WO2010010790A1 - 横型スクロール圧縮機 - Google Patents

横型スクロール圧縮機 Download PDF

Info

Publication number
WO2010010790A1
WO2010010790A1 PCT/JP2009/061829 JP2009061829W WO2010010790A1 WO 2010010790 A1 WO2010010790 A1 WO 2010010790A1 JP 2009061829 W JP2009061829 W JP 2009061829W WO 2010010790 A1 WO2010010790 A1 WO 2010010790A1
Authority
WO
WIPO (PCT)
Prior art keywords
guide member
sealed container
scroll compressor
gas
passage
Prior art date
Application number
PCT/JP2009/061829
Other languages
English (en)
French (fr)
Inventor
長谷川 修士
松永 睦憲
三宅 成志
Original Assignee
日立アプライアンス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立アプライアンス株式会社 filed Critical 日立アプライアンス株式会社
Priority to CN200980127440.0A priority Critical patent/CN102089526B/zh
Priority to US13/055,152 priority patent/US8888476B2/en
Priority to EP09800305.6A priority patent/EP2309132B1/en
Publication of WO2010010790A1 publication Critical patent/WO2010010790A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/023Lubricant distribution through a hollow driving shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/025Lubrication; Lubricant separation using a lubricant pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/026Lubricant separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/806Pipes for fluids; Fittings therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2250/00Geometry
    • F04C2250/10Geometry of the inlet or outlet
    • F04C2250/102Geometry of the inlet or outlet of the outlet
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S418/00Rotary expansible chamber devices
    • Y10S418/01Non-working fluid separation

Definitions

  • the present invention relates to a horizontal scroll compressor used as a refrigerant compressor for refrigeration and air conditioning, and an air or other gas compressor.
  • a conventional horizontal scroll compressor is described in Japanese Patent Laid-Open No. 5-126072.
  • This document describes a structure in which a separating plate is provided in the sealed container to partition a portion that houses the electric motor and the compressor mechanism and a portion that includes a discharge pipe and a sump that supplies oil to the bearing. Yes.
  • Japanese Patent Application Laid-Open No. 2008-14259 is provided with a support plate that separates into a first space that houses the electric motor and the compressor mechanism and a second space that includes a discharge pipe, An oil supply pump is provided at the shaft end of the drive shaft on the side, and the oil in the lower part of the second space is supplied to the bearing of the compressor mechanism by this oil supply pump.
  • a horizontal scroll compressor having a separation plate that partitions a space provided with an electric motor section and a compressor mechanism section and a space provided with a discharge pipe and having an oil pump at the shaft end, oil is sucked from the oil pump. Therefore, it is necessary to secure the oil level for this purpose. For this reason, it is necessary to reduce the so-called oil circulation rate (oil rise) in which oil exits from the discharge pipe together with the refrigerant gas into the refrigeration cycle.
  • the refrigerant gas and oil discharged from the compression mechanism section passes through the electric motor, then passes through the upper part of the separation plate, and then flows from the discharge pipe to the outside of the compressor. Due to the loss, the oil level in the space in which the discharge pipe is provided is kept high.
  • the present invention stores a compressor mechanism portion having an orbiting scroll and a fixed scroll for standing a spiral lap on a base plate, and an electric motor portion for rotationally driving the compressor mechanism portion in a sealed container.
  • the horizontal scroll compressor that discharges the gas compressed by the compressor mechanism section from the discharge pipe provided in the sealed container, the space in the sealed container in which the compressor mechanism section and the electric motor section are disposed,
  • An oil supply pump that supplies oil to a bearing for supporting a drive shaft that rotationally drives the compressor mechanism, and a partition plate that partitions the discharge space in the sealed container in which the discharge pipe is disposed, and the partition plate
  • a passage guide member that forms an upper communication passage through which the compressed gas from the compression mechanism portion passes at the top of the container and that guides the compressed gas from the upper communication passage to the vicinity of the inner surface of the sealed container.
  • passage guide member is characterized in that it is arranged below the discharge pipe.
  • the end portion of the passage guide member on the side of the compressed gas outlet extends closer to the side of the sealed container than the discharge pipe.
  • the passage guide member may be formed in an annular shape, and the passage area may be larger than the passage area of the discharge pipe.
  • a plurality of the upper communication passages may be formed on the partition plate.
  • the passage guide member may be formed in an annular shape that covers the plurality of upper communication passages.
  • a blowing pipe extending in the axial direction is connected to the upper communication passage formed in the partition plate, and the blowing pipe is provided to extend close to the inner side surface of the hermetic container, and the passage guide member includes the blowing pipe. It can also be comprised between the discharge pipe and the umbrella shape.
  • a plurality of upper communication passages and a plurality of outlet pipes are provided, and a total passage area of the plurality of outlet pipes may be larger than a passage area of the discharge pipe.
  • the oil supply pump is composed of a trochoid pump.
  • the partition plate that partitions the space in which the compressor mechanism unit and the motor unit are disposed and the discharge space in which the oil supply pump and the discharge pipe are disposed is provided above the partition plate from the compression mechanism unit.
  • a passage guide member for guiding the compressed gas from the upper communication passage to the vicinity of the inner surface of the hermetic container.
  • the passage guide member is provided below the discharge pipe.
  • FIG. 3 is a cross-sectional view of the inside of a discharge space 84 shown in FIG. 2 viewed from the opposite side of the compression mechanism.
  • the present invention divides a space provided with a compression mechanism portion and an electric motor portion and a space where a discharge pipe is arranged by a partition plate, and an upper communication passage and a passage guide member following the upper communication passage are provided above the partition plate.
  • the passage guide member By providing the passage guide member with a shape extending to the side of the sealed container, the refrigerant gas and oil that have passed through the upper part of the partition plate collide with the side of the sealed container, thereby separating the refrigerant gas and the oil. It is what I did.
  • the discharge pipe is attached to the top of the sealed container, and the passage guide member provided on the partition plate is provided below the discharge pipe, and the passage area of the passage guide member is increased. By making it larger than the discharge pipe passage area, it is possible to increase the effect of suppressing the oil in the oil sump caused by the refrigerant gas flow from being blown up again.
  • FIG. 1 is a cross-sectional view of the horizontal scroll compressor of this embodiment.
  • a compression mechanism portion an electric motor portion, a drive shaft (crankshaft) 20, an oil supply pump 70, an oil sump 53, and the like are accommodated.
  • a suction pipe 51 and a discharge pipe 52 are attached to the sealed container 50.
  • the inside of the sealed container is partitioned by a partition plate 80 into a middle space 83 in which the compressor mechanism portion and the electric motor portion are disposed, and a discharge space 84 in which the discharge pipe 52 and the like are disposed.
  • the compression mechanism is configured by meshing a fixed scroll 10 having a spiral wrap and a turning scroll 11 with each other.
  • a boss is provided on the opposite side of the orbiting scroll 11 so as to project from the wrapping side, and slides with the crank pin 21 of the drive shaft 20 via the orbiting bearing 12.
  • An Oldham joint 13 is also disposed on the side of the orbiting scroll 11 opposite to the lap.
  • the Oldham joint 13 is a joint as an anti-rotation mechanism that causes the orbiting scroll 11 to orbit with respect to the fixed scroll 10 without rotating.
  • the orbiting scroll 11 rotates with respect to the fixed scroll 10 by the rotation preventing mechanism of the Oldham coupling 13.
  • the refrigerant gas is sucked into the sealed space formed by the wrap of the fixed scroll 10 and the orbiting scroll 11 through the suction pipe 51 and the suction port 14. Due to the swivel motion, the volume of the sealed space is reduced while moving to the central portion, thereby compressing the refrigerant gas and discharging the compressed gas from the discharge port 15.
  • the discharged refrigerant gas passes through the periphery of the compression mechanism section and the electric motor section, and is then discharged from the discharge pipe 52 to the outside of the compressor.
  • the drive shaft 20 is supported by a main bearing 31 and a sub-bearing 32, and the main bearing 31 is mounted on a frame 30 fixed to a sealed container.
  • the auxiliary bearing 32 is located on the opposite side of the compressor mechanism portion with the stator 40 of the electric motor interposed therebetween, and is mounted on a housing 61 fixed to the sealed container 50 via the lower frame 60.
  • a pump joint 22 is attached to a shaft end portion of the drive shaft 20 opposite to the compression mechanism portion side, and the oil supply pump 70 is driven through the pump joint 22.
  • a trochoid pump is used as the oil pump 70.
  • An oil supply pipe 72 is attached to the pump case 73 of the oil supply pump 70 so as to open at the lower part of the hermetic container and constitute an oil supply passage.
  • the lubricating oil is sucked from the oil reservoir 53 below the discharge space 84 via the oil pipe 72 of the oil pump 70 and sucked via the oil passage 23 formed in the center of the crankshaft 20.
  • Part of the oil is supplied to the auxiliary bearing 32, and the remaining oil is supplied to the slewing bearing 12 and the main bearing 31.
  • the oil supplied to the slewing bearing 12 and the main bearing 31 is discharged from the oil drain passage 33 provided in the frame 30 to the lower part of the sealed container 50.
  • the gas compressed in the scroll wrap is discharged in the axial direction from the discharge port 15 of the fixed scroll 10 and collides with the side surface of the sealed container 50 on the discharge port 15 side.
  • the first separation of the oil contained in the refrigerant gas is performed, and the separated oil is accumulated in the lower portion of the space on the discharge port 15 side of the sealed container 50, and the oil accumulated in the space is separated from the fixed scroll 10 and It flows out into the space formed in the lower part of the electric motor through a gap (not shown) formed between the lower part of the frame 30 and the sealed container.
  • a gap is formed in the lower part of the stator 40 of the electric motor so that it can flow out to the discharge space 84 side through a communication hole provided in the lower part of the lower frame, a lower communication path 82 formed in the partition plate 80, and the like. It is configured.
  • the refrigerant gas discharged from the discharge port 15 flows into the middle space 83 provided with the electric motor portion through the upper scroll (not shown) between the fixed scroll 10 and the frame 30 and the sealed container 50.
  • the middle space 83 and the discharge space 84 communicate with each other via an upper communication passage 85 and a passage guide member 81 formed in the upper portion of the partition plate 80.
  • the compressed refrigerant gas collides with the side surface of the closed container of the discharge space 84 from the passage guide member 81. Due to this collision, the refrigerant gas and oil are separated for the second time, and then the refrigerant gas from which the oil has been separated is discharged out of the compressor from the discharge pipe 52 disposed on the discharge space 84 side.
  • FIG. 2 is a longitudinal sectional view showing in detail the structure on the discharge space 84 side in the sealed container
  • FIG. 3 is a transverse sectional view of the inside of the discharge space 84 shown in FIG. 2 viewed from the opposite side of the compression mechanism section.
  • the partition plate 80 is fixed to the sealed container 50, and the partition plate 80 is provided with an upper communication passage 85 through which the compressed refrigerant gas passes and a lower communication passage 82 through which oil passes.
  • a passage guide member 81 is attached to the partition plate 80 so as to communicate with the upper communication passage 85.
  • the partition plate 80 and the passage guide member 81 are made of a thin plate metal sheet.
  • the partition plate 80 and the passage guide member 81 may be manufactured as press sheet metal parts as separate parts, and may be made into an integral part by welding or the like.
  • the oil pump 70 is disposed in the discharge space 84, and the oil accumulated in the oil sump 53 below the discharge space 84 is sucked through the oil supply pipe 72, passes through the passage 74 in the pump case 73, and then is crankshaft. Oil is supplied to each bearing through an oil passage 23 formed at the center of the bearing 20.
  • the passage guide member 81 provided on the upper part of the partition plate is provided so as to extend from the position of the discharge pipe 52 attached to the sealed container to the vicinity of the side surface of the sealed container on the side of the anti-compression mechanism, and from the upper communication path 85 of the partition plate.
  • the refrigerant gas blown out is configured to be able to collide with the side surface of the sealed container efficiently. That is, oil separation can be promoted by reliably causing the refrigerant gas mixed with oil to collide with the side surface of the sealed container.
  • the refrigerant gas blown out from the upper communication passage of the partition plate to the discharge space may flow directly to the discharge pipe 52, so that the oil separation cannot be sufficiently performed and the oil rise increases. There is.
  • the gas blown out from the upper part of the partition plate causes the oil in the oil reservoir 53 in the discharge space 84 to re-scatter due to the gas flow, thereby increasing oil rising.
  • the discharge pipe 52 is disposed above the passage guide member 81 provided on the upper part of the partition plate, and the passage area of the passage guide member 81 is configured to be larger than the passage area of the discharge pipe 52. Yes.
  • the flow directly leading to the discharge pipe 52 is reduced due to the passage guide member 81, and the oil circulation in which the oil flows out of the compressor. The rate can be reduced. Therefore, the oil level of the oil reservoir in the discharge space can be kept high, and the oil supply by the oil supply pump 70 can be performed reliably.
  • the refrigerant gas is blown out from the passage guide member 81 at the upper part of the partition plate, collides with the side surface of the sealed container 50, oil separation is performed, and the refrigerant gas subjected to the oil separation flows to the discharge pipe 52. Is shown in the direction of the arrow.
  • the flow of the refrigerant gas blown out from the passage guide member 81 in the discharge space 84 is indicated by arrows.
  • the passage guide member 81 is formed in an annular shape by a thin plate product, and by making it annular, the gas blown out from the upper communication passage 85 of the partition plate 80 is reliably conveyed to near the side surface of the sealed container 50. Is possible. Further, the speed of the collision with the side surface of the sealed container 50 is determined by the passage area of the passage guide member 81.
  • FIG. 4 shows a second embodiment of the present invention.
  • This embodiment is an example in which a plurality (three) of upper communication passages 85 are provided.
  • the passage guide member 81 has an annular shape as in the first embodiment, and extends to near the side surface of the sealed container.
  • the plurality of upper communication passages 85 are arranged in the passage guide member 81. Even if comprised in this way, the oil separation by the collision of the refrigerant gas to the airtight container side surface is possible, and the effect of preventing the oil separation effect and the oil re-scattering is obtained.
  • FIG. 5 shows a third embodiment of the present invention.
  • the upper communication passage 85 formed in the partition plate 80 is formed in a hole shape, and a blow pipe 86 is attached to the hole portion.
  • three upper communication passages 85 are provided, and three outlet pipes are provided.
  • the passage guide member 81 is provided on the upper side so as to cover the three outlet pipes 86, and has a single umbrella-like thin plate shape.
  • the collision speed of the gas to the side surface of the sealed container is determined by the total passage area of the three outlet pipes 86, and the outlet pipe 86 itself is extended to the vicinity of the side surface of the sealed container.
  • passage guide member 81 provided at the upper part of the blow pipe 86 is also shaped to extend to the side of the closed container on the side of the anti-compression mechanism part rather than the discharge pipe 52 attached to the closed container 50, thereby An effect of preventing re-scattering is obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Rotary Pumps (AREA)

Abstract

 横型スクロール圧縮機の密閉容器50内は、圧縮機機構部及び電動機が収納された空間と、吐出管52及び給油ポンプ70が収納された吐出空間84とが仕切板80により仕切られている。この仕切板の上部には冷媒ガスが通過する上部連通路85と通路案内部材81が設けられ、この通路案内部材は吐出管52よりも下部に位置すると共に密閉容器側面近くまで延長され、その通路面積は吐出管の通路面積より大とされている。これにより、密閉容器側面へ冷媒ガスが衝突して油の分離が促進され、またガス流によって油の再飛散が生じても、吐出管へ直接通じる流れを減少できる。

Description

横型スクロール圧縮機
 本発明は冷凍、空調用の冷媒圧縮機、空気やその他のガス圧縮機として使用される横型スクロール圧縮機に関するものである。
 従来の横型スクロール圧縮機としては、特開平5-126072号公報に記載されたものがある。この文献には、密閉容器内を、電動機及び圧縮機機構部を収納する部分と、吐出管を備えると共に軸受へ給油する油溜めを備えた部分とを仕切る分離板を設けた構造が記載されている。
 また、特開2008-14259号公報のものには、電動機及び圧縮機機構部を収納する第一の空間と吐出管を備えた第二の空間とに分離する支持板を設け、第二の空間側の駆動軸の軸端部に給油ポンプが備えられ、この給油ポンプで前記第二空間下部の潤滑油を圧縮機機構部の軸受に給油するようにしたものが記載されている。
特開平5-126072号公報 特開2008-14259号公報
 電動機部及び圧縮機機構部を設けた空間と、吐出管を設けた空間とを仕切る分離板を備え、且つ軸端部に給油ポンプを備えた横型スクロール圧縮機においては、給油ポンプから油を吸い込むための油面高さ確保が必要となる。このため、吐出管から油が冷媒ガスと共に冷凍サイクル中に出て行く、所謂油循環率(油上り)の低減が必要である。従来技術においては、圧縮機構部から吐出された冷媒ガスと油は、電動機を通過した後、分離板上部を通過し、その後吐出管から圧縮機外部へ流れる構造としており、分離板前後での圧力損失により、吐出管が設けられた空間の油面高さが高く保たれるようにしている。しかし、吐出管が設けられている空間では、分離板上部を通過する吐出ガスの流れにより、油溜めの油が再飛散し、冷媒ガスと共に吐出管から油が流出して、冷凍サイクル中の油循環率が増加してしまうという課題があった。
 上記課題を解決するため、本発明は、台板に渦巻き状のラップを直立する旋回スクロールおよび固定スクロールを有する圧縮機機構部とこの圧縮機機構部を回転駆動する電動機部を密閉容器内に収納し、この密閉容器に設けた吐出管から前記圧縮機機構部で圧縮されたガスを吐出する横型スクロール圧縮機において、前記圧縮機機構部及び電動機部が配置された前記密閉容器内の空間と、前記圧縮機機構部を回転駆動する駆動軸を支持するための軸受へ油を供給する給油ポンプ及び前記吐出管が配置された前記密閉容器内の吐出空間とを仕切る仕切板を設け、この仕切板の上部に前記圧縮機構部からの圧縮ガスを通過させる上部連通路を形成すると共にこの上部連通路からの圧縮ガスを前記密閉容器の内側面近くまで案内する通路案内部材を設け、該通路案内部材は前記吐出管よりも下方に配置されていることを特徴とする。
 ここで、前記通路案内部材の圧縮ガス吹出口側端部は前記吐出管よりも密閉容器側面近くまで伸ばして配置するのが良い。また、前記通路案内部材は環状に構成され、その通路面積は前記吐出管の通路面積よりも大きく構成するのが良い。
 前記上部連通路は前記仕切板に複数個形成するようにすることもできる。ここで、前記通路案内部材は前記複数の上部連通路を覆った環状形状に構成すると良い。
 また、前記仕切板に形成した前記上部連通路に軸方向に伸びる吹出しパイプを接続し、この吹出しパイプは前記密閉容器の内側面近くまで延長して設けられ、前記通路案内部材は、前記吹出しパイプと前記吐出管との間に位置して傘形状に構成することもできる。
 ここで、前記上部連通路及び吹出しパイプは複数個設けられ、前記複数個の吹出しパイプの合計の通路面積は前記吐出管の通路面積よりも大きく構成すると良い。
 なお、前記給油ポンプはトロコイド型ポンプで構成するのが好ましい。
 本発明によれば、圧縮機機構部及び電動機部が配置された空間と、給油ポンプ及び吐出管が配置された吐出空間とを仕切る仕切板を設け、この仕切板の上部に前記圧縮機構部からの圧縮ガスを通過させる上部連通路を形成すると共に、この上部連通路からの圧縮ガスを前記密閉容器の内側面近くまで案内する通路案内部材を設け、該通路案内部材は前記吐出管よりも下方に配置する構成としているので、圧縮機内から油が冷凍サイクル内へ出て行く油循環率(油上り)を低減することが可能となり、また圧縮機内の給油ポンプ吸込部における油面高さも高く保つことができるので、信頼性の高い横型スクロール圧縮機が得られる効果がある。
 本発明の他の目的、特徴及び利点は添付図面に関する以下の本発明の実施例の記載から明らかになるであろう。
本発明の実施例1の横型スクロール圧縮機の縦断面図である。 図1に示す横型スクロール圧縮機における密閉容器内の吐出空間84側の構成を詳細に示す縦断面図である。 図2に示す吐出空間84内を圧縮機構部の反対側から見た横断面図である。 は本発明の実施例2の通路案内部材の要部縦断面図。 本発明の実施例2の通路案内部材の横断面図。 本発明の実施例3の通路案内部材の要部縦断面図。 本発明の実施例3の通路案内部材の横断面図。
 本発明は、圧縮機構部及び電動機部を設けた空間と、吐出管を配置した空間とを仕切板で仕切り、該仕切板上部に、上部連通路と、この上部連通路に続く通路案内部材を設け、この通路案内部材を密閉容器の側面近くまで延長した形状とすることで、仕切板上部を通過した冷媒ガス及び油が密閉容器側面に衝突するようにし、それによって冷媒ガスと油を分離するようにしたものである。また、吐出管を配置した空間内において、密閉容器の頂上部に前記吐出管を取付け、この吐出管の下に前記仕切板に設けた前記通路案内部材を設け、該通路案内部材の通路面積を吐出管通路面積より大きくするようにすれば、冷媒ガス流による油溜めの油が再吹上げされるのを抑える効果を大きくできる。
 以下、本発明の横型スクロール圧縮機の具体的実施例について図面に基づき説明する。
 図1は本実施例の横型スクロール圧縮機の断面図である。スクロール圧縮機を構成する密閉容器50内には、圧縮機構部、電動機部、駆動軸(クランク軸)20、給油ポンプ70、油溜り53などが収納されている。また、密閉容器50には、吸入管51及び吐出管52が取付けられている。密閉容器内は、仕切板80により、前記圧縮機機構部及び電動機部の配設された中部空間83と、前記吐出管52などが配設された吐出空間84とに仕切られている。
 前記圧縮機構部は、渦巻状のラップを持つの固定スクロール10及び旋回スクロール11を、互いに噛み合わせて構成されている。旋回スクロール11の反ラップ側にはボスが突設して設けられ、旋回軸受12を介して前記駆動軸20のクランクピン21と摺動する構造となっている。また、前記旋回スクロール11の反ラップ側にはオルダム継手13も配設されている。該オルダム継手13は、旋回スクロール11を固定スクロール10に対し自転することなく旋回運動させる自転防止機構としての継手である。
 上記圧縮機構部は、電動機部のロータ41に連結した前記駆動軸20の回転により、クランクピン21が偏心回転すると、旋回スクロール11がオルダム継手13の自転防止機構により、固定スクロール10に対し自転せずに旋回運動を行い、例えば冷媒ガスを吸入管51及び吸入口14を介して、固定スクロール10と旋回スクロール11のラップで形成される密閉空間に吸入される。上記旋回運動により、密閉空間は中央部へ移動しながら容積を減少することで冷媒ガスを圧縮し、この圧縮ガスを吐出口15から吐出する。吐出された冷媒ガスは、圧縮機構部および電動機部の周囲を通過した後吐出管52から圧縮機外へ排出される。
 駆動軸20は、主軸受31及び副軸受32で支えられ、主軸受31は密閉容器に固定されたフレーム30に装着されている。副軸受32は電動機のステータ40を挟んで圧縮機機構部とは反対側に位置し、密閉容器50に下フレーム60を介して固定されたハウジング61に装着されている。駆動軸20の圧縮機構部側と反対側の軸端部にはポンプ継手22が取付けられ、このポンプ継手22を介して給油ポンプ70は駆動される。給油ポンプ70としてはトロコイド型ポンプが用いられている。給油ポンプ70のポンプケース73には、密閉容器下部に開口して給油通路を構成するための給油管72が取付けられている。
 駆動軸20が回転すると、給油ポンプ70の給油管72を介して吐出空間84下部の油溜り53から潤滑油を吸入し、クランク軸20の中央に形成した油通路23を介して、吸入された油の一部は副軸受32に供給され、残りの油は、旋回軸受12及び主軸受31に供給される。旋回軸受12及び主軸受31に供給された油は、フレーム30に設けた排油通路33から密閉容器50の下部に排出される。
 次に、固定スクロール10の吐出口15から吐出された冷媒ガスの流れについて説明する。スクロールラップ内で圧縮されたガスは、固定スクロール10の吐出口15から軸方向に吐出され、吐出口15側の密閉容器50側面に衝突する。これにより冷媒ガス中に含まれる油の一度目の分離が行われ、この分離された油は密閉容器50の吐出口15側の空間下部に溜り、この空間に溜った油は、固定スクロール10及びフレーム30の下部と密閉容器との間に形成された隙間(図示せず)を介して、電動機下部に形成された空間に流出する。電動機のステータ40下部には隙間が形成されており、更に前記下フレームの下部に設けた連通穴、前記仕切板80に形成した下部連通路82などを介して吐出空間84側に流出できるように構成されている。
 一方、吐出口15から吐出された冷媒ガスは、固定スクロール10及びフレーム30と密閉容器50との上部隙間(図示せず)を介して電動機部が設けられた中部空間83に流入する。中部空間83と前記吐出空間84は、前記仕切板80の上部に形成した上部連通路85及び通路案内部材81を介して連通されている。圧縮された冷媒ガスは、前記通路案内部材81から、吐出空間84の密閉容器側面へ衝突する。この衝突により、二度目の冷媒ガスと油の分離が行われ、その後油が分離された冷媒ガスは、吐出空間84側に配置された吐出管52から圧縮機外へ排出される。
 図2、図3を用いて本実施例の構造を更に詳細に説明する。図2は、密閉容器内の吐出空間84側の構成を詳細に示す縦断面図、図3は図2に示す吐出空間84内を圧縮機構部の反対側から見た横断面図である。
 仕切板80は密閉容器50に固定され、この仕切板80には、圧縮された冷媒ガスを通す上部連通路85と油が通過する下部連通路82が設けられている。また、上部連通路85と連通するように通路案内部材81が仕切板80に取付けられている。仕切板80及び通路案内部材81は薄板プレス板金で構成されている。前記仕切板80と通路案内部材81は別部品として、それぞれプレス板金品として製作し、溶接等により一体部品としても良い。
 給油ポンプ70は吐出空間84に配設されており、吐出空間84の下部の油溜り53に溜まった油を給油管72を介して吸入し、ポンプケース73内の通路74を通過後、クランク軸20の中央に形成した油通路23を介して各軸受へ給油する。
 仕切板上部に設けた通路案内部材81は、密閉容器に取付けた吐出管52の位置よりも、反圧縮機構部側の密閉容器側面近くまで延長して設けられ、仕切板の上部連通路85から吹出される冷媒ガスを密閉容器側面に効率よく衝突させることができるように構成されている。即ち、油が混入している冷媒ガスを密閉容器側面に確実に衝突させることで油の分離を促進させることができる。従来のものでは、仕切板の上部連通路から吐出空間に吹出された冷媒ガスは、直接吐出管52に流れてしまうものが発生し、油分離が十分に行えず、油上りが増加するという問題がある。また、吐出空間84においては、仕切板上部から吹出したガスが吐出空間84内の油溜り53の油をガス流によって再飛散させ、油上りを増加させる要因ともなっていた。これに対し、本実施例では、仕切板上部に設けた通路案内部材81の上側に吐出管52を配置し、且つ通路案内部材81の通路面積を吐出管52の通路面積よりも大きく構成している。これにより、吐出空間内のガス流によって油の再飛散が生じても、通路案内部材81があることにより、吐出管52へ直接通じる流れが減少され、圧縮機外へ油が出て行く油循環率を低減することができる。従って、吐出空間内油溜りの油面高さを高く保つことができ、給油ポンプ70での給油を確実に行うことが可能となる。
 図2では、仕切板上部の通路案内部材81から冷媒ガスが吹出し、密閉容器50の側面に衝突して油分離が行われ、油分離が行われた冷媒ガスが吐出管52へ流れていく様子を矢印の方向で示している。図3では、吐出空間84内における、通路案内部材81から吹出された冷媒ガスの流れを矢印で示している。なお、本実施例では、通路案内部材81は薄板品により環状に形成され、環状とすることで仕切板80の上部連通路85から吹出されたガスを密閉容器50の側面近くまで確実に運ぶことが可能となる。また、通路案内部材81の通路面積により、密閉容器50の側面へ衝突する速度を決めている。
 図4は本発明の実施例2を示す。本実施例は上部連通路85を複数個(3個)設けた例である。通路案内部材81については実施例1と同様に環状形状とし、密閉容器側面近くまで延長され、この通路案内部材81内に前記複数個の上部連通路85を配置するように構成している。このように構成しても、密閉容器側面への冷媒ガスの衝突による油分離が可能であり、油分離効果及び油の再飛散を防止する効果が得られる。
 図5は本発明の実施例3を示す。本実施例は、仕切板80に形成した上部連通路85を穴形状とし、この穴の部分に吹出しパイプ86を取付けた例である。本実施例でも上部連通路85は3個設け、吹出しパイプも3本としている。また、通路案内部材81は3本の吹出しパイプ86を覆うように上側に設けられ、傘状の一枚の薄板形状としている。本実施例においては、3本の吹出しパイプ86の合計通路面積により密閉容器側面へのガスの衝突速度が決められ、吹出しパイプ86自身が密閉容器側面近くまで延長されている。また、吹出しパイプ86の上部に設けた通路案内部材81も、密閉容器50に取付けた吐出管52よりも、反圧縮機構部側の密閉容器側面近くまで延長された形状としており、これによって油の再飛散を防止する効果が得られる。
 なお、上記実施例では冷凍、空調用の冷媒圧縮機に適用した場合について説明したが、本発明は圧縮ガスに油が混入するものであれば、空気やその他のガス圧縮機でも同様に適用できる。
 上記記載は実施例についてなされたが、本発明はそれに限らず、本発明の精神と添付の請求の範囲の範囲内で種々の変更および修正をすることができることは当業者に明らかである。
 10 固定スクロール
 11 旋回スクロール
 12 旋回軸受
 13 オルダム継手
 14 吸入口
 15 吐出口
 20 駆動軸
 21 クランクピン
 22 ポンプ継手
 23 油通路
 30 フレーム
 31 主軸受
 32 副軸受
 33 排油通路
 40 ステータ
 41 ロータ
 50 密閉容器
 51 吸入管
 52 吐出管
 53 油溜り
 60 下フレーム
 61 ハウジング
 70 給油ポンプ
 72 給油管
 73 ポンプケース
 80 仕切板
 81 通路案内部材
 82 下部連通路
 83 中部空間
 84 吐出空間
 85 上部連通路
 86 吹出しパイプ

Claims (15)

  1.  台板に渦巻き状のラップを直立する旋回スクロールおよび固定スクロールを有する圧縮機機構部とこの圧縮機機構部を回転駆動する電動機部を密閉容器内に収納し、この密閉容器に設けた吐出管から前記圧縮機機構部で圧縮されたガスを吐出する横型スクロール圧縮機において、
     前記圧縮機機構部及び電動機部が配置された前記密閉容器内の空間と、前記圧縮機機構部を回転駆動する駆動軸を支持するための軸受へ油を供給する給油ポンプ及び前記吐出管が配置された前記密閉容器内の吐出空間とを仕切る仕切板を設け、
     この仕切板の上部に前記圧縮機構部からの圧縮ガスを通過させる上部連通路を形成すると共にこの上部連通路からの圧縮ガスを前記密閉容器の内側面近くまで案内する通路案内部材を設け、該通路案内部材は前記吐出管よりも下方に配置されていることを特徴とする横型スクロール圧縮機。
  2.  請求項1において、前記通路案内部材の圧縮ガス吹出口側端部は前記吐出管よりも密閉容器側面近くまで伸ばして配置されていることを特徴とする横型スクロール圧縮機。
  3.  請求項1において、前記通路案内部材は環状に構成され、その通路面積は前記吐出管の通路面積よりも大きく構成されていることを特徴とする横型スクロール圧縮機。
  4.  請求項1において、前記上部連通路は前記仕切板に複数個形成されていることを特徴とする横型スクロール圧縮機。
  5.  請求項4において、前記通路案内部材は前記複数の上部連通路を覆った環状形状に構成されていることを特徴とする横型スクロール圧縮機。
  6.  請求項1において、前記仕切板に形成した前記上部連通路に軸方向に伸びる吹出しパイプを接続し、この吹出しパイプは前記密閉容器の内側面近くまで延長して設けられ、前記通路案内部材は、前記吹出しパイプと前記吐出管との間に位置して傘形状に構成されていることを特徴とする横型スクロール圧縮機。
  7.  請求項6において、前記上部連通路及び吹出しパイプは複数個設けられ、前記複数個の吹出しパイプの合計の通路面積は前記吐出管の通路面積よりも大きく構成されていることを特徴とする横型スクロール圧縮機。
  8.  請求項1において、前記給油ポンプはトロコイド型ポンプであることを特徴とする横型スクロール圧縮機。
  9.  気体を圧縮するためのスクロール圧縮機であり、
     固定スクロールと旋回スクロールとを備える圧縮機機構部と、
     旋回スクロールを駆動する電動機部と、
     吸入口と吐出口とを有し、圧縮機機構部と電動機部とを内部に収容する、密封容器であり、圧縮されるべき気体が密封容器を貫通する吸入口から密封容器内に導入され、圧縮された気体が密封容器を貫通する吐出口から密封容器外へ排出される、密封容器と、
     密封容器内部を、圧縮機機構部を収容する第一室と、吐出口に流体連通する第二室に分割して、第一室内の気体圧力より第二室内の気体圧力を低くするよう延び、且つ、第一室から第二室内への気体の流れを可能にする連通路を備える、仕切板と、
     仕切板を通じて第二室から第一室内へ潤滑油を圧送するポンプと、
    を有するスクロール圧縮機にして、
     スクロール圧縮機は更に、仕切板を貫通する連通路から第二室内に流入する気体の流れを案内するよう第二室内を延びる通路案内部材を有し、通路案内部材により案内される気体の流れの方向に直角な方向に見て、吐出口と通路案内部材とは少なくとも部分的に重なり合う、スクロール圧縮機。
  10.  前記気体の流れの方向に直角な方向に見て、吐出口の全部と通路案内部材とが重なり合う、請求項9によるスクロール圧縮機。
  11.  通路案内部材は、通路案内部材により案内される気体の流れの中心軸線と吐出口との間で延びる、請求項9によるスクロール圧縮機。
  12.  第一室内の気体圧力と第二室内の気体圧力との差は、第一室内の潤滑油の垂直方向高さを第二室内の潤滑油の垂直方向高さより低くする、請求項9によるスクロール圧縮機。
  13.  吐出口を通って流れる気体の流れの方向に平行な方向に見て、吐出口と通路案内部材とは少なくとも部分的に重なり合う、請求項9によるスクロール圧縮機。
  14.  吐出口を通って流れる気体の流れの方向に平行な方向に見て、吐出口の全部と通路案内部材とが重なり合う、請求項13によるスクロール圧縮機。
  15.  通路案内部材は、管状であり、気体は通路案内部材を貫通して流れて通路案内部材により案内される、請求項9によるスクロール圧縮機。
PCT/JP2009/061829 2008-07-25 2009-06-29 横型スクロール圧縮機 WO2010010790A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN200980127440.0A CN102089526B (zh) 2008-07-25 2009-06-29 卧式涡旋压缩机
US13/055,152 US8888476B2 (en) 2008-07-25 2009-06-29 Horizontal scroll compressor
EP09800305.6A EP2309132B1 (en) 2008-07-25 2009-06-29 Horizontal scroll compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008191579A JP5285988B2 (ja) 2008-07-25 2008-07-25 横型スクロール圧縮機
JP2008-191579 2008-07-25

Publications (1)

Publication Number Publication Date
WO2010010790A1 true WO2010010790A1 (ja) 2010-01-28

Family

ID=41570256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/061829 WO2010010790A1 (ja) 2008-07-25 2009-06-29 横型スクロール圧縮機

Country Status (5)

Country Link
US (1) US8888476B2 (ja)
EP (1) EP2309132B1 (ja)
JP (1) JP5285988B2 (ja)
CN (1) CN102089526B (ja)
WO (1) WO2010010790A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102168673A (zh) * 2010-12-15 2011-08-31 湖南华强电气有限公司 一种卧式涡旋压缩机主轴后端的密封方法和密封结构
US10221851B2 (en) 2014-02-06 2019-03-05 Ntn Corporation Transverse internal gear pump

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101441928B1 (ko) * 2012-03-07 2014-09-22 엘지전자 주식회사 횡형 스크롤 압축기
CN103147984A (zh) * 2013-02-06 2013-06-12 广州万宝集团有限公司 一种卧式涡旋压缩机
CN104912774B (zh) * 2014-03-11 2017-06-06 珠海格力电器股份有限公司 压缩机
US9677551B2 (en) * 2015-08-21 2017-06-13 Ingersoll-Rand Company Compressor and oil drain system
CN205578273U (zh) * 2016-05-03 2016-09-14 艾默生环境优化技术(苏州)有限公司 泵油机构及具有该泵油机构的卧式压缩机
WO2020011159A1 (zh) * 2018-07-12 2020-01-16 艾默生环境优化技术(苏州)有限公司 流体泵送装置和卧式压缩机
CN109372752B (zh) * 2018-11-30 2024-09-20 湖南汤普悦斯压缩机科技有限公司 一种卧式涡旋压缩机的排气装置及压缩机
CN109386463B (zh) * 2018-12-06 2024-06-28 珠海格力节能环保制冷技术研究中心有限公司 压缩机
EP4010597A4 (en) 2019-08-07 2024-02-28 Sumitomo (Shi) Cryogenics of America, Inc. UNMODIFIED SPIRAL COMPRESSOR HELIUM COMPRESSOR SYSTEM
DE102022120679A1 (de) * 2022-08-16 2024-02-22 Bitzer Kühlmaschinenbau Gmbh Scrollmaschine und Kälteanlage

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05126072A (ja) 1991-10-30 1993-05-21 Hitachi Ltd スクロール圧縮機およびそれを用いた空気調和機
JPH08312560A (ja) * 1995-05-17 1996-11-26 Matsushita Electric Ind Co Ltd 電動圧縮機
JP3272311B2 (ja) * 1998-10-29 2002-04-08 株式会社日立製作所 スクロール圧縮機およびそれを用いた空気調和機
JP2008014259A (ja) 2006-07-07 2008-01-24 Hitachi Appliances Inc 横型スクロール圧縮機

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5137437A (en) * 1990-01-08 1992-08-11 Hitachi, Ltd. Scroll compressor with improved bearing
JPH0674802B2 (ja) 1991-01-18 1994-09-21 日本ノーション工業株式会社 合成樹脂製のなす環
JPH05133375A (ja) * 1991-11-14 1993-05-28 Matsushita Electric Ind Co Ltd 電動圧縮機
JP2924557B2 (ja) * 1992-06-16 1999-07-26 ダイキン工業株式会社 密閉横形スクロール流体機械
US5580233A (en) * 1994-09-16 1996-12-03 Hitachi, Ltd. Compressor with self-aligning rotational bearing
JP3874469B2 (ja) * 1996-10-04 2007-01-31 株式会社日立製作所 スクロール圧縮機
JPH1162859A (ja) * 1997-08-07 1999-03-05 Zexel Corp 横置き型スクロールコンプレッサ
DE69825535T2 (de) * 1997-09-17 2005-09-15 Sanyo Electric Co., Ltd., Moriguchi Spiralverdichter
JP4075979B2 (ja) * 2001-12-03 2008-04-16 株式会社日立製作所 スクロール流体機械

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05126072A (ja) 1991-10-30 1993-05-21 Hitachi Ltd スクロール圧縮機およびそれを用いた空気調和機
JPH08312560A (ja) * 1995-05-17 1996-11-26 Matsushita Electric Ind Co Ltd 電動圧縮機
JP3272311B2 (ja) * 1998-10-29 2002-04-08 株式会社日立製作所 スクロール圧縮機およびそれを用いた空気調和機
JP2008014259A (ja) 2006-07-07 2008-01-24 Hitachi Appliances Inc 横型スクロール圧縮機

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102168673A (zh) * 2010-12-15 2011-08-31 湖南华强电气有限公司 一种卧式涡旋压缩机主轴后端的密封方法和密封结构
US10221851B2 (en) 2014-02-06 2019-03-05 Ntn Corporation Transverse internal gear pump

Also Published As

Publication number Publication date
CN102089526A (zh) 2011-06-08
JP2010031655A (ja) 2010-02-12
JP5285988B2 (ja) 2013-09-11
EP2309132A1 (en) 2011-04-13
US20110129378A1 (en) 2011-06-02
US8888476B2 (en) 2014-11-18
EP2309132B1 (en) 2018-08-01
EP2309132A4 (en) 2015-10-28
CN102089526B (zh) 2014-03-05

Similar Documents

Publication Publication Date Title
JP5285988B2 (ja) 横型スクロール圧縮機
US9284955B2 (en) Compressor
US9109598B2 (en) Compressor with oil separating mechanism
CN111148575B (zh) 油分离器
WO2009096206A1 (ja) スクロール圧縮機
JP6074620B2 (ja) 圧縮機
JP2013092115A (ja) 圧縮機
JP5626253B2 (ja) 圧縮機
JPH11294350A (ja) 密閉型スクロール圧縮機
JP6021075B2 (ja) 圧縮機
JP2009127440A (ja) スクロール圧縮機
JP4965379B2 (ja) スクロール型流体機械
JP4315339B2 (ja) スクロール流体機械
EP3985256B1 (en) Scroll compressor
JP7113353B2 (ja) 圧縮機
JP2013185531A (ja) 圧縮機
JP4638313B2 (ja) 密閉型回転式圧縮機
JP6108276B2 (ja) 圧縮機
US20230121207A1 (en) Hermetic electric compressor
JP2012246768A (ja) 圧縮機
WO2012127547A1 (ja) 圧縮機
JP2010084707A (ja) 圧縮機
JP5690638B2 (ja) 横型スクロール圧縮機
JP6023971B2 (ja) 圧縮機
JP6108275B2 (ja) 圧縮機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980127440.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09800305

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009800305

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13055152

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE