WO2010007786A1 - スクロール圧縮機 - Google Patents

スクロール圧縮機 Download PDF

Info

Publication number
WO2010007786A1
WO2010007786A1 PCT/JP2009/003349 JP2009003349W WO2010007786A1 WO 2010007786 A1 WO2010007786 A1 WO 2010007786A1 JP 2009003349 W JP2009003349 W JP 2009003349W WO 2010007786 A1 WO2010007786 A1 WO 2010007786A1
Authority
WO
WIPO (PCT)
Prior art keywords
space
scroll
pressure
movable scroll
compression chamber
Prior art date
Application number
PCT/JP2009/003349
Other languages
English (en)
French (fr)
Inventor
西出洋平
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN200980126029.1A priority Critical patent/CN102084134B/zh
Priority to ES09797714T priority patent/ES2727628T3/es
Priority to KR1020117003169A priority patent/KR101294507B1/ko
Priority to US13/054,029 priority patent/US8979516B2/en
Priority to EP09797714.4A priority patent/EP2312164B1/en
Priority to AU2009272155A priority patent/AU2009272155B2/en
Publication of WO2010007786A1 publication Critical patent/WO2010007786A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0246Details concerning the involute wraps or their base, e.g. geometry
    • F04C18/0253Details concerning the base
    • F04C18/0261Details of the ports, e.g. location, number, geometry
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C27/00Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids
    • F04C27/005Axial sealings for working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0021Systems for the equilibration of forces acting on the pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet

Definitions

  • the present invention relates to a scroll compressor having a fixed scroll and a movable scroll.
  • a scroll compressor is provided with a movable scroll that is prevented from moving away from the fixed scroll by the refrigerant gas pressure during refrigerant gas compression by applying a pressing force to the movable scroll toward the fixed scroll.
  • Patent Document 1 a communication passage that connects the compression chamber and the back pressure space is provided in the end plate of the movable scroll, and refrigerant gas that is being compressed is placed in the back pressure space on the back side of the movable scroll.
  • a scroll compressor is disclosed. This scroll compressor applies back pressure to the movable scroll and presses the movable scroll against the fixed scroll.
  • JP-A-8-121366 JP 61-98987 A Japanese Patent Laid-Open No. 3-11687
  • the present invention has been made in view of such a point, and an object thereof is to stabilize the pressing force of the movable scroll.
  • an auxiliary space is formed in the casing, the auxiliary space communicates with the back pressure space, and pressure fluctuations in the back pressure space are absorbed by the auxiliary space.
  • the first invention includes a casing (10), a fixed scroll (4) and a movable scroll (5) housed in the casing (10) and the fixed scroll (4) and the movable scroll (
  • the present invention is intended for a scroll compressor including a compression mechanism (14) in which a compression chamber (50) is formed between 5).
  • the 1st invention is provided in the back side of the above-mentioned movable scroll (5), and forms the back pressure space (24) between this movable scroll (5), and the above-mentioned casing (10) ) And a partition member (3) forming an auxiliary space (16) communicating with the back pressure space (24), and the back pressure space (24) and the auxiliary space (16) and the above-mentioned during compression A flow mechanism (1A) that allows fluid to flow between the compression chamber (50).
  • the back pressure space (24) formed on the back side of the movable scroll (5) communicates with the auxiliary space (16) formed in the casing (10).
  • the pressure is approximately equal to (16).
  • the auxiliary space (16) is formed by the partition member (3) and the casing (10) and has a relatively large capacity, the back pressure space (24) and the auxiliary space (16) Even if the pressure of the fluid during compression introduced from the compression chamber (50) fluctuates, the fluctuation is absorbed in the auxiliary space (16). As a result, the fluctuation of the pressure (back pressure) in the back pressure space (24) is suppressed.
  • the housing (3) is provided so as to partition the inside of the casing (10), and the housing (3) constitutes the partition member.
  • the housing (3) also functions as the partition member (3). That is, the housing (3) partitions the inside of the casing (10) to form an auxiliary space (16) with the casing (10), and also partitions the back pressure space (24) with the movable scroll (5). Form. In this way, parts can be shared.
  • the third invention includes a motor (6) connected to the compression mechanism (14) via a drive shaft (7) in the second invention.
  • the housing (3) partitions the casing (10) into a storage space for the compression mechanism (14) and a storage space for the motor (6), while the storage space for the compression mechanism (14)
  • the auxiliary space (16) is configured.
  • the casing (10) includes a space on the side of the compression mechanism (14) in which the movable scroll (5) and the fixed scroll (4) are disposed, and a motor in which the motor (6) is disposed ( 6) It is partitioned from the side space.
  • the space on the compression mechanism (14) side is an auxiliary space (16).
  • the flow mechanism (1A) is formed from the fixed scroll (4) to the movable scroll (5), and the compression chamber (50) and the back pressure space ( 24) and a communication passage (80) that connects the two.
  • fluid in the middle of compression is introduced from the compression chamber (50) into the back pressure space (24) through a communication path (80) formed in the movable scroll (5).
  • the flow mechanism (1A) is formed from the movable scroll (5) to the fixed scroll (4), and includes the compression chamber (50) and the auxiliary space (16 )) And a communication path (80).
  • fluid in the middle of compression is introduced from the compression chamber (50) into the auxiliary space (16) through the communication path (80) formed in the fixed scroll (4).
  • the flow mechanism (1A) is formed from the movable scroll (5) to the fixed scroll (4), and the compression chamber (50) and the back pressure space ( 24) and a communication passage (80) that connects the two.
  • fluid in the middle of compression is introduced from the compression chamber (50) into the back pressure space (24) through a communication path (80) formed in the movable scroll (5).
  • the flow mechanism (1A) is formed in the fixed scroll (4), and communicates with the communication path (48) connecting the compression chamber (50) and the auxiliary space (16). ).
  • fluid in the middle of compression is introduced from the compression chamber (50) into the auxiliary space (16) through the communication path (48) formed in the fixed scroll (4).
  • the flow mechanism (1A) is formed in the movable scroll (5) and communicates with the compression chamber (50) and the back pressure space (24) ( 56).
  • fluid in the middle of compression is introduced from the compression chamber (50) into the back pressure space (24) through a communication path (56) formed in the movable scroll (5).
  • the communication path (80) is configured to communicate intermittently as the movable scroll (5) turns. It is.
  • the communication passage (48, 56) is provided with a check valve (49) for preventing a back flow of fluid to the compression chamber (50). It is configured.
  • An eleventh aspect of the present invention is the high pressure chamber according to any one of the third to tenth aspects of the present invention, wherein the fluid compressed in the compression chamber (50) is discharged to the back side of the fixed scroll (4). 45) is formed by partitioning from the auxiliary space (16). Furthermore, a flow passage (46, 39) connecting the high pressure chamber (45) and the storage space of the motor (6) is formed from the fixed scroll (4) to the housing (3), and the casing (10) Is provided with a discharge pipe (19) communicating with the storage space of the motor (6).
  • the fluid compressed in the compression chamber (50) is formed in the high pressure chamber (45) and the first flow passage (46) formed in the fixed scroll (4), and in the housing (3). It flows out through the second flow path (39) to the storage space on the side where the motor (6) is disposed in the casing (10). Thereafter, the fluid is discharged to the outside of the casing (10) through the discharge pipe (19). That is, the fluid discharged from the compression chamber (50) does not flow out into the storage space on the side where the fixed scroll (4) and the movable scroll (5) are disposed in the casing (10).
  • the back pressure acting on the back of the fixed scroll (4) increases toward the center.
  • the pressure is lower on the outer peripheral side where the fluid starts to be compressed, and the pressure is higher on the inner peripheral side where the compression of the fluid is completed. That is, by forming the high-pressure chamber (45) at the center of the back side of the fixed scroll (4), the pressure acting on the back side of the fixed scroll (4) and the pressure acting on the compression chamber (50) side are reduced. The balance can be balanced and deformation of the fixed scroll (4) can be suppressed.
  • the drive shaft (7) passes through the space between the movable scroll (5) and the housing (3).
  • the central space (23) is configured as a fluid discharge pressure atmosphere. It is a thing.
  • a thirteenth invention is the suction pipe according to any one of the third to twelfth inventions, which passes through the casing (10) and communicates with the compression chamber (50) through the auxiliary space (16). (18) is provided.
  • the auxiliary space (16) defined by the partition member (3) and the casing (10) communicates with the back pressure space (24) on the back side of the movable scroll (5), Since the fluid under compression is introduced into the auxiliary space (16) and the back pressure space (24), even if the pressure of the fluid fluctuates, the fluctuation can be absorbed by the auxiliary space (16). As a result, the movable scroll (5) can be pressed against the fixed scroll (4) with a stable pressing force.
  • the number of parts can be reduced by making the housing (3) also serve as the partition member (3).
  • fluid that is being compressed is introduced into the back pressure space (24) with a simple configuration in which the communication path (80) is formed in the fixed scroll (4) and the movable scroll (5). be able to.
  • fluid that is being compressed is introduced into the auxiliary space (16) with a simple configuration in which the communication path (80) is formed in the movable scroll (5) and the fixed scroll (4). Can do.
  • fluid that is being compressed is introduced into the back pressure space (24) with a simple configuration in which the communication path (80) is formed in the movable scroll (5) and the fixed scroll (4). be able to.
  • fluid in the middle of compression can be introduced into the auxiliary space (16) with a simple configuration in which the communication path (48) is formed in the fixed scroll (4).
  • fluid in the middle of compression can be introduced into the back pressure space (24) with a simple configuration in which the communication path (56) is formed in the movable scroll (5).
  • the communication path (80) communicates intermittently with the turning of the movable scroll (5), so that the influence of pressure fluctuations in the compression chamber (50) can be suppressed, Variations in back pressure can be suppressed.
  • the check valve (49) by providing the check valve (49), it is possible to prevent the backflow of fluid from the auxiliary space (16) or the back pressure space (24) to the compression chamber (50).
  • the fluid compressed in the compression chamber (50) is formed in the high pressure chamber (45) and the first flow passage (46) formed in the fixed scroll (4), and in the housing (3).
  • the casing (10) is once allowed to flow into the storage space on the side where the motor (6) is disposed, and from there through the discharge pipe (19) to the casing (10) It can be discharged outside.
  • the high pressure chamber (45) at the center of the back side of the fixed scroll (4), the pressure acting on the back side of the fixed scroll (4) and the pressure acting on the compression chamber (50) side. And the deformation of the fixed scroll (4) can be suppressed.
  • the movable scroll (5) by forming the high pressure central space (23) and the back pressure space (24) of the pressure of the fluid during compression between the movable scroll (5) and the housing (3).
  • the movable scroll (5) can be pressed against the fixed scroll (4) by high pressure and back pressure.
  • the operating range in which an appropriate pressing force can be applied to the movable scroll (5) can be expanded as compared with a configuration in which only the high pressure is applied to the movable scroll (5) and pressed against the fixed scroll (4). .
  • the suction pipe (18) is provided so as to extend through the casing (10) and through the auxiliary space (16) to the compression chamber (50). ) Can be prevented from being heated by the high-pressure fluid after compression, and as a result, a decrease in volumetric efficiency can be prevented.
  • FIG. 1 is a longitudinal sectional view of a scroll compressor according to Embodiment 1 of the present invention.
  • FIG. 2 is a partially enlarged view of FIG. 3 is a view showing the housing
  • FIG. 3 (a) is a plan view
  • FIG. 3 (b) is a cross-sectional view taken along the line bb of FIG. 3 (a).
  • FIG. 4 is a conceptual diagram showing an operation region of a scroll compressor that applies a pressing force to the movable scroll only by a high pressure as a comparative example.
  • FIG. 5 is a conceptual diagram showing an operation region of a scroll compressor that applies a pressing force to the movable scroll by a high pressure and an intermediate pressure.
  • FIG. 4 is a conceptual diagram showing an operation region of a scroll compressor that applies a pressing force to the movable scroll by a high pressure and an intermediate pressure.
  • FIG. 6 is a longitudinal sectional view showing a part of the scroll compressor according to the second embodiment of the present invention.
  • FIG. 7 is a longitudinal sectional view showing a part of a scroll compressor according to Embodiment 3 of the present invention.
  • FIG. 8 is a schematic plan view showing a distribution mechanism according to the third embodiment of the present invention.
  • FIG. 9 is a longitudinal sectional view showing a part of a scroll compressor according to Embodiment 4 of the present invention.
  • FIG. 10 is a longitudinal sectional view showing a part of a scroll compressor according to Embodiment 5 of the present invention.
  • the scroll compressor (1) As shown in FIGS. 1 and 2, the scroll compressor (1) according to the present embodiment is connected to a refrigerant circuit (not shown) that circulates refrigerant and performs a refrigeration cycle, and compresses refrigerant that is fluid. It is.
  • the compressor (1) includes a compression mechanism (14) including a housing (3), a fixed scroll (4) and a movable scroll (5), and a vertically long cylindrical hermetic dome type housing the compression mechanism (14). And a casing (10).
  • the casing (10) is airtightly welded and integrally joined to a casing body (11), which is a cylindrical body having an axis extending in the vertical direction, and an upper end portion of the casing body (11).
  • 13) is a pressure vessel and its inside is hollow.
  • the casing (10) contains a compression mechanism (14) for compressing the refrigerant and a motor (6) disposed below the compression mechanism (14).
  • the compression mechanism (14) and the motor (6) are connected by a drive shaft (7) arranged so as to extend in the vertical direction in the casing (10).
  • An oil reservoir (15) in which lubricating oil is stored is formed at the bottom of the casing (10).
  • the suction pipe (18) for guiding the refrigerant in the refrigerant circuit to the compression mechanism (14) is airtightly fixed to the upper wall (12) of the casing (10). Further, a discharge pipe (19) that discharges the refrigerant in the casing (10) to the outside of the casing (10) is fixed to the casing body (11) in an airtight manner.
  • the drive shaft (7) includes a main shaft portion (71), an eccentric portion (72) connected to an upper end of the main shaft portion (71) and eccentric with respect to the main shaft portion (71), and the main shaft portion (71). And a counterweight part (73) for dynamic balance with a movable scroll (5), an eccentric part (72) and the like which will be described later.
  • An oil supply path (74) extending from the upper end to the lower end is formed in the drive shaft (7).
  • the lower end of the drive shaft (7) is immersed in the oil reservoir (15).
  • the drive motor (6) is composed of a stator (61) and a rotor (62).
  • the stator (61) is fixed in the casing (10), specifically, in the casing body (11) by shrink fitting or the like.
  • the rotor (62) is disposed inside the stator (61), and is provided coaxially with the main shaft portion (71) of the drive shaft (7) and non-rotatable.
  • the compression mechanism (14) is provided in a housing (3) attached to the casing main body (11), and the fixed scroll (4) disposed on the upper surface of the housing (3), the fixed scroll (4), A movable scroll (5) is disposed between the housing (3) and meshed with the fixed scroll (4).
  • the housing (3) has an annular portion (31) on the outer peripheral side and a concave portion (32) on the inner peripheral side, as shown in FIG.
  • the housing (3) is press-fitted and fixed to the upper edge of the casing body (11) as shown in FIGS. Specifically, the inner peripheral surface of the casing body (11) and the outer peripheral surface of the annular portion (31) of the housing (3) are in close contact with each other over the entire circumference.
  • the housing (3) includes an upper space (16) that is a storage space in which the compression mechanism (14) is stored and a lower space (17) that is a storage space in which the motor (6) is stored. It is divided into and.
  • the housing (3) is formed with a through hole (33) penetrating from the bottom to the lower end of the recess (32).
  • An upper bearing (20) is provided in the through hole (33). The upper bearing (20) rotatably supports the upper end portion of the drive shaft (7).
  • a lower bearing (21) is provided at a lower portion in the casing (10), and a lower end portion of the drive shaft (7) is rotatably supported by the lower bearing (21).
  • the fixed scroll (4) includes an end plate (41), a spiral (involute) wrap (42) formed on the front surface (the lower surface in FIGS. 1 and 2) of the end plate (41), and the wrap ( 42) and an outer peripheral wall portion (43) formed continuously with the wrap (42).
  • the front end surface of the wrap (42) and the front end surface of the outer peripheral wall portion (43) are substantially flush with each other.
  • the fixed scroll (4) is attached to the housing (3).
  • the movable scroll (5) includes an end plate (51), a spiral (involute) wrap (52) formed on the front surface (the upper surface in FIGS. 1 and 2) of the end plate (51), and an end plate And a bottomed cylindrical boss portion (53) formed at the center of the lower surface of (51).
  • the movable scroll (5) is arranged so that the wrap (52) meshes with the wrap (42) of the fixed scroll (4).
  • a compression chamber (50) is formed between contact portions of both the wraps (42, 52) of the fixed scroll (4) and the movable scroll (5).
  • a suction port (not shown) is formed in the outer peripheral wall portion (43) of the fixed scroll (4) to communicate the inner and outer sides of the outer peripheral wall portion (43), and the downstream end of the suction pipe (18) is connected to the suction port. Is connected.
  • the suction pipe (18) passes through the upper wall (12) of the casing (10), passes through the upper space (16), and is connected to the suction port of the fixed scroll (4).
  • a discharge port (44) is formed through the center of the end plate (41) of the fixed scroll (4).
  • a high-pressure chamber (45) is formed at the center of the rear surface (the surface opposite to the surface on which the wrap (42) is provided, ie, the upper surface) of the end plate (41).
  • a discharge port (44) is opened in the high-pressure chamber (45).
  • the first scroll passage (46) communicating with the high pressure chamber (45) is formed in the fixed scroll (4).
  • the first flow path (46) extends radially outward from the high-pressure chamber (45) on the back surface of the end plate (41), and extends in the outer peripheral wall portion (43) at the outer periphery of the end plate (41). It opens to the front end surface (lower surface) of the outer peripheral wall (43).
  • a cover member (47) that closes the high-pressure chamber (45) and the first flow passage (46) is attached to the rear surface of the end plate (41).
  • the cover member (47) hermetically isolates the high pressure chamber (45) and the first flow passage (46) from the upper space (16) of the casing (10), and the high pressure chamber (45) and the first flow passage (46). ) Is not leaked into the upper space (16).
  • the discharged refrigerant gas flows out from the first flow passage (46) to the lower space (17) of the casing (10) through the second flow passage (39) of the housing (3) described later.
  • the end plate (41) is provided with a circulation mechanism (1A) that guides the refrigerant from the compression chamber (50) to the upper space (16) of the casing (10).
  • the circulation mechanism (1A) is configured to allow refrigerant to flow between the back pressure space (24) and the upper space (16) and the compression chamber (50) in the middle of compression, and the compression chamber (50)
  • a communication passage (48) connecting the upper space (16) is provided.
  • the compression chamber (50) gradually contracts until it opens to the discharge port (44) after being closed.
  • the end of the communication passage (48) on the compression chamber (50) side is provided so as to open to the compression chamber (50) in an intermediate pressure state having a predetermined volume.
  • a reed valve (49) is provided on the back surface of the end plate (41) of the fixed scroll (4) as a check valve that closes the opening on the upper space (16) side of the communication passage (48). That is, when the compression chamber (50) has a predetermined volume and the pressure in the compression chamber (50) is equal to or higher than a predetermined intermediate pressure, the reed valve (49) is opened and the compression chamber (50) And upper space (16).
  • the intermediate pressure is a predetermined pressure between the pressure immediately after the compression chamber (50) is closed and the pressure immediately before the compression chamber (50) opens to the discharge port (44).
  • the upper space (16) has an intermediate pressure due to the refrigerant gas being compressed.
  • This upper space (16) constitutes an auxiliary space which is a buffer space.
  • the annular part (31) of the housing (3) is provided with four attachment parts (34, 34,%) To which the fixed scroll (4) is attached as shown in FIG. These mounting portions (34, 34,%) Are provided with screw holes, and the fixed scroll (4) is screwed.
  • a second flow passage (39) is formed so as to penetrate the annular portion (31).
  • the second flow passage (39) is formed at a position communicating with the first flow passage (46) of the fixed scroll (4) when the fixed scroll (4) is attached to the housing (3). That is, the refrigerant gas discharged from the compression chamber (50) flows from the first flow path (46) into the second flow path (39) and flows out to the lower space (17) of the casing (10).
  • the first flow passage (46) and the second flow passage (39) constitute one flow passage.
  • an inner peripheral wall portion (35) formed in an annular shape so as to surround the central recess (32) is formed on the inner peripheral side of the annular portion (31).
  • the inner peripheral wall portion (35) is formed lower than the mounting portion (34, 34,%) And higher than the other portions of the annular portion (31).
  • a seal groove (36) is formed in an annular shape along the inner peripheral wall portion (35) on the tip surface of the inner peripheral wall portion (35).
  • an annular seal ring (37) is fitted in the seal groove (36).
  • the seal ring (37) is configured so that the fixed scroll (4) and the movable scroll (5) mesh with each other and the fixed scroll (4) is attached to the housing (3). It is comprised so that it may contact
  • the seal ring (37) is divided into the back pressure space (22) on the back side of the movable scroll (5), which is defined by the housing (3) and the movable scroll (5), from the seal ring (37). Is also divided into a first back pressure space (23) on the inner peripheral side and a second back pressure space (24) on the outer peripheral side of the seal ring (37).
  • the first back pressure space (23) constitutes a central space, and the eccentric portion (72) of the drive shaft (7) and the boss portion (53) of the movable scroll (5) are located. And the eccentric part (72) is rotatably inserted in the boss
  • An oil supply passage (74) opens at the upper end of the eccentric portion (72). That is, high pressure oil is supplied from the oil supply passage (74) into the boss portion (53), and the sliding surfaces of the boss portion (53) and the eccentric portion (72) are lubricated by the oil.
  • the first back pressure space (23) communicates with the lower space (17) of the casing (10) through a gap between the upper bearing (20) and the drive shaft (7).
  • the second back pressure space (24) communicates with the upper space (16) of the casing (10) through a gap between the housing (3) and the fixed scroll (4).
  • the mounting portions (34, 34,%) Of the housing (3) to which the fixed scroll (4) is mounted project upward in the annular portion (31) as shown in FIG.
  • a gap is formed between the fixed scroll (4) and the annular portion (31) of the housing (3).
  • the second back pressure space (24) and the upper space (16) of the casing (10) communicate with each other through this gap.
  • a keyway (54) formed on the back surface of the end plate (51) of the movable scroll (5) and an annular portion (31) of the housing (3) are formed.
  • An Oldham coupling (55) is provided to engage the keyway (38, 38) and prevent the movable scroll (5) from rotating.
  • the high-pressure refrigerant gas discharged into the high-pressure chamber (45) flows through the first flow passage (46) of the fixed scroll (4), then flows into the second flow passage (39) of the housing (3), and the casing. It flows out into the lower space (17) of (10). Then, the refrigerant gas flowing out into the lower space (17) is discharged to the outside of the casing (10) through the discharge pipe (19).
  • the lower space (17) of the casing (10) has the same pressure as the high-pressure refrigerant gas to be discharged, that is, the discharge pressure, and is stored in the oil reservoir (15) below the lower space (17).
  • the discharge pressure also acts on the oil.
  • high-pressure oil flows from the downstream end of the oil supply passage (74) of the drive shaft (7) toward the upstream end, and from the upper end opening of the eccentric portion (72) of the drive shaft (7), the movable scroll (5) It flows out into the boss part (53).
  • the oil supplied to the boss part (53) lubricates the sliding surface between the boss part (53) and the eccentric part (72) of the drive shaft (7) and flows out into the first back pressure space (23).
  • the first back pressure space (23) is filled with high pressure oil.
  • the first back pressure space (23) has a pressure equivalent to the discharge pressure.
  • the communicating path (48) is formed in the end plate (41) of the fixed scroll (4), the refrigerant gas being compressed by the compression mechanism (14) passes through the communicating path (48) through the casing (10). ) To the upper space (16). Since this upper space (16) communicates with the second back pressure space (24) on the back side of the movable scroll (5), the second back pressure space (24) also has the pressure of the refrigerant gas being compressed. The pressure is equivalent (intermediate pressure).
  • the high pressure of the first back pressure space (23) and the intermediate pressure of the second back pressure space (24) act on the back surface of the end plate (51) of the movable scroll (5), and the movable scroll (5) is movable by these back pressures.
  • An axial pressing force is applied to press the scroll (5) toward the fixed scroll (4).
  • This pressing force resists the separation force that acts on the movable scroll (5) when the refrigerant gas is compressed, that is, the movable scroll against the force that pulls the movable scroll (5) away from the fixed scroll (4).
  • (5) is pressed against the fixed scroll (4).
  • the movable scroll (5) is prevented from tilting (overturning) due to the separation force.
  • the ratio of the area where the high pressure acts to the area where the intermediate pressure acts on the back surface of the movable scroll (5), the compression chamber (50) side of the communication path (48) formed in the fixed scroll (4) An appropriate pressing force is applied to the movable scroll (5) by appropriately adjusting the opening position of the valve and the opening pressure of the reed valve (49) provided on the fixed scroll (4).
  • the intermediate pressure is applied to the back surface of the movable scroll (5)
  • the refrigerant gas in the middle of compression flows out into the upper space (16)
  • the refrigerant gas is introduced into the second back pressure space (24) through the upper space (16).
  • the pressing force applied to the movable scroll (5) can be stabilized.
  • refrigerant gas being compressed from the compression chamber (50) is introduced into the upper space (16) through the communication passage (48), but the communication passage (48) is directed toward the compression chamber (50). In the middle of compressing the refrigerant gas while moving, it opens to the compression chamber (50). In other words, the refrigerant gas is compressed from the time when the communication passage (48) opens to the compression chamber (50) until it stops opening to the compression chamber (50), so it is introduced into the upper space (16).
  • the pressure of the refrigerant gas that is being compressed fluctuates.
  • the compression chamber (50 ) Of the intermediate pressure acts on the back of the movable scroll (5) as it is.
  • the pressing force applied to the movable scroll (5) by the back pressure also varies according to the variation of the intermediate pressure.
  • the fluctuation of the intermediate pressure in the compression chamber (50) is absorbed in the large-capacity upper space (16) at least partially partitioned by the casing (10), and then the second back pressure. Since it is transmitted to the space (24), the intermediate pressure with the fluctuations acts on the back of the movable scroll (5). As a result, the pressing force applied to the movable scroll (5) by the back pressure can be stabilized. That is, the upper space (16) functions as an auxiliary space for buffering pressure fluctuations of the refrigerant gas during compression.
  • an appropriate pressing force can be applied to the movable scroll (5) by applying a high pressure and an intermediate pressure to the back surface of the movable scroll (5), and the scroll compressor (1 ) Can be expanded in the driving range.
  • the casing (10) is partitioned into an upper space (16) and a lower space (17) by a housing (3) that forms a back pressure space (22) on the back side of the movable scroll (5). Therefore, it is not necessary to partition the casing (10) with another member, and the number of parts can be reduced.
  • the upper space (16) where the compression mechanism (14) is located is set as an auxiliary space, a communication path (48) is formed in the end plate (41) of the fixed scroll (4).
  • the compression chamber (50) and the upper space (16) can be communicated to introduce an intermediate pressure into the upper space (16).
  • the sealing structure between the fixed scroll (4) and the housing (3) is not required, the diameter of the fixed scroll (4) can be reduced, and consequently the compression mechanism (14) can be reduced.
  • the upper space (16) is a high pressure space and the second back pressure space (24) is an intermediate pressure space
  • a sealing structure is provided between the fixed scroll (4) and the housing (3). It is necessary to keep the upper space (16) and the second back pressure space (24) airtight. In that case, a space for arranging a seal ring or the like is required on the mounting surface of the fixed scroll (4), and the fixed scroll (4) becomes particularly large in the radial direction.
  • the upper wall (16) is basically lower in pressure than the upper space (16) as compared to the high pressure space. ) Can be made thinner.
  • first flow passage (46) is formed in the fixed scroll (4)
  • second flow passage (39) communicating with the first flow passage (46) is formed in the housing (3).
  • the refrigerant gas can be guided to the lower space (17) without flowing out into the upper space (16) located on the back side of the fixed scroll (4).
  • a high pressure chamber (45) in the center of the back surface of the end plate (41) of the fixed scroll (4), other parts (intermediate pressure is applied) in the center of the back surface of the end plate (41) Greater pressure is applied.
  • the pressure in the compression chamber (50) is lower at the outer peripheral side where the intake port is provided, and is higher at the center where the discharge port (44) is provided.
  • a high pressure chamber (45) is formed on the back side at the center of the end plate (41) that receives a large pressure from the refrigerant gas during compression, and a large back pressure is applied. Can withstand high pressures of.
  • the intermediate pressure acts on the outer peripheral side of the end plate (41), but the pressure of the refrigerant gas at the time of compression is not large, so that the refrigerant gas in the compression chamber (50) also on the outer peripheral side of the end plate (41).
  • the suction pipe (18) that passes through the casing (10) and communicates with the compression mechanism (14) is disposed so as to pass through the upper space (16) that is an intermediate pressure space. It is possible to prevent the refrigerant gas flowing through the suction pipe (18) and sucked into the compression chamber (50) from being heated, and as a result, it is possible to prevent a decrease in volumetric efficiency.
  • the upper space of the casing is a high-pressure space, and a space for introducing refrigerant gas during compression is provided on the back side of the fixed scroll, and the space and the movable scroll
  • the cover for partitioning the space from the upper space must be configured to be movable so as to absorb the high pressure of the upper space in the space while partitioning the space and the upper space in an airtight manner.
  • such a configuration is not necessary, and the seal between the intermediate pressure upper space (16) and the high pressure space such as the high pressure chamber (45) and the first flow passage (46) is fixed. Therefore, the reliability can be improved and the cost can be reduced.
  • the communication path (48) is formed in the end plate (41) of the fixed scroll (4), and the refrigerant gas being compressed from the compression chamber (50) is passed through the upper space ( It is configured to be introduced in 16).
  • the flow mechanism (1A) of the present embodiment has a compression chamber (50) and a second back pressure space (24) on the end plate (51) of the movable scroll (5). ) And a refrigerant gas in the middle of compression from the compression chamber (50) is introduced into the second back pressure space (24) through the communication path (56). .
  • the second back pressure space (24) and the upper space (16) communicate with each other via a gap between the housing (3) and the fixed scroll (4).
  • the pressure fluctuation of the refrigerant gas is absorbed in a large-capacity space including the second back pressure space (24) and the upper space (16).
  • the upper space (16) functions as an auxiliary space for buffering the pressure fluctuation of the refrigerant gas being compressed.
  • the flow mechanism (1A) of this embodiment is different from that of the first embodiment in that the communication path (48) is formed in the fixed scroll (4).
  • a communication path (80) is formed across the movable scroll (5).
  • the communication path (80) includes a primary side path (81) formed in the fixed scroll (4) and a secondary side path (82) formed in the movable scroll (5).
  • the primary passage (81) is constituted by a recess formed on the lower surface of the outer peripheral wall (43) of the fixed scroll (4), and the lower surface is the upper surface of the outer peripheral portion of the end plate (51) of the movable scroll (5). Closed by.
  • the primary passage (81) extends from the inner peripheral end of the outer peripheral wall portion (43) toward the outer peripheral end. One end of the primary passage (81) opens to the inner peripheral surface of the outer peripheral wall (43), and the wrap (52) of the movable scroll (5) is connected to the outer peripheral wall (43) of the fixed scroll (4).
  • the other end of the primary passage (81) is located in the middle of the lower surface of the outer peripheral wall portion (43), and is positioned on the lower surface of the outer peripheral wall portion (43) with which the end plate (51) of the movable scroll (5) is always in contact. is doing.
  • the secondary passage (82) is formed so as to vertically penetrate the end plate (51) of the movable scroll (5) from the front surface to the back surface. And the lower end which is one end of the said secondary side channel
  • the upper end which is the other end of the secondary side passage (82) opens the end plate (51) on the front surface, and moves along a circular locus indicated by a chain line in FIG. 8 along with the revolution of the movable scroll (5). It is comprised so that it may communicate with the other end of a primary side channel
  • the primary side passage (81) and the secondary side passage (82) communicate intermittently. Since the second back pressure space (24) and the upper space (16) communicate with each other via a gap between the housing (3) and the fixed scroll (4), the refrigerant gas being compressed The pressure fluctuation is absorbed in a large-capacity space including the second back pressure space (24) and the upper space (16). As a result, fluctuations in the back pressure acting on the movable scroll (5) can be suppressed, and the pressing force applied to the movable scroll (5) can be stabilized. Even in such a case, the upper space (16) functions as an auxiliary space for buffering the pressure fluctuation of the refrigerant gas being compressed. Other configurations and operational effects are the same as those of the first embodiment.
  • the flow mechanism (1A) of the present embodiment is movable in place of the communication path (80) formed between the fixed scroll (4) and the movable scroll (5) in the third embodiment.
  • a communication path (80) is formed from the scroll (5) to the fixed scroll (4).
  • the communication path (80) includes a primary side path (81) formed in the movable scroll (5) and a secondary side path (82) formed in the fixed scroll (4).
  • the primary passage (81) is formed by a U-shaped passage formed in the end plate (51) of the movable scroll (5), and both ends open to the front of the end plate (51) of the movable scroll (5). ing.
  • the primary passage (81) extends from the center of the end plate (51) toward the outer peripheral end.
  • One end of the primary passage (81) is a compression chamber (50) in an intermediate pressure state in which the wrap (52) of the movable scroll (5) is in contact with the outer peripheral wall (43) of the fixed scroll (4). Communicating with The other end of the primary passage (81) faces the lower surface of the outer peripheral wall (43) of the fixed scroll (4) with which the end plate (51) of the movable scroll (5) is in contact.
  • the secondary passage (82) is formed so as to vertically penetrate the outer peripheral wall (43) of the fixed scroll (4) from the front surface to the back surface. And the upper end which is one end of the said secondary side channel
  • the second back pressure space (24) and the upper space (16) communicate with each other via a gap between the housing (3) and the fixed scroll (4), the refrigerant gas being compressed
  • the pressure fluctuation is absorbed in a large-capacity space including the second back pressure space (24) and the upper space (16).
  • the upper space (16) functions as an auxiliary space for buffering the pressure fluctuation of the refrigerant gas being compressed.
  • the flow mechanism (1A) of the present embodiment is movable in place of the communication path (80) formed between the fixed scroll (4) and the movable scroll (5) in the third embodiment.
  • a communication path (80) is formed from the scroll (5) to the fixed scroll (4).
  • the communication path (80) includes a primary side path (81) formed in the movable scroll (5) and a secondary side path (82) formed in the fixed scroll (4).
  • the primary passage (81) is formed by a U-shaped passage formed in the end plate (51) of the movable scroll (5), and both ends open to the front of the end plate (51) of the movable scroll (5). ing.
  • the primary passage (81) extends from the center of the end plate (51) toward the outer peripheral end.
  • One end of the primary passage (81) is a compression chamber (50) in an intermediate pressure state in which the wrap (52) of the movable scroll (5) is in contact with the outer peripheral wall (43) of the fixed scroll (4). Communicating with The other end of the primary passage (81) faces the lower surface of the outer peripheral wall (43) of the fixed scroll (4) with which the end plate (51) of the movable scroll (5) is in contact.
  • the secondary side passage (82) is constituted by an inverted U-shaped passage formed in the outer peripheral wall portion (43) of the fixed scroll (4), and both ends are arranged on the outer peripheral wall portion ( 43) Open to the front (bottom).
  • the secondary side passage (82) extends in the radial direction at the outer peripheral portion of the outer peripheral wall portion (43).
  • One end of the secondary passage (82) faces the lower surface of the outer peripheral wall (43) of the fixed scroll (4) with which the end plate (51) of the movable scroll (5) is in contact.
  • the other end of the secondary passage (82) is opposed to the lower surface of the outer peripheral portion of the outer peripheral wall (43) of the fixed scroll (4) where the end plate (51) of the movable scroll (5) is not in contact, and is always open. is doing.
  • the outer peripheral end of the primary side passage (81) and the inner peripheral end of the secondary side passage (82) communicate intermittently. Since the second back pressure space (24) and the upper space (16) communicate with each other via a gap between the housing (3) and the fixed scroll (4), the refrigerant gas being compressed The pressure fluctuation is absorbed in a large-capacity space including the second back pressure space (24) and the upper space (16). As a result, fluctuations in the back pressure acting on the movable scroll (5) can be suppressed, and the pressing force applied to the movable scroll (5) can be stabilized. Even in such a case, the upper space (16) functions as an auxiliary space for buffering the pressure fluctuation of the refrigerant gas being compressed. Other configurations and operational effects are the same as those of the third embodiment.
  • the present invention may be configured as follows with respect to the above embodiment.
  • the inside of the casing (10) is divided into the upper space (16) and the lower space (17) by the housing (3), but is not limited thereto.
  • a partition member that partitions the casing (10) may be provided, and the auxiliary space may be formed by the partition member.
  • the upper space (16) is an auxiliary space and the lower space (17) is a high-pressure space.
  • the lower space (17) may be a low-pressure space that serves as a suction pressure.
  • the lower space (17) may be an auxiliary space
  • the upper space (16) may be a high pressure space or a low pressure space.
  • the lower space (17) and the second back pressure space (24) are communicated to make the second back pressure space (24) an intermediate pressure.
  • the reed valve (49) is provided as a check valve in the communication passage (48).
  • a check valve of a different type may be provided.
  • the structure which does not provide a non-return valve may be sufficient. In that case, it is preferable that the communication path (48) is throttled to some extent so that the refrigerant gas does not easily go back and forth between the compression chamber (50) and the upper space (16).
  • the scroll compressor (1) provided in the refrigerant circuit has been described.
  • the scroll compressor (1) of the present invention may be applied to compress various fluids.
  • the present invention is useful for a scroll compressor that applies an intermediate pressure to the back surface of a movable scroll and presses the movable scroll toward the fixed scroll.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

  スクロール圧縮機(1)は、固定スクロール(4)と、固定スクロール(4)に対して回転駆動される可動スクロール(5)と、固定スクロール(4)及び可動スクロール(5)を収容するケーシング(10)とを備えている。可動スクロール(5)の背面側には、ハウジング(3)が設けられ、ハウジング(3)と可動スクロール(5)との間に第2背圧空間(24)が形成されている。ケーシング(10)内には、ハウジング(3)によって仕切られた上部空間(16)が形成されている。第2背圧空間(24)及び上部空間(16)には、圧縮室(50)から圧縮途中の冷媒ガスが導入される。

Description

スクロール圧縮機
  本発明は、固定スクロールと可動スクロールを有するスクロール圧縮機に関するものである。
  従来より、スクロール圧縮機には、可動スクロールに固定スクロール側への押付力を付与することで、冷媒ガス圧縮時の冷媒ガス圧力により可動スクロールが固定スクロールから離反することを防止しているものが知られている。
  特許文献1には、その一例として、可動スクロールの鏡板に圧縮室と背圧空間とを連通させる連通路を設け、可動スクロールの背面側の背圧空間に圧縮途中の冷媒ガスを該連通路を介して導入するスクロール圧縮機が開示されている。このスクロール圧縮機は、可動スクロールに背圧を作用させ、可動スクロールを固定スクロールへ押し付けている。
  また、このように圧縮途中の冷媒ガスを可動スクロールの背圧空間に導入するスクロール圧縮機の別の例としては、特許文献2,3に開示されたスクロール圧縮機がある。これらのスクロール圧縮機は、固定スクロールの背面部に、圧縮途中の冷媒ガスが導入される空間を設けると共に、該空間と可動スクロールの背圧空間を連通させることによって、可動スクロールの背圧を作用させ、可動スクロールを固定スクロールへ押し付けている。
特開平8-121366号公報 特開昭61-98987号公報 特開平3-111687号公報
  しかしながら、前述の如く、圧縮途中の冷媒ガスによって可動スクロールに押付力を付与するスクロール圧縮機においては、圧縮過程の圧力変動により、可動スクロールに作用する背圧が変動してしまい、可動スクロールの押付力が不安定になってしまう。
  本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、可動スクロールの押付力を安定させることにある。
  本発明は、ケーシング内に補助空間を形成し、該補助空間と背圧空間とを連通させ、背圧空間の圧力変動を上記補助空間で吸収するようにしたものである。
  具体的には、第1の発明は、ケーシング(10)と、該ケーシング(10)に収納され且つ固定スクロール(4)及び可動スクロール(5)を有すると共に該固定スクロール(4)と可動スクロール(5)の間に圧縮室(50)が形成された圧縮機構(14)とを備えたスクロール圧縮機を対象としている。そして、第1の発明は、上記可動スクロール(5)の背面側に設けられ、該可動スクロール(5)との間に背圧空間(24)を形成するハウジング(3)と、上記ケーシング(10)の内部に設けられ、上記背圧空間(24)に連通する補助空間(16)を形成する仕切り部材(3)と、上記背圧空間(24)及び補助空間(16)と圧縮途中の上記圧縮室(50)との間を流体流通可能とする流通機構(1A)とを備えている。
  上記の構成の場合、可動スクロール(5)の背面側に形成された背圧空間(24)は、ケーシング(10)内に形成された補助空間(16)と連通しているため、該補助空間(16)と略等しい圧力となる。ここで、該補助空間(16)は上記仕切り部材(3)と該ケーシング(10)とで形成されて比較的大容量となっているため、上記背圧空間(24)及び補助空間(16)に圧縮室(50)から導入される圧縮途中の流体の圧力が変動したとしても、補助空間(16)においてその変動を吸収する。その結果、背圧空間(24)内の圧力(背圧)の変動が抑制される。そして、上記背圧空間(24)における背圧の変動が抑制されると、該背圧によって可動スクロール(5)を固定スクロール(4)へ押し付ける押付力も変動が抑制され、可動スクロール(5)を固定スクロール(4)に対して安定して押し付けることができる。
  第2の発明は、第1の発明において、上記ハウジング(3)が上記ケーシング(10)内を仕切るように設けられ、上記ハウジング(3)が上記仕切り部材を構成している。
  上記の構成の場合、上記ハウジング(3)が上記仕切り部材(3)としても機能する。すなわち、ハウジング(3)は、ケーシング(10)内を仕切って該ケーシング(10)と共に補助空間(16)を区画形成すると共に、可動スクロール(5)との間で背圧空間(24)を区画形成する。こうして、部品を共通化することができる。
  第3の発明は、第2の発明において、上記圧縮機構(14)に駆動軸(7)を介して連結されたモータ(6)を備えている。そして、上記ハウジング(3)は、上記ケーシング(10)内を、上記圧縮機構(14)の収納空間と上記モータ(6)の収納空間とに仕切る一方、上記圧縮機構(14)の収納空間が、上記補助空間(16)を構成している。
  上記の構成の場合、ケーシング(10)内は、可動スクロール(5)及び固定スクロール(4)が配設された圧縮機構(14)側の空間と、モータ(6)が配設されたモータ(6)側の空間とに仕切られている。そして、圧縮機構(14)側の空間が補助空間(16)となっている。
  第4の発明は、第3の発明において、上記流通機構(1A)は、上記固定スクロール(4)から可動スクロール(5)に亘って形成され、上記圧縮室(50)と上記背圧空間(24)とを繋ぐ連通路(80)を備えた構成としている。
  上記の構成の場合、圧縮室(50)から圧縮途中の流体が可動スクロール(5)に形成された連通路(80)を介して上記背圧空間(24)に導入される。
  第5の発明は、第3の発明において、上記流通機構(1A)は、上記可動スクロール(5)から固定スクロール(4)に亘って形成され、上記圧縮室(50)と上記補助空間(16)とを繋ぐ連通路(80)を備えた構成としている。
  上記の構成の場合、圧縮室(50)から圧縮途中の流体が固定スクロール(4)に形成された連通路(80)を介して上記補助空間(16)に導入される。
  第6の発明は、第3の発明において、上記流通機構(1A)は、上記可動スクロール(5)から固定スクロール(4)に亘って形成され、上記圧縮室(50)と上記背圧空間(24)とを繋ぐ連通路(80)を備えた構成としている。
  上記の構成の場合、圧縮室(50)から圧縮途中の流体が可動スクロール(5)に形成された連通路(80)を介して上記背圧空間(24)に導入される。
  第7の発明は、第3の発明において、上記流通機構(1A)は、上記固定スクロール(4)に形成され、上記圧縮室(50)と上記補助空間(16)とを繋ぐ連通路(48)を備えた構成としている。
  上記の構成の場合、圧縮室(50)から圧縮途中の流体が固定スクロール(4)に形成された連通路(48)を介して上記補助空間(16)に導入される。
  第8の発明は、第3の発明において、上記流通機構(1A)は、上記可動スクロール(5)に形成され、上記圧縮室(50)と上記背圧空間(24)とを繋ぐ連通路(56)を備えた構成としている。
  上記の構成の場合、圧縮室(50)から圧縮途中の流体が可動スクロール(5)に形成された連通路(56)を介して上記背圧空間(24)に導入される。
  第9の発明は、第4~第6の発明の何れか1の発明において、上記連通路(80)が、可動スクロール(5)の旋回に伴って間欠的に連通するように構成されたものである。
  上記の構成の場合、圧縮室(50)の圧力変動の影響が抑制され、背圧の変動が抑制される。
  第10の発明は、第7又は第8の発明において、上記連通路(48,56)には、上記圧縮室(50)への流体の逆流を阻止する逆止弁(49)が設けられた構成としている。
  上記の構成の場合、上記逆止弁(49)を設けることによって、補助空間(16)又は背圧空間(24)から圧縮室(50)への流体の逆流を防止し、さらに背圧の変動を抑制することができる。
  第11の発明は、第3~第10の発明の何れか1の発明において、上記固定スクロール(4)の背面側に、上記圧縮室(50)で圧縮された流体が吐出される高圧チャンバ(45)が上記補助空間(16)と仕切られて形成されたものである。更に、上記高圧チャンバ(45)と上記モータ(6)の収納空間とを繋ぐ流通路(46,39)が上記固定スクロール(4)からハウジング(3)に亘って形成され、上記ケーシング(10)には、上記モータ(6)の収納空間に連通する吐出管(19)が設けられている。
  上記の構成の場合、圧縮室(50)で圧縮された流体は、固定スクロール(4)に形成された高圧チャンバ(45)及び第1流通路(46)、並びにハウジング(3)に形成された第2流通路(39)を通って、ケーシング(10)内の上記モータ(6)が配設された側の収納空間に流出する。その後、該流体は吐出管(19)を介してケーシング(10)外部に吐出される。つまり、圧縮室(50)から吐出される流体は、ケーシング(10)内の固定スクロール(4)及び可動スクロール(5)が配設された側の収納空間に流出することがない。
  また、固定スクロール(4)の背面側においてその中央部に上記高圧チャンバ(45)を形成することによって、固定スクロール(4)の背面に作用する背圧は中央部ほど高くなる。一方、固定スクロール(4)の圧縮室(50)側においては流体を圧縮し始める外周側ほど圧力が低く、流体の圧縮が完了する内周側ほど圧力が高くなっている。つまり、固定スクロール(4)の背面側中央部に上記高圧チャンバ(45)を形成することによって、固定スクロール(4)の背面側に作用する圧力と圧縮室(50)側に作用する圧力とを釣り合わせることができ、固定スクロール(4)の変形を抑制することができる。
  第12の発明は、第3~第11の発明の何れか1の発明において、上記可動スクロール(5)と上記ハウジング(3)との間の空間は、上記駆動軸(7)が貫通している中央空間(23)と、該中央空間(23)よりも外周側に形成された上記背圧空間(24)とに区画され、上記中央空間(23)は、流体の吐出圧力雰囲気に構成されたものである。
  上記の構成の場合、可動スクロール(5)の背面側には、流体の吐出圧力となった高圧の内周側の中央空間(23)と、圧縮途中の流体の圧力となった外周側の背圧空間(24)とが形成されている。すなわち、可動スクロール(5)は、吐出圧力と背圧とによって固定スクロール(4)側に押し付けられている。
  第13の発明は、第3~第12の発明の何れか1の発明において、上記ケーシング(10)を貫通して上記補助空間(16)を通って上記圧縮室(50)に連通する吸入管(18)を備えた構成としている。
  上記の構成の場合、吸入管(18)が、ケーシング(10)を貫通して圧縮室(50)まで延びる構成において、高圧空間を通らずに上記補助空間(16)を通っているため、該吸入管(18)を通って圧縮室(50)へ導かれる流体が高温の高圧ガスによって加熱されることを防止することができる。
  本発明によれば、上記仕切り部材(3)とケーシング(10)とで区画形成された補助空間(16)と可動スクロール(5)の背面側の背圧空間(24)とを連通させ、該補助空間(16)及び背圧空間(24)に圧縮途中の流体が導入されるため、流体の圧力が変動したとしても、その変動を補助空間(16)で吸収することができる。この結果、可動スクロール(5)を安定した押付力で固定スクロール(4)に押し付けることができる。
  第2の発明によれば、上記ハウジング(3)に上記仕切り部材(3)を兼ねさせることによって、部品点数を削減することができる。
  第4の発明によれば、固定スクロール(4)及び可動スクロール(5)に上記連通路(80)を形成するという簡単な構成で、上記背圧空間(24)に圧縮途中の流体を導入することができる。
  第5の発明によれば、可動スクロール(5)及び固定スクロール(4)に上記連通路(80)を形成するという簡単な構成で、上記補助空間(16)に圧縮途中の流体を導入することができる。
  第6の発明によれば、可動スクロール(5)及び固定スクロール(4)に上記連通路(80)を形成するという簡単な構成で、上記背圧空間(24)に圧縮途中の流体を導入することができる。
  第7の発明によれば、固定スクロール(4)に上記連通路(48)を形成するという簡単な構成で、上記補助空間(16)に圧縮途中の流体を導入することができる。
  第8の発明によれば、可動スクロール(5)に上記連通路(56)を形成するという簡単な構成で、上記背圧空間(24)に圧縮途中の流体を導入することができる。
  第9の発明によれば、上記連通路(80)が、可動スクロール(5)の旋回に伴って間欠的に連通するので、圧縮室(50)の圧力変動の影響を抑制することができ、背圧の変動を抑制することができる。
  第10の発明によれば、逆止弁(49)を設けることによって、補助空間(16)又は背圧空間(24)から圧縮室(50)への流体の逆流を防止することができる。
  第11の発明によれば、圧縮室(50)で圧縮された流体を、固定スクロール(4)に形成された高圧チャンバ(45)及び第1流通路(46)、並びにハウジング(3)に形成された第2流通路(39)を介して、ケーシング(10)内の上記モータ(6)が配設された側の収納空間に一旦流出させ、そこから、吐出管(19)を介してケーシング(10)外部に吐出させることができる。また、固定スクロール(4)の背面側においてその中央部に上記高圧チャンバ(45)を形成することによって、固定スクロール(4)の背面側に作用する圧力と圧縮室(50)側に作用する圧力とを釣り合わせることができ、固定スクロール(4)の変形を抑制することができる。
  第12の発明によれば、可動スクロール(5)とハウジング(3)との間に高圧の中央空間(23)と、圧縮途中の流体の圧力の背圧空間(24)とを形成することによって、可動スクロール(5)を高圧と背圧とによって固定スクロール(4)側に押し付けることができる。その結果、可動スクロール(5)に高圧だけを作用させて固定スクロール(4)側に押し付ける構成と比較して、可動スクロール(5)に適正な押付力を付与できる運転範囲を拡大することができる。
  第13の発明によれば、上記吸入管(18)を、ケーシング(10)を貫通して上記補助空間(16)を通って圧縮室(50)まで延びるように設けることによって、吸入管(18)を流通する流体が圧縮後の高圧流体によって加熱されることを防止することができ、その結果、容積効率の低下を防止することができる。
図1は、本発明の実施形態1に係るスクロール圧縮機の縦断面図である。 図2は、図1の一部拡大図である。 図3は、ハウジングを示す図であり、図3(a)は平面図であり、図3(b)は図3(a)のb-b線における断面図である。 図4は、比較例としての、高圧だけによって可動スクロールに押付力を付与するスクロール圧縮機の運転領域を示す概念図である。 図5は、高圧と中間圧によって可動スクロールに押付力を付与するスクロール圧縮機の運転領域を示す概念図である。 図6は、本発明の実施形態2に係るスクロール圧縮機の一部を示す縦断面図である。 図7は、本発明の実施形態3に係るスクロール圧縮機の一部を示す縦断面図である。 図8は、本発明の実施形態3の流通機構を示す概略平面図である。 図9は、本発明の実施形態4に係るスクロール圧縮機の一部を示す縦断面図である。 図10は、本発明の実施形態5に係るスクロール圧縮機の一部を示す縦断面図である。
  以下、本発明の実施形態を図面に基づいて詳細に説明する。
  〈実施形態1〉
  図1及び図2に示すように、本実施形態に係るスクロール圧縮機(1)は、冷媒が循環して冷凍サイクルを行う冷媒回路(図示省略)に接続され、流体である冷媒を圧縮するものである。
  上記圧縮機(1)は、ハウジング(3)、固定スクロール(4)及び可動スクロール(5)を含む圧縮機構(14)と、該圧縮機構(14)を収容する縦長円筒状の密閉ドーム型のケーシング(10)とを備えている。上記ケーシング(10)は、上下方向に延びる軸線を有する円筒状の胴部であるケーシング本体(11)と、該ケーシング本体(11)の上端部に気密状に溶接されて一体接合され、上方に突出した凸面を有する椀状の上壁部(12)と、上記ケーシング本体(11)の下端部に気密状に溶接されて一体接合され、下方に突出した凸面を有する椀状の底壁部(13)とで圧力容器に構成され、その内部は空洞とされている。
  上記ケーシング(10)の内部には、冷媒を圧縮する圧縮機構(14)と、この圧縮機構(14)の下方に配置されるモータ(6)とが収容されている。この圧縮機構(14)とモータ(6)とは、ケーシング(10)内を上下方向に延びるように配置される駆動軸(7)によって連結されている。
  上記ケーシング(10)の底部には、潤滑油が貯留された油溜まり部(15)が形成されている。
  上記ケーシング(10)の上壁部(12)には、冷媒回路の冷媒を圧縮機構(14)に導く吸入管(18)が気密状に貫通固定されている。また、ケーシング本体(11)には、ケーシング(10)内の冷媒をケーシング(10)外に吐出させる吐出管(19)が気密状に貫通固定されている。
  上記駆動軸(7)は、主軸部(71)と、該主軸部(71)の上端に連結されて主軸部(71)に対して偏心した偏心部(72)と、上記主軸部(71)に設けられて、後述する可動スクロール(5)や偏心部(72)等と動的バランスを取るためのカウンタウェイト部(73)とを有している。駆動軸(7)の内部には、その上端から下端まで延びる給油路(74)が形成されている。駆動軸(7)の下端部は、油溜まり部(15)に浸漬されている。
  上記駆動モータ(6)は、ステータ(61)とロータ(62)とにより構成されている。ステータ(61)は、焼嵌め等によってケーシング(10)内、詳しくは、ケーシング本体(11)内に固定されている。ロータ(62)は、ステータ(61)の内側に配置され、駆動軸(7)の主軸部(71)に対して同軸に且つ回動不能に設けられている。
  上記圧縮機構(14)は、ケーシング本体(11)に取り付けられたハウジング(3)に設けられ、該ハウジング(3)の上面に配置される固定スクロール(4)と、該固定スクロール(4)とハウジング(3)との間に配置され、固定スクロール(4)に噛合する可動スクロール(5)とを備えている。
  上記ハウジング(3)は、図3に示すように、外周側の環状部(31)と内周側の凹部(32)とを有し、中央が凹陥した皿状に形成されている。
  上記ハウジング(3)は、図1及び図2に示すように、ケーシング本体(11)の上端縁に圧入固定されている。詳しくは、ケーシング本体(11)の内周面とハウジング(3)の環状部(31)の外周面とは全周に亘って気密状に密着されている。上記ハウジング(3)は、ケーシング(10)内部を、圧縮機構(14)が収納される収納空間である上部空間(16)とモータ(6)が収納される収納空間である下部空間(17)とに仕切っている。
  上記ハウジング(3)には、凹部(32)の底部から下端に貫通する貫通孔(33)が形成されている。該貫通孔(33)には、上部軸受(20)が設けられている。そして、この上部軸受(20)によって、上記駆動軸(7)の上端部が回転可能に支持されている。
  尚、上記ケーシング(10)内の下部には、下部軸受(21)が設けられ、駆動軸(7)の下端部が該下部軸受(21)によって回転可能に支持されている。
  上記固定スクロール(4)は、鏡板(41)と、該鏡板(41)の前面(図1及び図2では下面)に形成された渦巻き状(インボリュート状)のラップ(42)と、該ラップ(42)の外周側に位置して該ラップ(42)と連続的に形成された外周壁部(43)とを有している。ラップ(42)の先端面と外周壁部(43)の先端面とは略面一に形成されている。また、固定スクロール(4)は、上記ハウジング(3)に取り付けられている。
  一方、上記可動スクロール(5)は、鏡板(51)と、該鏡板(51)の前面(図1及び図2では上面)に形成された渦巻き状(インボリュート状)のラップ(52)と、鏡板(51)の下面中心部に形成された有底円筒状のボス部(53)とを有している。
  上記可動スクロール(5)は、ラップ(52)が固定スクロール(4)のラップ(42)に噛合するように配設されている。そして、上記固定スクロール(4)と可動スクロール(5)との両ラップ(42,52)の接触部間に圧縮室(50)が形成されている。
  上記固定スクロール(4)の外周壁部(43)には、該外周壁部(43)の内外を連通させる吸入ポート(図示省略)が形成され、該吸入ポートに吸入管(18)の下流端が接続されている。
  上記吸入管(18)は、ケーシング(10)の上壁部(12)を貫通して、上部空間(16)を通って、固定スクロール(4)の吸入ポートに接続されている。
  また、上記固定スクロール(4)の鏡板(41)の中央には、吐出口(44)が貫通形成されている。
  上記鏡板(41)の背面(ラップ(42)が設けられている面の反対側の面、即ち、上面)の中央には、高圧チャンバ(45)が形成されている。該高圧チャンバ(45)には吐出口(44)が開口している。
  上記固定スクロール(4)には上記高圧チャンバ(45)に連通する第1流通路(46)が形成されている。該第1流通路(46)は、高圧チャンバ(45)から鏡板(41)の背面において径方向外方に延び、鏡板(41)の外周部において、外周壁部(43)内を延び、該外周壁部(43)の先端面(下面)に開口している。そして、上記鏡板(41)の背面には、高圧チャンバ(45)及び第1流通路(46)を塞ぐカバー部材(47)が取り付けられている。このカバー部材(47)によって高圧チャンバ(45)及び第1流通路(46)とケーシング(10)の上部空間(16)とが気密に隔離され、高圧チャンバ(45)及び第1流通路(46)に吐出された冷媒ガスが上部空間(16)に漏洩しないようになっている。尚、吐出された冷媒ガスは、第1流通路(46)から、後述するハウジング(3)の第2流通路(39)を通って、ケーシング(10)の下部空間(17)に流出する。
  また、上記鏡板(41)には、圧縮室(50)からとケーシング(10)の上部空間(16)に冷媒を導く流通機構(1A)が設けられている。該流通機構(1A)は、上記背圧空間(24)及び上部空間(16)と圧縮途中の圧縮室(50)との間を冷媒流通可能に構成するものであり、圧縮室(50)と上部空間(16)とを繋ぐ連通路(48)を備えている。つまり、上記圧縮室(50)は、閉じ切り後から吐出口(44)に開口するまで徐々に収縮する。そして、上記連通路(48)の圧縮室(50)側の端部は、所定の容積となった中間圧状態の圧縮室(50)に開口するように設けられている。
  また、固定スクロール(4)の鏡板(41)の背面には、連通路(48)の上部空間(16)側の開口を塞ぐ逆止弁として、リード弁(49)が設けられている。つまり、圧縮室(50)が所定の容積となり且つ該圧縮室(50)内の圧力が所定の中間圧以上となっている場合には、リード弁(49)が開いて、圧縮室(50)と上部空間(16)とを連通させる。尚、この中間圧は、圧縮室(50)の閉じ切り直後の圧力と、圧縮室(50)が吐出口(44)に開口する直前の圧力との間の所定の圧力である。その結果、上部空間(16)は、圧縮途中の冷媒ガスにより中間圧となる。この上部空間(16)が緩衝空間である補助空間を構成している。
  上記ハウジング(3)の環状部(31)には、図3に示すように、固定スクロール(4)が取り付けられる取付部(34,34,…)が4つ設けられている。これら取付部(34,34,…)には、ネジ穴が設けられ、固定スクロール(4)がネジ止めされている。
  また、上記取付部(34,34,…)のうちの1つには、第2流通路(39)が環状部(31)を貫通するように形成されている。この第2流通路(39)は、固定スクロール(4)がハウジング(3)に取り付けられたときに、固定スクロール(4)の第1流通路(46)と連通する位置に形成されている。つまり、圧縮室(50)から吐出された冷媒ガスは、第1流通路(46)から第2流通路(39)に流入し、ケーシング(10)の下部空間(17)に流出する。上記第1流通路(46)と第2流通路(39)とが1つの流通路を構成している。
  また、上記環状部(31)の内周側には、中央の凹部(32)を囲むように環状に形成された内周壁部(35)が形成されている。この内周壁部(35)は、上記取付部(34,34,…)よりは低く且つ、環状部(31)のそれ以外の部分よりは高く形成されている。
  また、上記内周壁部(35)の先端面には、シール溝(36)が内周壁部(35)に沿って環状に形成されている。このシール溝(36)には、図2に示すように、環状のシールリング(37)が嵌め込まれている。そして、このシールリング(37)は、固定スクロール(4)と可動スクロール(5)が噛合し且つ該固定スクロール(4)がハウジング(3)に取り付けられた状態において、該可動スクロール(5)の鏡板(51)の背面(ラップ(52)が設けられている面の反対側の面、即ち、下面)に当接するように構成されている。
  すなわち、上記シールリング(37)は、ハウジング(3)と可動スクロール(5)とによって区画形成される、可動スクロール(5)の背面側の背圧空間(22)を、シールリング(37)よりも内周側の第1背圧空間(23)と、シールリング(37)よりも外周側の第2背圧空間(24)とに仕切っている。
  上記第1背圧空間(23)は、中央空間を構成し、駆動軸(7)の偏心部(72)と可動スクロール(5)のボス部(53)とが位置している。そして、可動スクロール(5)のボス部(53)には、偏心部(72)が回転可能に挿入されている。偏心部(72)の上端には、給油路(74)が開口している。つまり、ボス部(53)内には該給油路(74)から高圧の油が供給され、ボス部(53)と偏心部(72)の摺動面は油により潤滑されている。
  また、第1背圧空間(23)は、上部軸受(20)と駆動軸(7)との隙間を介して、ケーシング(10)の下部空間(17)と連通している。
  上記第2背圧空間(24)は、ハウジング(3)と固定スクロール(4)との間の間隙を介してケーシング(10)の上部空間(16)と連通している。詳しくは、上記固定スクロール(4)が取り付けられるハウジング(3)の取付部(34,34,…)は、図3に示すように、環状部(31)において上方に突出しているので、これら取付部(34,34,…)以外の部分では、固定スクロール(4)とハウジング(3)の環状部(31)との間に間隙が形成される。この間隙を介して、第2背圧空間(24)とケーシング(10)の上部空間(16)とは連通している。
  また、第2背圧空間(24)には、可動スクロール(5)の鏡板(51)の背面に形成されたキー溝(54)と、ハウジング(3)の環状部(31)に形成されたキー溝(38,38)と係合して、可動スクロール(5)の自転を防止するためのオルダムカップリング(55)が設けられている。
    -スクロール圧縮機(1)の運転動作-
  上記モータ(6)を作動させると、圧縮機構(14)の可動スクロール(5)が回転駆動する。この可動スクロール(5)は、オルダムカップリング(55)によって自転を防止されつつ、駆動軸(7)の軸心を中心に公転する。この可動スクロール(5)の公転に伴い、上記圧縮室(50)の容積が中心に向かって収縮し、上記圧縮室(50)は、上記吸入管(18)より吸入された冷媒ガスを圧縮する。圧縮が完了した冷媒ガスは、固定スクロール(4)の吐出口(44)を介して、高圧チャンバ(45)に吐出される。高圧チャンバ(45)に吐出された高圧の冷媒ガスは、固定スクロール(4)の第1流通路(46)を流通した後、ハウジング(3)の第2流通路(39)に流入し、ケーシング(10)の下部空間(17)へ流出する。そして、下部空間(17)へ流出した冷媒ガスは、吐出管(19)を介して、ケーシング(10)の外部へ吐出される。
  上記ケーシング(10)の下部空間(17)は、吐出される高圧の冷媒ガスと同等の圧力、即ち、吐出圧力となっており、下部空間(17)下方の油溜まり部(15)に貯留された油にも該吐出圧力が作用する。その結果、高圧の油が駆動軸(7)の給油路(74)の下流端から上流端に向かって流れ、駆動軸(7)の偏心部(72)の上端開口から可動スクロール(5)のボス部(53)内に流出する。ボス部(53)に供給された油は、ボス部(53)と駆動軸(7)の偏心部(72)との摺動面を潤滑し、第1背圧空間(23)に流出する。こうして、上記第1背圧空間(23)は高圧の油で満たされることになる。その結果、第1背圧空間(23)は、吐出圧力と同等の圧力となっている。
  一方、上記固定スクロール(4)の鏡板(41)には連通路(48)が形成されているため、圧縮機構(14)で圧縮途中の冷媒ガスが連通路(48)を介してケーシング(10)の上部空間(16)に流出する。この上部空間(16)は、可動スクロール(5)の背面側の第2背圧空間(24)と連通しているため、該第2背圧空間(24)も圧縮途中の冷媒ガスの圧力と同等の圧力(中間圧)となっている。
  すなわち、可動スクロール(5)の鏡板(51)の背面には、第1背圧空間(23)の高圧と第2背圧空間(24)の中間圧とが作用し、これらの背圧によって可動スクロール(5)を固定スクロール(4)に向かって押圧する軸方向の押付力が付与されている。この押付力によって、冷媒ガスの圧縮時に可動スクロール(5)に作用する離反力に抗して、つまり、可動スクロール(5)を固定スクロール(4)から引き離そうとする力に抗して、可動スクロール(5)が固定スクロール(4)に押し付けられる。その結果、可動スクロール(5)が離反力により傾斜(転覆)することが防止されている。
  尚、離反力に対して押付力が大き過ぎる場合には、スラスト損失が増加し、スクロール圧縮機(1)の信頼性が低下してしまう。逆に、離反力に対して押付力が小さ過ぎる場合には、可動スクロール(5)が傾斜し易くなり、スクロール圧縮機(1)の性能及び信頼性が低下してしまう。
  本実施形態では、可動スクロール(5)の背面における、高圧が作用する面積と中間圧が作用する面積との比率、固定スクロール(4)に形成した連通路(48)の圧縮室(50)側の開口位置、固定スクロール(4)に設けたリード弁(49)の開放圧力を適宜調整することによって、適切な押付力が可動スクロール(5)に付与される。
  特に、本実施形態によれば、可動スクロール(5)の背面に中間圧を作用させる構成において、ケーシング(10)で区画形成された大容量の上部空間(16)と第2背圧空間(24)とを連通させ、圧縮途中の冷媒ガスを上部空間(16)に一旦流出させた後、該上部空間(16)を介して該冷媒ガスを第2背圧空間(24)に導入することによって、可動スクロール(5)に付与する押付力を安定させることができる。
  すなわち、圧縮室(50)から圧縮途中の冷媒ガスを連通路(48)を介して上部空間(16)に導入しているが、連通路(48)は、圧縮室(50)が中心に向かって移動しながら冷媒ガスを圧縮していく途中において圧縮室(50)に開口する。つまり、連通路(48)が圧縮室(50)に開口してから、圧縮室(50)に開口しなくなるまでの間にも、冷媒ガスは圧縮されているので、上部空間(16)に導入される圧縮途中の冷媒ガスの圧力(即ち、中間圧)は変動することになる。仮に、可動スクロール(5)の鏡板(51)に連通路を形成して中間圧の圧縮室(50)と第2背圧空間(24)とを直接連通させる構成の場合は、圧縮室(50)の中間圧の変動が、そのまま可動スクロール(5)の背面に作用する。その結果、背圧により可動スクロール(5)に付与される押付力も、中間圧の変動に応じて変動することになる。
  それに対し、本実施形態では、圧縮室(50)の中間圧の変動は、少なくとも一部がケーシング(10)で区画された大容量の上部空間(16)において吸収された後、第2背圧空間(24)に伝わるため、可動スクロール(5)の背面には変動が収まった中間圧が作用することになる。その結果、背圧により可動スクロール(5)に付与される押付力を安定させることができる。すなわち、上部空間(16)は圧縮途中の冷媒ガスの圧力変動を緩衝する補助空間として機能する。
  また、本実施形態によれば、可動スクロール(5)の背面に高圧と中間圧とを作用させることによって、可動スクロール(5)に適切な押付力を付与することができ、スクロール圧縮機(1)を良好に運転できる運転領域を拡大することができる。
  すなわち、可動スクロール(5)の背面に吐出圧力だけにより押付力を付与する構成の場合、可動スクロール(5)に作用する背圧が吐出圧力と同様に増大又は減少するため、吐出圧力が高く且つ吸入圧が低い領域では押し付け過剰になり易く、吐出圧力が低く且つ吸入圧力が高い領域では押し付け不足になり易い。その結果、図4に示すように、スクロール圧縮機(1)を良好に運転できる運転領域が小さくなってしまう。
  それに対して、可動スクロール(5)の背面に吐出圧力と中間圧とを作用させる構成の場合、吐出圧力が高く且つ吸入圧力が低い領域であっても、押付力の一部は吐出圧力ほどは高くない中間圧によって付与されているため、押し付け過剰になり難い。また、吐出圧力が低く且つ吸入圧力が高い領域において、特に、いわゆる過圧縮状態のときには、中間圧は吐出圧力(即ち、冷凍サイクルの高圧)よりも高くなり、この中間圧を可動スクロール(5)に作用させることで十分な押付力を付与することができる。そのため、押し付け不足になり難い。その結果、可動スクロール(5)の背面に高圧と中間圧とを作用させることによって、図5に示すように、スクロール圧縮機(1)を良好に運転できる運転領域を拡大することができる。
  また、本実施形態では、可動スクロール(5)の背面側に背圧空間(22)を形成するハウジング(3)によってケーシング(10)内を上部空間(16)と下部空間(17)とに仕切っているため、ケーシング(10)内を別の部材で仕切る必要がなく、部品点数を削減することができる。
  さらに、本実施形態では、圧縮機構(14)が位置する上部空間(16)を補助空間と設定しているため、固定スクロール(4)の鏡板(41)に連通路(48)を形成するといった簡単な構成で、圧縮室(50)と上部空間(16)とを連通させて該上部空間(16)に中間圧を導入することができる。
  また、固定スクロール(4)の鏡板(41)に連通路(48)を開閉するリード弁(49)を設けることによって、圧縮室(50)の方が上部空間(16)よりも圧力が低いときに、上部空間(16)から圧縮室(50)へ冷媒ガスが逆流することを防止することができ、このような場合でも中間圧の変動を抑えることができる。
  また、上部空間(16)を補助空間とし、該上部空間(16)と第2背圧空間(24)とを連通させることで第2背圧空間(24)も中間圧とする構成においては、固定スクロール(4)とハウジング(3)との間のシール構造が不要であるため、固定スクロール(4)の径を小さくすることができ、ひいては、圧縮機構(14)を小さくすることができる。
  すなわち、上部空間(16)を高圧空間にする一方、第2背圧空間(24)を中間圧空間にする構成の場合は、固定スクロール(4)とハウジング(3)との間にシール構造を設けて、上部空間(16)と第2背圧空間(24)とを気密に保つ必要がある。その場合、固定スクロール(4)の取付面に、シールリング等を配置するためのスペースが必要となり、固定スクロール(4)が、特に径方向に大きくなってしまう。
  それに対し、本実施形態では、上部空間(16)と第2背圧空間(24)とを気密に保持する必要はなく、逆に連通させるため、固定スクロール(4)とハウジング(3)との間にシール構造を設ける必要がなく、固定スクロール(4)が径方向に大きくなることを防止することができる。
  さらに、上部空間(16)を補助空間とすることによって、上部空間(16)を高圧空間とする構成に比べて、基本的には上部空間(16)の圧力が低いため、上壁部(12)を薄くすることができる。
  また、固定スクロール(4)に第1流通路(46)を形成し、ハウジング(3)に該第1流通路(46)と連通する第2流通路(39)を形成することによって、高圧の冷媒ガスを固定スクロール(4)の背面側に位置する上部空間(16)に流出させることなく、下部空間(17)へ導くことができる。
  このとき、固定スクロール(4)の鏡板(41)の背面中央に高圧チャンバ(45)を形成することによって、鏡板(41)の背面中央には、その他の部分(中間圧が作用している)よりも大きな圧力が作用する。一方、圧縮室(50)は、吸気ポートが設けられている外周側ほど圧力が低く、吐出口(44)が設けられている中央ほど圧力が高くなっている。つまり、圧縮時に冷媒ガスから大きな圧力を受ける鏡板(41)中央には、背面側に高圧チャンバ(45)が形成され、大きな背圧が作用しているため、圧縮室(50)の冷媒ガスからの高圧に耐えることができる。また、鏡板(41)の外周側には中間圧しか作用していないが、圧縮時の冷媒ガスの圧力も大きくないため、鏡板(41)の外周側においても圧縮室(50)の冷媒ガスからの圧力に耐えることができる。つまり、固定スクロール(4)の背面側に作用する圧力と圧縮室(50)側に作用する圧力とを釣り合わせて、固定スクロール(4)の変形を抑制することができる。
  また、本実施形態では、ケーシング(10)を貫通して圧縮機構(14)に連通する吸入管(18)を、中間圧空間である上部空間(16)を通るように配設することによって、吸入管(18)内を流通して圧縮室(50)に吸入される冷媒ガスが加熱されることを防止することができ、その結果、容積効率の低下を防止することができる。
  また、特許文献2,3に開示された圧縮機のように、ケーシングの上部空間を高圧空間とし、固定スクロールの背面側に圧縮途中の冷媒ガスが導入される空間を設け且つ該空間と可動スクロールの背圧空間を連通させる構成においては、空間を上部空間と仕切るためのカバーを、該空間と上部空間とを気密に仕切りつつ上部空間の高圧を該空間で吸収するべく移動可能に構成する必要がある。それに対して、本実施形態では、そのような構成は必要なく、中間圧の上部空間(16)と高圧チャンバ(45)及び第1流通路(46)等の高圧空間とのシールは固定的であってよいため、信頼性を向上させることができると共に、コストを低減することができる。
  〈実施形態2〉
  次に、本発明の実施形態2を図面に基づいて詳細に説明する。
  上記実施形態1の流通機構(1A)は、は、固定スクロール(4)の鏡板(41)に連通路(48)を形成し、圧縮室(50)からの圧縮途中の冷媒ガスを上部空間(16)に導入するように構成している。この実施形態1に代えて、図6に示すように、本実施形態の流通機構(1A)は、可動スクロール(5)の鏡板(51)に圧縮室(50)と第2背圧空間(24)とを繋ぐ連通路(56)を形成し、該連通路(56)を介して圧縮室(50)からの圧縮途中の冷媒ガスを第2背圧空間(24)に導入するように構成した。
  本実施形態においても、第2背圧空間(24)と上部空間(16)とは、ハウジング(3)と固定スクロール(4)との間の間隙を介して連通しているため、圧縮途中の冷媒ガスの圧力変動を第2背圧空間(24)と上部空間(16)とを合わせた大容量の空間で吸収することになる。その結果、可動スクロール(5)に作用する背圧の変動を抑制することができ、可動スクロール(5)に付与する押付力を安定させることができる。かかる場合でも、上部空間(16)は圧縮途中の冷媒ガスの圧力変動を緩衝する補助空間として機能する。その他の構成並びに作用効果は実施形態1と同様である。
  〈実施形態3〉
  次に、本発明の実施形態3を図面に基づいて詳細に説明する。
  図7及び図8に示すように、本実施形態の流通機構(1A)は、実施形態1が固定スクロール(4)に連通路(48)を形成したのに代えて、固定スクロール(4)から可動スクロール(5)に亘って連通路(80)を形成するようにしたものである。
  つまり、上記連通路(80)は、固定スクロール(4)に形成された1次側通路(81)と可動スクロール(5)に形成された2次側通路(82)とを備えている。該1次側通路(81)は、固定スクロール(4)の外周壁部(43)の下面に形成された凹部によって構成され、下面が可動スクロール(5)の鏡板(51)の外周部の上面によって閉鎖されている。上記1次側通路(81)は、外周壁部(43)の内周端から外周端に向かって延びている。上記1次側通路(81)の一端は、外周壁部(43)の内周面に開口し、可動スクロール(5)のラップ(52)が固定スクロール(4)の外周壁部(43)に接して形成された中間圧状態の圧縮室(50)に連通している。上記1次側通路(81)の他端は、外周壁部(43)の下面の途中に位置し、常時可動スクロール(5)の鏡板(51)が接する外周壁部(43)の下面に位置している。
  一方、上記2次側通路(82)は、可動スクロール(5)の鏡板(51)を前面から背面に亘って上下に貫通するように形成されている。そして、上記2次側通路(82)の一端である下端は、第2背圧空間に常時連通している。上記2次側通路(82)の他端である上端は、鏡板(51)を前面に開口し、可動スクロール(5)の公転に伴い、図8の鎖線で示す円軌跡を描いて移動し、1次側通路(81)の他端に間欠的に連通するように構成されている。
  したがって、本実施形態では、可動スクロール(5)が公転すると、1次側通路(81)と2次側通路(82)とが間欠的に連通する。そして、上記第2背圧空間(24)と上部空間(16)とは、ハウジング(3)と固定スクロール(4)との間の間隙を介して連通しているため、圧縮途中の冷媒ガスの圧力変動を第2背圧空間(24)と上部空間(16)とを合わせた大容量の空間で吸収することになる。その結果、可動スクロール(5)に作用する背圧の変動を抑制することができ、可動スクロール(5)に付与する押付力を安定させることができる。かかる場合でも、上部空間(16)は圧縮途中の冷媒ガスの圧力変動を緩衝する補助空間として機能する。その他の構成並びに作用効果は実施形態1と同様である。
  〈実施形態4〉
  次に、本発明の実施形態4を図面に基づいて詳細に説明する。
  図9に示すように、本実施形態の流通機構(1A)は、実施形態3が固定スクロール(4)から可動スクロール(5)に亘って連通路(80)を形成したのに代えて、可動スクロール(5)から固定スクロール(4)に亘って連通路(80)を形成するようにしたものである。
  つまり、上記連通路(80)は、可動スクロール(5)に形成された1次側通路(81)と固定スクロール(4)に形成された2次側通路(82)とを備えている。該1次側通路(81)は、可動スクロール(5)の鏡板(51)に形成されたU字状の通路によって構成され、両端が可動スクロール(5)の鏡板(51)の前面に開口している。上記1次側通路(81)は、鏡板(51)の中央部から外周端に向かって延びている。上記1次側通路(81)の一端は、可動スクロール(5)のラップ(52)が固定スクロール(4)の外周壁部(43)に接して形成された中間圧状態の圧縮室(50)に連通している。上記1次側通路(81)の他端は、常時可動スクロール(5)の鏡板(51)が接する固定スクロール(4)の外周壁部(43)の下面に対向している。
  一方、上記2次側通路(82)は、固定スクロール(4)の外周壁部(43)を前面から背面に亘って上下に貫通するように形成されている。そして、上記2次側通路(82)の一端である上端は、上部空間(16)に常時連通している。上記2次側通路(82)の他端である下端は、外周壁部(43)の前面である下面に開口している。そして、上記可動スクロール(5)の公転に伴い、上記1次側通路(81)の他端が2次側通路(82)の下端に間欠的に連通するように構成されている
  したがって、本実施形態では、可動スクロール(5)が公転すると、1次側通路(81)と2次側通路(82)とが間欠的に連通する。そして、上記第2背圧空間(24)と上部空間(16)とは、ハウジング(3)と固定スクロール(4)との間の間隙を介して連通しているため、圧縮途中の冷媒ガスの圧力変動を第2背圧空間(24)と上部空間(16)とを合わせた大容量の空間で吸収することになる。その結果、可動スクロール(5)に作用する背圧の変動を抑制することができ、可動スクロール(5)に付与する押付力を安定させることができる。かかる場合でも、上部空間(16)は圧縮途中の冷媒ガスの圧力変動を緩衝する補助空間として機能する。その他の構成並びに作用効果は実施形態3と同様である。
  〈実施形態5〉
  次に、本発明の実施形態5を図面に基づいて詳細に説明する。
  図10に示すように、本実施形態の流通機構(1A)は、実施形態3が固定スクロール(4)から可動スクロール(5)に亘って連通路(80)を形成したのに代えて、可動スクロール(5)から固定スクロール(4)に亘って連通路(80)を形成するようにしたものである。
  つまり、上記連通路(80)は、可動スクロール(5)に形成された1次側通路(81)と固定スクロール(4)に形成された2次側通路(82)とを備えている。該1次側通路(81)は、可動スクロール(5)の鏡板(51)に形成されたU字状の通路によって構成され、両端が可動スクロール(5)の鏡板(51)の前面に開口している。上記1次側通路(81)は、鏡板(51)の中央部から外周端に向かって延びている。上記1次側通路(81)の一端は、可動スクロール(5)のラップ(52)が固定スクロール(4)の外周壁部(43)に接して形成された中間圧状態の圧縮室(50)に連通している。上記1次側通路(81)の他端は、常時可動スクロール(5)の鏡板(51)が接する固定スクロール(4)の外周壁部(43)の下面に対向している。
  一方、上記2次側通路(82)は、固定スクロール(4)の外周壁部(43)に形成された逆U字状の通路によって構成され、両端が固定スクロール(4)の外周壁部(43)の前面(下面)に開口している。上記2次側通路(82)は、外周壁部(43)の外周部において半径方向に延びている。上記2次側通路(82)の一端は、常時可動スクロール(5)の鏡板(51)が接する固定スクロール(4)の外周壁部(43)の下面に対向している。上記2次側通路(82)の他端は、常時可動スクロール(5)の鏡板(51)が接しない固定スクロール(4)の外周壁部(43)における外周部の下面に対向し、常時開口している。
  したがって、本実施形態では、可動スクロール(5)が公転すると、1次側通路(81)の外周端と2次側通路(82)の内周端とが間欠的に連通する。そして、上記第2背圧空間(24)と上部空間(16)とは、ハウジング(3)と固定スクロール(4)との間の間隙を介して連通しているため、圧縮途中の冷媒ガスの圧力変動を第2背圧空間(24)と上部空間(16)とを合わせた大容量の空間で吸収することになる。その結果、可動スクロール(5)に作用する背圧の変動を抑制することができ、可動スクロール(5)に付与する押付力を安定させることができる。かかる場合でも、上部空間(16)は圧縮途中の冷媒ガスの圧力変動を緩衝する補助空間として機能する。その他の構成並びに作用効果は実施形態3と同様である。
  〈その他の実施形態〉
  本発明は、上記実施形態について、以下のような構成としてもよい。
  すなわち、各実施形態では、ハウジング(3)によって、ケーシング(10)内を上部空間(16)と下部空間(17)とに仕切っているが、これに限られるものではない。例えば、ケーシング(10)を仕切る仕切り部材を設け、該仕切り部材によって補助空間を形成するように構成してもよい。
  また、各実施形態では、上部空間(16)を補助空間とし、下部空間(17)を高圧空間としているが、下部空間(17)を吸入圧力となった低圧空間としてもよい。
  また、下部空間(17)を補助空間とし、上部空間(16)を高圧空間又は低圧空間としてもよい。その場合、下部空間(17)と第2背圧空間(24)とを連通させて、第2背圧空間(24)を中間圧とする。
  また、実施形態1では、連通路(48)に逆止弁としてリード弁(49)を設けているが、これとは別のタイプの逆止弁を設けてもよい。あるいは、逆止弁を設けない構成であってもよい。その場合には、冷媒ガスが圧縮室(50)と上部空間(16)とが容易に行き来しないように、連通路(48)を或る程度絞っておくことが好ましい。
  また、各実施形態は、冷媒回路に設けたスクロール圧縮機(1)について説明したが、本発明のスクロール圧縮機(1)は各種の流体を圧縮するもの適用してもよい。
  尚、以上の各実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。
  以上説明したように、本発明は、可動スクロールの背面に中間圧を作用させて、該可動スクロールを固定スクロール側に押し付けるスクロール圧縮機について有用である。
1    スクロール圧縮機
1A   流通機構
10   ケーシング
16   上部空間(補助空間)
18   吸入管
19   吐出管
23   第1背圧空間(中央空間)
24   第2背圧空間(背圧空間)
3    ハウジング(仕切り部材)
39   第2流通路
4    固定スクロール
45   高圧チャンバ
46   第1流通路
48   連通路
49   リード弁(逆止弁)
5    可動スクロール
56   連通路
6    駆動モータ(モータ)
7    駆動軸
50   圧縮室
80   連通路

Claims (13)

  1.   ケーシング(10)と、該ケーシング(10)に収納され且つ固定スクロール(4)及び可動スクロール(5)を有すると共に該固定スクロール(4)と可動スクロール(5)の間に圧縮室(50)が形成された圧縮機構(14)とを備えたスクロール圧縮機であって、
      上記可動スクロール(5)の背面側に設けられ、該可動スクロール(5)との間に背圧空間(24)を形成するハウジング(3)と、
      上記ケーシング(10)の内部に設けられ、上記背圧空間(24)に連通する補助空間(16)を形成する仕切り部材(3)と、
      上記背圧空間(24)及び補助空間(16)と圧縮途中の上記圧縮室(50)との間を流体流通可能とする流通機構(1A)とを備えている
    ことを特徴とするスクロール圧縮機。
  2.   請求項1において、
      上記ハウジング(3)は、上記ケーシング(10)内を仕切るように設けられ、
      上記ハウジング(3)が、上記仕切り部材を構成している
    ことを特徴とするスクロール圧縮機。
  3.   請求項2において、
      上記圧縮機構(14)に駆動軸(7)を介して連結されたモータ(6)を備え、
      上記ハウジング(3)は、上記ケーシング(10)内を、上記圧縮機構(14)の収納空間と上記モータ(6)の収納空間とに仕切る一方、
      上記圧縮機構(14)の収納空間が、上記補助空間(16)を構成している
    ことを特徴とするスクロール圧縮機。
  4.   請求項3において、
      上記流通機構(1A)は、上記固定スクロール(4)から可動スクロール(5)に亘って形成され、上記圧縮室(50)と上記背圧空間(24)とを繋ぐ連通路(80)を備えている
    ことを特徴とするスクロール圧縮機。
  5.   請求項3において、
      上記流通機構(1A)は、上記可動スクロール(5)から固定スクロール(4)に亘って形成され、上記圧縮室(50)と上記補助空間(16)とを繋ぐ連通路(80)を備えている
    ことを特徴とするスクロール圧縮機。
  6.   請求項3において、
      上記流通機構(1A)は、上記可動スクロール(5)から固定スクロール(4)に亘って形成され、上記圧縮室(50)と上記背圧空間(24)とを繋ぐ連通路(80)を備えている
    ことを特徴とするスクロール圧縮機。
  7.   請求項3において、
      上記流通機構(1A)は、上記固定スクロール(4)に形成され、上記圧縮室(50)と上記補助空間(16)とを繋ぐ連通路(48)を備えている
    ことを特徴とするスクロール圧縮機。
  8.   請求項3において、
      上記流通機構(1A)は、上記可動スクロール(5)に形成され、上記圧縮室(50)と上記背圧空間(24)とを繋ぐ連通路(56)を備えている
    ことを特徴とするスクロール圧縮機。
  9.   請求項4~6の何れか1項において、
      上記連通路(80)は、可動スクロール(5)の旋回に伴って間欠的に連通するように構成されている
    ことを特徴とするスクロール圧縮機。
  10.   請求項7又は8において、
      上記連通路(48,56)には、上記圧縮室(50)への流体の逆流を阻止する逆止弁(49)が設けられていることを特徴とするスクロール圧縮機。
  11.   請求項3~10の何れか1項において、
      上記固定スクロール(4)の背面側には、上記圧縮室(50)で圧縮された流体が吐出される高圧チャンバ(45)が上記補助空間(16)と仕切られて形成され、
      上記高圧チャンバ(45)と上記モータ(6)の収納空間とを繋ぐ流通路(46,39)が上記固定スクロール(4)からハウジング(3)に亘って形成され、
      上記ケーシング(10)には、上記モータ(6)の収納空間に連通する吐出管(19)が設けられている
    ことを特徴とするスクロール圧縮機。
  12.   請求項3~11の何れか1項において、
      上記可動スクロール(5)と上記ハウジング(3)との間の空間は、上記駆動軸(7)が貫通している中央空間(23)と、該中央空間(23)よりも外周側に形成された上記背圧空間(24)とに区画され、
      上記中央空間(23)は、流体の吐出圧力雰囲気に構成されている
    ことを特徴とするスクロール圧縮機。
  13.   請求項3~12の何れか1項において、
      上記ケーシング(10)を貫通して上記補助空間(16)を通って上記圧縮室(50)に連通する吸入管(18)を備えている
    ことを特徴とするスクロール圧縮機。
PCT/JP2009/003349 2008-07-15 2009-07-15 スクロール圧縮機 WO2010007786A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN200980126029.1A CN102084134B (zh) 2008-07-15 2009-07-15 涡旋压缩机
ES09797714T ES2727628T3 (es) 2008-07-15 2009-07-15 Compresor en espiral
KR1020117003169A KR101294507B1 (ko) 2008-07-15 2009-07-15 스크롤 압축기
US13/054,029 US8979516B2 (en) 2008-07-15 2009-07-15 Back pressure space of a scroll compressor
EP09797714.4A EP2312164B1 (en) 2008-07-15 2009-07-15 Scroll compressor
AU2009272155A AU2009272155B2 (en) 2008-07-15 2009-07-15 Scroll compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-184023 2008-07-15
JP2008184023 2008-07-15

Publications (1)

Publication Number Publication Date
WO2010007786A1 true WO2010007786A1 (ja) 2010-01-21

Family

ID=41550196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/003349 WO2010007786A1 (ja) 2008-07-15 2009-07-15 スクロール圧縮機

Country Status (8)

Country Link
US (1) US8979516B2 (ja)
EP (1) EP2312164B1 (ja)
JP (1) JP4471034B2 (ja)
KR (1) KR101294507B1 (ja)
CN (1) CN102084134B (ja)
AU (1) AU2009272155B2 (ja)
ES (1) ES2727628T3 (ja)
WO (1) WO2010007786A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4296516A1 (en) * 2022-06-21 2023-12-27 LG Electronics Inc. Scroll compressor

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4992948B2 (ja) * 2009-09-18 2012-08-08 ダイキン工業株式会社 スクロール圧縮機
JP5083401B2 (ja) * 2010-11-01 2012-11-28 ダイキン工業株式会社 スクロール型圧縮機
WO2012063471A1 (ja) 2010-11-08 2012-05-18 ダイキン工業株式会社 スクロール圧縮機
JP5516651B2 (ja) 2012-06-14 2014-06-11 ダイキン工業株式会社 スクロール圧縮機
JP5464248B1 (ja) * 2012-09-27 2014-04-09 ダイキン工業株式会社 スクロール圧縮機
JP5812083B2 (ja) 2013-12-02 2015-11-11 ダイキン工業株式会社 スクロール型圧縮機
CN106122010A (zh) * 2016-08-22 2016-11-16 广东美的暖通设备有限公司 涡旋压缩机和制冷设备
CN106286294B (zh) * 2016-09-19 2019-06-07 珠海格力电器股份有限公司 涡旋压缩机
KR101955985B1 (ko) * 2017-12-29 2019-03-11 엘지전자 주식회사 전동식 압축기
CN110925193A (zh) * 2018-09-20 2020-03-27 艾默生环境优化技术(苏州)有限公司 涡旋压缩机及包括该涡旋压缩机的空调系统
WO2021182841A1 (en) * 2020-03-12 2021-09-16 Samsung Electronics Co., Ltd. Scroll compressor
JP7216311B1 (ja) * 2021-08-04 2023-02-01 ダイキン工業株式会社 スクロール圧縮機

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6198987A (ja) 1984-10-19 1986-05-17 Hitachi Ltd 密閉形スクロ−ル圧縮機
JPH03111687A (ja) 1989-09-26 1991-05-13 Daikin Ind Ltd スクロール形流体機械
JPH05202865A (ja) * 1991-09-23 1993-08-10 Carrier Corp 軸方向コンプライアンスに優れたスクロール型圧縮機
JPH08121366A (ja) 1994-10-24 1996-05-14 Hitachi Ltd スクロール圧縮機
JP2003042087A (ja) * 2002-06-19 2003-02-13 Mitsubishi Electric Corp スクロール圧縮機
JP2006329208A (ja) * 2006-08-14 2006-12-07 Hitachi Ltd スクロール圧縮機

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58122386A (ja) * 1982-01-13 1983-07-21 Hitachi Ltd スクロ−ル圧縮機
US4992032A (en) * 1989-10-06 1991-02-12 Carrier Corporation Scroll compressor with dual pocket axial compliance
US5256044A (en) 1991-09-23 1993-10-26 Carrier Corporation Scroll compressor with improved axial compliance
MY126636A (en) 1994-10-24 2006-10-31 Hitachi Ltd Scroll compressor
JPH109160A (ja) 1996-06-24 1998-01-13 Daikin Ind Ltd スクロール圧縮機
JP3820824B2 (ja) 1999-12-06 2006-09-13 ダイキン工業株式会社 スクロール型圧縮機
JP2001280268A (ja) * 2000-03-31 2001-10-10 Fujitsu General Ltd スクロール型圧縮機
US6884046B2 (en) * 2002-03-04 2005-04-26 Daiken Industries, Ltd. Scroll compressor
JP4310960B2 (ja) * 2002-03-13 2009-08-12 ダイキン工業株式会社 スクロール型流体機械
JP3843333B2 (ja) * 2002-09-11 2006-11-08 株式会社日立製作所 スクロール流体機械
CN100395454C (zh) * 2002-12-30 2008-06-18 大金工业株式会社 涡旋压缩机
CN100387844C (zh) 2002-12-30 2008-05-14 大金工业株式会社 涡轮压缩机
JP4329528B2 (ja) * 2003-12-19 2009-09-09 株式会社豊田自動織機 スクロールコンプレッサ
JP4192158B2 (ja) * 2005-03-24 2008-12-03 日立アプライアンス株式会社 密閉形スクロール圧縮機及び冷凍空調装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6198987A (ja) 1984-10-19 1986-05-17 Hitachi Ltd 密閉形スクロ−ル圧縮機
JPH03111687A (ja) 1989-09-26 1991-05-13 Daikin Ind Ltd スクロール形流体機械
JPH05202865A (ja) * 1991-09-23 1993-08-10 Carrier Corp 軸方向コンプライアンスに優れたスクロール型圧縮機
JPH08121366A (ja) 1994-10-24 1996-05-14 Hitachi Ltd スクロール圧縮機
JP2003042087A (ja) * 2002-06-19 2003-02-13 Mitsubishi Electric Corp スクロール圧縮機
JP2006329208A (ja) * 2006-08-14 2006-12-07 Hitachi Ltd スクロール圧縮機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2312164A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4296516A1 (en) * 2022-06-21 2023-12-27 LG Electronics Inc. Scroll compressor

Also Published As

Publication number Publication date
US20110158838A1 (en) 2011-06-30
KR20110028395A (ko) 2011-03-17
CN102084134A (zh) 2011-06-01
US8979516B2 (en) 2015-03-17
CN102084134B (zh) 2014-03-26
EP2312164A1 (en) 2011-04-20
AU2009272155A1 (en) 2010-01-21
EP2312164A4 (en) 2015-05-06
EP2312164B1 (en) 2019-02-27
ES2727628T3 (es) 2019-10-17
AU2009272155B2 (en) 2012-06-14
JP4471034B2 (ja) 2010-06-02
JP2010043641A (ja) 2010-02-25
KR101294507B1 (ko) 2013-08-07

Similar Documents

Publication Publication Date Title
JP4471034B2 (ja) スクロール圧縮機
JP4488222B2 (ja) スクロール圧縮機
US8152502B2 (en) Scroll compressor having guide ring supporting and urging seal member
US9316225B2 (en) Scroll compressor with thrust sliding surface oiling groove
JP3731069B2 (ja) 圧縮機
US20090068045A1 (en) Compressor Having A Shutdown Valve
US11293442B2 (en) Scroll compressor having discharge cover providing a space to guide a discharge flow from a discharge port to a discharge passgae formed by a plurality of discharge holes
JP2015209767A (ja) スクロール圧縮機
JP2010101188A (ja) スクロール圧縮機
JP6555543B2 (ja) スクロール圧縮機
JP2012132409A (ja) スクロール圧縮機
JP4930022B2 (ja) 流体機械
JP4644495B2 (ja) スクロール圧縮機
WO2017158665A1 (ja) スクロール圧縮機
JP4604968B2 (ja) スクロール圧縮機
KR102589293B1 (ko) 일체형 밸브 시트와 스토퍼 시트가 구비되는 압축기
US10247188B2 (en) Scroll compressor
WO2020148857A1 (ja) スクロール圧縮機
JP2009209820A (ja) スクロール圧縮機
JP6503076B2 (ja) スクロール圧縮機
JP2019086000A (ja) スクロール圧縮機
JP7223929B2 (ja) スクロール圧縮機
JP2017031950A (ja) スクロール圧縮機
WO2018021058A1 (ja) スクロール圧縮機
JP2010151043A (ja) 圧縮機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980126029.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09797714

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009797714

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009272155

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 20117003169

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2009272155

Country of ref document: AU

Date of ref document: 20090715

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13054029

Country of ref document: US