WO2011115220A1 - 電気分解装置 - Google Patents

電気分解装置 Download PDF

Info

Publication number
WO2011115220A1
WO2011115220A1 PCT/JP2011/056418 JP2011056418W WO2011115220A1 WO 2011115220 A1 WO2011115220 A1 WO 2011115220A1 JP 2011056418 W JP2011056418 W JP 2011056418W WO 2011115220 A1 WO2011115220 A1 WO 2011115220A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank
anode
cathode
electrolyte
gas
Prior art date
Application number
PCT/JP2011/056418
Other languages
English (en)
French (fr)
Inventor
麻田茂雄
田口和彦
田浦浩一
中原弘一
Original Assignee
大幸薬品株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大幸薬品株式会社 filed Critical 大幸薬品株式会社
Priority to JP2012505748A priority Critical patent/JP5751543B2/ja
Priority to US13/634,145 priority patent/US9315911B2/en
Priority to AU2011228059A priority patent/AU2011228059B2/en
Priority to EP11756404.7A priority patent/EP2548997B1/en
Priority to CN201180014319.4A priority patent/CN102812160B/zh
Priority to KR1020127026903A priority patent/KR101710223B1/ko
Priority to CA2793822A priority patent/CA2793822A1/en
Publication of WO2011115220A1 publication Critical patent/WO2011115220A1/ja
Priority to HK13106599.7A priority patent/HK1179666A1/xx

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/13Single electrolytic cells with circulation of an electrolyte
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/24Halogens or compounds thereof
    • C25B1/26Chlorine; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes

Definitions

  • the present invention relates to an electrolysis apparatus of a type that generates gas on the anode side.
  • Patent Document 1 a method for producing chlorine dioxide gas by electrolyzing an electrolytic solution containing chlorite is known (Patent Document 1). It is well known that when the electrolyte is electrolyzed to generate gas on the anode side, the liquidity (pH) on the cathode side changes with time. Such a change in liquidity has an adverse effect on the electrolyte solution around the anode, thereby lowering the stability of the electrolyte solution and gradually reducing the gas generation efficiency.
  • Patent Document 2 describes a chlorine dioxide production method in which a direct current is supplied to an electrolytic solution in an electrolyzed electrolytic cell having a cathode and an anode to perform electrolysis and thereby generate chlorine dioxide.
  • the electrolytic solution containing an alkali chloride, an alkali chlorite, and a pH adjuster is electrolyzed by supplying a direct current in a state where the pH of the electrolytic solution is 4 to 8. 1 solution to supply the aqueous solution of alkali chlorite to the electrolytic solution from the outside of the electrolytic cell and to take out the generated chlorine dioxide from the electrolytic solution in order to supplement the alkaline chlorite consumed by the electrolysis during the electrolysis It is a type electrolytic chlorine production method.
  • an object of the present invention is to provide an electrolysis apparatus that can more easily prevent a change in liquidity on the cathode side from adversely affecting the anode.
  • a first characteristic configuration of an electrolysis apparatus is an electrolysis apparatus that performs electrolysis in a state in which an anode and a cathode are immersed in an electrolytic solution and generates gas from the anode side.
  • an anode tank provided with the anode and a cathode tank provided with the cathode are provided separately, and the anode tank is supplied with a supply port for supplying an electrolytic solution into the tank and the supply port.
  • An anode aeration apparatus for blowing aeration air into the electrolytic solution and a gas extraction pipe for guiding the gas generated from the anode tank to the outside of the tank are provided, one end is connected to the anode tank, and the other end is connected to the cathode
  • a communication pipe connected to the tank is provided, and the electrolyte supplied to the anode tank by the communication pipe can flow into the cathode tank, and the current is passed between the anode and the cathode through the electrolyte in the communication pipe.
  • the generated gas is configured to be discharged from the gas extraction pipe together with the aeration air to the outside of the anode tank, and the electrolyte flowing in the cathode tank is continuously discharged. .
  • the electrolytic solution when the electrolytic solution is supplied to the inside of the anode tank provided with the anode from the supply port, the electrolytic solution is filled in the anode tank, and the inside of the communication pipe connecting the anode tank and the cathode tank together with this.
  • the electrolytic solution flows, and the electrolytic solution is filled in the cathode chamber.
  • a voltage is applied to both electrodes while the anode and cathode are immersed in the electrolytic solution, an electric current flows through the electrolytic solution inside the communication pipe, and electrolysis is performed.
  • the anode tank is equipped with an anode aeration device, and aeration air (air / inert gas) is blown into the electrolyte in the anode tank. Is discharged together with air from the gas extraction pipe to the outside of the anode tank.
  • a second characteristic configuration of the electrolyzer according to the present invention is an electrolyzer that performs electrolysis in a state in which an anode and a cathode are immersed in an electrolyte containing chlorite and generates chlorine dioxide from the anode side.
  • An anode tank provided with the anode and a cathode tank provided with the cathode are provided separately, and the anode tank is supplied with an electrolyte solution into the tank, and supplied from the supply port.
  • An anode aeration apparatus for blowing aeration air into the electrolyte, and a gas extraction pipe for guiding the gas generated from the anode tank to the outside of the tank, with one end connected to the anode tank and the other end
  • a communication pipe connected to the cathode tank is provided, and the electrolyte supplied to the anode tank by the communication pipe can flow into the cathode tank, and between the anode and the cathode via the electrolyte in the communication pipe.
  • the generated chlorine dioxide is configured to be discharged to the outside of the anode tank from the gas extraction pipe together with the aeration air, and is configured to continuously discharge the electrolyte flowing into the cathode tank. is there.
  • the electrolytic solution contains chlorite
  • chlorine dioxide gas is generated from the anode side.
  • Chlorine dioxide gas generated in the anode tank by electrolysis is released to the outside of the anode tank from the gas extraction pipe together with aeration air (air / inert gas) by the anode aeration apparatus.
  • aeration air air / inert gas
  • a third characteristic configuration of the electrolyzer according to the present invention is a gas recovery pipe having one end connected to the upper part of the anode tank and the other end connected to the upper part of the cathode tank, and for aeration to the electrolyte in the cathode tank.
  • a cathode aeration apparatus for blowing air, and together with the aeration air, take out chlorine dioxide dissolved in the electrolyte of the cathode tank to the outside of the anode tank via the gas recovery pipe and the gas extraction pipe. It is in the point which constituted.
  • the anode tank and the cathode tank are connected at the upper part by the gas recovery pipe, and the cathode aeration apparatus for blowing aeration air (air / inert gas) into the electrolyte in the cathode tank is provided. Even if the chlorine dioxide gas generated in the anode tank and dissolved in the electrolyte moves to the cathode tank through the communication pipe, it is taken out together with the aeration air by the cathode aeration device in the cathode tank, and the gas recovery pipe and gas extraction It can be taken out of the anode tank through a tube.
  • aeration air air / inert gas
  • the fourth characteristic configuration of the electrolyzer according to the present invention is that a narrowed portion having a partially reduced diameter is provided inside the communication pipe.
  • the electrolysis apparatus of the present invention is used for electrolysis in which an anode and a cathode are immersed in an electrolytic solution and gas is generated from the anode side.
  • the electrolyzer 10 of the present invention is provided with an anode tank 14 provided with an anode 12 and a cathode tank 18 provided with a cathode 16 separately.
  • the anode tank 14 and the cathode tank 18 each have a storage space for storing an electrolytic solution. If it is such an aspect, the shape, volume, etc. will not be limited.
  • the anode tank 14 and the cathode tank 18 are shown as cylindrical tanks separated from each other.
  • the electrolyte solution 13 in the anode tank 12 and the electrolyte solution 13 in the cathode tank 18 may be configured so as not to be easily mixed.
  • a single housing space is partitioned by a partition plate or the like, and the anode tank and the cathode are separated. It is possible to set it as the tank.
  • the cathode tank 18 is provided with a cathode aeration device 26 for blowing aeration air into the electrolyte solution 13 of the cathode tank 18.
  • the anode aeration device 22 and the cathode aeration device 26 may be configured such that compressed air can be supplied from the compressor (not shown) to the anode tank 14 and the cathode tank 18, for example.
  • Aeration air can be supplied from the vicinity of the bottom of the anode tank 14 and the cathode tank 18 so that the gas generated by the electrolysis can be efficiently guided outside the tank.
  • a communication pipe 28 having one end connected to the anode tank 14 and the other end connected to the cathode tank 18 is provided.
  • the electrolyte 13 supplied to the anode tank 14 through the communication pipe 28 can flow into the cathode tank 18, and can be energized between the anode 12 and the cathode 16 via the electrolyte 13 in the communication pipe 28.
  • the communication pipe 28 may be constituted by a thin tubular member, for example. At this time, the communication pipe 28 can prevent the electrolyte 13 from flowing backward from the cathode tank 18 to the anode tank 14, and has an inner diameter that does not hinder energization from the anode tank 14 to the cathode tank 18. Constitute.
  • connection position with the anode tank 14 may be set higher than the connection position with the cathode tank 18. In this case, the gas generated in the anode tank 14 is difficult to move to the cathode tank 18.
  • the gas generated in the anode cell 14 by electrolysis is configured to be discharged to the outside of the anode cell 14 from the gas extraction pipe 24 together with the aeration air, and the electrolytic solution 13 flowing into the cathode cell 18 is continuously discharged.
  • the liquid tank 34 is configured to be discharged.
  • the gas extraction pipe 24 may be connected to, for example, a suction device (not shown) in order to easily collect the generated gas and aeration air.
  • a gas recovery pipe 30 is provided with one end connected to the upper part of the anode tank 14 and the other end connected to the upper part of the cathode tank 18.
  • the gas dissolved in the electrolyte solution 13 in the cathode tank 18 is configured to be taken out of the anode tank 14 via the gas recovery pipe 30 and the gas extraction pipe 24 together with the aeration air.
  • the gas taken out from the anode tank 14 together with the aeration air is recovered in a gas recovery tank (not shown). At this time, if necessary, a desired gas and aeration air may be separated.
  • Examples of the gas that can be produced by the electrolyzer 10 of the present invention include chlorine dioxide, chlorine, and ozone. Chlorine gas can also be generated by using alkali chloride or alkaline earth chloride as the electrolyte.
  • chlorite examples of the chlorite used in the present invention include alkali metal chlorites and alkaline earth metal chlorites.
  • alkali metal chlorite examples include sodium chlorite, potassium chlorite, and lithium chlorite.
  • alkaline earth metal chlorite examples include calcium chlorite, magnesium chlorite, Barium chlorate is mentioned. Of these, sodium chlorite and potassium chlorite are preferable and sodium chlorite is most preferable from the viewpoint of easy availability.
  • These chlorinated oxygen alkalis may be used individually by 1 type, and may use 2 or more types together.
  • the ratio of chlorite in the electrolytic solution 13 is preferably 0.1 wt% to 30 wt%.
  • the cathode material includes titanium, stainless steel, nickel, nickel-chromium alloy, or other valve metal.
  • the anode material is a platinum coating material obtained by electroplating platinum on a noble metal such as platinum, gold, palladium, iridium, rhodium or ruthenium, graphite, graphite felt, multilayer graphite cloth, graphite woven cloth, carbon, or titanium,
  • a noble metal such as platinum, gold, palladium, iridium, rhodium or ruthenium
  • Examples thereof include electrodes made of a valve metal oxide of titanium, tantalum, niobium, or zirconium, and those coated with an electrode catalyst are preferably used.
  • the electrode area is increased to reduce the current density because chlorine dioxide can be generated efficiently.
  • the electrode area is preferably 1 A / dm 2 or less.
  • Air for aeration In the present invention, air is used as a gas for aerating and collecting a gas dissolved in an electrolyte solution such as generated chlorine dioxide gas, but is not limited thereto, and an inert gas is used. Also good. Examples of the inert gas include nitrogen gas, argon, helium and the like. Note that the gas supplied from the cathode aeration device 26 in the cathode chamber 18 is chlorine dioxide gas or ozone gas. Chlorine gas reacts with the alkali in the cathode chamber 18 to become hypochlorous ClO 2 - and cannot be aerated.
  • the electrolytic solution 13 used in the electrolyzer 10 of the present invention can be mixed with alkali chloride as necessary in order to increase the electrolysis efficiency and generate a large amount of chlorine dioxide.
  • alkali chloride include potassium chloride, sodium chloride, lithium chloride, calcium chloride and the like. These may be used alone or in combination.
  • the proportion of alkali chloride in the electrolytic solution 13 is preferably 1% by weight or more, more preferably 2% by weight or more and less than the solubility. If the proportion of alkali chloride is less than 1% by weight, chlorine gas cannot be generated stably, which may hinder the generation of chlorine dioxide. Increasing the concentration of alkali chloride in the electrolyte is preferable because chlorine dioxide can be generated efficiently. However, when the solubility is close, the alkali chloride tends to precipitate in the electrolyte and may adversely affect it. is there.
  • FIG. 1 is a schematic explanatory view of an electrolysis apparatus 10 of the present invention.
  • a cylindrical anode tank 14 having a plate-like anode 12 made of a Pt / Ir plated titanium electrode (10 mm ⁇ 20 mm) and a plate-like cathode 16 made of a titanium electrode (10 mm ⁇ 20 mm) are provided.
  • the cylindrical cathode chamber 18 is provided separately.
  • the anode tank 14 has a supply port 20 for supplying the electrolytic solution 13 into the tank, and an anode aeration apparatus for blowing aeration air (air or inert gas) into the electrolytic solution 13 supplied from the supply port 20. 22 and a gas extraction pipe 24 for allowing air communication between the inside and outside of the anode tank 14 and guiding the gas generated from the anode tank 14 to the outside of the tank.
  • the cathode chamber 18 is also provided with a cathode aeration device 26 for blowing aeration air (air or inert gas) into the electrolytic solution 13.
  • the anode tank 14 and the cathode tank 18 are connected to each other by a communication pipe 28 at each lower portion. That is, a communication pipe 28 having an inner diameter of 2 mm to 20 mm (diameter) is provided, one end of which is connected to the lower part of the anode tank 14 and the other end is connected to the lower part of the cathode tank 18.
  • the supplied electrolytic solution 13 flows into the cathode chamber 18 and can be energized between the anode 12 and the cathode 16 via the electrolytic solution 13 inside the communication pipe 28.
  • the communication pipe 28 connecting the two tanks has a narrowed portion 28a in which the inner diameter is partially small (within a length of 2 mm to 20 mm) (diameter 0.5 mm to 5 mm). It is provided in the vicinity of the cathode chamber 18.
  • the anode tank 14 and the cathode tank 18 are connected to each other by a gas recovery pipe 30 in the upper part of each, so that air can be distributed.
  • Electrolyte 13 containing 25 wt% sodium chlorite and sodium chloride from the supply port 20 into the anode chamber 14 (66 ml of 25 wt% sodium chlorite in 1000 g of the electrolyte (2 wt% sodium chlorite) ), 100 g of sodium chloride 100 g (sodium chloride 10 wt%) and water 834 g), the anode tank 14 is filled with the electrolytic solution 13. Along with this, the electrolytic solution 13 flows in the communication pipe 28 and is also filled in the cathode chamber 18.
  • the electrolytic solution 13 may be intermittently and continuously replenished from the supply port 20 into the anode tank 14 using the electrolytic solution dropping device 40 (FIG. 2). Specifically, the electrolytic solution 13 is continuously dropped every 5 minutes at a rate of 1 to 10 mL / hour. As described above, since the electrolytic solution 13 is continuously replenished from the supply port 20 of the anode tank 14 by the electrolytic solution drip device, a slow flow of the electrolytic solution 13 occurs from the anode tank 14 toward the cathode tank 18, and the cathode. The electrolytic solution 13 in the tank 18 becomes difficult to flow into the anode tank 14. As a result, the change in the liquidity on the cathode 16 side adversely affects the anode tank 14 to prevent deterioration of the electrolyte in the anode tank 14, and the gas generation efficiency is maintained.
  • the electrolytic solution 13 in the cathode tank 18 flows through the electrolytic solution recovery pipe 32 into the drainage tank 34 and is continuously discharged from the discharge pipe 38.
  • the air pressure adjustment (pressure release) at this time is performed by the vent pipe 36.
  • the communication pipe 28 is provided with a narrowed portion 28a having a partially reduced diameter.
  • the narrowed portion 28a By forming the narrowed portion 28a, it is possible to more effectively prevent the electrolytic solution 13 in the cathode chamber 18 from flowing back into the anode chamber 14.
  • a thin tubular object may be used as the communication tube 28 over the entire length, but in this case, it is difficult for current to flow.
  • the narrowed portion 28a having a small diameter in a part of the communication pipe 28 as in the present invention it is possible to prevent the backflow of the electrolyte solution 13 and to prevent the current from flowing. The voltage for flowing a current for generating chlorine gas is lowered, and safety against electric shock or the like can be ensured.
  • the tank body 42 of the chemical liquid tank 40 includes a bottom plate 42a, a peripheral side plate 42b, and a top plate 42c.
  • the top plate 42c extends through the top plate 42c and terminates until reaching the bottom plate 42a (a vent hole 44a is provided at the lower end thereof), and a pressure relief tube 46 (the opening thereof). 46a is openable and closable).
  • a supply / discharge pipe 48 connected to the supply port 20 of the anode tank 14 is provided on the bottom plate 42a.
  • the supply / discharge pipe 48 is provided with a solenoid valve 50 with a timer for adjusting the flow rate of the electrolyte 13 flowing through the supply / discharge pipe 48.
  • the prepared electrolytic solution 13 is injected into the tank body 42 from the injection tube 44, and the electrolytic solution 13 is poured to a predetermined height. Fill (see virtual dotted line in FIG. 2). Thereafter, by closing the opening 46a of the decompression pipe 46 and opening the supply / discharge pipe 48, the electrolyte 13 in the tank body 42 flows down by its own weight and is supplied to the anode tank 14 through the supply port 20. The At this time, since the opening 46a of the depressurizing tube 46 is closed, the internal pressure of the tank main body 42 becomes negative as the electrolytic solution 13 falls.
  • the ON / OFF operation of the solenoid valve 50 with a timer is started (supply / discharge)
  • the supply amount of the electrolytic solution 13 from the chemical solution tank 40 to the anode tank 14 is adjusted by intermittently opening the pipe 48 for a certain period of time.
  • the electrolytic solution 13 in the chemical solution tank 40 decreases, but as described above, the internal pressure of the tank body 42 is negative, and the injection is connected to the outside air. Since the vent 44a is provided at the lower end of the tube 44, the water level of the electrolyte 13 stopped at the lower end of the injection tube 44 is maintained as it is.
  • the electrolytic solution 13 that is about to flow inside the supply / discharge pipe 48 is not affected by the pressure change caused by the change (self-weight change) of the electrolyte storage amount in the tank body 42.
  • the flow rate of the electrolyte solution 13 flowing through is extremely stabilized, and even if the flow rate is small, it can be maintained at a substantially constant amount.
  • a low gas generation amount of a relatively small amount of gas generation per unit time for example, 0.01 mg to 100 mg / hour
  • gas can be stably generated at a rate.
  • the air in the chemical tank 40 in the electrolytic solution drip device is warmed and expanded, and the electrolytic solution enters 13 may be pushed out to raise the liquid level and therefore the flow rate.
  • the liquid level is further stabilized by installing the exhaust pump 51 and the flow rate adjustment valve 52 as shown in FIG.
  • the electrolyzer according to the present invention can be used for electrolysis in which an anode and a cathode are immersed in an electrolytic solution and gas is generated from the anode side.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

 陰極側の液性変化が陽極に悪影響を及ぼすのをより簡便に防ぐことのできる電気分解装置を提供する。陽極12を備えた陽極槽14と陰極16を備えた陰極槽18とを各別に設け、陽極槽14には、電解液13を槽内に供給するための供給口20と、供給した電解液13に曝気用エアを吹き込むための陽極曝気装置22と、陽極槽14から発生するガスを槽外に案内するガス取出管24とを設け、連通管28により陽極槽14に供給した電解液13が陰極槽18に流れ込み可能となるとともに、連通管28内の電解液13を介して陽極12および陰極16の間で通電可能となり、電気分解により陽極槽14内で発生したガスが、曝気用エアとともにガス取出管24から陽極槽14の外部に放出されるように構成し、陰極槽18に流れた電解液13を連続的に排出するように構成した電気分解装置10。

Description

電気分解装置
 本発明は、陽極側でガスを発生させるタイプの電気分解装置に関する。
 従来、例えば亜塩素酸塩を含有する電解液を電気分解して二酸化塩素ガスを製造する方法は知られている(特許文献1)。
 電解液を電気分解して陽極側でガスを発生させる場合、経時的に陰極側の液性(pH)が変化することがよく知られている。このような液性の変化が陽極周辺の電解液に悪影響を及ぼして電解液の安定性が低下し、次第にガスの発生効率が低下する虞があった。
 特許文献2には、陰極と陽極を備えた無隔膜の電解槽内で電解液に直流電流を供給して電気分解を行い、これにより二酸化塩素を発生する二酸化塩素製造方法が記載してある。具体的には、この方法は、塩化アルカリ、亜塩素酸アルカリ及びpH調整剤が含まれた前記電解液に、当該電解液のpHを4~8とした状態で直流電流を供給して電気分解を行い、電気分解中、電気分解に伴い消費する亜塩素酸アルカリを補うべく、電解槽外部より亜塩素酸アルカリの水溶液を電解液に供給し、発生した二酸化塩素を電解液中から取り出す1液型電解式の二酸化塩素製造方法となっている。
特開平9-279376公報 国際公開第2009/154143号パンフレット
 特許文献2の二酸化塩素製造方法によれば、電解液のpHをコントロールすることにより、陰極側の液性変化が陽極に影響して電解液の安定性が低下するのを防止でき、電解途中でガスの発生効率が低下するという問題は解消された。仮に、pHをコントロールするステップを省略できれば、より簡便に二酸化塩素を製造することができると考えられる。
 従って、本発明の目的は、陰極側の液性変化が陽極に悪影響を及ぼすのをより簡便に防ぐことのできる電気分解装置を提供することにある。
 上記目的を達成するための本発明に係る電気分解装置の第一特徴構成は、電解液に陽極と陰極を浸漬した状態で電気分解を行い、前記陽極の側からガスを発生する電気分解装置であって、前記陽極を備えた陽極槽と前記陰極を備えた陰極槽とを各別に設け、前記陽極槽には、電解液を槽内に供給するための供給口と、該供給口より供給した電解液に曝気用エアを吹き込むための陽極曝気装置と、該陽極槽から発生するガスを槽外に案内するガス取出管と、を設け、一端を前記陽極槽に連結し、他端を前記陰極槽に連結した連通管を設け、前記連通管により前記陽極槽に供給した電解液が前記陰極槽に流れ込み可能となるとともに、該連通管内の電解液を介して前記陽極および前記陰極の間で通電可能となり、電気分解により前記陽極槽内で発生したガスが、前記曝気用エアとともに前記ガス取出管から前記陽極槽の外部に放出されるように構成し、前記陰極槽に流れた電解液を連続的に排出するように構成した点にある。
 本構成によれば、供給口から陽極を備えた陽極槽の内部に電解液を供給すると、該陽極槽に電解液が充填されていき、これとともに陽極槽と陰極槽を連結する連通管の内部を電解液が流れて、当該電解液が陰極槽の内部にも充填されていく。陽極と陰極が電解液に浸漬された状態で両極に電圧を印加すると、連通管内部の電解液を介して電流が流れ、電気分解が行われる。陽極槽には陽極曝気装置が設けられ、陽極槽内の電解液に曝気用エア(空気・不活性ガス)が吹き込まれているので、電気分解により陽極槽内で発生したガスは、陽極曝気装置によりエアとともにガス取出管から陽極槽の外部に放出される。
 電解液中の成分(例えば亜塩素酸塩など)は電気分解中に消費されるため、電解槽外部より補充する必要がある。補充する電解液を陽極槽に設けた供給口から連続的に、あるいは半連続的(間欠的)に供給することにより、陽極槽から陰極槽に向けて電解液の流れが生じるので、陰極槽の側の電解液が陽極槽の側に逆流し難くなる。これにより陰極側の液性変化が陽極槽に悪影響を及ぼすのを防ぐことができる。
 すなわち陽極槽の電解液劣化を未然に防止して、陽極槽における低いpHを維持できるため、ガスの発生効率を維持することができる。
 本発明に係る電気分解装置の第二特徴構成は、亜塩素酸塩を含有する電解液に陽極と陰極を浸漬した状態で電気分解を行い、前記陽極の側から二酸化塩素を発生する電気分解装置であって、前記陽極を備えた陽極槽と前記陰極を備えた陰極槽とを各別に設け、前記陽極槽には、電解液を槽内に供給するための供給口と、該供給口より供給した電解液に曝気用エアを吹き込むための陽極曝気装置と、該陽極槽から発生するガスを槽外に案内するガス取出管と、を設け、一端を前記陽極槽に連結し、他端を前記陰極槽に連結した連通管を設け、前記連通管により前記陽極槽に供給した電解液が前記陰極槽に流れ込み可能となるとともに、該連通管内の電解液を介して前記陽極および前記陰極の間で通電可能となり、電気分解により前記陽極槽内で発生した二酸化塩素が、前記曝気用エアとともに前記ガス取出管から前記陽極槽の外部に放出されるように構成し、前記陰極槽に流れた電解液を連続的に排出するように構成した点にある。
 本構成によれば、電解液が亜塩素酸塩を含有することから陽極側から二酸化塩素ガスが発生する。電気分解により陽極槽内で発生した二酸化塩素ガスは、陽極曝気装置により曝気用エア(空気・不活性ガス)とともにガス取出管から陽極槽の外部に放出される。
 そして、亜塩素酸塩を含有する電解液を陽極槽に設けた供給口から連続的に、あるいは半連続的(間欠的)に供給することにより、陽極槽から陰極槽に向けて電解液の流れが生じるので、陰極槽の側の電解液が陽極槽の側に逆流し難くなる。これにより陰極側の液性変化が陽極槽に悪影響を及ぼすのを防ぐことができる。
 すなわち陽極槽の電解液劣化を未然に防止して、陽極槽における低いpHを維持できるため、ガスの発生効率を維持することができる。
 本発明に係る電気分解装置の第三特徴構成は、一端を前記陽極槽の上部に連結し、他端を前記陰極槽の上部に連結したガス回収管と、前記陰極槽の電解液に曝気用エアを吹き込む陰極曝気装置とを設け、前記曝気用エアとともに、前記陰極槽の電解液に溶存する二酸化塩素を前記ガス回収管および前記ガス取出管を経由して前記陽極槽の外部に取り出すように構成した点にある。
 本構成によれば、ガス回収管によって陽極槽と陰極槽が上部で連結され、また陰極槽における電解液に曝気用エア(空気・不活性ガス)を吹き込む陰極曝気装置が設けられているので、陽極槽で発生して電解液に溶存する二酸化塩素ガスが、連通管を通って陰極槽に移動しても、陰極槽内の陰極曝気装置により曝気用エアとともに取り出され、ガス回収管およびガス取出管を介して陽極槽の外部に取り出すことができる。
 本発明に係る電気分解装置の第四特徴構成は、前記連通管の内部において、部分的に径小となる狭窄部を設けた点にある。
 本構成によれば、狭窄部によって陰極槽内の電解液が陽極槽内に逆流するのをより一層効果的に防止することができるので、陽極槽内のpHを低く維持することにより発生効率および曝気効率の上昇が期待できる。しかも狭窄部が部分的であるため、通電時の電流の流れには殆ど影響が無く、当該連通管のコスト高を招く心配もない。
本発明の電気分解装置の概略図である。 本発明の電気分解装置に用いる電解液点滴装置の概略図である。 狭窄部を設けた連通管の要部概略図である。
 以下、本発明の実施例を図面に基づいて説明する。
 本発明の電気分解装置は、電解液に陽極と陰極を浸漬した状態で電気分解を行い、陽極の側からガスを発生する電気分解に使用する。
 図1に示したように、本発明の電気分解装置10は、陽極12を備えた陽極槽14と陰極16を備えた陰極槽18とを各別に設ける。陽極槽14および陰極槽18は、それぞれ、電解液を収容する収容空間を有する。このような態様であれば、その形状、容積などは限定されない。
 本実施形態では、陽極槽14および陰極槽18は、それぞれ離間した円柱状の槽とした場合を示した。しかし、陽極槽12の電解液13および陰極槽18の電解液13が容易に混じり合うことのないように構成すればよく、例えば、単一の収容空間を仕切板などで仕切って陽極槽および陰極槽とする態様とすることが可能である。
 陽極槽14には、電解液13を槽内に供給するための供給口20と、該供給口20より供給した電解液13に曝気用エアを吹き込むための陽極曝気装置22と、該陽極槽14から発生するガスを槽外に案内するガス取出管24と、を設ける。
 陰極槽18には、当該陰極槽18の電解液13に曝気用エアを吹き込む陰極曝気装置26を設ける。
 陽極曝気装置22および陰極曝気装置26は、例えばコンプレッサー(図外)から圧縮空気を陽極槽14および陰極槽18に送気できるように構成するとよい。電気分解によって発生したガスを効率よく槽外に案内することができるように、陽極槽14および陰極槽18の底部付近から曝気用エアを供給できるように構成する。
 また、一端を陽極槽14に連結し、他端を陰極槽18に連結した連通管28を設ける。当該連通管28により陽極槽14に供給した電解液13が陰極槽18に流れ込み可能となるとともに、該連通管28内の電解液13を介して陽極12と陰極16の間で通電可能となる。
 連通管28は、例えば細い管状部材によって構成するとよい。このとき、連通管28は、陰極槽18から陽極槽14へと電解液13が逆流するのを防止でき、かつ、陽極槽14から陰極槽18への通電を妨げない程度の内径を有するように構成する。
 当該逆流を防止するには、例えば連通管28において、陽極槽14との接続位置を、陰極槽18との接続位置より高く設定するとよい。この場合、陽極槽14で発生したガスは陰極槽18に移行し難くなる。
 電気分解により陽極槽14内で発生したガスは、曝気用エアとともにガス取出管24から陽極槽14の外部に放出されるように構成し、陰極槽18に流れた電解液13を連続的に排液槽34に排出するように構成してある。
 ガス取出管24は、発生ガスおよび曝気用エアを回収し易くするため、例えば吸引装置(図外)に接続してもよい。
 さらに、一端を陽極槽14の上部に連結し、他端を陰極槽18の上部に連結したガス回収管30を設ける。陰極槽18の電解液13に溶存するガスは、曝気用エアとともに、ガス回収管30およびガス取出管24を経由して陽極槽14の外部に取り出すように構成してある。
 曝気用エアと共に陽極槽14から取り出したガスは、ガス回収槽(図外)に回収する。このとき、必要であれば、所望のガスと曝気用エアとを分離できるように構成してもよい。
(発生ガス)
 本発明の電気分解装置10により製造できるガスとしては、例えば二酸化塩素、塩素、オゾンなどが挙げられる。電解液に塩化アルカリ、塩化アルカリ土類を使用して塩素ガスを発生させることもできる。
(亜塩素酸塩)
 本発明で使用される亜塩素酸塩としては、例えば、亜塩素酸アルカリ金属塩や亜塩素酸アルカリ土類金属塩が挙げられる。亜塩素酸アルカリ金属塩としては、例えば亜塩素酸ナトリウム、亜塩素酸カリウム、亜塩素酸リチウムが挙げられ、亜塩素酸アルカリ土類金属塩としては、亜塩素酸カルシウム、亜塩素酸マグネシウム、亜塩素酸バリウムが挙げられる。なかでも、入手が容易という点から、亜塩素酸ナトリウム、亜塩素酸カリウムが好ましく、亜塩素酸ナトリウムが最も好ましい。これら亜塩素酸素アルカリは1種を単独で用いてもよいし、2種以上を併用しても構わない。
 電解液13における亜塩素酸塩の割合は、0.1重量%~30重量%であることが好ましい。0.1重量%未満の場合は、二酸化塩素の発生において亜塩素酸塩が不足するという問題が生じる可能性があり、30重量%を超える場合は、亜塩素酸塩が飽和して結晶が析出しやすいという問題が生じる可能性がある。安全性や安定性、二酸化塩素の発生効率などを鑑みた場合、さらに好ましい範囲は、1重量%~10重量%である。なお、亜塩素酸塩は、電気分解中に消費されていくので、電解槽外部より電解液に供給する必要がある。電解液13の電気分解中は、亜塩素酸塩を含有する電解液を陽極槽14の供給口20から連続的に、あるいは半連続的(間欠的)に供給し続けることが好ましい。
(電極)
 電気分解に使用する電極としては、従来公知のものを使用すればよいが、酸素ガスの発生を最小限に抑え、二酸化塩素を効率よく発生させることができる電極が好適に用いられる。例えば、陰極材料には、チタン、ステンレス鋼、ニッケル、ニッケル・クロム合金、又は他のバルブ金属が挙げられる。また、陽極材料は、白金、金、パラジウム、イリジウム、ロジウム、又はルテニウムなどの貴金属、黒鉛、黒鉛フェルト、多層黒鉛布、黒鉛織布、炭素、あるいはチタン上に白金を電気メッキした白金被覆材料、チタン、タンタル、ニオブ、又はジルコニウムのバルブ金属の酸化物で構成された電極などが挙げられ、電極触媒をコーティングしたものが好適に用いられる。
 尚、電極面積を大きくして電流密度を小さくすることが、二酸化塩素を効率よく発生させることができるという点で好ましい。具体的には、電極面積は1A/dm2以下が好ましい。
(曝気用エア)
 本発明において、発生した二酸化塩素ガスなどの電解液に溶存するガスを曝気して脱気・収集するためのガスとしては空気が用いられるが、これに限られるものではなく不活性ガスを用いてもよい。不活性ガスとしては、例えば窒素ガス、アルゴン、ヘリウムなどが挙げられる。なお、陰極槽18において陰極曝気装置26から供給するガスは二酸化塩素ガス、オゾンガスとなる。塩素ガスは陰極槽18内のアルカリと反応して次亜塩素ClO-になるので曝気できない。
(電解液)
 本発明の電気分解装置10で使用される電解液13には、電気分解の効率を上げて少しでも量を多く二酸化塩素を発生させるために、必要に応じて塩化アルカリを混合することもできる。塩化アルカリとしては、例えば、塩化カリウム、塩化ナトリウム、塩化リチウム、塩化カルシウムなどが挙げられる。これらは1種を単独で使用してもよいし、複数を併用することもできる。電解液13における塩化アルカリの割合は1重量%以上であることが好ましく、2重量%以上であって溶解度未満であることがさらに好ましい。塩化アルカリの割合が1重量%未満の場合、塩素ガスを安定的に発生させることができず、二酸化塩素の発生に支障をきたす可能性がある。電解液中の塩化アルカリ濃度を高くすることが、二酸化塩素を効率よく発生させることができるという点で好ましいが、溶解度付近になると電解液中に塩化アルカリが析出しやすくなり悪影響を与える可能性がある。
 本実施例では、発生ガスとして二酸化塩素を発生される場合について説明する。
 図1は、本発明の電気分解装置10の略示説明図である。図示するように、Pt/Irメッキチタン電極(10mm×20mm)からなる板状の陽極12を備えた円筒状の陽極槽14と、チタン極(10mm×20mm)からなる板状の陰極16を備えた円筒状の陰極槽18とが個別に設けられている。
 陽極槽14には、電解液13を槽内に供給するための供給口20と、この供給口20より供給した電解液13に曝気用エア(空気や不活性ガス)を吹き込むための陽極曝気装置22と、陽極槽14の内外をエア連通可能とし、陽極槽14から発生するガスを槽外に案内するためのガス取出管24が設けられている。また、陰極槽18にも、電解液13に曝気用エア(空気や不活性ガス)を吹き込むための陰極曝気装置26が設けられている。
 陽極槽14と陰極槽18は、各々の下部において互いに連通管28で繋がっている。即ち、一端が陽極槽14の下部に連結され、他端が陰極槽18の下部に連結された内径2mm~20mm(直径)の連通管28が設けられ、この連通管28により、陽極槽14に供給した電解液13が陰極槽18に流れ込むとともに、連通管28内部の電解液13を介して陽極12と陰極16の間で通電可能となる。
 尚、両槽を結ぶ連通管28は、図3に示すように、部分的に(長さ2mm~20mmの範囲で)内腔が径小(直径0.5mm~5mm)となる狭窄部28aが陰極槽18の近傍に設けられている。また、陽極槽14と陰極槽18は、各々の上部において互いにガス回収管30でつながっており、エア流通可能となっている。
 供給口20から陽極槽14の内部に、25重量%の亜塩素酸ナトリウムおよび塩化ナトリウムを含有する電解液13(電解液1000g中、25重量%亜塩素酸ナトリウム66ml(亜塩素酸ナトリウム2重量%)、100%塩化ナトリウム100g(塩化ナトリウム10重量%)、水834g)を供給すると、陽極槽14に電解液13が充填される。
 これに伴い電解液13が連通管28内を流れて、陰極槽18の内部にも充填される。陽極12と陰極16が電解液13に浸漬された状態で両極に電圧を印加すると、連通管28内部の電解液13を介して電流が流れ、電気分解が行われる(電流5.4mA、電圧10V)。
 陽極槽14の陽極曝気装置22により陽極槽14内の電解液13に曝気用エア(空気や不活性ガス)が吹き込まれているため、電気分解により陽極槽14内で発生した二酸化塩素は、曝気用エアとともにガス取出管24から陽極槽14の外部に放出される。
 電気分解中は、電解液点滴装置40(図2)を用いて電解液13を供給口20から陽極槽14の内部に間欠的かつ連続的に補充するとよい。具体的には、電解液13を1~10mL/時間の割合で5分おきに連続滴下する。
 このように陽極槽14の供給口20からは電解液13が電解液点滴装置により補充され続けているため、陽極槽14から陰極槽18に向けて電解液13のゆっくりとした流れが生じて陰極槽18の電解液13が陽極槽14に流れ難くなる。これにより陰極16側の液性変化が陽極槽14に悪影響を及ぼして陽極槽14の電解液劣化を防ぐことができ、ガスの発生効率が維持される。
 このように陽極槽14から陰極槽18に向けて電解液13のゆっくりとした流れが生じていることから、陽極槽14で発生して電解液13に溶存する二酸化塩素ガスが、この流れに従って連通管28内を通って陰極槽18に移行しても、陰極槽18内で陰極曝気装置26により曝気用エアとともに取り出され、ガス回収管30およびガス取出管24を介して陽極槽14の外部に連続的に取り出される。
 陰極槽18内の電解液13は、電解液回収管32の内部を通って排液槽34に流下し、排出管38から連続的に排出される。このときの空気圧力調節(圧力抜き)はベント管36により行なわれる。
 上述したように連通管28には、その内部において部分的に径小となる狭窄部28aが設けてある。狭窄部28aを形成することで、陰極槽18内の電解液13が陽極槽14内に逆流するのをより一層効果的に防止することができる。
 陰極槽18内の電解液13が陽極槽14に逆流するのを防止することだけを考えると、全長にわたって細い管状物を連通管28として使用すればよいが、この場合は電流も流れ難くなる。本発明のように、連通管28の一部に径小となる狭窄部28aを設けることで、電解液13の逆流を防止できるとともに電流が流れ難くなるのを防ぐこともでき、その分、二酸化塩素ガスを発生させる電流を流すための電圧が低くなり、感電等に対して安全性を確保することができる。
 尚、既述した電解液点滴装置40としては、例えば直方体状の薬液タンク40を用いる(図2参照)。即ち、薬液タンク40のタンク本体42は、底板42a、周側板42b及び天板42cからなる。天板42cには、これを貫通して下方に延び、底板42aに到達するまでに終端する注入管44(その下端部に通気孔44aが設けられている)と、圧抜管46(その開口部46aは開閉自在となっている)とが設けてある。
 底板42aには、陽極槽14の供給口20とつながる供給排出管48が設けてある。当該供給排出管48には、この内部を流れる電解液13の流量を調節するタイマー付の電磁弁50が設けてある。
 圧抜管46の開口部46aを開放し、かつ供給排出管48を閉じた状態で、調製済みの電解液13を注入管44からタンク本体42の内部に注入し、所定の高さまで電解液13を充填する(図2における仮想点線参照)。その後、圧抜管46の開口部46aを閉じ、供給排出管48を開放することにより、タンク本体42内の電解液13は自重により流下していき、供給口20を介して陽極槽14に供給される。このとき、圧抜管46の開口部46aが閉じているため、電解液13の落下とともにタンク本体42の内圧が負圧となる。
 タンク本体42内の電解液13の水位が次第に下がり、注入管44の下端で停止した段階で注入流量は安定になるので、タイマー付の電磁弁50のON-OFF動作を開始して(供給排出管48を間欠的に一定時間開放して)薬液タンク40から陽極槽14への電解液13の供給量を調整する。
 電解液13を陽極槽14に供給している間は薬液タンク40内の電解液13は減っていくが、前述したようにタンク本体42の内圧が負圧となっており、また外気とつながる注入管44の下端部には通気孔44aが設けられているので、注入管44の下端位置で停止した電解液13の水位はそのままの状態が保たれる。
 従って、供給排出管48の内部を流れようとする電解液13は、タンク本体42内における電解液貯蓄量の変化(自重変化)によって生じる圧力変化の影響を受けないので、供給排出管48の内部を流れる電解液13の流量が極めて安定化し、それが少ない流量であってもほぼ一定の量に維持することができる。これにより、単位時間当たりのガス発生量が比較的少量(例えば0.01mg~100mg/時間)という低量ガス発生を念頭に置いた場合であっても十分に対応でき、長時間にわたってほぼ一定の割合でガスを安定的に発生させ続けることができる。
 尚、設置場所の温度が急激(1~10℃/分)に上昇する場合など、室温が変動すると電解液点滴装置における薬液タンク40内の空気が暖められて膨張し、注入管44に電解液13を押し出して液面が上昇し、従って流量が上昇することがある。この場合には、図2のように排気ポンプ51および流量調整弁52を設置すればさらに液面が安定する。
 本発明の電気分解装置は、電解液に陽極と陰極を浸漬した状態で電気分解を行い、前記陽極の側からガスを発生する電気分解に利用できる。
10    電気分解装置
12    陽極
13    電解液
14    陽極槽
16    陰極
18    陰極槽
20    供給口
22    陽極曝気装置
24    ガス取出管
26    陰極曝気装置
28    連通管
28a   狭窄部
30    ガス回収管

Claims (4)

  1.  電解液に陽極と陰極を浸漬した状態で電気分解を行い、前記陽極の側からガスを発生する電気分解装置であって、
     前記陽極を備えた陽極槽と前記陰極を備えた陰極槽とを各別に設け、
     前記陽極槽には、電解液を槽内に供給するための供給口と、該供給口より供給した電解液に曝気用エアを吹き込むための陽極曝気装置と、該陽極槽から発生するガスを槽外に案内するガス取出管と、を設け、
     一端を前記陽極槽に連結し、他端を前記陰極槽に連結した連通管を設け、
     前記連通管により前記陽極槽に供給した電解液が前記陰極槽に流れ込み可能となるとともに、該連通管内の電解液を介して前記陽極および前記陰極の間で通電可能となり、
     電気分解により前記陽極槽内で発生したガスが、前記曝気用エアとともに前記ガス取出管から前記陽極槽の外部に放出されるように構成し、前記陰極槽に流れた電解液を連続的に排出するように構成した電気分解装置。
  2.  亜塩素酸塩を含有する電解液に陽極と陰極を浸漬した状態で電気分解を行い、前記陽極の側から二酸化塩素を発生する電気分解装置であって、
     前記陽極を備えた陽極槽と前記陰極を備えた陰極槽とを各別に設け、
     前記陽極槽には、電解液を槽内に供給するための供給口と、該供給口より供給した電解液に曝気用エアを吹き込むための陽極曝気装置と、該陽極槽から発生するガスを槽外に案内するガス取出管と、を設け、
     一端を前記陽極槽に連結し、他端を前記陰極槽に連結した連通管を設け、
     前記連通管により前記陽極槽に供給した電解液が前記陰極槽に流れ込み可能となるとともに、該連通管内の電解液を介して前記陽極および前記陰極の間で通電可能となり、
     電気分解により前記陽極槽内で発生した二酸化塩素が、前記曝気用エアとともに前記ガス取出管から前記陽極槽の外部に放出されるように構成し、前記陰極槽に流れた電解液を連続的に排出するように構成した電気分解装置。
  3.  一端を前記陽極槽の上部に連結し、他端を前記陰極槽の上部に連結したガス回収管と、前記陰極槽の電解液に曝気用エアを吹き込む陰極曝気装置とを設け、
     前記曝気用エアとともに、前記陰極槽の電解液に溶存する二酸化塩素を前記ガス回収管および前記ガス取出管を経由して前記陽極槽の外部に取り出すように構成した請求項2に記載の電気分解装置。
  4.  前記連通管の内部において、部分的に径小となる狭窄部を設けた請求項1~3の何れか1項に記載の電気分解装置。
PCT/JP2011/056418 2010-03-19 2011-03-17 電気分解装置 WO2011115220A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2012505748A JP5751543B2 (ja) 2010-03-19 2011-03-17 電気分解装置
US13/634,145 US9315911B2 (en) 2010-03-19 2011-03-17 Electrolyzer apparatus
AU2011228059A AU2011228059B2 (en) 2010-03-19 2011-03-17 Electrolyzer
EP11756404.7A EP2548997B1 (en) 2010-03-19 2011-03-17 Electrolyzer apparatus
CN201180014319.4A CN102812160B (zh) 2010-03-19 2011-03-17 电解装置
KR1020127026903A KR101710223B1 (ko) 2010-03-19 2011-03-17 전기분해장치
CA2793822A CA2793822A1 (en) 2010-03-19 2011-03-17 Electrolyzer apparatus configured to generate a gas on the anode side thereof
HK13106599.7A HK1179666A1 (en) 2010-03-19 2013-06-05 Electrolyzer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-064554 2010-03-19
JP2010064554 2010-03-19

Publications (1)

Publication Number Publication Date
WO2011115220A1 true WO2011115220A1 (ja) 2011-09-22

Family

ID=44649303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/056418 WO2011115220A1 (ja) 2010-03-19 2011-03-17 電気分解装置

Country Status (10)

Country Link
US (1) US9315911B2 (ja)
EP (1) EP2548997B1 (ja)
JP (1) JP5751543B2 (ja)
KR (1) KR101710223B1 (ja)
CN (1) CN102812160B (ja)
AU (1) AU2011228059B2 (ja)
CA (1) CA2793822A1 (ja)
HK (1) HK1179666A1 (ja)
TW (1) TWI539031B (ja)
WO (1) WO2011115220A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015033887A1 (ja) * 2013-09-09 2015-03-12 大幸薬品株式会社 二酸化塩素製造装置及び二酸化塩素製造方法
JPWO2013054433A1 (ja) * 2011-10-14 2015-03-30 好正 高部 水素−酸素ガス発生装置
WO2018043711A1 (ja) * 2016-09-05 2018-03-08 株式会社大阪ソーダ 二酸化塩素発生装置及び二酸化塩素発生方法
CN113740395A (zh) * 2021-09-10 2021-12-03 厦门大学 一种用于电化学分析的电解池及其应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101485018B1 (ko) * 2014-05-07 2015-01-28 (주) 시온텍 이산화염소 가스 발생 장치 및 그 발생 시스템
CN114934296A (zh) * 2022-04-21 2022-08-23 湖北绿钨资源循环有限公司 一种曝气辅助电解废硬质合金回收碳化钨的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08127886A (ja) * 1994-10-28 1996-05-21 Japan Organo Co Ltd 電解水製造装置
JPH09279376A (ja) 1996-04-11 1997-10-28 Suido Kiko Kaisha Ltd 二酸化塩素の製造方法
JP2000212787A (ja) * 1999-01-26 2000-08-02 Chemicoat & Co Ltd 電解方法
WO2009154143A1 (ja) 2008-06-19 2009-12-23 大幸薬品株式会社 1液型電解式の二酸化塩素製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2163793A (en) * 1937-06-08 1939-06-27 Mathieson Alkall Works Inc Production of chlorine dioxide
DE692763C (de) * 1937-11-19 1942-01-15 Paul Wever Kom Ges rbinder aus Blech oder Draht
GB692763A (en) * 1951-02-20 1953-06-10 Bayer Ag Production of chlorine dioxide
US3681228A (en) * 1969-02-06 1972-08-01 Walter D Komhyr Electrochemical concentration cell for gas analysis
CN2061177U (zh) * 1989-10-18 1990-08-29 中国人民解放军沈阳军区后勤部基建营房部 电解二氧化氯发生器
JP3052124B2 (ja) * 1995-12-22 2000-06-12 株式会社ハクキン 水素ガス製造機構
US5965004A (en) * 1996-03-13 1999-10-12 Sterling Pulp Chemicals, Ltd. Chlorine dioxide generation for water treatment
CN1188740A (zh) * 1996-12-23 1998-07-29 埃勒夫阿托化学有限公司 二氧化氯的制备方法
CN2335951Y (zh) * 1998-07-29 1999-09-01 温镜新 二氧化氯消毒剂发生器
CN2359297Y (zh) * 1999-02-23 2000-01-19 王培林 电解法高效二氧化氯发生器
JP3949088B2 (ja) * 2003-08-04 2007-07-25 大幸薬品株式会社 二酸化塩素製造装置
JP2006346650A (ja) * 2005-06-20 2006-12-28 Sawada Kinji アルカリ殺菌水製造装置、アルカリ殺菌水製造方法
JP2009154143A (ja) 2007-12-26 2009-07-16 Fujiwara Sangyo Kk 掻寄装置
CN101591786B (zh) * 2009-06-22 2011-03-16 陈维军 电解法二氧化氯发生器及电解槽

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08127886A (ja) * 1994-10-28 1996-05-21 Japan Organo Co Ltd 電解水製造装置
JPH09279376A (ja) 1996-04-11 1997-10-28 Suido Kiko Kaisha Ltd 二酸化塩素の製造方法
JP2000212787A (ja) * 1999-01-26 2000-08-02 Chemicoat & Co Ltd 電解方法
WO2009154143A1 (ja) 2008-06-19 2009-12-23 大幸薬品株式会社 1液型電解式の二酸化塩素製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2548997A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013054433A1 (ja) * 2011-10-14 2015-03-30 好正 高部 水素−酸素ガス発生装置
WO2015033887A1 (ja) * 2013-09-09 2015-03-12 大幸薬品株式会社 二酸化塩素製造装置及び二酸化塩素製造方法
JPWO2015033887A1 (ja) * 2013-09-09 2017-03-02 大幸薬品株式会社 二酸化塩素製造装置及び二酸化塩素製造方法
US10094029B2 (en) 2013-09-09 2018-10-09 Taiko Pharmaceutical Co., Ltd. Chlorine dioxide production device and chlorine dioxide production method
WO2018043711A1 (ja) * 2016-09-05 2018-03-08 株式会社大阪ソーダ 二酸化塩素発生装置及び二酸化塩素発生方法
JPWO2018043711A1 (ja) * 2016-09-05 2019-07-11 株式会社大阪ソーダ 二酸化塩素発生装置及び二酸化塩素発生方法
CN113740395A (zh) * 2021-09-10 2021-12-03 厦门大学 一种用于电化学分析的电解池及其应用

Also Published As

Publication number Publication date
AU2011228059B2 (en) 2015-04-02
KR101710223B1 (ko) 2017-02-24
US9315911B2 (en) 2016-04-19
TW201207156A (en) 2012-02-16
HK1179666A1 (en) 2013-10-04
EP2548997A4 (en) 2014-03-19
US20130043126A1 (en) 2013-02-21
EP2548997A1 (en) 2013-01-23
JPWO2011115220A1 (ja) 2013-07-04
EP2548997B1 (en) 2015-05-27
TWI539031B (zh) 2016-06-21
AU2011228059A1 (en) 2012-09-27
CN102812160A (zh) 2012-12-05
CA2793822A1 (en) 2011-09-22
JP5751543B2 (ja) 2015-07-22
KR20130037678A (ko) 2013-04-16
CN102812160B (zh) 2015-06-03

Similar Documents

Publication Publication Date Title
JP5751543B2 (ja) 電気分解装置
JP6567535B2 (ja) 電解式二酸化塩素ガス製造装置
WO2009154143A1 (ja) 1液型電解式の二酸化塩素製造方法
JPH1024294A (ja) 弱酸性の塩素系殺菌水の製造方法
KR102369884B1 (ko) 이산화염소 발생 장치 및 이산화염소 발생 방법
JP2017110277A (ja) 二酸化塩素の製造方法
JP2013085979A (ja) 次亜塩素酸水の製造装置
JP6503054B2 (ja) 電解水生成装置、電極ユニット、および電解水生成方法
WO2022014127A1 (ja) 電解水生成装置
JP6831570B2 (ja) 電解水生成装置
KR100663256B1 (ko) 온사이드형 과산화수소 생성장치 및 공급장치
JP2000070945A (ja) 電解装置
JP2000064076A (ja) 次亜塩素酸ナトリウム溶液生成装置
KR200379625Y1 (ko) 온사이드형 과산화수소 생성장치 및 공급장치
JP2000024664A (ja) 次亜塩素酸生成装置および次亜塩素酸生成方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180014319.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11756404

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011228059

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2012505748

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2793822

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2011228059

Country of ref document: AU

Date of ref document: 20110317

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011756404

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127026903

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13634145

Country of ref document: US