WO2010001880A1 - プラズマcvd装置、dlc膜及び薄膜の製造方法 - Google Patents

プラズマcvd装置、dlc膜及び薄膜の製造方法 Download PDF

Info

Publication number
WO2010001880A1
WO2010001880A1 PCT/JP2009/061919 JP2009061919W WO2010001880A1 WO 2010001880 A1 WO2010001880 A1 WO 2010001880A1 JP 2009061919 W JP2009061919 W JP 2009061919W WO 2010001880 A1 WO2010001880 A1 WO 2010001880A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
counter electrode
holding
plasma cvd
power source
Prior art date
Application number
PCT/JP2009/061919
Other languages
English (en)
French (fr)
Inventor
祐二 本多
丈晴 川邉
晴仁 早川
浩二 阿部
Original Assignee
株式会社ユーテック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ユーテック filed Critical 株式会社ユーテック
Priority to US13/001,089 priority Critical patent/US20110165057A1/en
Publication of WO2010001880A1 publication Critical patent/WO2010001880A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32091Radio frequency generated discharge the radio frequency energy being capacitively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/32541Shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32697Electrostatic control
    • H01J37/32706Polarising the substrate

Definitions

  • the present invention relates to a plasma CVD (chemical vapor deposition) apparatus, a DLC film, and a method for manufacturing a thin film.
  • a plasma CVD chemical vapor deposition
  • FIG. 2 is a block diagram schematically showing a conventional plasma CVD apparatus.
  • the plasma CVD apparatus has a film formation chamber 101, and a lid 102 is disposed on the film formation chamber 101.
  • a film formation chamber 103 is formed in the film formation chamber 101 by covering the film formation chamber 101 with a lid 102.
  • a stage electrode 104 for placing and fixing a deposition target substrate (not shown) is disposed below the deposition chamber 103, and the stage electrode 104 is electrically connected to a high frequency power source 106.
  • the stage electrode 104 also functions as an RF application electrode.
  • the periphery and the lower part of the stage electrode 104 are shielded by an earth shield 105.
  • a gas shower electrode 107 is disposed at a position parallel to the stage electrode 104. These are a pair of parallel plate electrodes. The periphery and upper part of the gas shower electrode 107 are shielded by an earth shield 108. The gas shower electrode 107 is connected to the ground potential.
  • a plurality of inlets for introducing a shower-like source gas are formed on the surface side of the deposition target substrate.
  • a gas introduction path (not shown) is provided inside the gas shower electrode 107. One side of the gas introduction path is connected to the introduction port, and the other side of the gas introduction path is connected to a source gas supply mechanism (not shown).
  • the film forming chamber 101 is provided with an exhaust port 110 for evacuating the inside of the film forming chamber 103.
  • the exhaust port 110 is connected to an exhaust pump (not shown).
  • the deposition target substrate is inserted into the deposition chamber 103 of the plasma CVD apparatus, and the deposition target substrate is placed on the stage electrode 104 in the deposition chamber.
  • this film formation substrate is fixed on the stage electrode 104, the film formation chamber 101 is closed with a lid 102, and evacuated with an exhaust pump.
  • a shower-like source gas is introduced from the introduction port of the gas shower electrode 107 to the surface side of the deposition target substrate in the deposition chamber 103.
  • the film formation chamber is made to have a desired atmosphere by controlling to a predetermined pressure, a raw material gas flow rate, etc., and a high frequency (RF) is applied from the high frequency power source 106 to generate plasma, thereby forming a film on the film formation substrate.
  • RF high frequency
  • the voltage VDC which is a DC component generated at the electrode during high-frequency discharge during CVD film formation, is increased. There is a problem that can not be done.
  • the conventional plasma CVD apparatus uses a parallel plate electrode composed of the stage electrode 104 and the gas shower electrode 107, the plasma 111 generated in the space between the stage electrode 104 and the gas shower electrode 107 is lateral. It spreads in the direction. As a result, there is a problem that the density of the plasma 111 is lowered.
  • the CVD film easily adheres to the inner wall of the film forming chamber 101, and there is a problem that the burden of the work of removing the attached CVD film from the inner wall of the film forming chamber 101 increases.
  • the present invention aims to solve at least one of the above-mentioned problems.
  • a plasma CVD apparatus includes a chamber, A holding electrode disposed in the chamber and holding a deposition target substrate; A high frequency power source electrically connected to the holding electrode; A counter electrode disposed opposite to the film formation substrate held by the holding electrode and connected to an earth power source or a float power source; A source gas supply mechanism for supplying source gas to the space between the counter electrode and the holding electrode; An exhaust mechanism for evacuating the chamber; Comprising When the surface area of the holding electrode is a and the surface area of the counter electrode is b, the following formula is satisfied. b / a ⁇ 2
  • the surface area of the counter electrode connected to the ground electrode or the float power source is set to be at least twice that of the holding electrode, so that the DC ( The voltage VDC which is a (direct current) component can be increased.
  • the counter electrode is formed so as to cover a film formation surface of the film formation substrate held by the holding electrode. Therefore, it is possible to prevent the plasma generated in the space between the counter electrode and the holding electrode from spreading in the lateral direction, thereby suppressing the plasma density from being lowered.
  • a maximum distance between the counter electrode and the holding electrode is 5 mm or less in an opening where the space inside the counter electrode is connected to the space outside the counter electrode.
  • the frequency of the high-frequency power source is preferably 100 kHz to 300 MHz, more preferably 100 kHz to 60 MHz. If the frequency is less than 100 kHz, induction heating tends to occur, which is not preferable.
  • a high frequency power source for applying high frequency power to the counter electrode and a ground potential for applying the ground potential to the holding electrode
  • a common power source may be used for the high frequency power source that applies high frequency power to the counter electrode and the high frequency power source that applies high frequency power to the holding electrode.
  • the plasma CVD apparatus according to the present invention preferably further includes an earth shield disposed outside the counter electrode when the high frequency power is applied to the counter electrode. Thereby, the density of the plasma generated between the counter electrode and the holding electrode can be increased by applying high-frequency power to the counter electrode.
  • a plasma CVD apparatus includes a chamber, A holding electrode disposed in the chamber and holding a deposition target substrate; A first ground power source electrically connected to the holding electrode via a first switch; A high-frequency power source electrically connected to the holding electrode via a second switch; A counter electrode disposed opposite to the deposition target substrate held by the holding electrode and electrically connected to the high-frequency power source via the second switch; A source gas supply mechanism for supplying source gas to the space between the counter electrode and the holding electrode; An exhaust mechanism for evacuating the chamber; A second ground power source electrically connected to the counter electrode via a third switch; Comprising When the surface area of the holding electrode is a and the surface area of the counter electrode is b, the following formula is satisfied. b / a ⁇ 2
  • the plasma CVD apparatus according to the present invention may further include a float power supply electrically connected to the counter electrode via the third switch.
  • the counter electrode is preferably formed so as to cover a film formation surface of the film formation substrate held by the holding electrode.
  • a maximum distance between the counter electrode and the holding electrode is 5 mm or less in an opening where the space inside the counter electrode is connected to the space outside the counter electrode.
  • the DLC film according to the present invention is formed using the plasma CVD apparatus described above.
  • the method for producing a thin film according to the present invention is a method for producing a thin film using any of the plasma CVD apparatuses described above. Holding the deposition substrate on the holding electrode; A thin film is formed on the surface of the deposition substrate by bringing the source gas into a plasma state by discharge between the deposition substrate and the counter electrode in the chamber.
  • the thin film may be mainly composed of carbon or silicon.
  • FIG. 1 is a cross-sectional view schematically showing a plasma CVD apparatus according to an embodiment of the present invention. It is a block diagram which shows the conventional plasma CVD apparatus schematically.
  • FIG. 1 is a cross-sectional view schematically showing a plasma CVD apparatus according to an embodiment of the present invention.
  • the plasma CVD apparatus has a film forming chamber 1, and a holding electrode 2 for holding a film formation substrate (not shown) is disposed in the film forming chamber 1.
  • the holding electrode 2 acts as a cathode during CVD film formation.
  • the periphery and the lower part of the holding electrode 2 are shielded by earth shields 9 and 10.
  • a counter electrode 12 is disposed so as to face the holding electrode 2.
  • the counter electrode 12 is formed so as to cover the film formation surface of the film formation substrate held by the holding electrode 2.
  • the planar shape of the holding electrode 2 is, for example, a circle, and the inner shape of the counter electrode 12 has a shape like a cylindrical outer shape.
  • the shape of the space 13 between the counter electrode 12 and the holding electrode 2, that is, the space 13 inside the counter electrode 12 is substantially cylindrical.
  • the shape of the space 13 is a substantially cylindrical shape, but the shape of the space may be another shape.
  • the counter electrode 12 serves as an earth electrode during CVD film formation, and acts as an anode.
  • the outside of the counter electrode 12 is shielded by the earth shield 11.
  • the counter electrode 12 has a surface area larger than that of the holding electrode 2.
  • the surface area of the counter electrode 12 here is the surface area inside the counter electrode 12, and the surface area of the holding electrode 2 is the surface area of the surface holding the deposition target substrate.
  • the following formula (1) is preferably satisfied, and more preferably the following formula (2) is satisfied.
  • the opening where the space 13 inside the counter electrode 12 is connected to the space outside the counter electrode 12 has a ring shape, and the maximum distance between the counter electrode 12 and the holding electrode 2 in this opening is 5 mm or less (preferably 3 mm or less, more preferably 2 mm or less).
  • the maximum distance between the counter electrode 12 and the holding electrode 2 described above is the same as the counter electrode 12 and the ground. It corresponds to the maximum distance 14 between the shield 9 and the maximum distance 14 is preferably 5 mm or less (preferably 3 mm or less, more preferably 2 mm or less).
  • the effect by setting it as 5 mm or less is mentioned later.
  • the holding electrode 2 is electrically connected to the ground power source via the first switch 3.
  • the holding electrode 2 is electrically connected to a first matching box (M-BOX) 6, and the first matching box 6 is electrically connected to a high-frequency power source 8 via a second switch 4. ing.
  • M-BOX first matching box
  • the holding electrode 2 is electrically connected to the high-frequency power source 8 or the ground power source can be switched by the first and second switches 3 and 4.
  • the counter electrode 12 is electrically connected to a second matching box (M-BOX) 7, and the second matching box 7 is electrically connected to the high frequency power supply 8 through the second switch 4. .
  • the counter electrode 12 is electrically connected to an earth power source or a float power source via the third switch 5. That is, whether the counter electrode 12 is electrically connected to the high frequency power source 8, the ground power source, or the float power source is determined by the second and third switches 4, 5 can be switched.
  • the frequency of the high frequency power supply 8 is 100 kHz to 300 MHz (preferably 100 kHz to 60 MHz). In this embodiment, the high frequency power supply 8 of 13.56 MHz and 3 kW is used. Further, the plasma CVD apparatus has an exhaust mechanism for evacuating the film forming chamber 1.
  • the plasma CVD apparatus has a source gas supply mechanism for supplying source gas to the space 13 between the counter electrode 12 and the holding electrode 2.
  • the source gas supply mechanism has a source 15 for supplying source gas such as C 7 H 8 , for example, which is connected to one end of a mass flow controller (MFC) 18 via a valve 16.
  • MFC mass flow controller
  • the other end of the mass flow controller 18 is connected to the counter electrode 12 via a valve 17.
  • the counter electrode 12 is a gas shower electrode for introducing the source gas into the space 13 in a shower shape.
  • the deposition target substrate is held on the holding electrode 2.
  • the film formation substrate for example, a Si wafer, a plastic substrate, various electronic devices, or the like can be used.
  • the plastic substrate can be used because the apparatus can form a film at a low temperature (for example, a temperature of 150 ° C. or lower).
  • the film formation chamber 1 is evacuated by an exhaust mechanism.
  • the source gas is supplied from the supply source 15 into the counter electrode 12 through the valve 16, the mass flow controller 18, and the valve 17. Introduce.
  • the introduced source gas flows from the opening having the maximum interval 14 to the outside of the counter electrode 12 and is exhausted by the exhaust mechanism. Then, depending on the balance between the supply amount of the source gas and the exhaust gas, desired conditions such as a predetermined pressure and a predetermined flow rate of the source gas are set.
  • raw material gases can be used as the raw material gas, for example, hydrocarbon-based gas, silicon compound gas, oxygen, and the like can be used.
  • silicon compound gas it is preferable to use hexamethyldisilazane or hexamethyldisiloxane (also collectively referred to as HMDS) that can be easily handled and can be formed at a low temperature.
  • HMDS hexamethyldisilazane or hexamethyldisiloxane
  • the ground electrode is connected to the counter electrode 12 by the third switch 5 so that the counter electrode 12 functions as a ground electrode.
  • the high frequency power supply 8 is connected to the first matching box 6 by the second switch 4, and the second switch 4 and the high frequency power supply 8 are connected to the holding electrode 2 by the first switch 3.
  • a high frequency (RF) is applied to the holding electrode 2 through the first matching box 6.
  • the thin film formed in this way is, for example, a film mainly composed of carbon or silicon.
  • An example of a film mainly composed of carbon is a DLC film, and an example of a film mainly composed of silicon. Examples thereof include a SiO 2 film.
  • the raw material gas for forming the SiO 2 film includes HMDS and oxygen.
  • a method of forming a thin film on a deposition target substrate by applying a ground potential to the counter electrode 12 and applying a high frequency to the holding electrode 2 is used. It is also possible to use a method of forming a thin film on the deposition target substrate by applying a float potential to 12 and applying a high frequency to the holding electrode 2.
  • a method of applying a ground potential to the counter electrode 12 can form a relatively hard thin film, whereas a method of applying a float potential to the counter electrode 12 can form a relatively soft thin film. .
  • a float potential When a float potential is applied to the counter electrode 12, a float power source may be connected to the counter electrode 12 by the third switch 5.
  • the holding electrode 2 is caused to function as a ground electrode by connecting a ground power source to the holding electrode 2 by the first switch 3.
  • the high frequency power supply 8 is connected to the second matching box 7 by the second switch 4, and the ground power supply and the float power supply are not connected to the counter electrode 12 by the third switch 5.
  • the inside of the film forming chamber 1 is evacuated by an exhaust mechanism, and O 2 gas is introduced from the inside of the counter electrode 12 into the space 13 on the holding electrode 2 in a shower shape.
  • the introduced O 2 gas flows to the outside of the counter electrode 12 through the opening having the maximum interval 14 described above, and is exhausted by the exhaust mechanism.
  • a high frequency (RF) is applied to the counter electrode 12 by the high frequency power source 8 through the second switch 4 and the second matching box 7.
  • RF radio frequency
  • the voltage V DC that is a DC component generated in the electrode during high-frequency discharge during CVD film formation is increased.
  • the acceleration of ions can be increased.
  • SiO 2 is easily generated by increasing the acceleration of ions.
  • the counter electrode 12 is formed so as to cover the film formation surface of the film formation substrate held by the holding electrode 2, the space between the counter electrode 12 and the holding electrode 2.
  • the plasma generated in 13 does not spread laterally. Thereby, it can suppress that the density of a plasma becomes low.
  • the outer side of the counter electrode 12 is shielded by the earth shield 11, so that O 2 plasma can be confined in the space 13 in the counter electrode 12 when performing O 2 cleaning. Accordingly, the plasma density can be increased and the ashing rate of the CVD film can be increased as compared with the case where the earth shield 11 is not disposed. Therefore, the cleaning effect can be enhanced.
  • the maximum distance between the counter electrode 12 and the holding electrode 2 in the opening where the space 13 inside the counter electrode 12 is connected to the space outside the counter electrode 12 is 5 mm or less (preferably 3 mm or less, more Preferably, it is 2 mm or less.
  • the gap between the openings it is possible to suppress the occurrence of abnormal discharge when the source gas during CVD film formation passes. For this reason, plasma can be confined in the space 13 inside the counter electrode 12, and as a result, the CVD film adheres to the piping and valves of the exhaust mechanism located outside the counter electrode 12, the inner wall of the film forming chamber 1, and the like. Can be suppressed.
  • the film forming chamber 1 can be cleaned without breaking the vacuum, and the burden of the work of removing the CVD film adhering to the inner wall of the film forming chamber as in the conventional plasma CVD apparatus is reduced. It can be greatly reduced.
  • the high-frequency power source 8 can be changed to another plasma power source.
  • other plasma power sources include a microwave power source, a DC discharge power source, a pulse-modulated high-frequency power source, and a microwave power source. Examples thereof include a power source and a DC discharge power source.
  • the inner shape of the counter electrode 12 is shaped like a cylindrical outer shape, but the inner shape of the counter electrode 12 may be a planar shape. Even in this case, the effect of the present invention can be obtained by satisfying the formula (1).
  • the said embodiment as shown in FIG. 1, it is set as the structure which arrange
  • the holding electrode 2 may be arranged on the upper side, and the counter electrode 12 may be arranged on the lower side.
  • Example 1 An example in which a CVD film is formed on a deposition target substrate using the plasma CVD apparatus shown in FIG. 1 in the same manner as in the embodiment will be described.
  • Film formation substrate 6-inch Si wafer
  • Material gas Toluene (C 7 H 8 )
  • Source gas flow rate 4 cc / min
  • Pressure in the deposition chamber 0.13 Pa
  • RF frequency 13.56 MHz
  • RF output 900W
  • Surface area b of counter electrode / surface area a of holding electrode: b / a 5.3
  • CVD film formed DLC (Diamond Like Carbon) film Film thickness of CVD film: 100 nm DLC film hardness: 2695 (average of 5 points) (Knoop hardness measurement method) Equipment: Micro hardness tester DMH-2 type indenter made by Matsuzawa Seiki Indenter: Anti-ridge angle 172.5 °, 130 ° Diamond diamond pyramid indenter Weight: 5g Weighted time: 15 seconds Measurement points: Any 5 points on the sample
  • Example 1 a very hard and dense DLC film could be formed. Further, the DLC film hardly adhered to the piping and valves of the exhaust mechanism of the plasma CVD apparatus, the inner wall of the film forming chamber 1 and the like.
  • Example 2 An example in which the DLC film attached to the electrode surface of the holding electrode 2 is removed by the same O 2 cleaning method as in the embodiment using the plasma CVD apparatus shown in FIG. 1 will be described.
  • Example 3 An example in which the DLC film attached to the inner wall of the counter electrode 12 is removed by the same O 2 cleaning method as in the embodiment using the plasma CVD apparatus shown in FIG. 1 will be described.
  • Example 3 by performing O 2 cleaning for 700 seconds, the DLC film adhered in the counter electrode 12 can be removed cleanly, and the removal rate was fast. Therefore, the maintenance time can be greatly shortened.
  • Example 4 An example in which a CVD film is formed on a deposition target substrate using the plasma CVD apparatus shown in FIG. 1 in the same manner as in the embodiment will be described.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

 CVD成膜時の高周波放電中に電極に発生するDC成分である電圧VDCを大きくできるプラズマCVD装置を提供する。本発明に係るプラズマCVD装置は、チャンバー1と、前記チャンバー内に配置され、被成膜基板が保持される保持電極2と、前記保持電極に電気的に接続された高周波電源8と、前記保持電極に保持された前記被成膜基板に対向して配置され、アース電源又はフロート電源に接続される対向電極12と、前記対向電極と前記保持電極との間の空間13に原料ガスを供給する原料ガス供給機構と、前記チャンバー内を真空排気する排気機構と、を具備し、前記保持電極の表面積をaとし、前記対向電極の表面積をbとした場合に下記式を満たすことを特徴とする。  b/a≧2

Description

プラズマCVD装置、DLC膜及び薄膜の製造方法
 本発明は、プラズマCVD(chemical vapor deposition)装置、DLC膜及び薄膜の製造方法に関する。
 図2は、従来のプラズマCVD装置を概略的に示す構成図である。
 プラズマCVD装置は成膜チャンバー101を有しており、この成膜チャンバー101の上部には蓋102が配置されている。成膜チャンバー101に蓋102をすることにより、成膜チャンバー101内には成膜室103が形成される。
 この成膜室103内の下方には被成膜基板(図示せず)を載置固定するステージ電極104が配置されており、このステージ電極104は高周波電源106に電気的に接続されており、ステージ電極104はRF印加電極としても作用する。ステージ電極104の周囲及び下部はアースシールド105によってシールドされている。
 成膜室103内の上方には、ステージ電極104に対向して平行の位置にガスシャワー電極107が配置されている。これらは一対の平行平板型電極である。ガスシャワー電極107の周囲及び上部はアースシールド108によってシールドされている。また、ガスシャワー電極107は接地電位に接続されている。
 ガスシャワー電極107の下方(ステージ電極上面側)には、被成膜基板の表面側にシャワー状の原料ガスを導入する複数の導入口(図示せず)が形成されている。ガスシャワー電極107の内部にはガス導入経路(図示せず)が設けられている。このガス導入経路の一方側は上記導入口に繋げられており、ガス導入経路の他方側は原料ガスの供給機構(図示せず)に接続されている。また、成膜チャンバー101には、成膜室103の内部を真空排気する排気口110が設けられている。この排気口110は排気ポンプ(図示せず)に接続されている。
 次に、上記プラズマCVD装置を用いた成膜方法について説明する。
 被成膜基板をプラズマCVD装置の成膜室103内に挿入し、この成膜室内のステージ電極104上に被成膜基板を載置する。
 次いで、この被成膜基板をステージ電極104上に固定し、成膜チャンバー101を蓋102で閉じ、排気ポンプで真空排気する。次いで、ガスシャワー電極107の導入口からシャワー状の原料ガスを成膜室103の被成膜基板の表面側に導入する。そして、所定の圧力、原料ガス流量などに制御することにより成膜室内を所望の雰囲気とし、高周波電源106により高周波(RF)を印加し、プラズマを発生させることにより被成膜基板に成膜処理を行う。
 ところで、上記従来のプラズマCVD装置では、ガスシャワー電極107の表面積をステージ電極104と略同じ表面積としているため、CVD成膜時の高周波放電中に電極に発生するDC成分である電圧VDCを大きくすることができないという課題がある。
 また、上記従来のプラズマCVD装置では、ステージ電極104とガスシャワー電極107からなる平行平板型電極を用いているため、ステージ電極104とガスシャワー電極107との間の空間に発生したプラズマ111が横方向に広がってしまう。その結果、プラズマ111の密度が低くなるという課題がある。
 また、プラズマ111が広がることにより、成膜チャンバー101の内壁にCVD膜が付着しやすくなり、その付着したCVD膜を成膜チャンバー101の内壁から除去する作業の負担が大きくなるという課題がある。
 本発明は上述した課題の少なくとも一つを解決することを目的とする。
 上記課題を解決するため、本発明に係るプラズマCVD装置は、チャンバーと、
 前記チャンバー内に配置され、被成膜基板が保持される保持電極と、
 前記保持電極に電気的に接続される高周波電源と、
 前記保持電極に保持された前記被成膜基板に対向して配置され、アース電源又はフロート電源に接続される対向電極と、
 前記対向電極と前記保持電極との間の空間に原料ガスを供給する原料ガス供給機構と、
 前記チャンバー内を真空排気する排気機構と、
を具備し、
 前記保持電極の表面積をaとし、前記対向電極の表面積をbとした場合に下記式を満たすことを特徴とする。
 b/a≧2
 上記プラズマCVD装置によれば、アース電極又はフロート電源に接続される対向電極の表面積を保持電極のそれの2倍以上とすることにより、CVD成膜時の高周波放電中に電極に発生するDC(直流)成分である電圧VDCを大きくすることができる。
 また、本発明に係るプラズマCVD装置において、前記対向電極は、前記保持電極に保持された前記被成膜基板の成膜面を覆うように形成されていることが好ましい。これにより、対向電極と保持電極との間の空間に発生したプラズマが横方向に広がることを防止でき、それにより、プラズマの密度が低くなることを抑制できる。
 また、本発明に係るプラズマCVD装置において、前記対向電極の内側の空間が前記対向電極の外側の空間に繋がる開口部における前記対向電極と前記保持電極との最大間隔が5mm以下であることが好ましい。これにより、CVD成膜時の原料ガスが前記開口部を通過した際に異常放電の発生を抑制することができる。このため、対向電極の内側の空間にプラズマを閉じ込めることができ、その結果、チャンバーの内壁及び排気機構にCVD膜が付着するのを抑制できる。
 また、本発明に係るプラズマCVD装置において、前記高周波電源の周波数は100kHz~300MHzであることが好ましく、より好ましくは100kHz~60MHzである。周波数が100kHz未満であると誘導加熱が起きやすいので、好ましくない。
 また、本発明に係るプラズマCVD装置において、前記対向電極に付着したCVD膜を除去する際に、前記対向電極に高周波電力を印加するための高周波電源と、前記保持電極にアース電位を印加するためのアース電源とをさらに具備することも可能である。なお、前記対向電極に高周波電力を印加する高周波電源と前記保持電極に高周波電力を印加する高周波電源は、共通の電源を用いても良い。
 また、本発明に係るプラズマCVD装置において、前記対向電極に前記高周波電力を印加する際に、前記対向電極の外側に配置されたアースシールドをさらに具備することが好ましい。これにより、対向電極に高周波電力を印加することにより、対向電極と保持電極の間に発生させたプラズマの密度を高めることができる。
 本発明に係るプラズマCVD装置は、チャンバーと、
 前記チャンバー内に配置され、被成膜基板が保持される保持電極と、
 前記保持電極に第1のスイッチを介して電気的に接続された第1のアース電源と、
 前記保持電極に第2のスイッチを介して電気的に接続された高周波電源と、
 前記保持電極に保持された前記被成膜基板に対向して配置され、前記高周波電源に前記第2のスイッチを介して電気的に接続された対向電極と、
 前記対向電極と前記保持電極との間の空間に原料ガスを供給する原料ガス供給機構と、
 前記チャンバー内を真空排気する排気機構と、
 前記対向電極に第3のスイッチを介して電気的に接続された第2のアース電源と、
を具備し、
 前記保持電極の表面積をaとし、前記対向電極の表面積をbとした場合に下記式を満たすことを特徴とする。
 b/a≧2
 また、本発明に係るプラズマCVD装置において、前記対向電極に前記第3のスイッチを介して電気的に接続されたフロート電源をさらに具備することも可能である。
 また、本発明に係るプラズマCVD装置において、前記対向電極は、前記保持電極に保持された前記被成膜基板の成膜面を覆うように形成されていることが好ましい。
 また、本発明に係るプラズマCVD装置において、前記対向電極の内側の空間が前記対向電極の外側の空間に繋がる開口部における前記対向電極と前記保持電極との最大間隔が5mm以下であることが好ましい。
 また、本発明に係るDLC膜は、前述したプラズマCVD装置を用いて成膜されたことを特徴とする。
 本発明に係る薄膜の製造方法は、前述したいずれかのプラズマCVD装置を用いた薄膜の製造方法において、
 前記保持電極に被成膜基板を保持し、
 前記チャンバー内の前記被成膜基板と前記対向電極との間の放電によって前記原料ガスをプラズマ状態とすることにより、前記被成膜基板の表面に薄膜を形成することを特徴とする。
 また、本発明に係る薄膜の製造方法において、前記薄膜は炭素又は珪素が主成分であることも可能である。
本発明の実施の形態によるプラズマCVD装置を模式的に示す断面図である。 従来のプラズマCVD装置を概略的に示す構成図である。
 以下、図面を参照して本発明の実施の形態について説明する。
 図1は、本発明の実施の形態によるプラズマCVD装置を模式的に示す断面図である。
 このプラズマCVD装置は成膜チャンバー1を有しており、この成膜チャンバー1内には被成膜基板(図示せず)を保持する保持電極2が配置されている。この保持電極2はCVD成膜時にカソードとして作用する。保持電極2の周囲及び下部はアースシールド9,10によってシールドされている。
 また、成膜チャンバー1内には、保持電極2に対向するように対向電極12が配置されている。この対向電極12は、保持電極2に保持された被成膜基板の成膜面を覆うように形成されている。詳細には、保持電極2の平面形状は例えば円形であり、対向電極12の内側の形状は円柱の外形のような形状を有している。これにより、対向電極12と保持電極2との間の空間13、即ち対向電極12の内側の空間13の形状が略円柱形状とされる。なお、本実施の形態では、前記空間13の形状を略円柱形状としているが、前記空間の形状を他の形状とすることも可能である。
 また、対向電極12はCVD成膜時にアース電極となり、アノードとして作用する。対向電極12の外側はアースシールド11によってシールドされている。
 また、対向電極12は、その表面積が保持電極2の表面積より大きく形成されている。ここでいう対向電極12の表面積は、対向電極12の内側の表面積であり、保持電極2の表面積は、被成膜基板を保持する面の表面積である。保持電極2の表面積をaとし、対向電極12の表面積をbとした場合に下記式(1)を満たすことが好ましく、より好ましくは下記式(2)を満たすことである。
 b/a≧2 ・・・(1)
 b/a≧5 ・・・(2)
 対向電極12の内側の空間13が対向電極12の外側の空間に繋がる開口部はリング形状を有しており、この開口部における対向電極12と保持電極2との最大間隔が5mm以下(好ましくは3mm以下、より好ましくは2mm以下)であることが好ましい。本実施の形態では、前記開口部における対向電極12と保持電極2との間にアースシールド9が配置されているため、前述した対向電極12と保持電極2との最大間隔は対向電極12とアースシールド9との最大間隔14に相当し、この最大間隔14が5mm以下(好ましくは3mm以下、より好ましくは2mm以下)であることが好ましい。このように5mm以下とすることによる効果については後述する。
 保持電極2は第1のスイッチ3を介してアース電源に電気的に接続されている。また、保持電極2は第1のマッチングボックス(M-BOX)6に電気的に接続されており、第1のマッチングボックス6は第2のスイッチ4を介して高周波電源8に電気的に接続されている。つまり、保持電極2が高周波電源8に電気的に接続されるか、アース電源に電気的に接続されるかを、第1及び第2のスイッチ3,4によって切り替えられるようになっている。
 対向電極12は第2のマッチングボックス(M-BOX)7に電気的に接続されており、第2のマッチングボックス7は第2のスイッチ4を介して高周波電源8に電気的に接続されている。また、対向電極12は第3のスイッチ5を介してアース電源又はフロート電源に電気的に接続されている。つまり、対向電極12が高周波電源8に電気的に接続されるか、アース電源に電気的に接続されるか、フロート電源に電気的に接続されるかを、第2及び第3のスイッチ4,5によって切り替えられるようになっている。
 高周波電源8の周波数は100kHz~300MHz(好ましくは100kHz~60MHz)であるが、本実施の形態では、13.56MHz、3kWの高周波電源8を用いている。
 また、プラズマCVD装置は、成膜チャンバー1内を真空排気する排気機構を有している。
 また、プラズマCVD装置は、対向電極12と保持電極2との間の空間13に原料ガスを供給する原料ガス供給機構を有している。原料ガス供給機構は、例えばCなどの原料ガスを供給する供給源15を有しており、この供給源15はバルブ16を介してマスフローコントローラー(MFC)18の一方端に接続されており、マスフローコントローラー18の他方端はバルブ17を介して対向電極12に接続されている。対向電極12は、原料ガスを前記空間13にシャワー状に導入するガスシャワー電極となっている。
 次に、上記プラズマCVD装置を用いてCVD成膜処理を行う方法について説明する。
 まず、被成膜基板を保持電極2上に保持させる。被成膜基板としては、例えばSiウエハ、プラスチック基板、各種電子デバイスなどを用いることが可能である。プラスチック基板を用いることができるのは、本装置が低温(例えば150℃以下の温度)で成膜できるからである。
 次いで、成膜チャンバー1内を排気機構で真空排気する。次いで、供給源15から原料ガスをバルブ16、マスフローコントローラー18、バルブ17を通して対向電極12内に供給し、この対向電極12の内側から原料ガスをシャワー状に保持電極2上の空間13に向けて導入する。この導入された原料ガスは、前述した最大間隔14を有する開口部から対向電極12の外側へ流れ、前記排気機構によって排気される。そして、原料ガスの供給量と排気のバランスにより、所定の圧力、原料ガスの所定流量などの所望の条件とされる。
 なお、原料ガスとしては、種々の原料ガスを用いることが可能であり、例えば、炭化水素系ガス、珪素化合物ガス及び酸素などを用いることが可能である。珪素化合物ガスとしては、取り扱いの容易で低温での成膜が可能なヘキサメチルジシラザンやヘキサメチルジシロキサン(これらを総称してHMDSともいう)を用いることが好ましい。
 次いで、アース電源を第3のスイッチ5により対向電極12に接続することにより対向電極12をアース電極として機能させる。次いで、高周波電源8を第2のスイッチ4により第1のマッチングボックス6に接続し、第1のスイッチ3により保持電極2にアース電源を接続しない状態において、高周波電源8により第2のスイッチ4及び第1のマッチングボックス6を介して高周波(RF)を保持電極2に印加する。これにより、被成膜基板と対向電極12との間の放電によって被成膜基板の表面にプラズマを発生させ、被成膜基板上にプラズマCVD法により薄膜を成膜する。その後、被成膜基板を成膜チャンバー1から取り出す。
 このようにして成膜される薄膜は、例えば炭素又は珪素が主成分である膜であり、炭素が主成分である膜の一例としてはDLC膜が挙げられ、珪素が主成分である膜の一例としてはSiO膜が挙げられる。SiO膜を成膜する場合の原料ガスはHMDS及び酸素を有する。
 なお、上記CVD成膜処理方法では、対向電極12にアース電位を印加し、保持電極2に高周波を印加することにより被成膜基板上に薄膜を成膜する方法を用いているが、対向電極12にフロート電位を印加し、保持電極2に高周波を印加することにより被成膜基板上に薄膜を成膜する方法を用いることも可能である。対向電極12にアース電位を印加する方法では、比較的硬い薄膜を成膜することができるのに対し、対向電極12にフロート電位を印加する方法では、比較的軟らかい薄膜を成膜することができる。対向電極12にフロート電位を印加する場合は、第3のスイッチ5によりフロート電源を対向電極12に接続すればよい。
 次に、上記CVD成膜処理を繰り返し行ったことで対向電極12の内側に付着したCVD膜を除去するOクリーニング方法について説明する。
 まず、第1のスイッチ3によりアース電源を保持電極2に接続することによって保持電極2をアース電極として機能させる。次いで、第2のスイッチ4により高周波電源8を第2のマッチングボックス7に接続し、第3のスイッチ5により対向電極12にアース電源及びフロート電源を接続しない状態にする。
 次いで、成膜チャンバー1内を排気機構で真空排気し、対向電極12の内側からOガスをシャワー状に保持電極2上の空間13に向けて導入する。この導入されたOガスは、前述した最大間隔14を有する開口部から対向電極12の外側へ流れ、前記排気機構によって排気される。
 次いで、高周波電源8により第2のスイッチ4及び第2のマッチングボックス7を介して高周波(RF)を対向電極12に印加する。これにより、対向電極12の内側の空間13にOによるプラズマを発生させ、その結果、対向電極12の内側がOクリーニングされ、対向電極12の内側に付着しているCVD膜が除去される。
 上記実施の形態によれば、対向電極12の表面積を保持電極2のそれの2倍以上とすることにより、CVD成膜時の高周波放電中に電極に発生するDC成分である電圧VDCを大きくすることができ、その結果、イオンの加速度を大きくすることができる。このようにイオンの加速度を大きくすることにより例えばSiOが生成され易くなる。
 また、本実施の形態では、対向電極12を、保持電極2に保持された被成膜基板の成膜面を覆うように形成しているため、対向電極12と保持電極2との間の空間13に発生したプラズマが横方向に広がることがない。これにより、プラズマの密度が低くなることを抑制できる。
 また、本実施の形態では、対向電極12の外側をアースシールド11によってシールドすることにより、Oクリーニングを行う際に対向電極12内の空間13にOプラズマを閉じ込めることができる。従って、アースシールド11を配置しない場合に比べてプラズマ密度を高くすることができ、CVD膜のアッシングレートを高くすることができる。よって、クリーニング効果を高めることができる。
 また、本実施の形態では、対向電極12の内側の空間13が対向電極12の外側の空間に繋がる開口部における対向電極12と保持電極2との最大間隔を5mm以下(好ましくは3mm以下、より好ましくは2mm以下)としている。このように前記開口部の隙間を小さくすることにより、CVD成膜時の原料ガスが通過した際に異常放電の発生を抑制することができる。このため、対向電極12の内側の空間13にプラズマを閉じ込めることができ、その結果、対向電極12の外側に位置する排気機構の配管やバルブ、成膜チャンバー1の内壁などにCVD膜が付着するのを抑制できる。
 また、上述したように対向電極12の外側の成膜チャンバー1の内壁にCVD膜が付着するのを抑制するため、対向電極12の内壁に付着したCVD膜を除去できれば良く、この除去方法は前述したOクリーニングを実行すれば良い。従って、本実施の形態では、成膜チャンバー1の真空を破らずにクリーニングが可能であり、従来のプラズマCVD装置のような、成膜チャンバーの内壁に付着したCVD膜を除去する作業の負担を大幅に軽減することができる。
 尚、本発明は上記実施の形態に限定されず、本発明の主旨を逸脱しない範囲内で種々変更して実施することが可能である。例えば、高周波電源8を他のプラズマ電源に変更することも可能であり、他のプラズマ電源の例としては、マイクロ波用電源、DC放電用電源、及びそれぞれパルス変調された高周波電源、マイクロ波用電源、DC放電用電源などが挙げられる。
 また、上記実施の形態では、対向電極12の内側の形状を円柱の外形のような形状を有するようにしているが、対向電極12の内側の形状を平面形状とすることも可能である。この場合でも前記式(1)を満足することにより本発明の効果を得ることができる。
 また、上記実施の形態では、図1に示すように保持電極2を下に配置し、対向電極12を上に配置する構成としているが、これ以外の配置構成とすることも可能であり、例えば、保持電極2を上に配置し、対向電極12を下に配置する上下逆の配置構成としても良い。
 (実施例1)
 図1に示すプラズマCVD装置を用い、実施の形態と同様の方法で被成膜基板にCVD膜を成膜する実施例について説明する。
 (成膜条件)
 被成膜基板 : 6インチのSiウエハ
 原料ガス : トルエン(C
 原料ガスの流量 : 4cc/分
 成膜チャンバー内の圧力 : 0.13Pa
 RF周波数 : 13.56MHz
 RF出力 : 900W
 対向電極の表面積b/保持電極の表面積a : b/a=5.3
 ただし、a=38013mm、b=202274mmである。
 (成膜結果)
 成膜されたCVD膜 : DLC(Diamond Like Carbon)膜
 CVD膜の膜厚 : 100nm
 DLC膜の硬度 : 2695(5点の平均値)
 (ヌープ硬度計測方法)
 装置 : 松沢精機製 微小硬度計 DMH-2型
 圧子 : 対稜角 172.5°,130° 菱形ダイアモンド四角錐圧子
 加重 : 5g
 加重時間 : 15秒
 計測ポイント : サンプル上任意5点
 実施例1によれば、非常に硬質で密度の高いDLC膜を成膜することができた。また、プラズマCVD装置の排気機構の配管やバルブ、成膜チャンバー1の内壁などにDLC膜がほとんど付着しなかった。
 (実施例2)
 図1に示すプラズマCVD装置を用い、実施の形態と同様のOクリーニング方法で保持電極2の電極面に付着したDLC膜を除去する実施例について説明する。
 (クリーニング条件)
 クリーニングガス : Oガス
 クリーニングガスの流量 : 300cc/分
 成膜チャンバー内の圧力 : 6.3Pa
 RF周波数 : 13.56MHz
 RF出力 : 1200W
 対向電極の表面積b/保持電極の表面積a : b/a=5.3
 ただし、a=38013mm、b=202274mmである。
 (クリーニング結果)
 DLC膜の除去レート : 1.125nm/秒
 実施例2によれば、Oクリーニングを800秒間行うことにより、保持電極2の電極面に付着した厚さ900nmのDLC膜をきれいに除去することができ、除去レートも速かった。従って、メンテナンス時間を大幅に短縮することができた。
 (実施例3)
 図1に示すプラズマCVD装置を用い、実施の形態と同様のOクリーニング方法で対向電極12の内壁に付着したDLC膜を除去する実施例について説明する。
 (クリーニング条件)
 クリーニングガス : Oガス
 クリーニングガスの流量 : 300cc/分
 成膜チャンバー内の圧力 : 6.3Pa
 RF周波数 : 13.56MHz
 RF出力 : 1200W
 対向電極の表面積b/保持電極の表面積a : b/a=5.3
 ただし、a=38013mm、b=202274mmである。
 (クリーニング結果)
 実施例3によれば、Oクリーニングを700秒間行うことにより、対向電極12内に付着したDLC膜をきれいに除去することができ、除去レートも速かった。従って、メンテナンス時間を大幅に短縮することができた。
 (実施例4)
 図1に示すプラズマCVD装置を用い、実施の形態と同様の方法で被成膜基板にCVD膜を成膜する実施例について説明する。
 (成膜条件)
 被成膜基板 : Siウエハ
 原料ガス : HMDS-O , O
 HMDS-Oの流量 : 10cc/分
 Oの流量 : 100cc/分
 成膜チャンバー内の圧力 : 2Pa
 RF周波数 : 13.56MHz
 RF出力 : 900W
 対向電極の表面積b/保持電極の表面積a : b/a=5.3
 ただし、a=75476mm、b=403776mmである。
 (成膜結果)
 成膜されたCVD膜 : SiO
 CVD膜の膜厚 : 1500nm
 SiO膜のヌープ硬度(Hk) : 1100
 (ヌープ硬度計測方法)
 装置 : 松沢精機製 微小硬度計 DMH-2型
 圧子 : 対稜角 172.5°,130° 菱形ダイアモンド四角錐圧子
 加重 : 10g
 加重時間 : 15秒
 計測ポイント : サンプル上任意5点
 実施例4によれば、SiO膜のヌープ硬度が1100なので、かなり緻密な膜ができていることが分かった。
 1,101…成膜チャンバー
 2…保持電極
 3~5…第1~第3のスイッチ
 6,7…第1、第2のマッチングボックス
 8,106…高周波電源
 9,10,11,105,108…アースシールド
 12…対向電極
 13…空間
 14…対向電極とアースシールドとの最大間隔
 15…供給源
 16,17…バルブ
 18…マスフローコントローラー
 102…蓋
 103…成膜室
 104…ステージ電極
 107…ガスシャワー電極
 110…排気口
 111…プラズマ

Claims (13)

  1.  チャンバーと、
     前記チャンバー内に配置され、被成膜基板が保持される保持電極と、
     前記保持電極に電気的に接続される高周波電源と、
     前記保持電極に保持された前記被成膜基板に対向して配置され、アース電源又はフロート電源に接続される対向電極と、
     前記対向電極と前記保持電極との間の空間に原料ガスを供給する原料ガス供給機構と、
     前記チャンバー内を真空排気する排気機構と、
    を具備し、
     前記保持電極の表面積をaとし、前記対向電極の表面積をbとした場合に下記式を満たすことを特徴とするプラズマCVD装置。
     b/a≧2
  2.  請求項1において、前記対向電極は、前記保持電極に保持された前記被成膜基板の成膜面を覆うように形成されていることを特徴とするプラズマCVD装置。
  3.  請求項2において、前記対向電極の内側の空間が前記対向電極の外側の空間に繋がる開口部における前記対向電極と前記保持電極との最大間隔が5mm以下であることを特徴とするプラズマCVD装置。
  4.  請求項1乃至3のいずれか一項において、前記高周波電源の周波数は100kHz~300MHzであることを特徴とするプラズマCVD装置。
  5.  請求項1乃至4のいずれか一項において、前記対向電極に付着したCVD膜を除去する際に、前記対向電極に高周波電力を印加するための高周波電源と、前記保持電極にアース電位を印加するためのアース電源とをさらに具備することを特徴とするプラズマCVD装置。
  6.  請求項5において、前記対向電極に前記高周波電力を印加する際に、前記対向電極の外側に配置されたアースシールドをさらに具備することを特徴とするプラズマCVD装置。
  7.  チャンバーと、
     前記チャンバー内に配置され、被成膜基板が保持される保持電極と、
     前記保持電極に第1のスイッチを介して電気的に接続された第1のアース電源と、
     前記保持電極に第2のスイッチを介して電気的に接続された高周波電源と、
     前記保持電極に保持された前記被成膜基板に対向して配置され、前記高周波電源に前記第2のスイッチを介して電気的に接続された対向電極と、
     前記対向電極と前記保持電極との間の空間に原料ガスを供給する原料ガス供給機構と、
     前記チャンバー内を真空排気する排気機構と、
     前記対向電極に第3のスイッチを介して電気的に接続された第2のアース電源と、
    を具備し、
     前記保持電極の表面積をaとし、前記対向電極の表面積をbとした場合に下記式を満たすことを特徴とするプラズマCVD装置。
     b/a≧2
  8.  請求項7において、前記対向電極に前記第3のスイッチを介して電気的に接続されたフロート電源をさらに具備することを特徴とするプラズマCVD装置。
  9.  請求項7又は8において、前記対向電極は、前記保持電極に保持された前記被成膜基板の成膜面を覆うように形成されていることを特徴とするプラズマCVD装置。
  10.  請求項9において、前記対向電極の内側の空間が前記対向電極の外側の空間に繋がる開口部における前記対向電極と前記保持電極との最大間隔が5mm以下であることを特徴とするプラズマCVD装置。
  11.  請求項1乃至4、7乃至10のいずれか一項に記載のプラズマCVD装置を用いて成膜されたことを特徴とするDLC膜。
  12.  請求項1乃至4、7乃至10のいずれか一項に記載のプラズマCVD装置を用いた薄膜の製造方法において、
     前記保持電極に被成膜基板を保持し、
     前記チャンバー内の前記被成膜基板と前記対向電極との間の放電によって前記原料ガスをプラズマ状態とすることにより、前記被成膜基板の表面に薄膜を形成することを特徴とする薄膜の製造方法。
  13.  請求項12において、前記薄膜は炭素又は珪素が主成分であることを特徴とする薄膜の製造方法。
PCT/JP2009/061919 2008-07-01 2009-06-30 プラズマcvd装置、dlc膜及び薄膜の製造方法 WO2010001880A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/001,089 US20110165057A1 (en) 2008-07-01 2009-06-30 Plasma cvd device, dlc film, and method for depositing thin film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-172490 2008-07-01
JP2008172490A JP5211332B2 (ja) 2008-07-01 2008-07-01 プラズマcvd装置、dlc膜及び薄膜の製造方法

Publications (1)

Publication Number Publication Date
WO2010001880A1 true WO2010001880A1 (ja) 2010-01-07

Family

ID=41465974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/061919 WO2010001880A1 (ja) 2008-07-01 2009-06-30 プラズマcvd装置、dlc膜及び薄膜の製造方法

Country Status (3)

Country Link
US (1) US20110165057A1 (ja)
JP (1) JP5211332B2 (ja)
WO (1) WO2010001880A1 (ja)

Families Citing this family (107)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100098875A1 (en) * 2008-10-17 2010-04-22 Andreas Fischer Pre-coating and wafer-less auto-cleaning system and method
US9324576B2 (en) 2010-05-27 2016-04-26 Applied Materials, Inc. Selective etch for silicon films
US10283321B2 (en) 2011-01-18 2019-05-07 Applied Materials, Inc. Semiconductor processing system and methods using capacitively coupled plasma
US9064815B2 (en) 2011-03-14 2015-06-23 Applied Materials, Inc. Methods for etch of metal and metal-oxide films
US8999856B2 (en) 2011-03-14 2015-04-07 Applied Materials, Inc. Methods for etch of sin films
US9267739B2 (en) 2012-07-18 2016-02-23 Applied Materials, Inc. Pedestal with multi-zone temperature control and multiple purge capabilities
US9373517B2 (en) * 2012-08-02 2016-06-21 Applied Materials, Inc. Semiconductor processing with DC assisted RF power for improved control
US9514932B2 (en) 2012-08-08 2016-12-06 Applied Materials, Inc. Flowable carbon for semiconductor processing
US9132436B2 (en) 2012-09-21 2015-09-15 Applied Materials, Inc. Chemical control features in wafer process equipment
KR101448769B1 (ko) 2012-12-27 2014-10-10 현대자동차 주식회사 무단변속기의 풀리 학습방법 및 장치
US10256079B2 (en) 2013-02-08 2019-04-09 Applied Materials, Inc. Semiconductor processing systems having multiple plasma configurations
US9362130B2 (en) 2013-03-01 2016-06-07 Applied Materials, Inc. Enhanced etching processes using remote plasma sources
US9040422B2 (en) 2013-03-05 2015-05-26 Applied Materials, Inc. Selective titanium nitride removal
US20140271097A1 (en) 2013-03-15 2014-09-18 Applied Materials, Inc. Processing systems and methods for halide scavenging
US9493879B2 (en) 2013-07-12 2016-11-15 Applied Materials, Inc. Selective sputtering for pattern transfer
US9773648B2 (en) 2013-08-30 2017-09-26 Applied Materials, Inc. Dual discharge modes operation for remote plasma
US9576809B2 (en) 2013-11-04 2017-02-21 Applied Materials, Inc. Etch suppression with germanium
US9520303B2 (en) 2013-11-12 2016-12-13 Applied Materials, Inc. Aluminum selective etch
US9245762B2 (en) 2013-12-02 2016-01-26 Applied Materials, Inc. Procedure for etch rate consistency
US9499898B2 (en) 2014-03-03 2016-11-22 Applied Materials, Inc. Layered thin film heater and method of fabrication
US9299537B2 (en) 2014-03-20 2016-03-29 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
US9903020B2 (en) 2014-03-31 2018-02-27 Applied Materials, Inc. Generation of compact alumina passivation layers on aluminum plasma equipment components
US9309598B2 (en) 2014-05-28 2016-04-12 Applied Materials, Inc. Oxide and metal removal
US9496167B2 (en) 2014-07-31 2016-11-15 Applied Materials, Inc. Integrated bit-line airgap formation and gate stack post clean
US9659753B2 (en) 2014-08-07 2017-05-23 Applied Materials, Inc. Grooved insulator to reduce leakage current
US9553102B2 (en) 2014-08-19 2017-01-24 Applied Materials, Inc. Tungsten separation
US9478434B2 (en) 2014-09-24 2016-10-25 Applied Materials, Inc. Chlorine-based hardmask removal
US9613822B2 (en) 2014-09-25 2017-04-04 Applied Materials, Inc. Oxide etch selectivity enhancement
US9355922B2 (en) 2014-10-14 2016-05-31 Applied Materials, Inc. Systems and methods for internal surface conditioning in plasma processing equipment
US9966240B2 (en) 2014-10-14 2018-05-08 Applied Materials, Inc. Systems and methods for internal surface conditioning assessment in plasma processing equipment
US11637002B2 (en) 2014-11-26 2023-04-25 Applied Materials, Inc. Methods and systems to enhance process uniformity
US10224210B2 (en) 2014-12-09 2019-03-05 Applied Materials, Inc. Plasma processing system with direct outlet toroidal plasma source
US10573496B2 (en) 2014-12-09 2020-02-25 Applied Materials, Inc. Direct outlet toroidal plasma source
US9502258B2 (en) 2014-12-23 2016-11-22 Applied Materials, Inc. Anisotropic gap etch
US11257693B2 (en) 2015-01-09 2022-02-22 Applied Materials, Inc. Methods and systems to improve pedestal temperature control
US9728437B2 (en) 2015-02-03 2017-08-08 Applied Materials, Inc. High temperature chuck for plasma processing systems
US20160225652A1 (en) 2015-02-03 2016-08-04 Applied Materials, Inc. Low temperature chuck for plasma processing systems
US9881805B2 (en) 2015-03-02 2018-01-30 Applied Materials, Inc. Silicon selective removal
US9741593B2 (en) 2015-08-06 2017-08-22 Applied Materials, Inc. Thermal management systems and methods for wafer processing systems
US9691645B2 (en) 2015-08-06 2017-06-27 Applied Materials, Inc. Bolted wafer chuck thermal management systems and methods for wafer processing systems
US9349605B1 (en) 2015-08-07 2016-05-24 Applied Materials, Inc. Oxide etch selectivity systems and methods
US10504700B2 (en) 2015-08-27 2019-12-10 Applied Materials, Inc. Plasma etching systems and methods with secondary plasma injection
JP6632426B2 (ja) * 2016-02-29 2020-01-22 東京エレクトロン株式会社 プラズマ処理装置及びプリコート処理方法
CN109156074B (zh) * 2016-03-03 2021-12-28 核心技术株式会社 等离子体处理装置及等离子处理用反应容器的结构
US10522371B2 (en) 2016-05-19 2019-12-31 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US10504754B2 (en) 2016-05-19 2019-12-10 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US9865484B1 (en) 2016-06-29 2018-01-09 Applied Materials, Inc. Selective etch using material modification and RF pulsing
US10062575B2 (en) 2016-09-09 2018-08-28 Applied Materials, Inc. Poly directional etch by oxidation
US10629473B2 (en) 2016-09-09 2020-04-21 Applied Materials, Inc. Footing removal for nitride spacer
US10062585B2 (en) 2016-10-04 2018-08-28 Applied Materials, Inc. Oxygen compatible plasma source
US9934942B1 (en) 2016-10-04 2018-04-03 Applied Materials, Inc. Chamber with flow-through source
US10546729B2 (en) 2016-10-04 2020-01-28 Applied Materials, Inc. Dual-channel showerhead with improved profile
US9721789B1 (en) 2016-10-04 2017-08-01 Applied Materials, Inc. Saving ion-damaged spacers
US10062579B2 (en) 2016-10-07 2018-08-28 Applied Materials, Inc. Selective SiN lateral recess
US9947549B1 (en) 2016-10-10 2018-04-17 Applied Materials, Inc. Cobalt-containing material removal
US10163696B2 (en) 2016-11-11 2018-12-25 Applied Materials, Inc. Selective cobalt removal for bottom up gapfill
US9768034B1 (en) 2016-11-11 2017-09-19 Applied Materials, Inc. Removal methods for high aspect ratio structures
US10242908B2 (en) 2016-11-14 2019-03-26 Applied Materials, Inc. Airgap formation with damage-free copper
US10026621B2 (en) 2016-11-14 2018-07-17 Applied Materials, Inc. SiN spacer profile patterning
US10566206B2 (en) 2016-12-27 2020-02-18 Applied Materials, Inc. Systems and methods for anisotropic material breakthrough
US10403507B2 (en) 2017-02-03 2019-09-03 Applied Materials, Inc. Shaped etch profile with oxidation
US10431429B2 (en) 2017-02-03 2019-10-01 Applied Materials, Inc. Systems and methods for radial and azimuthal control of plasma uniformity
US10043684B1 (en) 2017-02-06 2018-08-07 Applied Materials, Inc. Self-limiting atomic thermal etching systems and methods
US10319739B2 (en) 2017-02-08 2019-06-11 Applied Materials, Inc. Accommodating imperfectly aligned memory holes
US10943834B2 (en) 2017-03-13 2021-03-09 Applied Materials, Inc. Replacement contact process
US10319649B2 (en) 2017-04-11 2019-06-11 Applied Materials, Inc. Optical emission spectroscopy (OES) for remote plasma monitoring
US11276559B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Semiconductor processing chamber for multiple precursor flow
US11276590B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Multi-zone semiconductor substrate supports
US10049891B1 (en) 2017-05-31 2018-08-14 Applied Materials, Inc. Selective in situ cobalt residue removal
US10497579B2 (en) 2017-05-31 2019-12-03 Applied Materials, Inc. Water-free etching methods
US10920320B2 (en) 2017-06-16 2021-02-16 Applied Materials, Inc. Plasma health determination in semiconductor substrate processing reactors
US10541246B2 (en) 2017-06-26 2020-01-21 Applied Materials, Inc. 3D flash memory cells which discourage cross-cell electrical tunneling
US10727080B2 (en) 2017-07-07 2020-07-28 Applied Materials, Inc. Tantalum-containing material removal
US10541184B2 (en) 2017-07-11 2020-01-21 Applied Materials, Inc. Optical emission spectroscopic techniques for monitoring etching
US10354889B2 (en) 2017-07-17 2019-07-16 Applied Materials, Inc. Non-halogen etching of silicon-containing materials
US10170336B1 (en) 2017-08-04 2019-01-01 Applied Materials, Inc. Methods for anisotropic control of selective silicon removal
US10043674B1 (en) 2017-08-04 2018-08-07 Applied Materials, Inc. Germanium etching systems and methods
US10297458B2 (en) 2017-08-07 2019-05-21 Applied Materials, Inc. Process window widening using coated parts in plasma etch processes
US10283324B1 (en) 2017-10-24 2019-05-07 Applied Materials, Inc. Oxygen treatment for nitride etching
US10128086B1 (en) 2017-10-24 2018-11-13 Applied Materials, Inc. Silicon pretreatment for nitride removal
US10256112B1 (en) 2017-12-08 2019-04-09 Applied Materials, Inc. Selective tungsten removal
US10903054B2 (en) 2017-12-19 2021-01-26 Applied Materials, Inc. Multi-zone gas distribution systems and methods
US11328909B2 (en) 2017-12-22 2022-05-10 Applied Materials, Inc. Chamber conditioning and removal processes
US10854426B2 (en) 2018-01-08 2020-12-01 Applied Materials, Inc. Metal recess for semiconductor structures
US10679870B2 (en) 2018-02-15 2020-06-09 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus
US10964512B2 (en) 2018-02-15 2021-03-30 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus and methods
TWI716818B (zh) 2018-02-28 2021-01-21 美商應用材料股份有限公司 形成氣隙的系統及方法
US10593560B2 (en) 2018-03-01 2020-03-17 Applied Materials, Inc. Magnetic induction plasma source for semiconductor processes and equipment
US10319600B1 (en) 2018-03-12 2019-06-11 Applied Materials, Inc. Thermal silicon etch
US10497573B2 (en) 2018-03-13 2019-12-03 Applied Materials, Inc. Selective atomic layer etching of semiconductor materials
US10573527B2 (en) 2018-04-06 2020-02-25 Applied Materials, Inc. Gas-phase selective etching systems and methods
US10490406B2 (en) 2018-04-10 2019-11-26 Appled Materials, Inc. Systems and methods for material breakthrough
US10699879B2 (en) 2018-04-17 2020-06-30 Applied Materials, Inc. Two piece electrode assembly with gap for plasma control
US10886137B2 (en) 2018-04-30 2021-01-05 Applied Materials, Inc. Selective nitride removal
US10755941B2 (en) 2018-07-06 2020-08-25 Applied Materials, Inc. Self-limiting selective etching systems and methods
US10872778B2 (en) 2018-07-06 2020-12-22 Applied Materials, Inc. Systems and methods utilizing solid-phase etchants
US10672642B2 (en) 2018-07-24 2020-06-02 Applied Materials, Inc. Systems and methods for pedestal configuration
JP6966402B2 (ja) * 2018-09-11 2021-11-17 株式会社Kokusai Electric 基板処理装置、半導体装置の製造方法および基板処理装置の電極
US10892198B2 (en) 2018-09-14 2021-01-12 Applied Materials, Inc. Systems and methods for improved performance in semiconductor processing
US11049755B2 (en) 2018-09-14 2021-06-29 Applied Materials, Inc. Semiconductor substrate supports with embedded RF shield
US11062887B2 (en) 2018-09-17 2021-07-13 Applied Materials, Inc. High temperature RF heater pedestals
US11417534B2 (en) 2018-09-21 2022-08-16 Applied Materials, Inc. Selective material removal
US11682560B2 (en) 2018-10-11 2023-06-20 Applied Materials, Inc. Systems and methods for hafnium-containing film removal
US11121002B2 (en) 2018-10-24 2021-09-14 Applied Materials, Inc. Systems and methods for etching metals and metal derivatives
US11437242B2 (en) 2018-11-27 2022-09-06 Applied Materials, Inc. Selective removal of silicon-containing materials
US11721527B2 (en) 2019-01-07 2023-08-08 Applied Materials, Inc. Processing chamber mixing systems
US10920319B2 (en) 2019-01-11 2021-02-16 Applied Materials, Inc. Ceramic showerheads with conductive electrodes

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0892748A (ja) * 1994-04-28 1996-04-09 Applied Materials Inc 誘導結合モードと静電結合モードとを併用する高密度プラズマcvdリアクタ
JPH09167698A (ja) * 1995-10-13 1997-06-24 Tadahiro Omi 半導体及びtft−lcdの製造装置
JPH09202974A (ja) * 1996-01-23 1997-08-05 Sony Corp 薄膜形成装置
JPH11181572A (ja) * 1997-12-22 1999-07-06 Kokusai Electric Co Ltd プラズマcvd装置
JP2000178741A (ja) * 1998-12-09 2000-06-27 Hitachi Ltd プラズマcvd装置およびそれにおける成膜とクリーニング制御法
JP2001524603A (ja) * 1997-11-26 2001-12-04 ミネソタ マイニング アンド マニュファクチャリング カンパニー ダイヤモンド状カーボンを粒子にコーティングする方法と装置
JP2005042153A (ja) * 2003-07-28 2005-02-17 Aisin Cosmos R & D Co Ltd ダイヤモンドライクカーボンのコーティング方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2241229C2 (de) * 1972-08-22 1983-01-20 Leybold-Heraeus GmbH, 5000 Köln Vorrichtung zum Ätzen von Substraten durch eine Glimmentladung
FR2376904A1 (fr) * 1977-01-11 1978-08-04 Alsthom Atlantique Procede d'attaque d'une couche mince par decomposition d'un gaz dans un plasma
KR890004881B1 (ko) * 1983-10-19 1989-11-30 가부시기가이샤 히다찌세이사꾸쇼 플라즈마 처리 방법 및 그 장치
DE3835153A1 (de) * 1988-10-15 1990-04-26 Leybold Ag Vorrichtung zum aetzen von substraten durch eine glimmentladung
JPH02217399A (ja) * 1989-02-17 1990-08-30 Idemitsu Petrochem Co Ltd 薄膜製造装置およびダイヤモンド類薄膜被覆部材の製造方法
JPH03274276A (ja) * 1990-03-22 1991-12-05 Matsushita Electric Ind Co Ltd 薄膜合成装置
DE4025396A1 (de) * 1990-08-10 1992-02-13 Leybold Ag Einrichtung fuer die herstellung eines plasmas
US5286297A (en) * 1992-06-24 1994-02-15 Texas Instruments Incorporated Multi-electrode plasma processing apparatus
JP3083008B2 (ja) * 1992-11-19 2000-09-04 株式会社半導体エネルギー研究所 被膜形成装置および被膜形成方法
US5670218A (en) * 1995-10-04 1997-09-23 Hyundai Electronics Industries Co., Ltd. Method for forming ferroelectric thin film and apparatus therefor
JPH09167755A (ja) * 1995-12-15 1997-06-24 Nec Corp プラズマ酸化膜処理装置
JP4592867B2 (ja) * 2000-03-27 2010-12-08 株式会社半導体エネルギー研究所 平行平板形プラズマcvd装置及びドライクリーニングの方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0892748A (ja) * 1994-04-28 1996-04-09 Applied Materials Inc 誘導結合モードと静電結合モードとを併用する高密度プラズマcvdリアクタ
JPH09167698A (ja) * 1995-10-13 1997-06-24 Tadahiro Omi 半導体及びtft−lcdの製造装置
JPH09202974A (ja) * 1996-01-23 1997-08-05 Sony Corp 薄膜形成装置
JP2001524603A (ja) * 1997-11-26 2001-12-04 ミネソタ マイニング アンド マニュファクチャリング カンパニー ダイヤモンド状カーボンを粒子にコーティングする方法と装置
JPH11181572A (ja) * 1997-12-22 1999-07-06 Kokusai Electric Co Ltd プラズマcvd装置
JP2000178741A (ja) * 1998-12-09 2000-06-27 Hitachi Ltd プラズマcvd装置およびそれにおける成膜とクリーニング制御法
JP2005042153A (ja) * 2003-07-28 2005-02-17 Aisin Cosmos R & D Co Ltd ダイヤモンドライクカーボンのコーティング方法

Also Published As

Publication number Publication date
JP2010013676A (ja) 2010-01-21
US20110165057A1 (en) 2011-07-07
JP5211332B2 (ja) 2013-06-12

Similar Documents

Publication Publication Date Title
JP5211332B2 (ja) プラズマcvd装置、dlc膜及び薄膜の製造方法
JP7175339B2 (ja) 周期的かつ選択的な材料の除去及びエッチングのための処理チャンバ
KR100416308B1 (ko) 플라즈마 처리 장치
US8297225B2 (en) Capacitive CVD reactor and methods for plasma CVD process
US20120145186A1 (en) Plasma processing apparatus
TW201624589A (zh) 增進製程均勻性的方法及系統
KR101894613B1 (ko) 플라즈마 에칭 방법
KR101858324B1 (ko) 플라즈마 에칭 방법
JPWO2008041702A1 (ja) プラズマドーピング方法及び装置
TW201334018A (zh) 電漿處理裝置及電漿處理方法
KR101971773B1 (ko) 기판 처리 장치
JP2009206341A (ja) マイクロ波プラズマ処理装置、それに用いる誘電体窓部材および誘電体窓部材の製造方法
JP3946640B2 (ja) プラズマ処理装置およびプラズマ処理方法
US20230343586A1 (en) Method of using dual frequency rf power in a process chamber
TW201634727A (zh) 改善mocvd反應方法的裝置及改善方法
KR20070098499A (ko) 플라즈마 처리용의 전극판 및 플라즈마 처리 장치
TWI811421B (zh) 用於處理腔室的塗層材料
TWI828704B (zh) 電漿處理方法與用於電漿處理腔室的腔室部件及其製造方法
TW202232567A (zh) 蝕刻方法及電漿處理裝置
CN116568862A (zh) 陈化处理腔室的方法
JP2010225751A (ja) 原子層成長装置
KR20170044777A (ko) 플라즈마를 이용하여 실리콘 산화막을 형성하는 방법
JP2007184611A (ja) プラズマ処理装置およびプラズマ処理方法
JP2016058536A (ja) プラズマ処理装置及びクリーニング方法
TWI797766B (zh) 低電流高離子能量電漿控制系統

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09773458

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09773458

Country of ref document: EP

Kind code of ref document: A1