WO2010007655A1 - フォーカス制御装置、フォーカス制御方法、光ピックアップ装置、ドライブ装置及び光記録媒体 - Google Patents
フォーカス制御装置、フォーカス制御方法、光ピックアップ装置、ドライブ装置及び光記録媒体 Download PDFInfo
- Publication number
- WO2010007655A1 WO2010007655A1 PCT/JP2008/062692 JP2008062692W WO2010007655A1 WO 2010007655 A1 WO2010007655 A1 WO 2010007655A1 JP 2008062692 W JP2008062692 W JP 2008062692W WO 2010007655 A1 WO2010007655 A1 WO 2010007655A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- focus control
- optical
- recording medium
- recording
- recording layer
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/08—Disposition or mounting of heads or light sources relatively to record carriers
- G11B7/09—Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
- G11B7/0908—Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for focusing only
- G11B7/0917—Focus-error methods other than those covered by G11B7/0909 - G11B7/0916
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B2007/0003—Recording, reproducing or erasing systems characterised by the structure or type of the carrier
- G11B2007/0009—Recording, reproducing or erasing systems characterised by the structure or type of the carrier for carriers having data stored in three dimensions, e.g. volume storage
- G11B2007/0013—Recording, reproducing or erasing systems characterised by the structure or type of the carrier for carriers having data stored in three dimensions, e.g. volume storage for carriers having multiple discrete layers
Definitions
- the present invention relates to a focus control device, a focus control method, an optical pickup device, a drive device, and an optical recording medium applied to an optical recording medium, preferably an optical recording medium having a multilayer structure.
- optical discs typified by DVD, CD, MD and the like are widely used.
- the types of optical discs are broadly classified into read-only optical discs and recording / playback optical discs that can be recorded by additional writing or rewriting.
- Such an optical disc is widely used as a removable recording medium having excellent durability and a large recording capacity.
- the recording / reproducing apparatus 1 which is a drive device of an optical disk which is one of optical recording media can freely attach and detach the optical disk D to and from a housing (not shown). And a spindle motor 11 for rotating the support unit 10 and an optical pickup unit 12 scanned in the radial direction of the optical disc D, and recording / reproduction is performed by the optical pickup.
- three servo controls called rotation servo, focus servo, and tracking servo are performed.
- the focus control performed by the recording / reproducing apparatus 1 includes focus pull-in and focus jump in addition to the focus servo.
- FIG. 9 is a schematic configuration diagram showing a conventional focus control device 2 that performs focus control.
- the focus control device 2 constitutes an optical pickup device together with a tracking control device that performs tracking control.
- the conventional focus control device 2 includes a laser light source 20, a collimator lens 21, a beam splitter 22, a spherical aberration corrector 23, an objective lens 24, a condensing lens 25, and a photodetector 26, and is used for recording.
- the optical pickup unit 12 for reproduction is configured.
- a controller 3 is provided as control means for controlling the entire apparatus.
- a laser beam (light flux L) of a predetermined wavelength (for example, 780 nm for a CD, 650 nm for a DVD, and 405 nm for a next-generation DVD such as Blu-ray) generated by the laser light source 20 during reproduction is generated by a collimator.
- the light is collimated by the lens 21, passes through the beam splitter 22 and the spherical aberration corrector 23, and then condensed by the objective lens 24 (for example, the numerical aperture (NA) is 0.6 or more) and irradiated onto the optical disc D. .
- the reflected light reflected by the optical disk D is collected by the objective lens 24, passes through the spherical aberration corrector 23, and is then split by the beam splitter 22. Then, the reflected reflected light is condensed by the condenser lens 25 and guided to the photodetector 26.
- focus control is performed by the astigmatism method using the reflected light from the optical disc D or the like.
- This focus control method utilizes the fact that the spot image of the reflected light guided to the photodetector 26 does not become a perfect circle when the laser beam is out of focus.
- the optical signal detected by the photodetector 26 is processed (for example, differentiation) by the signal processor 31, and a focus error is detected based on the detected S-shaped waveform.
- the controller 3 When a focus error is detected, the controller 3 generates a focus control signal for canceling the focus error, and the optical pickup / actuator driver 32 generates light from the optical pickup unit 12 (particularly, the objective lens 24 and the spherical aberration corrector 23).
- reference numeral 33 in FIG. 9 denotes a spherical aberration correction for adjusting the positions of the two lenses (23a, 23b) included in the spherical aberration corrector 23, which is a beam expander, in order to correct the spherical aberration. It is a driver.
- Reference numeral 34 denotes a memory for storing the S-shaped waveform data, aberration correction data, and the like.
- the conventional technique performs focus control by the astigmatism method using the reflected light from the optical disc D or the like. Therefore, in order to ensure a necessary and sufficient amount of reflected light even in the three-dimensionally multilayered optical disk D, an optical disk in which a reflective layer is provided on each recording layer as in Patent Document 1 has been proposed. However, providing a reflective layer in each recording layer as in Patent Document 1 is not preferable because the medium cost increases as the number of layers increases.
- a multilayer structure that secures a necessary and sufficient amount of reflected light without providing a reflective layer on each recording layer includes a recording layer containing a recording material and a gap layer (for example, air) made of a material having a large refractive index difference with respect to the recording layer.
- An optical disc in which layers are alternately stacked has been proposed (see, for example, Patent Document 2).
- Patent Document 2 since the reflectance at the interface of each layer is about 4%, the amount of reflected light from the lower layer decreases as the number of layers increases. For example, when the number of layers is 50, the amount of light reflected from the lowermost layer is about 0.07%, and for 100 layers, it is only 0.001%.
- the output of the laser beam for forming the recording mark on the recording layer is much higher than the output of the laser beam used for focus control.
- the point aberration method has a problem that it is difficult to detect a focus error during irradiation of the recording laser beam. Therefore, conventionally, after the focus is drawn into the target recording layer, the focus servo loop is released and the recording laser light is irradiated. However, in order to ensure highly accurate recording, it is desirable to perform focus control during the irradiation of the recording laser beam.
- a novel focus control device, focus control method, and method capable of performing highly accurate focus control even on an optical recording medium having a multilayer structure in which the reflectance of each layer interface is kept as low as possible.
- An example is providing an optical pickup device, a drive device, and an optical recording medium.
- Another object of the present invention is to perform high-precision focus control for an optical recording medium having a multilayer structure in which the reflectivity at each layer interface is kept as low as possible without complicating the optical system and the detection system.
- An example is to provide a focus control device, a focus control method, an optical pickup device, a drive device, and an optical recording medium that can be used.
- another object of the present invention is to provide a focus control device, a focus control method, an optical pickup device, a drive device, and an optical recording medium that can perform focus control even during irradiation with a recording laser beam. This is an example.
- the focus control device is a focus control device for an optical pickup applied to an optical recording medium having a multilayer structure as set forth in claim 1, wherein the laser light source for irradiating the optical recording medium with laser light,
- a laser light irradiation means including an objective lens for condensing the laser light; a photodetector for detecting a change in optical characteristics due to multiphoton absorption that occurs when the laser light is condensed on at least one layer of the recording layer;
- Control means for performing focus control of the optical pickup with respect to an arbitrary recording layer of the multilayer structure according to the detection result of the photodetector.
- an optical pickup device includes the focus control device according to any one of the first to eleventh aspects.
- the drive device according to the present invention includes the optical pickup device according to claim 12 as described in claim 13.
- the focus control method of the present invention is the focus control method of an optical pickup applied to an optical recording medium having a multilayer structure as described in claim 14, wherein the recording layer of the optical recording medium is irradiated with laser light, A change in optical characteristics due to multiphoton absorption that occurs when the laser beam is condensed on at least one layer of the recording layer is detected, and an optical pickup focus is set on an arbitrary recording layer of the multilayer structure according to the detection result. Control is performed.
- the optical recording medium of the present invention is a multilayer optical recording medium applied to the focus control method according to any one of claims 14 to 19, as described in claim 20, and includes a recording material. It has a structure in which recording layers and optically transparent gap layers are alternately laminated.
- the focus control method of the present invention is the focus control method of an optical pickup when recording information on an optical recording medium as defined in claim 23, wherein the recording layer of the optical recording medium is physically or chemically controlled.
- a recording laser beam is irradiated with an output that causes a typical irreversible change
- the laser beam is focused on at least one layer of the recording layer to form a recording mark, and the laser beam is focused on the recording layer.
- a change in optical characteristics due to multiphoton absorption occurring in the optical pickup is detected, and focus control of the optical pickup is performed according to the detection result.
- the focus control method of the present invention is the focus control method of an optical pickup applied to an optical recording medium as defined in claim 24, wherein the recording layer of the optical recording medium is physically or chemically controlled. Irradiating a laser beam with an output that does not cause irreversible changes, and drawing the focus in accordance with the detection result of the change in optical characteristics due to the absorption of the multiphotons; and physically recording the focus drawing recording layer. Or irradiating a laser beam with an output that causes a chemical irreversible change, forming a recording mark on the recording layer, and performing a focus servo according to a detection result of a change in optical characteristics associated with the multiphoton absorption; It is characterized by including.
- Optical pickup part D Optical disc 41 Recording layer (L1 to Ln) 42 Gap layer (G1-Gm) 45 Reflective layer 5
- Focus control device 50 Laser light source 54
- Objective lens 55 First light detector 6 Controller 61
- First signal processor 63 Optical pickup actuator driver
- the focus control method according to the present invention is a change in optical characteristics caused when a substance absorbs two or more photons (hereinafter referred to as “multiphoton absorption”) (for example, this is a novel focus control method in which transmittance attenuation, generation of fluorescence, and the like are detected, and the detection result is used for focus control on the optical recording medium.
- multiphoton absorption when photon energy of different frequencies is absorbed simultaneously, or when electrons or molecules that absorb photons and are in a high energy state absorb other photons (which may have different frequencies) The multiphoton absorption of any of these may be sufficient.
- the focus control method of the present invention that can solve the problems of the conventional technology is a promising technology that can be expected to become a standard for focus control applied to an optical disk having a multilayer structure in the future. .
- FIG. 1 is a diagram schematically showing a portion of the multilayer structure of the optical disc D.
- the optical disc D includes a recording layer 41 (L1, L2,..., Ln) containing a recording material and a gap layer 42 of an optically transparent material on one surface of a transparent resin substrate 4. (G1, G2,... Gm) are alternately stacked, and finally a transparent cover layer 43 is formed.
- the optical disc D of the present embodiment has a configuration that does not have a conventional reflective layer at the interface between the recording layer 41 and the gap layer 42, and this suppresses the reflectance at the interface of each layer to be low. Furthermore, by using a material having a small refractive index difference for the recording layer 41 and the gap layer 42, the reflectance at the interface between the layers is further reduced.
- Such a multilayer structure enables optical access to the lowermost recording layer (Ln) even when the number of layers is increased.
- the material of the recording layer 41 is a material that is more likely to cause multiphoton absorption than the material of the gap layer 42. That is, the multilayer structure of the optical disc D shown in FIG.
- examples of the recording material include a light-induced refractive index changing material in which a refractive index changes due to a physical or chemical irreversible change depending on light intensity.
- the photoinduced refractive index change material metal-free tetraphenyl porphine
- halogenated anthracene, CdS, such as GeO 2 doped glass and chalcogenide glass after being excited via multiphoton absorption process, physical or chemical A multiphoton material whose refractive index changes due to an irreversible change can be used.
- a photosensitizer such as a phase change material such as SbTe, an organic dye material, or cyclized polyisoprene + bisazide, polymethyl methacrylate, or GeO 2 doped glass may be used.
- a photosensitizer such as a phase change material such as SbTe, an organic dye material, or cyclized polyisoprene + bisazide, polymethyl methacrylate, or GeO 2 doped glass
- the material of the recording layer 41 and the gap layer 42 is not particularly limited as long as the multilayer structure of the optical disc D satisfies the above conditions. Any of the known materials used for D can be used.
- the focus control device 5 of this embodiment includes a laser light source 50 that generates laser light to be applied to an optical disc D, a collimator lens 51, a beam splitter 52 that is an optical spectrometer, and a spherical surface that serves as an aberration corrector.
- an optical pickup unit 12 for recording / reproduction.
- the focus control device 5 is a controller 6 as a control means, a first signal processor 61 that processes signals detected by the first photodetector 55, and a second that processes signals detected by the second photodetector 57.
- a signal processor 62 is provided.
- the controller 6 performs overall control operations including rotation control, focus control, and tracking control of the optical disc D. Then, as one of the focus control functions, based on the optical signal detected by the first photodetector 55, the focus can be pulled into the arbitrary recording layer 41, the focus servo, and the focal position can be moved to another recording layer 41. A function of generating each focus control signal for performing a focus jump.
- the optical pickup / actuator driver 63 adjusts the position of the optical pickup unit 12 (particularly, the objective lens 54 and the spherical aberration corrector 53) in the optical axis direction according to the focus signal transmitted from the controller 6, and thereby the optical disc depth method.
- the focus position in the (Z direction) is adjusted.
- the spherical aberration corrector driver 64 is configured to adjust the positions of the two lenses (53a, 53b) of the spherical aberration corrector 53, which is a beam expander, according to the spherical aberration correction signal transmitted from the controller 6. Yes.
- the memory 65 is an example of a storage unit that stores information on an S-shaped waveform, information on aberration correction, which will be described later, and the like.
- the laser light source 50 induces multiphoton absorption in the recording material contained in the recording layer 41, but does not cause a physical or chemical irreversible change in the recording layer 41, that is, in recording. It is only necessary that the laser beam can be irradiated with an output value that does not reach. When recording is performed, laser light is irradiated even at an output value (second output value) that causes a physical or chemical irreversible change in the recording layer 41, that is, an output value that can form a recording mark (44).
- a laser light source capable of changing output is preferable.
- An example of such a laser light source is a pulse laser light source, and a femtosecond pulse laser light source is preferable.
- a laser light source having an output value control function that takes at least two output values that can be output with the first output value and the second output value can also be used.
- a laser light source capable of output control either a system in which output is controlled by current drive like a semiconductor laser or a system in which output is controlled by an external modulator may be used.
- the focus control method of the present embodiment can be applied to any of known materials used for the recording layer and the gap layer. Accordingly, the specific first and second output values (that is, pulse width and light intensity) of the laser beam to be irradiated are preferably determined according to the type of the selected material.
- the collimator lens 51, the beam splitter 52, the spherical aberration corrector 53, the objective lens 54, the condensing lens 56, the second photodetector 57 for detecting the read RF signal at the time of reproduction, and the second signal processor 62 are the conventional ones. Similar ones can be used, and the processing operation can be the same as in the prior art. In this way, the fact that the configuration almost the same as that of the conventional optical system and the detection system is adopted, in other words, the focus control method of the present embodiment complicates the optical system and the detection system as compared with the conventional configuration. It can be said that this is a method that can be realized without any problems.
- the first photodetector 55 is disposed at a position facing the objective lens 54 with the optical disc D interposed therebetween.
- focus control is performed using attenuation of transmittance, which is one of the optical characteristics accompanying multiphoton absorption. Therefore, the first photodetector 55 can include a light receiving unit (for example, a light receiving element such as a photodiode) that receives the laser light (transmitted light) that has passed through the optical disc D.
- the light detected by the first photodetector 55 is converted into an electrical signal corresponding to the light intensity and transmitted to the first signal processor 61.
- the first photodetector 55 may be formed in an elongated band shape along the scanning path of the objective lens 54 (for example, in the radial direction in the case of the optical disc D). In this case, the first photodetector 55 is fixedly arranged, and a scanning unit for scanning the first photodetector 55 in synchronization with the objective lens 54 can be omitted.
- the first signal processor 62 processes the electrical signal from the first photodetector 55. Specifically, a so-called S-shaped waveform is detected by differentiating the optical signal detected by the first photodetector 55, and the detection result is transmitted to the controller 6.
- the controller 6 detects the position (optical length) of the optimum focal point of the laser beam based on the detected S-shaped waveform, and the optical pickup unit 12 (particularly, so that the condensing point of the laser beam is located at the optimum focal point). And a processing function of generating a focus control signal for adjusting the objective lens 54 and the aberration corrector 53) and transmitting the focus control signal to the optical pickup / actuator driver 63.
- the optical pickup / actuator driver 63 drives the optical pickup unit 12 in the optical axis direction according to the transmitted focus control signal.
- Multiphoton absorption has a characteristic that occurs only in the vicinity of the focal point of laser light, regardless of the number of absorbed photons, such as two-photon absorption and three-photon absorption. Therefore, although the attenuation rate varies depending on the light intensity, there is a characteristic that attenuation of the transmittance accompanying multiphoton absorption also occurs only in the vicinity of the focal point of the laser light.
- the attenuation peak is separated in each recording layer as schematically shown in FIG.
- the waveform of the transmitted light can be detected.
- the condensing point scan may be performed on the entire recording layer (L1 to Ln), or may be performed on only a part of the recording layers.
- the waveform of FIG. 4 has shown typically the waveform in the case of two photon absorption as an example. In this way, a waveform of transmitted light in which the attenuation peak of each recording layer is separated is obtained. If this is differentiated, a so-called S-shaped waveform as a focus error signal can be detected.
- the zero-cross point of the S-shaped waveform corresponds to the attenuation peak, and this position is the optimum focal point in each recording layer. Therefore, if the condensing point is positioned at the optimum focal point to be detected, it is possible to perform accurate focusing on an arbitrary recording layer. Since the attenuation rate of transmitted light due to multiphoton absorption depends on the light intensity, the magnitude of the attenuation peak can be adjusted by changing the output of the laser beam, thereby detecting a good S-shaped waveform. it can.
- the focus control device 5 As an example, the focus is drawn into an arbitrary recording layer (for example, the recording layer L1) of the optical disc D, a recording mark (44) is formed on the recording layer L1, information is recorded, and the recorded information is recorded. A series of operations until reproduction and an operation of performing a focus jump to the recording layer L2 will be described.
- the present embodiment relates to a novel focus control method, and known methods can be used for rotation control and tracking control. Therefore, in the following explanation, detailed explanation about rotation control and trunking control is omitted.
- the transmitted light is detected by the first photodetector 55 and further subjected to differential processing by the first signal processor 61, so that the focus error signal is generated in each recording layer (L1 to Ln) as shown in FIG. Can be detected, and the optical length of the optimum focal point of each recording layer (L1 to Ln) is obtained from the zero cross points. Further, the interlayer distance is obtained using the refractive index of the gap layer 42. Information on the obtained S-shaped waveform and interlayer distance is stored in the memory 65.
- the optical pickup / actuator driver 63 adjusts the position of the optical pickup unit 12 based on the information on the optical length of the optimum focal point and the interlayer distance, and the focus is drawn into the target recording layer L1.
- the tracking pull-in is performed, and the position of the two lenses (53a, 53b) of the spherical aberration corrector 53, which is a beam expander, is corrected to optimally correct the spherical aberration.
- the recording mark (44) is formed on the recording layer L1 by irradiating the laser beam with the second output value for forming the recording mark. Then, information is recorded on the optical disc D.
- the focus servo loop is canceled at this time, but in this embodiment, the focus servo loop is kept in operation while the recording laser light is being irradiated. can do.
- the focus can be drawn into an arbitrary recording layer in the same manner as described above.
- tracking pull-in and spherical aberration correction are further performed.
- the attenuation of the transmitted light in the recording layer to be reproduced is detected, and the focus servo is performed according to the focus error signal similar to that in FIG. 5, and the reproduction laser beam is irradiated while performing the tracking servo by the tracking error signal.
- the read RF signal is detected by the second photodetector 57 and processed by the second signal processor 62 to reproduce information.
- the reproduction laser light may be emitted from a different transmitter of the laser light source, or a laser light source (not shown) different from the laser light source may be used.
- the focus control can be performed by the astigmatism method, the knife edge method, or the like as in the prior art. Accordingly, the reproduction laser beam is irradiated, the read RF signal is detected by the second photodetector 57, and reproduction is performed, and the astigmatism method using the reflected light detected by the second photodetector 57 is used. A focus error may be detected, and focus servo may be performed by a method similar to the conventional method.
- focus pull-in is performed on the recording layer L2 based on the information on the optical length of the optimum focal point and the interlayer distance.
- tracking pull-in is performed, and adjustment is performed so that the correction of the spherical aberration is optimal, thereby completing the focus jump.
- the focus control method of this embodiment paying attention to the characteristic that multiphoton absorption occurs only in the vicinity of the focal point of the laser beam, it occurs when the laser beam is condensed on at least one layer of the recording layer 41.
- a focus error signal separated by each recording layer is detected even for an optical disc D having a multilayer structure with low reflectance at each layer interface. be able to. Therefore, if focus control is performed according to the detected focus error signal, it is possible to perform highly accurate focus control on any recording layer (L1 to Ln).
- an unintended refractive index change occurs in the recording layer by irradiating the recording layer with laser light with an output that does not cause a physical or chemical irreversible change.
- focus control can be performed.
- the change in optical characteristics due to the multiphoton absorption used in this embodiment reduces the transmittance when the laser beam is condensed, and the condensing is released. In this case, a reversible phenomenon of returning to the original state occurs, and a new focus control method using multiphoton absorption is realized.
- the focus control system of the present embodiment since a special focus control material such as a fluorescent dye as in Patent Document 3 is not used, there is versatility that it can be applied to an existing optical disc D.
- a detection system the first photodetector 55 and the first signal processor 61 for detecting the transmitted light.
- high-precision focus control can be performed even for a multilayer optical disk having a low reflectivity at each layer interface without complicating the optical system and the detection system as compared with the conventional configuration.
- the attenuation of transmittance due to multiphoton absorption is used for focus control, so recording is performed while irradiating a high-power laser beam for recording.
- a focus error signal can be detected. Therefore, it is not necessary to cancel the focus servo loop as in the prior art, and focus servo can be performed during recording.
- the focus control method of the present embodiment makes it possible to perform recording with higher accuracy than in the past.
- the focus control method of this embodiment capable of performing such high-precision recording is not limited to the multilayer optical disk shown in FIG. 1, but an optical disk having a reflective layer in each layer, or 10 recording layers. It is possible to apply to a conventional optical disk that is less than the above.
- FIG. 6 is a diagram schematically showing a part of the multilayer structure of the optical disc D applied to this embodiment.
- the optical disc D has a configuration in which a reflective layer 45 is provided between a transparent resin substrate 4 and a multilayer structure including a recording layer and a gap layer.
- the material of the reflective layer 45 is not particularly limited, and a known reflective material can be used.
- the optical disc D applied to the present embodiment has a configuration in which the recording layer 45 is provided on the surface opposite to the surface on which the laser light is incident, and each layer is not provided with a reflective layer. It is suppressed.
- FIG. 7 is a schematic configuration diagram of the focus control device 5 to which the present embodiment is applied.
- a first photodetector 55 for detecting the attenuation of transmittance due to multiphoton absorption is arranged on the objective lens 54 side.
- the transmitted light that passes through the structure and is reflected by the reflective layer 45 is detected.
- the first light detection unit 55 is preferably arranged around the objective lens 54 so that the reflected transmitted light can be reliably detected.
- the light receiving portion (for example, a light receiving element such as a photodiode) of the first photodetector 55 is preferably disposed over the entire circumference of the objective lens 54, but may be partially disposed. More preferably, the first photodetector 55 is provided in a housing that holds the objective lens 54.
- the first photodetector 55 can be shared with the second photodetector 62 that detects the read RF signal.
- the first signal processor 63 and the second signal processor 62 can be shared. Even in such a configuration, it is possible to detect the attenuation of the transmittance due to the multiphoton absorption, and therefore it is possible to perform the same focus control as in the first and second embodiments.
- the first to third embodiments in which the focus control is performed by detecting the attenuation of the transmittance due to the multiphoton absorption has been described.
- the fluorescence generated due to multiphoton absorption may be detected as a change in the optical characteristics. Similar to the attenuation of transmittance, this fluorescence also has a characteristic that occurs only near the focal point of the laser beam. Therefore, if fluorescence is detected by the first photodetector 55, it is possible to detect the peak of the fluorescence separated in each recording layer, similarly to the attenuation of the transmittance.
- an S-shaped waveform equivalent to that in FIG. 4 can be obtained, and focus control similar to that in the first to third embodiments is performed using this S-shaped waveform. Can do.
Landscapes
- Optical Recording Or Reproduction (AREA)
- Optical Head (AREA)
- Optical Record Carriers And Manufacture Thereof (AREA)
Abstract
Description
D 光ディスク
41 記録層(L1~Ln)
42 ギャップ層(G1~Gm)
45 反射層
5 フォーカス制御装置
50 レーザー光源
54 対物レンズ
55 第1光検出器
6 コントローラ
61 第1信号処理器
63 光ピックアップ・アクチュエータドライバ
まず、本発明の第1実施形態に従うフォーカス制御方式に適用される多層構造の光記録媒体について、光ディスクDを一例に挙げて説明する。但し、光ディスクに限定されることはなく、本実施形態は光カードメモリなどの他の種類の光記録媒体にも適用可能である。図1は、光ディスクDの多層構造の部分を模式的に示した図である。図1に示すように、光ディスクDは、透明な樹脂基板4の一面に、記録材料を含む記録層41(L1,L2,・・・,Ln)と、光学的に透明な材料のギャップ層42(G1,G2,・・・Gm)とが交互に積層された多層構造を有し、最後に透明なカバー層43が形成されている。本実施形態の光ディスクDは、記録層41とギャップ層42の界面に従来のような反射層を有しない構成であり、これにより各層界面の反射率を低く抑えている。さらに、記録層41とギャップ層42に屈折率差が小さい材料を用いることで、各層界面の反射率をさらに低く抑えている。このような多層構造とすることにより、層数を増加させても、最下層の記録層(Ln)への光学的なアクセスを可能にする。但し、各層間のフォーカスエラー信号を分離可能にするために、記録層41の材料には、少なくともギャップ層42の材料よりも多光子吸収を起こしやすい材料を用いる。すなわち、図1に示す光ディスクDの多層構造は、光学的に見れば各層の境界が殆どなくレーザー光を透過させる構造であるが、光子吸収特性で見れば各層に境界がある特長がある。なお、図1中の符号44は、屈折率を変化させた記録マークを模式的に示したものである。
まず、図8に示したようなドライブ装置の支持部10に光ディスクDが装着されると、スピンドルモータ11を駆動させて光ディスクDを回転させると共に、光ピックアップ部12を光ディスクDの内周側下方位置に移動させる。続いて、レーザー光源50及び対物レンズ54を含むレーザー光照射手段から第1出力値でレーザー光を照射すると共に、光ピックアップ部12(特に、対物レンズ54と球面収差補正器53)を光軸方向に走査して光ディスクDの深さ方向(Z方向)に集光点をスキャンさせる。そして、第1光検出器55で透過光を検出し、さらに第1信号処理器61で微分処理することによって、図4に一例を示したような各記録層(L1~Ln)でフォーカスエラー信号が分離されたS字波形を検出することができ、それらのゼロクロス点から各記録層(L1~Ln)の最適合焦点の光学長を求める。さらに、ギャップ層42の屈折率を用いて層間距離を求める。得られたS字波形及び層間距離の情報は、メモリ65に格納する。
上記のようにして記録層L1に対するフォーカスの引き込みから球面収差補正までが完了すると、記録マークを形成するための第2出力値でレーザー光を照射し、記録層L1に記録マーク(44)を形成して光ディスクDに情報を記録していく。ここで、従来の反射光を利用する方式では、このときフォーカスサーボループを解除していたが、本実施形態においては記録用レーザー光を照射している最中にもフォーカスサーボループを稼動状態にすることができる。すなわち、記録用の高出力レーザー光を照射すると、記録層の屈折率が変化することで透過光の波形にも変化が生じるものの、多光子吸収に起因する透過率の減衰ピークを検出することは可能であるので、図5に模式的に示す最適合焦点(すなわち、最適記録点)に対するフォーカスサーボを行うことによって、より高精度な記録を確実なものとすることができる。但し、必ずしも記録の際にフォーカスサーボを行う必要はなく、フォーカスの引き込みを完了した後は、フォーカスサーボループを解除するようにしてもよい。或いは、フォーカスエラーの検出のみ行うようにしてもよい。
上記のようにして記録が行われた光ディスクD、或いは、既に記録が行われている光ディスクを再生する場合も、上述の手順と同様にして任意の記録層に対するフォーカスの引き込みを行うことができる。フォーカスの引き込みが完了すると、さらにトラッキングの引き込み及び球面収差の補正を行う。さらに、再生を行う記録層における透過光の減衰を検出し、図5と同様のフォーカスエラー信号に従ってフォーカスサーボを行うと共に、トラッキングエラー信号によるトラッキングサーボを行いながら再生用のレーザー光を照射する。そして、読取RF信号を第2光検出器57で検出し、第2信号処理器62で処理することによって情報の再生を行う。再生用のレーザー光は、前記レーザー光源の異なる発信部から照射するようにしてもよく、或いはレーザー光源とは別のレーザー光源(不図示)を用いるようにしてもよい。
また、記録層から別の記録層(例えば記録層L1からL2)へフォーカスジャンプを行う場合には、先ず記録層L1に対するフォーカスサーボ及びトラッキングサーボを解除する。次いでメモリ65に格納されている層間距離の情報を利用して記録層L2に対する球面収差の補正値を推定し、この推定値を用いて球面収差補正器53の2枚のレンズ(53a,53b)の位置を予め調整する。この後、光ピックアップ・アクチュエータドライバ63により光ピックアップ部12を光軸方向に移動させて記録層L2へのフォーカスジャンプを実行する。そして記録層L1の場合と同様に、最適合焦点の光学長及び層間距離の情報を元にして記録層L2に対するフォーカス引き込みを行う。フォーカスの引き込みが完了すると、トラッキング引き込みを行い、球面収差の補正が最適になるように調整して、フォーカスジャンプを完了する。
続いて、本発明の第2実施形態について説明する。本実施形態に従うフォーカス制御方式は、多光子吸収に起因する透過率の減衰を検出することは第1実施形態と同様であるが、透過光を光ディスクDで反射させて、その反射光を検出するようにした実施形態である。従って、第1実施形態と同じ構成については、同じ符号を付すことによって詳しい説明を省略する。
さらに、第1及び第2実施形態の変形例として、第1光検出器55を、読取RF信号を検出する第2光検出器62と共用にすることができる。同様に、第1信号処理器63と第2信号処理器62を共用にすることができる。このような構成においても、多光子吸収に起因する透過率の減衰を検出することができ、従って第1及び第2実施形態と同様のフォーカス制御を行うことが可能である。しかも、本実施形態のように構成すれば、より確実に、光学系及び検出系を複雑化することなく、各層界面の反射率が低い多層構造の光ディスクDに対するフォーカス制御を実現することが可能である。
Claims (24)
- 多層構造の光記録媒体に適用される光ピックアップのフォーカス制御装置であって、
前記光記録媒体にレーザー光を照射するレーザー光源、前記レーザー光を集光する対物レンズを含むレーザー光照射手段と、
前記レーザー光が記録層の少なくとも一層に集光した際に生じる多光子吸収に伴う光学特性の変化を検出する光検出器と、
前記光検出器の検出結果に従って、前記多層構造の任意の記録層に対して光ピックアップのフォーカス制御を行う制御手段と、
を備えたことを特徴とするフォーカス制御装置。 - 前記レーザー光は、記録層に物理的又は化学的な非可逆変化を生じさせない出力で照射することを特徴とする請求項1に記載のフォーカス制御装置。
- 前記光記録媒体に情報を記録する場合、前記レーザー光は、記録層に物理的又は化学的な非可逆変化が生じる記録用の出力で照射され、
前記記録層に記録マークを形成すると共に、前記多光子吸収に伴う光学特性の変化の検出結果に従ってフォーカス制御を行うことを特徴とする請求項1に記載のフォーカス制御装置。 - 前記光記録媒体の情報を再生する場合、前記レーザー光は、記録層に物理的又は化学的な非可逆変化を生じさせない再生用の出力で照射され、
前記多光子吸収に伴う光学特性の変化の検出結果に従ってフォーカス制御を行うことを特徴とする請求項1に記載のフォーカス制御装置。 - 前記レーザー光源は、記録層に物理的又は化学的な非可逆変化を生じさせる出力値と、記録層に物理的又は化学的な非可逆変化を生じさせない出力値でレーザー光を照射可能な、少なくとも2値の出力値をとる出力値制御機能をもつレーザー光源であることを特徴とする請求項2~4のいずれか1項に記載のフォーカス制御装置。
- 前記光学特性の変化は、多光子吸収に起因するレーザー光の透過率の減衰であることを特徴とする請求項1に記載のフォーカス制御装置。
- 前記光学特性の変化は、多光子吸収に起因する蛍光の発生であることを特徴とする請求項1に記載のフォーカス制御装置。
- 前記光検出器は、光記録媒体を介して前記対物レンズと対向する位置に配置され、前記光検出器を対物レンズと同期に走査させる走査手段をさらに備えることを特徴とする請求項1に記載のフォーカス制御装置。
- 前記光検出器は、光記録媒体を介して前記対物レンズと対向する位置に配置され、前記対物レンズの走査経路に沿うように形成された細長いバンド形状であることを特徴とする請求項1に記載のフォーカス制御装置。
- 前記光検出器は、前記対物レンズの周囲に配置され、対物レンズと光検出器を一体的に走査させる走査手段をさらに備えることを特徴とする請求項1に記載のフォーカス制御装置。
- 前記光検出器は、再生時の読取RF信号を検出する光検出器と共用であることを特徴とする請求項1に記載のフォーカス制御装置。
- 請求項1~11のいずれか1項に記載のフォーカス制御装置を含むことを特徴とする光ピックアップ装置。
- 請求項12に記載の光ピックアップ装置を含むことを特徴とする光記録媒体のドライブ装置。
- 多層構造の光記録媒体に適用される光ピックアップのフォーカス制御方法であって、
前記光記録媒体の記録層にレーザー光を照射し、前記レーザー光が前記記録層の少なくとも一層に集光した際に生じる多光子吸収に伴う光学特性の変化を検出し、その検出結果に従って、前記多層構造の任意の記録層に対して光ピックアップのフォーカス制御を行うことを特徴とするフォーカス制御方法。 - 前記レーザー光は、記録層に物理的又は化学的な非可逆変化を生じさせない出力で光記録媒体に照射することを特徴とする請求項14に記載のフォーカス制御方法。
- 前記光記録媒体に情報を記録する際には、
前記光記録媒体の記録層に物理的又は化学的な非可逆変化が生じる記録用の出力でレーザー光を照射し、記録層に記録マークを形成すると共に、前記多光子吸収に伴う光学特性の変化の検出結果に従ってフォーカス制御を行うことを特徴とする請求項14に記載のフォーカス制御方法。 - 前記光記録媒体の情報を再生する際には、
前記光記録媒体の記録層に物理的又は化学的な非可逆変化を生じさせない出力でレーザー光を照射し、前記多光子吸収に伴う光学特性の変化の検出結果に従ってフォーカス制御を行うことを特徴とする請求項14に記載のフォーカス制御方法。 - 前記光学特性の変化は、多光子吸収に起因するレーザー光の透過率の減衰であることを特徴とする請求項14に記載のフォーカス制御方法。
- 前記光学特性の変化は、多光子吸収に起因する蛍光の発生であることを特徴とする請求項14に記載のフォーカス制御方法。
- 請求項14~19のいずれか1項に記載のフォーカス制御方法に適用される多層構造の光記録媒体であって、記録材料を含む記録層と、光学的に透明なギャップ層とが交互に積層した構造を有することを特徴とする光記録媒体。
- 前記光記録媒体は、記録層とギャップ層の界面に反射層を有しないことを特徴とする請求項20に記載の光記録媒体。
- 前記検出する光学特性の変化が多光子吸収に起因するレーザー光の透過率の減衰である場合、前記光記録媒体の多層構造は、前記レーザー光が入射される面とは反対側の面に反射層を有することを特徴とする請求項20又は21に記載の光記録媒体。
- 光記録媒体に情報を記録する際の光ピックアップのフォーカス制御方法であって、
前記光記録媒体の記録層に物理的又は化学的な非可逆変化を生じさせる出力で記録用レーザー光を照射し、前記レーザー光を記録層の少なくとも一層に集光させて記録マークを形成すると共に、前記レーザー光が記録層に集光した際に生じる多光子吸収に伴う光学特性の変化を検出し、その検出結果に従って光ピックアップのフォーカス制御を行うことを特徴とするフォーカス制御方法。 - 光記録媒体に適用される光ピックアップのフォーカス制御方法であって、
前記光記録媒体の記録層に物理的又は化学的な非可逆変化を生じさせない出力でレーザー光を照射し、前記多光子吸収に伴う光学特性の変化の検出結果に従ってフォーカスの引き込みを行う工程と、
前記フォーカスの引き込みをした記録層に対して、物理的又は化学的な非可逆変化を生じさせる出力でレーザー光を照射し、前記記録層に記録マークを形成すると共に、前記多光子吸収に伴う光学特性の変化の検出結果に従ってフォーカスサーボを行う工程と、を含むことを特徴とするフォーカス制御方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010520694A JPWO2010007655A1 (ja) | 2008-07-14 | 2008-07-14 | フォーカス制御装置、フォーカス制御方法、光ピックアップ装置、ドライブ装置及び光記録媒体 |
PCT/JP2008/062692 WO2010007655A1 (ja) | 2008-07-14 | 2008-07-14 | フォーカス制御装置、フォーカス制御方法、光ピックアップ装置、ドライブ装置及び光記録媒体 |
US13/003,918 US20110176402A1 (en) | 2008-07-14 | 2008-07-14 | Focus control apparatus, focus control method, optical pickup apparatus, drive apparatus, and optical recording medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2008/062692 WO2010007655A1 (ja) | 2008-07-14 | 2008-07-14 | フォーカス制御装置、フォーカス制御方法、光ピックアップ装置、ドライブ装置及び光記録媒体 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010007655A1 true WO2010007655A1 (ja) | 2010-01-21 |
Family
ID=41550074
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2008/062692 WO2010007655A1 (ja) | 2008-07-14 | 2008-07-14 | フォーカス制御装置、フォーカス制御方法、光ピックアップ装置、ドライブ装置及び光記録媒体 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20110176402A1 (ja) |
JP (1) | JPWO2010007655A1 (ja) |
WO (1) | WO2010007655A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022519822A (ja) * | 2019-02-19 | 2022-03-25 | アルコン インコーポレイティド | レーザビームの焦点の位置の較正 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002222526A (ja) * | 2000-11-21 | 2002-08-09 | Matsushita Electric Ind Co Ltd | 光学情報記録再生装置 |
JP2006048832A (ja) * | 2004-08-04 | 2006-02-16 | Ricoh Co Ltd | 光情報記録再生方法 |
WO2007055249A1 (ja) * | 2005-11-08 | 2007-05-18 | Matsushita Electric Industrial Co., Ltd. | 情報記録媒体及びその製造方法並びに光学情報記録再生装置 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002175678A (ja) * | 2000-09-26 | 2002-06-21 | Hitachi Maxell Ltd | 誤挿入防止機能を有するカートリッジと駆動装置 |
KR100448323B1 (ko) * | 2000-11-21 | 2004-09-10 | 마츠시타 덴끼 산교 가부시키가이샤 | 광학정보 기록재생장치 |
US6865142B2 (en) * | 2002-03-13 | 2005-03-08 | Mempile Inc. | Method for tracking data in an optical storage medium |
JP4433325B2 (ja) * | 2007-12-03 | 2010-03-17 | ソニー株式会社 | 光情報記録媒体 |
-
2008
- 2008-07-14 JP JP2010520694A patent/JPWO2010007655A1/ja active Pending
- 2008-07-14 WO PCT/JP2008/062692 patent/WO2010007655A1/ja active Application Filing
- 2008-07-14 US US13/003,918 patent/US20110176402A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002222526A (ja) * | 2000-11-21 | 2002-08-09 | Matsushita Electric Ind Co Ltd | 光学情報記録再生装置 |
JP2006048832A (ja) * | 2004-08-04 | 2006-02-16 | Ricoh Co Ltd | 光情報記録再生方法 |
WO2007055249A1 (ja) * | 2005-11-08 | 2007-05-18 | Matsushita Electric Industrial Co., Ltd. | 情報記録媒体及びその製造方法並びに光学情報記録再生装置 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022519822A (ja) * | 2019-02-19 | 2022-03-25 | アルコン インコーポレイティド | レーザビームの焦点の位置の較正 |
JP7455848B2 (ja) | 2019-02-19 | 2024-03-26 | アルコン インコーポレイティド | レーザビームの焦点の位置の較正 |
Also Published As
Publication number | Publication date |
---|---|
US20110176402A1 (en) | 2011-07-21 |
JPWO2010007655A1 (ja) | 2012-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4580033B2 (ja) | 多層光記録媒体の製造方法および多層光記録媒体記録装置 | |
US20040207944A1 (en) | Optical recording/reproduction device and focal point control method | |
JP5100665B2 (ja) | 光ピックアップ装置 | |
JP2008140444A (ja) | 多層光記録媒体の光記録方法、光記録装置、多層光記録媒体 | |
JP4200335B2 (ja) | 情報記録媒体、並びに情報記録装置及び方法 | |
JP4326960B2 (ja) | 光ディスク装置 | |
EP1942500B1 (en) | Optical pickup including unit to remove crosstalk in multi-layered disk, and optical recording and/or reproducing apparatus including the optical pickup | |
JPWO2010150380A1 (ja) | ガイド層分離型の光記録媒体、光記録媒体ドライブ装置及び記録層アクセス方法 | |
JP4510029B2 (ja) | 光学式記録媒体の記録再生方法および記録再生装置 | |
KR100661898B1 (ko) | 광디스크 장치 | |
WO2010007655A1 (ja) | フォーカス制御装置、フォーカス制御方法、光ピックアップ装置、ドライブ装置及び光記録媒体 | |
JP4549315B2 (ja) | 光ディスク装置 | |
JP2008052793A (ja) | 記録媒体およびそれを用いたサーボ信号検出方法、情報記録再生装置 | |
JP2005327395A (ja) | 光ピックアップ及びこれを用いた記録及び/又は再生装置 | |
JP2008243305A (ja) | 情報記録方法、情報記録装置 | |
US7936645B2 (en) | Optical disc device | |
JP2009008938A (ja) | 光情報記録装置、光ピックアップ、光情報記録方法及び光情報記録媒体 | |
JP3956146B2 (ja) | 光ディスク装置 | |
JP2007080442A (ja) | 光ピックアップおよび光ディスク装置 | |
JP5675460B2 (ja) | ディスク装置 | |
JP2006040432A (ja) | 光ピックアップ装置およびそのような光ピックアップ装置を備えた情報処理装置 | |
JPWO2007114389A1 (ja) | 光ピックアップ及び情報機器 | |
EP2267704A1 (en) | Optical pickup and optical disc device | |
JP2005346796A (ja) | 光ピックアップ及びこれを用いた記録及び/又は再生装置 | |
KR20050016276A (ko) | 광 기록 재생 장치 및 초점 제어 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08778163 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010520694 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13003918 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 08778163 Country of ref document: EP Kind code of ref document: A1 |