WO2009156275A1 - Pigment mixtures - Google Patents
Pigment mixtures Download PDFInfo
- Publication number
- WO2009156275A1 WO2009156275A1 PCT/EP2009/057130 EP2009057130W WO2009156275A1 WO 2009156275 A1 WO2009156275 A1 WO 2009156275A1 EP 2009057130 W EP2009057130 W EP 2009057130W WO 2009156275 A1 WO2009156275 A1 WO 2009156275A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pigment
- parts
- platelets
- sio
- component
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C1/00—Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
- C09C1/0015—Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings
- C09C1/0024—Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings comprising a stack of coating layers with alternating high and low refractive indices, wherein the first coating layer on the core surface has the high refractive index
- C09C1/003—Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings comprising a stack of coating layers with alternating high and low refractive indices, wherein the first coating layer on the core surface has the high refractive index comprising at least one light-absorbing layer
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/02—Cosmetics or similar toiletry preparations characterised by special physical form
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/19—Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q19/00—Preparations for care of the skin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C1/00—Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
- C09C1/0015—Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings
- C09C1/0021—Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings comprising a core coated with only one layer having a high or low refractive index
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C1/00—Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
- C09C1/0015—Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings
- C09C1/0024—Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings comprising a stack of coating layers with alternating high and low refractive indices, wherein the first coating layer on the core surface has the high refractive index
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C1/00—Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
- C09C1/0015—Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings
- C09C1/0024—Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings comprising a stack of coating layers with alternating high and low refractive indices, wherein the first coating layer on the core surface has the high refractive index
- C09C1/0027—One layer consisting of at least one sub-stoichiometric inorganic compound
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C1/00—Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
- C09C1/0015—Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings
- C09C1/0024—Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings comprising a stack of coating layers with alternating high and low refractive indices, wherein the first coating layer on the core surface has the high refractive index
- C09C1/003—Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings comprising a stack of coating layers with alternating high and low refractive indices, wherein the first coating layer on the core surface has the high refractive index comprising at least one light-absorbing layer
- C09C1/0036—Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings comprising a stack of coating layers with alternating high and low refractive indices, wherein the first coating layer on the core surface has the high refractive index comprising at least one light-absorbing layer consisting of at least one dye
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C1/00—Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
- C09C1/0081—Composite particulate pigments or fillers, i.e. containing at least two solid phases, except those consisting of coated particles of one compound
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C1/00—Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
- C09C1/44—Carbon
- C09C1/46—Graphite
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D17/00—Pigment pastes, e.g. for mixing in paints
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/41—Organic pigments; Organic dyes
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/60—Additives non-macromolecular
- C09D7/61—Additives non-macromolecular inorganic
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/60—Additives non-macromolecular
- C09D7/61—Additives non-macromolecular inorganic
- C09D7/62—Additives non-macromolecular inorganic modified by treatment with other compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/66—Additives characterised by particle size
- C09D7/67—Particle size smaller than 100 nm
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/66—Additives characterised by particle size
- C09D7/68—Particle size between 100-1000 nm
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/66—Additives characterised by particle size
- C09D7/69—Particle size larger than 1000 nm
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/70—Additives characterised by shape, e.g. fibres, flakes or microspheres
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2800/00—Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
- A61K2800/40—Chemical, physico-chemical or functional or structural properties of particular ingredients
- A61K2800/41—Particular ingredients further characterized by their size
- A61K2800/412—Microsized, i.e. having sizes between 0.1 and 100 microns
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2800/00—Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
- A61K2800/40—Chemical, physico-chemical or functional or structural properties of particular ingredients
- A61K2800/42—Colour properties
- A61K2800/43—Pigments; Dyes
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/20—Particle morphology extending in two dimensions, e.g. plate-like
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/54—Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/61—Micrometer sized, i.e. from 1-100 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/62—Submicrometer sized, i.e. from 0.1-1 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/64—Nanometer sized, i.e. from 1-100 nanometer
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/04—Carbon
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C2200/00—Compositional and structural details of pigments exhibiting interference colours
- C09C2200/10—Interference pigments characterized by the core material
- C09C2200/1004—Interference pigments characterized by the core material the core comprising at least one inorganic oxide, e.g. Al2O3, TiO2 or SiO2
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C2200/00—Compositional and structural details of pigments exhibiting interference colours
- C09C2200/10—Interference pigments characterized by the core material
- C09C2200/102—Interference pigments characterized by the core material the core consisting of glass or silicate material like mica or clays, e.g. kaolin
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C2200/00—Compositional and structural details of pigments exhibiting interference colours
- C09C2200/10—Interference pigments characterized by the core material
- C09C2200/1037—Interference pigments characterized by the core material the core consisting of an inorganic suboxide or a mixture thereof, e.g. SiOx or TiOx
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C2200/00—Compositional and structural details of pigments exhibiting interference colours
- C09C2200/10—Interference pigments characterized by the core material
- C09C2200/1054—Interference pigments characterized by the core material the core consisting of a metal
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C2200/00—Compositional and structural details of pigments exhibiting interference colours
- C09C2200/10—Interference pigments characterized by the core material
- C09C2200/1062—Interference pigments characterized by the core material the core consisting of an organic compound, e.g. Liquid Crystal Polymers [LCP], Polymers or natural pearl essence
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C2200/00—Compositional and structural details of pigments exhibiting interference colours
- C09C2200/30—Interference pigments characterised by the thickness of the core or layers thereon or by the total thickness of the final pigment particle
- C09C2200/301—Thickness of the core
Definitions
- the present invention relates to novel pigment mixtures, comprising two different components A and B, wherein component A is a graphite in the form of platelets, which have an average particle size of below 50 microns and a thickness below 100 nm, and component B is an organic, or inorganic pigment.
- Graphite nanostructures in the form of platelets are known. Reference is made, for example, to WO03024602, which describes graphite nanostructures in the form of platelets, wherein a majority of said platelets have an aspect ratio of at least 1 ,500 : 1. The majority of the platelets have a specific surface area of at least about 5 m 2 /g and an average thickness of less than 100 nm.
- the graphite nanostructures are obtained by a method for fracturing graphite particles into platelets, comprising: introducing the graphite into a high-pressure flaking mill, wherein said high-pressure flaking mill causes a hydro-wedging effect that overcomes the Van der Waals forces of the particles and fractures said particles into platelets.
- the resulting graphite nanostructures can be added to conventional polymers to create polymer composites having increased mechanical characteristics, including an increased flexural modulus, heat deflection temperature, tensile strength, electrical conductivity, and notched impact strength.
- US4477608 discloses a composition, which can be processed into moulded products, which comprises (a) a thermoplastic high-molecular organic material selected from the group consisting of polyvinyl chloride, polyethylene, polypropylene, polystyrene, polycarbonate, polyacrylate, linear polyester, polyether, linear polyurethane and copolymers thereof, (b) 0.001 to 3.0% by weight, relative to the high-molecular organic material, of graphite of a particle diameter of less than 100 microns, and (c) 0.001 to 10.0% by weight, relative to the high-molecular organic material, of one or more organic pigments; polymer-soluble dyes; or inorganic pigments selected from the group consisting of iron oxide, antimony yellow, lead chromates, molybdenum red, ultramarine blue, cobalt blue, manganese blue, chromium oxide green, hydrated chrome oxide green, cobalt green, cadmium sulfide, zinc sulfide,
- a graphite which is in flake- or lamella-form with a diameter of up to 20 ⁇ m and a thickness of up to 4 ⁇ m is preferably used according to US4477608.
- EP0439107 relates to a pigment blend for use in a coating composition comprising an essentially transparent pigment or a pearlescent pigment in combination with an effective amount of a laminar graphite to cause a hue shift in the coating composition without substantially reducing the chromaticity.
- Laminar graphite as defined in EP0439107 refers to a flake shaped black pigment, having an average particle size of about 3.5 microns, which is commercially available as Graphitan® sold by Ciba. The thickness of the Graphitan particles is in the range of from 200 to 400 nm.
- US2004225032A1 relates to an erasable ink for use in a writing instrument, comprising: a solvent, a shear-thinning additive, and a graphite flake pigment having an average thickness of less than about 0.25 microns dispersed in the solvent, wherein said ink has a shear- thinning index of between about 0.01 and 0.8.
- the ink is said to be substantially free of colorants other than said graphite flake pigment.
- the graphite particles are flake natural graphite.
- suitable graphite particles include, but are not limited to, those sold under the trade names, Micro750 and Micro790 (flake), Micro150 and Micro190 (amorphous), Micro250 and Micro290 (primary synthetic), and Micro450 and Micro490 (secondary synthetic), available from Graphite Mills, Inc. (Asbury Graphite Mills, N. J.).
- Graphite Mills, Inc. Align Graphite Mills, N. J.
- Table 1 of US2004/0225032 mixtures of Dichrona® BG (mica coated with TiO 2 and iron blue) and Graphite M790 are described.
- US6267810 relates to a pigment mixture comprising a component A and a component B, wherein component A comprises AI 2 O3 flakes coated with one or more metals, metal oxides or metal sulfides, and wherein component B comprises special-effect pigments.
- Component B can comprise i) one or more of metal platelets coated with one or more metal oxides, ii) graphite platelets, iii) aluminum platelets, iv) phyllosilicates, v) Fe 2 O 3 -flakes, SiO 2 - flakes, or TiO 2 -flakes uncoated or coated with one or more metal oxides, vi) glass platelets and or vii) ceramic platelets.
- US6632275 relates to a pigment mixture comprising two different components A and B mixed in a weight ratio of A:B of from 1 :10 to 10:1 , wherein component A is SiO 2 flakes coated with one or more metal oxides and/or metals and component B is a special effect pigment comprising one or more of metal platelets optionally coated with one or more metal oxides, graphite platelets, optionally coated aluminum platelets, optionally coated AI 2 O 3 flakes, Fe 2 O 3 flakes, TiO 2 flakes, BiOCI, glass platelets and ceramic platelets.
- US6773499 relates to a composition
- a composition comprising a binder and a pigment mixture, wherein the pigment mixture comprises two different components A and B mixed in a weight ratio of A:B of from 1 : 10 to 10:1 , wherein component A is SiC> 2 flakes coated with one or more metal oxides and/or metals and component B is a special effect pigment comprising one or more of metal platelets optionally coated with one or more metal oxides, graphite platelets, optionally coated aluminum platelets, optionally coated phyllosilicates, optionally coated AI 2 O 3 flakes, Fe 2 O 3 flakes, TiO 2 flakes, BiOCI, glass platelets and ceramic platelets, and wherein the composition is substantially solvent-free and in the form of free-flowing granules.
- graphite nanoplatelets graphene, component A
- effect pigments component B
- the present invention relates to pigment mixtures comprising two different components A and B, wherein component A is a graphite in the form of platelets (graphite nanoplatelets), which have an average particle size of below 50 microns and a thickness below 100 nm, and component B is an organic, or inorganic pigment and their use in varnishes, paints, printing inks, masterbatches, plastics and cosmetics formulations.
- component A is a graphite in the form of platelets (graphite nanoplatelets), which have an average particle size of below 50 microns and a thickness below 100 nm
- component B is an organic, or inorganic pigment and their use in varnishes, paints, printing inks, masterbatches, plastics and cosmetics formulations.
- the graphite in the form of platelets has a high covering power which adds opacity to the layer/matrix into which it is included and preserves the effect of the effect pigment.
- the present invention relates to pigment mixtures consisting of at least two components, component A and B.
- Component A being an exfoliated expanded graphite (graphite oxide) and component B being organic pigment or inorganic pigment, especially effect pigment.
- Component A is a graphite in the form of platelets (graphite nanoplatelets), which have an average particle size of below 50 microns and a thickness below 100 nm, especially below 90 nm.
- graphite nanoplatelets and the preparation thereof are, for example, described in PCT/EP2009/052127, WO2003024602 and US2007092432.
- the graphite nanoplatelets Preferably, greater than 95% of the graphite nanoplatelets have a thickness below 50 nm.
- the graphite nanoplatelets Preferably, greater than 95% of the graphite nanoplatelets have a thickness below 20 nm.
- Graphite nanoplatelets which can advantageously be used in the pigment mixtures of the present invention, are described in PCT/EP2009/052127.
- the graphite nanoplatelets are produced by a process which comprises thermal plasma expansion of intercalated graphite to produce expanded graphite followed by exfoliation of the expanded graphite, where the exfoliation step is selected from ultrasonication, wet milling and controlled caviation. Greater than 95% of the graphite nanoplatelets obtained by the process have a thickness of from about 0.34 nm to about 50 nm and a length and width of from about 500 nm to about 50 microns.
- the intercalated graphite is also referred to as expandable graphite flakes or intumescent flake graphite. It is commercially available as GRAFGUARD from GrafTech International Ltd, Parma, Ohio. Expandable graphite is also available from Asbury Carbons, Asbury, New Jersey. Suitable grades are GRAFGUARD 220-80N, GRAFGUARD 160-50N, ASBURY 1721 and ASBURY 3538. These products are prepared by intercalating natural graphite with a mixture of sulfuric and nitric acids. Plasma reactors are known and disclosed for instance in US5,200,595. The present invention employs an RF (radio frequency) induction plasma torch. Induction plasma torches are available for instance from Tekna Plasma Systems Inc., Sherbrooke, Quebec.
- An advantage of the plasma expansion process is that it is a continuous, high throughput process. It is more efficient compared to an electric/gas furnace or microwave oven.
- the graphite nanoplatelets prepared according to the process described in PCT/EP2009/052127 are such that greater than 95% have a thickness of from about 0.34 nm to about 50 nm and a length and width of from about 500 nm to about 50 microns.
- greater than 90% have a thickness of from about 3 nm to about 20 nm and a length and width of from about 1 micron to about 5 microns.
- greater than 90% have a thickness of from about 3 nm to about 20 nm and a length and width of from about 1 to about 30 microns.
- greater than 90% have a thickness of from about 0.34 nm to about 20 nm and a length and width of from about 1 to about 30 microns.
- the aspect ratio is at least 50 and may be as high as 50,000. That is 95% of the particles have this aspect ratio.
- the aspect ratio of 95% of the particles is from about 500 to about 10,000, for instance from about 600 to about 8000, or from about 800 to about 6000.
- component B is different than component A.
- Component B is an organic pigment, or an inorganic pigment, especially an effect pigment.
- Multilayered structures leading to interference colors are often referred to as special-effect pigments, luster or nacreous pigments and well known in the art and commercially available under such tradenames as Xymara® available from Ciba Chemicals Inc.
- platelet-like effect pigments such as, for example, platelet-like iron oxide, bismuth oxychloride or platelet-like materials coated with colored or colorless metal oxides, such as, for example, natural or synthetic micas, other laminated silicates such as talc, kaolin or sericite or glass platelets can be used.
- Mica flakes coated with metal oxides such as are disclosed, for example, in US-A-3,087,828 and 3,087,829 are particularly preferred as substrates, herein entirely incorporated by reference.
- Metal oxides are both colorless, highly refractive metal oxides, such as, in particular, titanium dioxide and/or zirconium dioxide, as well as colored metal oxides, such as, for example, chromium oxide, nickel oxide, copper oxide, cobalt oxide and in particular iron oxides, such as, for example, Fe 2 ⁇ 3, or Fe 3 O 4 , or mixtures of such metal oxides.
- Such metal oxide/mica pigments are commercially available under the tradenames Afflair® and Iriodin®. According to EP-A-373575 these substrates are coated with an optionally hydrated silica layer or with a layer of another insoluble silicate such as, for example, aluminum silicate.
- These (multilayer) structures frequently are formed from a core of natural micaceous iron oxide (for example as in WO99/48634), synthetic and doped micaceous iron oxide (for example as in EP-A-06831 1 ), mica (muscovite, phlogopite, fluorophlogopite, synthetic fluorophlogopite, talc, kaolin), basic lead carbonate, flaky barium sulfate, SiO 2 , AI 2 O 3 , TiO 2 , glass, ZnO, ZrO 2 , SnO 2 , BiOCI, chromium oxide, BN, MgO flakes, Si 3 N 4 , graphite, pearlescent pigments (including those which react under the fluidized bed conditions to nitrides, oxynitrides or by reduction to suboxides etc.) (for example EP-A-0948571 , U.S.
- Particularly preferred cores are mica, SiO 2 flakes, AI 2 O 3 flakes, TiO 2 flakes, Fe 2 O 3 flakes, BiOCI and glass flakes.
- the glass flake cores for the purpose of the invention include any of the known grades such as A-glass, E-glass (high resistivity makes E-glass suitable for electrical lami nates), C- glass and ECR-glass (corrosion grade glass) materials.
- component B particle may be a platelet-like (multilayered) structure such as:
- TRASUB is a semitransparent, or transparent substrate having a low index of refraction selected from the group consisting of natural, or synthetic mica, another layered silicate, glass, AI 2 O 3 , SiO z , SiO 2 , SiO 2 /SiO x /SiO 2 (0.03 ⁇ x ⁇ 0.95), SiOi 4 o-2o/Si0 0 7o- 099/SiOi 4 0- 2 0, or Si/Si ⁇ z with 0.70 ⁇ z ⁇ 2.0, and STL is a semi-transparent layer selected from the group consisting of a semi-transparent metal layer of Cu, Ag, Cr, or Sn, or a semi-transparent silicon suboxide(s), titanium suboxide(s) or carbon layer.
- the (multilayered) pigments above may also include an absorption pigment as an additional layer.
- an absorption pigment for example a further coating with Prussian blue or red-carmine on an interference pigment allows for striking color effects.
- Pigments based on TiO 2 and/or Fe 2 O 3 coated, platelet-like, transparent substrates are preferred, wherein those are most preferred, wherein the thickness of the TiO 2 and/or Fe 2 O 3 layer results in a silver-like color, a gold-like color, a bronze-like color, a violet-like color, a blue-like color and a green-like color.
- layered structures envisioned for component B are: (a) a transparent substrate having a low index of refraction selected from the group consisting of natural, or synthetic mica, another layered silicate, glass, AI 2 O 3 , SiO z , SiO 2 ,
- SiO 2 /SiO x /SiO 2 (0.03 ⁇ x ⁇ 0.95), SiOi 4 o- 2 o/Si0 07 o-o99/SiOi 4 0- 2 0, or Si/Si ⁇ z with 0.70 ⁇ z ⁇ 2.0 and
- a layer of a metal oxide of high refractive index on the substrate selected from the group consisting of ZrO 2 , Fe 2 O 3 , or TiO 2 ; or
- Alternative (multilayer) structures for component B might comprise flakes comprising layers (a), (b) and optionally (c): (a) a metallic platelet-shaped substrate selected from the group consisting of titanium, silver, aluminum, copper, chromium, iron, germanium, molybdenum, tantalum, or nickel, and
- an optional layer comprising a semi-transparent metal oxide selected from the group consisting of SiO z , SiO 2 /SiO z , titanium suboxide(s), TiO 2 /titanium suboxide(s) and 0.70 ⁇ z ⁇ 2.0.
- a semi-transparent metal oxide selected from the group consisting of SiO z , SiO 2 /SiO z , titanium suboxide(s), TiO 2 /titanium suboxide(s) and 0.70 ⁇ z ⁇ 2.0.
- flakes comprising layered structures of (a), (b) and (c) below are preferred: (a) a transparent substrate having a low index of refraction selected from the group consisting of natural, or synthetic mica, another layered silicate, glass, AI 2 O 3 , SiO z , SiO 2 , SiO 2 /SiO x /SiO 2 (0.03 ⁇ x ⁇ 0.95), SiOi 40 - 2 o/Si0 0 7o-o99/SiOi 40 - 20 , or Si/Si ⁇ z with 0.70 ⁇ z ⁇ 2.0, and (b) a titanium dioxide layer,
- platelet-like particles comprising (a) a core and (b) a polymeric coating, comprising nitrogen and carbon atoms, on the surface of the flakes are envisioned.
- platelet-like particles comprising (a) a substrate, and (b) a layer of a metal nitride/oxy nitride, titanium suboxide(s), SiO z or SiO 2 /SiO z , wherein 0.70 ⁇ z ⁇ 2.0, are possible as component B.
- the (multilayered) structures may be spherical, rod-like or platelet-shaped substrates. Platelet, flakey shapes are preferred.
- the component B may also be an organic color pigment or a conventional inorganic pigment.
- Suitable colored pigments especially include organic pigments selected from the group consisting of azo, azomethine, methine, anthraquinone, phthalocyanine, perinone, perylene, diketopyrrolopyrrole, thioindigo, dioxazine iminoisoindoline, dioxazine, iminoisoindolinone, quinacridone, flavanthrone, indanthrone, anthrapyrimidine and quinophthalone pigments, or a mixture or solid solution thereof; especially a dioxazine, diketopyrrolopyrrole, quinacridone, phthalocyanine, indanthrone or iminoisoindolinone pigment, or a mixture or solid solution thereof.
- Colored organic pigments of particular interest include C.I. Pigment Red 202, C.I. Pigment Red 122, C.I. Pigment Red 179, C.I. Pigment Red 170, C.I. Pigment Red 144, C.I. Pigment Red 177, C.I. Pigment Red 254, C.I. Pigment Red 255, C.I. Pigment Red 264, C.I. Pigment Brown 23, C.I. Pigment Yellow 109, C.I. Pigment Yellow 1 10, C.I. Pigment Yellow 147, C.I. Pigment Orange 61 , C.I. Pigment Orange 71 , C.I. Pigment Orange 73, C.I. Pigment Orange 48, C.I. Pigment Orange 49, C.I.
- Pigment Blue 15 C.I. Pigment Blue 60, C.I. Pigment Violet 23, C.I. Pigment Violet 37, C.I. Pigment Violet 19, C.I. Pigment Green 7, C.I. Pigment Green 36, the 2,9-dichloro-quinacridone in platelet form described in WO08/055807, or a mixture or solid solution thereof.
- Plateletlike organic pigments such as plateletlike quinacridones, phthalocyanine, fluororubine, dioxazines, red perylenes or diketopyrrolopyrroles can advantageously be used as component B.
- Suitable colored pigments also include conventional inorganic pigments; especially those selected from the group consisting of metal oxides, antimony yellow, lead chromate, lead chromate sulfate, lead molybdate, ultramarine blue, cobalt blue, manganese blue, chrome oxide green, hydrated chrome oxide green, cobalt green and metal sulfides, such as cerium or cadmium sulfide, cadmium sulfoselenides, zinc ferrite, bismuth vanadate, Prussian blue, Fe3 ⁇ 4 , carbon black and mixed metal oxides.
- inorganic pigments are BAYFERROX® 3920, BAYFERROX® 920, BAYFERROX® 645T,
- BAYFERROX® 303T BAYFERROX® 110, BAYFERROX® 110 M, CHROMOXIDGRUEN GN, and CHROMOXIDGRUEN GN-M.
- component B particle is plate-like or alternatively described as flakes or parallel structures.
- the flakes have a length of from 1 ⁇ m to 5 mm, a width of from 1 ⁇ m to 5 mm, and a thickness of from 20 nm to 2 ⁇ m, and a ratio of length to thickness of at least 2 : 1 , the particles having two substantially parallel faces, the distance between which is the shortest axis of the core.
- the component B flakes of the present invention are not of a uniform shape. Nevertheless, for purposes of brevity, the flakes will be referred to as having a "diameter".
- the flakes have a thickness of from 20 to 2000 nm, especially from 50 to 1000 nm. It is presently preferred that the diameter of the flakes be in a preferred range of about 1-60 ⁇ m with a more preferred range of about 5-40 ⁇ m.
- Preferred component B particles are any high aspect ratio materials, such as platelets (flakes), rod-like materials and fibers.
- the aspect ratio is at least 10 to 1.
- the term "aspect ratio" refers to the ratio of the maximum (length) to the minimum dimension (thickness) of a particle.
- the aspect ratio of the flakes of the present invention is in a preferred range of about 2.5 to 625.
- the weight ratio of component A to component B may be any ratio.
- the ratio may be about 1 :1 to about 1 :200.
- the ratio is about 1 :10 to about 1 :200, more preferably about 1 :10 to about 1 :30.
- the two components A and B may be mixed to form a pigment composition (physical mixture).
- component(s) A may be coated or deposited onto component B.
- a pigment mixture may also be prepared by a process comprising spray-drying an aqueous suspension consisting of discrete particles of component A and B (cf. US5562763).
- the pigment mixtures of the invention may be incorporated in coatings, ceramics, glasses plastics, films, agricultural films, button pastes, masterbatches, seed coatings, printing inks, cosmetics and personal care products. Accordingly, the present invention relates to coatings, varnishes, plastics, paints, printing inks, masterbatches, ceramics or glasses, cosmetics or personal care products, comprising the particles of the present invention, or the pigment mixture of the present invention.
- the concentration of the pigment mixture in the system in which it is to be used for pigmenting is generally between 0.01 and 75% by weight, preferably between 0.1 and 60% by weight, based on the overall solids content of the system. This concentration is generally dependent on the specific application.
- Plastics comprising the pigment mixture of the invention in amounts of from 0.1 to 50% by weight, in particular from 0.5 to 7% by weight, are frequently notable for a bluish/grey or bluish/black lustrous metallic effect.
- the pigment mixture is employed in amounts of 0.5-10% by weight.
- the invention likewise provides pigment preparations comprising components A and B with binders and, if desired, additives, the said preparations being in the form of substantially solvent-free, free-flowing granules. Such granules contain up to 95% by weight of the pigment mixture.
- the mixtures are highly suitable for coloring plastics or high molecular weight materials which can be further processed to fibers, cast and molded articles, films or coating compositions such as solvent or water based coatings, which are for example conventionally employed in the automobile industry.
- the high molecular weight organic material may be an industrial paint, automotive paint, molded article or film.
- Suitable high molecular weight organic materials include thermoplastics, thermoset plastics or elastomers, natural resins or casein for example, cellulose ethers; cellulose esters such as ethyl cellulose; linear or crosslinked polyurethanes; linear, crosslinked or unsaturated polyesters; polycarbonates; polyolefins such as polyethylene, polypropylene, polybutylene or poly-4-methylpent-1-ene; polystyrene; polysulfones; polyamides; polycycloamides; polyimides; polyethers; polyether ketones such as polyphenylene oxides; and also poly-p- xylene; polyvinyl halides such as polyvinyl chloride, polyvinylidene chloride, polyvinylidene fluoride or polytetrafluoroethylene; acrylic polymers such as polyacrylates, polymethacrylates or polyacrylonitrile; rubber; silicone polymers; phenol/formaldehyde resins; melamine/
- High molecular weight for purposes of the invention means an average molecular weight of from about 10 2 to about 10 6 g/mole
- the pigment mixtures according to the invention can be added in any tinctorially effective amount to the high molecular weight organic material being pigmented.
- a pigmented substance composition comprising a high molecular weight organic material and from 0.01 to 80 % by weight, preferably from 0.1 to 30 % by weight, based on the high molecular weight organic material, of an pigment mixture according to the invention is advantageous. Concentrations of from 1 to 20 % by weight, especially of about 10 % by weight, can often be used in practice.
- An ink according to the present invention comprises, as in the case of an ordinary printing ink, a pigment mixture, a binder, an auxiliary agent, and the like.
- thermoplastic resin examples of which include, polyethylene based polymers [polyethylene (PE), ethylene-vinyl acetate copolymer (EVA), vinyl chloride-vinyl acetate copolymer, vinyl alcohol-vinyl acetate copolymer], polypropylene (PP), vinyl based polymers [polyvinyl chloride) (PVC), polyvinyl butyral)
- PVB polyvinyl alcohol
- PVdC poly(vinylidene chloride)
- PVdC polyvinyl acetate
- PVc polyvinyl formal
- PC polystyrene based polymers
- PS polystyrene
- AS styrene-acrylonitrile copolymer
- AS acrylonitrile-butadiene-styrene copolymer
- ABS acrylonitrile-butadiene-styrene copolymer
- acrylic based polymers poly(methyl methacrylate) (PMMA), MMA-styrene copolymer]
- PC polycarbonate
- PC celluloses [ethyl cellulose (EC), cellulose acetate (CA), propyl cellulose (CP), cellulose acetate butyrate (CAB), cellulose nitrate (CN)]
- fluorin based polymers [polychlorofluoroethylene (PCTFE), polytetrafluoroethylene (PT
- thermosetting resins such as resol type phenolic resin, a urea resin, a melamine resin, a polyurethane resin, an epoxy resin, an unsaturated polyester and the like, and natural resins such as protein, gum, shellac, copal, starch and rosin may also be used.
- Emulsions for use in a water-based paint include for example, a vinyl acetate (homopolymer) emulsion, a vinyl acetate-acrylic ester copolymer emulsion, a vinyl acetate-ethylene copolymer emulsion (EVA emulsion), a vinyl acetate-vinyl versatate copolymer resin emulsion, a vinyl acetate-polyvinyl alcohol copolymer resin emulsion, a vinyl acetate-vinyl chloride copolymer resin emulsion, an acrylic emulsion, an acryl silicone emulsion, a styrene- acrylate copolymer resin emulsion, a polystyrene emulsion, an urethane polymer emulsion, a polyolefin chloride emulsion, an epoxy-acrylate dis
- a plasticizer for stabilizing the flexibility and strength of the print film and a solvent for adjusting the viscosity and drying property thereof may be added according to the needs therefor.
- a solvent of a low boiling temperature of about 100 0 C and a petroleum solvent of a high boiling temperature of 25O 0 C or higher, may be used according to the type of the printing method.
- An alkylbenzene or the like, for example may be used as a solvent of a low boiling temperature.
- an auxiliary agent including a variety of reactive agents for improving drying property, viscosity, and dispersibility, may suitably be added.
- the auxiliary agents are to adjust the performance of the ink, and for example, a compound that improves the abrasion resistance of the ink surface and a drying agent that accelerates the drying of the ink, and the like may be employed.
- a photopolymerization-curable resin or an electron beam curable resin wherein a solvent is not used may also be employed as a binder resin that is a principal component of the vehicle.
- the examples thereof include an acrylic resin, and specific examples of acrylic monomers commercially available are shown below.
- a monofunctional acrylate monomer that may be used includes for example, 2-ethylhexyl acrylate, 2-ethylhexyl-EO adduct acrylate, ethoxydiethylene glycol acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 2-hydroxyethyl acrylate-caprolactone addduct, 2- phenoxyethyl acrylate, phenoxydiethylene glycol acrylate, nonyl phenol-EO adduct acrylate, (nonyl phenol-EO adduct)-caprolactone adduct acrylate, 2-hydroxy-3-phenoxypropyl acrylate, tetrahydrofurfuryl acrylate, furfuryl alcohol-caprolactone adduct acrylate, acryloyl morpholine, dicyclopentenyl acrylate, dicyclopentanyl acrylate, dicyclopentenyloxyethyl acrylate, is
- a polyfunctional acrylate monomer that may be used includes hexanediol diacrylate, neopentyl glycol diacrylate, polyethylene glycol diacrylate, tripropylene glycol diacrylate, neopentyl glycol hydroxypivalate diacrylate, (neopentyl glycol hydroxypivalate)-caprolactone adduct diacrylate, (1 ,6-hexanediol diglycidyl ether)-acrylic acid adduct, (hydroxypivalaldehyde-trimethylolpropane acetal) diacrylate, 2,2-bis[4- (acryloyloxydiethoxy)phenyl]propane, 2,2-bis[4-(acryloyloxydiethoxy)phenyl]methane, hydrogenated bisphenol A-ethylene oxide adduct diacrylate, tricyclodecanedimethanol diacrylate, trimethylolpropane triacrylate, pentaerithri
- Inks comprising the above resins are free of solvent and are so constituted as to polymerize in chain reaction upon irradiation by an electron beam or electromagnetic waves.
- a photopolymerization initiator and depending on the needs therefor, a sensitizing agent, and auxiliary agents such as a polymerization inhibitor and a chain transfer agent, and the like may be added thereto.
- photo-polymerization initiators there are, (1 ) an initiator of direct photolysis type including an arylalkyl ketone, an oxime ketone, an acylphosphine oxide, or the like, (2) an initiator of radical polymerization reaction type including a benzophenone derivative, a thioxanthone derivative, or the like, (3) an initiator of cationic polymerization reaction type including an aryl diazonium salt, an aryl iodinium salt, an aryl sulfonium salt, and an aryl acetophenone salt, or the like, and in addition, (4) an initiator of energy transfer type, (5) an initiator of photoredox type, (6) an initiator of electron transfer type, and the like.
- a photopolymerization initiator is not necessary and a resin of the same type as in the case of the ultraviolet-irradiation type inks can be used, and various kinds of auxiliary agent may be added thereto according to the needs therefor.
- the inks comprise a total content of pigment mixture of from 0.1 to 25 % by weight, preferably 0.4-22 % by weight, most preferred 0.4-16.5 % by weight based on the total weight of the ink.
- Component A is preferably contained in an amount of from 0.2 to 2.0 % by weight, most preferably of from 0.2 to 1.5 % by weight based on the total weight of the ink.
- Component B is preferably contained in an amount of from 0.2 to 20 % by weight, most preferably of from 0.2 to 15 % by weight based on the total weight of the ink.
- the component A and B mixtures may be incorporated into skin-care products, bath and shower additives, preparations containing fragrances and odoriferous substances, hair-care products, deodorizing and antiperspirant preparations, decorative preparations, light protection formulations and preparations containing active ingredients and uses thereof to achieve special color effects.
- Body-care products are, in particular, skin-care products, such as body oils, body lotions, body gels, treatment creams, skin protection ointments, shaving preparations, such as shaving foams or gels, skin powders, such as baby powder, moisturizing gels, moisturizing sprays, revitalizing body sprays, cellulite gels and peeling preparations.
- the personal care product is a body-care product for the skin and its adnexa.
- Suitable bath and shower additives are shower gels, bath-salts, bubble baths and soaps.
- fragrances and odoriferous substances are in particular scents, perfumes, toilet waters and shaving lotions (aftershave preparations).
- Suitable hair-care products are, for example, shampoos for humans and animals, in particu- lar dogs, hair conditioners, products for styling and treating hair, perming agents, hair sprays and lacquers, hair gels, hair fixatives and hair dyeing or bleaching agents.
- Suitable decorative preparations are in particular lipsticks, nail varnishes, eye shadows, mascaras, dry and moist make-up, rouge, powders, depilatory agents and suntan lotions.
- Suitable cosmetic formulations containing active ingredients are in particular hormone preparations, vitamin preparations and vegetable extract preparations.
- the mentioned body-care products may be in the form of creams, ointments, pastes, foams, gels, lotions, powders, make-ups, sprays, sticks or aerosols.
- the present invention therefore also relates to a body-care product comprising components A and B.
- the mixture of components A and B are present in the body care and household products in a concentration of about 0.0001 % to about 25%, based on the total formulation, preferably from about 0.001 % to about 15%, and most preferably from about 0.05% to about 10%.
- the present pigment mixtures are particularly suitable for coloration of cosmetic and body care products, in particular: skin-care preparations, e.g. skin-washing and cleansing preparations in the form of tablet-form or liquid soaps, soapless detergents or washing pastes, bath preparations, e.g. liquid (foam baths, milks, shower preparations) or solid bath preparations, e.g. bath cubes and bath salts; - skin-care preparations, e.g. skin emulsions, multi-emulsions or skin oils; body oils, body lotions, body gels; skin protection ointments; cosmetic personal care preparations, e.g.
- skin-care preparations e.g. skin-washing and cleansing preparations in the form of tablet-form or liquid soaps, soapless detergents or washing pastes
- bath preparations e.g. liquid (foam baths, milks, shower preparations) or solid bath preparations, e.g. bath cubes and bath salts
- eye-care preparations e.g. eyeshadow preparations, mascara, eyeliner, eye creams or eye-fix creams
- lip-care preparations e.g. lipsticks, lip gloss, lip contour pencils
- nail-care preparations such as nail varnish, nail varnish removers, nail hardeners or cuticle removers
- foot-care preparations e.g.
- foot baths foot powders, foot creams or foot balsams, special deodorants and antiperspirants or callus-removing preparations
- - light-protective preparations such as sun milks, lotions, creams or oils, sunblocks or tropicals, pre-tanning preparations or after-sun preparations
- skin-tanning preparations e.g. self-tanning creams
- depigmenting preparations e.g. preparations for bleaching the skin or skin-lightening preparations
- - insect-repellents e.g.
- insect-repellent oils lotions, sprays or sticks
- deodorants such as deodorant sprays, pump-action sprays, deodorant gels, sticks or roll-ons
- antiperspirants e.g. antiperspirant sticks, creams or roll-ons
- preparations for cleansing and caring for blemished skin e.g. synthetic detergents (solid or liquid), peeling or scrub preparations or peeling masks
- shaving preparations e.g.
- shaving soap foaming shaving creams, non-foaming shaving creams, foams and gels, preshave preparations for dry shaving, aftershaves or aftershave lotions; fragrance preparations, e.g. fragrances and odoriferous substances containing preparations (scents, eau de Cologne, eau de toilette, eau de perfume, perfume de toilette, perfume), perfume oils or perfume creams; - cosmetic hair-treatment preparations, e.g. hair-washing preparations in the form of shampoos and conditioners, hair-care preparations, e.g. pretreatment preparations, hair tonics, styling creams, styling gels, pomades, hair rinses, treatment packs, intensive hair treatments, hair-structuring preparations, e.g.
- hair-waving preparations for permanent waves hot wave, mild wave, cold wave
- hair-straightening preparations liquid hair- setting preparations, hair foams, hairsprays
- bleaching preparations e.g. hydrogen peroxide solutions, lightening shampoos, bleaching creams, bleaching powders, bleaching pastes or oils, temporary, semi-permanent or permanent hair colourants, preparations containing self-oxidising dyes, or natural hair colourants, such as henna or camomile
- decorative preparations in particular lipsticks, nail varnishes, eye shadows, mascaras, dry and moist make-up, rouge, powders, depilatory agents and suntan lotions cosmetic formulations containing active ingredients, in particular hormone preparations, vitamin preparations, vegetable extract preparations and antibacterial preparations.
- the final formulations containing the pigment mixtures may exist in a wide variety of presentation forms, for example: in the form of liquid preparations as a W/O, O/W, 0/W/O, W/O/W or PIT emulsion and all kinds of microemulsions, in the form of a gel, - in the form of an oil, a cream, milk or lotion, in the form of a stick, in the form of a spray (spray with propellent gas or pump-action spray) or an aerosol, in the form of a foam, or in the form of a paste.
- a spray spray with propellent gas or pump-action spray
- aerosol aerosol
- Example 1 a) One kilogram of vinylketone type clear varnish is prepared by mild stirring at 3000 rpm for 30 min at room temperature of a formulation containing 100g 1-ethoxypropanol, 76Og methylethylketone and 14Og VMCH (UCC). b) A vinylketone ink is prepared by dispersing in a Skandex ® for 2 hours in a 400 ml glass bottle 1.5 parts of compound A and 23Og of glass beads of 2mm diameter into 98.5 parts of the clear varnish prepared according to example 1a). Centrifugation and removal of the glass beads affords a concentrate of compound A.
- MICROLITH ® DPP Red B-K A concentrate of MICROLITH ® DPP Red B-K is prepared by mild stirring with Dispermat at 6000 rpm for 20 min in a 400ml glass bottle of 12 parts of MICROLITH DPP Red B-K, 5 parts of Vinylite VYHH from Union Carbide, 10 parts of methoxypropylacetate and 73 parts of isobutylmethylketone.
- 10 parts of the concentrate of example 1 c) are stirred into 90 parts of the concentrate of example 1 b).
- the thus obtained homogeneous dispersion is applied by hand-coater (50 ⁇ m wet film thickness) on contrast paper (black and white) providing an opaque bordeaux-red grey print with sparkling metallic effect depending on viewing angle.
- Compound A are graphite nanoplatelets, the production of which is described in Example 1
- An expandable graphite powder (Grafguard® 220-80N) is fed at a rate of 2 kg/hour into a plasma reactor with a Tekna PL-70 plasma torch operated at a power of 80 kW.
- the operating pressure is maintained at slightly lower than atmospheric pressure (700 torr).
- An injection probe designed for powder injection with dispersion is positioned to allow for maximum expansion without significant vaporization of the graphite flakes. The expanded flakes are collected in a filter after passing a heat exchange zone.
- the contents are then stirred in order to initially wet the expanded graphite which tends to float on top of the liquid.
- a 750-watt ultrasonic processor VCX 750 Sonics & Materials, Inc.
- the liquid/graphite mixture is ultrasonicated (S) 40% intensity for a total of 40 minutes.
- a pulse method (10 seconds ON - 10 seconds OFF) is used to prevent over heating.
- a noticeable reduction in particle size is observed and particles become suspended (no settling occurs upon standing).
- the dispersion is vacuum filtered using a WHATMAN #1 paper filter.
- the filter cake from mineral oil contains 85 wt % mineral oil and 15 wt % graphite, where as the toluene and water filter cakes contain almost 90 wt % liquid, 8 wt % graphite and 2 wt % residual dispersant.
- controlled cavitation may be used instead of ultrasonication for the exfoilation of the graphite.
- a vinylketone ink is prepared by dispersing in a Skandex ® for 2 hours in a 400 ml glass bottle
- Example 4 A vinylketone ink is prepared by dispersing in a Skandex ® for 2 hours in a 400 ml glass bottle 1.5 parts of compound A and 23Og of glass beads of 2mm diameter into 88.5 parts of the clear varnish prepared according to example 1a).
- a vinylketone ink is prepared by dispersing in a Skandex ® for 2 hours in a 400 ml glass bottle
- a vinylketone ink is prepared by dispersing in a Skandex ® for 2 hours in a 400 ml glass bottle 1.5 parts of compound A and 23Og of glass beads of 2mm diameter into 93.5 parts of the clear varnish prepared according to example 1a). After centrifugation and removal of the glass beads, 5 parts of XYMARA ® Bronze Pearl B04 are added and mildly stirred providing a homogeneous dispersion which is applied by hand- coater (50 ⁇ m wet film thickness) on contrast paper (black and white) and results in an opaque bronze metallic effect.
- a vinylketone ink is prepared by dispersing in a Skandex ® for 2 hours in a 400 ml glass bottle
- a vinylketone ink is prepared by dispersing in a Skandex ® for 2 hours in a 400 ml glass bottle
- a vinylketone ink is prepared by dispersing in a Skandex ® for 2 hours in a 400 ml glass bottle
- a vinylketone ink is prepared by dispersing in a Skandex ® for 2 hours in a 400 ml glass bottle
- a vinylketone ink is prepared by dispersing in a Skandex ® for 2 hours in a 400 ml glass bottle
- a vinylketone ink is prepared by dispersing in a Skandex ® for 2 hours in a 400 ml glass bottle
- a vinylketone ink is prepared by dispersing in a Skandex ® for 2 hours in a 400 ml glass bottle
- a vinylketone ink is prepared by dispersing in a Skandex ® for 2 hours in a 400 ml glass bottle
- Example 15 A vinylketone ink is prepared by dispersing in a Skandex ® for 2 hours in a 400 ml glass bottle 1.5 parts of compound A and 23Og of glass beads of 2mm diameter into 93.5 parts of the clear varnish prepared according to example 1a).
- Example 16 A vinylketone ink is prepared by dispersing in a Skandex ® for 2 hours in a 400 ml glass bottle
- a vinylketone ink is prepared by dispersing in a Skandex ® for 2 hours in a 400 ml glass bottle 1.5 parts of compound A and 23Og of glass beads of 2mm diameter into 83.5 parts of the clear varnish prepared according to example 1a).
- a vinylketone ink is prepared by dispersing in a Skandex ® for 2 hours in a 400 ml glass bottle
- Example 19 A vinylketone ink is prepared by dispersing in a Skandex ® for 2 hours in a 400 ml glass bottle 1.5 parts of compound A and 23Og of glass beads of 2mm diameter into 88.5 parts of the clear varnish prepared according to example 1a).
- Example 20 A vinylketone ink is prepared by dispersing in a Skandex ® for 2 hours in a 400 ml glass bottle
- a vinylketone ink is prepared by dispersing in a Skandex ® for 2 hours in a 400 ml glass bottle 1.5 parts of compound A and 23Og of glass beads of 2mm diameter into 93.5 parts of the clear varnish prepared according to example 1a).
- a vinylketone ink is prepared by dispersing in a Skandex ® for 2 hours in a 400 ml glass bottle
- Example 23 A vinylketone ink is prepared by dispersing in a Skandex ® for 2 hours in a 400 ml glass bottle
- a vinylketone ink is prepared by dispersing in a Skandex ® for 2 hours in a 400 ml glass bottle
- a vinylketone ink is prepared by dispersing in a Skandex ® for 2 hours in a 400 ml glass bottle 1.5 parts of compound A and 23Og of glass beads of 2mm diameter into 88.5 parts of the clear varnish prepared according to example 1a). After centrifugation and removal of the glass beads, 10 parts of XYMARA ® Dual Pearl D31 are added and mildly stirred providing a homogeneous dispersion which is applied by hand- coater (50 ⁇ m wet film thickness) on contrast paper (black and white) and results in an opaque green metallic effect.
- a vinylketone ink is prepared by dispersing in a Skandex ® for 2 hours in a 400 ml glass bottle
- a vinylketone ink is prepared by dispersing in a Skandex ® for 2 hours in a 400 ml glass bottle
- Example 28 a) A nitrocellulose type clear varnish is prepared by mild stirring at 500 rpm for 30 min at room temperature of a formulation containing 14 parts DLX 3-5 IPA (Low Nitrogen Grade 10.7% -1 1.2%) from Nobel Enterprises and 86 parts ethylacetate.
- a nitrocellulose ink is prepared by dispersing in a Skandex ® for 2 hours in a 400 ml glass bottle 1.5 parts of compound A and 23Og of glass beads of 2mm diameter into 98.5 parts of the clear varnish prepared according to example 28a). Centrifugation and removal of the glass beads affords a nitrocellulose concentrate containing compound A.
- Formulations of example 2 to example 26 are applied on contrast paper by screen-printing using a screen with characteristics 43-80.
- Comparative Example 1 - GRAPHITAN 7525 & XYMARA ® Silver Pearl S23 A vinylketone ink is prepared by dispersing in a Skandex ® for 2 hours in a 400 ml glass bottle 1.5 g of GRAPHITAN 7525 from CIBA and 23Og of glass beads of 2mm diameter into 88.5 g of the clear varnish prepared according to example 1 a). After centrifugation and removal of the glass beads, 10 g of XYMARA ® Silver Pearl S23 are added and mildly stirred providing a homogeneous dispersion which is applied by hand-coater (50 ⁇ m wet film thickness) on contrast paper (black and white) and results in an non-opaque silver print in comparison to the print obtained in example 4.
- hand-coater 50 ⁇ m wet film thickness
- Comparative Example 2 - GRAPHITAN 7525 & XYMARA ® Bronze Pearl B03 A vinylketone ink is prepared by dispersing in a Skandex ® for 2 hours in a 400 ml glass bottle 1.5 g of GRAPHITAN 7525 from CIBA and 23Og of glass beads of 2mm diameter into 88.5 g of the clear varnish prepared according to example 1 a). After centrifugation and removal of the glass beads, 10 g of XYMARA ® Bronze Pearl B03 are added and mildly stirred providing a homogeneous dispersion which is applied by hand-coater (50 ⁇ m wet film thickness) on contrast paper (black and white) and results in an non-opaque bronze print in comparison to the print obtained in example 7.
- hand-coater 50 ⁇ m wet film thickness
- a vinylketone ink is prepared by dispersing in a Skandex ® for 2 hours in a 400 ml glass bottle 1.5 g of GRAPHITAN 7525 from CIBA and 23Og of glass beads of 2mm diameter into 88.5 g of the clear varnish prepared according to example 1 a). After centrifugation and removal of the glass beads, 10 g of XYMARA ® Gold Pearl G03 are added and mildly stirred providing a homogeneous dispersion which is applied by hand-coater (50 ⁇ m wet film thickness) on contrast paper (black and white) and results in an non-opaque gold print in comparison to the print obtained in example 10.
- a vinylketone ink is prepared by dispersing in a Skandex ® for 2 hours in a 400 ml glass bottle 25 g of concentrate prepared in Comparative Example 4a) and 23Og of glass beads of 2mm diameter into 65 g of the clear varnish prepared according to example 1 a). After centrifugation and removal of the glass beads, 10 g of XYMARA ® Silver Pearl S23 are added and mildly stirred providing a homogeneous dispersion which is applied by hand-coater (50 ⁇ m wet film thickness) on contrast paper (black and white) and results in an opaque black print with no silver coloration in comparison to the print obtained in example 4.
- Comparative Example 5 MICROLITH ® Black C-K & XYMARA ® Bronze Pearl B03
- a vinylketone ink is prepared by dispersing in a Skandex ® for 2 hours in a 400 ml glass bottle 25 g of concentrate prepared in Comparative Example 4a) and 23Og of glass beads of 2mm diameter into 65 g of the clear varnish prepared according to example 1 a).
- a vinylketone ink is prepared by dispersing in a Skandex ® for 2 hours in a 400 ml glass bottle 25 g of concentrate prepared in Comparative Example 4a) and 23Og of glass beads of 2mm diameter into 65 g of the clear varnish prepared according to example 1 a). After centrifugation and removal of the glass beads, 10 g of XYMARA ® Gold Pearl G03 are added and mildly stirred providing a homogeneous dispersion which is applied by hand-coater (50 ⁇ m wet film thickness) on contrast paper (black and white) and results in an opaque black print with very slight gold coloration in comparison to the print obtained in example 13.
- a nitrocellulose ink is prepared by dispersing in a Skandex ® for 2 hours in a 400 ml glass bottle 12 parts of compound A described in example 4 of PCT/EP2009/052127 where the oil is HONEYWELL AC 617A (80%) and 23Og of glass beads of 2mm diameter into 68 parts of the clear varnish prepared according to example 32a). Centrifugation and removal of the glass beads afford a concentrate of compound A.
- Example 33a Application by hand-coater (50 ⁇ m wet film thickness) of the ink of example 33 on AMCOR cardboard provides an opaque silver metallic effect with coat weight of 15g/m 2 . Measurements performed with Datacolor Multi FX 10 apparatus on the print of example 33a are represented in the table below.
- Example 33d Application by hand-coater (50 ⁇ m wet film thickness) of the ink of example 33 on untreated wood (thickness 0.5cm) provides an opaque silver metallic effect.
- a mixture of 35 parts of the varnish of example 32a) and 15 parts of XYMARA ® Gold Pearl G03 is gently stirred. 50 parts of the concentrate of example 32b) are added to this dispersion to form a homogeneous ink.
- a mixture of 35 parts of the varnish of example 32a) and 15 parts of XYMARA ® Bronze Pearl B04 is gently stirred. 50 parts of the concentrate of example 32b) are added to this dispersion and the thus obtained homogeneous ink has a viscosity of 62 sec (DIN Cup N°4).
- Application by hand-coater (50 ⁇ m wet film thickness) of the ink of example 35 on AMCOR cardboard provides an opaque bonze metallic effect.
- a mixture of 35 parts of the varnish of example 32a) and 15 parts of XYMARA ® Dual Pearl D31 is gently stirred. 50 parts of the concentrate of example 32b) are added to this dispersion and the thus obtained homogeneous ink has a viscosity of 40 sec (DIN Cup N°4).
- Application by hand-coater (50 ⁇ m wet film thickness) of the ink of example 36 on AMCOR cardboard provides an opaque green metallic effect.
- Example 38 A mixture of 35 parts of the varnish of example 32a) and 15 parts of XYMARA ® Dual Pearl D21 is gently stirred. 50 parts of the concentrate of example 32b) are added to this dispersion and the thus obtained homogeneous ink has a viscosity of 39 sec (DIN Cup N°4). Application by hand-coater (50 ⁇ m wet film thickness) of the ink of example 37 on AMCOR cardboard provides an opaque blue metallic effect with coat weight of 14.5g/m 2 .
- Example 38 A mixture of 35 parts of the varnish of example 32a) and 15 parts of XYMARA ® Dual Pearl D21 is gently stirred. 50 parts of the concentrate of example 32b) are added to this dispersion and the thus obtained homogeneous ink has a viscosity of 39 sec (DIN Cup N°4). Application by hand-coater (50 ⁇ m wet film thickness) of the ink of example 37 on AMCOR cardboard provides an opaque blue metallic effect with coat weight of 14.5g/m 2 .
- a mixture of 35 parts of the varnish of example 32a) and 15 parts of XYMARA ® Dual Pearl D19 is gently stirred. 50 parts of the concentrate of example 32b) are added to this dispersion and the thus obtained homogeneous ink has a viscosity of 60 sec (DIN Cup N°4).
- Application by hand-coater (50 ⁇ m wet film thickness) of the ink of example 38 on AMCOR cardboard provides an opaque violet metallic effect.
- the thus obtained aqueous clear varnish has a viscosity of 14 sec (DIN Cup N°4).
- aqueous ink is prepared by dispersing in a Skandex ® for 2 hours in a 400 ml glass bottle 30 parts of compound A described in example 4 of PCT/EP2009/052127 where the dispersant is PLURONIC 123 (2%) and 23Og of glass beads of 2mm diameter into 50 parts of the clear varnish prepared according to example 39a). Centrifugation and removal of the glass beads afford a concentrate of compound A and the thus obtained homogeneous ink has a viscosity of 20 sec (DIN Cup N°4).
- a mixture of 35 parts of the varnish of example 39a) and 15 parts of XYMARA ® Silver Pearl S23 is gently stirred. 50 parts of the concentrate of example 39b) are added to this dispersion and the thus obtained homogeneous ink has a viscosity of 41 sec (DIN Cup N°4).
- Application by hand-coater (40 ⁇ m wet film thickness) on laminate paper provides an opaque silver metallic effect with coat weight of 16g/m 2 .
- a mixture of 35 parts of the varnish of example 39a) and 15 parts of XYMARA ® Gold Pearl G03 is gently stirred. 50 parts of the concentrate of example 39b) are added to this dispersion and the thus obtained homogeneous ink has a viscosity of 33 sec (DIN Cup N°4).
- Application by hand-coater (40 ⁇ m wet film thickness) on laminate paper provides an opaque gold metallic effect with coat weight of 16g/m 2 .
- Example 42 A mixture of 35 parts of the varnish of example 39a) and 15 parts of XYMARA ® Bronze Pearl
- a mixture of 35 parts of the varnish of example 39a) and 15 parts of XYMARA ® Dual Pearl D21 is gently stirred. 50 parts of the concentrate of example 39b) are added to this dispersion and the thus obtained homogeneous ink has a viscosity of 23 sec (DIN Cup N°4).
- Application by hand-coater (40 ⁇ m wet film thickness) on laminate paper provides an opaque blue metallic effect with coat weight of 19g/m 2 .
- Example 45 A mixture of 35 parts of the varnish of example 39a) and 15 parts of XYMARA ® Dual Pearl D19 is gently stirred. 50 parts of the concentrate of example 39b) are added to this dispersion and the thus obtained homogeneous ink has a viscosity of 31 sec (DIN Cup N°4). Application by hand-coater (40 ⁇ m wet film thickness) on laminate paper provides an opaque violet metallic effect with coat weight of 19g/m 2 .
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Health & Medical Sciences (AREA)
- Nanotechnology (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Inorganic Chemistry (AREA)
- Epidemiology (AREA)
- Birds (AREA)
- Composite Materials (AREA)
- Physics & Mathematics (AREA)
- Dermatology (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inks, Pencil-Leads, Or Crayons (AREA)
- Paints Or Removers (AREA)
- Cosmetics (AREA)
- Pigments, Carbon Blacks, Or Wood Stains (AREA)
- Chemical And Physical Treatments For Wood And The Like (AREA)
Priority Applications (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US13/000,495 US20110112234A1 (en) | 2008-06-24 | 2009-06-10 | Pigment mixtures |
| CN200980124302.7A CN102076782B (zh) | 2008-06-24 | 2009-06-10 | 颜料混合物 |
| EP09769124.0A EP2300541B1 (en) | 2008-06-24 | 2009-06-10 | Pigment mixtures |
| JP2011515292A JP2011525557A (ja) | 2008-06-24 | 2009-06-10 | 顔料混合物 |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP08158889 | 2008-06-24 | ||
| EP08158889.9 | 2008-06-24 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2009156275A1 true WO2009156275A1 (en) | 2009-12-30 |
Family
ID=40042874
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/EP2009/057130 Ceased WO2009156275A1 (en) | 2008-06-24 | 2009-06-10 | Pigment mixtures |
Country Status (5)
| Country | Link |
|---|---|
| US (1) | US20110112234A1 (enExample) |
| EP (1) | EP2300541B1 (enExample) |
| JP (1) | JP2011525557A (enExample) |
| CN (1) | CN102076782B (enExample) |
| WO (1) | WO2009156275A1 (enExample) |
Cited By (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| ITFI20110038A1 (it) * | 2011-03-03 | 2012-09-04 | Colorobbia Italiana Spa | Cerameri, loro applicazione ed uso. |
| EP2698403A1 (de) * | 2012-08-17 | 2014-02-19 | Eckart GmbH | Oberflächenmodifizierte Perlglanzpigmente und deren Verwendung in Pulverlacken |
| EP2746349A1 (de) * | 2012-12-21 | 2014-06-25 | Eckart GmbH | Pigmentpräparation mit Metalleffektpigmenten, Verfahren zu deren Herstellung und Verwendung derselben |
| CN104588619A (zh) * | 2014-12-15 | 2015-05-06 | 滁州金诺实业有限公司 | 真空铸造家电模具铝合金铸件预埋管用冷铁块 |
| EP3000849A1 (en) * | 2010-12-08 | 2016-03-30 | Haydale Graphene Industries plc | Graphite nanoplatelets, composites comprising them, preparation and uses thereof |
| CN107118636A (zh) * | 2017-05-31 | 2017-09-01 | 东莞国扬打印耗材有限公司 | 一种金属涂层配方及喷涂方法 |
| GB2548394A (en) * | 2016-03-17 | 2017-09-20 | Fgv Cambridge Nanosystems Ltd | Multifunctional wood coatings |
| CN108314871A (zh) * | 2018-03-15 | 2018-07-24 | 成都菲斯特化工有限公司 | 一种金属色树脂着色母粒及其制备方法 |
| CN110724396A (zh) * | 2019-09-24 | 2020-01-24 | 河北欧克新型材料股份有限公司 | 耐温黑色珠光颜料及其制备方法 |
| CN110746793A (zh) * | 2019-11-16 | 2020-02-04 | 南阳市凌宝珠光颜料有限公司 | 一种光变珠光颜料的制备工艺 |
| CN110952306A (zh) * | 2018-09-27 | 2020-04-03 | 尚科纺织企业工业及贸易公司 | 纺织品整理方法和经过整理的纺织品 |
| CN112538281A (zh) * | 2019-09-20 | 2021-03-23 | 默克专利股份有限公司 | 颜料 |
| EP3998314A1 (en) * | 2020-10-29 | 2022-05-18 | Potters Industries, LLC | Protective coating for wood products and method of making the same |
| WO2023275359A1 (en) * | 2021-07-02 | 2023-01-05 | Heliosonic Gmbh | Radiation induced printing method using an effect pigment mixture |
| WO2023170094A1 (de) | 2022-03-10 | 2023-09-14 | Carl Zeiss Meditec Ag | Ophthalmologisches implantat mit einer maschinenlesbaren produktkennzeichnung |
| WO2023209379A1 (en) * | 2022-04-29 | 2023-11-02 | Applied Graphene Materials Uk Limited | Chemical resistance |
Families Citing this family (22)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP5984678B2 (ja) * | 2010-02-04 | 2016-09-06 | ビーエーエスエフ ソシエタス・ヨーロピアBasf Se | 改善されたきらめき効果を有する顔料組成物 |
| DE102012102165A1 (de) * | 2012-03-14 | 2013-10-02 | Eckart Gmbh | Kompositpartikel, Verfahren zu deren Herstellung und Verwendung derselben |
| CN102850360B (zh) * | 2012-09-20 | 2014-10-29 | 首都师范大学 | 静电组装制备石墨烯/金属酞菁类化合物复合材料的方法 |
| US9168393B2 (en) | 2013-03-13 | 2015-10-27 | Johnson & Johnson Consumer Inc. | Pigmented skin-care compositions |
| US9168209B2 (en) | 2013-03-13 | 2015-10-27 | Johnson & Johnson Consumer Inc. | Pigmented skin-care compositions |
| US9168394B2 (en) | 2013-03-13 | 2015-10-27 | Johnson & Johnson Consumer Inc. | Pigmented skin-care compositions |
| US9320687B2 (en) | 2013-03-13 | 2016-04-26 | Johnson & Johnson Consumer Inc. | Pigmented skin-care compositions |
| CN103788715A (zh) * | 2014-02-12 | 2014-05-14 | 铜陵瑞莱科技有限公司 | 一种含樟脑油的氧化铁黑颜料 |
| TW201541111A (zh) * | 2014-03-07 | 2015-11-01 | 3M Innovative Properties Co | 耐久性擠製染色聚酯膜 |
| DE102015013400A1 (de) * | 2015-10-19 | 2017-04-20 | Merck Patent Gmbh | Pigment/Fritten-Gemisch |
| CA3087404A1 (en) * | 2017-01-16 | 2018-07-19 | Arkema Inc. | High gloss, abrasion resistant thermoplastic article |
| CN108690402A (zh) * | 2017-04-12 | 2018-10-23 | 华瑞墨石丹阳有限公司 | 石墨纳米片印刷油墨和由其印刷的天线的制备方法和用途 |
| DE102017011800A1 (de) * | 2017-12-20 | 2019-06-27 | Merck Patent Gmbh | Effektpigmente |
| CN108598412B (zh) * | 2018-04-23 | 2020-06-16 | 中南大学 | 基于金属有机物的硅合金复合负极材料及其制备方法 |
| EP3787589A4 (en) * | 2018-05-04 | 2022-03-09 | Bio-Nature Laboratories LLC | PRISTIN GRAPHENE AND NATURALLY ADHESIVE ADHESION COMPOSITIONS FOR SKIN APPLICATIONS |
| WO2019215681A1 (en) | 2018-05-10 | 2019-11-14 | Ppg Architectural Finishes, Inc. | Low voc adhesive composition |
| IT201900023607A1 (it) | 2019-12-11 | 2021-06-11 | Directa Plus Spa | Metodo e composizione per migliorare la conducibilità elettrica e termica di un articolo tessile e articolo tessile così ottenuto. |
| DE102020203248A1 (de) * | 2020-03-13 | 2021-09-16 | Henkel Ag & Co. Kgaa | Verfahren zum Färben von keratinischem Material, umfassend die Anwendung von einer siliciumorganischen Verbindung, zweier farbgebender Verbindungen und eines Nachbehandlungsmittels |
| JP7355253B2 (ja) * | 2021-02-18 | 2023-10-03 | Dic株式会社 | 顔料、化粧料、インキ、塗料、トナー、及び成形物 |
| CN114634721A (zh) * | 2022-03-01 | 2022-06-17 | 华南理工大学 | 一种硅铝氧化物包覆型二氧化钛及其制备方法和应用 |
| CN115353753B (zh) * | 2022-08-25 | 2023-10-10 | 湖南汇帮环保科技有限公司 | 一种红外反射钴绿颜料及其制备工艺 |
| US20250196510A1 (en) * | 2022-12-21 | 2025-06-19 | Heliosonic Gmbh | Printing process using particles of non-amorphous carbon allotropes |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4076551A (en) | 1975-12-22 | 1978-02-28 | Merck Patent Gesellschaft Mit Beschrankter Haftung | Carbon black-containing pigments and process for their preparation |
| EP0439107A1 (en) * | 1990-01-22 | 1991-07-31 | BASF Corporation | Laminar graphite containing pigment composition |
| WO2003006558A2 (en) * | 2001-07-12 | 2003-01-23 | Merck Patent Gmbh | Multilayer pigments based on glass flakes |
| US6773499B2 (en) | 1998-05-28 | 2004-08-10 | Merck Patent Gmbh | Pigment mixture |
| US20040225032A1 (en) * | 2000-07-03 | 2004-11-11 | Berol Corporation | Erasable inks, writing instruments, and methods |
Family Cites Families (18)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS5438620A (en) * | 1977-08-31 | 1979-03-23 | Nippon Tokushu Toryo Co Ltd | Thick slate with somber silver layer and method of ornamenting thick slate |
| JPH064482B2 (ja) * | 1988-06-08 | 1994-01-19 | 三井鉱山株式会社 | 葉片状黒鉛粉末及びその製造方法 |
| JP2573368B2 (ja) * | 1989-09-07 | 1997-01-22 | アイシン化工 株式会社 | 黒色塗料組成物 |
| JPH0718213A (ja) * | 1993-06-30 | 1995-01-20 | Pentel Kk | 鉛筆芯の製造方法 |
| JPH1149993A (ja) * | 1997-08-07 | 1999-02-23 | Nippon Paint Co Ltd | 高隠蔽性白色ソリッド塗料組成物およびそれを用いた塗装方法 |
| JP4031562B2 (ja) * | 1997-11-05 | 2008-01-09 | 日本ペイント株式会社 | 光輝性塗料組成物および光輝性複合塗膜形成方法 |
| DE19920627A1 (de) * | 1998-05-28 | 1999-12-02 | Merck Patent Gmbh | Pigmentmischung |
| JP2000198944A (ja) * | 1998-12-23 | 2000-07-18 | Merck Patent Gmbh | 顔料混合物 |
| JP2000271536A (ja) * | 1999-03-25 | 2000-10-03 | Nippon Paint Co Ltd | メタリック塗膜の形成方法 |
| DE19917388A1 (de) * | 1999-04-16 | 2000-10-19 | Merck Patent Gmbh | Pigmentmischung |
| DE19941607A1 (de) * | 1999-09-01 | 2001-03-08 | Merck Patent Gmbh | Pigmentmischung enthaltend BIOCI-Pigmente |
| JP2003034512A (ja) * | 2001-07-19 | 2003-02-07 | Mitsubishi Gas Chem Co Inc | 炭素単層構造を骨格とする単層および積層単離膜 |
| US6517626B2 (en) * | 2000-08-14 | 2003-02-11 | Gage Products Company | Universal paint solvent |
| JP2003113348A (ja) * | 2001-10-04 | 2003-04-18 | Nippon Paint Co Ltd | 光輝性塗料組成物、塗膜形成方法および複層塗膜 |
| EP1469042A3 (de) * | 2003-03-27 | 2010-07-07 | MERCK PATENT GmbH | Pigmentgemisch und dessen Verwendung in der Kosmetik und im Lebensmittel- und Pharmabereich |
| JP4895502B2 (ja) * | 2004-12-28 | 2012-03-14 | 日本ペイント株式会社 | 顔料分散体及び塗料 |
| WO2008083894A2 (en) * | 2007-01-11 | 2008-07-17 | Ciba Holding Inc. | Pigment mixtures |
| EP2262727A2 (en) * | 2008-02-28 | 2010-12-22 | Basf Se | Graphite nanoplatelets and compositions |
-
2009
- 2009-06-10 US US13/000,495 patent/US20110112234A1/en not_active Abandoned
- 2009-06-10 EP EP09769124.0A patent/EP2300541B1/en not_active Not-in-force
- 2009-06-10 WO PCT/EP2009/057130 patent/WO2009156275A1/en not_active Ceased
- 2009-06-10 CN CN200980124302.7A patent/CN102076782B/zh not_active Expired - Fee Related
- 2009-06-10 JP JP2011515292A patent/JP2011525557A/ja active Pending
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4076551A (en) | 1975-12-22 | 1978-02-28 | Merck Patent Gesellschaft Mit Beschrankter Haftung | Carbon black-containing pigments and process for their preparation |
| EP0439107A1 (en) * | 1990-01-22 | 1991-07-31 | BASF Corporation | Laminar graphite containing pigment composition |
| US6773499B2 (en) | 1998-05-28 | 2004-08-10 | Merck Patent Gmbh | Pigment mixture |
| US20040225032A1 (en) * | 2000-07-03 | 2004-11-11 | Berol Corporation | Erasable inks, writing instruments, and methods |
| WO2003006558A2 (en) * | 2001-07-12 | 2003-01-23 | Merck Patent Gmbh | Multilayer pigments based on glass flakes |
Non-Patent Citations (1)
| Title |
|---|
| G. PFAFF ET AL., SPECIAL EFFECT PIGMENTS, 1998, pages 47 |
Cited By (31)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP3000849A1 (en) * | 2010-12-08 | 2016-03-30 | Haydale Graphene Industries plc | Graphite nanoplatelets, composites comprising them, preparation and uses thereof |
| US9764954B2 (en) | 2010-12-08 | 2017-09-19 | Haydale Graphene Industries Plc | Particulate materials, composites comprising them, preparation and uses thereof |
| WO2012117380A1 (en) * | 2011-03-03 | 2012-09-07 | Colorobbia Italia S.P.A. | Ceramers, their application and use |
| ITFI20110038A1 (it) * | 2011-03-03 | 2012-09-04 | Colorobbia Italiana Spa | Cerameri, loro applicazione ed uso. |
| WO2014026877A1 (de) * | 2012-08-17 | 2014-02-20 | Eckart Gmbh | Oberflächenmodifizierte perlglanzpigmente und deren verwendung in pulverlacken |
| EP2698403A1 (de) * | 2012-08-17 | 2014-02-19 | Eckart GmbH | Oberflächenmodifizierte Perlglanzpigmente und deren Verwendung in Pulverlacken |
| WO2014096379A1 (de) | 2012-12-21 | 2014-06-26 | Eckart Gmbh | Pigmentpräparation mit metalleffektpigmenten, verfahren zu deren herstellung und verwendung derselben |
| CN105073914A (zh) * | 2012-12-21 | 2015-11-18 | 埃卡特有限公司 | 含金属效应颜料的颜料制剂、其制备方法及其用途 |
| US9267049B2 (en) | 2012-12-21 | 2016-02-23 | Eckart Gmbh | Pigment preparation with metal effect pigments, method for the production of same and use of same |
| EP2746349A1 (de) * | 2012-12-21 | 2014-06-25 | Eckart GmbH | Pigmentpräparation mit Metalleffektpigmenten, Verfahren zu deren Herstellung und Verwendung derselben |
| CN105073914B (zh) * | 2012-12-21 | 2017-09-12 | 埃卡特有限公司 | 含金属效应颜料的颜料制剂、其制备方法及其用途 |
| CN104588619A (zh) * | 2014-12-15 | 2015-05-06 | 滁州金诺实业有限公司 | 真空铸造家电模具铝合金铸件预埋管用冷铁块 |
| CN104588619B (zh) * | 2014-12-15 | 2016-06-01 | 滁州金诺实业有限公司 | 真空铸造家电模具铝合金铸件预埋管用冷铁块 |
| GB2548394A (en) * | 2016-03-17 | 2017-09-20 | Fgv Cambridge Nanosystems Ltd | Multifunctional wood coatings |
| CN107118636A (zh) * | 2017-05-31 | 2017-09-01 | 东莞国扬打印耗材有限公司 | 一种金属涂层配方及喷涂方法 |
| CN108314871A (zh) * | 2018-03-15 | 2018-07-24 | 成都菲斯特化工有限公司 | 一种金属色树脂着色母粒及其制备方法 |
| CN110952306B (zh) * | 2018-09-27 | 2024-03-05 | 尚科纺织企业工业及贸易公司 | 纺织品整理方法和经过整理的纺织品 |
| CN110952306A (zh) * | 2018-09-27 | 2020-04-03 | 尚科纺织企业工业及贸易公司 | 纺织品整理方法和经过整理的纺织品 |
| CN112538281A (zh) * | 2019-09-20 | 2021-03-23 | 默克专利股份有限公司 | 颜料 |
| CN112538281B (zh) * | 2019-09-20 | 2024-05-14 | 默克专利股份有限公司 | 颜料 |
| CN110724396A (zh) * | 2019-09-24 | 2020-01-24 | 河北欧克新型材料股份有限公司 | 耐温黑色珠光颜料及其制备方法 |
| CN110724396B (zh) * | 2019-09-24 | 2021-10-01 | 河北欧克新型材料股份有限公司 | 耐温黑色珠光颜料及其制备方法 |
| CN110746793A (zh) * | 2019-11-16 | 2020-02-04 | 南阳市凌宝珠光颜料有限公司 | 一种光变珠光颜料的制备工艺 |
| CN110746793B (zh) * | 2019-11-16 | 2021-05-04 | 河南凌宝新材料科技有限公司 | 一种光变珠光颜料的制备工艺 |
| EP3998314A1 (en) * | 2020-10-29 | 2022-05-18 | Potters Industries, LLC | Protective coating for wood products and method of making the same |
| US11795341B2 (en) | 2020-10-29 | 2023-10-24 | Potters Industries, Llc | Protective coating for wood products and method of making same |
| CN117597237A (zh) * | 2021-07-02 | 2024-02-23 | 日声股份有限公司 | 使用效果颜料混合物的辐射诱导印刷方法 |
| WO2023275359A1 (en) * | 2021-07-02 | 2023-01-05 | Heliosonic Gmbh | Radiation induced printing method using an effect pigment mixture |
| DE102022105640A1 (de) | 2022-03-10 | 2023-09-14 | Carl Zeiss Meditec Ag | Ophthalmologisches Implantat mit einem Grundkörper, welcher eine vorzugsweise maschinenlesbare Produktkennzeichnung umfasst |
| WO2023170094A1 (de) | 2022-03-10 | 2023-09-14 | Carl Zeiss Meditec Ag | Ophthalmologisches implantat mit einer maschinenlesbaren produktkennzeichnung |
| WO2023209379A1 (en) * | 2022-04-29 | 2023-11-02 | Applied Graphene Materials Uk Limited | Chemical resistance |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2011525557A (ja) | 2011-09-22 |
| EP2300541A1 (en) | 2011-03-30 |
| EP2300541B1 (en) | 2014-02-12 |
| CN102076782B (zh) | 2014-03-26 |
| US20110112234A1 (en) | 2011-05-12 |
| CN102076782A (zh) | 2011-05-25 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP2300541B1 (en) | Pigment mixtures | |
| EP2099715A2 (en) | Pigment mixtures | |
| CN101688067B (zh) | 基于珍珠岩薄片的干扰颜料 | |
| EP1587881B2 (en) | Multi-layer effect pigment with the outermost layer having a larger thickness | |
| KR101821431B1 (ko) | 개선된 스파클링 효과를 갖는 안료 조성물 | |
| JP4751316B2 (ja) | ナノ粒子を含有する多孔質無機材料またはマトリックス材料の製造方法 | |
| US20110143044A1 (en) | Process for the treatment of particles | |
| CN1723250A (zh) | 基于涂覆有SiOz(0.70≤z≤2.0)的铝的薄片形式的颜料 | |
| CN102597131A (zh) | 具有改进闪光效应的颜料 | |
| KR20050073406A (ko) | 금속 광택을 갖는 간섭 발색 안료, 및 이의 제조 방법 및용도 | |
| EP2285910A1 (en) | Magnetic pigments and process of enhancing magnetic properties | |
| JP2006506518A (ja) | 新規な干渉顔料 | |
| EP2902450B1 (en) | Metallic color pigment and colored article | |
| JP2020535240A (ja) | 67°〜78°の範囲の色相(h15)および90以上の彩度(c*15)を有する金色の効果顔料 | |
| WO2006088761A2 (en) | Multilayer effect pigment | |
| JP2002226732A (ja) | 光沢顔料、ならびにそれを含有する塗料組成物、樹脂成形品、化粧料およびインキ組成物 | |
| EP3877467B1 (en) | Chromatic glitter | |
| CN100567406C (zh) | 铝效应颜料掺合物 | |
| EP1940971B2 (en) | Multilayer effect pigment | |
| CN1711321A (zh) | 新型光干涉颜料 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| WWE | Wipo information: entry into national phase |
Ref document number: 200980124302.7 Country of ref document: CN |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09769124 Country of ref document: EP Kind code of ref document: A1 |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2009769124 Country of ref document: EP |
|
| ENP | Entry into the national phase |
Ref document number: 2011515292 Country of ref document: JP Kind code of ref document: A |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 13000495 Country of ref document: US |