性率Ecが、測定方向による最大曲げ弾性率EcMaxと最小曲げ弾性率EcMinとの関係において、EcMax≦EcMin×2である。より好ましくはEcMax≦EcMin×1.8であり、さらに好ましくはEcMax≦EcMin×1.5である。
 成形品の強度についての具体的な指標としては、前記成形体の引張強度σc 、比重ρとすると、σc/ρが100以上500以下であることが好ましい。より好ましくは200以上500以下、さらに好ましくは300以上500以下である。また前述の比剛性の記載と同様の理由より、前記引張強度の等方性の指標として、前記引張強度σcが、測定方向による最大引張強度σcMaxと最小引張強度σcMinとの関係において、σcMax≦σcMin×2である。より好ましくはσcMax≦σcMin×1.8であり、さらに好ましくはσcMax≦σcMin×1.5である。
 成形品の寸法安定性を示す一つのパラメータである線膨張係数についての具体的な指標としては、前記成形体の線膨張係数Ccが1×10-6/K以上20×10-5/K以下であることが好ましい。より好ましくは1×10-6/K以上15×10-5/K以下、さらに好ましくは1×10-6/K以上10×10-5/K以下である。また前述の比剛性の記載と同様の理由より、前記線膨張係数の等方性の指標として、前記線膨張係数Ccが、測定方向による最大線膨張係数CcMaxと最小線膨張係数CcMinとの関係において、CcMax≦CcMin×2である。より好ましくはCcMax≦CcMin×1.8であり、さらに好ましくはCcMax≦CcMin×1.5である。
 また、本発明のプリプレグまたはプリフォームを成形して得られる成形品は、薄肉性、軽量性を考慮した場合、その最大厚みが2mm以下であることが好ましい。より好ましくは1.5mm以下、さらに好ましくは1.2mm以下である。なお、ここで説明される最大厚みとは、成形品を構成する各平面部の厚みのうち最も大きな厚みのことを意味する。最大厚みは、成形品を構成する平面部において、最も厚みの大きな部分を測定して決定する。
 また成形品は、形状設計の自由度から、その厚みが変化していてもよい。この厚み変化は、連続的に変化したものであることがより好ましい。なお、ここでいう「連続的に」とは、厚みがテーパー状に変化していることを意味する。
 さらに、成形品は形状による剛性向上の効果を高めたり、形状による意匠効果を持たせるために、凹凸形状を有することが好ましい。具体的には成形品の基準面から凹凸形状を形成している凹凸面との高さの差が3mm以上であることが好ましい。基準面とは、成形品を形成する平面部のうち、面積が最も大きな平面部のことをいう。基準面と凹凸形状を形成している凹凸面とは、基準面に実質的に平行かつ、基準面から平面部1つ以上を隔てて形成される平面部のことである。ここで、実質的に平行とは、基準面と対象とする平面部とが形成する角度が20°以下のことをいう。基準面と凹凸面とが平行な場合には、基準面と凹凸面との高さの差はそのまま測定できるが、基準面と凹凸面とがある角度を形成する場合には、基準面と凹凸面上の点Pとの高さの差のうち、最も高さの差が大きくなるものを、基準面と凹凸面との高さの差とする。基準面から凹凸面との高さの差は5mm以上であることがより好ましい。
 また、上記以外にも様々な使用を想定し、成形品には複雑形状を形成することが好ましい。例えば多数の平面部よりなる箱型形状を形成する場合には、平面部同士を屈曲部で繋ぐ形状となるが、その屈曲程度を表すための、屈曲部におけるR部の曲率半径が小さいことが好ましい。より複雑な形状を形成させるという観点からは、該R部の曲率半径は5mm以下であることが好ましい。
 さらに、成形品に複雑な形状を形成させる観点からは、前記屈曲部の個数が3個以上であることが好ましい。単純な成形品の折り曲げ形状では屈曲部が1個であり、コの字形状、単純なS字形状では屈曲部が2個となる。通常、部材などの複雑形状成形品はさらに屈曲部の個数が多くなる場合が大半であり、屈曲部の個数としては3個以上が好ましい目安となる。単純な四角形状の箱型成形品の場合には屈曲部が8個である。
 また、成形品は形状として各種ケース、筐体や部材への適用範囲を広げる観点から、成形品が屈曲部で区切られる平面部3面から構成される頂点を有することが好ましい。ここで、屈曲部で区切られる平面部3面から構成される頂点とは、平面部3面から構成されるコーナー部のことである。
 さらに成形品には、剛性を高める観点からリブが形成されていてもよい。リブの形状は特に限定されないが、線状リブ、T字リブ、十字リブなどが好ましく挙げられる。リブの高さは成形品の必要に応じて設定することになるが、成形品の薄肉性の観点からは10mm以下であることが好ましい。より好ましくは5mm以下である。
 成形品は軽量性を確保する観点からは、中空体であってもよい。この場合、成形品の形状に合わせていくつかの成形品を接合して、中空成形体を形成してもよい。
 また、さらに高い力学特性を成形品に付与することを目的として、別の成形体と一体化させてもよい。別の成形品としては、力学特性を高めるためには、連続した強化繊維と樹脂とを有してなる繊維強化複合材料が接合されていることが好ましい。例えば、連続した強化繊維をエポキシ樹脂などの熱硬化性樹脂または、ポリプロピレンやポリアミドなどの熱可塑性樹脂と複合した繊維強化複合材料を成形品の表面に接合することで、極めて優れた力学特性や剛性を付与することが可能となる。
 本発明のプリプレグまたはプリフォームを成形して得られる成形品同士を接合一体化させてもよい。目的により、他方の繊維質量含有率を上げておき、高い強度として一体化させたものなどが例示できる。
 成形品の適用用途を広げる観点からは、複雑形状の成形体を接合することが好ましい。ここで複雑形状の成形体とは、例えばエッジ、フレーム、ボス、リブ、ヒンジ、マウントなどの複雑形状の射出成形体が例示できる。成形品な優れた力学特性を活用できる用途を広げることができる。
 一体化させるための手法としては特に限定されないが、接着剤や熱溶着、振動溶着、超音波溶着、レーザー溶着などの方法が例示できる。なかでもプロセスの容易さや、成形サイクルの短さから、熱溶着、振動溶着、超音波溶着、レーザー溶着が好ましい。
 ここでプレス成形の種類は得られる成形品に応じ選択が可能である。ここで、プレス成形とは、加工機械および型、工具その他成形用の治具や副資材等を用いて、前記積層プリフォームに曲げ、剪断、圧縮等の変形を与えて成形体を得る方法であるが、その成形形態として絞り、深絞り、フランジ、コールゲート、エッジカーリング、型打ちなどが例示される。また、プレス成形の方法としては、各種存在するプレス成形の方法のなかでも、大型の航空機などの成形品部材を作製する際によく使用されるオートクレーブ法や、工程が比較的簡便である金型プレス法が好ましく挙げられるが、設備や成形工程でのエネルギー使用量、使用する成形用の治具や副資材等の簡略化、成形圧力、温度の自由度の観点から、金属製の型を用いて成形をおこなう金型プレス法を用いることがより好ましい。
 金型プレス法には、前記プリプレグまたはプリフォームを型内に予め配置しておき、型締とともに加圧、加熱をおこない、次いで型締をおこなったまま、金型の冷却により該プリプレグまたはプリフォームの冷却をおこない成形品を得るホットプレス法や、プリプレグまたはプリフォームの樹脂が熱可塑性樹脂である場合には、予め該プリプレグまたはプリフォームを、熱可塑性樹脂の溶融温度以上に、遠赤外線ヒーター、加熱板、高温オーブン、誘電加熱などに例示される加熱装置で加熱し、熱可塑性樹脂を溶融、軟化させた状態で、前記成形型の下面となる型の上に配置し、次いで型を閉じて型締を行い、その後加圧冷却する方法であるスタンピング成形を採用することができる。プレス成形方法については、特に制限はないが、成形サイクルを早めて生産性を高める観点からは、スタンピング成形であることが好ましい。
 さらに、前記予熱によりプリプレグまたはプリフォームを賦形可能な状態とするために、樹脂が熱可塑性樹脂であることが好ましい。そして予熱の温度は、前記熱可塑性樹脂の融点または軟化点以上とすることが好ましい。
 予熱したプリプレグまたはプリフォームをプレス成形に用いられる金型まで搬送するに際し、予熱状態を十分に保ったままでプレス成形するために、素早く搬送することが好ましい。具体的には、プリプレグまたはプリフォームを予熱後、金型まで搬送してプレス成形で加圧を開始するまでの所要時間が1分以内であることが好ましく、30秒以内であることがより好ましく、15秒以内であることがさらに好ましい。
 プレス金型での加圧については特に制限されることはないが、プリプレグまたはプリフォームを良好に賦形させる観点からは、加圧力は0.1MPa以上であることが好ましい。より好ましくは1MPa以上、さらに好ましくは10MPa以上である。加圧力の上限については特に制限はないが、成形時の強化繊維の折損を抑える観点からは100MPa以下であることが好ましい範囲である。
 プレス金型での冷却についは特に制限されることはないが、プリプレグまたはプリフォームを構成する樹脂として熱可塑性樹脂を使用している場合には、予熱したプリフォームを十分に冷却させる観点から、金型の表面温度を熱可塑性樹脂の融点または軟化点以下とすることが好ましい。また脱型を早めて成形サイクルを短くする観点からは、金型温度を熱可塑性樹脂の融点または軟化点よりも30℃以上低くすることが好ましい。より好ましくは50℃以上低くすることである。
 次に本発明のプリプレグまたはプリフォームを金型に配置してプレス成形する工程について説明する。本発明のプリプレグまたはプリフォームでは、次式で示されるチャージ率を100%より大きくして金型に配置することが好ましい。
・チャージ率(%)=100×(プリプレグまたはプリフォームの面積)/(金型キャビティ総面積)。
 チャージ率が100%より大きい、すなわち金型キャビティ総面積を全てカバーする大きさよりも大きいプリプレグまたはプリフォームを金型に配置することで、成形時にプリプレグまたはプリフォームに過度な流動を起こすことなく、繊維配向を保ったままで成形が可能となる。このため、成形時に繊維配向を乱したり、成形時の流動によって繊維配向に異方性を生じさせたりすることを極力抑えて、プリプレグまたはプリフォームの繊維配向を活かした成形品を得ることができる。好ましくはチャージ率を105%以上、さらに好ましくは110%以上とすることである。チャージ率の上限については、特に制限はないが、材料を有効に使用し、無駄を省く観点からは150%以下であることが好ましい。
 次に成形用の金型について説明する。金型は大きく2種類に分類され、1つは鋳造や射出成形などに使用される密閉金型であり、もう1つはプレス成形や鍛造などに使用される開放金型である。密閉金型は主に内部に材料を流し込んで成形する金型であり、開放金型は主に材料を流さずに変形させて成形する金型である。成形時に基材に過度な流動を起こすことなく、成形時にプリプレグまたはプリフォームの繊維配向を乱したり、成形時の流動によって繊維配向に異方性を生じさせたりすることを極力抑えて、プリプレグまたはプリフォームの繊維配向を活かした成形品を得るために、開放金型を用いることが好ましい。また、成形時の分解ガスや混入空気を型外に排除する観点からも開放金型が好ましい。
 さらに、金型には打ち抜き機構、パンチング機構、タッピング機構から選択される少なくとも一種を有する金型が好ましい。プレス成形で得られた成形品は、プリプレグまたはプリフォームのチャージ率を、金型のキャビティ総面積に対し100%より大きくしてプレス成形する場合もあり、成形品として必要な部分と不必要な部分(端部)を有することがある。従って、成形後に成形品の形状を仕上げるために、この端部を除去する工程が必要となる場合がある。また、成形品は、その使用目的などによっては発生ガスや熱交換のための通気口や排気口、成形品の掴み部分、加工用のネジ孔やボルト接合用の孔、意匠性の付与を目的とした孔や打ち抜き模様などで利用する孔部を有する成形品に加工することが想定される。前記した3つの機構から選択される少なくとも一種を有することで、プレス成形後に端部を除去する工程や必要な孔部を形成する工程をプレス成形と同時に実施することができ、工程の簡略化を図ることができるために好ましい。
 本発明の本発明のプリプレグまたはプリフォームを用いて得られる成形品の用途としては、例えば、電気機器部品、電子機器部品、土木用部品、建材用部品、自動車用構造部品、二輪車用構造部品、自動車用部品、二輪車用部品、航空機用部品が挙げられる。力学特性の観点より、電気、電子機器用の筐体、土木、建材用のパネル、自動車用の構造部品、航空機用の部品に好ましく用いられる。とりわけ、力学特性および等方性の観点より、自動車、二輪車用構造部品に好ましく用いられる。
 以下、実施例により本発明をさらに詳細に説明する。
 [ プリプレグ、プリフォームおよび成形品の評価(1) ]
 (1)プリプレグに含まれる強化繊維長の評価
 プリプレグを空気中500℃で1時間加熱し、樹脂成分を焼き飛ばした。残った強化繊維を無作為に400本選び出し、その長さを1μm単位まで光学顕微鏡にて測定し、繊維長とその割合を測定した。
さらに0.25mm未満、0.25mm以上0.5mm未満、0.5mm以上0.75mm未満、というように0.25mm間隔で、強化繊維の度数をカウントし、繊維長分布を評価した。
 (2)プリプレグ中の強化繊維の二次元配向角の測定
 図2に示すように、プリプレグを2枚のステンレス製メッシュ(2.5cm当たり50個のメッシュを有する平織形状)に挟み、プリプレグが動かないようにネジを調整して固定した。これを空気中500℃で1時間加熱し、樹脂成分を焼き飛ばした。ステンレス製メッシュを外し、得られた強化繊維基材を顕微鏡で観察し、無作為に強化繊維単糸(a)を1本選定し、該強化繊維単糸に交差する別の強化繊維単糸との二次元配向角を画像観察より測定した。配向角は交差する2つの強化繊維単糸とのなす2つの角度のうち、0°以上90°以下の角度(鋭角側)を採用した。選定した強化繊維単糸(a)1本あたりの二次元配向角の測定数はn=20とした。同様の測定を合計5本の強化繊維単糸を選定しておこない、その平均値をもって二次元配向角とした。
 (3)強化繊維基材の空気量(フラジール法)
 上記(2)の焼き飛ばしと同様にして得た強化繊維基材を用いて、ASTM D737(2008年版)に基づくフラジール形法で測定される空気量を測定した。
 (4)プリプレグ中の強化繊維の繊維質量含有率Wf(%)
 プリプレグの質量W1を測定したのち、該プリプレグを空気中500℃で1時間加熱し、樹脂成分を焼き飛ばし、残った強化繊維の質量W2を測定し、次式により算出した。
・Wf(%)=100×W2/W1。
 (5)プリプレグの厚みhn、およびプリフォームの厚みhpn(hn、hpn(n=0,1、2、3、4))
 空気中で、測定する温度にプリプレグまたはプリフォームを10分間放置したのち、室温まで冷却した。該プリプレグまたはプリフォームにおいて2点X、Yを直線距離XYが最も長くなるように決定し、該直線XYを10等分した際の両端XYを除く各分割点において厚みを測定し、その平均値をもってプリプレグまたはプリフォームの厚みhn、hpnとした。
 (6)プリプレグの嵩密度
 100mm角のプリプレグを切り出し、質量Wを測定し、次式より嵩密度を算出した。
・プリプレグの嵩密度=W/(10×10×h0)
 h0:プリプレグの厚み。
 (7)プリプレグの樹脂含浸率%
 プリプレグの厚み方向断面を以下のように観察して測定した。プリプレグをエポキシ樹脂で包埋し、プリプレグの断面端部にあたる面を研磨した。この研磨面のプリプレグの厚み×幅500μmの範囲を超深度カラー3D形状測定顕微鏡VK-9500(コントローラー部)/VK-9510(測定部)((株)キーエンス製)を使用して拡大倍率400倍で撮影した。撮影画像において、樹脂が含浸している部位と、樹脂が含浸していない部位の面積を求め、次式により樹脂含浸率を算出した。
・樹脂含浸率(%)=100×(樹脂が含浸している部位の総面積)/(プリプレグの観察部位の断面積のうち強化繊維部分を除いた面積)=100×樹脂が含浸している部位の面積/((プリプレグの厚み×幅500μmの面積)-強化繊維部分の面積)。
 (8)プリプレグの引張強度σ
 プリプレグから試験片を切り出し、ISO527-3法(1995)に従い引張特性を測定した。試験片は、任意の方向を0°方向とした場合に+45°、-45°、90°方向の4方向について切り出した試験片を作製し、それぞれの方向について測定数はn=5とし、全ての測定値(n=20)の平均値を引張強度σとした。測定装置としては“インストロン(登録商標)”5565型万能材料試験機(インストロン・ジャパン(株)製)を使用した。
 (9)引張強度σMax、σMin
 上記(8)で測定した20個の引張強度σのうち、最大値をσMax、最小値をσMinとした。
 (10)成形品の比強度
 成形品から試験片を切り出し、ISO1183(1987)に基づいて成形品の比重ρを測定した。次いで成形品から試験片を切り出し、ISO527-3法(1995)に従い引張強度を測定した。試験片は、任意の方向を0°方向とした場合に、0°、+45°、-45°、90°方向の4方向について切り出して試験片を作製した。それぞれの方向について測定数はn=5とし、全ての測定値(n=20)の平均値を引張強度σcとした。測定装置としては“インストロン(登録商標)”5565型万能材料試験機(インストロン・ジャパン(株)製)を使用した。得られた結果より次式により、成形品の比強度を算出した。
・成形品の比強度=σc/ρ。
 (11)成形品の引張強度のσcMax、σcMin
 上記(10)で測定した20個の引張強度σcのうち、最大値をσcMax、最小値をσcMinとした。
 (12)成形品の比剛性
 成形品から試験片を切り出し、ISO178法(1993)に従い曲げ弾性率を測定した。試験片は、任意の方向を0°方向とした場合に、0°、+45°、-45°、90°方向の4方向について切り出して試験片を作製した。それぞれの方向について測定数はn=5とし、全ての測定値(n=20)の平均値を曲げ弾性率Ecとした。測定装置としては“インストロン(登録商標)”5565型万能材料試験機(インストロン・ジャパン(株)製)を使用した。得られた結果より次式により、成形品の比剛性を算出した。
・成形品の比剛性 =Ec1/3/ρ
 ρ:成形品の比重。
 (13)成形品の曲げ弾性率のEcMax、Ecmin
 上記(12)で測定した20個の曲げ弾性率のうち、最大値をEcMax、最小値をEcMinとした。
 (14)積層プリフォームの層間剪断強度
 積層プリフォームより試験片を切り出し、ASTM-D-2344に基づき幅6.4mm、長さ14mmの試験片を作製し、3点曲げ試験をn=10で行い、層間剪断強度を測定した。結果にはn=10の平均値を採用した。
 (15)成形品の線膨張係数
 成形品から試験片を切り出し、ISO11359-2に基づいて測定した。試験片は、任意の方向を0°方向とした場合に+45°、-45°、90°方向の4方向について切り出した試験片を作製し、それぞれの方向について測定数はn=5とし、平均値を線膨張係数Ccとした。
 (16)成形品の線膨張係数のCcMax、CcMin
 測定する成形品における0°、+45°、-45°、90°の4方向全てにおいて測定される線膨張係数のうち、最大値をCcMax、最小値をCcMinとした。
 (17)成形品の比強度の判定
 成形品の比強度をもとに以下の基準で判定した。
A:比強度300MPa以上 
B:比強度200MPa以上300MPa未満
C:比強度150MPa以上200MPa未満
D:比強度150MPa未満。
 (18)成形品の比剛性の判定
 成形品の比剛性をもとに以下の基準で判定した。
AAA:比剛性3.00以上 
AA:比剛性2.50以上3.00未満
A:比剛性2.20以上2.50未満
B:比剛性2.00以上2.20未満
C:比剛性1.50以上2.00未満
D:比剛性1.50未満。
 (19)成形品の線膨張係数の判定
 成形品の線膨張係数をもとに以下の基準で判定した。
A:線膨張係数7×10-6/K以下 
B:線膨張係数7×10-6/Kより大きく10×10-6/K以下
C:線膨張係数10×10-6/Kより大きく20×10-6/K以下
D:線膨張係数20×10-6/Kより大きい。
 (20)成形品の等方性の判定
 成形品の引張強度、曲げ弾性率、線膨張係数の各特性の面内バラツキをもとに以下の基準で判定した。
AA:最大値が最小値の1.0倍以上1.1倍以下
A:最大値が最小値の1.1倍よりも大きく1.3倍以下
B:最大値が最小値の1.3倍よりも大きく2倍以下
C:最大値が最小値の2倍よりも大きい。
 (材料1)炭素繊維1
 ポリアクリロニトリルを主成分とする共重合体から紡糸、焼成処理、表面酸化処理を行い、総単糸数12,000本の連続炭素繊維を得た。この連続炭素繊維の特性は次に示す通りであった。
・単繊維径:7μm
・単位長さ当たりの質量:1.6g/m
・比重:1.8
・引張強度:4600MPa
・引張弾性率:220GPa。
 (材料2)炭素繊維2
 ポリアクリロニトリルを主成分とする共重合体から紡糸、焼成処理、表面酸化処理を行い、総単糸数12,000本の連続炭素繊維を得た。この連続炭素繊維の特性は次に示す通りであった。
・単繊維径:7μm
・単位長さ当たりの質量:1.6g/m
・比重:1.8
・引張強度:4100MPa
・引張弾性率:420GPa。
 (材料3)炭素繊維3
 東レ(株)製トレカT700S-12K-50C。
 (材料4)ガラス繊維
 日東紡製、商品名 PF-E001。
 (材料5)ガラス繊維強化熱可塑性樹脂(GMT)
 Quadrant社製、ユニシートP4038-BK31。厚み3.8mm。
 (材料6)PP樹脂シート
 未変性ポリプロピレン樹脂(プライムポリマー(株)製“プライムポリプロ”J105G)50質量%と、酸変性ポリプロピレン樹脂(三井化学(株)製“アドマー”QB510)50質量%とからなる厚み1mmの樹脂シートを作製した。
 (材料7)発泡PP樹脂シート
 古川電工製、商品名 エフセル(2倍発泡、厚み1mm)。
 (材料8)透明性ナイロン樹脂フィルム
 東京材料(株)製、クリスタミド MS1100からなる透明性ナイロン樹脂フィルム(透明Ny、厚み50μm)を作製した。
 (材料9)ナイロン樹脂難燃性フィルム
 東レ(株)製、CM1007(ナイロン6樹脂)100質量部に対して、燐化学工業製、ノーバレッド120(平均粒径25μm、リン含有率85%)10質量部を配合、混練しナイロン6樹脂難燃性フィルム(難燃Ny、厚み50μm)を得た。このフィルムの難燃性はUL94、VTM-0であった。
 (材料10)連続炭素繊維プリプレグ
 東レ(株)製、トレカプリプレグP3052S-12。
 (材料11)炭素繊維シートモールディングコンパウンド(SMC)
 材料3のトレカT700S-12K-50Cを25mm長にカットし、該カット炭素繊維束をランダムな方向に炭素繊維束が分布するように散らばらせ、炭素繊維束ランダム配向基材を作製した。該炭素繊維束ランダム配向基材を60質量部に、以下の炭素繊維シートモールディングコンパウンド用ビニルエステル樹脂40質量部を含浸させ、炭素繊維シートモールディングコンパウンド基材(SMC)を作製した。厚み2mm。
・ビニルエステル樹脂:昭和高分子社製リポキシH600をマトリックス樹脂とし、そのビニルエステル樹脂100質量部に対して、有機過酸化物硬化剤(日本油脂社製パーブチルZ)1.0質量部、重合禁止剤(精工化学社製TBH)0.6質量部、増粘剤(ダウ・ケミカル社製I・143L)13.0質量部、及び内部離型剤(アデカファイン社製ZNS・P)5.0質量部を配合したもの。
 (材料12)切り込み入り炭素繊維プリプレグ
 東レ(株)製、トレカプリプレグP3052S-17に、自動裁断機を用いて図7に示すような切り込みを連続的に挿入することにより、等間隔で規則的な切り込みを有する切り込み入り炭素繊維プリプレグを得た。切り込みの方向は繊維直交方向13で、切り込みの長さ17は5.1mmであり、間隔18(繊維長さ)は30mmである。隣り合う列の切り込みが互いに切り込んでいる19は0.1mmである。
 (材料13)エポキシ樹脂1
 エポキシ樹脂として、エポトートYD128(東都化成(株)製)を40質量部、エポトートYD128G(東都化成(株)製)を20質量部、エピコート1001(ジャパンエポキシレジン(株)製)を20質量部、エピコート1009(ジャパンエポキシレジン(株)製)を20質量部、硬化剤としてDICY7(ジャパンエポキシレジン(株)製、ジシアンジアミド)4質量部、DCMU99(保土ヶ谷化学(株)製、3-(3,4-ジクロロフェニル)-1,1-ジメチルウレア)3質量部、その他添加剤としてビニレックK(チッソ(株)製、ポリビニルホルマール)5質量部を配合したもの。未硬化樹脂のガラス転移温度が3℃。60℃における粘度が200Pa・s。
 (材料14)エポキシ樹脂2
 エポキシ樹脂として、エポトートYD128G(東都化成(株)製)を70質量部、エピコート1009(ジャパンエポキシレジン(株)製)を30質量部、硬化剤としてDICY7(ジャパンエポキシレジン(株)製、ジシアンジアミド)4質量部、DCMU99(保土ヶ谷化学(株)製、3-(3,4-ジクロロフェニル)-1,1-ジメチルウレア)3質量部、その他添加剤としてビニレックK(チッソ(株)製、ポリビニルホルマール)5質量部を配合したもの。未硬化樹脂のガラス転移温度が60℃における粘度600Pa・s。
 (材料15)ナイロン6樹脂チョップド繊維
 東レ(株)製、CM1007(ナイロン6樹脂)を紡糸して得たナイロン6樹脂の繊維(単繊維繊度3dtex)をカートリッジカッターで5.0mmにカットし、ナイロン6樹脂チョップド繊維を得た。
 (実施例1)
 材料1で得られた炭素繊維1をカートリッジカッターで6mmにカットし、チョップド炭素繊維を得た。水と界面活性剤(ナカライテクス(株)製、ポリオキシエチレンラウリルエーテル(商品名))からなる濃度0.1質量%の分散液を作成した。この分散液と上記チョップド炭素繊維とを用いて図3の強化繊維基材(抄紙基材)の製造装置を用いて、炭素繊維基材を製造した。製造装置は、分散槽21、抄紙槽22およびコンベア32とで構成されている。分散槽21は、直径1000mmの円筒形状の容器であり、容器下部には開口コックのついた直線状の輸送部(傾斜角30°)を備えている。輸送部は分散槽と抄紙槽とを接続している。分散槽の上面の開口部には撹拌機が付属し、開口部からチョップド炭素繊維および分散液(分散媒体)を投入可能である。抄紙槽は、底部に幅500mmの抄紙面を有するメッシュコンベアを備えている。コンベア32は、メッシュコンベア31に続けて配置されており、炭素繊維基材30を運搬する。抄紙は分散液中の炭素繊維濃度を0.05質量%としておこなった。抄紙した炭素繊維基材は200℃の乾燥炉で30分間乾燥した。得られた炭素繊維基材の幅は500mm、長さは500mm、目付は50g/mであった。強化繊維基材の特性を表1に示す。
 上記炭素繊維基材を1枚と、東レ(株)製、CM1007(ナイロン6樹脂)の同じ厚みのフィルム2枚とを、フィルム/炭素繊維基材/フィルムとなるように積層した。この積層体に250℃の温度で5MPaの圧力を2分間かけ、炭素繊維基材にナイロン6樹脂が含浸した幅500mm、長さ500mmプリプレグ(1)を作製した。プリプレグの特性を表2に示す。
 プリプレグ(1)を8枚積層したプリフォーム(A)を作製し、遠赤外線加熱炉で、窒素雰囲気下、280℃に予熱した。キャビティ表面温度が120℃であり、厚み1.1mmの図4に示すB5サイズのL字箱型形状のキャビティを有するスタンピング成形金型にプリフォーム(A)を配置し(チャージ率110%)、金型を閉じ、成形圧力30MPaで加圧し、2分間保持した。その後、金型を開き、脱型し、L字箱型形状の成形品を得た。プリフォーム(A)は金型の形状に添って良好に賦形されており、形状品位の良い成形品が得られた。成形品の特性を表3、表10に示す。
 (実施例2)
 炭素繊維基材に含浸させるナイロン6樹脂フィルムを、繊維質量含有率が52%となるように調整したこと以外は、実施例1と同様にしてプリプレグ(2)を作製した。プリプレグの特性を表2に示す。
プリプレグ(2)を17枚積層したプリフォームを作製した以外は、実施例1と同様にして、L字箱型形状の成形品を作製した。プリフォームは金型の形状に添って良好に賦形されており、形状品位の良い成形品が得られた。成形品の特性を表3に示す。
 (実施例3)
 抄紙時の分散液の流速とメッシュコンベアの速度を調整して、炭素繊維基材の目付を70g/mとしたこと以外は、実施例1と同様にして炭素繊維基材を作製した。強化繊維基材の特性を表1に示す。この炭素繊維基材に含浸させるナイロン6樹脂フィルムを、繊維質量含有率が65%となるように調整し、270℃の温度で5MPaの圧力を3分間かけて炭素繊維基材にナイロン6樹脂が含浸したプリプレグ(3)を作製した。繊維質量含有率が高いため、樹脂の含浸がやや難しくなった。プリプレグの特性を表2に示す。
プリプレグ(3)を17枚積層したプリフォームを作製した以外は、実施例1と同様にして、L字箱型形状の成形品を作製した。プリフォームは金型の形状に添って良好に賦形されており、形状品位の良い成形品が得られた。成形品の特性を表3に示す。
 (実施例4)
 炭素繊維基材に含浸させるナイロン6樹脂フィルムを、繊維質量含有率が15%となるように調整したこと以外は、実施例1と同様にしてプリプレグ(4)を作製した。プリプレグの特性を表2に示す。
プリプレグ(4)を4枚積層したプリフォームを作製した以外は、実施例1と同様にして、L字箱型形状の成形品を作製した。プリフォームは金型の形状に添って良好に賦形されており、形状品位の良い成形品が得られた。成形品の特性を表3に示す。
 (実施例5)
 炭素繊維基材に含浸させるナイロン6樹脂フィルムを、繊維質量含有率が8%となるように調整したこと以外は、実施例1と同様にしてプリプレグ(5)を作製した。プリプレグの特性を表2に示す。
プリプレグ(5)を2枚積層したプリフォームを作製した以外は、実施例1と同様にして、L字箱型形状の成形品を作製した。プリフォームは金型の形状に添って良好に賦形されており、形状品位の良い成形品が得られた。成形品の特性を表3に示す。
 (実施例6)
 抄紙時のメッシュコンベアの速度を、分散液の流速の4倍の速度に調整したこと以外は、実施例1と同様にして炭素繊維基材を作製した。強化繊維基材の特性を表1に示す。得られた炭素繊維基材を用いて、実施例1と同様にしてナイロン6樹脂が含浸したプリプレグ(6)を作製した。プリプレグの特性を表2に示す。
プリプレグ(6)を用いた以外は、実施例1と同様にして、L字箱型形状の成形品を作製した。プリフォームは金型の形状に添って良好に賦形されており、形状品位の良い成形品が得られた。成形品の特性を表3に示す。
 (実施例7)
 抄紙時の分散液の流速とメッシュコンベアの速度を調整して、炭素繊維基材の目付を20g/mとしたこと以外は、実施例1と同様にして炭素繊維基材を作製した。強化繊維基材の特性を表1に示す。この炭素繊維基材に含浸させるナイロン6樹脂フィルムを、繊維質量含有率が20%となるように調整し、250℃の温度で5MPaの圧力を2分間かけて炭素繊維基材にナイロン6樹脂が含浸したプリプレグ(7)を作製した。プリプレグの特性を表2に示す。
プリプレグ(7)を8枚積層したプリフォームを作製し、図4に示すのと同様の形状(B5サイズのL字箱型形状)で厚みが0.4mmのキャビティを有するスタンピング成形金型を用いた以外は、実施例1と同様にして、L字箱型形状の成形品を作製した。プリフォームは金型の形状に添って良好に賦形されており、形状品位の良い成形品が得られた。成形品の特性を表3に示す。
 (実施例8)
 抄紙時の分散液の流速とメッシュコンベアの速度を調整して、炭素繊維基材の目付を10g/mとしたこと以外は、実施例1と同様にして炭素繊維基材を作製した。強化繊維基材の特性を表4に示す。この炭素繊維基材に含浸させるナイロン6樹脂フィルムを、繊維質量含有率が20%となるように調整し、250℃の温度で5MPaの圧力を2分間かけて炭素繊維基材にナイロン6樹脂が含浸したプリプレグ(8)を作製した。プリプレグの特性を表5に示す。
プリプレグ(8)を16枚積層したプリフォームを作製した以外は、実施例7と同様にして、L字箱型形状の成形品を作製した。プリプレグ(8)が極めて薄いため、積層枚数が多くなり積層に時間がかかったが、プリフォームは金型の形状に添って良好に賦形されており、形状品位の良い成形品が得られた。成形品の特性を表6に示す。
 (実施例9)
 抄紙時の分散液の流速とメッシュコンベアの速度を調整して、炭素繊維基材の目付を200g/mとしたこと以外は、実施例1と同様にして炭素繊維基材を作製した。強化繊維基材の特性を表4に示す。この炭素繊維基材に含浸させるナイロン6樹脂フィルムを、繊維質量含有率が20%となるように調整し、250℃の温度で5MPaの圧力を2分間かけて炭素繊維基材にナイロン6樹脂が含浸したプリプレグ(9)を作製した。プリプレグの特性を表5に示す。
プリプレグ(9)を2枚積層したプリフォームを作製した以外は、実施例1と同様にして、L字箱型形状の成形品を作製した。プリフォームは金型の形状に添って良好に賦形されており、形状品位の良い成形品が得られた。成形品の特性を表6に示す。
 (実施例10)
 抄紙時に6mm長のチョップド炭素繊維と3mm長のチョップド炭素繊維を質量比で1:1に混合したチョップド炭素繊維を用いたこと以外は、実施例1と同様にして炭素繊維基材を作製した。強化繊維基材の特性を表4に示す。得られた炭素繊維基材を用いて、実施例1と同様にしてナイロン6樹脂が含浸したプリプレグ(10)を作製した。プリプレグの特性を表5に示す。
プリプレグ(10)を用いた以外は、実施例1と同様にして、L字箱型形状の成形品を作製した。プリフォームは金型の形状に添って良好に賦形されており、形状品位の良い成形品が得られた。成形品の特性を表6に示す。
 (実施例11)
 抄紙時に6mm長のチョップド炭素繊維2と3mm長のチョップド炭素繊維1を質量比で3:1に混合したチョップド炭素繊維を用いたこと以外は、実施例1と同様にして炭素繊維基材を作製した。強化繊維基材の特性を表4に示す。得られた炭素繊維基材を用いて、実施例1と同様にしてナイロン6樹脂が含浸したプリプレグ(11)を作製した。プリプレグの特性を表5に示す。
プリプレグ(11)を用いた以外は、実施例1と同様にして、L字箱型形状の成形品を作製した。プリフォームは金型の形状に添って良好に賦形されており、形状品位の良い成形品が得られた。成形品の特性を表6に示す。
 (実施例12)
 炭素繊維基材にナイロン6樹脂フィルムを含浸させる際に、樹脂含浸率が20%となるように圧力と時間を調整したこと以外は、実施例1と同様にしてプリプレグ(12)を作製した。プリプレグの特性を表5に示す。
プリプレグ(12)を用い、金型のキャビティ表面温度を270℃にし、成形圧力を35MPaで加圧し、10分間保持したこと以外は、実施例1と同様にして、L字箱型形状の成形品を作製した。プリフォームの樹脂含浸率が低いため、成形温度を高く、圧力を高め、時間を長くすることが必要であったが、成形品は金型の形状に添って良好に賦形されており、形状品位の良い成形品が得られた。成形品の特性を表6に示す。
 (実施例13)
 実施例1の炭素繊維基材と、フィルムに東レ(株)製、A900(PPS樹脂)の同じ厚みのフィルム2枚を用いて、フィルム/炭素繊維基材/フィルムとなるように積層し、300℃の温度で5MPaの圧力を2分間かけて炭素繊維基材にPPS樹脂が含浸したプリプレグ(13)を作製した。プリプレグの特性を表5に示す。
プリプレグ(13)を用い、金型のキャビティ表面温度を300℃にしたこと以外は、実施例1と同様にして、L字箱型形状の成形品を作製した。成形品は金型の形状に添って良好に賦形されており、形状品位の良い成形品が得られた。成形品の特性を表6に示す。
 (実施例14)
 実施例1の炭素繊維基材と、フィルムに未変性ポリプロピレン樹脂(プライムポリマー(株)製“プライムポリプロ”J105G)50質量%と、酸変性ポリプロピレン樹脂(三井化学(株)製“アドマー”QB510)50質量%とを混練した樹脂から作製した同じ厚みのフィルム2枚とを用いて、フィルム/炭素繊維基材/フィルムとなるように積層し、230℃の温度で5MPaの圧力を2分間かけて炭素繊維基材にPP樹脂が含浸したプリプレグ(14)を作製した。プリプレグの特性を表5に示す。
プリプレグ(14)を用い、金型のキャビティ表面温度を230℃にしたこと以外は、実施例1と同様にして、L字箱型形状の成形品を作製した。成形品は金型の形状に添って良好に賦形されており、形状品位の良い成形品が得られた。成形品の特性を表6に示す。
 (参考例1)
 実施例1の炭素繊維基材と、フィルムに材料13のエポキシ樹脂から作製した同じ厚みのフィルム2枚とを用いて、フィルム/炭素繊維基材/フィルムとなるように積層し、60℃の温度で5MPaの圧力を2分間かけて炭素繊維基材にエポキシ樹脂1が含浸したプリプレグ(15)を作製した。熱可塑性樹脂を用いた場合に比較してプリプレグの引張強度が小さく、積層工程でのプリプレグの取り扱いが困難となった。プリプレグの特性を表8に示す。
プリプレグ(15)を用い、金型のキャビティ表面温度を150℃にし、成形圧力を10MPa、成形時間を30分として成形し、脱型してL字箱型形状の成形品を作製した。成形品は金型の形状に添って良好に賦形されており、形状品位の良い成形品が得られた。成形品の特性を表9に示す。
 (参考例2)
 実施例1の炭素繊維基材と、フィルムに材料14のエポキシ樹脂から作製した同じ厚みのフィルム2枚とを用いて、フィルム/炭素繊維基材/フィルムとなるように積層し、60℃の温度で5MPaの圧力を2分間かけて炭素繊維基材にエポキシ樹脂1が含浸したプリプレグ(16)を作製した。熱可塑性樹脂を用いた場合に比較してプリプレグの引張強度が小さく、積層工程でのプリプレグの取り扱いが困難となった。プリプレグの特性を表8に示す。
プリプレグ(16)を用いたこと以外は、実施例14と同様にして、L字箱型形状の成形品を作製した。成形品は金型の形状に添って良好に賦形されており、形状品位の良い成形品が得られた。成形品の特性を表9に示す。
 (実施例15)
 東レ(株)製、CM1007(ナイロン6樹脂)100質量部に対して、燐化学工業製、ノーバレッド120(平均粒径25μm、リン含有率85%)10質量部を配合、混練したナイロン6樹脂を用いたフィルムを準備した。実施例1の炭素繊維基材と、同じ厚みの該フィルム2枚とを用いて、フィルム/炭素繊維基材/フィルムとなるように積層したこと以外は、実施例1と同様にしてプリプレグ(17)を作製した。プリプレグの特性を表8に示す。
プリプレグ(17)を用いた以外は、実施例1と同様にして、L字箱型形状の成形品を作製した。プリフォームは金型の形状に添って良好に賦形されており、形状品位の良い成形品が得られた。赤リンを配合して難燃性が付与された成形品となった。難燃性はUL94V-0であった。成形品の特性を表9に示す。
 (実施例16)
 プリプレグの大きさを1000mm×500mmとしたこと以外は、実施例1と同様にしてプリプレグ(18)を作製した。プリプレグの特性を表8に示す。
プリプレグ(18)を24枚積層したプリフォームを作製し、図8に示す自動車ボンネット成形品用の金型を用いたこと以外は、実施例1と同様にして、自動車用ボンネットの成形品を作製した。サイズの大きなプリフォームであるが、積層、運搬等は問題なく取り扱え、金型の形状に添って良好に賦形されており、形状品位の良い成形品が得られた。成形品の特性を表9に示す。
 (実施例17)
 チョップド炭素繊維のかわりに、材料4で得られたガラス繊維をカートリッジカッターで6mmにカットした、チョップドガラス繊維を用いた以外は、実施例1と同様にしてガラス繊維基材を得た。ガラス繊維基材の目付は100g/mであった。ガラス繊維基材の特性を表7に示す。
上記ガラス繊維基材を用いたこと以外は、実施例1と同様にして、ガラス繊維基材にナイロン6樹脂が含浸したプリプレグ(19)を作製した。プリプレグの特性を表8に示す。
プリプレグ(19)を6枚積層したプリフォームを作製した以外は、実施例1と同様にして、L字箱型形状の成形品を作製した。プリフォームは金型の形状に添って良好に賦形されており、形状品位の良い成形品が得られた。成形品の特性を表9に示す。
 (実施例18)
 チョップド炭素繊維に、材料2で得られた炭素繊維2をカートリッジカッターで6mmにカットしたチョップド炭素繊維を用いた以外は、実施例2と同様にしてプリプレグ(20)を作製した。プリプレグの特性を表8に示す。
プリプレグ(20)を17枚積層したプリフォームを作製した以外は、実施例1と同様にして、L字箱型形状の成形品を作製した。プリフォームは金型の形状に添って良好に賦形されており、形状品位の良い成形品が得られた。成形品の特性を表9示す。
 (実施例19)
 炭素繊維基材に含浸させるPP樹脂フィルムを、繊維質量含有率が40%となるように調整したこと以外は、実施例14と同様にしてプリプレグ(21)を作製した。プリプレグの特性を表8に示す。
プリプレグ(21)を17枚積層したプリフォームを作製した以外は、実施例14と同様にして、L字箱型形状の成形品を作製した。プリフォームは金型の形状に添って良好に賦形されており、形状品位の良い成形品が得られた。成形品の特性を表9に示す。
 (実施例20)
 プリプレグ(1)を8枚積層して積層プリフォーム(A)を作製したのち、該プリフォーム(A)を250℃の温度で1分間、5MPaの圧力で加圧して、プリプレグ(1)同士が接着したプリフォーム(B)を作製した。プリフォームの特性を表10に示す。
このプリフォーム(B)を用いて、実施例1の成形と同様にして、B5サイズのL字箱型形状の成形品を作製した。プリプレグ(1)同士が接着されているため、L字箱型形状の成形品の立ち壁部分の厚みが若干薄くなり、表面が少しかすれてしまうなど、形状賦形性がやや困難であったが、成形品は使用できるものであった。成形品の特性を表10に示す。
 (実施例21)
 プリプレグ(1)とプリプレグ(2)とを[(2)/(1)×6枚/(2)]のように合計8枚積層して積層プリフォーム(C)を作製した。プリフォームの特性を表10に示す。
このプリフォームを用いたこと以外は、実施例1と同様にしてL字箱型形状の成形品を作製した。成形品は金型の形状に添って良好に賦形されており、形状品位の良い成形品が得られた。成形品の特性を表10に示す。
 (実施例22)
 プリプレグ(1)とプリプレグ(20)とを[(20)/(1)×6枚/(20)]のように合計8枚積層して積層プリフォーム(D)を作製した。プリフォームの特性を表10に示す。
このプリフォームを用いたこと以外は、実施例1と同様にしてL字箱型形状の成形品を作製した。成形品は金型の形状に添って良好に賦形されており、形状品位の良い成形品が得られた。成形品の特性を表10に示す。
 (実施例23)
 プリプレグ(1)とプリプレグ(19)とを[(1)/(19)×4枚/(1)]のように合計6枚積層して積層プリフォーム(E)を作製した。プリフォームの特性を表10に示す。
このプリフォームを用いたこと以外は、実施例1と同様にしてL字箱型形状の成形品を作製した。成形品は金型の形状に添って良好に賦形されており、形状品位の良い成形品が得られた。成形品の特性を表10に示す。
 (実施例24)
 プリプレグ(1)と材料10のトレカプリプレグとを[トレカプリプレグ/(1)×7枚]のように合計8枚積層して積層プリフォーム(F)を作製した。プリフォームの特性を表10に示す。ここで、トレカプリプレグは図5の成形品の天面部分を補強するように配置する。
このプリフォームを用いたこと以外は、実施例1と同様にしてL字箱型形状の成形品を作製した。成形品は金型の形状に添って良好に賦形されており、形状品位の良い成形品が得られた。成形品の特性を表10に示す。
 (実施例25)
 プリプレグ(1)と材料5のGMTとを[(1)/GMT/(1)]のように合計3枚積層して積層プリフォーム(G)を作製した。プリフォームの特性を表11に示す。ここで、図6のように基材のチャージ率をプリプレグ(1)については110%、GMTについては50%となるように配置した。
このプリフォームを用いたこと以外は、実施例1と同様にしてL字箱型形状の成形品を作製した。成形品は金型の形状に添って良好に賦形されており、形状品位の良い成形品が得られた。成形品の特性を表11に示す。
 (実施例26)
 プリプレグ(21)と材料6のPP樹脂シートとを[(21)/PP樹脂シート/(21)]のように合計3枚積層して積層プリフォーム(H)を作製した。プリフォームの特性を表11に示す。
このプリフォームを用いたこと以外は、実施例1と同様にしてL字箱型形状の成形品を作製した。成形品は金型の形状に添って良好に賦形されており、形状品位の良い成形品が得られた。成形品の特性を表11に示す。
 (実施例27)
 プリプレグ(21)と材料7の発泡PP樹脂シートとを[(21)/発泡PP樹脂シート/(21)]のように合計3枚積層して積層プリフォーム(I)を作製した。プリフォームの特性を表11に示す。
このプリフォームを用いたこと以外は、実施例1と同様にしてL字箱型形状の成形品を作製した。成形品は金型の形状に添って良好に賦形されており、形状品位の良い成形品が得られた。成形品の特性を表11に示す。
 (実施例28)
 プリプレグ(1)と材料8の透明ナイロン樹脂フィルムとを[透明ナイロン樹脂シート/(1)×8]のように合計9枚積層して積層プリフォーム(J)を作製した。プリフォームの特性を表11に示す。
このプリフォームを用いたこと以外は、実施例1と同様にしてL字箱型形状の成形品を作製した。成形品は金型の形状に添って良好に賦形されており、形状品位の良い成形品が得られた。また表面が透明ナイロン樹脂シートのため光沢があり高級感を醸し出していた。成形品の特性を表11に示す。
 (実施例29)
 プリプレグ(1)と材料9のナイロン樹脂難燃性フィルムとを[ナイロン樹脂難燃性シート/(1)×8]のように合計9枚積層して積層プリフォーム(K)を作製した。プリフォームの特性を表11に示す。
このプリフォームを用いたこと以外は、実施例1と同様にしてL字箱型形状の成形品を作製した。成形品は金型の形状に添って良好に賦形されており、形状品位の良い成形品が得られた。成形品の特性を表11に示す。また、バーナの炎の高さを19mmに調整し、成形品のナイロン樹脂難燃性シートが配置された表面を炎にさらし、5秒後に炎から離す難燃性の測定を行ったところ、炎から離した後、消炎した。
 (実施例30)
 B5サイズのL字箱型形状のキャビティを有するスタンピング成形金型を、成形品端部の余り部分を打ち抜くための打ち抜き機構を有する金型とした以外は、実施例1と同様にしてL字箱型形状の成形品を作製した。成形と打ち抜きを同時におこなうことで、工程を短縮できた。
 (比較例1)
 抄紙時の分散液の流速とメッシュコンベアの速度を調整して、炭素繊維基材の目付を410g/mとしたこと以外は、実施例1と同様にして炭素繊維基材を作製した。炭素繊維基材の特性を表12に示す。この炭素繊維基材に含浸させるナイロン6樹脂フィルムを、繊維質量含有率が20%となるように調整し、250℃の温度で5MPaの圧力を2分間かけて炭素繊維基材にナイロン6樹脂が含浸したプリプレグ(22)を作製した。プリプレグの特性を表13に示す。
プリフォームとしてプリプレグ(22)を1枚用いたこと以外は、実施例1と同様にして、L字箱型形状の成形品を作製した。プリフォームは金型の形状に添って賦形することが困難であり、立ち壁部分が均一な肉厚にならず、一部裂けてしまった。成形品の特性を表15に示す。
 (比較例2)
 抄紙時に、分散液中に実施例1で用いたチョップド炭素繊維と、材料15のナイロン6樹脂チョップド繊維とを繊維質量含有率が20%となるような配合で投入したこと以外は、実施例1と同様にして抄紙をおこない、炭素繊維とナイロン6繊維が混抄されたプリプレグ(23)を得た。プリプレグの特性を表13に示す。炭素繊維のみの目付は50g/mであった。
プリプレグ(23)を用いたこと以外は、実施例16と同様にして自動車用ボンネットの成形をおこなおうとしたが、プリプレグ(23)の引張強度が低いため、プリプレグ(23)を24枚積層したプリフォームを作製する際の、運搬、積層、移動でプリプレグ(23)が破れてしまい、成形することができなかった。
 (比較例3)
 材料5のGMT(プリプレグ(24))を1枚用いて、チャージ率50%で配置したこと以外は、実施例1と同様にしてL字箱型形状の成形品を作製した。GMTの厚みが大きいため、1.1mmの成形品の厚みに成形できず、目標厚みの良好な成形品が得られなかった。成形品の特性を表14に示す。
 (比較例4)
 材料11のCF-SMC(プリプレグ(25))を1枚用いて、チャージ率50%で配置したこと以外は、実施例13と同様にしてL字箱型形状の成形品を作製した。成形品は金型の形状に添って良好に賦形されており、形状品位の良い成形品が得られたが、炭素繊維が束状で分散されているため、比強度は低く、等方性にも劣る結果であった。成形品の特性を表14に示す。
 (比較例5)
 材料12の切り込み入り炭素繊維プリプレグ(プリプレグ(26))を8枚用いて[0/45/90/-45]sの疑似等方積層のプリフォームを作製し、実施例13と同様にしてL字箱型形状の成形品を作製した。成形品は金型の形状に添って良好に賦形されており、形状品位の良い成形品が得られたが、炭素繊維が束状で分散されているため、等方性に劣る結果であった。成形品の特性を表14に示す。
 (比較例6)
 材料10のトレカプリプレグ(プリプレグ(27))を8枚用いて[0/45/90/-45]sの疑似等方積層のプリフォームを作製し、実施例13と同様にしてL字箱型形状の成形品を作製したが、炭素繊維が連続であるため、形状の賦形が困難で、立ち壁、角部分などの形状が成形不可能であった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
 実施例1~19で示されるように、プリプレグの強化繊維の繊維長の分布、厚み、引張強度が良好で、かつ繊維の二次元配向角が10°以上80°の等方性なプリプレグは、成形品を作製した場合に良好な特性を示している。また、これらのプリプレグを用いて作製した実施例1、ならびに実施例20~30の積層プリフォームも良好な特性を示している。
 一方厚みの大きいプリプレグである比較例1では、形状賦形が困難で、成形品に一部不具合を生じさせた。さらに、引張強度が低いプリプレグを使用した比較例2では、プリフォーム作製時に破れが生じてしまった。また、GMTを用いた比較例3においては、厚みが大きく、薄肉成形が非常に困難であった。また流動して力学特性の等方性にも劣る結果となった。CF-SMCを用いた比較例4では、繊維の二次元配向角が小さく、力学特性およびその等方性に劣る結果となった。切り込み入りの炭素繊維プリプレグを用いた比較例5では、力学特性は改善されているが、繊維が束状のためやはり等方性に劣る結果となった。連続繊維プリプレグを用いた比較例6は形状を作り上げることが困難であった。
 [ プリプレグの製造方法の評価 ]
 実施例に用いた原料
 (炭素繊維A1)PAN系炭素繊維
 炭素繊維A1は、下記のようにして製造した。
アクリロニトリル(AN)99.4モル%とメタクリル酸0.6モル%からなる共重合体を用いて、乾湿式紡糸方法により単繊維デニール1d、フィラメント数12,000のアクリル系繊維束を得た。得られたアクリル系繊維束を240~280℃の温度の空気中で、延伸比1.05で加熱し、耐炎化繊維に転換し、次いで窒素雰囲気中300~900℃の温度領域での昇温速度を200℃/分とし10%の延伸を行った後、1,300℃の温度まで昇温し焼成した。この炭素繊維束に硫酸を電解質とした水溶液で、炭素繊維1gあたり3クーロンの電解表面処理を行い、さらに浸漬法によりサイジング剤を付与し、120℃の温度の加熱空気中で乾燥しPAN系炭素繊維を得た。
・総フィラメント数     24,000本
・単繊維直径        7μm
・単位長さ当たりの質量   0.8g/m
・比重           1.8g/cm
・引張強度    (注1)   4.2GPa
・引張弾性率(注2)    230GPa
・O/C(注3)      0.10
・サイジング種類      ポリオキシエチレンオレイルエーテル
・サイジング付着量(注4) 1.5質量%。
 (炭素繊維A2)PAN系炭素繊維
 炭素繊維A2は、下記のようにして製造した。
アクリロニトリル(AN)99.4モル%とメタクリル酸0.6モル%からなる共重合体を用いて、乾湿式紡糸方法により単繊維デニール1d、フィラメント数12,000のアクリル系繊維束を得た。得られたアクリル系繊維束を240~280℃の温度の空気中で、延伸比1.05で加熱し、耐炎化繊維に転換し、次いで窒素雰囲気中300~900℃の温度領域での昇温速度を200℃/分とし10%の延伸を行った後、1,300℃の温度まで昇温し焼成した。さらに浸漬法によりサイジング剤を付与し、120℃の温度の加熱空気中で乾燥しPAN系炭素繊維を得た。
・総フィラメント数     12,000本
・単繊維直径        7μm
・単位長さ当たりの質量   0.8g/m
・比重           1.8g/cm
・引張強度(注1)     4.2GPa
・引張弾性率(注2)    230GPa
・O/C(注3)      0.05
・サイジング種類      ポリオキシエチレンオレイルエーテル
・サイジング付着量(注4) 0.6質量%。
 (炭素繊維A3)PAN系炭素繊維
 炭素繊維A3は、下記のようにして製造した。
アクリロニトリル(AN)99.4モル%とメタクリル酸0.6モル%からなる共重合体を用いて、乾湿式紡糸方法により単繊維デニール1d、フィラメント数12,000のアクリル系繊維束を得た。得られたアクリル系繊維束を240~280℃の温度の空気中で、延伸比1.05で加熱し、耐炎化繊維に転換し、次いで窒素雰囲気中300~900℃の温度領域での昇温速度を200℃/分とし10%の延伸を行った後、1,300℃の温度まで昇温し焼成した。さらに浸漬法によりサイジング剤を付与し、120℃の温度の加熱空気中で乾燥しPAN系炭素繊維を得た。
・総フィラメント数     48,000本
・単繊維直径        7μm
・単位長さ当たりの質量   0.8g/m
・比重           1.8g/cm
・引張強度(注1)     4.2GPa
・引張弾性率(注2)    230GPa
・O/C(注3)            0.05
・サイジング種類      ポリオキシエチレンオレイルエーテル
・サイジング付着量(注4) 1.5質量%。
 (マトリックス樹脂B1)酸変性ポリプロピレン樹脂
 マトリックス樹脂B1は、三井化学(株)製、“アドマー”(登録商標)QE510を用いた。その物性は下記の通りである。
・比重           0.91
・融点           160℃。
 (マトリックス樹脂B2)ナイロン6樹脂
 マトリックス樹脂B2は、東レ(株)製、“アミラン”(登録商標)CM1001を用いた。その物性は下記の通りである。
・比重            1.13
・融点            225℃。
 (マトリックス樹脂B3)PPS樹脂
 マトリックス樹脂B3は、東レ(株)製、“トレリナ”(登録商標)A900を用いた。その物性は下記の通りである。
・比重            1.34
・融点            278℃。
 (マトリックス樹脂B4)エポキシ樹脂
 “エピコート”(登録商標)828(ビスフェノールA型エポキシ樹脂、ジャパンエポキシレジン(株)製)30質量部、“エピコート”(登録商標)1002(ビスフェノールA型エポキシ樹脂、ジャパンエポキシレジン(株)製)30質量部、“エピコート”(登録商標)154(フェノールノボラック型エポキシ樹脂、ジャパンエポキシレジン(株)製)40質量部、“ビニレック”K(登録商標)(ポリビニルホルマール、チッソ(株)製)5質量部、DICY7(ジシアンジアミド、ジャパンエポキシレジン(株)製)4質量部、およびDCMU-99(3,4-ジクロロフェニル-1,1-ジメチルウレア、保土谷化学工業(株)製)5質量部を下に示す手順でニーダーで混合し、ポリビニルホルマールが均一に溶解したエポキシ樹脂組成物を得た。
(a)各エポキシ樹脂原料とポリビニルホルマールとを150~190℃に加熱しながら1~3時間攪拌し、ポリビニルホルマールを均一に溶解する。
(b)樹脂温度を55~65℃まで降温し、ジシアンジアミド、および3-(3,4-ジクロロフェニル)-1,1-ジメチルウレアを加え、該温度で30~40分間混練後、ニーダー中から取り出して樹脂組成物を得る。
 (バインダー成分C1)
 バインダーを構成するバインダー成分は、日本触媒(株)製“ポリメント”(登録商標)SK-1000を用いた。その主な構成成分はアミノアルキレン基を側鎖に有するアクリル系重合体である。
 (バインダー成分C2)
 バインダーを構成するバインダー成分は、日本触媒(株)製“エポクロス”(登録商標)WS-700を用いた。その主な構成成分はオキサゾリン基を側鎖に有するアクリル系重合体である。
 (注1)引張強度、(注2)引張弾性率の測定条件
 日本工業規格(JIS)-R-7601「樹脂含浸ストランド試験法」に記載された手法により、求めた。ただし、測定する炭素繊維の樹脂含浸ストランドは、“BAKELITE”(登録商標)ERL4221(100質量部)/3フッ化ホウ素モノエチルアミン(3質量部)/アセトン(4質量部)を、炭素繊維に含浸させ、130℃、30分で硬化させて形成した。また、ストランドの測定本数は、6本とし、各測定結果の平均値を、その炭素繊維の引張強度、引張弾性率とした。
 (注3)O/Cの測定の測定条件
 X線光電子分光法により次の手順に従って求めた。まず、溶剤で炭素繊維表面に付着物などを除去した炭素繊維を20mmにカットして、銅製の試料支持台に拡げて並べた。X線源としてA1Kα1、2を用い、試料チャンバー中を1×10Torrに保った。測定時の帯電に伴うピークの補正値としてC1sの主ピークの運動エネルギー値(K.E.)を1202eVに合わせた。C1sピーク面積を、K.E.として1191~1205eVの範囲で直線のベースラインを引くことにより求めた。O1sピーク面積を、K.E.として947~959eVの範囲で直線のベースラインを引くことにより求めた。
 表面酸素濃度を、上記O1sピーク面積とC1sピーク面積の比から装置固有の感度補正値を用いて原子数比として算出した。X線光電子分光法装置として、国際電気社製モデルES-200を用い、感度補正値を1.74とした。
 (注4)サイジング剤の付着量の測定条件
 試料として、サイジング剤が付着している炭素繊維約5gを採取し、耐熱性の容器に投入した。次にこの容器を120℃で3時間乾燥した。吸湿しないようにデシケーター中で注意しながら室温まで冷却後、秤量した質量をW1(g)とした。続いて、容器ごと、窒素雰囲気中で、450℃で15分間加熱後、同様にデシケーター中で吸湿しないように注意しながら室温まで冷却後、秤量した質量をW2(g)とした。以上の処理を経て、炭素繊維へのサイジング剤の付着量を次の式により求めた。
(式)付着量(質量%)=100×{(W1-W2)/W2
 なお、測定は3回行い、その平均値を付着量として採用した。
 各実施例で得られる炭素繊維基材の評価基準は次の通りである。
 (21)トータル工程時間
 工程(I)から工程(III)、工程(I)から工程(IV)に要する時間を測定した。
 (22)強化繊維の分散状態の評価
 工程(I)で得られた強化繊維基材の任意の部位より、50mm×50mmの正方形状にウェブを切り出して顕微鏡にて観察した。10本以上の炭素繊維の単繊維が束状になった状態、すなわち分散が不十分な炭素繊維の束の個数を測定した。この手順で20回の測定を行い、平均値を求め、以下の基準で評価した。
AA:分散が不十分な炭素繊維の束が1個未満
A:分散が不十分な炭素繊維の束が1個以上5個未満
B:分散が不十分な炭素繊維の束が5個以上10個未満
C:分散が不十分な炭素繊維の束が10個以上。
 (23)プリプレグの取扱い性
 得られたプリプレグを取扱い性を以下の基準で評価した。
A:炭素繊維基材とマトリックス樹脂とが一体化しており、取り扱い性に優れる
B:炭素繊維基材とマトリックス樹脂とが分離しており、取り扱いに注意が必要である。
 (24)成形品の力学特性の評価
 得られたプリプレグを200mm×200mmに切り出して、120℃で1時間乾燥させた。乾燥後のプリプレグを8枚積層し、温度200℃、圧力30MPaで5分間プレス成形し、圧力を保持したまま50℃まで冷却して厚み1.0mmの成形品を得た。得られた成形品を用いて、ISO178法(1993)に従い、曲げ強度をn=10で評価した。なお、曲げ強度の評価結果は実施例1を100として相対値で記載した。また、評価結果のばらつきを変動係数(CV値)で記載した。
 (実施例101)湿式プロセスによるプリプレグP1の製造
 図9の装置101を用いて、プリプレグP1を製造した。装置101は、分散槽111、抄紙槽112およびバインダー槽126とで構成されている。分散槽111は、直径300mmの円筒形状の容器であり、容器下部に開口コック115のついたスラリー輸送部113を備えている。抄紙槽112としては、大型角型シートマシン(熊谷理機工業株式会社製、No.2553-I(商品名))が用いられている。バインダー槽126は、容器下部に開口コック128のついたバインダー輸送部127を備えている。バインダー輸送部127の開口は、抄紙槽112の上に位置する。バインダー輸送部127は可動であり、強化繊維基材120上に均一にバインダーを散布できる。分散槽111の上面の開口部には撹拌機116が付属し、開口部から炭素繊維束117および分散媒体118を投入できる。抄紙槽12の底部は長さ400mm×幅400mmの抄紙面(メッシュシート製)119を有し、抄紙面119上に強化繊維基材120が得られる。
 炭素繊維A1をカートリッジカッターで6.4mmにカットし、チョップド炭素繊維(A1-1)を得た。
バインダー液としてC1の1質量%の水分散液(エマルジョン)を作成し、バインダー槽126に入れておいた。水と界面活性剤(ナカライテクス(株)製、ポリオキシエチレンラウリルエーテル(商品名))からなる濃度0.1質量%の分散液を20リットル作成し、分散槽111に移した。この分散液に、A1-1(チョップド炭素繊維)9.6gを投入し、10分間撹拌してスラリーを調製した。分散槽容器下部の開口コック115を開放し、該スラリーを抄紙槽112に流し込み、水を吸引して、長さ400mm、幅400mmの炭素繊維基材を得た(工程(I))。次いでバインダー槽126の開口コック128を開放して、該炭素繊維基材の上面部より、バインダー液を200g散布した。余剰分のバインダー液を吸引してバインダー成分を付与した炭素繊維基材120を得た。該炭素繊維基材120を製造装置101から取り出し、150℃で20分間乾燥して炭素繊維基材W1を得た(工程(II))。炭素繊維基材W1の目付は60g/m2であった。
マトリックス樹脂としてB1の不織布(樹脂目付30g/m2)を炭素繊維基材W1の上下両面に配置し、220℃で10MPaの加圧をおこない、炭素繊維基材にマトリックス樹脂が含浸したプリプレグP1を得た(工程(III))。各工程における実施条件および得られたプリプレグの評価結果を、表15に示した。
 (実施例102)湿式プロセスによるプリプレグP2の製造
 図10の装置102を用いて、プリプレグを製造した。装置102は、分散層111、抄紙槽112、バインダー槽126、コンベア122、乾燥機138、ダブルベルトプレス131および巻き取り装置133とで構成されている。分散槽111は、直径300mmの円筒形状の容器であり、容器下部に開口コック115のついたスラリー輸送部113と、加圧された空気を槽内に送り込むための加圧空気管129とを備えている。バインダー槽126は、容器下部に開口コック128のついたバインダー輸送部127と、加圧された空気を槽内に送り込むための加圧空気管130とを備えている。抄紙槽112は、底部に幅200mmの抄紙面119を有するメッシュコンベア121を備えている。コンベア122は、メッシュコンベア121に続けて配置されており、強化繊維基材を運搬する。バインダー輸送部127の開口はコンベア122の上に位置する。乾燥機138は、コンベア122上の強化繊維基材120を乾燥する。ダブルベルトプレス131は、コンベア122で運搬された強化繊維基材120を水平方向に導入する。このダブルベルトプレス131には、強化繊維基材120と共に、ロール136,137から強化繊維基材120の両側面に向けてマトリックス樹脂135が供給される。巻き取り装置133は、得られたプリプレグ132を巻き取る。
 炭素繊維A1をカートリッジカッターで6.4mmにカットし、チョップド炭素繊維(A1-1)を得た。
バインダー液としてC1の1質量%の水分散液(エマルジョン)を作成し、バインダー槽126に入れておいた。水と界面活性剤(ナカライテクス(株)製、ポリオキシエチレンラウリルエーテル(商品名))からなる濃度0.1質量%の分散液を40リットル作成し、分散槽111に移した。この分散液に、A1-1(チョップド炭素繊維)20gを投入し、10分間撹拌してスラリーを調製した。分散槽容器下部の開口コック115を開放し、スラリーの容器に加圧空気を導入してスラリー流量を一定に保ちながら、該スラリーを幅200mmの抄紙面を有するメッシュコンベア121に流し込んだ。メッシュコンベア121で、水を吸引しながら、該スラリーを1m/分の速度で引き取り、長さ5m、幅200mmの炭素繊維基材120を得た(工程(I))。次いでバインダー槽126の開口コック128を開放して、該炭素繊維基材120の上面部にバインダー液を200g散布した。余剰分のバインダー液を吸引したのち、200℃の乾燥機138の中を3分間で通過させ、炭素繊維基材W2を得た(工程(II))。炭素繊維基材W2の目付は20g/m2であった。該炭素繊維基材W2をオンラインのままコンベア122でダブルベルトプレス131に送った。
マトリックス樹脂としてB1の不織布(樹脂目付15g/m2)を炭素繊維基材の上下両面に配置し、ダブルベルトプレス装置131を用いて220℃で5MPaの加圧をおこない、炭素繊維基材にマトリックス樹脂が含浸したプリプレグP2を作製した(工程(III))。そのまま巻き取り装置133で、巻き取り速度1m/分でロール形状に巻き取った(工程(IV))。各工程における実施条件および得られたプリプレグP2の評価結果を、表15に示した。
 (実施例103)湿式プロセスによるプリプレグP3の製造
 工程(II)の強化繊維基材の含水率を20質量%としたほかは、実施例101と同様に処理を行い、プリプレグP3を得た。各工程における実施条件および得られたプリプレグP3の評価結果を、表15に示した。
 (実施例104)湿式プロセスによるプリプレグP4の製造
 工程(III)における加圧及び加熱を行わなかったほかは、実施例102と同様に処理を行い、プリプレグP4を得た。各工程における実施条件および得られたプリプレグP4の評価結果を、表15に示した。
 (実施例105)湿式プロセスによるプリプレグP5の製造
 工程(III)のマトリックス樹脂としてB2の不織布(30g/m)を用いて250℃でダブルベルトプレスを行ったほかは、実施例101と同様に処理を行い、プリプレグP5を得た。各工程における実施条件および得られたプリプレグP5の評価結果を、表15に示した。
 (実施例106)湿式プロセスによるプリプレグP6の製造
 工程(III)のマトリックス樹脂としてB3の不織布(30g/m)を用いて300℃でダブルベルトプレスを行ったほかは、実施例101と同様に処理を行い、プリプレグP6を得た。各工程における実施条件および得られたプリプレグP6の評価結果を、表16に示した。
 (実施例107)湿式プロセスによるプリプレグP7の製造
 工程(III)のマトリックス樹脂としてB4のフィルム(30g/m)を用いて80℃でダブルベルトプレスを行ったほかは、実施例101と同様に処理を行い、プリプレグP7を得た。各工程における実施条件および得られたプリプレグP7の評価結果を、表16に示した。
 (実施例108)湿式プロセスによるプリプレグP8の製造
 炭素繊維A3をカートリッジカッターで6.4mmにカットし、チョップド炭素繊維(A3-1)を得た。工程(I)のチョップド炭素繊維としてA3-1を用いたほかは、実施例101と同様に処理を行い、プリプレグP8を得た。各工程における実施条件および得られたプリプレグP8の評価結果を、表16に示した。
 (実施例109)湿式プロセスによるプリプレグP9の製造
 工程(II)のバインダーとしてC2を用いたほかは、実施例101と同様に処理を行い、プリプレグP9を得た。各工程における実施条件および得られたプリプレグP9の評価結果を、表16に示した。
 (比較例101)湿式プロセスによるプリプレグP10の製造
 工程(I)、工程(II)及び工程(III)の処理をオフラインで行ったこと以外は、実施例101と同様に処理を行い、プリプレグP10を得た。各工程における実施条件および得られたプリプレグP10の評価結果を、表16に示した。
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
 表15,表16から明らかなように、実施例101~109ではいずれも短時間で分散状態に優れ、成形品とした場合にも高い力学特性を保つことのできるプリプレグを得ることができた。工程(I)~(II)をオンラインで行うことにより、輸送時における強化線維の沈降、凝集を防ぐことができることが明らかとなった(実施例101~109及び比較例101参照)。
 さらに、工程(I)~(III),並びに必要に応じて設けることができる工程(IV)までを全てオンラインで行うことにより、より短時間でプリプレグを得ることができた(実施例101、102及び104参照)。
 工程(II)における炭素繊維基材の含水率を10質量%以下に調整することにより、バインダー付与後の加熱工程を短時間で済ませられることが明らかとなった(実施例101,103参照)。
 工程(III)における加圧、加熱を行うことにより、マトリックス樹脂が強化繊維基材に効率よく含浸し、得られるプリプレグの成形品の力学特性をより高く保つことができることが明らかとなった(実施例102,103参照)。
 工程(III)における加圧、加熱をおこなわなければ、マトリックス樹脂が強化繊維基材に含浸しないため、プリプレグの取り扱い性はやや落ちるが工程時間を大きく短縮することができる。(実施例104)
 上記の効果は、強化繊維、マトリックス樹脂、バインダーの種類にかかわらず、同様に得られるものであることも分かった(実施例101、105~109参照)。
 (実施例110)乾式プロセスによるプリプレグP11の製造
 図11の製造装置103を用いて、プリプレグP5を製造した。製造装置103は、バインダー槽126と分散抄紙槽134とで構成されている。分散抄紙槽134は、縦400mm×横400mm×高さ400mmの容器であり、空気吸引が可能な加圧空気管29と、底部に抄紙面119とを備えている。抄紙面119は、長さ400mm×幅400mmの大きさのメッシュシートであり、この抄紙面119上に炭素繊維基材120が得られる。バインダー槽126は、開口コック128のついたバインダー輸送部127を備えている。バインダー輸送部127の開口は、分散抄紙槽112の上に位置している。またバインダー輸送部127は可動であり、分散抄紙槽134内の炭素繊維基材120上に均一にバインダーを散布できる。
 炭素繊維A2をカートリッジカッターで6.4mmにカットし、チョップド炭素繊維(A2-1)を得た。
バインダー液としてC1の1質量%の水分散液を作成し、バインダー槽126に入れておいた。分散抄紙槽134の中にチョップド炭素繊維(A2-1)9.6gを投入し、チョップド炭素繊維に加圧空気を吹き付けて開繊させたのちに、底面より空気を吸引して開繊した炭素繊維を底面に堆積させ、長さ400mm、幅400mmの炭素繊維基材を得た(工程(I))。次いでバインダー槽126の開口コック128を開放して、該炭素繊維基材の上面部よりバインダーを200g散布した。余剰分のバインダー液を吸引してバインダー成分を付与した炭素繊維基材を得た。該炭素繊維基材を取り出し、150℃で20分間乾燥して炭素繊維基材W11を得た(工程(II))。炭素繊維基材W11の目付は60g/m2であった。
該炭素繊維基材に、マトリックス樹脂としてB-1の不織布(樹脂目付30g/m2)を炭素繊維基材の上下両面に配置し、220℃で10MPaの加圧をおこない、炭素繊維基材にマトリックス樹脂が含浸したプリプレグP5を得た(工程(III))。各工程における実施条件および得られたプリプレグP11の評価結果を、表17に示した。
 (実施例111)乾式プロセスによるプリプレグP12の製造
 図12の装置104を用いて、プリプレグP6を製造した。製造装置104は、強化繊維束の分散を行うカーディング装置139、底部に幅200mmの抄紙面119を有するメッシュコンベア121、容器下部に開口コック128を備え、メッシュコンベア121の上に開口するバインダー輸送部127を備えるバインダー槽126、コンベア122で運搬された炭素繊維基材120を水平方向に導入可能なダブルベルトプレス131、コンベア122上の炭素繊維基材120を乾燥するための乾燥機138、及び得られるプリプレグ132を巻き取り可能な巻き取りロール133を備える。
 炭素繊維A2をカートリッジカッターで6.4mmにカットし、チョップド炭素繊維(A2―1)を得た。
バインダー液としてC1の1質量%の水分散液を作成し、バインダー槽126に入れておいた。カーディング装置139にA2-1(チョップド炭素繊維)6gを30秒間で均等に投入し、カーディングの速度を1m/分に保ちながら、幅200mmの炭素繊維基材を引き取りした。次いで、バインダー槽126の開口コック128を開放して、バインダー200gを、コンベア上を流れてくる炭素繊維基材の上面部に30秒間かけて均一に散布した。オンラインで余剰分のバインダー液を吸引したのち、200℃の乾燥炉に3分間で通過させ、炭素繊維基材W12を得た。炭素繊維基材W12の目付は60g/mであった。該炭素繊維基材をオンラインのまま、マトリックス樹脂としてB-1の不織布(樹脂目付15g/m2)を炭素繊維基材の上下両面に配置し、ダブルベルトプレスを用いて220℃で5MPaの加圧をおこない、炭素繊維基材にマトリックス樹脂が含浸したプリプレグP6を作製した。そのまま巻き取り速度1m/分でロール形状に巻き取り装置133で巻き取った。各工程における実施条件および得られたプリプレグP12の評価結果を、表17に示した。
 (実施例112)乾式プロセスによるプリプレグP13の製造
 工程(III)における加圧及び加熱を行わなかったほかは、実施例106と同様に処理を行い、プリプレグP13を得た。各工程における実施条件および得られたプリプレグP13の評価結果を、表17に示した。
 (比較例102)湿式プロセスによるプリプレグP8の製造
 工程(I)、工程(II)及び工程(III)の処理をオフラインで行ったこと以外は、実施例1と同様に処理を行い、プリプレグP14を得た。各工程における実施条件および得られたプリプレグP14の評価結果を、表17に示した。
Figure JPOXMLDOC01-appb-T000017
 表17から明らかなように、実施例110~112ではいずれも短時間で炭素繊維の分散状態に優れ、成形品とした場合にも高い力学特性を保つことのできるプリプレグを得ることができた。工程(I)~(II)をオンラインで行うことにより、輸送時における強化線維の沈降、凝集を防ぐことができることが明らかとなった(実施例110~112及び比較例2参照)。
 さらに、工程(I)~(III),並びに必要に応じて設けることができる工程(IV)までを全てオンラインで行うことにより、より短時間でプリプレグを得ることができた(実施例110~112参照)。
 工程(III)における加圧、加熱を行うことにより、マトリックス樹脂が繊維強化基材に効率よく含浸し、得られるプリプレグの成形品の力学特性をより高く保つことができることが明らかとなった(実施例111および112参照)。
 [ 湿式法による強化繊維基材の製造方法の評価 ]
 (実施例に用いた原料)
 (炭素繊維A4)PAN系炭素繊維
 アクリロニトリル(AN)99.4モル%とメタクリル酸0.6モル%からなる共重合体を用いて、乾湿式紡糸方法により単繊維デニール1d、フィラメント数12,000のアクリル系繊維束を得た。得られたアクリル系繊維束を240~280℃の温度の空気中で、延伸比1.05で加熱し、耐炎化繊維に転換し、次いで窒素雰囲気中300~900℃の温度領域での昇温速度を200℃/分とし10%の延伸を行った後、1,300℃の温度まで昇温し焼成した。この炭素繊維束に硫酸を電解質とした水溶液で、炭素繊維1gあたり3クーロンの電解表面処理を行い、さらに浸漬法によりサイジング剤を付与し、120℃の温度の加熱空気中で乾燥しPAN系炭素繊維A4を得た。
・総フィラメント数     12,000本
・単繊維直径        7μm
・単位長さ当たりの質量   0.8g/m
・比重           1.8g/cm
・引張強度(注5)     4.2GPa
・引張弾性率(注6)    230GPa
・O/C(注7)      0.10
・サイジング種類      ポリオキシエチレンオレイルエーテル
・サイジング付着量(注8) 1.5質量%。
 (炭素繊維A5)PAN系炭素繊維
 アクリロニトリル(AN)99.4モル%とメタクリル酸0.6モル%からなる共重合体を用いて、乾湿式紡糸方法により単繊維デニール1d、フィラメント数12,000のアクリル系繊維束を得た。得られたアクリル系繊維束を240~280℃の温度の空気中で、延伸比1.05で加熱し、耐炎化繊維に転換し、次いで窒素雰囲気中300~900℃の温度領域での昇温速度を200℃/分とし10%の延伸を行った後、1,300℃の温度まで昇温し焼成した。さらに浸漬法によりサイジング剤を付与し、120℃の温度の加熱空気中で乾燥しPAN系炭素繊維A5を得た。
・総フィラメント数     12,000本
・単繊維直径        7μm
・単位長さ当たりの質量   0.8g/m
・比重           1.8g/cm
・引張強度(注5)     4.2GPa
・引張弾性率(注6)    230GPa
・O/C(注7)      0.05
・サイジング種類      ポリオキシエチレンオレイルエーテル
・サイジング付着量(注8) 1.5質量%。
 (フィルムF)酸変性ポリプロピレン樹脂フィルム
 三井化学(株)製の酸変性ポリプロピレン樹脂“アドマー”(登録商標)QE510(比重0.91、融点160℃)を温度200℃、圧力20Mpaで1分間プレス成形し、厚み50μmの酸変性ポリプロピレン樹脂フィルムFを作製した。
 (注5)引張強度、(注6)引張弾性率の測定条件
 前記(注1)および(注2)と同じ
 (注7)O/Cの測定
 前記(注3)と同じ
 (注8)サイジング剤の付着量の測定条件
 前記(注4)と同じ。 
 (25)(i)~(iv)工程時間
 工程(i)から工程(iv)に要する時間を測定した。
 (26)強化繊維分散状態の評価
 抄紙により得られた炭素繊維基材の任意の部位より、50mm×50mmの正方形状にウェブを切り出して顕微鏡にて観察した。10本以上の炭素繊維の単繊維が束状になった状態、すなわち分散が不十分な炭素繊維の束の個数を測定した。この手順で20回の測定をおこない、平均値を求め、以下の基準で評価した。
AA:分散が不十分な炭素繊維の束が1個未満
A:分散が不十分な炭素繊維の束が1個以上5個未満
B:分散が不十分な炭素繊維の束が5個以上10個未満
C:分散が不十分な炭素繊維の束が10個以上。
 (27)成形品力学特性の評価
 抄紙により得られた炭素繊維基材を200mm×200mmに切り出して、120℃で1時間乾燥させた。乾燥後の炭素繊維基材と、酸変性ポリプロピレン樹脂フィルムFを、樹脂フィルムF/炭素繊維基材/樹脂フィルムFとなるように3層積層した。この積層物を温度200℃、圧力30MPaで5分間プレス成形し、圧力を保持したまま50℃まで冷却して厚み0.12mmの炭素繊維強化樹脂シートを作製した。この樹脂シートを8枚積層し、温度200℃、圧力30MPaで5分間プレス成形し、圧力を保持したまま50℃まで冷却して厚み1.0mmの炭素繊維強化樹脂成形品を得た。得られた成形品を用いて、ISO178法(1993)に従い、曲げ強度をn=10で評価した。なお、曲げ強度の評価結果は実施例1を100として相対値で記載した。また、評価結果のばらつきを変動係数(CV値)で記載した。
 (28)分散媒体の粘度評価
 ビーカーを分散媒体で満たし、密閉し、恒温槽内で25℃に調整した。合わせNO.1ローターを恒温槽内で予め25℃に調整した。続いてB型粘度計(型式:B8L、東京計器製)を用い、JIS K7117-1(1999)の付属書1に記載の方法に従い、ローター回転数60rpmで、分散媒体の粘度を測定した。
なお、測定は5回行い、その平均値を粘度として採用した。
 (29)輸送部のスラリー流速評価
 分散槽から輸送部を介して抄紙槽にスラリーを輸送するときに、0.01mのスラリーを輸送するのにかかった時間T(秒)を測定した。スラリーの輸送量(0.01m)と、輸送するのにかかった時間Tおよび、輸送部内径の断面積S(m)を用い、次の式から輸送部のスラリー流速を求めた。
(式)スラリー流速(m/s)=0.01/(S×T)
 なお、測定は5回行い、その平均値をスラリー流速として採用した。
 [ 湿式法による強化繊維基材の製造方法aの評価 ]
 (製造例201)
 図22の強化繊維基材(抄紙基材)の製造装置201を用いて、強化繊維基材を製造した。製造装置201は、分散槽211、抄紙槽212および輸送部213とで構成されている。分散槽211は、直径300mmの円筒形状の容器であり、上面の開口部には撹拌機216を備えており、開口部から炭素繊維束217および分散液(分散媒体)218を投入可能である。抄紙槽212としては、大型角型シートマシン(熊谷理機工業株式会社製、No.2553-I(商品名))が用いられている。抄紙槽212の底部には長さ400mm×幅400mmの抄紙面(メッシュシート製)219が備えられている。この抄紙面219上に炭素繊維基材220が得られる。輸送部213は、分散槽211と抄紙槽212とを接続する水平かつ直線状の流路であり、流路の途中に送液ポンプ(ダイアフラムポンプ)225を備えている。
 炭素繊維A4をカートリッジカッターで6.4mmにカットし、チョップド炭素繊維A4-1を得た。
水と界面活性剤(ナカライテクス(株)製、ポリオキシエチレンラウリルエーテル(商品名))からなる濃度0.1質量%の分散液を20リットル作成し、分散槽211に移した。この分散液に、チョップド炭素繊維A4-1を9.6g投入した(工程(i))。10分間撹拌してスラリーを調製した(工程(ii))。その後、ダイアフラムポンプ225を用いて輸送部213を介して、該スラリーを抄紙槽212に流し込み(スラリー供給速度:0.001m/秒)を開始した(工程(iii))。次いで水を吸引して、長さ400mm、幅400mmの炭素繊維基材220を得た(工程(iv))。炭素繊維基材の目付は60g/mであった。各工程における実施条件および得られた炭素繊維基材の評価結果を、表18に示した。
 (製造例202)
 工程(ii)で調製されるスラリーにおけるチョップド炭素繊維A1-1の質量含有量C1を1.5質量%に増加したほかは、製造例201と同様に処理を行い、炭素繊維基材を得た。炭素繊維基材の目付は60g/mであった。各工程における実施条件および得られた炭素繊維基材の評価結果を、表18に示した。
 (製造例203)
  図23の強化繊維基材(抄紙基材)の製造装置202を用いて、強化繊維基材を製造した。製造装置202は、分散槽211、抄紙槽212、輸送部213およびコンベア222とで構成されている。分散槽211と輸送部213は製造装置201と同じである。抄紙槽212は、幅200mmの抄紙面219を有するメッシュコンベア221を底部に備えている。この抄紙面219上に炭素繊維基材220が得られる。コンベア222は、メッシュコンベア221に続けて配置されており、強化繊維基材220を運搬する。
 炭素繊維A4をカートリッジカッターで6.4mmにカットし、チョップド炭素繊維A4-1を得た。
水と界面活性剤(ナカライテクス(株)製、ポリオキシエチレンラウリルエーテル(商品名))からなる濃度0.1質量%の分散液を作成した。分散槽211内へ、前記分散液とチョップド炭素繊維A4-1との投入を開始した。製造中、分散槽中のスラリー中の炭素繊維濃度が一定濃度になるように、かつ、分散槽内のスラリーの液面の高さH1が一定となるように投入量を調整しながら、連続的に上記分散液とチョップド炭素繊維投入を継続した(工程(i))。容器への原料の投入開始とともに撹拌を開始し、スラリーを調製した(工程(ii))。その後、ダイアフラムポンプ225を用いて輸送部213を介して、該スラリーを抄紙槽212に流し込んだ(スラリー供給速度:0.0014m/秒)(工程(iii))。該スラリーから水を吸引して、10m/分の速度で引き取り、幅200mmの炭素繊維基材220を連続的に得た(工程iv)。炭素繊維基材の目付は20g/mであった。各工程における実施条件および得られた炭素繊維基材の評価結果を、表18に示した。
 (製造例204)
  図24の強化繊維基材(抄紙基材)の製造装置203を用いて、強化繊維基材を製造した。製造装置203は、分散槽211、抄紙槽212、輸送部213およびコンベア222とで構成されている。抄紙槽212とコンベア222は製造装置202と同じである。分散槽211は、上面に2つの開口部(広口開口部223、狭口開口部224)を備えた凹型形状であり、撹拌機216を広口開口部223側に備えている。輸送部213は、分散槽211から抄紙槽212に向けて下向きに傾斜しており(傾斜角45°)、途中には送液ポンプ225を備えていない。分散槽211と輸送部213との接続部214が、分散槽211の上部(開口部付近)に位置しており、分散槽211から抄紙槽212への送液がオーバーフロー方式により行われる。
 上記製造装置203を用いて、チョップド炭素繊維A4-1と水と界面活性剤(ナカライテクス(株)製、ポリオキシエチレンラウリルエーテル(商品名))からなる濃度0.1質量%の分散液とを狭口開口部から投入した。以降、実施例203と同様に処理を行い、炭素繊維基材を得た。得られた炭素繊維基材の目付は20g/m2であった。各工程における実施条件および得られた炭素繊維基材の評価結果を、表18に示した。
 (製造例205)
 輸送部の幅W1と炭素繊維基材の幅W2との比W1/W2を0.6から0.2に変更したほかは、製造例204と同様に処理を行い、炭素繊維基材を得た。得られた炭素繊維基材の目付は20g/mであった。各工程における実施条件および得られた炭素繊維基材の評価結果を、表19に示した。
 (製造例206)
 炭素繊維の種類をA4からA5に変えたほかは、製造例201と同様に処理を行い、炭素繊維基材を得た。得られた炭素繊維基材の目付は60g/m2であった。各工程における実施条件および得られた炭素繊維基材の評価結果を、表19に示した。
 (製造例207)
 工程(ii)の所要時間を5分間(スラリー調製のための撹拌の時間を5分間)としたほかは、製造例201と同様に処理を行い炭素繊維基材を得た。炭素繊維基材の目付は60g/mであった。各工程における実施条件および得られた炭素繊維基材の評価結果を、表19に示した。
 (比較製造例201)
 工程(ii)で調製されるスラリーにおけるチョップド炭素繊維A4-1の質量含有量C1と工程(iv)開始時のスラリーにおけるチョップド炭素繊維A4-1の質量含有量C2の比C1/C2を1.8に引き上げたほかは、製造例202と同様に処理を行い、炭素繊維基材を得た。各工程における実施条件および得られた炭素繊維基材の評価結果を、表19に示した。
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
 表18,表19から明らかなように、製造例201~製造例207ではいずれも分散状態の優れた炭素繊維基材を得ることができた。すなわち、C1/C2の比を0.8以上1.2以下の範囲とすることにより、各工程において濃度希釈などの余分な工程を行う必要がなく、分散状態の優れた炭素繊維基材を得ることができた(製造例201~製造例207及び比較製造例201参照)。さらに、製造例201~製造例207で得られる炭素繊維基材は、成形品とした場合に成形品の力学特性に優れることもわかった。
 また、C1の濃度を比較的低濃度としておくことにより、短時間での処理が可能となる(製造例201および製造例202参照)。さらに、工程(i)~工程(iv)をオンラインで行うことにより、或いは、さらに、輸送部においてポンプを使用せず、オーバーフロー方式とすることにより、より短時間での処理が可能であった(製造例201、製造例203~製造例205参照)。
 W1/W2比を0.5以上1.0以下とすることにより、炭素繊維基材の分散状態をより高めることができた(製造例204及び製造例205参照)。
 O/Cが高い繊維を用いることにより、炭素繊維基材の成形品の力学特性をより高めることができることが明らかとなった(製造例201及び製造例206参照)。
 [ 湿式法による強化繊維基材の製造方法bの評価 ]
 (製造例301)
 図25の強化繊維基材(抄紙基材)の製造装置301を用いて、強化繊維基材を製造した。製造装置301は、分散槽311、抄紙槽212および輸送部313とで構成されている。分散槽311は、直径300mmの円筒形状の容器であり、容器下部に開口コック315と、上面の開口部には撹拌機316が備えられている。この開口部から炭素繊維束317および分散液(分散媒体)318が投入できる。抄紙槽312としては、大型角型シートマシン(熊谷理機工業株式会社製、No.2553-I(商品名))が用いられており、長さ400mm×幅400mmの抄紙面(メッシュシート製)319を備えている。この抄紙面319上に炭素繊維基材320が得られる。輸送部313は分散槽311と抄紙槽312とを接続する直線状の流路であり、分散槽311から抄紙槽312に向けて下向きに傾斜している(傾斜角45°)。分散槽311と輸送部313とは開口コック315を介して接続されている。
 炭素繊維A4をカートリッジカッターで6.4mmにカットし、チョップド炭素繊維A4-1を得た。
水と界面活性剤(ナカライテクス(株)製、ポリオキシエチレンラウリルエーテル(商品名))からなる濃度0.1質量%の分散液を20リットル作成し、分散槽311に移した。この分散液に、チョップド炭素繊維A4-1を9.6g投入した(工程(i))。10分間撹拌してスラリーを調製した(工程(ii))。その後、容器下部の開口コック315を開放し、輸送部313を介して、抄紙槽312に流し込んだ(工程(iii))。このとき、分散槽内のスラリー液面の高さH1は抄紙槽内のスラリー液面H2よりも50cmだけ高い位置にあった。次いで抄紙槽の抄紙面319から水を吸引して、長さ400mm、幅400mmの炭素繊維基材320を得た(工程(iv))。炭素繊維基材の目付は60g/m2であった。各工程における実施条件および得られた炭素繊維基材の評価結果を、表20に示した。
 (製造例302)
 図26の強化繊維基材(抄紙基材)の製造装置302を用いて、強化繊維基材を製造した。製造装置302は、分散槽311、抄紙槽312、輸送部313およびコンベア322とで構成されている。分散槽311と輸送部313は製造装置301と同じである。抄紙槽312は、幅200mmの抄紙面319を有するメッシュコンベア321を底部に備えている。この抄紙面319上に炭素繊維基材320が得られる。コンベア322は、メッシュコンベア321に続けて配置されており、強化繊維基材320を運搬する。
 炭素繊維A4をカートリッジカッターで6.4mmにカットし、チョップド炭素繊維A4-1を得た。
水と界面活性剤(ナカライテクス(株)製、ポリオキシエチレンラウリルエーテル(商品名))からなる濃度0.1質量%の分散液を作成した。分散槽311内へ、前記分散液とチョップド炭素繊維A4-1との投入を開始した。製造中、分散槽中のスラリー中の炭素繊維濃度が一定濃度になるように、かつ、分散槽内のスラリーの液面の高さH1が一定となるように投入量を調整しながら、連続的に上記分散液とチョップド炭素繊維投入を継続した(工程(i))。容器への原料の投入開始とともに撹拌を開始し、スラリーを調製した(工程(ii))。スラリーが40リットル溜まった時点で容器下部の開口コック315を開放調整し、輸送部313を介して抄紙槽312に流し込んだ(工程(iii))。このとき、分散槽内のスラリー液面の高さH1は抄紙槽内のスラリー液面H2よりも50cmだけ高い位置にあった。該スラリーから水を吸引して、10m/分の速度で引き取り、幅200mmの炭素繊維基材320を連続的に得た(工程iv)。炭素繊維基材の目付は20g/m2であった。各工程における実施条件および得られた炭素繊維基材の評価結果を、表20に示した。
 (製造例303)
 図27の強化繊維基材(抄紙基材)の製造装置303を用いて、強化繊維基材を製造した。製造装置303は、分散槽311、抄紙槽312、輸送部313およびコンベア322とで構成されている。抄紙槽312、輸送部313およびコンベア322は製造装置302と同じである。分散槽311は、上面に2つの開口部(広口開口部323、狭口開口部324)を備えた凹型形状であり、撹拌機316を広口開口部323側に備えている。分散槽311と輸送部313との接続部314は、分散槽311の上部(開口部付近)に位置しており、分散槽311から抄紙槽312への送液がオーバーフロー方式により行われる。接続部314には開口コックは設けられていない。
 上記製造装置303を用いて、チョップド炭素繊維A4-1と水と界面活性剤(ナカライテクス(株)製、ポリオキシエチレンラウリルエーテル(商品名))からなる濃度0.1質量%の分散液とを狭口開口部324から投入した。以降、製造例302と同様に処理を行い、炭素繊維基材を得た。得られた炭素繊維基材の目付は20g/m2であった。各工程における実施条件および得られた炭素繊維基材の評価結果を、表20に示した。
 (製造例304)
 図27の強化繊維基材(抄紙基材)の製造装置304を用いて、強化繊維基材を製造した。製造装置304は、分散槽311、抄紙槽312、輸送部313およびコンベア322とで構成されている。分散槽311、抄紙槽312およびコンベア322は製造装置303と同じである。輸送部313は、4箇所の直角折れ構造で、全体では45°の角度を有している。
 上記製造装置304を用いて、製造例303と同様にして炭素繊維基材を得た。得られた炭素繊維基材の目付は20g/mであった。各工程における実施条件および得られた炭素繊維基材の評価結果を、表20に示した。
 (製造例305)
 輸送部の角度が90°(鉛直下向き)の構造である点以外については製造装置303と同じ製造装置(図示せず)を用いた。製造例303と同様に処理を行い、炭素繊維基材を得た。得られた炭素繊維基材の目付は20g/mであった。各工程における実施条件および得られた炭素繊維基材の評価結果を、表20に示した。
 (製造例306)
 製造装置303を用いた。輸送部の幅W1と炭素繊維基材W2との比W1/W2を0.6から0.2に変更したほかは、製造例305と同様に処理を行い、炭素繊維基材を得た。得られた炭素繊維基材の目付は20g/mであった。各工程における実施条件および得られた炭素繊維基材の評価結果を、表21に示した。
 (製造例307)
 炭素繊維の種類をA4からA5に変えたほかは、製造例301と同様に処理を行い、炭素繊維基材を得た。得られた炭素繊維基材の目付は60g/mであった。各工程における実施条件および得られた炭素繊維基材の評価結果を、表21に示した。
 (比較製造例301)
 製造装置301を用いた。工程(i)~工程(ii)のみをオンラインで行い工程(iii)~工程(iv)はオフラインで行ったほかは、製造例301と同様に処理を行い、炭素繊維基材を得た。得られた炭素繊維基材の目付は60g/mであった。各工程における実施条件および得られた炭素繊維基材の評価結果を、表21に示した。
 (比較製造例302)
 輸送部が水平の直線状(角度0°)であり送液ポンプを備えるほかは製造装置301と同じ製造装置(図示せず)を用いた。製造例301と同様に処理を行い、炭素繊維基材を得た。得られた炭素繊維基材の目付は60g/mであった。各工程における実施条件および得られた炭素繊維基材の評価結果を、表21に示した。
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
 表20,表21から明らかなように、製造例301~製造例307ではいずれも短時間で、再凝集がなく分散状態の優れた炭素繊維基材を得ることができた。工程(i)~工程(iv)をオンラインで行い、送液ポンプを使用しないで送液することにより、輸送時における強化線維の沈降、凝集を防ぐことができることが明らかとなった(製造例1~製造例7及び比較製造例1~比較製造例2参照)。さらに、製造例301~製造例307で得られる炭素繊維基材は、成形品とした場合に成形品の力学特性に優れることもわかった。
 分散液とチョップド炭素繊維とを継続的に分散槽に供給しつつもスラリーの液面の高さH1が一定になるように調整することにより、または、さらに輸送部をオーバーフロー方式とすることにより、より短時間での処理が可能であった(製造例302~製造例306参照)。
 輸送部を直線状とし、さらに傾斜角を30°以上60°以下とすることにより、或いは、W1/W2比を0.5以上1.0以下とすることにより、炭素繊維基材の分散状態をより高めることができた(製造例301~製造例304及び製造例307参照)。
 O/Cが高い繊維を用いることにより、炭素繊維基材の成形品の力学特性をより高めることができることが明らかとなった(製造例301及び製造例307参照)。
 [ 湿式法による強化繊維基材の製造方法cの評価 ]
 (製造例401)
 図29の強化繊維基材(抄紙基材)の製造装置401を用いて、強化繊維基材を製造した。製造装置401は、分散槽411、抄紙槽412および輸送部413とで構成されている。分散槽411は、直径300mmの円筒形状の容器であり、容器下部に開口コック415と、上面の開口部には撹拌機416が備えられている。この開口部から炭素繊維束417および分散液(分散媒体)418を投入可能である。抄紙槽412としては、大型角型シートマシン(熊谷理機工業株式会社製、No.2553-I(商品名))が用いられており、長さ400mm×幅400mmの抄紙面(メッシュシート製)419を備えている。この抄紙面419上に炭素繊維基材420が得られる。輸送部413は、分散槽411と抄紙槽412とを接続する直線状の流路であり、分散槽411から抄紙槽412に向けて下向きに傾斜している(傾斜角r:88°)輸送部413の断面形状は直径0.01mの円形である。
 炭素繊維A1をカートリッジカッターで6.4mmにカットし、チョップド炭素繊維A4-1を得た。
水と水溶性高分子(住友精化(株)製、PEO-8Z(商品名))からなる濃度0.25質量%の分散液を20リットル作成し、分散槽411に移した。分散液の粘度は10mPa・sであった。この分散液に、チョップド炭素繊維A4-1を9.6g投入した(工程(i))。10分間撹拌してスラリーを調製した(工程(ii))。その後、容器下部の開口コック415を開放し、輸送部413を介して、抄紙槽412に流し込んだ(工程(iii))。次いで抄紙槽の抄紙面419から水を吸引して、長さ400mm、幅400mmの炭素繊維基材420を得た(工程(iv))。炭素繊維基材の目付は60g/mであった。各工程における実施条件および得られた炭素繊維基材の評価結果を、表22に示した。
 (製造例402)
 傾斜角rが65°であるほかは製造装置401と同じ製造装置(図示せず)を用いた。製造例401と同様に処理を行い、炭素繊維基材を得た。得られた炭素繊維基材の目付は60g/mであった。各工程における実施条件および得られた炭素繊維基材の評価結果を、表22に示した。
 (製造例403)
 水と水溶性高分子(住友精化(株)製、PEO-8Z(商品名))からなる濃度0.1質量%の分散液を20リットル作成し、分散槽に移したほかは、製造例401と同様に処理を行い、炭素繊維基材を得た。得られた炭素繊維基材の目付は60g/mであった。各工程における実施条件および得られた炭素繊維基材の評価結果を、表22に示した。
 (製造例404)
 水と水溶性高分子(住友精化(株)製、PEO-8Z(商品名))からなる濃度1質量%の分散液を20リットル作成し、分散槽に移したほかは、製造例401と同様に処理を行い、炭素繊維基材を得た。得られた炭素繊維基材の目付は60g/mであった。各工程における実施条件および得られた炭素繊維基材の評価結果を、表22に示した。
 (製造例405)
 輸送部13の断面形状が一辺0.01mの正方形であるほかは、製造装置401と同じ製造装置(図示せず)を用いた。製造例401と同様に処理を行い、炭素繊維基材を得た。得られた炭素繊維基材の目付は60g/mであった。各工程における実施条件および得られた炭素繊維基材の評価結果を、表23に示した。
 (製造例406)
 炭素繊維A5をカートリッジカッターで6.4mmにカットし、チョップド炭素繊維A5-1を得て、工程(i)で、分散液にチョップド炭素繊維A5-1を9.6gを投入したほかは、製造例401と同様に処理を行い、炭素繊維基材を得た。得られた炭素繊維基材の目付は60g/mであった。各工程における実施条件および得られた炭素繊維基材の評価結果を、表23に示した。
 (比較製造例401)
 傾斜角rが0°であるほかは製造装置401と同じ製造装置(図示せず)を用いた。製造例401と同様に処理を行い、炭素繊維基材を得た。得られた炭素繊維基材の目付は60g/mであった。各工程における実施条件および得られた炭素繊維基材の評価結果を、表23に示した。
 (比較製造例402)
 輸送部に送液ポンプを備えるほかは製造装置401と同じ製造装置(図示せず)を用いた。製造例401と同様に処理を行い、炭素繊維基材を得た。得られた炭素繊維基材の目付は60g/mであった。各工程における実施条件および得られた炭素繊維基材の評価結果を、表23に示した。
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
 表22,表23から明らかなように、製造例401~製造例406ではいずれも強化繊維の再凝集がなく、分散状態の優れた炭素繊維基材を得ることができた。輸送部において、スラリーを層流状態または層流から乱流への遷移域の状態で輸送することにより、輸送時における強化繊維の再凝集を防ぐことができることが明らかとなった(製造例401~製造例406及び比較製造例401~比較製造例402参照)。
 輸送部において、スラリーを層流状態または層流から乱流への遷移域の状態で輸送することにより、輸送部の断面形状が円形、四角形(多角形)のどちらであっても、輸送時における強化繊維の再凝集を防ぐことができることが明らかとなった(製造例401及び製造例405参照)。
 分散媒体の粘度が1mPa・s以上100mPa・s以下とすることにより、炭素繊維基材や成形品の力学特性をより高めることができることが期待される。(製造例402、製造例403、製造例404参照)。
 O/Cが高い繊維を用いることにより、炭素繊維基材やその成形品の力学特性をより高めることができることが期待される。
 [ プリプレグ、プリフォームおよび成形品の評価(2) ]
 各種特性の測定や評価は、「プリプレグ、プリフォームおよび成形品の評価(1)」に記載した方法と同じようにして行った。
 (実施例501)
 図10の装置102を用いて、プリプレグを製造した。
炭素繊維A1をカートリッジカッターで6.4mmにカットし、チョップド炭素繊維を得た。
バインダー液としてC1の1質量%の水分散液(エマルジョン)を作成し、バインダー槽126に入れておいた。水と界面活性剤(ナカライテクス(株)製、ポリオキシエチレンラウリルエーテル(商品名))からなる濃度0.1質量%の分散液を40リットル作成し、分散槽111に移した。この分散液に、チョップド炭素繊維50gを投入し、10分間撹拌してスラリーを調製した。分散層容器下部の開口コック115を開放し、スラリーの容器に加圧空気を導入してスラリー流量を一定に保ちながら、該スラリーを幅200mmの抄紙面を有するメッシュコンベアに流し込んだ。メッシュコンベアで、水を吸引しながら、スラリーを1m/分の速度で引き取り、長さ5m、幅200mmの炭素繊維基材120を得た(工程(I))。次いでバインダー槽126の開口コック128を開放して、該炭素繊維基材120の上面部バインダー液を200g散布した。余剰分のバインダー液を吸引したのち、200℃の乾燥機138の中を3分間で通過させ、炭素繊維基材W2を得た(工程(II))。炭素繊維基材W2の目付は50g/m2であった。該炭素繊維基材W2をオンラインのままコンベアでダブルベルトプレス装置131に送った。マトリックス樹脂として東レ(株)製、CM1007(ナイロン6樹脂)の同じ厚みのフィルム2枚とを、フィルム/炭素繊維基材/フィルムとなるように積層し、ダブルベルトプレス装置131を用いて250℃の温度で5MPaの圧力で2分間加圧をおこない、炭素繊維基材にマトリックス樹脂が含浸したプリプレグ(28)を作製した(工程(III))。そのまま巻き取り装置133で、巻き取り速度1m/分でロール形状に巻き取った(工程(IV))。プリプレグの特性を表25に示した。
プリプレグ(28)を8枚積層したプリフォームを作製した以外は、実施例1と同様にして、L字箱型形状の成形品を作製した。プリフォームは金型の形状に添って良好に賦形されており、形状品位の良い成形品が得られた。成形品の特性を表26に示す。
 (実施例502)
 図10の装置102において、乾燥機138よりも手前の抄紙装置に、図23の装置202を用いて、プリプレグを製造した。
上記製造装置を用いて、水と界面活性剤(ナカライテクス(株)製、ポリオキシエチレンラウリルエーテル(商品名))からなる濃度0.1質量%の分散液と、炭素繊維A1を用いたチョップド炭素繊維とを狭口開口部から投入した。以降、実施例501と同様に処理を行い、プリプレグ(29)を得た。スラリー中の炭素繊維含有量は0.05質量%、スラリーの炭素繊維濃度差C1/C2は1.0であった。得られたプリプレグの特性を表25に示した。
プリプレグ(29)を8枚積層したプリフォームを作製した以外は、実施例1と同様にして、L字箱型形状の成形品を作製した。プリフォームは金型の形状に添って良好に賦形されており、形状品位の良い成形品が得られた。成形品の特性を表26に示す。
 (実施例503)
 図10の装置102において、乾燥機138よりも手前の抄紙装置に、図27の装置303を用いて、プリプレグを製造した。
上記製造装置を用いて、水と界面活性剤(ナカライテクス(株)製、ポリオキシエチレンラウリルエーテル(商品名))からなる濃度0.1質量%の分散液と、炭素繊維A1を用いたチョップド炭素繊維とを狭口開口部から投入した。以降、実施例501と同様に処理を行い、プリプレグ(30)を得た。スラリーの液面高さH1-H2は0.5m、輸送部形状は直線であり、輸送部傾斜角度は45°であった。得られたプリプレグの特性を表25に示した。
プリプレグ(30)を8枚積層したプリフォームを作製した以外は、実施例1と同様にして、L字箱型形状の成形品を作製した。プリフォームは金型の形状に添って良好に賦形されており、形状品位の良い成形品が得られた。成形品の特性を表26に示す。
 (実施例504)
 図10の装置102において、乾燥機138よりも手前の抄紙装置に、図27の装置303を用いて、プリプレグを製造した。但し、装置303の輸送部313(傾斜角r:88°)の断面形状は直径0.01mの円形である。
上記製造装置を用いて、水と水溶性高分子(住友精化(株)製、PEO-8Z(商品名))からなる濃度0.25質量%の分散液と、炭素繊維A1を用いたチョップド炭素繊維とを狭口開口部から投入した。以降、実施例501と同様に処理を行い、プリプレグ(31)を得た。分散媒体の粘度は10mPa・s、輸送部の流れの状態は層流であり、流速は1m/s、レイノルズ数は1000であった。得られたプリプレグの特性を表25に示した。
プリプレグ(31)を8枚積層したプリフォームを作製した以外は、実施例1と同様にして、L字箱型形状の成形品を作製した。プリフォームは金型の形状に添って良好に賦形されており、形状品位の良い成形品が得られた。成形品の特性を表26に示す。
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
 実施例501~504で製造したプリプレグは、強化繊維の繊維長の分布、厚み、引張強度が良好であり、かつ繊維の二次元配向角が10°以上80°以下の範囲内で等方性があり、成形品を作製した場合に良好な特性を示している。また、これらのプリプレグを用いて作製した積層プリフォームも良好な特性を示している。さらに、連続したプリプレグをロール状で得ることができ、工業的に実施する場合に好ましいものである。
 本発明のプリプレグ、およびその積層体は、力学特性と成形性を両立しうる繊維強化プリフォームとして好適に用いられ、とりわけ薄肉のプリプレグを構成する強化繊維が二次元的に等方に配向されているため面方向の補強効果に優れ、層内厚み方向の強化繊維の干渉を抑え、かつ層間相互作用も小さいことから成形時の形状賦形に優れている。これらは、電気・電子機器、ロボット、二輪車、自動車、航空機の部材、部品および筐体など幅広い産業分野に適用できる。
 1 強化繊維単糸(a)
 2~7 強化繊維単糸(b)
 8 二次元配向角
 9 ステンレス製メッシュ
 10 プリプレグ
 11 強化繊維基材
 12 繊維方向
 13 繊維直交方向
 14 切り込み入り炭素繊維プリプレグ
 15 炭素繊維
 16 切り込み
 17 切り込み長さ
 18 繊維長さ
 19 隣り合う列の切り込みが互いに切り込んでいる長さ
 21 分散槽
 22 抄紙槽
 25 開口コック
 26 攪拌機
 27 チョップド強化繊維
 28 分散液(分散媒体)
 30 強化繊維基材(抄紙基材)
 31 メッシュコンベア
 32 コンベア
 41 連続CFRP
 42 プリプレグ
 43 GMT
 t プリプレグ厚み方向
 R 曲率半径
 101,102,103,104 装置
 111 分散槽
 112 抄紙槽
 113 輸送部
 115,128 開口コック
 116 撹拌機
 117 チョップド炭素繊維(炭素繊維束)
 118 分散液(分散媒体)
 119 抄紙面
 120 強化繊維基材(抄紙基材)
 121 メッシュコンベア
 122 コンベア
 126 バインダー槽
 127 バインダー輸送部
 129,130 加圧空気管
 131 ダブルベルトプレス
 132 プリプレグ 133 巻き取り装置
 134 分散-抄紙槽
 135 マトリックス樹脂
 136,137 ロール
 138 乾燥機
 139 カーディング装置
 PA 加圧空気
 201~203,301~304,401 強化繊維基材(抄紙基材)の製造装置
 211,311,411 分散槽
 212,312,412 抄紙槽
 213,313,413 輸送部
 214,314,414 輸送部と分散槽との接続部
 315,415 開口コック
 216,316,416 撹拌機
 217,317,417 チョップド炭素繊維(炭素繊維束)
 218,318,418 分散液(分散媒体)
 219,319,419 抄紙面(メッシュシート)
 220,320,420 強化繊維基材(抄紙基材)
 221,321 メッシュコンベア
 222,322 コンベア
 223,323 広口開口部
 224,324 狭口開口部
 225 送液ポンプ(低せん断ポンプ,ダイヤフラムポンプ)
 H1 工程(ii)におけるスラリーの液面の高さ
 H2 工程(iv)におけるスラリーの液面の高さ
 A 基準
 B 工程(ii)におけるスラリーの液面
 C 工程(iv)におけるスラリーの液面
 p 重力方向と平行な線
 q 輸送部の中心線
 r pとqとが鉛直下方側に形成する角度
 C1,C2 スラリー中の強化繊維に質量含有率
 D 繊維径
 L 繊維長
 n 単位体積当たりの繊維数
 *1 樹脂の焼き飛ばし
 *2 吸引
 *3 均一に散布できるように先端が稼働
 *4 加熱・加圧・冷却
 *5 巻き取り
 *6 オーバーフロー 

Claims (30)

  1.  強化繊維基材に熱可塑性樹脂が含浸されたプリプレグであって、
     該強化繊維基材が、繊維長10mmを越える強化繊維が0質量%以上50質量%以下、繊維長2mm以上10mm以下の強化繊維が50質量%以上100質量%以下および繊維長2mm未満の強化繊維が0質量%以上50質量%以下から構成され、
     該プリプレグが、強化繊維単糸(a)と該強化繊維単糸(a)に交差する強化繊維単糸(b)とで形成される二次元配向角の平均値が10度以上80度以下であり、23℃での厚みh0(mm)が0.03mm以上1mm以下であり、引張強度σが0.01MPa以上であるプリプレグ。
  2.  前記強化繊維基材の繊維長の分布が少なくとも2つのピークを有し、少なくとも1つのピークが繊維長5mm以上10mm以下の範囲内にあり、他の少なくとも1つのピークが繊維長2mm以上5mm以下の範囲内にある、請求項1に記載のプリプレグ。
  3.  前記強化繊維基材の、ASTM D737に基づくフラジール形法で測定される空気量(cm/cm・s)が50以上1000以下である、請求項1記載のプリプレグ。
  4.  前記プリプレグの(n×100)℃での厚みhn(mm)が、h0≦hn≦h0×(2n+1)(nは、1,2,3,4から選ばれる少なくとも一つの自然数。)である、請求項1に記載のプリプレグ。
  5.  前記プリプレグ全体に対する前記強化繊維基材の割合が5質量%以上60質量%以下である、請求項1に記載のプリプレグ。
  6.  前記プリプレグ全体に対する前記熱可塑性樹脂の含浸率が50%以上100%以下である、請求項1に記載のプリプレグ。
  7.  前記引張強度σが50MPa以上1000MPa以下である、請求項1に記載のプリプレグ。
  8.  強化繊維基材に熱可塑性樹脂が含浸され、強化繊維単糸(a)と該強化繊維単糸(a)に交差する強化繊維単糸(b)とで形成される二次元配向角の平均値が10度以上80度以下であり、23℃での厚みh0(mm)が0.03mm以上1mm以下であり、引張強度σが0.01MPa以上であるプリプレグを少なくとも積層単位として含むプリフォーム。
  9.  前記プリプレグが複数の積層単位を構成し、かつ、該複数の積層単位を構成するプリプレグとして、強化繊維の割合、強化繊維の長さ、強化繊維の引張弾性率、プリプレグの目付および23℃での厚みh0(mm)からなる群より選択される少なくともいずれかが実質的に異なる少なくとも2種類のプリプレグを含む、請求項8に記載のプリフォーム。
  10.  前記引張強度σが50MPa以上1000MPa以下である、請求項8に記載のプリフォーム。
  11.  前記プリプレグと、該プリプレグに隣接する積層単位との層間剪断強度が0MPa以上50MPa以下である、請求項8に記載のプリフォーム。
  12.  前記プリフォームの(n×100)℃での厚みhpn(mm)が、hp0≦hpn≦hp0×(2n+1)(hp0(mm)は23℃での該プリフォーム厚み、nは1,2,3,4から選択される少なくとも一つの自然数。)である、請求項8に記載のプリフォーム。
  13.  請求項1~7のいずれかに記載のプリプレグ、または請求項8~12のいずれかに記載のプリフォームを成形して得られる成形品。
  14.  前記成形体の曲げ弾性率をEc、比重をρとすると、Ec1/3・ρ-1が1.5以上5以下である、請求項13に記載の成形品。
  15.  前記曲げ弾性率Ecが、測定方向による最大曲げ弾性率EcMaxと最小曲げ弾性率EcMinとの関係において、EcMax≦EcMin×2である、請求項14に記載の成形品。
  16.  最大厚みが2mm以下である、請求項13に記載の成形品。
  17.  前記プリプレグまたは前記プリフォームをプレス成形する、請求項13に記載の成形品の製造方法。
  18.  前記プレス成形において、前記プリプレグまたは前記プリフォームのチャージ率を、金型のキャビティ総面積に対し100%より大きくしてプレス成形する、請求項17に記載の成形品の製造方法。
  19.  前記プレス成形を、冷却用金型をもちいてスタンピング成形する、請求項17に記載の成形品の製造方法。
  20.  強化繊維束を分散させて強化繊維基材を得る工程(I)と、前記工程(I)で得られる強化繊維基材にバインダーを付与する工程(II)と、前記工程(II)において得られるバインダーの付与された強化繊維基材に熱可塑性樹脂からなるマトリックス樹脂を複合化する工程(III)とを有してなるプリプレグの製造方法であって、前記工程(I)~(II)がオンラインで実施されてなり、プリプレグ全体に対する前記強化繊維束の含有率が10質量%以上80質量%以下、前記バインダーの含有率が0.1質量%以上10質量%以下および前記マトリックス樹脂の含有率が10質量%以上80質量%以下であるプリプレグの製造方法。
  21.  前記工程(I)で得られる強化繊維基材における固形分の質量のうち、強化繊維の割合が80質量%以上100質量%以下である、請求項20に記載のプリプレグの製造方法。
  22.  前記強化繊維基材が、以下の方法aにより得られたものである、請求項1に記載のプリプレグ。
     方法a:分散媒体に強化繊維束を投入する工程(i)と、前記強化繊維束を構成する強化繊維が前記分散媒体中に分散したスラリーを調製する工程(ii)と、前記スラリーを輸送する工程(iii)と、前記スラリーより分散媒体を除去して強化繊維を含む抄紙基材を得る工程(iv)とを少なくとも有し、前記工程(ii)で調製されるスラリー中の強化繊維の質量含有率をC1とし、前記工程(iv)開始時のスラリー中の強化繊維の質量含有率をC2とした場合に、C1/C2が0.8以上1.2以下である強化繊維基材の製造方法。
  23.  前記強化繊維基材が、以下の方法bにより得られたものである、請求項1に記載のプリプレグ。
     方法b:分散媒体に強化繊維束を投入する工程(i)と、前記強化繊維束を構成する強化繊維が前記分散媒体中に分散したスラリーを調製する工程(ii)と、前記スラリーを輸送する工程(iii)と、前記スラリーより分散媒体を除去して強化繊維を含む抄紙基材を得る工程(iv)とを少なくとも有し、前記工程(i)~(iv)がオンラインで実施されてなり、前記工程(ii)におけるスラリーの液面の高さH1が、前記工程(iv)におけるスラリーの液面の高さH2よりも高い位置にある、強化繊維基材の製造方法。
  24.  前記強化繊維基材が、以下の方法cにより得られたものである、請求項1に記載のプリプレグ。
     方法c:分散媒体に強化繊維束を投入する工程(i)と、前記強化繊維束を構成する強化繊維が前記分散媒体中に分散したスラリーを調製する工程(ii)と、前記スラリーを輸送する工程(iii)と、前記スラリーより分散媒体を除去して強化繊維基材を得る工程(iv)とを少なくとも有し、前記工程(i)および工程(ii)は分散槽で行われ、前記工程(iv)は抄紙槽で行われ、前記工程(iii)は前記分散槽と前記抄紙槽とを接続する輸送部で行われ、前記輸送部において前記スラリーが層流状態または層流から乱流への遷移域の状態で輸送される、強化繊維基材の製造方法。
  25.  前記強化繊維基材が、以下の方法aにより得られたものである、請求項8に記載のプリフォーム。
     方法a:分散媒体に強化繊維束を投入する工程(i)と、前記強化繊維束を構成する強化繊維が前記分散媒体中に分散したスラリーを調製する工程(ii)と、前記スラリーを輸送する工程(iii)と、前記スラリーより分散媒体を除去して強化繊維を含む抄紙基材を得る工程(iv)とを少なくとも有し、前記工程(ii)で調製されるスラリー中の強化繊維の質量含有率をC1とし、前記工程(iv)開始時のスラリー中の強化繊維の質量含有率をC2とした場合に、C1/C2が0.8以上1.2以下である強化繊維基材の製造方法。
  26.  前記強化繊維基材が、以下の方法bにより得られたものである、請求項8に記載のプリフォーム。
     方法b:分散媒体に強化繊維束を投入する工程(i)と、前記強化繊維束を構成する強化繊維が前記分散媒体中に分散したスラリーを調製する工程(ii)と、前記スラリーを輸送する工程(iii)と、前記スラリーより分散媒体を除去して強化繊維を含む抄紙基材を得る工程(iv)とを少なくとも有し、前記工程(i)~(iv)がオンラインで実施されてなり、前記工程(ii)におけるスラリーの液面の高さH1が、前記工程(iv)におけるスラリーの液面の高さH2よりも高い位置にある、強化繊維基材の製造方法。
  27.  前記強化繊維基材が、以下の方法cにより得られたものである、請求項8に記載のプリフォーム。
     方法c:分散媒体に強化繊維束を投入する工程(i)と、前記強化繊維束を構成する強化繊維が前記分散媒体中に分散したスラリーを調製する工程(ii)と、前記スラリーを輸送する工程(iii)と、前記スラリーより分散媒体を除去して強化繊維基材を得る工程(iv)とを少なくとも有し、前記工程(i)および工程(ii)は分散槽で行われ、前記工程(iv)は抄紙槽で行われ、前記工程(iii)は前記分散槽と前記抄紙槽とを接続する輸送部で行われ、前記輸送部において前記スラリーが層流状態または層流から乱流への遷移域の状態で輸送される、強化繊維基材の製造方法。
  28.  強化繊維束を分散させて強化繊維基材を得る工程(I)が、以下のaである、請求項20に記載のプリプレグの製造方法。
     a:分散媒体に強化繊維束を投入する工程(i)と、前記強化繊維束を構成する強化繊維が前記分散媒体中に分散したスラリーを調製する工程(ii)と、前記スラリーを輸送する工程(iii)と、前記スラリーより分散媒体を除去して強化繊維を含む抄紙基材を得る工程(iv)とを少なくとも有し、前記工程(ii)で調製されるスラリー中の強化繊維の質量含有率をC1とし、前記工程(iv)開始時のスラリー中の強化繊維の質量含有率をC2とした場合に、C1/C2が0.8以上1.2以下である。
  29.  強化繊維束を分散させて強化繊維基材を得る工程(I)が、以下のbである、請求項20に記載のプリプレグの製造方法。
     b:分散媒体に強化繊維束を投入する工程(i)と、前記強化繊維束を構成する強化繊維が前記分散媒体中に分散したスラリーを調製する工程(ii)と、前記スラリーを輸送する工程(iii)と、前記スラリーより分散媒体を除去して強化繊維を含む抄紙基材を得る工程(iv)とを少なくとも有し、前記工程(i)~(iv)がオンラインで実施されてなり、前記工程(ii)におけるスラリーの液面の高さH1が、前記工程(iv)におけるスラリーの液面の高さH2よりも高い位置にある。
  30.  強化繊維束を分散させて強化繊維基材を得る工程(I)が、以下のcである、請求項20に記載のプリプレグの製造方法。
     c:分散媒体に強化繊維束を投入する工程(i)と、前記強化繊維束を構成する強化繊維が前記分散媒体中に分散したスラリーを調製する工程(ii)と、前記スラリーを輸送する工程(iii)と、前記スラリーより分散媒体を除去して強化繊維基材を得る工程(iv)とを少なくとも有し、前記工程(i)および工程(ii)は分散槽で行われ、前記工程(iv)は抄紙槽で行われ、前記工程(iii)は前記分散槽と前記抄紙槽とを接続する輸送部で行われ、前記輸送部において前記スラリーが層流状態または層流から乱流への遷移域の状態で輸送される。
PCT/JP2009/063240 2008-07-31 2009-07-24 プリプレグ、プリフォーム、成形品およびプリプレグの製造方法 WO2010013645A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EP20090802888 EP2314642B1 (en) 2008-07-31 2009-07-24 Prepreg, preform, molded product, and method for manufacturing prepreg
US12/737,619 US8071205B2 (en) 2008-07-31 2009-07-24 Prepreg, preform, molded product, and method for manufacturing prepreg
EP14180444.3A EP2803694B1 (en) 2008-07-31 2009-07-24 Prepreg, preform, molded product, and method for manufacturing prepreg
CN2009801217041A CN102056971B (zh) 2008-07-31 2009-07-24 预浸料坯、预成型体、成型品及预浸料坯的制造方法
CA2731283A CA2731283C (en) 2008-07-31 2009-07-24 Prepreg, preform, molded product, and method for manufacturing prepreg
ES09802888.9T ES2524476T3 (es) 2008-07-31 2009-07-24 Preimpregnado, preforma, producto moldeado y procedimiento de fabricación de un preimpregnado
KR1020107026471A KR101146612B1 (ko) 2008-07-31 2009-07-24 프리프레그, 프리폼, 성형품 및 프리프레그의 제조방법
KR1020127004289A KR101445169B1 (ko) 2008-07-31 2009-07-24 프리프레그, 프리폼, 성형품 및 프리프레그의 제조방법
US13/200,340 US20120012263A1 (en) 2008-07-31 2011-09-23 Method for manufacturing prepreg

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2008-197812 2008-07-31
JP2008-198457 2008-07-31
JP2008198458A JP5304086B2 (ja) 2008-07-31 2008-07-31 抄紙基材の製造方法
JP2008-198456 2008-07-31
JP2008197812A JP5304084B2 (ja) 2008-07-31 2008-07-31 抄紙基材の製造方法
JP2008198456A JP2010037358A (ja) 2008-07-31 2008-07-31 繊維強化成形基材の製造方法
JP2008198457A JP5304085B2 (ja) 2008-07-31 2008-07-31 抄紙基材の製造方法
JP2008-198458 2008-07-31
JP2009085469A JP4862913B2 (ja) 2009-03-31 2009-03-31 プリプレグおよびプリフォーム
JP2009-085469 2009-03-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/200,340 Division US20120012263A1 (en) 2008-07-31 2011-09-23 Method for manufacturing prepreg

Publications (1)

Publication Number Publication Date
WO2010013645A1 true WO2010013645A1 (ja) 2010-02-04

Family

ID=41610344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/063240 WO2010013645A1 (ja) 2008-07-31 2009-07-24 プリプレグ、プリフォーム、成形品およびプリプレグの製造方法

Country Status (9)

Country Link
US (2) US8071205B2 (ja)
EP (2) EP2803694B1 (ja)
KR (2) KR101146612B1 (ja)
CN (2) CN102056971B (ja)
CA (1) CA2731283C (ja)
ES (2) ES2755105T3 (ja)
PT (1) PT2803694T (ja)
TW (2) TWI376397B (ja)
WO (1) WO2010013645A1 (ja)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012059539A1 (de) * 2010-11-03 2012-05-10 Sgl Carbon Se Florschicht mit gekrümmt verlaufenden bündeln
WO2012165076A1 (ja) * 2011-05-31 2012-12-06 東レ株式会社 炭素繊維強化プラスチックおよびその製造方法
US20130001817A1 (en) * 2010-03-26 2013-01-03 Mitsubishi Heavy Industries Plastic Technology Co., Ltd. Method for manufacturing a fiber-reinforced composite material
US20130217283A1 (en) * 2010-11-08 2013-08-22 Toray Industries, Inc. Epoxy resin composition for fiber reinforced composite material, prepreg, and fiber reinforced composite material
EP2671779A1 (en) 2011-02-03 2013-12-11 Teijin Limited Vehicle skeleton member
RU2527703C1 (ru) * 2011-02-01 2014-09-10 Тейдзин Лимитед Холст с хаотической ориентацией волокон и композитный материал, армированный волокном
EP2813532A1 (en) 2012-02-09 2014-12-17 Toray Industries, Inc. Carbon fiber composite material
JP2015193731A (ja) * 2014-03-31 2015-11-05 王子ホールディングス株式会社 繊維強化プラスチック成形体用シート
WO2016136793A1 (ja) * 2015-02-27 2016-09-01 東レ株式会社 樹脂供給材料、プリフォーム、および繊維強化樹脂の製造方法
WO2016136791A1 (ja) * 2015-02-27 2016-09-01 東レ株式会社 樹脂供給材料、プリフォーム、および繊維強化樹脂の製造方法
WO2016136790A1 (ja) * 2015-02-27 2016-09-01 東レ株式会社 樹脂供給材料、プリフォーム、および繊維強化樹脂の製造方法
KR20160105877A (ko) 2014-02-14 2016-09-07 미쯔비시 레이온 가부시끼가이샤 섬유 강화 플라스틱 및 그의 제조 방법
JP2016163956A (ja) * 2015-03-06 2016-09-08 王子ホールディングス株式会社 繊維強化プラスチック成形体用基材及び繊維強化プラスチック成形体
JP2016210960A (ja) * 2015-04-28 2016-12-15 王子ホールディングス株式会社 繊維強化プラスチック成形体用シート
JP2016210979A (ja) * 2015-04-28 2016-12-15 王子ホールディングス株式会社 繊維強化プラスチック成形体用シート
JP2017043878A (ja) * 2015-08-26 2017-03-02 王子ホールディングス株式会社 繊維強化プラスチック成形体用シート及び繊維強化プラスチック成形体用シートの製造方法
JP2017183615A (ja) * 2016-03-31 2017-10-05 住友ベークライト株式会社 発泡体および発泡体の製造方法
JP2017181375A (ja) * 2016-03-31 2017-10-05 住友ベークライト株式会社 発泡体および発泡体の製造方法
JPWO2016121136A1 (ja) * 2015-01-29 2017-11-09 王子ホールディングス株式会社 繊維強化プラスチック成形体用シート
EP3348370A1 (en) 2014-02-14 2018-07-18 Teijin Limited Carbon fiber reinforced molding material and shaped product
JP2018192730A (ja) * 2017-05-19 2018-12-06 日産自動車株式会社 繊維強化樹脂部材及び該繊維強化樹脂部材の製造方法
JP2019002125A (ja) * 2018-09-27 2019-01-10 王子ホールディングス株式会社 繊維強化プラスチック成形体用基材及び繊維強化プラスチック成形体
US10576695B2 (en) 2015-08-04 2020-03-03 Mitsubishi Chemical Corporation Fiber-reinforced plastic and method for producing same
JPWO2019044694A1 (ja) * 2017-08-31 2020-08-13 東レ株式会社 一体化成形体およびその製造方法
WO2023189348A1 (ja) 2022-03-30 2023-10-05 東レ株式会社 炭素繊維基材、プリプレグ、多孔質構造体、その製造方法、プリフォーム、繊維強化樹脂成形体、サンドイッチ構造体および航空機部材
US11911933B2 (en) 2015-03-30 2024-02-27 Mitsubishi Chemical Corporation Molded body and manufacturing method therefor

Families Citing this family (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7892993B2 (en) 2003-06-19 2011-02-22 Eastman Chemical Company Water-dispersible and multicomponent fibers from sulfopolyesters
US8513147B2 (en) 2003-06-19 2013-08-20 Eastman Chemical Company Nonwovens produced from multicomponent fibers
US20040260034A1 (en) 2003-06-19 2004-12-23 Haile William Alston Water-dispersible fibers and fibrous articles
CN102056971B (zh) * 2008-07-31 2013-09-04 东丽株式会社 预浸料坯、预成型体、成型品及预浸料坯的制造方法
EP2328749B1 (en) 2008-08-18 2019-09-25 Productive Research LLC. Formable light weight composites
US8512519B2 (en) 2009-04-24 2013-08-20 Eastman Chemical Company Sulfopolyesters for paper strength and process
KR20170103030A (ko) 2009-12-28 2017-09-12 프로덕티브 리서치 엘엘씨 복합 재료의 용접 공정 및 그로부터 제조된 제품
KR102032405B1 (ko) 2010-02-15 2019-10-16 프로덕티브 리서치 엘엘씨 성형가능한 경량 복합 재료 시스템 및 방법
EP2585279B8 (en) * 2010-06-22 2016-07-27 Ticona LLC Thermoplastic prepreg containing continuous and long fibers and method for its manufacture
US9273417B2 (en) 2010-10-21 2016-03-01 Eastman Chemical Company Wet-Laid process to produce a bound nonwoven article
EP2671780B1 (en) 2011-02-03 2015-09-09 Teijin Limited Vehicle skeleton member
CN102154914B (zh) * 2011-02-24 2013-03-20 钟洲 制备芳纶纸的方法及由该方法获得的芳纶纸
JP5702854B2 (ja) 2011-04-14 2015-04-15 帝人株式会社 強化繊維複合材料
EP2716433B1 (en) 2011-05-31 2018-04-18 Teijin Limited Method for manufacturing compact with sustained isotropy
RU2535711C1 (ru) 2011-08-03 2014-12-20 Тейдзин Лимитед Способ изготовления фасонного изделия формованием под низким давлением
EP2746337B1 (en) * 2011-08-19 2017-10-04 Sekisui Chemical Co., Ltd. Carbon fiber composite material
EP2752442A4 (en) 2011-08-31 2015-01-28 Teijin Ltd MOLDED BODY HAVING SURFACE SURFACE AND METHOD FOR PRODUCING THE SAME
US20140339036A1 (en) * 2011-11-28 2014-11-20 Teijin Limited Shock Absorption Member
EP2796604A4 (en) * 2011-12-22 2015-09-23 Teijin Ltd RANDOM MATERIAL AND FIBER REINFORCING COMPOSITE MATERIAL
EP2610165B1 (en) * 2011-12-28 2017-02-08 AIRBUS HELICOPTERS DEUTSCHLAND GmbH Composite gusset filler and method of manufacture of said composite gusset filler
PT2803693T (pt) * 2012-01-10 2020-04-08 Toray Industries Folha de polipropileno reforçado com fibras de carbono e artigo moldado associado
WO2013108811A1 (ja) * 2012-01-20 2013-07-25 東レ株式会社 繊維強化ポリプロピレン樹脂組成物、成形材料ならびにプリプレグ
US8840757B2 (en) 2012-01-31 2014-09-23 Eastman Chemical Company Processes to produce short cut microfibers
EP2832778B1 (en) * 2012-03-29 2018-01-03 Mitsubishi Chemical Corporation Carbon fiber thermoplastic resin prepreg, carbon fiber composite material and producing method
US9481770B2 (en) 2012-05-29 2016-11-01 Toray Industries, Inc. Carbon fiber composite material
CN107043538B (zh) * 2012-07-07 2022-05-27 迪睿合电子材料有限公司 导热性片材
US9233526B2 (en) 2012-08-03 2016-01-12 Productive Research Llc Composites having improved interlayer adhesion and methods thereof
US11053369B2 (en) * 2012-08-10 2021-07-06 Aspen Aerogels, Inc. Segmented flexible gel composites and rigid panels manufactured therefrom
US8829103B2 (en) 2012-09-14 2014-09-09 Teijin Limited Carbon fiber composite material
US9139937B2 (en) 2012-11-28 2015-09-22 Milliken & Company Method of strengthening existing structures using strengthening fabric having slitting zones
US20150266260A1 (en) * 2012-12-26 2015-09-24 Toray Industries, Inc. Molded product having hollow structure and process for producing same
WO2014160089A1 (en) * 2013-03-14 2014-10-02 Neenah Paper, Inc. Methods of molding non-woven carbon fiber mats and related molded products
US9617685B2 (en) 2013-04-19 2017-04-11 Eastman Chemical Company Process for making paper and nonwoven articles comprising synthetic microfiber binders
US20140377556A1 (en) * 2013-06-25 2014-12-25 Hexcel Corporation Method for making a discontinuous fiber molding compound
DE102013218491B4 (de) * 2013-09-16 2021-12-09 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren und Vorrichtung zur Herstellung eines Sandwichkerns eines Sandwichelements
KR20180127543A (ko) * 2013-12-06 2018-11-28 미쯔비시 케미컬 주식회사 섬유 강화 열가소성 플라스틱을 이용한 적층 기재와 이것을 이용한 성형품의 제조 방법
US9605126B2 (en) 2013-12-17 2017-03-28 Eastman Chemical Company Ultrafiltration process for the recovery of concentrated sulfopolyester dispersion
US9598802B2 (en) 2013-12-17 2017-03-21 Eastman Chemical Company Ultrafiltration process for producing a sulfopolyester concentrate
JP6638131B2 (ja) * 2014-07-08 2020-01-29 福井県 擬似等方補強シート材及びその製造方法
CN106573435B (zh) * 2014-08-29 2018-10-16 三菱瓦斯化学株式会社 蜂窝用基材、蜂窝结构体及夹层结构体
CN104589666B (zh) * 2014-11-27 2017-02-01 东华大学 一种制备热塑性复合材料汽车大型覆盖件的方法
CN104494164B (zh) * 2014-11-27 2017-01-25 东华大学 一种制备热塑性复合材料飞机机翼翼肋的方法
EP3034263A1 (en) 2014-12-19 2016-06-22 Sadair Spear AB Method for manufacturing a fibre-reinforced structure, mandrel, molding system and fibre-reinforced structure
US10144185B2 (en) * 2015-04-01 2018-12-04 The Boeing Company Method and apparatus for high-temperature post-curing of UV-cured photopolymers
KR101923379B1 (ko) * 2015-06-29 2018-11-30 (주)엘지하우시스 차량용 언더바디 커버 및 이를 제조하는 방법
JP6496829B2 (ja) * 2015-09-08 2019-04-10 帝人株式会社 孔を有する成形体、及びその製造方法
US10392800B1 (en) * 2015-10-21 2019-08-27 Shin Civil Engineering Consultants Inc. System and method for building structures using multilayered panel frames
EP3366819B1 (en) * 2015-10-21 2022-02-16 Mitsubishi Chemical Corporation Producing device and producing method for fiber-reinforced resin forming materials
US20170217056A1 (en) * 2016-01-29 2017-08-03 Dell Products L.P. Carbon Fiber Information Handling System Housing and Process for Manufacture
CN106566208B (zh) * 2016-09-27 2018-10-26 陈雨 高韧性不导电轻型鱼竿用复合材料
EP3560985B1 (en) * 2016-12-22 2024-08-07 Toray Industries, Inc. Structure material and manufacturing method therefor
KR20190132364A (ko) 2017-02-08 2019-11-27 사이텍 인더스트리얼 머티어리얼즈(더비) 리미티드 복합 재료의 이중 다이어프램 성형, 이러한 성형을 위한 조립체 및 산출된 복합 재료
US10921859B2 (en) * 2017-04-10 2021-02-16 Securaplane Technologies, Inc. Composite electronics cases and methods of making and using the same
WO2019017057A1 (ja) * 2017-07-18 2019-01-24 東レ株式会社 一方向に配向したテープ状プリプレグ、およびその成形品
US11155301B2 (en) 2017-10-19 2021-10-26 Magna Exteriors, Inc Method of reducing knit line during compression molding of carbon fiber SMC for complex 3D structural application
JP6477831B1 (ja) * 2017-10-31 2019-03-06 栗田工業株式会社 ポリフェニレンサルファイド樹脂の親水化処理方法
JP6665149B2 (ja) * 2017-12-04 2020-03-13 株式会社Subaru 繊維強化樹脂体及びその製造方法
WO2019111737A1 (ja) 2017-12-05 2019-06-13 大塚化学株式会社 複合積層体及びその製造方法
KR20200135938A (ko) * 2018-03-30 2020-12-04 도레이 카부시키가이샤 프레스 성형품의 제조 방법
WO2019189384A1 (ja) * 2018-03-30 2019-10-03 東レ株式会社 成形品の製造方法
CN109466098B (zh) * 2018-07-17 2021-09-21 广州市勇源冰雪运动用品有限公司 一种鞋身成型方法及鞋体
US11530513B2 (en) 2018-07-20 2022-12-20 Honeywell International Inc. Ballistic translation efficiency of high performance fibers
JP7019534B2 (ja) * 2018-08-22 2022-02-15 三菱製紙株式会社 炭素繊維不織布複合体
CN111196072A (zh) * 2018-11-16 2020-05-26 中国航空工业集团公司基础技术研究院 一种增材制造用连续纤维增强热塑性预浸料单向带
US11338552B2 (en) 2019-02-15 2022-05-24 Productive Research Llc Composite materials, vehicle applications and methods thereof
US20220152973A1 (en) * 2019-04-01 2022-05-19 Mitsui Chemicals, Inc. Laminate, three-dimensional molded laminate, and method for producing three-dimensional molded laminate
CN113767007A (zh) * 2019-05-23 2021-12-07 东丽株式会社 纤维增强树脂基材的制造方法、纤维增强树脂基材及其一体化成型品
WO2021106651A1 (ja) * 2019-11-29 2021-06-03 東レ株式会社 プリプレグ、プリフォーム、繊維強化複合材料、およびそれらの製造方法
JP7251523B2 (ja) * 2020-06-15 2023-04-04 トヨタ自動車株式会社 積層状態算出方法、積層状態算出装置及び積層状態算出プログラム
EP4190524A4 (en) * 2020-07-30 2024-08-28 Dainippon Ink & Chemicals METHOD OF PRODUCING A WEB MOULD COMPOUND AND MOULDED ARTICLES
KR20220113093A (ko) * 2021-02-05 2022-08-12 박경순 열가소성 수지 복합재료 토우프레그 제조 방법
EP4144511A1 (en) * 2021-09-02 2023-03-08 Covestro Deutschland AG Method for preparing a polyurethane composite
WO2022268589A1 (en) * 2021-06-22 2022-12-29 Covestro Deutschland Ag Method for preparing a polyurethane composite
CN113386354B (zh) * 2021-07-19 2022-08-05 西安交通大学 一种连续纤维与短纤维共增强树脂的3d打印装置
CN113817243A (zh) * 2021-09-28 2021-12-21 浙江联洋新材料股份有限公司 一种高分子硬质泡沫生产用原料浸渍纤维框架及成型工艺
CN114211787B (zh) * 2021-12-15 2024-01-02 北京机科国创轻量化科学研究院有限公司 一种多层空间结构的碳纤维层合板的制备方法
CN114834065A (zh) * 2022-05-07 2022-08-02 武汉楚能新能源有限公司 箍带制备工艺及电池模组
CN114806127B (zh) * 2022-05-10 2024-02-20 中山市卡邦碳纤维材料制品有限公司 一种碳纤维管材及其制造方法
CN115302869B (zh) * 2022-07-05 2024-05-24 广东生益科技股份有限公司 一种高频覆铜板及包含其的印制电路板
CN117103730B (zh) * 2023-10-16 2024-03-08 歌尔股份有限公司 电子设备、复合材料结构件及其加工方法

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0440372B2 (ja) 1984-01-06 1992-07-02 Wiggins Teape Uk Plc
JPH0699431A (ja) 1992-09-22 1994-04-12 Sumitomo Chem Co Ltd ウェブおよび成形品の製造方法
JP2507565B2 (ja) 1988-11-24 1996-06-12 東レ株式会社 熱可塑性樹脂と補強繊維との複合板
JPH08232187A (ja) 1995-02-27 1996-09-10 Kawasaki Steel Corp 繊維強化熱可塑性樹脂シートの製造方法及び装置
JPH0994826A (ja) 1995-07-26 1997-04-08 Kawasaki Steel Corp ランダム配向繊維強化樹脂シートの製造方法
JPH09136969A (ja) 1995-11-16 1997-05-27 Kawasaki Steel Corp 繊維強化熱可塑性樹脂シートの湿式製造方法及び装置
JP2000141522A (ja) * 1998-11-18 2000-05-23 Oji Paper Co Ltd 積層板用基材およびその製造方法
JP2001159091A (ja) * 1999-11-25 2001-06-12 Daio Paper Corp パラ配向アラミド繊維紙及びその製造方法
JP2002194692A (ja) * 2000-12-21 2002-07-10 Takemoto Oil & Fat Co Ltd アラミド紙の製造方法及びプリント配線基板用積層板の製造方法
JP2002317392A (ja) * 2001-04-20 2002-10-31 Takemoto Oil & Fat Co Ltd ポリパラフェニレンテレフタルアミド紙の製造方法及びプリント回路基板の製造方法
JP2004217879A (ja) 2003-01-17 2004-08-05 Mitsubishi Rayon Co Ltd 光ディスク用活性エネルギー線硬化性組成物、及び光ディスク
JP2006077343A (ja) * 2004-09-08 2006-03-23 Toray Ind Inc 炭素繊維マットおよびその製造方法、それを用いた成形用基材
JP2006104608A (ja) 2004-10-04 2006-04-20 Kao Corp 抄造体の製造方法
JP2007146151A (ja) 2005-10-31 2007-06-14 Toray Ind Inc プリプレグ基材、積層基材、繊維強化プラスチック
WO2007097436A1 (ja) 2006-02-24 2007-08-30 Toray Industries, Inc. 繊維強化熱可塑性樹脂成形体、成形材料、およびその製造方法

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63254669A (ja) * 1987-04-10 1988-10-21 Toray Ind Inc 燃料電池用電極基材
KR930003894B1 (ko) * 1989-01-25 1993-05-15 아사히가세이고오교가부시끼가이샤 신규한 프리프레그와 복합 성형체, 및 복합 성형체의 제조방법
US5198283A (en) * 1990-03-19 1993-03-30 Illinois Tool Works Inc. Backlit button by thermoformed cap process
JPH06114869A (ja) * 1992-10-09 1994-04-26 Asahi Chem Ind Co Ltd ガラス繊維強化熱可塑性樹脂成形品
US5674590A (en) * 1995-06-07 1997-10-07 Kimberly-Clark Tissue Company High water absorbent double-recreped fibrous webs
JP2877052B2 (ja) 1995-12-01 1999-03-31 東洋紡績株式会社 繊維強化熱可塑性樹脂シ−ト
US5830322A (en) * 1996-02-13 1998-11-03 Thermo Fibertek Inc. Velocity induced drainage method and unit
JPH11131385A (ja) * 1997-11-05 1999-05-18 Oji Paper Co Ltd 積層板用基材及びその製造法ならびにプリプレグ及び積層板
TW434360B (en) * 1998-02-18 2001-05-16 Toray Industries Carbon fiber matrix for reinforcement, laminate and detecting method
JP2001163628A (ja) * 1999-10-01 2001-06-19 Hoya Corp 成形品の製造方法
PL355108A1 (en) * 1999-10-15 2004-04-05 Cargill, Incorporated Fibers from plant seeds and use
WO2003087470A1 (fr) * 2002-04-17 2003-10-23 Mitsubishi Rayon Co., Ltd. Papier en fibre de carbone et substrat d'electrode en fibre de carbone poreux, destine aux piles
JP2004143226A (ja) 2002-10-22 2004-05-20 Toyobo Co Ltd 圧縮成形用材料
EP1563974B1 (en) * 2002-10-23 2009-07-01 Mitsubishi Rayon Co., Ltd. Method of manufacturing a prepreg
US7208221B2 (en) * 2003-10-15 2007-04-24 Board Of Trustees Of Michigan State University Biocomposites sheet molding and methods of making those
ITMI20041452A1 (it) * 2004-07-20 2004-10-20 Piaggio & C Spa Dispositivo di azionamento selettivo
JP2006083227A (ja) * 2004-09-14 2006-03-30 Mitsubishi Engineering Plastics Corp 長繊維強化ポリアミド樹脂製外装成形体
US7465481B2 (en) 2004-09-14 2008-12-16 Mitsubishi Engineering-Plastics Corporation Exterior molding body comprising a long fiber reinforced thermoplastic resin
US7329705B2 (en) * 2005-05-03 2008-02-12 Celanese International Corporation Salt-sensitive binder compositions with N-alkyl acrylamide and fibrous articles incorporating same
US7459059B2 (en) * 2005-09-21 2008-12-02 Nalco Company Use of synthetic metal silicates for increasing retention and drainage during a papermaking process
WO2007037260A1 (ja) * 2005-09-29 2007-04-05 Toray Industries, Inc. 繊維強化熱可塑性樹脂組成物、その製造方法、及び熱可塑性樹脂用炭素繊維
US20070132126A1 (en) * 2005-12-14 2007-06-14 Shao Richard L Method for debundling and dispersing carbon fiber filaments uniformly throughout carbon composite compacts before densification
JP2007231441A (ja) * 2006-02-28 2007-09-13 Teijin Techno Products Ltd 熱可塑性樹脂強化用炭素繊維ストランド
KR101416727B1 (ko) * 2006-09-28 2014-07-08 도레이 카부시키가이샤 복합 프리프레그 기재의 제조 방법, 적층 기재 및 섬유강화플라스틱
CN102056971B (zh) * 2008-07-31 2013-09-04 东丽株式会社 预浸料坯、预成型体、成型品及预浸料坯的制造方法
EP2328749B1 (en) * 2008-08-18 2019-09-25 Productive Research LLC. Formable light weight composites
US20100266827A1 (en) * 2009-04-21 2010-10-21 Toho Tenax Co., Ltd. Carbon fiber and composite material using the same

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0440372B2 (ja) 1984-01-06 1992-07-02 Wiggins Teape Uk Plc
JP2507565B2 (ja) 1988-11-24 1996-06-12 東レ株式会社 熱可塑性樹脂と補強繊維との複合板
JPH0699431A (ja) 1992-09-22 1994-04-12 Sumitomo Chem Co Ltd ウェブおよび成形品の製造方法
JPH08232187A (ja) 1995-02-27 1996-09-10 Kawasaki Steel Corp 繊維強化熱可塑性樹脂シートの製造方法及び装置
JPH0994826A (ja) 1995-07-26 1997-04-08 Kawasaki Steel Corp ランダム配向繊維強化樹脂シートの製造方法
JPH09136969A (ja) 1995-11-16 1997-05-27 Kawasaki Steel Corp 繊維強化熱可塑性樹脂シートの湿式製造方法及び装置
JP2000141522A (ja) * 1998-11-18 2000-05-23 Oji Paper Co Ltd 積層板用基材およびその製造方法
JP2001159091A (ja) * 1999-11-25 2001-06-12 Daio Paper Corp パラ配向アラミド繊維紙及びその製造方法
JP2002194692A (ja) * 2000-12-21 2002-07-10 Takemoto Oil & Fat Co Ltd アラミド紙の製造方法及びプリント配線基板用積層板の製造方法
JP2002317392A (ja) * 2001-04-20 2002-10-31 Takemoto Oil & Fat Co Ltd ポリパラフェニレンテレフタルアミド紙の製造方法及びプリント回路基板の製造方法
JP2004217879A (ja) 2003-01-17 2004-08-05 Mitsubishi Rayon Co Ltd 光ディスク用活性エネルギー線硬化性組成物、及び光ディスク
JP2006077343A (ja) * 2004-09-08 2006-03-23 Toray Ind Inc 炭素繊維マットおよびその製造方法、それを用いた成形用基材
JP2006104608A (ja) 2004-10-04 2006-04-20 Kao Corp 抄造体の製造方法
JP2007146151A (ja) 2005-10-31 2007-06-14 Toray Ind Inc プリプレグ基材、積層基材、繊維強化プラスチック
WO2007097436A1 (ja) 2006-02-24 2007-08-30 Toray Industries, Inc. 繊維強化熱可塑性樹脂成形体、成形材料、およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DOI, M., EDWARDS, S. F., THE THEORY OF POLYMER DYNAMICS, vol. 324, 1997

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130001817A1 (en) * 2010-03-26 2013-01-03 Mitsubishi Heavy Industries Plastic Technology Co., Ltd. Method for manufacturing a fiber-reinforced composite material
US9333690B2 (en) * 2010-03-26 2016-05-10 Mitsubishi Heavy Industries Plastic Technology Method for manufacturing a fiber-reinforced composite material
US9551098B2 (en) 2010-11-03 2017-01-24 Sgl Automotive Carbon Fibers Gmbh & Co. Kg Nonwoven batt with curved carbon fiber bundles
WO2012059539A1 (de) * 2010-11-03 2012-05-10 Sgl Carbon Se Florschicht mit gekrümmt verlaufenden bündeln
US20130217283A1 (en) * 2010-11-08 2013-08-22 Toray Industries, Inc. Epoxy resin composition for fiber reinforced composite material, prepreg, and fiber reinforced composite material
US9957387B2 (en) * 2010-11-08 2018-05-01 Toray Industries, Inc. Epoxy resin composition for fiber reinforced composite material, prepreg, and fiber reinforced composite material
RU2527703C1 (ru) * 2011-02-01 2014-09-10 Тейдзин Лимитед Холст с хаотической ориентацией волокон и композитный материал, армированный волокном
EP2671779A1 (en) 2011-02-03 2013-12-11 Teijin Limited Vehicle skeleton member
EP2671779B1 (en) * 2011-02-03 2018-06-20 Teijin Limited Vehicle skeleton member
JPWO2012165076A1 (ja) * 2011-05-31 2015-02-23 東レ株式会社 炭素繊維強化プラスチックおよびその製造方法
US9469740B2 (en) 2011-05-31 2016-10-18 Toray Industries, Inc. Carbon-fiber-reinforced plastic and process for producing same
WO2012165076A1 (ja) * 2011-05-31 2012-12-06 東レ株式会社 炭素繊維強化プラスチックおよびその製造方法
EP2813532A1 (en) 2012-02-09 2014-12-17 Toray Industries, Inc. Carbon fiber composite material
EP3348370A1 (en) 2014-02-14 2018-07-18 Teijin Limited Carbon fiber reinforced molding material and shaped product
KR20160105877A (ko) 2014-02-14 2016-09-07 미쯔비시 레이온 가부시끼가이샤 섬유 강화 플라스틱 및 그의 제조 방법
US11034103B2 (en) 2014-02-14 2021-06-15 Mitsubishi Chemical Corporation Fiber-reinforced plastic and production method therefor
US10773473B2 (en) 2014-02-14 2020-09-15 Mitsubishi Chemical Corporation Fiber-reinforced plastic and production method therefor
JP2015193731A (ja) * 2014-03-31 2015-11-05 王子ホールディングス株式会社 繊維強化プラスチック成形体用シート
JPWO2016121136A1 (ja) * 2015-01-29 2017-11-09 王子ホールディングス株式会社 繊維強化プラスチック成形体用シート
JPWO2016136790A1 (ja) * 2015-02-27 2017-11-30 東レ株式会社 樹脂供給材料、プリフォーム、および繊維強化樹脂の製造方法
WO2016136791A1 (ja) * 2015-02-27 2016-09-01 東レ株式会社 樹脂供給材料、プリフォーム、および繊維強化樹脂の製造方法
WO2016136793A1 (ja) * 2015-02-27 2016-09-01 東レ株式会社 樹脂供給材料、プリフォーム、および繊維強化樹脂の製造方法
US10822463B2 (en) 2015-02-27 2020-11-03 Toray Industries, Inc. Resin supply material, preform, and method of producing fiber-reinforced resin
JPWO2016136793A1 (ja) * 2015-02-27 2017-11-30 東レ株式会社 樹脂供給材料、プリフォーム、および繊維強化樹脂の製造方法
US10800894B2 (en) 2015-02-27 2020-10-13 Toray Industries, Inc. Resin supply material, preform, and method of producing fiber-reinforced resin
JPWO2016136791A1 (ja) * 2015-02-27 2017-12-07 東レ株式会社 樹脂供給材料、プリフォーム、および繊維強化樹脂の製造方法
US11034809B2 (en) 2015-02-27 2021-06-15 Toray Industries, Inc. Resin supply material, preform, and method of producing fiber-reinforced resin
WO2016136790A1 (ja) * 2015-02-27 2016-09-01 東レ株式会社 樹脂供給材料、プリフォーム、および繊維強化樹脂の製造方法
JP2016163956A (ja) * 2015-03-06 2016-09-08 王子ホールディングス株式会社 繊維強化プラスチック成形体用基材及び繊維強化プラスチック成形体
US11911933B2 (en) 2015-03-30 2024-02-27 Mitsubishi Chemical Corporation Molded body and manufacturing method therefor
JP2016210960A (ja) * 2015-04-28 2016-12-15 王子ホールディングス株式会社 繊維強化プラスチック成形体用シート
JP2019123885A (ja) * 2015-04-28 2019-07-25 王子ホールディングス株式会社 繊維強化プラスチック成形体用シート
JP2016210979A (ja) * 2015-04-28 2016-12-15 王子ホールディングス株式会社 繊維強化プラスチック成形体用シート
US10576695B2 (en) 2015-08-04 2020-03-03 Mitsubishi Chemical Corporation Fiber-reinforced plastic and method for producing same
JP2017043878A (ja) * 2015-08-26 2017-03-02 王子ホールディングス株式会社 繊維強化プラスチック成形体用シート及び繊維強化プラスチック成形体用シートの製造方法
JP2017183615A (ja) * 2016-03-31 2017-10-05 住友ベークライト株式会社 発泡体および発泡体の製造方法
JP2017181375A (ja) * 2016-03-31 2017-10-05 住友ベークライト株式会社 発泡体および発泡体の製造方法
JP2018192730A (ja) * 2017-05-19 2018-12-06 日産自動車株式会社 繊維強化樹脂部材及び該繊維強化樹脂部材の製造方法
JPWO2019044694A1 (ja) * 2017-08-31 2020-08-13 東レ株式会社 一体化成形体およびその製造方法
JP7131390B2 (ja) 2017-08-31 2022-09-06 東レ株式会社 一体化成形体およびその製造方法
JP2019002125A (ja) * 2018-09-27 2019-01-10 王子ホールディングス株式会社 繊維強化プラスチック成形体用基材及び繊維強化プラスチック成形体
WO2023189348A1 (ja) 2022-03-30 2023-10-05 東レ株式会社 炭素繊維基材、プリプレグ、多孔質構造体、その製造方法、プリフォーム、繊維強化樹脂成形体、サンドイッチ構造体および航空機部材
JP7416332B1 (ja) 2022-03-30 2024-01-17 東レ株式会社 炭素繊維基材、プリプレグ、多孔質構造体、その製造方法、プリフォーム、繊維強化樹脂成形体、サンドイッチ構造体および航空機部材

Also Published As

Publication number Publication date
EP2803694B1 (en) 2019-09-18
EP2314642B1 (en) 2014-09-24
TW201008988A (en) 2010-03-01
CA2731283A1 (en) 2010-02-04
CN102056971B (zh) 2013-09-04
KR101445169B1 (ko) 2014-10-06
CA2731283C (en) 2016-08-23
KR101146612B1 (ko) 2012-05-14
ES2524476T3 (es) 2014-12-09
ES2755105T3 (es) 2020-04-21
EP2314642A4 (en) 2013-03-13
TW201239017A (en) 2012-10-01
CN103524769B (zh) 2017-05-10
EP2803694A3 (en) 2015-02-11
US20120012263A1 (en) 2012-01-19
EP2803694A2 (en) 2014-11-19
CN103524769A (zh) 2014-01-22
KR20110055482A (ko) 2011-05-25
PT2803694T (pt) 2019-10-31
KR20120034240A (ko) 2012-04-10
CN102056971A (zh) 2011-05-11
TWI450917B (zh) 2014-09-01
TWI376397B (en) 2012-11-11
EP2314642A1 (en) 2011-04-27
US20110143110A1 (en) 2011-06-16
US8071205B2 (en) 2011-12-06

Similar Documents

Publication Publication Date Title
WO2010013645A1 (ja) プリプレグ、プリフォーム、成形品およびプリプレグの製造方法
JP4862913B2 (ja) プリプレグおよびプリフォーム
JP4807477B2 (ja) プレス成形品の製造方法
TWI554556B (zh) 碳纖維強化聚丙烯薄片及其成形品
CN108431098B (zh) 结构体
JP2010037358A (ja) 繊維強化成形基材の製造方法
KR102117241B1 (ko) 구조체의 제조 방법
TWI721909B (zh) 樹脂供給材料、預形體、及纖維強化樹脂之製造方法
JP2014095034A (ja) 成形品及び成形品の製造方法
JP5251342B2 (ja) 炭素繊維ウェブの製造方法
JP5655592B2 (ja) 炭素繊維強化成形材料の製造方法
EP3719184B1 (en) Carbon fiber bundle, prepreg, and fiber-reinforced composite material
JP2010037669A (ja) 炭素繊維基材の製造方法
JP5304086B2 (ja) 抄紙基材の製造方法
JP5304085B2 (ja) 抄紙基材の製造方法
JP2021151756A (ja) 繊維強化複合材料の製造方法
JP2018058996A (ja) 繊維強化プラスチック成形体用基材及び繊維強化プラスチック成形体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980121704.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09802888

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107026471

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2731283

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 12737619

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009802888

Country of ref document: EP