WO2010001883A1 - 経路切替方法、サーバ装置、境界ノード装置、経路切替システム及び経路切替プログラム - Google Patents

経路切替方法、サーバ装置、境界ノード装置、経路切替システム及び経路切替プログラム Download PDF

Info

Publication number
WO2010001883A1
WO2010001883A1 PCT/JP2009/061925 JP2009061925W WO2010001883A1 WO 2010001883 A1 WO2010001883 A1 WO 2010001883A1 JP 2009061925 W JP2009061925 W JP 2009061925W WO 2010001883 A1 WO2010001883 A1 WO 2010001883A1
Authority
WO
WIPO (PCT)
Prior art keywords
path
backup
node device
boundary node
route
Prior art date
Application number
PCT/JP2009/061925
Other languages
English (en)
French (fr)
Inventor
香里 清水
井上 一郎
塩本 公平
漆谷 重雄
Original Assignee
日本電信電話株式会社
大学共同利用機関法人情報・システム研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社, 大学共同利用機関法人情報・システム研究機構 filed Critical 日本電信電話株式会社
Priority to CN2009801253387A priority Critical patent/CN102077531B/zh
Priority to US12/999,113 priority patent/US8422360B2/en
Priority to EP09773461.0A priority patent/EP2312798B1/en
Publication of WO2010001883A1 publication Critical patent/WO2010001883A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/02Topology update or discovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0654Management of faults, events, alarms or notifications using network fault recovery
    • H04L41/0663Performing the actions predefined by failover planning, e.g. switching to standby network elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/22Alternate routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/28Routing or path finding of packets in data switching networks using route fault recovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/70Admission control; Resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/70Admission control; Resource allocation
    • H04L47/72Admission control; Resource allocation using reservation actions during connection setup
    • H04L47/726Reserving resources in multiple paths to be used simultaneously
    • H04L47/728Reserving resources in multiple paths to be used simultaneously for backup paths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/70Admission control; Resource allocation
    • H04L47/82Miscellaneous aspects
    • H04L47/826Involving periods of time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/55Prevention, detection or correction of errors
    • H04L49/552Prevention, detection or correction of errors by ensuring the integrity of packets received through redundant connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/14Multichannel or multilink protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/40Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass for recovering from a failure of a protocol instance or entity, e.g. service redundancy protocols, protocol state redundancy or protocol service redirection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/50Reducing energy consumption in communication networks in wire-line communication networks, e.g. low power modes or reduced link rate

Definitions

  • the present invention relates to a path of a core network that accommodates a service network including a user node device, and a path on the operating side when a failure occurs by a server device that manages path information including a path of an operating side path and a path of a backup side path on a time axis
  • the present invention relates to a network switching technology for switching from a backup path to a backup path.
  • Non-Patent Document 1 In response to a request to establish a high-reliability path (active side path and backup side path) in the core network, it is known how to establish a high-reliability path in consideration of the current core network resources and switch to the backup side path when a failure occurs. (See, for example, Non-Patent Document 1).
  • Non-Patent Document 1 With the current regulations disclosed in Non-Patent Document 1, it is difficult to establish a highly reliable path after considering the core network resources in consideration of the time axis. Further, these high-reliability paths cannot be provided in response to connection requests from users (on-demand user requests).
  • an object of the present invention is to provide a path switching technique for solving the above-described problems and establishing a highly reliable path in response to a connection request from a user in consideration of a time axis.
  • the path switching method provides a boundary node apparatus in which a path of a core network that accommodates a service network including a user node apparatus is located at a boundary between the service network and the core network.
  • a path switching method for switching by a server apparatus that stores path information including a path of a working side path established between and a path of a backup side path switched from the working side path for each time.
  • an operation-side path establishment step for establishing the operation-side path calculated by the server device between the boundary node devices via a relay node device that relays the core network, and failure of the core network And detecting a failure of the core network, the boundary node device, based on the path of the backup path received from the server device, detects the failure of the core network.
  • a backup-side path establishing step for establishing the backup-side path between the boundary node devices, and the operating-side path through the established backup-side path.
  • a standby path establishment reception step for receiving a path of a side path from the boundary node device, and a path information update step of updating the path information based on the path of the backup path switched by the boundary node device. It is characterized by including and performing.
  • the server device manages path information including the path of the operation side path and the path of the backup path for each time as information indicating the resources of the core network.
  • the server apparatus can manage the operation side path used by the user node apparatus for each time, for example.
  • the server apparatus calculates the path of the operation side path and the path of the protection side path in response to the connection request from the user node apparatus, and requests the boundary node apparatus to establish the operation side path.
  • the server device can transmit the path of the backup path to the boundary node device before a failure occurs in the core network.
  • the boundary node device establishes the operation side path in response to the operation side path establishment request from the server device. Further, when a failure occurs in the core network, the boundary node device can switch from the operation side path to the backup side path and perform quick recovery.
  • the route switching method according to the second invention of the present application is an operation for establishing a route of a core network accommodating a service network including a user node device between border node devices located at a boundary between the service network and the core network.
  • An operation side path establishment step for establishing the operation side path calculated between the boundary node devices and a failure detection step for detecting a failure of the core network are executed to detect the failure of the core network.
  • the boundary node device executes a backup-side path confirmation step for transmitting the backup-side path confirmation request to the server device, and the server device sends the backup-side path confirmation request from the border node device. And a backup path calculation step for calculating the backup path path, and the calculated backup path path is sent to the boundary node device.
  • a backup side path response step, and the boundary node device performs the backup side path via the relay node device based on the path of the backup side path received from the server device.
  • a backup path establishing step established between the boundary node devices, a path switching step of switching the working path to the established backup path, and a backup side transmitting the route of the switched backup path to the server device A path establishment transmission step, wherein the server apparatus receives from the boundary node apparatus the path of the protection path switched by the boundary node apparatus, and the boundary node apparatus And a path information update step for updating the path information based on the path of the backup-side path that has been switched.
  • the server device manages path information including the path of the operation side path and the path of the backup path for each time as information indicating the resources of the core network.
  • the server apparatus can manage the operation side path used by the user node apparatus for each time, for example.
  • the server apparatus calculates the path of the operating side path in response to a connection request from the user node apparatus, and requests the boundary node apparatus to establish the operating side path.
  • the boundary node device establishes the operation side path in response to the operation side path establishment request from the server device. Further, when a failure occurs in the core network, the boundary node device transmits a backup path confirmation request to the server device.
  • the server apparatus calculates a path of the backup path using path information when a failure occurs in the core network, and transmits the path of the backup path to the boundary node apparatus.
  • the server device can calculate the route of the backup path using the latest path information at the time of the failure.
  • the boundary node device can perform recovery by switching from the operation side path to the backup side path.
  • the server device of the third invention of the present application is connected to a core network that accommodates a service network including a user node device, and is established between a boundary node device located at a boundary between the service network and the core network.
  • a connection request receiving means for receiving a connection request to the core network from the user node device, and in response to the connection request, based on the path information, the path of the operation side path and the A route calculating means for calculating a route of the backup path, a route of the operating path calculated, a route of the backup path, and the operation
  • a reliable path request means for transmitting a request for establishing a side path to the boundary node device, and a standby side for receiving the path of the backup side path switched by the boundary node device due to a failure of the core network from the boundary node device It comprises path establishment
  • the server device manages the path information including the path of the operation side path and the path of the backup path for each time as information indicating the resources of the core network.
  • the server apparatus can manage the operation side path used by the user node apparatus for each time, for example.
  • the server device calculates a backup-side path almost simultaneously with the calculation of the operation-side path, and transmits the route of the backup-side path to the boundary node device.
  • the server device can transmit the path of the backup path to the boundary node device before a failure occurs in the core network, and can quickly recover.
  • the server device is connected to a core network that accommodates a service network including user node devices, and is established between boundary node devices located at the boundary between the service network and the core network.
  • a connection request receiving means for receiving a connection request to the core network from the user node device, and calculating a path of the operation side path based on the path information according to the connection request Route calculating means for transmitting the backup path when the boundary node device detects a failure of the core network.
  • the backup side path calculation means for calculating the path of the backup side path, the calculated path of the operation side path, the path of the backup side path, and the request for establishment of the operation side path High-reliability path requesting means for transmitting to the boundary node device, standby path establishment receiving means for receiving from the boundary node device the path of the backup path switched by the boundary node device due to a failure of the core network, and the boundary Path information updating means for updating the path information based on the path of the backup-side path switched by the node device.
  • the server device manages the path information including the path of the operation side path and the path of the backup path for each time as information indicating the resources of the core network.
  • the server apparatus can manage the operation side path used by the user node apparatus for each time, for example.
  • the server apparatus calculates a path of the backup path using path information when a failure occurs in the core network, and transmits the path of the backup path to the boundary node apparatus.
  • the server device transmits the backup path path calculated using the latest path information to the boundary node device, so that the situation where the boundary node device cannot actually establish the backup path can be prevented. Recovery can be performed.
  • the server device of the fifth invention of the present application is the server device of the third and fourth inventions of the present application, wherein a reserved path route established between the border node devices at a preset reservation time and the reserved path is reserved or Resource management means for managing the path information including a status indicating established and the reserved time, wherein the high-reliability path requesting means includes a route of the reserved path managed by the resource managing means and the reserved time. Is transmitted to the boundary node device.
  • the server device manages path information including the route of the reserved path and the reserved time of the reserved path. Then, the server device confirms the resources that can be provided, calculates a route for the path according to the on-demand request, and transmits this to the boundary node as a reserved path. As a result, the server device can cause a predetermined user node device to use the reserved path at a certain reserved time.
  • the boundary node device is located at the boundary between the service network including the user node device and the core network accommodating the service network, A boundary node device that establishes an operating-side path with another boundary node device, wherein the server device is connected via a relay node device that relays the core network in response to a request for establishing the operating-side path.
  • An operational path establishing means for establishing the calculated operational path with the other boundary node; a failure detecting means for detecting a failure of the core network when establishing the operational path; and When the failure detection means detects a failure of the core network, the backup side path is switched from the operation side path received from the server device.
  • a backup path establishment unit that establishes the backup path with the other boundary node, a path switching unit that switches the working path to the established backup path, and the switched backup path And backup side path establishment / transmission means for transmitting a path of the side path to the server device.
  • the boundary node device receives the route on the operation side path and the route on the backup side path from the server device. Further, the boundary node device establishes the operation side path in response to the operation side path establishment request from the server device. Then, when a failure occurs in the core network, the boundary node device switches from the operation side path to the backup side path. As a result, when a failure occurs in the core network, the boundary node device can switch from the operation side path to the backup side path and perform quick recovery.
  • boundary node device of the seventh invention of the present application is located at the boundary between the service network including the user node device and the core network that accommodates the service network, and in response to a request for establishment of the operation side path from the server device, A boundary node device that establishes an operating-side path with another boundary node device, wherein the server device is connected via a relay node device that relays the core network in response to a request for establishing the operating-side path.
  • An operational path establishment means for establishing the calculated operational path between the boundary node devices, a failure detection means for detecting a failure of the core network when the operational path is established, and the failure detection
  • a means detects a failure in the core network, it sends a confirmation request for a backup side path to be switched from the operation side path to the server device.
  • a backup-side path that establishes the backup-side path between the boundary node devices via the relay node device based on the backup-side path confirmation means that transmits the backup-side path and the route of the backup-side path received from the server device.
  • An establishment means, path switching means for switching the operation side path to the established backup path, and backup path establishment transmission means for transmitting the route of the switched backup path to the server device.
  • the boundary node device receives the path of the operation side path from the server device. Further, the boundary node device establishes the operation side path in response to the operation side path establishment request from the server device. Then, when a failure occurs in the core network, the boundary node device transmits a route path confirmation request to the server device. Further, in response to this confirmation request, the boundary node device receives the path of the backup path calculated from the path information when the failure occurred in the core network from the server device, and receives the backup path from the operation path. Switch to. As a result, the boundary node device can perform recovery by switching from the operation side path to the backup side path calculated using the latest path information at the time of failure.
  • the boundary node device is the boundary node device according to the sixth and seventh aspects of the present invention, which receives from the server device a reserved path route established with the other boundary node device at the reserved time.
  • the operation side path establishing means establishes the reserved path with the other boundary node.
  • the server device confirms the resources that can be provided, the route for the path corresponding to the on-demand request is calculated, and the boundary node receives this from the server device at the reserved time as a reserved path. To do. Then, the boundary node device establishes this reserved path with another boundary node. As a result, the boundary node device can cause a predetermined user node device to use the reserved path at a certain reservation time.
  • the route switching system according to the ninth to seventeenth aspects of the present invention includes the server device according to any of the third to fifth aspects of the present invention and the boundary node device according to any of the sixth to eighth aspects of the present invention.
  • the server device manages the path information including the path of the operation side path and the path of the backup path for each time as information indicating the resources of the core network. Accordingly, the server device can manage, for example, user node devices that use the operation-side path for each time. Further, the server apparatus calculates the path of the operating side path in response to a connection request from the user node apparatus, and requests the boundary node apparatus to establish the operating side path. Then, the boundary node device establishes the operation side path in response to the operation side path establishment request from the server device. Further, the server device calculates the backup path and transmits it to the boundary node device substantially simultaneously with the calculation of the operation side path or in response to a backup path confirmation request from the boundary node device. Then, when a failure occurs in the core network, the boundary node device switches from the operation side path to the backup side path. As a result, when a failure occurs in the core network, recovery can be performed by switching from the operation side path to the backup side path.
  • route switching program of the present inventions 18 to 20 makes the computer function as each means constituting the server device of any of the third to fifth inventions of the present application. With this configuration, the computer installed with this program functions as the server device described above.
  • the present invention it is possible to provide a network switching technique that establishes a highly reliable path in response to a connection request from a user in consideration of a time axis. Furthermore, according to the present invention, network resources can be managed on a time axis, so that network utilization efficiency can be improved and flexible operation is possible.
  • FIG. 1 is an explanatory view schematically showing an outline of a route switching system according to the first embodiment of the present invention.
  • the path switching system 1 includes a core network 2, a plurality of service networks 3 and 4, a server device 5, and a network management server device 6. Further, the core network 2 establishes an operation side path 61 between the caller node device (boundary node device) 10 and the callee node device 20 (another boundary node device) via the relay node device 30.
  • the path switching system 1 provides the resources (bandwidth) of the established operation side path 61 to the user node devices 40 and 50 included in the service networks 3 and 4.
  • the bandwidth of the operation side path 61 is used for the traffic between the user node devices 40 and 50.
  • the route switching system 1 establishes the backup side path 63 when the resources of the operation side path 61 cannot be provided to the user node devices 40 and 50 due to a failure, and switches from the operation side path 61 to the backup side path 63.
  • the resources of the backup path 63 are provided to the user node devices 40 and 50.
  • the server device 5 stores path information, details of which will be described later.
  • the network management server device 6 mediates between the server device 5 and the sender node device 10.
  • the route switching system 1 does not need to include the network management server device 6. In this case, the server device 5 and the caller node device 10 may be connected.
  • the caller node device 10 includes a CPU (Central Processing Unit), a RAM (Random Access Memory), an HDD (Hard Disk Drive), and a NIC (Network Interface Card) for communication, and an optical cross-connect (OCX). ), A device composed of a router, a switch and the like. Further, the caller node apparatus 10 establishes a path in conformity with RSVP-TE (Resource-reServation-Protocol-Traffic-Engineering) such as RFC3473.
  • RSVP-TE Resource-reServation-Protocol-Traffic-Engineering
  • the sender node device 10 includes interfaces 11, 13, and 15.
  • the interface 11 is an interface for connecting to the operation side path 61.
  • the interface 13 is an interface for connecting to the backup path 63.
  • the interface 15 is an interface for connecting to the service network 3.
  • the callee node device 20 is the same device as the caller node device 10 and includes interfaces 21, 23 and 25.
  • the interface 21 is an interface for connecting to the operation side path 61.
  • the interface 23 is an interface for connecting to the backup path 63.
  • the interface 25 is an interface for connecting to the service network 4.
  • the caller node device 10 transmits a path establishment request to the callee node device 20, and, for example, operates with the interface 11 of the caller node device 10 and the interface 21 of the callee node device 20 as both ends.
  • a side path 61 is established. Further, when a failure occurs in the operation side path 61 of the core network 2, the caller node device 10, for example, has a spare with both the interface 13 of the caller node device 10 and the interface 23 of the callee node device 20.
  • a side path 63 is established. In other words, when the backup path 63 becomes a detour of the operation path 61 and a failure occurs in the operation path 61 of the core network 2, user traffic is transferred by switching from the operation path 61 to the backup path 63. To do.
  • the relay node device 30 is a device including, for example, an optical cross connect (OCX), a router, a switch, and the like.
  • OCX optical cross connect
  • FIG. 1 the operation side path 61 is relayed by the two relay node devices 30 and the backup side path 63 is relayed by the two relay node devices 30, but the number is not particularly limited.
  • the user node devices 40 and 50 are the same devices as the relay node device 30, and are devices including, for example, an optical cross connect (OCX), a router, and a switch.
  • the user node device 40 is connected to the caller node device 10.
  • the user node device 50 is connected to the callee node device 20.
  • the operation side path 61 and the backup side path 63 are optical paths configured by optical fibers, for example, GMPLS-LSP (Generalized Multi-Protocol Label Switching-Label Switched Path) and can be used as resources having a predetermined bandwidth. It is configured. Further, as shown in FIG. 1, the core network 2 forms a highly reliable path by the operation side path 61 and the backup side path 63.
  • GMPLS-LSP Generalized Multi-Protocol Label Switching-Label Switched Path
  • FIG. 2 is a block diagram illustrating configurations of the server device, the network management server device, the caller node device, the relay node device, and the callee node device according to the first embodiment of the present invention.
  • the server device 5 includes a connection request receiving unit 201, a resource management unit 202, a route calculation unit 203, a highly reliable path request unit 204, an operation side path request response reception unit 205, an operation Side path establishment / reception unit 206, backup side path establishment / reception unit 207, path information update unit 208, and storage unit 209.
  • the connection request receiving unit 201 receives a connection request (on-demand request) to the core network 2 from the user node device 40. Note that the user node device 40 may transmit this connection request to the server device 5 via the caller node device 10 or directly to the server device 5.
  • the resource management unit 202 will be described later.
  • the route calculation unit 203 calculates the route of the operation side path 61 based on the path information stored in the storage unit 209 described later in response to the connection request received by the connection request reception unit 201. Further, the route calculation means 203 calculates the route of the backup path 63 in response to this connection request.
  • the route calculation means 203 generates a logical (virtual) interface in the caller node device 10 that is the end point of the highly reliable path. Further, the route calculation means 203 confirms the presence / absence of a route as an AZ end point in the highly reliable path (operation side path 61) by the Edmond-Karp method.
  • the route calculation means 203 uses the virtual interface as the AZ end point in the highly reliable path (backup side path 63), and the highly reliable path (active side path 61). Check for a different route. If there is a route of this highly reliable path (operation side path 61), the route of this highly reliable path (operation side path 61) is stored in the path information of the storage means 209. Further, the route calculation means 203 confirms the presence or absence of the route of the path passing through the highly reliable path (logical IF) for the reserved path by the Edmond-Karp method. If there is this reserved path, the route of this reserved path is stored in the path information of the storage means 209.
  • the high-reliability path request unit 204 transmits the route of the operation side path 61 and the route of the backup side path 63 calculated by the route calculation unit 203 and the request for establishment of the operation side path 61 to the originator node device 10. .
  • the route calculation unit 203 calculates the route of the backup path 63 in advance and transmits it to the caller node device 10, so that when the caller node device 10 detects a failure, the operation side path 61. To the backup path 63 can be quickly switched.
  • the operating-side path request response receiving means 205 receives a message indicating that a request for establishing the operating-side path 61 has been received from the caller node device 10.
  • the operating-side path establishment receiving unit 206 receives a message indicating establishment of the operating-side path 61 from the sender node device 10 together with the route of the operating-side path 61.
  • the backup path establishment receiving unit 207 receives a route of the backup path 63 switched by the caller node device 10 when a failure occurs from the caller node device 10.
  • the path information update unit 208 will be described later.
  • the storage unit 209 is configured by, for example, a general memory or HDD, and stores path information and link information.
  • the link information includes, for example, node information, UNI (User Network Interface) link information, and node device link information.
  • the path information includes, for example, operating side path information, operating side path route information, backup side path information, backup side path route information, reserved path information, and reserved path route information.
  • the node information includes information related to each node device such as the caller node device 10, the callee node device 20, and the relay node device 30, such as a node device ID, a node device address, a node device name, and a node device type (for example, , TDM, Ether, Lambda, etc.) as data items.
  • the UNI link information includes information related to the connection from the user node device 40 to the caller node device 10 and the connection from the callee node device 20 to the user node device 50, for example, the UNI port ID, the user node device ID, and the boundary node Data items include a device ID, a UNI port type (for example, TDM, Ether, etc.), a band, a section name, a mounting position, and a user name.
  • a UNI port type for example, TDM, Ether, etc.
  • the node device link information is information related to the connection between the caller node device 10 and the callee node device 20, for example, a link ID, a caller node device ID, a caller node device address, and a caller node device interface ID.
  • the caller node device mounting position, the callee node device ID, the callee node device address, the callee node device interface ID, the callee node device mounting position, the link attribute (protection attribute), and the link type ( For example, TDM, Ether, etc.), bandwidth, and section name are included as data items.
  • the operation side path information is information related to the operation side path 61, for example, a path ID, a path identifier, a caller node device ID, a callee node device ID, a start time, an end time, unestablished and reserved.
  • the data items include status indicating establishment, requested bandwidth, path attribute, and path logical endpoint.
  • the backup path information includes data items similar to information on the backup path 63, for example, the operation path information.
  • the operation-side path route information is data items including information on the route of the operation-side path 61, for example, a path ID, a path identifier, and route information of the operation-side path 61 from the caller node device 10 to the callee node device 20.
  • the backup path path information includes data items similar to information on the path of the backup path 63, for example, the operation path path information.
  • the reserved path information includes information related to a reserved path, for example, a reservation ID, a reserved user ID, a service type, a caller node device ID, a caller UNI port ID, a callee node device ID, and a callee UNI port.
  • the data items include an ID, a reservation start time, a reservation end time, a status indicating reserved or established, a requested bandwidth, and a path attribute.
  • the reserved path is a highly reliable path (active side path 61 and backup side path 63) provided to a specific user node device 40, 50 from a preset reservation start time to a reservation end time. is there.
  • the reserved path route information includes information related to the route of the reserved path, for example, a reservation ID and route information of a reserved path from the caller node device 10 to the callee node device 20.
  • the path information update unit 208 updates the path information stored in the storage unit 209.
  • the path information update unit 208 sets the status of the operation side path information for the operation side path 61 to “unestablished”. Update from to "established”.
  • the backup path establishment receiving unit 207 receives the route of the backup path 63
  • the path information update unit 208 changes the status of the backup path information for the backup path 63 from “not established” to “established”. Update to Then, the path information update unit 208 updates the status of the operation side path information from “established” to “not established” for the established operation side path 61.
  • the resource management unit 202 manages the resources of the core network 2 on the time axis, that is, manages the reserved path for each time.
  • the resource management unit 202 refers to the reservation path information, and when a reservation path is set (for example, the status of the reservation path information is “reserved”), the route of the reservation path, the reservation start time, and the reservation end time The transmission is requested to the reliable path request means 204. Then, the high-reliability path requesting unit 204 transmits the route of the reservation path, the reservation start time, and the reservation end time to the caller node device 10 as the operation side path 61 secured by the caller node device 10 during the reservation time.
  • the resource management unit 202 uses (NW all resource information) ⁇ (all path information related to reservation start time to reservation end time) as resources of the core network 2 for performing path calculation in consideration of the time axis.
  • the NW total resource information indicates node information, UNI (User Network Interface) link information, and node device link information.
  • all the path information related to the reservation start time to the reservation end time is the operation side path information, the operation side path route information, the protection side path information, and the protection side path from the reservation start time to the reservation end time. It indicates route information, reserved path information, and reserved path route information. Since the reserved path is established using the resources of the highly reliable path, the resource management unit 202 needs to confirm the path information when establishing the reserved path.
  • the core network 2 can be flexibly operated, for example, by securing a reserved path in a predetermined user node device 40, 50 at a certain reservation time.
  • the reserved path information may be set by the resource management unit 202 in response to a request from the user node devices 40 and 50, or may be set in advance by an operator.
  • the network management server device 6 includes a resource management unit 202, a highly reliable path request unit 204, an operation side path request response reception unit 205, an operation side path establishment reception unit 206, a backup side path establishment reception unit 207, a storage Means 209.
  • a resource management unit 202 a highly reliable path request unit 204, an operation side path request response reception unit 205, an operation side path establishment reception unit 206, a backup side path establishment reception unit 207, a storage Means 209.
  • each means with which the network management server apparatus 6 is provided is the same as that of the server apparatus 5, description is abbreviate
  • the caller node device 10 includes a highly reliable path request receiving unit 211, an operating side path request responding unit 212, an operating side path establishing unit 213, an operating side path establishment transmitting unit 214, a failure A detection unit 215, a backup side path establishment unit 216, a path switching unit 217, a backup side path establishment transmission unit 218, a path information update unit 219, and a storage unit 220 are provided.
  • the high-reliability path request receiving unit 211 receives the operation path 61 route and the backup path path 63 and the operation path 61 establishment request from the server device 5.
  • the high-reliability path request receiving unit 211 stores the received path of the operation side path 61 and the path of the backup side path 63 in the path information of the storage unit 220.
  • the reliable path request receiving unit 211 receives the route of the reserved path, the reservation start time, and the reservation end time, it stores them in the reserved path information of the storage unit 220.
  • the operating-side path request response means 212 transmits a message indicating that the operating-side path 61 establishment request has been received to the server device 5.
  • the operation side path establishment means 213 will be described later.
  • the operation-side path establishment transmission unit 214 transmits the route of the operation-side path 61 established by the operation-side path establishment unit 213 to the server device 5.
  • the operation side path establishment unit 213 uses the operation side path 61 received by the reliable path request reception unit 211 as the originator node device 10. This is established with the callee node device 20.
  • the operating-side path establishing means 213 transmits a request for establishing the operating-side path 61 to the receiver node device 20 via the relay node device 30 together with the route of the operating-side path 61 and the route of the backup-side path 63.
  • the operation side path establishment means 213 establishes only the operation side path 61 when the link attribute (protection attribute) indicating that the protection side path 63 is established after the failure occurs is designated. Note that the operating-side path establishment unit 213 may secure the reserved path in the same manner as the operating-side path 61 when receiving the route of the reserved path.
  • the failure detection means 215 detects a failure of the core network 2 by, for example, RSVP-TE.
  • the backup path establishment unit 216 establishes the backup path 63 between the caller node device 10 and the callee node device 20 based on the route of the backup path 63 stored in the storage unit 220.
  • the protection path establishment unit 216 transmits a request for establishment of the protection path 63 to the protection path establishment unit 236 of the callee node device 20 via the protection path establishment unit 226 of the relay node device 30.
  • the path switching unit 217 switches the operation side path 61 to the backup side path 63 established by the backup side path establishment unit 216.
  • the backup path establishment transmission unit 218 transmits the route of the backup path 63 switched by the path switching unit 217 to the server device 5.
  • the storage means 220 is composed of, for example, a general memory or HDD, and stores path information and link information. Since the path information and link information are the same as described above, description thereof is omitted.
  • the path information update unit 219 updates the path information stored in the storage unit 220.
  • the path information update unit 219 changes the status of the operation side path information from “not established” to “established” for the operation side path 61 when the operation side path establishment unit 213 establishes the operation side path 61. Update.
  • the path information update unit 219 changes the status of the backup side path information for the backup side path 63 from “not established” to “established”. Update to Then, the path information update unit 219 updates the status of the operation side path information from “established” to “not established” for the switched operation side path 61.
  • the relay node device 30 includes an operation side path establishment unit 223 and a backup side path establishment unit 226.
  • the operation side path establishment means 223 establishes the operation side path 61 in response to a request for establishment of the operation side path 61 from the caller node device 10.
  • the operating-side path establishment means 223 operates the operation of the receiving-side node device 20 with the operation-side path 61 establishment request received from the caller node device 10 together with the route of the operating-side path 61 and the route of the backup-side path 63. It transmits to the side path establishment means 233.
  • the operating-side path establishment unit 223 may secure the reserved path in the same manner as the operating-side path 61 when receiving the route of the reserved path.
  • the backup path establishment means 226 establishes the backup path 63 in response to the request for establishment of the backup path 63 from the caller node device 10.
  • the backup path establishment unit 226 transmits the backup path establishment request received from the caller node device 10 to the backup path establishment unit 236 of the callee node device 20.
  • the called party node device 20 includes an operation side path establishment unit 233, a backup side path establishment unit 236, a path switching unit 237, a path information update unit 239, and a storage unit 240.
  • the operation side path establishment means 233 establishes the operation side path 61 in response to a request for establishment of the operation side path 61 from the relay node device 30.
  • the operation side path establishment means 233 may secure the reserved path in the same manner as the operation side path 61.
  • the backup path establishment unit 236 establishes the backup path 63 in response to a request for establishment of the backup path 63 from the relay node device 30.
  • the path switching unit 237 switches the operation side path 61 established by the operation side path establishment unit 233 to the protection side path 63 established by the protection side path establishment unit 236.
  • the storage means 240 is composed of, for example, a general memory or HDD, and stores path information and link information. Since the path information and link information are the same as described above, description thereof is omitted.
  • the path information update unit 239 stores the path of the operation side path 61 and the path of the backup path 63 received by the operation side path establishment unit 233 in the storage unit 240, and updates the path information stored in the storage unit 240. It is. Here, the path information update unit 239 changes the status of the operation side path information from “not established” to “established” for the operation side path 61 when the operation side path establishment unit 233 has established the operation side path 61. Update. Further, when the path switching unit 237 switches the active side path 61 to the backup side path 63, the path information update unit 239 changes the status of the backup side path information for the backup side path 63 from “not established” to “established”. Update to Then, the path information updating unit 239 updates the status of the operation side path information from “established” to “not established” for the switched operation side path 61.
  • FIG. 3 is a flowchart showing the operation of the route switching system 1 of FIG. First, an operation in which the path switching system 1 establishes the operation side path 61 will be described (see FIGS. 1 and 2 as appropriate). In FIG. 3 and the following description, the network management server device and the relay node device are omitted.
  • the server device 5 receives a connection request (on-demand request) to the core network 2 from the user node device 40 by the connection request receiving unit 201 (step S101).
  • the server device 5 confirms the resources of the core network 2 by the resource management unit 202 (step S102).
  • the route calculation unit 203 calculates the route of the operation side path 61 based on the path information stored in the storage unit 209 according to the connection request received by the connection request reception unit 201.
  • the server device 5 calculates the route of the backup path 63 by the route calculation unit 203 (step S103).
  • the server device 5 stores the calculated route of the operation side path 61 and the route of the backup side path 63 in the path information by the route calculation unit 203 (step S104). Then, the server device 5 transmits the route of the operation side path 61 and the route of the backup side path 63 and the request for establishment of the operation side path 61 to the originator node device 10 by the high-reliability path request unit 204 (step S105). ).
  • the caller node device 10 establishes the operation path 61 and the operation path 61 from the server device 5 by the high-reliability path request reception unit 211.
  • the request is received (step S201).
  • the caller node apparatus 10 stores the received path of the operation side path 61 and the path of the backup side path 63 in the path information of the storage unit 220 by the high-reliability path request reception unit 211 (step S202).
  • the caller node device 10 transmits, to the server device 5, a message indicating that the operation side path request response means 212 has received the request for establishment of the operation side path 61 (step S 203).
  • the server apparatus 5 receives a message indicating that the establishment path 61 establishment request has been received from the originator node apparatus 10 by the operation side path request response receiving means 205 (step S106). ).
  • the caller node device 10 transmits a request for establishment of the operation path 61 to the callee node device 20 via the relay node device 30 by the operation path establishment means 213, and the operation side A path 61 is established (step S204).
  • the receiver node device 20 uses the operating path establishment means 233 to establish the operating path 61 in response to the request for establishment of the operating path 61 from the sender node device 10 (step S204). S301).
  • the caller node apparatus 10 transmits the route of the operation side path 61 established by the operation side path establishment means 213 to the server apparatus 5 by the operation side path establishment transmission means 214 (step S205).
  • the server apparatus 5 receives a message indicating the establishment of the operation side path 61 from the originator node apparatus 10 by the operation side path establishment receiving unit 206 together with the route of the operation side path 61 (Ste S107).
  • the server apparatus 5 sets the status of the operating-side path information for the operating-side path 61 to “Not yet”. It is updated from “established” to “established” (step S108), and stored in the storage means 209 (step S109). With the above operation, the path switching system 1 secures the operation side path 61.
  • the caller node device 10 detects a failure of the core network 2 by the failure detection means 215 (step S206).
  • the originator node device 10 transmits the backup side path device via the relay node device 30 to the called side node device 20 by the backup side path establishment means 216 to establish the backup side path 63 (step S207).
  • the receiver node device 20 establishes the backup path 63 by the backup path establishment means 236 in response to the request for establishment of the backup path 63 from the caller node device 10 (step S207).
  • S302
  • the caller node apparatus 10 switches the operating side path 61 to the backup path 63 established by the backup path establishment unit 216 by the path switching unit 217 (step S208).
  • the originator node device 10 transmits the route of the backup path 63 switched by the path switching unit 217 to the server device 5 by the backup path establishment / transmission unit 218 (step S209).
  • the caller node apparatus 10 updates the status of the backup path information from “not established” to “established” for the backup path 63 by the path information update unit 219, while the switched operation path 61 is switched. Is updated from “established” to “unestablished” (step S210) and stored in the storage unit 209 (step S211).
  • the receiver node device 20 switches the working side path 61 to the backup side path 63 established by the backup side path establishment unit 236 by the path switching unit 237 (step S303).
  • the receiver node device 20 updates the status of the backup path information for the backup path 63 from “not established” to “established” by the path information update unit 239, while the switched operation path 61 is switched. Is updated from “established” to “not established” (step S304) and stored in the storage unit 209 (step S305).
  • the server apparatus 5 receives the path of the backup path 63 switched by the caller node apparatus 10 from the caller node apparatus 10 by the backup path establishment receiving unit 207 (step S110). .
  • the server apparatus 5 updates the status of the backup path information from “not established” to “established” for the backup path 63 by the path information update unit 208, while The status of the operation side path information is updated from “established” to “not established” (step S111) and stored in the storage means 209 (step S112).
  • the path switching system 1 switches from the operation side path 61 to the backup side path 63.
  • FIG. 4 is a block diagram illustrating configurations of a server device, a network management server device, a caller node device, a relay node device, and a callee node device according to the second embodiment of the present invention.
  • the server apparatus 5a includes a connection request receiving unit 201, a resource management unit 202, a route calculation unit (backup path calculation unit) 203a, a highly reliable path request unit 204, and an operation side path request.
  • Response receiving means 205, operation side path establishment receiving means 206, backup side path establishment receiving means 207, path information updating means 208, storage means 209, and backup side path response means 210 are provided.
  • the server device 5a is different from the server device 5 of FIG. 1 in that the server device 5a calculates the route of the backup path 63 when requested by the caller node device 10a to calculate the route of the backup path 63. is there.
  • the route calculation unit and the backup route calculation unit are illustrated integrally, but may be configured separately.
  • the backup path response means 210 receives a confirmation request for the backup path 63 from the caller node device 10a.
  • the route calculation unit 203 a calculates the route of the backup path 63 when the backup path response unit 210 receives the confirmation request for the backup path 63 and stores it in the path information of the storage unit 209.
  • the confirmation request for the backup path 63 is for the caller node device 10a to request the server device 5a to calculate and transmit the route of the backup path 63.
  • the route calculation unit 203a calculates the route of the operation side path 61 in the same manner as the route calculation unit 203 of FIG. In this way, since the server apparatus 5a calculates the route of the backup path 63 using the latest path information at the time of the failure, the calculated backup path 63 is compared with the case where the backup path 63 is calculated in advance. The situation where it cannot be established can be reduced.
  • connection request receiving unit 201 the resource management unit 202, the highly reliable path request unit 204, the operation side path request response receiving unit 205, the operation side path establishment receiving unit 206, the backup side path establishment receiving unit 207, and the path information updating unit 208. Since the storage unit 209 has the same configuration as that shown in FIG.
  • the caller node device 10a includes a highly reliable path request reception unit 211, an operation side path request response unit 212, an operation side path establishment unit 213, an operation side path establishment transmission unit 214, a failure A detection unit 215, a backup side path establishment unit 216, a path switching unit 217, a backup side path establishment transmission unit 218, a path information update unit 219, a storage unit 220, and a backup side path confirmation unit 221 are provided.
  • the backup-side path confirmation unit 221 transmits a confirmation request for the backup-side path 63 to the server device 5a when the failure detection unit 215 detects that a failure has occurred in the operation-side path 61 of the core network 2.
  • the high-reliability path request receiving unit 211, the operating side path request responding unit 212, the operating side path establishing unit 213, the operating side path establishment transmitting unit 214, the failure detecting unit 215, the backup side path establishing unit 216, the path switching unit 217, The backup path establishment transmission unit 218, the path information update unit 219, and the storage unit 220 are the same as those in FIG.
  • the network management server device 6, the relay node device 30, and the callee node device 20 are the same as those shown in FIG.
  • FIG. 5 is a flowchart showing the operation of the path switching system 1a of FIG. First, an operation in which the path switching system 1a establishes the operation side path 61 will be described (see FIG. 4 as appropriate). In FIG. 5 and the following description, the network management server device and the relay node device are omitted.
  • steps S1001 and S1002 in FIG. 5 are the same processes as S101 and S102 in FIG.
  • the route calculation unit 203a calculates the route of the operation side path 61 based on the path information stored in the storage unit 209 in response to the connection request received by the connection request reception unit 201 (step S1003). .
  • the server device 5a stores the route of the operation side path 61 in the path information by the route calculation means 203a (step S1004).
  • the server device 5a transmits the route of the operation side path 61 and the request for establishment of the operation side path 61 to the caller node device 10 by the high-reliability path request unit 204 (step S1005). Note that the processing after transmitting the establishment path 61 establishment request, specifically, steps S1006 to S1009 in FIG. 5 are the same as S106 to S109 in FIG.
  • the caller node device 10a receives the path of the operation side path 61 and the request for establishment of the operation side path 61 from the server device 5a by the high-reliability path request receiving unit 211 (step S1005). S2001).
  • the originator node device 10a stores the received path of the operation side path 61 in the path information of the storage unit 220 by the high-reliability path request receiving unit 211 (step S2002).
  • the processing after storing the path information of the working path 61, specifically, steps S2003 to S2005 in FIG. 5 are the same as S203 to S205 in FIG.
  • the callee node device 20 establishes the operation path 61 by the operation path establishment means 233 in response to the operation path 61 establishment request from the caller node device 10a. (Step S3001).
  • the route switching system 1a secures the operation side path 61 without calculating the route of the backup side path 63.
  • the caller node device 10a detects a failure in the core network 2 (step S2006).
  • the failure detection unit 215 detects a failure in the operation path 61 of the core network 2 by the backup path confirmation unit 221
  • the caller node device 10 a transmits a confirmation request for the backup path 63 to the server device 5 a ( Step S2007).
  • the server apparatus 5a receives the confirmation request for the backup path 63 from the caller node apparatus 10a by the backup path response means 210 (step S21010).
  • the server device 5a calculates the route of the backup path 63 by the route calculation unit 203a (step S1011) and stores it in the path information of the storage unit 209 (step S1012).
  • the server device 5a transmits the route of the backup path 63 to the caller node device 10a by the high-reliability path request unit 204 (step S1013).
  • the caller node device 10a receives the route of the backup path 63 by the high-reliability path request receiving unit 211 (step S2008) and stores it in the path information of the storage unit 220 (step S2009). ).
  • the sender node device 10a transmits the backup side path device 63 to the receiving side node device 20 via the relay node device 30 by the backup side path establishment means 216, thereby establishing the backup side path 63 (step S2010).
  • the receiver node device 20 uses the backup path establishment means 236 to establish the backup path 63 in response to the request for establishing the backup path 63 from the caller node device 10 (step S2010). S3002).
  • step S2010 the caller node device 10 switches the working side path 61 to the backup side path 63 established by the backup side path establishing means 216 by the path switching unit 217 (step S2011).
  • steps S2012 to S2014 in FIG. 5 are the same as steps S209 to S211 in FIG.
  • step S2011 When the process of step S2011 is executed, the callee node device 20 switches the working side path 61 to the backup path 63 established by the backup path establishment unit 236 by the path switching unit 237 (step S3003). Note that the processing after switching to the backup path 63, specifically, steps S3004 and S3005 in FIG. 5 are the same as steps S304 and S305 in FIG.
  • the server apparatus 5a receives the path of the backup path 63 switched by the caller node apparatus 10a from the caller node apparatus 10 by the backup path establishment receiving unit 207 (step S1014).
  • steps S1015 and S1016 in FIG. 5 are the same as S111 and S112 in FIG.
  • the path switching system 1 a switches from the operation side path 61 to the backup side path 63.
  • the server device may calculate the route of the backup path and send it to the border node device every time a preset time elapses, and calculate the route of the backup path when the load on the server device is low. May be transmitted to the boundary node device.
  • the server apparatus has been described as an independent apparatus.
  • a general computer can be operated by a program that functions as each unit of the server apparatus.
  • This program may be distributed via a communication line, or may be distributed by writing in a recording medium such as a CD-ROM or a flash memory.
  • the boundary node device has been described as an independent device.
  • a general computer may be operated by a program that functions as each unit of the boundary node device. it can.
  • This program may be distributed via a communication line, or may be distributed by writing in a recording medium such as a CD-ROM or a flash memory.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Telephonic Communication Services (AREA)

Abstract

 本発明は、時間軸を考慮し、高信頼パスをユーザからの接続要求に応じて確立するネットワーク切替技術を提供することを目的とする。  サーバ装置(5)は、接続要求受信手段(201)と、コアネットワーク(2)のリソースを管理するリソース管理手段(202)と、ユーザからの接続要求に応じて、運用側パス(61)の経路と予備側パス(63)の経路とを計算する経路計算手段(203)と、発信者ノード装置(10)に運用側パス(61)の確立を要求する高信頼パス要求手段(204)と、運用側パス要求応答受信手段(205)と、運用側パス確立受信手段(206)と、発信者ノード装置(10)が切り替えた予備側パス(63)の経路を受信する予備側パス確立受信手段(207)と、パス情報更新手段(208)と、記憶手段(209)とを備える。

Description

経路切替方法、サーバ装置、境界ノード装置、経路切替システム及び経路切替プログラム
 本発明は、ユーザノード装置を含むサービスネットワークを収容するコアネットワークの経路を、運用側パスの経路及び予備側パスの経路を含むパス情報を時間軸で管理するサーバ装置によって障害発生時に運用側パスから予備側パスに切り替えるネットワーク切替技術に関する。
 コアネットワークにおける高信頼パス(運用側パス及び予備側パス)の確立要求に対して、現在のコアネットワークのリソースを考慮し、高信頼パスを確立し、障害発生時に予備側パスに切り替える方法が知られている(例えば、非特許文献1参照)。
J.P.Land et al,RSVP-TE Extensions in Support of End-to-End Generalized Multi・Protocol Label Switching(GMPLS)Recovery,RFC4872
 しかしながら、非特許文献1に開示された現在の規定では、時間軸を考慮し、コアネットワークのリソースを把握した上で、高信頼パスを確立することが難しい。また、それら高信頼パスをユーザからの接続要求(オンデマンドなユーザ要求)に応じて提供することはできない。
 そこで、本発明は、前記した課題を解決し、時間軸を考慮し、ユーザからの接続要求に応じて、高信頼パスを確立する経路切替技術を提供することを目的とする。
 前記した課題を解決するため、本願第1発明の経路切替方法は、ユーザノード装置を含むサービスネットワークを収容するコアネットワークの経路を、前記サービスネットワークと前記コアネットワークとの境界に位置する境界ノード装置の間で確立する運用側パスの経路と前記運用側パスから切り替える予備側パスの経路とを時間毎に含むパス情報を格納したサーバ装置によって切り替える経路切替方法であって、前記サーバ装置が、前記コアネットワークへの接続要求を前記ユーザノード装置から受信する接続要求受信ステップと、前記接続要求に応じて、前記パス情報に基づいて、提供可能なリソースを確認した上で、前記運用側パスの経路と前記予備側パスの経路とを計算する経路計算ステップと、計算した前記運用側パスの経路と、前記予備側パスの経路と、前記運用側パスの確立要求とを前記境界ノード装置に送信する高信頼パス要求ステップと、を含んで実行し、前記境界ノード装置が、前記運用側パスの確立要求に応じて、前記コアネットワークを中継する中継ノード装置を介して、前記サーバ装置が計算した前記運用側パスを前記境界ノード装置の間で確立する運用側パス確立ステップと、前記コアネットワークの障害を検知する障害検知ステップと、を含んで実行し、前記コアネットワークの障害を検知した場合、前記境界ノード装置が、前記サーバ装置から受信した前記予備側パスの経路に基づいて、前記中継ノード装置を介して、当該予備側パスを前記境界ノード装置の間で確立する予備側パス確立ステップと、前記運用側パスを前記確立した予備側パスに切り替えるパス切替ステップと、切り替えた前記予備側パスの経路を前記サーバ装置に送信する予備側パス確立送信ステップと、を含んで実行し、前記サーバ装置が、前記境界ノード装置が切り替えた前記予備側パスの経路を前記境界ノード装置から受信する予備側パス確立受信ステップと、前記境界ノード装置が切り替えた前記予備側パスの経路に基づいて、前記パス情報を更新するパス情報更新ステップと、を含んで実行することを特徴とする。
 かかる手順によれば、サーバ装置は、運用側パスの経路と予備側パスの経路とを時間毎に含むパス情報を、コアネットワークのリソースを示す情報として管理する。これによって、サーバ装置は、例えば、ユーザノード装置が使用する運用側パスを時間毎に管理することができる。また、サーバ装置は、ユーザノード装置からの接続要求に応じて、運用側パスの経路及び予備側パスの経路を計算し、この運用側パスの確立を境界ノード装置に要求する。これによって、サーバ装置は、コアネットワークで障害が発生する前に予備側パスの経路を境界ノード装置に送信しておくことができる。そして、境界ノード装置は、サーバ装置からの運用側パスの確立要求に応じて、運用側パスを確立する。さらに、境界ノード装置は、コアネットワークで障害が発生した際、運用側パスから予備側パスに切り替え、迅速にリカバリを行うことができる。
 また、本願第2発明の経路切替方法は、ユーザノード装置を含むサービスネットワークを収容するコアネットワークの経路を、前記サービスネットワークと前記コアネットワークとの境界に位置する境界ノード装置の間で確立する運用側パスの経路と前記運用側パスから切り替える予備側パスの経路とを時間毎に含むパス情報を格納したサーバ装置によって切り替える経路切替方法であって、前記サーバ装置が、前記コアネットワークへの接続要求を前記ユーザノード装置から受信する接続要求受信ステップと、前記接続要求に応じて、前記パス情報に基づいて、提供可能なリソースを確認した上で、前記運用側パスの経路を計算する経路計算ステップと、計算した前記運用側パスの経路と、前記運用側パスの確立要求とを前記境界ノード装置に送信する高信頼パス要求ステップと、を含んで実行し、前記境界ノード装置が、前記運用側パスの確立要求に応じて、前記コアネットワークを中継する中継ノード装置を介して、前記サーバ装置が計算した前記運用側パスを前記境界ノード装置の間で確立する運用側パス確立ステップと、前記コアネットワークの障害を検知する障害検知ステップと、を含んで実行し、前記コアネットワークの障害を検知した場合、前記境界ノード装置が、前記サーバ装置に前記予備側パスの確認要求を送信する予備側パス確認ステップ、を実行し、前記サーバ装置が、前記境界ノード装置からの前記予備側パス確認要求に応じて、前記予備側パスの経路を計算する予備側経路計算ステップと、計算した前記予備側パスの経路を前記境界ノード装置に送信する予備側パス応答ステップと、を含んで実行し、前記境界ノード装置が、前記サーバ装置から受信した前記予備側パスの経路に基づいて、前記中継ノード装置を介して、当該予備側パスを前記境界ノード装置の間で確立する予備側パス確立ステップと、前記運用側パスを前記確立した予備側パスに切り替えるパス切替ステップと、切り替えた前記予備側パスの経路を前記サーバ装置に送信する予備側パス確立送信ステップと、を含んで実行し、前記サーバ装置が、前記境界ノード装置が切り替えた前記予備側パスの経路を前記境界ノード装置から受信する予備側パス確立受信ステップと、前記境界ノード装置が切り替えた前記予備側パスの経路に基づいて、前記パス情報を更新するパス情報更新ステップと、を含んで実行することを特徴とする。
 かかる手順によれば、サーバ装置は、運用側パスの経路と予備側パスの経路とを時間毎に含むパス情報を、コアネットワークのリソースを示す情報として管理する。これによって、サーバ装置は、例えば、ユーザノード装置が使用する運用側パスを時間毎に管理することができる。また、サーバ装置は、ユーザノード装置からの接続要求に応じて、運用側パスの経路を計算し、この運用側パスの確立を境界ノード装置に要求する。そして、境界ノード装置は、サーバ装置からの運用側パスの確立要求に応じて、運用側パスを確立する。また、境界ノード装置は、コアネットワークで障害が発生した際、予備側パスの確認要求をサーバ装置に送信する。そして、サーバ装置は、コアネットワークで障害が発生したときのパス情報を用いて予備側パスの経路を計算し、この予備側パスの経路を境界ノード装置に送信する。これによって、サーバ装置は、障害発生時における最新のパス情報を用いて予備側パスの経路を計算することができる。さらに、境界ノード装置は、コアネットワークで障害が発生した際、運用側パスから予備側パスに切り替え、リカバリを行うことができる。
 また、本願第3発明のサーバ装置は、ユーザノード装置を含むサービスネットワークを収容するコアネットワークに接続され、前記サービスネットワークと前記コアネットワークとの境界に位置する境界ノード装置の間で確立する運用側パスの経路と前記予備側パスの経路とを時間毎に含むパス情報を格納し、前記運用側パスの経路と、障害発生時に前記運用側パスから切り替えるための前記予備側パスの経路とを計算するサーバ装置であって、前記コアネットワークへの接続要求を前記ユーザノード装置から受信する接続要求受信手段と、前記接続要求に応じて、前記パス情報に基づいて、前記運用側パスの経路と前記予備側パスの経路とを計算する経路計算手段と、計算した前記運用側パスの経路と、前記予備側パスの経路と、前記運用側パスの確立要求とを前記境界ノード装置に送信する高信頼パス要求手段と、前記コアネットワークの障害によって前記境界ノード装置が切り替えた前記予備側パスの経路を前記境界ノード装置から受信する予備側パス確立受信手段と、前記境界ノード装置が切り替えた前記予備側パスの経路に基づいて、前記パス情報を更新するパス情報更新手段と、を備えることを特徴とする。
 かかる構成によれば、サーバ装置は、運用側パスの経路と予備側パスの経路とを時間毎に含むパス情報を、コアネットワークのリソースを示す情報として管理する。これによって、サーバ装置は、例えば、ユーザノード装置が使用する運用側パスを時間毎に管理することができる。また、サーバ装置は、ユーザノード装置からの接続要求があった際、運用側パスの計算と略同時に予備側パスを計算し、この予備側パスの経路を境界ノード装置に送信する。これによって、サーバ装置は、コアネットワークで障害が発生する前に予備側パスの経路を境界ノード装置に送信しておくことができ、迅速にリカバリを行うことができる。
 また、本願第4発明のサーバ装置は、ユーザノード装置を含むサービスネットワークを収容するコアネットワークに接続され、前記サービスネットワークと前記コアネットワークとの境界に位置する境界ノード装置の間で確立する運用側パスの経路と前記予備側パスの経路とを時間毎に含むパス情報を格納し、前記運用側パスの経路と、障害発生時に前記運用側パスから切り替えるための前記予備側パスの経路とを計算するサーバ装置であって、前記コアネットワークへの接続要求を前記ユーザノード装置から受信する接続要求受信手段と、前記接続要求に応じて、前記パス情報に基づいて、前記運用側パスの経路を計算する経路計算手段と、前記境界ノード装置が前記コアネットワークの障害を検知した場合に送信する前記予備側パスの確認要求に応じて、前記予備側パスの経路を計算する予備側経路計算手段と、計算した前記運用側パスの経路と、前記予備側パスの経路と、前記運用側パスの確立要求とを前記境界ノード装置に送信する高信頼パス要求手段と、前記コアネットワークの障害によって前記境界ノード装置が切り替えた前記予備側パスの経路を前記境界ノード装置から受信する予備側パス確立受信手段と、前記境界ノード装置が切り替えた前記予備側パスの経路に基づいて、前記パス情報を更新するパス情報更新手段と、を備えることを特徴とする。
 かかる構成によれば、サーバ装置は、運用側パスの経路と予備側パスの経路とを時間毎に含むパス情報を、コアネットワークのリソースを示す情報として管理する。これによって、サーバ装置は、例えば、ユーザノード装置が使用する運用側パスを時間毎に管理することができる。また、サーバ装置は、コアネットワークで障害が発生したときのパス情報を用いて予備側パスの経路を計算し、この予備側パスの経路を境界ノード装置に送信する。これによって、サーバ装置は、最新のパス情報を用いて計算した予備側パスの経路を境界ノード装置に送信するので、境界ノード装置がこの予備側パスを実際に確立できないといった事態を防止でき、確実にリカバリを行うことが出来る。
 また、本願第5発明のサーバ装置は、本願第3,4発明のサーバ装置において、予め設定した予約時間において前記境界ノード装置の間に確立する予約パスの経路と、前記予約パスの予約済み又は確立済みを示すステータスと、前記予約時間とを含む前記パス情報を管理するリソース管理手段、を備え、前記高信頼パス要求手段は、前記リソース管理手段が管理する前記予約パスの経路及び前記予約時間を前記境界ノード装置に送信することを特徴とする。
 かかる構成によれば、サーバ装置は、予約パスの経路と、その予約パスの予約時間とを含むパス情報を管理する。そして、サーバ装置は、提供可能なリソースを確認して、オンデマンド要求に応じたパスのための経路を計算し、これを予約パスとして境界ノードに送信する。これによって、サーバ装置は、ある予約時間において、所定のユーザノード装置に予約パスを使用させることができる。
 また、本願第6発明の境界ノード装置は、ユーザノード装置を含むサービスネットワークと、前記サービスネットワークを収容するコアネットワークとの境界に位置し、サーバ装置からの運用側パスの確立要求に応じて、他の境界ノード装置との間で運用側パスを確立する境界ノード装置であって、前記運用側パスの確立要求に応じて、前記コアネットワークを中継する中継ノード装置を介して、前記サーバ装置が計算した前記運用側パスを前記他の境界ノードとの間で確立する運用側パス確立手段と、前記運用側パスを確立しているときに前記コアネットワークの障害を検知する障害検知手段と、前記障害検知手段が前記コアネットワークの障害を検知したときに、前記サーバ装置から受信した前記運用側パスから切り替える予備側パスの経路に基づいて、当該予備側パスを前記他の境界ノードとの間で確立する予備側パス確立手段と、前記運用側パスを前記確立した予備側パスに切り替えるパス切替手段と、切り替えた前記予備側パスの経路を前記サーバ装置に送信する予備側パス確立送信手段と、を備えることを特徴とする。
 かかる構成によれば、境界ノード装置は、運用側パスの経路と予備側パスの経路とをサーバ装置から受信する。また、境界ノード装置は、サーバ装置からの運用側パスの確立要求に応じて、運用側パスを確立する。そして、境界ノード装置は、コアネットワークで障害が発生した際、運用側パスから予備側パスに切り替える。これによって、境界ノード装置は、コアネットワークで障害が発生した際、運用側パスから予備側パスに切り替え、迅速にリカバリを行うことができる。
 また、本願第7発明の境界ノード装置は、ユーザノード装置を含むサービスネットワークと、前記サービスネットワークを収容するコアネットワークとの境界に位置し、サーバ装置からの運用側パスの確立要求に応じて、他の境界ノード装置との間で運用側パスを確立する境界ノード装置であって、前記運用側パスの確立要求に応じて、前記コアネットワークを中継する中継ノード装置を介して、前記サーバ装置が計算した前記運用側パスを前記境界ノード装置の間で確立する運用側パス確立手段と、前記運用側パスを確立しているときに前記コアネットワークの障害を検知する障害検知手段と、前記障害検知手段が前記コアネットワークの障害を検知したときに、前記サーバ装置に前記運用側パスから切り替える予備側パスの確認要求を送信する予備側パス確認手段と、前記サーバ装置から受信した前記予備側パスの経路に基づいて、前記中継ノード装置を介して、当該予備側パスを前記境界ノード装置の間で確立する予備側パス確立手段と、前記運用側パスを前記確立した予備側パスに切り替えるパス切替手段と、切り替えた前記予備側パスの経路を前記サーバ装置に送信する予備側パス確立送信手段と、を備えることを特徴とする。
 かかる構成によれば、境界ノード装置は、運用側パスの経路をサーバ装置から受信する。また、境界ノード装置は、サーバ装置からの運用側パスの確立要求に応じて、運用側パスを確立する。そして、境界ノード装置は、コアネットワークで障害が発生した際、サーバ装置に予備側パスの経路の確認要求を送信する。さらに、境界ノード装置は、この確認要求に応じて、コアネットワークで障害が発生したときのパス情報を用いて計算された予備側パスの経路をサーバ装置から受信し、運用側パスから予備側パスに切り替える。これによって、境界ノード装置は、運用側パスから、障害発生時における最新のパス情報を用いて計算された予備側パスに切り替え、リカバリを行うことができる。
 また、本願第8発明の境界ノード装置は、本願第6,7発明の境界ノード装置において、前記サーバ装置から、前記他の境界ノード装置との間に確立する予約パスの経路を予約時間に受信し、前記運用側パス確立手段は、前記予約パスを、前記他の境界ノードとの間で確立することを特徴とする。
 かかる構成によれば、サーバ装置によって、提供可能なリソースを確認して、オンデマンド要求に応じたパスのための経路が計算され、境界ノードは、これを予約パスとして予約時間にサーバ装置から受信する。そして、境界ノード装置は、この予約パスを他の境界ノードとの間で確立する。これによって、境界ノード装置は、ある予約時間において、所定のユーザノード装置に予約パスを使用させることができる。
 また、本願第9~17発明の経路切替システムは、本願第3~5発明何れかのサーバ装置と、本願第6~8発明何れかの境界ノード装置と、を含むことを特徴とする。
 かかる構成によれば、サーバ装置は、運用側パスの経路と予備側パスの経路とを時間毎に含むパス情報を、コアネットワークのリソースを示す情報として管理する。これによって、サーバ装置は、例えば、運用側パスを使用するユーザノード装置を時間毎に管理することができる。また、サーバ装置は、ユーザノード装置からの接続要求に応じて、運用側パスの経路を計算し、この運用側パスの確立を境界ノード装置に要求する。そして、境界ノード装置は、サーバ装置からの運用側パスの確立要求に応じて、運用側パスを確立する。また、サーバ装置は、運用側パスの計算と略同時に、又は、境界ノード装置からの予備側パスの確認要求に応じて予備側パスを計算し、境界ノード装置に送信する。そして、境界ノード装置は、コアネットワークで障害が発生した際、運用側パスから予備側パスに切り替える。これによって、コアネットワークで障害が発生した際、運用側パスから予備側パスに切り替え、リカバリを行うことができる。
 また、本願第18~20発明の経路切替プログラムは、コンピュータを、本願第3~5発明何れかのサーバ装置を構成する各手段として機能させることを特徴とする。このように構成されることにより、このプログラムをインストールされたコンピュータは、前記したサーバ装置として機能する。
 本発明によれば、時間軸を考慮し、ユーザからの接続要求に応じて、高信頼パスを確立するネットワーク切替技術を提供することができる。また、本発明によれば、時間軸でネットワークのリソースを管理できるので、ネットワークの利用効率を高め、柔軟な運用が可能となる。
本発明の第1実施形態に係る経路切替システムの概要を模式的に示す説明図である。 本発明の第1実施形態に係るサーバ装置、ネットワーク管理サーバ装置、発信者ノード装置、中継ノード装置及び着信者ノード装置の構成を示すブロック図である。 図2の経路切替システム1の動作を示すフローチャートである。 本発明の第2実施形態に係るサーバ装置、ネットワーク管理サーバ装置、発信者ノード装置、中継ノード装置及び着信者ノード装置の構成を示すブロック図である。 図4の経路切替システム1aの動作を示すフローチャートである。
 以下、本発明の各実施形態について、適宜図面を参照しながら詳細に説明する。なお、各実施形態において、同一の機能を有する手段には同一の符号を付し、説明を省略した。
 (第1実施形態)
 [経路切替システムの概要]
 図1は、本発明の第1実施形態に係る経路切替システムの概要を模式的に示す説明図である。経路切替システム1は、コアネットワーク2と、複数のサービスネットワーク3,4と、サーバ装置5と、ネットワーク管理サーバ装置6とを有する。また、コアネットワーク2は、中継ノード装置30を介して、発信者ノード装置(境界ノード装置)10と着信者ノード装置20(別の境界ノード装置)との間で運用側パス61を確立する。そして、経路切替システム1は、確立した運用側パス61のリソース(帯域)を、サービスネットワーク3,4に含まれるユーザノード装置40,50に提供する。つまり、ユーザノード装置40,50の間の通行に、運用側パス61の帯域を用いる。また、経路切替システム1は、障害によって運用側パス61のリソースをユーザノード装置40,50に提供できなくなった場合、予備側パス63を確立し、運用側パス61から予備側パス63に切り替えて、この予備側パス63のリソースをユーザノード装置40,50に提供する。
 サーバ装置5、パス情報を格納するものであり、その詳細は後記する。
 ネットワーク管理サーバ装置6は、サーバ装置5と発信者ノード装置10とを仲介するものである。なお、経路切替システム1は、ネットワーク管理サーバ装置6を備えなくとも良く、この場合、サーバ装置5と発信者ノード装置10とを接続すれば良い。
 発信者ノード装置10は、CPU(Central Processing Unit)と、RAM(Random Access Memory)と、HDD(Hard Disk Drive)と、通信を行うためのNIC(Network Interface Card)を備え、光クロスコネクト(OCX)、ルータ、スイッチ等からなる装置である。また、発信者ノード装置10は、RFC3473等のRSVP-TE(Resource reServation Protocol-Traffic Engineering)に準拠してパスを確立させるようになっている。
 また、発信者ノード装置10は、インターフェース11,13,15を備える。インターフェース11は、運用側パス61に接続するためのインターフェースである。また、インターフェース13は、予備側パス63に接続するためのインターフェースである。さらに、インターフェース15は、サービスネットワーク3に接続するためのインターフェースである。
 着信者ノード装置20は、発信者ノード装置10と同様な装置であり、インターフェース21,23,25を備える。インターフェース21は、運用側パス61に接続するためのインターフェースである。また、インターフェース23は、予備側パス63に接続するためのインターフェースである。さらに、インターフェース25は、サービスネットワーク4に接続するためのインターフェースである。
 ここで、発信者ノード装置10は、着信者ノード装置20に対するパスの確立要求を送信し、例えば、発信者ノード装置10のインターフェース11と、着信者ノード装置20のインターフェース21とを両端とする運用側パス61を確立する。また、コアネットワーク2の運用側パス61で障害が発生した場合、発信者ノード装置10は、例えば、発信者ノード装置10のインターフェース13と、着信者ノード装置20のインターフェース23とを両端とする予備側パス63を確立する。つまり、予備側パス63が運用側パス61の迂回路となり、コアネットワーク2の運用側パス61で障害が発生した際は、運用側パス61から予備側パス63に切り替えることで、ユーザトラフィックを転送する。
 中継ノード装置30は、例えば、光クロスコネクト(OCX)、ルータ、スイッチ等からなる装置である。図1では、運用側パス61を2台の中継ノード装置30で中継し、予備側パス63を2台の中継ノード装置30で中継することとしたが、その個数は特に制限されない。
 ユーザノード装置40,50は、中継ノード装置30と同様の装置であり、例えば、光クロスコネクト(OCX)、ルータ、スイッチ等からなる装置である。また、ユーザノード装置40は、発信者ノード装置10と接続される。また、ユーザノード装置50は、着信者ノード装置20と接続される。
 運用側パス61及び予備側パス63は、光ファイバで構成された光パス、例えば、GMPLS-LSP(Generalized Multi-Protocol Label Switching-Label Switched Path)であり、所定の帯域を有したリソースとして使用可能に構成されている。また、図1に示すように、コアネットワーク2は、運用側パス61及び予備側パス63によって、高信頼パスを構成する。
 [サーバ装置の構成]
 図2は、本発明の第1実施形態に係るサーバ装置、ネットワーク管理サーバ装置、発信者ノード装置、中継ノード装置及び着信者ノード装置の構成を示すブロック図である。
 サーバ装置5は、図2に示すように、接続要求受信手段201と、リソース管理手段202と、経路計算手段203と、高信頼パス要求手段204と、運用側パス要求応答受信手段205と、運用側パス確立受信手段206と、予備側パス確立受信手段207と、パス情報更新手段208と、記憶手段209とを備える。
 接続要求受信手段201は、コアネットワーク2への接続要求(オンデマンド要求)をユーザノード装置40から受信するものである。なお、ユーザノード装置40は、この接続要求を、発信者ノード装置10を介してサーバ装置5に送信しても良く、サーバ装置5に直接送信しても良い。なお、リソース管理手段202については、後記する。
 経路計算手段203は、接続要求受信手段201が受信した接続要求に応じて、後記する記憶手段209が格納するパス情報に基づいて、運用側パス61の経路を計算するものである。また、経路計算手段203は、この接続要求に応じて、予備側パス63の経路を計算する。
 以下、高信頼パスの端点となる発信者ノード装置10のユーザポート(A点)、高信頼パスの端点となる着信者ノード装置20のユーザポート(Z点)として、経路の計算を具体的に説明する。まず、経路計算手段203は、高信頼パスの端点となる発信者ノード装置10にて、論理(仮想)インターフェースを生成する。また、経路計算手段203は、高信頼パス(運用側パス61)において、AZ端点とする経路の有無をEdmond-Karp法により確認する。この高信頼パス(運用側パス61)の経路がある場合、経路計算手段203は、高信頼パス(予備側パス63)において、仮想インターフェースをAZ端点とし、高信頼パス(運用側パス61)と異なる経路の有無を確認する。この高信頼パス(運用側パス61)の経路がある場合、この高信頼パス(運用側パス61)の経路を記憶手段209のパス情報に格納する。さらに、経路計算手段203は、予約パスのために、高信頼パス(論理IF)を経由するパスの経路の有無をEdmond-Karp法により確認する。そして、この予約パスがある場合、この予約パスの経路を記憶手段209のパス情報に格納する。
 高信頼パス要求手段204は、経路計算手段203が計算した運用側パス61の経路及び予備側パス63の経路と、運用側パス61の確立要求とを発信者ノード装置10に送信するものである。このように、経路計算手段203が予め予備側パス63の経路を計算して発信者ノード装置10に送信しておくことで、発信者ノード装置10が、障害を検知した際、運用側パス61から予備側パス63へ素早く切り替えることができる。
 運用側パス要求応答受信手段205は、発信者ノード装置10から、運用側パス61の確立要求を受信したことを示すメッセージを受信するものである。
 運用側パス確立受信手段206は、発信者ノード装置10から、運用側パス61の確立を示すメッセージをその運用側パス61の経路と共に受信するものである。
 予備側パス確立受信手段207は、発信者ノード装置10から、障害発生時に発信者ノード装置10が切り替えた予備側パス63の経路を受信するものである。なお、パス情報更新手段208については、後記する。
 記憶手段209は、例えば、一般的なメモリやHDDで構成され、パス情報とリンク情報とを格納するものである。ここで、リンク情報は、例えば、ノード情報と、UNI(User Network Interface)リンク情報とノード装置リンク情報とを含む。また、パス情報は、例えば、運用側パス情報と、運用側パス経路情報と、予備側パス情報と、予備側パス経路情報と、予約パス情報と、予約パス経路情報とを含む。
 ノード情報は、発信者ノード装置10、着信者ノード装置20及び中継ノード装置30等の各ノード装置に関する情報、例えば、ノード装置IDと、ノード装置アドレスと、ノード装置名と、ノード装置種別(例えば、TDM,Ether,Lambda等)とをデータ項目として有する。
 UNIリンク情報は、ユーザノード装置40から発信者ノード装置10までの接続及び着信者ノード装置20からユーザノード装置50までの接続に関する情報、例えば、UNIポートIDと、ユーザノード装置IDと、境界ノード装置IDと、UNIポート種別(例えば、TDM,Ether等)と、帯域、セクション名と、搭載位置と、ユーザ名とをデータ項目として有する。
 ノード装置リンク情報は、発信者ノード装置10と着信者ノード装置20との接続に関する情報、例えば、リンクIDと、発信者ノード装置IDと、発信者ノード装置アドレスと、発信者ノード装置インターフェースIDと、発信者ノード装置搭載位置と、着信者ノード装置IDと、着信者ノード装置アドレスと、着信者ノード装置インターフェースIDと、着信者ノード装置搭載位置と、リンク属性(プロテクション属性)と、リンク種別(例えば、TDM,Ether等)と、帯域と、セクション名とをデータ項目として有する。
 運用側パス情報は、運用側パス61に関する情報、例えば、パスIDと、パス識別子と、発信者ノード装置IDと、着信者ノード装置IDと、開始時間と、終了時間と、未確立、予約済み又は確立済みを示すステータスと、要求帯域と、パス属性と、パス論理端点とをデータ項目として有する。また、予備側パス情報は、予備側パス63に関する情報、例えば、運用側パス情報と同様のデータ項目を有する。
 運用側パス経路情報は、運用側パス61の経路に関する情報、例えば、パスIDと、パス識別子と、発信者ノード装置10から着信者ノード装置20までの運用側パス61の経路情報とをデータ項目として有する。また、予備側パス経路情報は、予備側パス63の経路に関する情報、例えば、運用側パス経路情報と同様のデータ項目を有する。
 予約パス情報は、予約パスに関する情報、例えば、予約IDと、予約ユーザIDと、サービスタイプと、発信者ノード装置IDと、発信者UNIポートIDと、着信者ノード装置IDと、着信者UNIポートIDと、予約開始時間と、予約終了時間と、予約済み又は確立済みを示すステータスと、要求帯域と、パス属性とをデータ項目として有する。ここで、予約パスとは、予め設定された予約開始時間から予約終了時間まで、特定のユーザノード装置40,50に提供される高信頼パス(運用側パス61及び予備側パス63)のことである。
 予約パス経路情報は、予約パスの経路に関する情報、例えば、予約IDと、発信者ノード装置10から着信者ノード装置20までの予約パスの経路情報とを有する。
 パス情報更新手段208は、記憶手段209に格納されたパス情報を更新するものである。ここで、パス情報更新手段208は、運用側パス確立受信手段206が運用側パス61の確立を示すメッセージを受信した場合、その運用側パス61について、運用側パス情報のステータスを「未確立」から「確立済み」に更新する。また、パス情報更新手段208は、予備側パス確立受信手段207が予備側パス63の経路を受信した場合、その予備側パス63について、予備側パス情報のステータスを「未確立」から「確立済み」に更新する。そして、パス情報更新手段208は、確立している運用側パス61について、運用側パス情報のステータスを「確立済み」から「未確立」に更新する。
 リソース管理手段202は、コアネットワーク2のリソースを時間軸で管理、つまり、予約パスを時間毎に管理するものである。リソース管理手段202は、予約パス情報を参照し、予約パスが設定されている場合(例えば、予約パス情報のステータスが「予約済み」)、その予約パスの経路、予約開始時間及び予約終了時間の送信を、高信頼パス要求手段204に依頼する。そして、高信頼パス要求手段204は、予約時間において発信者ノード装置10が確保する運用側パス61として、予約パスの経路、予約開始時間及び予約終了時間を発信者ノード装置10に送信する。
 ここで、リソース管理手段202は、時間軸を考慮したパス計算を行うためのコアネットワーク2のリソースとして、(NW全リソース情報)-(予約開始時間~予約終了時間に関係する全パス情報)を用いる。このNW全リソース情報とは、ノード情報と、UNI(User Network Interface)リンク情報とノード装置リンク情報とを示す。また、この予約開始時間~予約終了時間に関係する全パス情報とは、予約開始時間~予約終了時間における、運用側パス情報と、運用側パス経路情報と、予備側パス情報と、予備側パス経路情報と、予約パス情報と、予約パス経路情報とを指す。予約パスは高信頼パスのリソースを用いて確立するので、リソース管理手段202は、予約パスを確立する際、パス情報を確認する必要がある。このように、時間軸でコアネットワーク2のリソースを管理することで、ある予約時間において、所定のユーザノード装置40,50に予約パスを確保する等、コアネットワーク2の柔軟な運用が可能となる。なお、予約パス情報は、ユーザノード装置40,50からの要求に応じて、リソース管理手段202が設定しても良く、オペレータにより予め設定されても良い。
 [ネットワーク管理サーバ装置の構成]
 ネットワーク管理サーバ装置6は、リソース管理手段202と、高信頼パス要求手段204と、運用側パス要求応答受信手段205と、運用側パス確立受信手段206と、予備側パス確立受信手段207と、記憶手段209とを備える。ここで、ネットワーク管理サーバ装置6が備える各手段は、サーバ装置5と同様のものであるため、説明を省略する。
 [発信者ノード装置の構成]
 発信者ノード装置10は、図2に示すように、高信頼パス要求受信手段211と、運用側パス要求応答手段212と、運用側パス確立手段213と、運用側パス確立送信手段214と、障害検知手段215と、予備側パス確立手段216と、パス切替手段217と、予備側パス確立送信手段218と、パス情報更新手段219と、記憶手段220とを備える。
 高信頼パス要求受信手段211は、サーバ装置5から、運用側パス61の経路及び予備側パス63の経路と、運用側パス61の確立要求とを受信するものである。ここで、高信頼パス要求受信手段211は、受信した運用側パス61の経路及び予備側パス63の経路を、記憶手段220のパス情報に格納する。また、高信頼パス要求受信手段211は、予約パスの経路、予約開始時間及び予約終了時間を受信した場合、これらを記憶手段220の予約パス情報に格納する。
 運用側パス要求応答手段212は、運用側パス61の確立要求を受信したことを示すメッセージを、サーバ装置5に送信するものである。なお、運用側パス確立手段213については、後記する。
運用側パス確立送信手段214は、運用側パス確立手段213が確立した運用側パス61の経路を、サーバ装置5に送信するものである。
 運用側パス確立手段213は、高信頼パス要求受信手段211が受信した運用側パス61の確立要求に応じて、高信頼パス要求受信手段211が受信した運用側パス61を発信者ノード装置10と着信者ノード装置20との間で確立するものである。ここで、運用側パス確立手段213は、中継ノード装置30を介して、着信者ノード装置20に運用側パス61の確立要求を、運用側パス61の経路及び予備側パス63の経路と共に送信する。また、運用側パス確立手段213は、障害発生後に予備側パス63を確立することを示すリンク属性(プロテクション属性)が指定されている場合、運用側パス61のみを確立する。なお、運用側パス確立手段213は、予約パスの経路を受信したときに、予約パスを運用側パス61と同様に確保しても良い。
 障害検知手段215は、コアネットワーク2の障害を、例えば、RSVP-TEにより検知するものである。
 予備側パス確立手段216は、記憶手段220に格納した予備側パス63の経路に基づいて、予備側パス63を発信者ノード装置10と着信者ノード装置20との間で確立するものである。ここで、予備側パス確立手段216は、中継ノード装置30の予備側パス確立手段226を介して、着信者ノード装置20の予備側パス確立手段236に予備側パス63の確立要求を送信する。
 パス切替手段217は、運用側パス61を、予備側パス確立手段216が確立した予備側パス63に切り替えるものである。
 予備側パス確立送信手段218は、パス切替手段217が切り替えた予備側パス63の経路をサーバ装置5に送信するものである。
 記憶手段220は、例えば、一般的なメモリやHDDで構成され、パス情報とリンク情報とを格納するものである。なお、パス情報とリンク情報は、前記と同様のものなので説明を省略する。
 パス情報更新手段219は、記憶手段220に格納されたパス情報を更新するものである。ここで、パス情報更新手段219は、運用側パス確立手段213が運用側パス61を確立した場合、その運用側パス61について、運用側パス情報のステータスを「未確立」から「確立済み」に更新する。また、パス情報更新手段219は、パス切替手段217が運用側パス61を予備側パス63に切り替えた場合、その予備側パス63について、予備側パス情報のステータスを「未確立」から「確立済み」に更新する。そして、パス情報更新手段219は、切り替えられた運用側パス61について、運用側パス情報のステータスを「確立済み」から「未確立」に更新する。
 [中継ノード装置の構成]
 中継ノード装置30は、図2に示すように、運用側パス確立手段223と、予備側パス確立手段226とを備える。
 運用側パス確立手段223は、発信者ノード装置10からの運用側パス61の確立要求に応じて、運用側パス61を確立するものである。ここで、運用側パス確立手段223は、発信者ノード装置10から受信した運用側パス61の確立要求を、運用側パス61の経路及び予備側パス63の経路と共に、着信側ノード装置20の運用側パス確立手段233に送信する。なお、運用側パス確立手段223は、予約パスの経路を受信したときに、予約パスを運用側パス61と同様に確保しても良い。
 予備側パス確立手段226は、発信者ノード装置10からの予備側パス63の確立要求に応じて、予備側パス63を確立するものである。ここで、予備側パス確立手段226は、発信者ノード装置10から受信した予備側パス63の確立要求を、着信側ノード装置20の予備側パス確立手段236に送信する。
 [着信者ノード装置の構成]
 着信者ノード装置20は、図2に示すように、運用側パス確立手段233と、予備側パス確立手段236と、パス切替手段237と、パス情報更新手段239と、記憶手段240とを備える。
 運用側パス確立手段233は、中継ノード装置30からの運用側パス61の確立要求に応じて、運用側パス61を確立するものである。なお、運用側パス確立手段233は、予約パスを運用側パス61と同様に確保しても良い。
 予備側パス確立手段236は、中継ノード装置30からの予備側パス63の確立要求に応じて、予備側パス63を確立するものである。
 パス切替手段237は、運用側パス確立手段233が確立した運用側パス61を、予備側パス確立手段236が確立した予備側パス63に切り替えるものである。
 記憶手段240は、例えば、一般的なメモリやHDDで構成され、パス情報とリンク情報とを格納するものである。なお、パス情報とリンク情報は、前記と同様のものなので説明を省略する。
 パス情報更新手段239は、運用側パス確立手段233が受信した運用側パス61の経路及び予備側パス63の経路を記憶手段240に格納し、記憶手段240に格納されたパス情報を更新するものである。ここで、パス情報更新手段239は、運用側パス確立手段233が運用側パス61を確立した場合、その運用側パス61について、運用側パス情報のステータスを「未確立」から「確立済み」に更新する。また、パス情報更新手段239は、パス切替手段237が運用側パス61を予備側パス63に切り替えた場合、その予備側パス63について、予備側パス情報のステータスを「未確立」から「確立済み」に更新する。そして、パス情報更新手段239は、切り替えられた運用側パス61について、運用側パス情報のステータスを「確立済み」から「未確立」に更新する。
 [経路切替システムの動作]
 図3は、図2の経路切替システム1の動作を示すフローチャートである。まず、経路切替システム1が運用側パス61を確立する動作について説明する(適宜図1,2参照)。なお、図3及び以下の説明では、ネットワーク管理サーバ装置及び中継ノード装置を省略した。
 <運用側パスの確立>
 サーバ装置5は、接続要求受信手段201によって、コアネットワーク2への接続要求(オンデマンド要求)をユーザノード装置40から受信する(ステップS101)。サーバ装置5は、リソース管理手段202によって、コアネットワーク2のリソースを確認する(ステップS102)。サーバ装置5は、経路計算手段203によって、接続要求受信手段201が受信した接続要求に応じて、記憶手段209が格納するパス情報に基づいて、運用側パス61の経路を計算する。サーバ装置5は、経路計算手段203によって、予備側パス63の経路を計算する(ステップS103)。
 ステップS103に続き、サーバ装置5は、経路計算手段203によって、計算した運用側パス61の経路及び予備側パス63の経路をパス情報に格納する(ステップS104)。そして、サーバ装置5は、高信頼パス要求手段204によって、運用側パス61の経路及び予備側パス63の経路と、運用側パス61の確立要求とを発信者ノード装置10に送信する(ステップS105)。
 ステップS105の処理に続いて、発信者ノード装置10は、高信頼パス要求受信手段211によって、サーバ装置5から、運用側パス61の経路及び予備側パス63の経路と、運用側パス61の確立要求とを受信する(ステップS201)。発信者ノード装置10は、高信頼パス要求受信手段211によって、受信した運用側パス61の経路及び予備側パス63の経路を、記憶手段220のパス情報に格納する(ステップS202)。そして、発信者ノード装置10は、運用側パス要求応答手段212によって、運用側パス61の確立要求を受信したことを示すメッセージを、サーバ装置5に送信する(ステップS203)。
 ステップS203の処理に続いて、サーバ装置5は、運用側パス要求応答受信手段205よって、発信者ノード装置10から、運用側パス61の確立要求を受信したことを示すメッセージを受信する(ステップS106)。
 ステップS203の処理に続いて、発信者ノード装置10は、運用側パス確立手段213によって、中継ノード装置30を介して、着信者ノード装置20に運用側パス61の確立要求を送信し、運用側パス61を確立する(ステップS204)。ステップS204の処理に応じて、着信者ノード装置20は、運用側パス確立手段233によって、発信者ノード装置10からの運用側パス61の確立要求に応じて、運用側パス61を確立する(ステップS301)。
 そして、発信者ノード装置10は、運用側パス確立送信手段214によって、運用側パス確立手段213が確立した運用側パス61の経路を、サーバ装置5に送信する(ステップS205)。
 ステップS205の処理に続いて、サーバ装置5は、運用側パス確立受信手段206によって、発信者ノード装置10から、運用側パス61の確立を示すメッセージをその運用側パス61の経路と共に受信する(ステップS107)。サーバ装置5は、パス情報更新手段208によって、運用側パス確立受信手段206が運用側パス61の確立を示すメッセージを受信した場合、その運用側パス61について、運用側パス情報のステータスを「未確立」から「確立済み」に更新し(ステップS108)、記憶手段209に格納する(ステップS109)。以上の動作により、経路切替システム1は、運用側パス61を確保する。
 <予備側パスへの切替>
 次に、コアネットワーク2の運用側パス61で障害が発生した際、経路切替システム1が運用側パス61を予備側パス63に切り替える動作について説明する。
 発信者ノード装置10は、障害検知手段215によって、コアネットワーク2の障害を検知する(ステップS206)。発信者ノード装置10は、予備側パス確立手段216によって、中継ノード装置30を介して、着信側ノード装置20に送信し、予備側パス63を確立する(ステップS207)。ステップS207の処理に応じて、着信者ノード装置20は、予備側パス確立手段236によって、発信者ノード装置10からの予備側パス63の確立要求に応じて、予備側パス63を確立する(ステップS302)。
 ステップS207の処理に続いて、発信者ノード装置10は、パス切替手段217によって、運用側パス61を、予備側パス確立手段216が確立した予備側パス63に切り替える(ステップS208)。発信者ノード装置10は、予備側パス確立送信手段218によって、パス切替手段217が切り替えた予備側パス63の経路をサーバ装置5に送信する(ステップS209)。発信者ノード装置10は、パス情報更新手段219によって、この予備側パス63について、予備側パス情報のステータスを「未確立」から「確立済み」に更新し、一方、切り替えられた運用側パス61について、運用側パス情報のステータスを「確立済み」から「未確立」に更新し(ステップS210)、記憶手段209に格納する(ステップS211)。
 ステップS208の処理が実行されるとき、着信者ノード装置20は、パス切替手段237によって、運用側パス61を、予備側パス確立手段236が確立した予備側パス63に切り替える(ステップS303)。着信者ノード装置20は、パス情報更新手段239によって、この予備側パス63について、予備側パス情報のステータスを「未確立」から「確立済み」に更新し、一方、切り替えられた運用側パス61について、運用側パス情報のステータスを「確立済み」から「未確立」に更新し(ステップS304)、記憶手段209に格納する(ステップS305)。
 ステップS209の処理に続いて、サーバ装置5は、予備側パス確立受信手段207によって、発信者ノード装置10から、発信者ノード装置10が切り替えた予備側パス63の経路を受信する(ステップS110)。サーバ装置5は、パス情報更新手段208によって、この予備側パス63について、予備側パス情報のステータスを「未確立」から「確立済み」に更新し、一方、切り替えられた運用側パス61について、運用側パス情報のステータスを「確立済み」から「未確立」に更新し(ステップS111)、記憶手段209に格納する(ステップS112)。以上の動作により、経路切替システム1は、運用側パス61から予備側パス63に切り替える。
 (第2実施形態)
 [サーバ装置の構成]
 以下、本発明の第2実施形態について説明する。
 図4は、本発明の第2実施形態に係るサーバ装置、ネットワーク管理サーバ装置、発信者ノード装置、中継ノード装置及び着信者ノード装置の構成を示すブロック図である。
 サーバ装置5aは、図4に示すように、接続要求受信手段201と、リソース管理手段202と、経路計算手段(予備側経路計算手段)203aと、高信頼パス要求手段204と、運用側パス要求応答受信手段205と、運用側パス確立受信手段206と、予備側パス確立受信手段207と、パス情報更新手段208と、記憶手段209と、予備側パス応答手段210とを備える。
 このサーバ装置5aは、発信者ノード装置10aから予備側パス63の経路の計算を要求されたときに予備側パス63の経路を計算することが、図1のサーバ装置5との大きな相違点である。なお、図4では、経路計算手段と予備側経路計算手段とを一体で図示したが、別々に構成しても良い。
 予備側パス応答手段210は、発信者ノード装置10aからの予備側パス63の確認要求を受信するものである。
 経路計算手段203aは、予備側パス応答手段210が予備側パス63の確認要求を受信した際、予備側パス63の経路を計算し、記憶手段209のパス情報に格納するものである。この予備側パス63の確認要求とは、発信者ノード装置10aがサーバ装置5aに対して予備側パス63の経路の計算及び送信を要求するものである。また、経路計算手段203aは、図1の経路計算手段203と同様に運用側パス61の経路を計算する。このように、サーバ装置5aは、障害発生時における最新のパス情報を用いて予備側パス63の経路を計算するため、予備側パス63を予め計算した場合に比べ、計算した予備側パス63が確立できないといった事態を低減することができる。
 なお、接続要求受信手段201、リソース管理手段202、高信頼パス要求手段204、運用側パス要求応答受信手段205、運用側パス確立受信手段206、予備側パス確立受信手段207、パス情報更新手段208及び記憶手段209については、図2に示した構成と同様のものであるため、説明を省略する。
 [発信者ノード装置の構成]
 発信者ノード装置10aは、図4に示すように、高信頼パス要求受信手段211と、運用側パス要求応答手段212と、運用側パス確立手段213と、運用側パス確立送信手段214と、障害検知手段215と、予備側パス確立手段216と、パス切替手段217と、予備側パス確立送信手段218と、パス情報更新手段219と、記憶手段220と、予備側パス確認手段221とを備える。
 予備側パス確認手段221は、障害検知手段215がコアネットワーク2の運用側パス61に障害が発生したことを検知した場合、予備側パス63の確認要求をサーバ装置5aに送信するものである。
 なお、高信頼パス要求受信手段211、運用側パス要求応答手段212、運用側パス確立手段213、運用側パス確立送信手段214、障害検知手段215、予備側パス確立手段216、パス切替手段217、予備側パス確立送信手段218、パス情報更新手段219及び記憶手段220については、図2と同様のものであるため、説明を省略する。また、ネットワーク管理サーバ装置6、中継ノード装置30及び着信者ノード装置20についても、図2に示した構成と同様のものであるため、説明を省略する。
 [経路切替システムの動作]
 図5は、図4の経路切替システム1aの動作を示すフローチャートである。まず、経路切替システム1aが運用側パス61を確立する動作について説明する(適宜図4参照)。なお、図5及び以下の説明では、ネットワーク管理サーバ装置及び中継ノード装置を省略した。
 <運用側パスの確立>
 サーバ装置5aが接続要求を受信する等の動作、具体的には、図5のステップS1001及びS1002は、図3のS101及びS102と同様の処理のため、説明を省略する。サーバ装置5aは、経路計算手段203aによって、接続要求受信手段201が受信した接続要求に応じて、記憶手段209が格納するパス情報に基づいて、運用側パス61の経路を計算する(ステップS1003)。
 ステップS1003の処理に続いて、サーバ装置5aは、経路計算手段203aによって、運用側パス61の経路をパス情報に格納する(ステップS1004)。サーバ装置5aは、高信頼パス要求手段204によって、運用側パス61の経路と、運用側パス61の確立要求とを発信者ノード装置10に送信する(ステップS1005)。なお、運用側パス61の確立要求を送信した後の処理、具体的には、図5のステップS1006~S1009は、図3のS106~S109と同様の処理のため、説明を省略する。
 ステップS1005の処理に続いて、発信者ノード装置10aは、高信頼パス要求受信手段211によって、サーバ装置5aから、運用側パス61の経路と、運用側パス61の確立要求とを受信する(ステップS2001)。発信者ノード装置10aは、高信頼パス要求受信手段211によって、受信した運用側パス61の経路を、記憶手段220のパス情報に格納する(ステップS2002)。なお、運用パス61のパス情報を格納した後の処理、具体的には、図5のステップS2003~S2005は、図3のS203~S205と同様の処理のため、説明を省略する。
 ステップS2004の処理が実行されるとき、着信者ノード装置20は、運用側パス確立手段233によって、発信者ノード装置10aからの運用側パス61の確立要求に応じて、運用側パス61を確立する(ステップS3001)。以上の動作により、予備側パス63の経路を計算することなく、経路切替システム1aは、運用側パス61を確保する。
 <予備側パスへの切替>
 次に、コアネットワーク2の運用側パス61で障害が発生した際、経路切替システム1aが運用側パス61を予備側パス63に切り替える動作について説明する。
 発信者ノード装置10aは、コアネットワーク2の障害を検知する(ステップS2006)。発信者ノード装置10aは、予備側パス確認手段221によって、障害検知手段215がコアネットワーク2の運用側パス61の障害を検知した場合、予備側パス63の確認要求をサーバ装置5aに送信する(ステップS2007)。
 ステップS2007の処理に続いて、サーバ装置5aは、予備側パス応答手段210によって、発信者ノード装置10aからの予備側パス63の確認要求を受信する(ステップS21010)。サーバ装置5aは、経路計算手段203aによって、予備側パス63の経路を計算し(ステップS1011)、記憶手段209のパス情報に格納する(ステップS1012)。サーバ装置5aは、高信頼パス要求手段204によって、予備側パス63の経路を発信者ノード装置10aに送信する(ステップS1013)。
 ステップS1013の処理に続いて、発信者ノード装置10aは、高信頼パス要求受信手段211によって、予備側パス63の経路を受信し(ステップS2008)、記憶手段220のパス情報に格納する(ステップS2009)。発信者ノード装置10aは、予備側パス確立手段216によって、中継ノード装置30を介して、着信側ノード装置20に送信し、予備側パス63を確立する(ステップS2010)。ステップS2010の処理に応じて、着信者ノード装置20は、予備側パス確立手段236によって、発信者ノード装置10からの予備側パス63の確立要求に応じて、予備側パス63を確立する(ステップS3002)。
 ステップS2010の処理に続いて、発信者ノード装置10はa、パス切替手段217によって、運用側パス61を、予備側パス確立手段216が確立した予備側パス63に切り替える(ステップS2011)。なお、予備側パス63に切り替えた後の処理、具体的には、図5のステップS2012~S2014は、図3のS209~S211と同様の処理のため、説明を省略する。
 ステップS2011の処理が実行されるとき、着信者ノード装置20は、パス切替手段237によって、運用側パス61を、予備側パス確立手段236が確立した予備側パス63に切り替える(ステップS3003)。なお、予備側パス63に切り替えた後の処理、具体的には、図5のステップS3004,S3005は、図3のS304,S305と同様の処理のため、説明を省略する。
 ステップS2012の処理に続いて、サーバ装置5aは、予備側パス確立受信手段207によって、発信者ノード装置10から、発信者ノード装置10aが切り替えた予備側パス63の経路を受信する(ステップS1014)。なお、予備側パス63の経路を受信した後の処理、具体的には、図5のステップS1015,S1016は、図3のS111,S112と同様の処理のため、説明を省略する。以上の動作により、経路切替システム1aは、運用側パス61から予備側パス63に切り替える。
 以上、本発明の各実施形態について説明したが、本発明はこれらに限定されるものではなく、その趣旨を変えない範囲で実施することができる。例えば、サーバ装置は、予め設定した時間が経過する毎に予備側パスの経路を計算して境界ノード装置に送信しても良く、サーバ装置の負荷が低いときに予備側パスの経路を計算して境界ノード装置に送信しても良い。
 なお、各実施形態では、本発明に係るサーバ装置を独立した装置として説明したが、本発明では、一般的なコンピュータを、サーバ装置の前記した各手段として機能させるプログラムによって動作させることもできる。このプログラムは、通信回線を介して配布しても良く、CD-ROMやフラッシュメモリ等の記録媒体に書き込んで配布しても良い。
 なお、各実施形態では、本発明に係る境界ノード装置を独立した装置として説明したが、本発明では、一般的なコンピュータを、境界ノード装置の前記した各手段として機能させるプログラムによって動作させることもできる。このプログラムは、通信回線を介して配布しても良く、CD-ROMやフラッシュメモリ等の記録媒体に書き込んで配布しても良い。
1,1a 経路切替システム
2 コアネットワーク
3,4 サービスネットワーク
5 サーバ装置
6 ネットワーク管理サーバ装置
10 発信者ノード装置
11,13,15 インターフェース
20 着信者ノード装置
21,23,25 インターフェース
30 中継ノード装置
40,50 ユーザノード装置
61 運用側パス
63 予備側パス
201 接続要求受信手段
202 リソース管理手段
203,203a 経路計算手段(予備側経路計算手段)
204 高信頼パス要求手段
205 運用側パス要求応答受信手段
206 運用側パス確立受信手段
207 予備側パス確立受信手段
208,219,239 パス情報更新手段
209,220,240 記憶手段
210 予備側パス応答手段
211 高信頼パス要求受信手段
212 運用側パス要求応答手段
213,223,233 運用側パス確立手段
214 運用側パス確立送信手段
215 障害検知手段
216,226,236 予備側パス確立手段
217,237 パス切替手段
218 予備側パス確立送信手段
221 予備側パス確認手段

Claims (20)

  1.  ユーザノード装置を含むサービスネットワークを収容するコアネットワークの経路を、前記サービスネットワークと前記コアネットワークとの境界に位置する境界ノード装置の間で確立する運用側パスの経路と前記運用側パスから切り替える予備側パスの経路とを時間毎に含むパス情報を格納したサーバ装置によって切り替える経路切替方法であって、
     前記サーバ装置は、
     前記コアネットワークへの接続要求を前記ユーザノード装置から受信する接続要求受信ステップと、
     前記接続要求に応じて、前記パス情報に基づいて、提供可能なリソースを確認した上で、前記運用側パスの経路と前記予備側パスの経路とを計算する経路計算ステップと、
     計算した前記運用側パスの経路と、前記予備側パスの経路と、前記運用側パスの確立要求とを前記境界ノード装置に送信する高信頼パス要求ステップと、を含んで実行し、
     前記境界ノード装置は、
     前記運用側パスの確立要求に応じて、前記コアネットワークを中継する中継ノード装置を介して、前記サーバ装置が計算した前記運用側パスを前記境界ノード装置の間で確立する運用側パス確立ステップと、
     前記コアネットワークの障害を検知する障害検知ステップと、を含んで実行し、
     前記コアネットワークの障害を検知した場合、
     前記境界ノード装置は、
     前記サーバ装置から受信した前記予備側パスの経路に基づいて、前記中継ノード装置を介して、当該予備側パスを前記境界ノード装置の間で確立する予備側パス確立ステップと、
     前記運用側パスを前記確立した予備側パスに切り替えるパス切替ステップと、
     切り替えた前記予備側パスの経路を前記サーバ装置に送信する予備側パス確立送信ステップと、を含んで実行し、
     前記サーバ装置は、
     前記境界ノード装置が切り替えた前記予備側パスの経路を前記境界ノード装置から受信する予備側パス確立受信ステップと、
     前記境界ノード装置が切り替えた前記予備側パスの経路に基づいて、前記パス情報を更新するパス情報更新ステップと、を含んで実行することを特徴とする経路切替方法。
  2.  ユーザノード装置を含むサービスネットワークを収容するコアネットワークの経路を、前記サービスネットワークと前記コアネットワークとの境界に位置する境界ノード装置の間で確立する運用側パスの経路と前記運用側パスから切り替える予備側パスの経路とを時間毎に含むパス情報を格納したサーバ装置によって切り替える経路切替方法であって、
     前記サーバ装置は、
     前記コアネットワークへの接続要求を前記ユーザノード装置から受信する接続要求受信ステップと、
     前記接続要求に応じて、前記パス情報に基づいて、提供可能なリソースを確認した上で、前記運用側パスの経路を計算する経路計算ステップと、
     計算した前記運用側パスの経路と、前記運用側パスの確立要求とを前記境界ノード装置に送信する高信頼パス要求ステップと、を含んで実行し、
     前記境界ノード装置は、
     前記運用側パスの確立要求に応じて、前記コアネットワークを中継する中継ノード装置を介して、前記サーバ装置が計算した前記運用側パスを前記境界ノード装置の間で確立する運用側パス確立ステップと、
     前記コアネットワークの障害を検知する障害検知ステップと、を含んで実行し、
     前記コアネットワークの障害を検知した場合、
     前記境界ノード装置は、
     前記サーバ装置に前記予備側パスの確認要求を送信する予備側パス確認ステップ、を実行し、
     前記サーバ装置は、
     前記境界ノード装置からの前記予備側パス確認要求に応じて、前記予備側パスの経路を計算する予備側経路計算ステップと、
     計算した前記予備側パスの経路を前記境界ノード装置に送信する予備側パス応答ステップと、を含んで実行し、
     前記境界ノード装置は、
     前記サーバ装置から受信した前記予備側パスの経路に基づいて、前記中継ノード装置を介して、当該予備側パスを前記境界ノード装置の間で確立する予備側パス確立ステップと、
     前記運用側パスを前記確立した予備側パスに切り替えるパス切替ステップと、
     切り替えた前記予備側パスの経路を前記サーバ装置に送信する予備側パス確立送信ステップと、を含んで実行し、
     前記サーバ装置は、
     前記境界ノード装置が切り替えた前記予備側パスの経路を前記境界ノード装置から受信する予備側パス確立受信ステップと、
     前記境界ノード装置が切り替えた前記予備側パスの経路に基づいて、前記パス情報を更新するパス情報更新ステップと、を含んで実行することを特徴とする経路切替方法。
  3.  ユーザノード装置を含むサービスネットワークを収容するコアネットワークに接続され、前記サービスネットワークと前記コアネットワークとの境界に位置する境界ノード装置の間で確立する運用側パスの経路と前記予備側パスの経路とを時間毎に含むパス情報を格納し、前記運用側パスの経路と、障害発生時に前記運用側パスから切り替えるための前記予備側パスの経路とを計算するサーバ装置であって、
     前記コアネットワークへの接続要求を前記ユーザノード装置から受信する接続要求受信手段と、
     前記接続要求に応じて、前記パス情報に基づいて、前記運用側パスの経路と前記予備側パスの経路とを計算する経路計算手段と、
     計算した前記運用側パスの経路と、前記予備側パスの経路と、前記運用側パスの確立要求とを前記境界ノード装置に送信する高信頼パス要求手段と、
     前記コアネットワークの障害によって前記境界ノード装置が切り替えた前記予備側パスの経路を前記境界ノード装置から受信する予備側パス確立受信手段と、
     前記境界ノード装置が切り替えた前記予備側パスの経路に基づいて、前記パス情報を更新するパス情報更新手段と、を備えることを特徴とするサーバ装置。
  4.  ユーザノード装置を含むサービスネットワークを収容するコアネットワークに接続され、前記サービスネットワークと前記コアネットワークとの境界に位置する境界ノード装置の間で確立する運用側パスの経路と前記予備側パスの経路とを時間毎に含むパス情報を格納し、前記運用側パスの経路と、障害発生時に前記運用側パスから切り替えるための前記予備側パスの経路とを計算するサーバ装置であって、
     前記コアネットワークへの接続要求を前記ユーザノード装置から受信する接続要求受信手段と、
     前記接続要求に応じて、前記パス情報に基づいて、前記運用側パスの経路を計算する経路計算手段と、
     前記境界ノード装置が前記コアネットワークの障害を検知した場合に送信する前記予備側パスの確認要求に応じて、前記予備側パスの経路を計算する予備側経路計算手段と、
     計算した前記運用側パスの経路と、前記予備側パスの経路と、前記運用側パスの確立要求とを前記境界ノード装置に送信する高信頼パス要求手段と、
     前記コアネットワークの障害によって前記境界ノード装置が切り替えた前記予備側パスの経路を前記境界ノード装置から受信する予備側パス確立受信手段と、
     前記境界ノード装置が切り替えた前記予備側パスの経路に基づいて、前記パス情報を更新するパス情報更新手段と、
     を備えることを特徴とするサーバ装置。
  5.  予め設定した予約時間において前記境界ノード装置の間に確立する予約パスの経路と、前記予約パスの予約済み又は確立済みを示すステータスと、前記予約時間とを含む前記パス情報を管理するリソース管理手段、を備え、
     前記高信頼パス要求手段は、前記リソース管理手段が管理する前記予約パスの経路及び前記予約時間を前記境界ノード装置に送信することを特徴とする請求の範囲第3項又は請求の範囲第4項に記載のサーバ装置。
  6.  ユーザノード装置を含むサービスネットワークと、前記サービスネットワークを収容するコアネットワークとの境界に位置し、サーバ装置からの運用側パスの確立要求に応じて、他の境界ノード装置との間で運用側パスを確立する境界ノード装置であって、
     前記運用側パスの確立要求に応じて、前記コアネットワークを中継する中継ノード装置を介して、前記サーバ装置が計算した前記運用側パスを前記他の境界ノードとの間で確立する運用側パス確立手段と、
     前記運用側パスを確立しているときに前記コアネットワークの障害を検知する障害検知手段と、
     前記障害検知手段が前記コアネットワークの障害を検知したときに、前記サーバ装置から受信した前記運用側パスから切り替える予備側パスの経路に基づいて、当該予備側パスを前記他の境界ノードとの間で確立する予備側パス確立手段と、
     前記運用側パスを前記確立した予備側パスに切り替えるパス切替手段と、
     切り替えた前記予備側パスの経路を前記サーバ装置に送信する予備側パス確立送信手段と、を備えることを特徴とする境界ノード装置。
  7.  ユーザノード装置を含むサービスネットワークと、前記サービスネットワークを収容するコアネットワークとの境界に位置し、サーバ装置からの運用側パスの確立要求に応じて、他の境界ノード装置との間で運用側パスを確立する境界ノード装置であって、
     前記運用側パスの確立要求に応じて、前記コアネットワークを中継する中継ノード装置を介して、前記サーバ装置が計算した前記運用側パスを前記境界ノード装置の間で確立する運用側パス確立手段と、
     前記運用側パスを確立しているときに前記コアネットワークの障害を検知する障害検知手段と、
     前記障害検知手段が前記コアネットワークの障害を検知したときに、前記サーバ装置に前記運用側パスから切り替える予備側パスの確認要求を送信する予備側パス確認手段と、
     前記サーバ装置から受信した前記予備側パスの経路に基づいて、前記中継ノード装置を介して、当該予備側パスを前記境界ノード装置の間で確立する予備側パス確立手段と、
     前記運用側パスを前記確立した予備側パスに切り替えるパス切替手段と、
     切り替えた前記予備側パスの経路を前記サーバ装置に送信する予備側パス確立送信手段と、を備えることを特徴とする境界ノード装置。
  8.  前記サーバ装置から、前記他の境界ノード装置との間に確立する予約パスの経路を予約時間に受信し、
     前記運用側パス確立手段は、前記予約パスを、前記他の境界ノードとの間で確立することを特徴とする請求の範囲第6項又は請求の範囲第7項に記載の境界ノード装置。
  9.  請求の範囲第3項に記載のサーバ装置と、
     請求の範囲第6項に記載の境界ノード装置と、
     を含むことを特徴とする経路切替システム。
  10.  請求の範囲第3項に記載のサーバ装置と、
     請求の範囲第7項に記載の境界ノード装置と、
     を含むことを特徴とする経路切替システム。
  11.  請求の範囲第3項に記載のサーバ装置と、
     請求の範囲第8項に記載の境界ノード装置と、
     を含むことを特徴とする経路切替システム。
  12.  請求の範囲第4項に記載のサーバ装置と、
     請求の範囲第6項に記載の境界ノード装置と、
     を含むことを特徴とする経路切替システム。
  13.  請求の範囲第4項に記載のサーバ装置と、
     請求の範囲第7項に記載の境界ノード装置と、
     を含むことを特徴とする経路切替システム。
  14.  請求の範囲第4項に記載のサーバ装置と、
     請求の範囲第8項に記載の境界ノード装置と、
     を含むことを特徴とする経路切替システム。
  15.  請求の範囲第5項に記載のサーバ装置と、
     請求の範囲第6項に記載の境界ノード装置と、
     を含むことを特徴とする経路切替システム。
  16.  請求の範囲第5項に記載のサーバ装置と、
     請求の範囲第7項に記載の境界ノード装置と、
     を含むことを特徴とする経路切替システム。
  17.  請求の範囲第5項に記載のサーバ装置と、
     請求の範囲第8項に記載の境界ノード装置と、
     を含むことを特徴とする経路切替システム。
  18.  コンピュータを、請求の範囲第3項に記載のサーバ装置を構成する各手段として機能させるための経路切替プログラム。
  19.  コンピュータを、請求の範囲第4項に記載のサーバ装置を構成する各手段として機能させるための経路切替プログラム。
  20.  コンピュータを、請求の範囲第5項に記載のサーバ装置を構成する各手段として機能させるための経路切替プログラム。
PCT/JP2009/061925 2008-06-30 2009-06-30 経路切替方法、サーバ装置、境界ノード装置、経路切替システム及び経路切替プログラム WO2010001883A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2009801253387A CN102077531B (zh) 2008-06-30 2009-06-30 路由切换方法、服务器装置、边界节点装置、路由切换系统
US12/999,113 US8422360B2 (en) 2008-06-30 2009-06-30 Route switching method, server, boundary node apparatus, route switching system, and route switching program
EP09773461.0A EP2312798B1 (en) 2008-06-30 2009-06-30 Route switching method, server apparatus, boundary node apparatus, route switching system, and route switching program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008169950A JP5062845B2 (ja) 2008-06-30 2008-06-30 経路切替方法、サーバ装置、境界ノード装置、経路切替システム及び経路切替プログラム
JP2008-169950 2008-06-30

Publications (1)

Publication Number Publication Date
WO2010001883A1 true WO2010001883A1 (ja) 2010-01-07

Family

ID=41465975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/061925 WO2010001883A1 (ja) 2008-06-30 2009-06-30 経路切替方法、サーバ装置、境界ノード装置、経路切替システム及び経路切替プログラム

Country Status (5)

Country Link
US (1) US8422360B2 (ja)
EP (1) EP2312798B1 (ja)
JP (1) JP5062845B2 (ja)
CN (1) CN102077531B (ja)
WO (1) WO2010001883A1 (ja)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120221589A1 (en) * 2009-08-25 2012-08-30 Yuval Shahar Method and system for selecting, retrieving, visualizing and exploring time-oriented data in multiple subject records
EP2523405A4 (en) * 2010-01-08 2016-09-07 Nec Corp COMMUNICATION SYSTEM, TRANSMISSION NUDS, ROUTING MANAGEMENT SERVER AND COMMUNICATION METHOD
CN102783098B (zh) * 2010-03-05 2016-01-20 日本电气株式会社 通信系统、路径控制设备、分组转发设备以及路径控制方法
WO2012114747A1 (ja) * 2011-02-23 2012-08-30 日本電気株式会社 通信ネットワークシステム、ノード装置およびパス制御方法
US9723074B2 (en) * 2011-11-15 2017-08-01 Alcatel Lucent Method and apparatus for in the middle primary backup replication
WO2012176337A1 (ja) * 2011-06-24 2012-12-27 富士通株式会社 情報処理システム、情報処理システムの制御方法、管理装置および系切替プログラム
US8885463B1 (en) 2011-10-17 2014-11-11 Juniper Networks, Inc. Path computation element communication protocol (PCEP) extensions for stateful label switched path management
US8824274B1 (en) * 2011-12-29 2014-09-02 Juniper Networks, Inc. Scheduled network layer programming within a multi-topology computer network
US8787154B1 (en) 2011-12-29 2014-07-22 Juniper Networks, Inc. Multi-topology resource scheduling within a computer network
EP2837132B1 (en) * 2012-04-13 2016-04-13 Telefonaktiebolaget LM Ericsson (publ) Recovery in connection-oriented network
US10031782B2 (en) 2012-06-26 2018-07-24 Juniper Networks, Inc. Distributed processing of network device tasks
US9450817B1 (en) 2013-03-15 2016-09-20 Juniper Networks, Inc. Software defined network controller
WO2014186986A1 (zh) * 2013-05-24 2014-11-27 华为技术有限公司 流转发方法、设备及系统
US10193801B2 (en) 2013-11-25 2019-01-29 Juniper Networks, Inc. Automatic traffic mapping for multi-protocol label switching networks
US10057123B1 (en) 2013-12-27 2018-08-21 Alarm.Com Incorporated Network topology backup
WO2015109223A1 (en) 2014-01-17 2015-07-23 E Ink Corporation Electro-optic display with a two-phase electrode layer
CN107409094B (zh) * 2015-03-25 2018-11-27 英国电讯有限公司 通信路由管理服务器、系统和用于处理路由请求的方法
US10547543B2 (en) 2015-06-24 2020-01-28 Futurewei Technologies, Inc. Elegant temporal label switched path tunnel service controller
US10200280B2 (en) 2015-06-25 2019-02-05 Futurewei Technologies, Inc. Software-defined network for temporal label switched path tunnels
US10498640B2 (en) 2015-09-04 2019-12-03 Futurewei Technologies, Inc. PCE for temporal tunnel services
US11032819B2 (en) * 2016-09-15 2021-06-08 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a control channel reference signal
WO2019185385A1 (en) 2018-03-28 2019-10-03 British Telecommunications Public Limited Company Roaming route optimization
CN110620722B (zh) * 2018-06-20 2022-09-30 北京京东尚科信息技术有限公司 一种订单处理的方法和装置
US11057306B2 (en) * 2019-03-14 2021-07-06 Intel Corporation Traffic overload protection of virtual network functions
CN112118497B (zh) * 2019-06-19 2023-02-17 中兴通讯股份有限公司 资源管理及配置方法、装置、设备及存储介质
US11182325B1 (en) * 2020-06-01 2021-11-23 Smart Modular Technologies, Inc. Memory centric computing storage controller system
US11706303B2 (en) * 2021-04-22 2023-07-18 Cisco Technology, Inc. Survivability method for LISP based connectivity

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0637783A (ja) * 1992-07-14 1994-02-10 Fujitsu Ltd Atmネットワークにおける迂回ルート設定方式
JP2000341289A (ja) * 1999-05-26 2000-12-08 Nec Commun Syst Ltd ネットワークシステムとその迂回pvc切り戻し方法
JP2001045009A (ja) * 1999-07-27 2001-02-16 Nec Commun Syst Ltd Atm通信ネットワークシステム
JP2001251343A (ja) * 2000-03-06 2001-09-14 Fujitsu Ltd ラベルスイッチネットワークシステム
JP2002094510A (ja) * 2000-09-12 2002-03-29 Nec Corp ネットワークシステム及び上位nmsを用いたpvc自動迂回方法
JP2003229889A (ja) * 2002-02-06 2003-08-15 Nec Corp パス設定方法及びそれを用いる通信ネットワーク並びにノード装置
JP2004165794A (ja) * 2002-11-11 2004-06-10 Nippon Telegr & Teleph Corp <Ntt> 帯域管理装置および方法、プログラム、記録媒体
JP2004304456A (ja) * 2003-03-31 2004-10-28 Fujitsu Ltd ネットワークシステム,同システムにおけるパス設定方法並びに同システムに用いられるネットワーク管理装置及びネットワーク装置
JP2005159983A (ja) * 2003-11-28 2005-06-16 Nippon Telegr & Teleph Corp <Ntt> ラベルスイッチングネットワーク、ルートサーバ、およびラベルエッジルータ
JP2008503117A (ja) * 2004-06-14 2008-01-31 ▲ホア▼▲ウェイ▼技術有限公司 エンド・ツー・エンドのサービス品質の信頼性の保証を実現する方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11284633A (ja) * 1998-03-31 1999-10-15 Mitsubishi Electric Corp 通信ネットワークにおける障害復旧方法
US7606237B2 (en) * 2003-03-31 2009-10-20 Alcatel-Lucent Usa Inc. Sharing restoration path bandwidth in mesh networks
JP4829474B2 (ja) * 2004-01-30 2011-12-07 富士通株式会社 ネットワーク制御装置およびそのパス制御方法
JP4485464B2 (ja) * 2005-12-15 2010-06-23 日本電信電話株式会社 迂回経路計算方法及び装置、迂回経路計算サーバ、迂回経路計算ルータ、及び迂回経路計算プログラム
CN1866806B (zh) * 2005-12-22 2011-11-02 华为技术有限公司 共享格状网恢复的实现方法
JP4676937B2 (ja) * 2006-09-04 2011-04-27 エヌ・ティ・ティ・コミュニケーションズ株式会社 障害復旧システム、障害復旧方法、障害復旧プログラム
CN100593929C (zh) * 2007-08-21 2010-03-10 中国科学院计算技术研究所 一种无线分组网络中的移动切换方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0637783A (ja) * 1992-07-14 1994-02-10 Fujitsu Ltd Atmネットワークにおける迂回ルート設定方式
JP2000341289A (ja) * 1999-05-26 2000-12-08 Nec Commun Syst Ltd ネットワークシステムとその迂回pvc切り戻し方法
JP2001045009A (ja) * 1999-07-27 2001-02-16 Nec Commun Syst Ltd Atm通信ネットワークシステム
JP2001251343A (ja) * 2000-03-06 2001-09-14 Fujitsu Ltd ラベルスイッチネットワークシステム
JP2002094510A (ja) * 2000-09-12 2002-03-29 Nec Corp ネットワークシステム及び上位nmsを用いたpvc自動迂回方法
JP2003229889A (ja) * 2002-02-06 2003-08-15 Nec Corp パス設定方法及びそれを用いる通信ネットワーク並びにノード装置
JP2004165794A (ja) * 2002-11-11 2004-06-10 Nippon Telegr & Teleph Corp <Ntt> 帯域管理装置および方法、プログラム、記録媒体
JP2004304456A (ja) * 2003-03-31 2004-10-28 Fujitsu Ltd ネットワークシステム,同システムにおけるパス設定方法並びに同システムに用いられるネットワーク管理装置及びネットワーク装置
JP2005159983A (ja) * 2003-11-28 2005-06-16 Nippon Telegr & Teleph Corp <Ntt> ラベルスイッチングネットワーク、ルートサーバ、およびラベルエッジルータ
JP2008503117A (ja) * 2004-06-14 2008-01-31 ▲ホア▼▲ウェイ▼技術有限公司 エンド・ツー・エンドのサービス品質の信頼性の保証を実現する方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KAORI SHIMIZU ET AL.: "Examination and evaluation concerning Mulit-layer Netowork Operation Method", IEICE TECHNICAL REPORT ICM2008-28, vol. 108, no. 123, 3 July 2008 (2008-07-03), pages 25 - 30, XP008146001 *
See also references of EP2312798A4 *

Also Published As

Publication number Publication date
EP2312798A4 (en) 2011-06-22
JP2010011258A (ja) 2010-01-14
EP2312798A1 (en) 2011-04-20
EP2312798B1 (en) 2013-07-31
CN102077531B (zh) 2013-11-20
CN102077531A (zh) 2011-05-25
US20110090785A1 (en) 2011-04-21
JP5062845B2 (ja) 2012-10-31
US8422360B2 (en) 2013-04-16

Similar Documents

Publication Publication Date Title
JP5062845B2 (ja) 経路切替方法、サーバ装置、境界ノード装置、経路切替システム及び経路切替プログラム
JP4209758B2 (ja) 迂回通信経路設計方法
US8289843B2 (en) Service failure recovery method and system
US7180866B1 (en) Rerouting in connection-oriented communication networks and communication systems
EP2658182A1 (en) Ring network protection method, network node and ring network
US20080212483A1 (en) Method and apparatus for end-to-end link detection and policy routing switching
JP2009239359A (ja) 通信ネットワークシステム、通信装置、経路設計装置及び障害回復方法
US20070274224A1 (en) Path setting method, node device, and monitoring/control device
JP4392386B2 (ja) リカバリ方法、ならびに、そのリカバリ方法を実行する発信者ノード装置、中継ノード装置、および、着信者ノード装置
JP4547314B2 (ja) 故障復旧方法および管理ノードならびに通信ノード
WO2010121459A1 (zh) 一种自动交换光网络中实现保护与恢复的方法及系统
WO2008064612A1 (fr) Procédé, dispositif et système permettant d&#39;effectuer un reroutage rapide dans un réseau mpls
KR20150002474A (ko) 통신 네트워크에서 장애 복구 방법
US8532481B2 (en) Dual fault tolerant optical networking with fast protection performance
KR101444684B1 (ko) 요청에 따라 공급자 네트워크를 통해 접속을 복구하는 방법 및 장치
WO2010111919A1 (zh) 一种自动交换光网络业务错联阻错的方法及系统
CA2584440A1 (en) Ip telephone system and telephone exchange
CN113824595A (zh) 链路切换控制方法、装置和网关设备
JP2008193429A (ja) 通信ネットワーク、通信インタフェース方法およびノード装置
JP3597776B2 (ja) 通信網の品質制御管理システム
KR100501320B1 (ko) 다중 프로토콜 레이블 교환 시스템에서의 씨알-엘에스피복구 방법
JP4365763B2 (ja) マルチレイヤネットワーク、中継ノード装置および冗長パス確立方法
JP4653766B2 (ja) 制御ネットワーク、通信方法及びノード装置
JP7174248B2 (ja) 通信装置、通信制御方法およびプログラム
JP5378239B2 (ja) 情報伝送システム、情報伝送方法および中継スイッチ装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980125338.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09773461

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009773461

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12999113

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE