WO2009154143A1 - 1液型電解式の二酸化塩素製造方法 - Google Patents

1液型電解式の二酸化塩素製造方法 Download PDF

Info

Publication number
WO2009154143A1
WO2009154143A1 PCT/JP2009/060751 JP2009060751W WO2009154143A1 WO 2009154143 A1 WO2009154143 A1 WO 2009154143A1 JP 2009060751 W JP2009060751 W JP 2009060751W WO 2009154143 A1 WO2009154143 A1 WO 2009154143A1
Authority
WO
WIPO (PCT)
Prior art keywords
chlorine dioxide
electrolysis
electrolytic solution
electrolyte
alkali
Prior art date
Application number
PCT/JP2009/060751
Other languages
English (en)
French (fr)
Inventor
麻田茂雄
中原弘一
Original Assignee
大幸薬品株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大幸薬品株式会社 filed Critical 大幸薬品株式会社
Priority to EP09766591A priority Critical patent/EP2305858A4/en
Priority to JP2010517893A priority patent/JP5469601B2/ja
Priority to US12/997,619 priority patent/US20110100833A1/en
Priority to CN2009801223911A priority patent/CN102066618A/zh
Publication of WO2009154143A1 publication Critical patent/WO2009154143A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/24Halogens or compounds thereof
    • C25B1/26Chlorine; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • C02F1/4674Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation with halogen or compound of halogens, e.g. chlorine, bromine

Definitions

  • the present invention relates to a one-component electrolytic chlorine production method (hereinafter also simply referred to as “chlorine dioxide production method”), and more specifically, a chlorine dioxide production method capable of efficiently producing chlorine dioxide while preventing a reduction in electrolytic efficiency. About.
  • Patent Document 1 a method for producing chlorine dioxide by electrolyzing an electrolyte containing chlorite is known (reference: Patent Document 1).
  • the conventional chlorine dioxide production method has a problem that when electrolysis is performed by passing a practical current, the pH gradually increases and the electrolysis efficiency (chlorine dioxide generation efficiency) decreases. If an acid is added to lower the pH, the storage stability of the electrolytic solution is lost, and the electrolytic solution deteriorates with time. Thus, in the conventional electrolytic method for producing chlorine dioxide, it has been difficult to achieve both “storage stability of the electrolytic solution” and “chlorine dioxide generation efficiency”.
  • the present invention has been made in view of the above situation, and it has been difficult to achieve both the “storage stability of the electrolytic solution” and the “efficiency of generation of chlorine dioxide” by adjusting the pH of the electrolytic solution to 4 to 8. It has been found that the balance of "can be improved and an excellent electrolyte can be provided, and the present invention has been achieved.
  • An object of the present invention is to provide a chlorine dioxide production method using an electrolytic solution excellent in storage stability, which is also excellent in chlorine dioxide generation efficiency.
  • the first feature of the chlorine dioxide production method of the present invention is that electrolysis is performed by supplying a direct current to the electrolyte in an electrolyzed electrolytic cell having a cathode and an anode.
  • This is a one-component electrolytic chlorine dioxide production method characterized in that it comprises the following steps.
  • a direct current is supplied to the electrolytic solution containing alkali chloride, alkali chlorite, and a pH adjuster so that the pH of the electrolytic solution is always 4 to 8, and electrolysis is performed. The process of generating chlorine.
  • (B) A step of supplying a replenishing electrolytic solution containing an alkali chloride, an alkali chlorite, and a pH adjuster from the outside of the electrolytic cell into the electrolytic cell during electrolysis.
  • (C) A step of taking out the generated chlorine dioxide from the electrolytic solution.
  • the electrolytic solution is in the range of pH 4 to 8
  • the deterioration of the electrolytic solution can be minimized, so that the storage stability is excellent and the electrolytic efficiency of chlorine dioxide is also excellent.
  • the chlorine gas generated from the alkali chloride immediately reacts with the alkali chlorite to become chlorine dioxide.
  • alkali hydroxide is generated as a secondary agent, but this alkali hydroxide is neutralized in the electrolyte solution, and the pH of the electrolyte solution is not easily changed by the action of the pH adjuster.
  • the alkali hydroxide returns to the alkali chloride after neutralization, which is preferable.
  • the generated (manufactured) chlorine dioxide is in a dissolved state in the electrolytic solution, and may be removed by degassing the solution according to a conventionally known method.
  • the second characteristic configuration of the chlorine dioxide production method of the present invention is that electrolysis is performed in a state where the pH of the electrolytic solution is 5-7.
  • the third characteristic configuration of the chlorine dioxide production method of the present invention is that in the step (c), air or an inert gas is fed into the electrolytic solution and the air or the inert gas is collected.
  • a fourth characteristic configuration of the chlorine dioxide production method of the present invention is that, when an acidic substance is added to the electrolytic solution to have a pH of 4 to 8, the acidic substance is packaged separately, and the acidic substance is added to the electrolytic solution. The blending is performed at the beginning or just before the start of electrolysis.
  • the electrolytic solution is circulated or stored in a state adjusted to pH 4 to 8 (or pH 5 to 7 or pH 6 to 7). Therefore, it is possible to prevent the electrolyte solution from being deteriorated during distribution and storage.
  • a direct current is supplied to an electrolytic solution in an electrolyzed electrolytic cell having a cathode and an anode to perform electrolysis, thereby generating chlorine dioxide.
  • a method for producing chlorine dioxide comprising the following steps. (A) Chlorine dioxide by electrolysis by supplying a direct current to an electrolyte containing alkali chloride, alkali chlorite, and a pH adjuster while the pH of the electrolyte is always 4 to 8. The process of generating.
  • (B) A step of supplying a replenishing electrolytic solution containing an alkali chloride, an alkali chlorite, and a pH adjuster from the outside of the electrolytic cell into the electrolytic cell during electrolysis.
  • (C) A step of taking out the generated chlorine dioxide from the electrolytic solution.
  • a non-diaphragm electrolytic cell refers to an electrolytic cell in which no diaphragm is provided in an electrolytic cell containing an electrolytic solution.
  • Electrode As an electrode used for electrolysis, a conventionally known electrode may be used, but an electrode capable of generating chlorine dioxide efficiently by minimizing the generation of oxygen gas, improving the generation of chlorine gas, and the like. Preferably used.
  • the cathode material includes titanium, stainless steel, nickel, nickel-chromium alloy, or other valve metal.
  • the anode material is platinum, gold, palladium, iridium, rhodium, ruthenium or other noble metal, graphite, graphite felt, multilayer graphite cloth, graphite woven cloth, carbon or platinum coating material obtained by electroplating platinum on titanium, Examples thereof include an electrode composed of a titanium, tantalum, niobium, or zirconium balm metal oxide, and those coated with an electrode catalyst are preferably used. In addition, it is preferable that the electrode area is increased to reduce the current density because chlorine dioxide can be generated efficiently. Specifically, 1 A / dm 2 or less is preferable, 0.8 A / dm 2 or less is more preferable, and 0.6 A / dm 2 or less is more preferable.
  • step (a) electrolysis is performed by supplying a direct current to an electrolyte containing alkali chloride, alkali chlorite, and a pH adjuster while the pH of the electrolyte is always 4 to 8. To generate chlorine dioxide.
  • alkali chloride examples include potassium chloride, sodium chloride, lithium chloride, and calcium chloride. These may be used alone or in combination.
  • the proportion of alkali chloride in the electrolytic solution is preferably 1% by weight or more, and more preferably 2% by weight or more (less than solubility). If it is less than 1% by weight, chlorine gas cannot be generated stably, and there is a possibility that the generation of chlorine dioxide will be hindered. Increasing the alkali chloride concentration in the electrolyte is preferable because chlorine dioxide can be generated efficiently. However, if the solubility is exceeded, it is natural that alkali chloride precipitates in the electrolyte and has an adverse effect. give.
  • the proportion of alkali chloride in the electrolytic solution varies depending on the type of alkali chloride and the temperature of the electrolytic solution, and cannot be generally stated, but is preferably about 20% by weight or less.
  • alkali chloride since alkali chloride is consumed during electrolysis, it is necessary to supply to electrolyte solution from the outside of an electrolytic cell (process (b)).
  • alkali chlorite examples include alkali metal chlorite and alkaline earth metal chlorite.
  • alkali metal chlorite include sodium chlorite, potassium chlorite, and lithium chlorite.
  • alkaline earth metal chlorite include calcium chlorite, magnesium chlorite, Barium chlorate is mentioned. Of these, sodium chlorite and potassium chlorite are preferable, and sodium chlorite is most preferable from the viewpoint of easy availability.
  • These chlorinated oxygen alkalis may be used individually by 1 type, and may use 2 or more types together.
  • the ratio of alkali chlorite in the electrolytic solution is preferably 0.1% by weight to 30% by weight.
  • pH adjuster examples of the pH adjusting agent used in the present invention include citric acid, fumaric acid, formic acid, lactic acid, phosphoric acid, alkali dihydrogen phosphate (sodium salt, potassium salt, etc.), tartaric acid, butyric acid, and the like. These may be used alone or in combination of two or more.
  • the ratio of the pH adjusting agent in the electrolytic solution cannot be generally specified depending on the type and solubility of the acid used (acidic substance, described later) or the solubility of the compound purified by electrolysis.
  • citric acid When the acid is citric acid, citric acid is 2.0 to 2.2% by weight + dipotassium hydrogen phosphate 6.5 to 7.0% by weight. Since the pH adjuster is consumed during the electrolysis like the alkali chlorite, it is preferable to supply the pH adjuster from the outside of the electrolytic cell as a component of the replenishing electrolyte (step (b)).
  • the electrolyte is acidic so that the pH (average pH during electrolysis) is 4 to 8, preferably pH 5 to 7, more preferably pH 6 to 7. It is advisable to add substances.
  • the blending ratio of the acidic substance is not particularly limited as long as it is blended so as to be in the pH range.
  • Examples of acidic substances used in the present invention include hydrochloric acid, sulfuric acid, sulfurous acid, thiosulfuric acid, nitric acid, nitrous acid, iodic acid, phosphoric acid, alkali dihydrogen phosphate (sodium salt, potassium salt, etc.), phosphorous acid ⁇
  • Inorganic acids such as sodium hydrogen sulfate, potassium hydrogen sulfate, chromic acid, formic acid, acetic acid, propionic acid, butyric acid, lactic acid, pyruvic acid, citric acid, malic acid, tartaric acid, gluconic acid, glycolic acid, fumaric acid, malonic acid -Organic acids such as maleic acid, oxalic acid, succinic acid, acrylic acid, crotonic acid, oxalic acid, glutaric acid, etc.
  • an inorganic acid In view of the stability of the electrolytic solution, it is desirable to use an inorganic acid. These acidic substances may be used alone or in combination of two or more. In preparing the electrolytic solution, it is better to mix the acidic substance at the start or just before the electrolysis for the purpose of preventing the deterioration of the electrolytic solution. Therefore, it is preferable to prepare this acidic substance in a state of being packaged separately (in a state where it is not dissolved in the electrolytic solution).
  • the generated chlorine dioxide is taken out from the electrolytic solution.
  • air or inert gas is used as a gas for aeration and collection of the generated chlorine dioxide gas (gas dissolved in the electrolyte) by aeration.
  • the inert gas include nitrogen gas, argon, helium, neon, xenon, and krypton.
  • FIG. 1 is a schematic explanatory view of a chlorine dioxide production apparatus.
  • a PVC cylindrical electrolytic cell (10) containing an electrolytic solution (L) has a Pt / Ir plated titanium electrode (15 mm ⁇ 50 mm) as an anode (12) and a cathode (14).
  • a titanium electrode (15 mm ⁇ 50 mm) is provided, and a set of three liquid level control electrodes (16) is provided.
  • the chlorine dioxide production apparatus has a supply port (18) for supplying the replenishing electrolyte into the electrolytic cell (10) and a discharge port (20) for discharging the waste liquid from the electrolytic cell (10).
  • the electrolyte (L) includes potassium chloride (alkali chloride), sodium chlorite (alkali chlorite), dipotassium hydrogen phosphate (K 2 HPO 4 ) (pH adjuster), and dihydrogen phosphate.
  • Potassium (KH 2 PO 4 ) (acidic substance) is blended as shown in Table 1 below (Example 1, Comparative Examples 1 to 4). In Comparative Examples 1 and 3, the acidic substance is not added, in Comparative Examples 1 to 3, the pH adjuster is not added, and in Comparative Examples 1, 2 and 4, the alkali chloride is not added.
  • the chlorine dioxide production experiment was conducted using the above-described apparatus.
  • the electrolytic solution is supplied continuously or intermittently during the electrolysis, and the waste solution is discharged as follows. That is, when the liquid level control electrode (16c) is immersed in the electrolytic solution (L) and the liquid level is at the position of the water surface A, the liquid level control electrode (16a) is energized and the discharge port (20) opens and the electrolyte solution (waste solution) is discharged. When the liquid level falls and reaches the position of the water surface B, the liquid level control electrode (16b) is electrically disconnected, and at the same time, the discharge port (20) is closed. As a result, when the liquid level rises and reaches the water level A, the liquid level control electrode (16a) is again energized, and the discharge of the waste liquid resumes. Such electrolytic solution is supplied and discharged during electrolysis.
  • Electrolysis was performed using such an apparatus (current 30 mA, 0.4 A / dm 2 ).
  • the electrolyte solution is passed through an aeration tube with air or an inert gas (nitrogen gas, argon, helium, neon, xenon, krypton, etc.) using a conventionally known method. Aerated.
  • the production results of chlorine dioxide (concentration, amount generated per hour, efficiency, etc.) are also shown in Table 1 below.
  • Example 1 of the present invention As a result, it was recognized that chlorine dioxide can be obtained more efficiently in Example 1 of the present invention than in Comparative Examples 1 to 4. Moreover, since the pH of the electrolytic solution does not vary greatly even when the initial value (pH 6.1) at the start of electrolysis is compared with the average value (pH 7.0) during the electrolysis treatment period, the chlorine dioxide production of the present invention. It can be said that the method is a method in which the stability of the electrolytic solution is excellent.
  • Examples 2 to 3 In order to examine the storage stability of the electrolytic solution having the formulation described in Table 2 below, the electrolytic solution was subjected to an accelerated test treatment at 50 ° C. (Examples 2, 3 and Comparative Example 5). When treated at 50 ° C. for 50 days, it is considered to correspond to the case of storage for about 2 years at room temperature.
  • the change in pH, the concentration of naturally occurring chlorine dioxide and the residual concentration of sodium chlorite were measured by a conventionally known method. The results are listed in Table 3 below. If the concentration of naturally occurring chlorine dioxide is within 500 ppm, it is judged that the storage stability of the electrolyte is excellent.
  • Example 3 an acidic substance (potassium dihydrogen phosphate (KH 2 PO 4 ) 20 g) was added to adjust the pH to 6.0 before starting the electrolysis, but the electrolyte was stored. In this example (during non-electrolysis), the acidic substance is packaged and not added.
  • KH 2 PO 4 potassium dihydrogen phosphate
  • the present invention can be used for the production of chlorine dioxide.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

 陰極と陽極とを備えた無隔膜の電解槽内で電解液に直流電流を供給して電気分解を行い、これにより二酸化塩素を発生させる二酸化塩素製造方法であって、(a)塩化アルカリ、亜塩素酸アルカリ、及びpH調整剤が含まれた前記電解液に、当該電解液のpHを4~8とした状態で直流電流を供給して電気分解を行い、(b)電気分解中、電解槽外部より塩化アルカリ、亜塩素酸アルカリ、及びpH調整剤が含まれた補充電解液を電解槽内に供給し、(c)発生した二酸化塩素を電解液中から取り出す、1液型電解式の二酸化塩素製造方法。

Description

1液型電解式の二酸化塩素製造方法
 本発明は、1液型電解式の二酸化塩素製造方法(以下単に「二酸化塩素製造方法」ともいう)に関し、詳しくは電解効率の低下を防ぎ効率よく二酸化塩素を製造することができる二酸化塩素製造方法に関する。
 従来、亜塩素酸塩を含有する電解液を電気分解して二酸化塩素を製造する方法は知られている(参考:特許文献1)。
特開平9-279376公報
 しかしながら、従来の二酸化塩素の製造方法では、実用的な電流を流すことによる電気分解を行うと、次第にpHが高くなり、電解効率(二酸化塩素の発生効率)が低下するといった問題があった。pHを下げるために酸を添加すれば、電解液の保存安定性が失われてしまい、電解液が経時的に劣化するといった問題があった。このように、従来の電気分解式による二酸化塩素の製造方法では、「電解液の保存安定性」と「二酸化塩素の発生効率」は、両立させることが難しかった。
 本発明は、上記の実情に鑑みてなされたものであり、電解液のpHを4~8とすることにより、両立させることが難しかった「電解液の保存安定性」と「二酸化塩素の発生効率」のバランスを良好にでき、優れた電解液を提供できることを見い出し、本発明に至った。
[発明の目的]
 本発明の目的は、保存安定性に優れた電解液を用いた二酸化塩素製造方法であって、二酸化塩素の発生効率にも優れた二酸化塩素製造方法を提供するところにある。
 上記目的を達成するための本発明の二酸化塩素製造方法の第一特徴構成は、陰極と陽極とを備えた無隔膜の電解槽内で電解液に直流電流を供給して電気分解を行い、これにより二酸化塩素を発生させる二酸化塩素製造方法であって、下記の工程を含むことを特徴とする1液型電解式の二酸化塩素製造方法である。
 (a)塩化アルカリ、亜塩素酸アルカリ、及びpH調整剤が含まれた前記電解液に、当該電解液のpHを常に4~8とした状態で直流電流を供給して電気分解を行って二酸化塩素を発生させる工程。
 (b)電気分解中、電解槽外部より塩化アルカリ、亜塩素酸アルカリ、及びpH調整剤が含まれた補充電解液を電解槽内に供給する工程。
 (c)発生した二酸化塩素を電解液中から取り出す工程。
 本構成によれば、電解液がpH4~8の範囲にあるので、電解液の劣化が最小限に抑えられるため保存安定性に優れ、かつ二酸化塩素の電解効率にも優れた効果を発揮する。また、電解液に直流電流を供給して電気分解を行うことにより、塩化アルカリより発生する塩素ガスは直ちに亜塩素酸アルカリと反応して二酸化塩素となる。これと同時に副次的に水酸化アルカリが生成するが、この水酸化アルカリは電解液中において中和され、しかもpH調整剤の作用により電解液のpHが大きく変動し難くなる。
 このとき、当該pH調整剤が塩素を含む場合、水酸化アルカリは中和後、塩化アルカリに戻るので好適である。発生した(製造した)二酸化塩素は電解液中に溶存状態にあるので、従来公知の方法に従って溶液中から脱気するなどして取り出せばよい。
 本発明の二酸化塩素製造方法の第二特徴構成は、前記電解液のpHを5~7とした状態で電気分解を行う点にある。
 本構成によれば、電解液の保存安定性と二酸化塩素の発生効率のバランスにより一層優れた電解液を提供することができる。
 本発明の二酸化塩素製造方法の第三特徴構成は、前記(c)の工程において、電解液中に空気または不活性ガスを送り込み、当該空気または不活性ガスを集める点にある。
 本構成によれば、電解液中に空気または不活性ガスを送り込んで曝気し、当該空気または不活性ガスを集めることにより、電解液中に溶存する二酸化塩素を容易に収集することができるので、経済的である。
 本発明の二酸化塩素製造方法の第四特徴構成は、前記電解液に酸性物質を配合してpHを4~8とする場合、前記酸性物質を別包装とし、前記電解液への前記酸性物質の配合は、電気分解の開始時か直前に行う点にある。
 本構成によれば、電気分解の開始時か直前に酸性物質の配合を行うため、電解液をpH4~8(或いはpH5~7又はpH6~7)に調整した状態で流通させる、或いは、保存することがないので、電解液の流通中・保存中の劣化を防ぐことができる。
本発明の二酸化塩素製造方法に係る製造装置の略示説明図である。
 本発明の1液型電解式の二酸化塩素製造方法は、陰極と陽極とを備えた無隔膜の電解槽内で電解液に直流電流を供給して電気分解を行い、これにより二酸化塩素を発生させる二酸化塩素製造方法であって、下記の工程を含む。
 (a)塩化アルカリ、亜塩素酸アルカリ、及びpH調整剤が含まれた電解液に、当該電解液のpHを常に4~8とした状態で直流電流を供給して電気分解を行って二酸化塩素を発生させる工程。
 (b)電気分解中、電解槽外部より塩化アルカリ、亜塩素酸アルカリ、及びpH調整剤が含まれた補充電解液を電解槽内に供給する工程。
 (c)発生した二酸化塩素を電解液中から取り出す工程。
 「無隔膜の電解槽」とは、電解液を収容した電解槽内に隔膜を設けていない状態の電解槽をいう。
〔電極〕
 電気分解に使用する電極としては、従来公知のものを使用すればよいが、酸素ガスの発生を最小限に抑え、塩素ガスの発生を良好にし、二酸化塩素を効率よく発生させることができる電極が好適に用いられる。例えば、陰極材料には、チタン、ステンレス鋼、ニッケル、ニッケル・クロム合金、又は他のバルブ金属が挙げられる。また、陽極材料は、白金、金、パラジウム、イリジウム、ロジウム、又はルテニウムなどの貴金属、黒鉛、黒鉛フェルト、多層黒鉛布、黒鉛織布、炭素、あるいはチタン上に白金を電気メッキした白金被覆材料、チタン、タンタル、ニオブ、又はジルコニウムのバルム金属の酸化物で構成された電極などが挙げられ、電極触媒をコーティングしたものが好適に用いられる。
 なお、電極面積を大きくして電流密度を小さくすることが、二酸化塩素を効率よく発生させることができるという点で好ましい。具体的には、1A/dm2以下が好ましく、0.8A/dm2以下がさらに好ましく、0.6A/dm2以下がさらに好ましい。
 工程(a)では、塩化アルカリ、亜塩素酸アルカリ、及びpH調整剤が含まれた電解液に、当該電解液のpHを常に4~8とした状態で直流電流を供給して電気分解を行って二酸化塩素を発生させる。
〔塩化アルカリ〕
 本発明で使用される塩化アルカリとしては、例えば塩化カリウム・塩化ナトリウム・塩化リチウム・塩化カルシウムなどが挙げられる。これらは1種を単独で使用してもよいし、複数を併用することもできる。
 電解液における塩化アルカリの割合は、1重量%以上であることが好ましく、2重量%以上(溶解度未満)であることがさらに好ましい。1重量%未満の場合、塩素ガスを安定的に発生させることができず、二酸化塩素の発生に支障をきたす可能性がある。電解液中の塩化アルカリ濃度を高くすることが、二酸化塩素を効率よく発生させることができるという点で好ましいが、溶解度を超えると当然のことながら、電解液中に塩化アルカリが析出して悪影響を与える。そのため、電解液における塩化アルカリの割合は、塩化アルカリの種類や電解液の温度によって変わるので一概には言えないが、おおよそのところ20重量%以下とすることが好ましい。
 尚、塩化アルカリは、電気分解中に消費されていくので、電解槽外部より電解液に供給する必要がある(工程(b))。
〔亜塩素酸アルカリ〕
 本発明で使用される亜塩素酸アルカリとしては、例えば亜塩素酸アルカリ金属塩や亜塩素酸アルカリ土類金属塩が挙げられる。亜塩素酸アルカリ金属塩としては、例えば亜塩素酸ナトリウム・亜塩素酸カリウム・亜塩素酸リチウムが挙げられ、亜塩素酸アルカリ土類金属塩としては、亜塩素酸カルシウム・亜塩素酸マグネシウム・亜塩素酸バリウムが挙げられる。なかでも、入手が容易という点から、亜塩素酸ナトリウム・亜塩素酸カリウムが好ましく、亜塩素酸ナトリウムが最も好ましい。これら亜塩素酸素アルカリは1種を単独で用いてもよいし、2種以上を併用しても構わない。
 電解液における亜塩素酸アルカリの割合は、0.1重量%~30重量%であることが好ましい。0.1重量%未満の場合は、電解液に必要な亜塩素酸アルカリが供給されないという問題が生じる可能性があり、30重量%を超える場合は、亜塩素酸アルカリが飽和して結晶が析出しやすいという問題が生じる可能性がある。安全性や安定性、二酸化塩素の発生効率などを鑑みた場合、さらに好ましい範囲は、1重量%~10重量%であり、さらに好ましい範囲は1重量%~3重量%である。
 尚、亜塩素酸アルカリは、電気分解中に消費されていくので、電解槽外部より電解液に供給する必要がある(工程(b))。
〔pH調整剤〕
 本発明で使用されるpH調整剤としては、例えばクエン酸・フマル酸・ギ酸・乳酸・リン酸・リン酸二水素アルカリ塩(ナトリウム塩、カリウム塩など)・酒石酸・酪酸などが挙げられる。これらは1種を単独で用いてもよいし、2種以上を併用しても構わない。
 電解液におけるpH調整剤の割合は、使用する酸(酸性物質、後述)の種類や溶解度、あるいは電解により精製する化合物の溶解度により一概に言えない。すなわち、使用する酸(酸性物質、後述)が電解で生じる水酸化アルカリをどのように中和するかを化学式より求め、求めた化学式により必要量を割り出し、それに見合う量の酸を使用することが好ましい。しかし、使用する酸によっては溶解度が極めて少ない化合物や、電解により精製する化合物の溶解度が低いものがあるため、その点を考慮して酸を選択する必要がある。例えば、リン酸二水素カリウムやクエン酸を例に挙げて具体的に説明すると、酸がリン酸二水素カリウムの場合は、リン酸二水素カリウム2.0~2.3重量%+リン酸水素二カリウム1.0~1.2重量%となり、酸がクエン酸の場合は、クエン酸2.0~2.2重量%+リン酸水素二カリウム6.5~7.0重量%となる。
 尚、pH調整剤は、亜塩素酸アルカリと同様、電気分解中に消費されていくので、補充電解液の一成分として電解槽外部より電解液に供給することが好ましい(工程(b))。
〔酸性物質〕
 電解液は、保存安定性と二酸化塩素の発生効率とのバランスを鑑み、pH(電気分解中の平均pH)が4~8、好ましくはpH5~7、さらに好ましくはpH6~7となるように酸性物質を配合するとよい。酸性物質の配合割合は、上記pHの範囲となるように配合する限り、特に限定はない。
 本発明で使用される酸性物質としては、例えば塩酸・硫酸・亜硫酸・チオ硫酸・硝酸・亜硝酸・ヨウ素酸・リン酸・リン酸二水素アルカリ塩(ナトリウム塩、カリウム塩など)・亜リン酸・硫酸水素ナトリウム・硫酸水素カリウム・クロム酸などの無機酸や、蟻酸・酢酸・プロピオン酸・酪酸・乳酸・ピルビン酸・クエン酸・リンゴ酸・酒石酸・グルコン酸・グリコール酸・フマル酸・マロン酸・マレイン酸・シュウ酸・コハク酸・アクリル酸・クロトン酸・シュウ酸・グルタル酸などの有機酸が挙げられる。電解液の安定性の点から、無機酸を使用することが望ましい。これら酸性物質は1種を単独で用いてもよいし、2種以上を併用しても構わない。
 電解液の調製にあたっては、電解液の劣化を防ぐ目的で、酸性物質の配合は、電気分解の開始時或いは直前に行う方がよい。そのため、この酸性物質を別包装にした状態で(電解液に溶かさない状態で)準備しておくことが好適である。
〔曝気用ガス(空気・不活性ガス)〕
 工程(c)では、発生した二酸化塩素を電解液中から取り出す。
 本発明において、発生した二酸化塩素ガス(電解液に溶存するガス)を曝気して脱気・収集するためのガスとしては、空気あるいは不活性ガスが用いられる。不活性ガスとしては、例えば窒素ガス・アルゴン・ヘリウム・ネオン・キセノン・クリプトンなどが挙げられる。
 電解液中に空気または不活性ガスを送り込み、当該空気または不活性ガスを集めることで、電解液中に溶存する二酸化塩素を容易に収集することができる。
〔実施例1(二酸化塩素発生効率の実験)〕
 図1は、二酸化塩素製造装置の略示説明図である。図に示すように、電解液(L)が入ったPVC製円筒形の電解槽(10)には、陽極(12)であるPt/Irメッキチタン電極(15mm×50mm)と、陰極(14)であるチタン極(15mm×50mm)が設けてあり、また3本一組の液面制御用電極(16)が設けてある。
 また、二酸化塩素製造装置には、補充電解液を電解槽(10)の中に供給するための供給口(18)と、電解槽(10)から廃液を排出するための排出口(20)がそれぞれ設けてあり、発生した二酸化塩素ガス(溶存ガス)を曝気すべく、曝気用ガス(空気や不活性ガス)を電解液(L)に送り込むための曝気管(24)と出口(26)が設けてある。
 電解液(L)には、塩化カリウム(塩化アルカリ)と、亜塩素酸ナトリウム(亜塩素酸アルカリ)と、リン酸水素二カリウム(K2HPO4)(pH調整剤)と、リン酸二水素カリウム(KH2PO4)(酸性物質)が下記表1に示した通りに配合されている(実施例1、比較例1~4)。比較例1,3は酸性物質が未添加であり、比較例1~3はpH調整剤が未添加であり、比較例1,2,4は塩化アルカリが未添加である。
 上記した装置を用いて二酸化塩素の製造実験を行った。尚、電気分解中における電解液の供給は連続的あるいは間欠的に行い、廃液の排出は次のようにして行われる。すなわち、液面制御用電極(16c)が電解液(L)に浸かっている状態において、液面が水面Aの位置にあるときは、液面制御用電極(16a)は通電状態となり、排出口(20)が開いて電解液(廃液)が排出される。液面が下がり水面Bの位置に達したときは、液面制御用電極(16b)は電気的に不通となり、これとともに排出口(20)が閉じる。これにより液面が上昇し、水面Aに達すると再び液面制御用電極(16a)は通電状態となり、廃液の排出が再開する。電気分解中はこのような電解液の供給・排出が行われる。
 このような装置を用いて電気分解を行った(電流30mA、0.4A/dm2)。
 尚、二酸化塩素を取り出す(脱気・収集する)ために、従来公知の方法を用いて空気あるいは不活性ガス(窒素ガス、アルゴン、ヘリウム、ネオン、キセノン、クリプトンなど)により曝気管を通じて電解液を曝気した。二酸化塩素の製造結果(濃度、時間当たりの発生量、効率など)を下記表1に併記する。
Figure JPOXMLDOC01-appb-T000001
 この結果、本発明の実施例1では比較例1~4に比べて、効率よく二酸化塩素を得ることができると認められた。また、電解液のpHは電気分解開始時の初期値(pH6.1)と電気分解処理期間の平均値(pH7.0)とを比べても大きく変動していないため、本発明の二酸化塩素製造方法は、電解液の安定性が優れた方法であるといえる。
〔実施例2~3(電解液の保存安定性の実験)〕
 下記表2に記載した処方の電解液の保存安定性を調べるために、当該電解液に50℃で加速試験処理を施した(実施例2,3,比較例5)。50℃で50日処理した場合、室温で約2年間の保存をした場合に相当すると考えられる。各期間で保存した電解液に関し、pHの変化、自然発生した二酸化塩素の濃度および亜塩素酸ナトリウムの残存濃度を従来公知の方法により測定した。結果を下記表3に記載する。自然発生した二酸化塩素の濃度は、500ppm以内であれば電解液の保存安定性は優れていると判断する。
 
 尚、実施例3は、電気分解を開始する前には酸性物質(リン酸二水素カリウム(KH2PO4)20g)を添加してpHを6.0に調整するものの、電解液を保存している間(非電気分解時)は当該酸性物質を別包とし、未添加の状態としている例である。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 この結果、本発明の実施例2,3では、電解液を調製してから20日後までpH値は殆ど変化しておらず、自然発生した二酸化塩素の濃度も500ppm以内であるため、本発明の二酸化塩素製造方法で使用する電解液は優れた保存安定性を示すものと認められた。
 本発明は、二酸化塩素の製造に利用することができる。

Claims (4)

  1.  陰極と陽極とを備えた無隔膜の電解槽内で電解液に直流電流を供給して電気分解を行い、これにより二酸化塩素を発生させる二酸化塩素製造方法であって、下記の工程を含むことを特徴とする1液型電解式の二酸化塩素製造方法。
     (a)塩化アルカリ、亜塩素酸アルカリ、及びpH調整剤が含まれた前記電解液に、当該電解液のpHを常に4~8とした状態で直流電流を供給して電気分解を行って二酸化塩素を発生させる工程。
     (b)電気分解中、電解槽外部より塩化アルカリ、亜塩素酸アルカリ、及びpH調整剤が含まれた補充電解液を電解槽内に供給する工程。
     (c)発生した二酸化塩素を電解液中から取り出す工程。
  2.  前記電解液のpHを5~7とした状態で電気分解を行うことを特徴とする請求項1に記載の二酸化塩素製造方法。
  3.  前記(c)の工程において、電解液中に空気または不活性ガスを送り込み、当該空気または不活性ガスを集めることを特徴とする請求項1または2に記載の二酸化塩素製造方法。
  4.  前記電解液に酸性物質を配合してpHを4~8とする場合、前記酸性物質を別包装とし、前記電解液への前記酸性物質の配合は、電気分解の開始時か直前に行うことを特徴とする請求項1に記載の二酸化塩素製造方法。
PCT/JP2009/060751 2008-06-19 2009-06-12 1液型電解式の二酸化塩素製造方法 WO2009154143A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP09766591A EP2305858A4 (en) 2008-06-19 2009-06-12 PROCESS FOR PRODUCING CHLORINE DIOXIDE BY SINGLE LIQUID ELECTROLYSIS
JP2010517893A JP5469601B2 (ja) 2008-06-19 2009-06-12 1液型電解式の二酸化塩素製造方法
US12/997,619 US20110100833A1 (en) 2008-06-19 2009-06-12 Method for producing chlorine dioxide with single-liquid electrolysis
CN2009801223911A CN102066618A (zh) 2008-06-19 2009-06-12 1液型电解式的二氧化氯的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-160276 2008-06-19
JP2008160276 2008-06-19

Publications (1)

Publication Number Publication Date
WO2009154143A1 true WO2009154143A1 (ja) 2009-12-23

Family

ID=41434058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/060751 WO2009154143A1 (ja) 2008-06-19 2009-06-12 1液型電解式の二酸化塩素製造方法

Country Status (6)

Country Link
US (1) US20110100833A1 (ja)
EP (1) EP2305858A4 (ja)
JP (1) JP5469601B2 (ja)
CN (2) CN102066618A (ja)
TW (1) TWI434958B (ja)
WO (1) WO2009154143A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011115220A1 (ja) 2010-03-19 2011-09-22 大幸薬品株式会社 電気分解装置
WO2016039190A1 (ja) * 2014-09-08 2016-03-17 大幸薬品株式会社 電解式二酸化塩素ガス製造装置
JPWO2015033887A1 (ja) * 2013-09-09 2017-03-02 大幸薬品株式会社 二酸化塩素製造装置及び二酸化塩素製造方法
WO2018043711A1 (ja) * 2016-09-05 2018-03-08 株式会社大阪ソーダ 二酸化塩素発生装置及び二酸化塩素発生方法
WO2020090538A1 (ja) * 2018-10-29 2020-05-07 大幸薬品株式会社 二酸化塩素発生装置
JP2021066934A (ja) * 2019-10-24 2021-04-30 株式会社フジコム 二酸化塩素ガス排出装置
KR20210082160A (ko) 2018-10-29 2021-07-02 다이꼬 파마슈티컬 컴퍼니 리미티드 이산화 염소 발생 장치
KR20230002350A (ko) 2020-04-15 2023-01-05 다이꼬 파마슈티컬 컴퍼니 리미티드 이산화염소 발생 장치 및 이산화염소 발생 방법

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8394253B2 (en) * 2010-11-16 2013-03-12 Strategic Resource Optimization, Inc. Electrolytic system and method for generating biocides having an electron deficient carrier fluid and chlorine dioxide

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09279376A (ja) 1996-04-11 1997-10-28 Suido Kiko Kaisha Ltd 二酸化塩素の製造方法
JP2004531647A (ja) * 2001-06-22 2004-10-14 ザ プロクター アンド ギャンブル カンパニー 二酸化塩素を発生させるための電解セル
JP2006526076A (ja) * 2003-05-19 2006-11-16 ザ プロクター アンド ギャンブル カンパニー 二酸化ハロゲンを安定化させ、且つその有効性を増大させる、組成物、装置、及び方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2163793A (en) * 1937-06-08 1939-06-27 Mathieson Alkall Works Inc Production of chlorine dioxide
US3884780A (en) * 1968-08-28 1975-05-20 Hooker Chemicals Plastics Corp Absorption of gaseous cell product in cell liquor
US6306281B1 (en) * 1999-11-30 2001-10-23 Joseph Matthew Kelley Electrolytic process for the generation of stable solutions of chlorine dioxide
US7087190B2 (en) * 2003-03-20 2006-08-08 Ecolab Inc. Composition for the production of chlorine dioxide using non-iodo interhalides or polyhalides and methods of making and using the same
JP3949088B2 (ja) * 2003-08-04 2007-07-25 大幸薬品株式会社 二酸化塩素製造装置
JP2005179709A (ja) * 2003-12-17 2005-07-07 Toyo Tanso Kk ガス発生装置
CN1619015A (zh) * 2004-08-25 2005-05-25 杨力 一种电化学产生二氧化氯的方法
US7303737B2 (en) * 2005-11-21 2007-12-04 Gojo Industries, Inc. Generation of chlorine dioxide

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09279376A (ja) 1996-04-11 1997-10-28 Suido Kiko Kaisha Ltd 二酸化塩素の製造方法
JP2004531647A (ja) * 2001-06-22 2004-10-14 ザ プロクター アンド ギャンブル カンパニー 二酸化塩素を発生させるための電解セル
JP2006526076A (ja) * 2003-05-19 2006-11-16 ザ プロクター アンド ギャンブル カンパニー 二酸化ハロゲンを安定化させ、且つその有効性を増大させる、組成物、装置、及び方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2305858A4

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102812160A (zh) * 2010-03-19 2012-12-05 大幸药品株式会社 电解装置
AU2011228059B2 (en) * 2010-03-19 2015-04-02 Taiko Pharmaceutical Co., Ltd. Electrolyzer
JP5751543B2 (ja) * 2010-03-19 2015-07-22 大幸薬品株式会社 電気分解装置
WO2011115220A1 (ja) 2010-03-19 2011-09-22 大幸薬品株式会社 電気分解装置
US9315911B2 (en) 2010-03-19 2016-04-19 Taiko Pharmaceutical Co., Ltd. Electrolyzer apparatus
JPWO2015033887A1 (ja) * 2013-09-09 2017-03-02 大幸薬品株式会社 二酸化塩素製造装置及び二酸化塩素製造方法
JPWO2016039190A1 (ja) * 2014-09-08 2017-07-13 大幸薬品株式会社 電解式二酸化塩素ガス製造装置
KR20170049521A (ko) * 2014-09-08 2017-05-10 다이꼬 파마슈티컬 컴퍼니 리미티드 전해식의 이산화염소 가스 제조 장치
WO2016039190A1 (ja) * 2014-09-08 2016-03-17 大幸薬品株式会社 電解式二酸化塩素ガス製造装置
US10753004B2 (en) 2014-09-08 2020-08-25 Taiko Pharmaceuticals Co., Ltd. Electrolytic chlorine dioxide gas manufacturing device
KR102371473B1 (ko) * 2014-09-08 2022-03-07 다이꼬 파마슈티컬 컴퍼니 리미티드 전해식의 이산화염소 가스 제조 장치
WO2018043711A1 (ja) * 2016-09-05 2018-03-08 株式会社大阪ソーダ 二酸化塩素発生装置及び二酸化塩素発生方法
JPWO2018043711A1 (ja) * 2016-09-05 2019-07-11 株式会社大阪ソーダ 二酸化塩素発生装置及び二酸化塩素発生方法
WO2020090538A1 (ja) * 2018-10-29 2020-05-07 大幸薬品株式会社 二酸化塩素発生装置
CN112672770A (zh) * 2018-10-29 2021-04-16 大幸药品株式会社 二氧化氯产生装置
KR20210082160A (ko) 2018-10-29 2021-07-02 다이꼬 파마슈티컬 컴퍼니 리미티드 이산화 염소 발생 장치
KR20210082433A (ko) 2018-10-29 2021-07-05 다이꼬 파마슈티컬 컴퍼니 리미티드 이산화 염소 발생 장치
JP2021066934A (ja) * 2019-10-24 2021-04-30 株式会社フジコム 二酸化塩素ガス排出装置
KR20230002350A (ko) 2020-04-15 2023-01-05 다이꼬 파마슈티컬 컴퍼니 리미티드 이산화염소 발생 장치 및 이산화염소 발생 방법

Also Published As

Publication number Publication date
TW201006962A (en) 2010-02-16
CN102066618A (zh) 2011-05-18
EP2305858A4 (en) 2011-08-24
TWI434958B (zh) 2014-04-21
CN103422115A (zh) 2013-12-04
JPWO2009154143A1 (ja) 2011-12-01
EP2305858A1 (en) 2011-04-06
CN103422115B (zh) 2016-09-07
JP5469601B2 (ja) 2014-04-16
US20110100833A1 (en) 2011-05-05

Similar Documents

Publication Publication Date Title
JP5469601B2 (ja) 1液型電解式の二酸化塩素製造方法
JP6567535B2 (ja) 電解式二酸化塩素ガス製造装置
JPH05214572A (ja) 硫酸と水酸化ナトリウムを製造するための電気化学的方法及び電気化学的反応槽
EP0838434A2 (en) Electrolytic treatment of aqueous salt solutions
US20010022273A1 (en) Electrochemical treatment of water and aqueous salt solutions
WO2004080901A1 (ja) 混合電解水の製造方法
US20130101499A1 (en) METHODS FOR ELECTROCHEMICAL DECHLORINATION OF ANOLYTE BRINE FROM NaCl ELECTROLYSIS
EP1369384B1 (en) Method of decomposing organic compound in liquid to be treated
JP2000226680A (ja) 殺菌性を有する電解水の製造方法及び装置
WO2011115220A1 (ja) 電気分解装置
JP2017110277A (ja) 二酸化塩素の製造方法
JPH06173062A (ja) 塩化アルカリ水溶液の電解方法
JPH11269690A (ja) 酸素還元カソードを有するメンブレン電解槽の停止方法
JP6817080B2 (ja) 電解用電極
JP2001327975A (ja) 歯科用水道水の残留塩素補正装置
JP5995242B2 (ja) 窒素除去方法及びその装置
JP2007167829A (ja) 飲用電解水及びその製造方法
JP2000070947A (ja) 電解水生成装置
JP3267816B2 (ja) 電解水生成装置
JPH08134676A (ja) 次亜塩素酸ナトリウム溶液の製造方法及びクロレート溶液の製造方法
JP3840710B2 (ja) 電解装置及びこれを備えたイオン水生成器
CN116732535A (zh) 一种倒极电解氯化钠产生次氯酸水的方法及系统
KR20090022650A (ko) 살균용수 제조법과 살균용수생성장치를 설계하는 방법 및장치
JP2021530619A (ja) ニッケル電極の性能を改善する方法
JPH07303885A (ja) 電解整水方法及びこの方法に使用する電解整水用添加剤

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980122391.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09766591

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010517893

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12997619

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009766591

Country of ref document: EP