WO2015033887A1 - 二酸化塩素製造装置及び二酸化塩素製造方法 - Google Patents

二酸化塩素製造装置及び二酸化塩素製造方法 Download PDF

Info

Publication number
WO2015033887A1
WO2015033887A1 PCT/JP2014/072910 JP2014072910W WO2015033887A1 WO 2015033887 A1 WO2015033887 A1 WO 2015033887A1 JP 2014072910 W JP2014072910 W JP 2014072910W WO 2015033887 A1 WO2015033887 A1 WO 2015033887A1
Authority
WO
WIPO (PCT)
Prior art keywords
chlorine dioxide
anode chamber
aeration
anolyte
chamber
Prior art date
Application number
PCT/JP2014/072910
Other languages
English (en)
French (fr)
Inventor
麻田茂雄
中原弘一
田浦浩一
加藤大輔
Original Assignee
大幸薬品株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大幸薬品株式会社 filed Critical 大幸薬品株式会社
Priority to KR1020167005801A priority Critical patent/KR20160054471A/ko
Priority to CN201480049450.8A priority patent/CN105683417B/zh
Priority to EP14843084.6A priority patent/EP3045568A4/en
Priority to US14/911,931 priority patent/US10094029B2/en
Priority to JP2015535457A priority patent/JP6448540B2/ja
Publication of WO2015033887A1 publication Critical patent/WO2015033887A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/24Halogens or compounds thereof
    • C25B1/26Chlorine; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms

Definitions

  • the present invention relates to an apparatus and method for producing chlorine dioxide by electrolyzing an anolyte containing chlorite using a diaphragm type electrolytic cell having an anode chamber and a cathode chamber.
  • Examples of conventional chlorine dioxide production apparatuses and chlorine dioxide production methods include those shown in Patent Document 1 below.
  • electrolytic treatment is carried out while supplying an anolyte containing chlorite and a catholyte containing sodium hydroxide or sodium chloride to the anode chamber and the cathode chamber of the diaphragm type electrolytic cell.
  • An apparatus and method for generating chlorine dioxide is described.
  • a chlorine dioxide production apparatus equipped with a diaphragm type electrolytic cell has a higher production efficiency of chlorine dioxide than a one-pack type chlorine dioxide production apparatus that does not use a diaphragm.
  • the generated chlorine dioxide tends to be highly concentrated in the apparatus, and the risk of causing an explosion increases. Therefore, it is necessary to dilute the chlorine dioxide as quickly as possible.
  • the chlorine dioxide production apparatus of Patent Document 1 is configured to recover and dilute chlorine dioxide by transferring an anolyte in which chlorine dioxide is dissolved to an aeration tank via a pipe and performing aeration treatment. During transfer to the aeration tank, chlorine dioxide may not be completely dissolved in the anolyte and may explode, and the apparatus configuration is complicated.
  • An object of the present invention is to produce chlorine dioxide with a simpler configuration and method, to rapidly dilute the concentration of chlorine dioxide, and to easily carry out waste liquid treatment of each of anolyte and catholyte.
  • An object of the present invention is to provide a chlorine dioxide production apparatus and a chlorine dioxide production method that can be used.
  • a first characteristic configuration according to the chlorine dioxide production apparatus of the present invention has an anode chamber and a cathode chamber, and generates chlorine dioxide by electrolytic treatment of an anolyte containing chlorite supplied to the anode chamber.
  • a diaphragm type electrolytic cell a flow passage section that communicates the anode chamber and the cathode chamber, a discharge section that communicates the cathode chamber and the outside, and an aeration that supplies aeration gas to the anode chamber so that the supply amount can be adjusted.
  • Means, and a neutralizing means for supplying a neutralizing agent to at least one of the cathode chamber and the discharge section, and electrolyzing the anolyte in the anode chamber to generate chlorine dioxide, and the aeration
  • the generated chlorine dioxide is recovered by supplying aeration gas to the anolyte in the anode chamber by means, and the anolyte after electrolytic treatment and aeration treatment in the anode chamber passes through the flow path section.
  • the anolyte can be aerated by supplying the aerated gas to the anode chamber by the aeration means.
  • This makes it possible to quickly dilute the chlorine dioxide concentration while avoiding the dissolution of the generated chlorine dioxide in the anolyte and avoid explosions, so that the generated chlorine dioxide can be recovered more efficiently and safely. be able to.
  • it since it is the structure which supplies aeration gas directly to an anode chamber, it is not necessary to provide an aeration tank etc. separately, and an apparatus structure is simplified.
  • the anolyte after electrolytic treatment and aeration treatment in the anode chamber can be transferred to the cathode chamber via the flow path portion and used as it is as the catholyte.
  • the anolyte and the catholyte are supplied independently to the anode chamber and the cathode chamber, respectively. Therefore, a supply system such as a storage tank or a liquid feed pump for supplying the anolyte and the catholyte is used as an anode. It was necessary for each of the room and the cathode room. However, with this configuration, since only the supply system for the anode chamber is required, the apparatus configuration is simplified and various costs can be reduced.
  • the anolyte after electrolytic treatment and aeration treatment in the anode chamber is transferred to the cathode compartment through the flow path portion and subjected to electrolytic treatment.
  • electrolytic treatment even if a part of the generated chlorine dioxide remains in the anolyte without being collected in the anode chamber, it is cathodic reduced in the cathode chamber to become chlorite.
  • the catholyte having a high pH after being electrolyzed in the cathode chamber is neutralized in at least one of the cathode chamber and the discharge section by the neutralizing agent supplied from the neutralizing means. .
  • the anolyte after electrolytic treatment and aeration treatment in the anode chamber is used as the catholyte as it is, and the catholyte after electrolytic treatment in the cathode chamber is neutralized.
  • each waste liquid treatment of anolyte containing residual chlorine dioxide and catholyte having high pH is not performed separately but collectively from the cathode chamber until it is discharged through the discharge part Therefore, the waste liquid treatment is simplified.
  • the second characteristic configuration is that the diaphragm type electrolytic cell, the flow path part, and the discharge part are integrated.
  • the third characteristic configuration is that a deaeration tank is provided in the flow path portion, and the aeration means is configured to supply aeration gas to the anode chamber and the deaeration tank.
  • the fourth characteristic configuration is that a neutralization tank is provided in the discharge part, and the neutralization means supplies the neutralizing agent to the neutralization tank.
  • the neutralization treatment is performed more efficiently by providing a dedicated neutralization tank for neutralization treatment.
  • a characteristic configuration according to the chlorine dioxide production method of the present invention is a chlorine dioxide production method using a diaphragm-type electrolytic cell having an anode chamber and a cathode chamber, wherein the anode chamber of the diaphragm-type electrolytic cell contains chlorite.
  • the anolyte can be aerated by supplying the aerated gas to the anode chamber by the aeration process. This makes it possible to quickly dilute the chlorine dioxide concentration while avoiding the dissolution of the generated chlorine dioxide in the anolyte and avoid explosions, so that the generated chlorine dioxide can be recovered more efficiently and safely. be able to.
  • the anolyte after electrolytic treatment and aeration treatment in the anode chamber is subjected to electrolytic treatment in the cathode chamber as a catholyte, a part of the generated chlorine dioxide is generated in the anode chamber. Even if it is not recovered and remains in the anolyte, it is cathodically reduced in the cathode chamber to chlorite or the like. Furthermore, the catholyte having a high pH after being electrolyzed in the cathode chamber is neutralized in at least one of the cathodic electrolysis step and the discharge step.
  • the anolyte after electrolytic treatment and aeration treatment in the anode chamber is used as the catholyte as it is, and the catholyte after electrolytic treatment in the cathode chamber is neutralized.
  • the effluent treatment of the anolyte containing residual chlorine dioxide and the catholyte having a high pH are carried out collectively before being discharged from the cathode chamber, not separately. Therefore, the waste liquid treatment is simplified.
  • a chlorine dioxide production apparatus 1 includes a diaphragm type electrolytic cell 2 having an anode chamber 3 and a cathode chamber 5, and an anolyte containing chlorite.
  • Supply means 8 a degassing tank 9, a first drainage tank 10, a neutralization tank 11 for neutralizing the catholyte after electrolytic treatment, a neutralizing means for supplying a neutralizing agent 12, the 2nd drainage tank 13, and the aeration means 14 which supplies aeration gas are comprised.
  • the anode chamber 3 and the deaeration tank 9 are communicated with each other by the first communication path P1, and the deaeration tank 9 and the first drainage tank 10 are communicated by the second communication path P2, and the first drainage tank 10 and the cathode chamber are communicated with each other.
  • 5 is communicated by the third communication path P3, the cathode chamber 5 and the neutralization tank 11 are communicated by the fourth communication path P4, and the neutralization tank 11 and the second drainage tank 13 are communicated by the fifth communication path P5. It is communicated. That is, the chlorine dioxide production apparatus 1 uses the first to fifth communication passages P1 to P5 to provide the anode chamber 3, the deaeration tank 9, the first drainage tank 10, the cathode chamber 5, the neutralization tank 11, and the second drainage liquid. The tank 13 is connected in series.
  • the flow path portion C that communicates the anode chamber 3 and the cathode chamber 5 includes the first communication path P1, the degassing tank 9, the second communication path P2, the first drainage tank 10, and the first drainage tank 10. It is formed by a triple communication path P3.
  • the flow path portion C is not limited to this configuration.
  • the flow path portion C is configured only by the first communication path P1 without providing the deaeration tank 9 and the first drainage tank 10, and the anode chamber 3 and the cathode. It is good also as a structure which communicates with the chamber 5 directly.
  • the discharge part D that communicates the cathode chamber 5 with the outside is constituted by the fourth communication path P4, the neutralization tank 11, the fifth communication path P5, the second drainage tank 13, and the drainage pipe 17. Is formed.
  • the discharge part D is not limited to this configuration.
  • the discharge part D is constituted only by the drainage pipe 17 without providing the neutralization tank 11 and the second drainage tank 13, and the cathode chamber 5 and the outside are connected. It is good also as a structure connected directly.
  • the neutralizing means 12 is configured to supply a neutralizing agent to the cathode chamber 5.
  • Diaphragm electrolytic cell As the diaphragm type electrolytic cell 2, a conventionally known electrolytic cell in which the anode chamber 3 and the cathode chamber 5 are partitioned by a cation exchange membrane 7 can be used.
  • an anode 4 and a cathode 6 are provided as electrodes.
  • the cathode material includes titanium, stainless steel, nickel, nickel-chromium alloy, or other valve metal.
  • the anode material includes platinum, gold, palladium, iridium, rhodium, ruthenium and other precious metals, graphite, graphite felt, multilayer graphite cloth, graphite woven cloth, carbon, or platinum coating material obtained by electroplating platinum on titanium.
  • An electrode composed of a valve metal oxide of titanium, tantalum, niobium, or zirconium, and the like, and those coated with an electrode catalyst are preferably used.
  • a conventionally known one can be used, but a fluorocarbon cation exchange membrane 7 having excellent permselectivity, durability and the like is preferable.
  • the neutralization means 12 in this embodiment is configured to supply a neutralizing agent to at least one of the cathode chamber 5 and the neutralization tank 11.
  • the neutralization means 12 is not limited to this configuration, and may be configured to neutralize at least one of the cathode chamber 5 and the discharge part D.
  • the fourth communication path P4, the fifth communication path P5, the second drainage tank 13, and the drainage pipe constituting the discharge part D are not limited to the neutralization tank 11.
  • a neutralizing agent may be supplied to any of 17.
  • the neutralization means 12 a conventionally well-known structure, for example, a thing provided with the storage tank which stores a neutralizer, a liquid feeding pump, a liquid feeding pipe, etc. can be used.
  • neutralizing agent examples include hydrochloric acid, sulfuric acid, citric acid, fumaric acid, formic acid, lactic acid, phosphoric acid, tartaric acid, butyric acid, and various phosphates. These may be used alone or in combination of two or more.
  • a conventionally known structure for example, a storage tank that stores an anolyte containing chlorite, a liquid feed pump, a liquid feed pipe, and the like can be used.
  • Usable chlorites include, for example, alkali metal chlorites and alkaline earth metal chlorites.
  • the alkali metal chlorite include sodium chlorite, potassium chlorite, and lithium chlorite.
  • the alkaline earth metal chlorite include calcium chlorite, magnesium chlorite, Barium chlorite is mentioned. Of these, sodium chlorite and potassium chlorite are preferable and sodium chlorite is most preferable from the viewpoint of easy availability.
  • These chlorites may be used individually by 1 type, and may use 2 or more types together.
  • the concentration of chlorite in the anolyte is preferably 1% by weight to 25% by weight in consideration of the generation efficiency of chlorine dioxide, safety, stability, prevention of crystal precipitation of chlorite.
  • aeration means 14 As the aeration means 14, for example, a conventionally known apparatus including an aeration pump capable of adjusting the supply amount of the aeration gas and an introduction pipe for introducing the aeration gas from the aeration pump into each tank can be used. .
  • the aeration means 14 in this embodiment is configured to supply aeration gas to each of the anode chamber 3, the deaeration tank 9, and the neutralization tank 11 of the diaphragm type electrolytic cell 2.
  • Examples of aeration gas that can be used include air or an inert gas such as nitrogen or argon.
  • Chlorine dioxide production method A method for producing chlorine dioxide using the chlorine dioxide production apparatus 1 will be described below.
  • an anolyte containing chlorite chlorite aqueous solution
  • the catholyte or the anolyte diluted twice is supplied in advance to the cathode chamber 5 of the diaphragm type electrolytic cell 2 and stored.
  • the anolyte supplied to the anode chamber 3 is subjected to electrolytic treatment. That is, since chlorite ions (ClO 2 ⁇ ) and cations (sodium ions when sodium chlorite is used as a chlorite) are present in the anode chamber 3, direct current is supplied to the diaphragm-type electrolytic cell 2. When a direct current is applied from a power supply (not shown), chlorite ions emit electrons (e) at the anode, as shown in the following formula (1), and chlorine dioxide (ClO 2 ) is generated ( Anodic electrolysis step). ClO 2 ⁇ ⁇ ClO 2 + e (1) On the other hand, the cation passes through the cation exchange membrane 7 and enters the cathode chamber 5.
  • Chlorine dioxide generated by the above formula (1) dissolves in the anolyte due to its high solubility, but the aeration gas blown in by the aeration means 14 lowers the concentration in the liquid according to the vapor-liquid equilibrium relationship and is driven out of the liquid. It is.
  • the expelled chlorine dioxide is recovered from the collection tube 15 by the supplied aeration gas while being diluted to a concentration lower than the concentration at which explosion can be avoided (approximately 10% v / v) (aeration step).
  • the anolyte after electrolytic treatment in the anode chamber 3 is transferred to the deaeration tank 9 through the first communication path P1. Also in the deaeration tank 9, the aeration process is again performed by the aeration gas blown by the aeration means 14, and chlorine dioxide remaining in the anolyte is driven out of the liquid. The expelled chlorine dioxide returns to the anode chamber 3 again through the sixth communication passage P6 that communicates the anode chamber 3 and the deaeration tank 9, and is collected from the collection tube 15. Also in the deaeration tank 9, the purged chlorine dioxide is diluted with the aerated gas to a concentration lower than the concentration at which explosion can be avoided (approximately 10% v / v).
  • the supply amount of aeration gas to the anode chamber 3 and the deaeration tank 9 is configured to be adjustable so that the chlorine dioxide concentration is controlled, and at the same time as the dilution, the chlorine dioxide having a concentration desired by the user. You may comprise so that it may manufacture.
  • the anolyte after the aeration treatment in the deaeration tank 9 is transferred to the first drainage tank 10 through the second communication path P2. Then, the anolyte transferred to the first drainage tank 10 passes through the third communication path P3, and is then supplied as the catholyte into the cathode chamber 5 of the diaphragm type electrolytic cell 2.
  • the cathode chamber 5 if a part of chlorine dioxide remains in the anolyte supplied as the catholyte without being collected in the anode chamber 3 or the deaeration tank 9, the residual chlorine dioxide is Cathodic reduction by the cathode 6 of the chamber 5 becomes chlorite.
  • the remaining hydroxide ions become alkali (for example, sodium hydroxide when the cation is a sodium ion). Accordingly, the catholyte after electrolytic treatment in the cathode chamber 5 has a high pH because it contains a large amount of alkali. This catholyte having a high pH is neutralized by the neutralizing agent supplied from the neutralizing means 12 (neutralization step).
  • the neutralization means 12 in this embodiment is configured to supply a neutralizing agent to at least one of the cathode chamber 5 and the neutralization tank 11, the catholyte having a high pH is Neutralization is performed in at least one of the neutralization tanks 11.
  • the high pH catholyte after being electrolyzed in the cathode chamber 5 passes through the fourth communication path P4 and the neutralization tank 11. Since the aeration gas blown in by the aeration means 14 is vigorously stirred and mixed together with the neutralizing agent supplied from the neutralization means 12, efficient neutralization processing is performed.
  • the aerated gas supplied to the neutralization tank 11 is then transferred to the cathode chamber 5 through a seventh communication path P7 that communicates the cathode chamber 5 and the neutralization tank 11.
  • the aerated gas thus transferred is discharged from the exhaust pipe 16 together with the hydrogen gas while diluting the hydrogen gas generated in the cathode chamber 5 to a concentration lower than the concentration at which explosion can be avoided (approximately 4% v / v).
  • the catholyte after neutralization in the neutralization tank 11 is transferred to the second drainage tank 13 through the fifth communication path P5. Then, the catholyte transferred to the second drainage tank 13 is discharged from the drainage pipe 17 to the outside of the apparatus.
  • a cation exchange membrane is used as a diaphragm that partitions the anode chamber and the cathode chamber, but the present invention is not limited to this, and a neutral diaphragm may be used. .
  • the chlorine dioxide production kit K includes the first to fourth members A1 to A4, the first to fourth gasket members G1 to G4, the cation exchange membrane 7, and an outside not shown.
  • a frame member is provided.
  • the first to fourth members A1 to A4, the first to fourth gasket members G1 to G4, and the cation exchange membrane 7 are all rectangular members, and their width and height are set to the same dimensions. ing.
  • the first to fourth members A1 to A4 are all rectangular plate-like members, and are made of a durable material such as polyvinyl chloride, for example.
  • each thickness of 1st member A1 and 4th member A4 is set thinner than each thickness of 2nd member A2 and 3rd member A3.
  • the second member A ⁇ b> 2 is provided with three rectangular parallelepiped through spaces penetrating in the thickness direction, and each of the three through spaces includes the anode chamber 3 and the deaeration.
  • a tank 9 and a first drain tank 10 are configured.
  • the anode 4 is disposed in the anode chamber 3 of the second member A2.
  • An anolyte introduction pipe 20 is provided.
  • the anolyte introduction pipe 20 is provided below the collection pipe 15.
  • a first gas introduction pipe 21 for introducing aeration gas from the aeration means 14 (see FIG. 1) into the anode chamber 3 passes through the upper side wall of the second member A2, and its tip is the lower space of the anode chamber 3. It is provided so as to open.
  • a second gas introduction pipe 22 for introducing aeration gas from the aeration means 14 into the deaeration tank 9 passes through the upper side wall of the second member A2, and its tip opens into the lower space of the deaeration tank 9. It is provided as follows.
  • the upper and lower portions of the partition wall between the anode chamber 3 and the deaeration tank 9 are respectively provided with a sixth communication path P6 and a first communication path P1 that connect the anode chamber 3 and the deaeration tank 9. Yes.
  • a second communication path P ⁇ b> 2 that connects the deaeration tank 9 and the first drainage tank 10 is provided at the lower part of the partition wall between the deaeration tank 9 and the first drainage tank 10.
  • An L-shaped communication passage 30 that leads from the inner wall surface of the first drainage tank 10 to the mating surface with the second gasket member G2 is provided on the lateral wall of the second member A2 on the first drainage tank 10 side. Yes.
  • the third member A3 is provided with three rectangular parallelepiped through spaces penetrating in the thickness direction.
  • a tank 11 and a second drain tank 13 are configured.
  • the cathode 6 is disposed in the cathode chamber 5 of the third member A3.
  • An exhaust pipe 16 for discharging the hydrogen gas generated in the cathode chamber 5 is provided on the lateral side wall of the third member A3 on the cathode chamber 5 side.
  • a first neutralizing agent introduction tube 24 for introducing the neutralizing agent from the neutralizing means 12 into the cathode chamber 5 passes through the upper side wall of the third member A3, and the tip thereof enters the lower space of the cathode chamber 5. It is provided to open.
  • the sump introduction pipe 25 is provided so as to penetrate the upper side wall of the third member A ⁇ b> 3, and each tip opens into the lower space of the neutralization tank 11.
  • a seventh communication path P7 and a fourth communication path P4 that connect the cathode chamber 5 and the neutralization tank 11 are provided in the upper and lower portions of the partition wall between the cathode chamber 5 and the neutralization tank 11, respectively. Yes.
  • a fifth communication passage P ⁇ b> 5 that communicates the neutralization tank 11 and the second drainage tank 13 is provided at the lower part of the partition wall between the neutralization tank 11 and the second drainage tank 13.
  • a drainage pipe 17 for discharging the catholyte in the second drainage tank 13 to the outside of the apparatus and a communication passage 31 penetrating in the thickness direction are provided on the side wall of the third member A3 on the second drainage tank 13 side. Is provided.
  • the communication path 31 is provided below the drainage pipe 17.
  • the fourth member A4 has through holes 32 and 33 penetrating in the thickness direction at both end portions in the width direction, and these through holes 32 and 33 are U-shaped. Communication connection is established via a pipe 34.
  • the first to fourth gasket members G1 to G4 are rectangular plate-shaped members made of a chemical resistant material such as ethylene-propylene-diene rubber (EPDM), for example.
  • EPDM ethylene-propylene-diene rubber
  • the second gasket member G ⁇ b> 2 has a through-hole 26 that penetrates in the thickness direction at one end in the width direction and has a rectangular parallelepiped penetration space 27 that penetrates in the thickness direction at the other end.
  • the third gasket member G3 has a through hole 35 that penetrates in the thickness direction at one end in the width direction, and has a rectangular parallelepiped shape that penetrates in the thickness direction at the other end.
  • a through space 38 is provided.
  • the width and height of the through space 27 of the second gasket member G2 are set to be the same as or smaller than the width and height of the anode chamber 3 of the second member A2.
  • the width and height of the through space 38 of the third gasket member G3 may be the same as the width and height of the cathode chamber 5 of the third member A3, or the width and height of the cathode chamber 5 of the third member A3. It may be set smaller than the height.
  • the fourth gasket member G4 has through holes 36 and 37 penetrating in the thickness direction at both ends in the width direction.
  • the cation exchange membrane 7 has a through hole (not shown) penetrating in the thickness direction at one end in the width direction.
  • the first to fourth members A1 to A4, the first to fourth gasket members G1 to G4, and the cation exchange membrane 7 are arranged as shown in FIG. That is, the first gasket member G1 is disposed between the first member A1 and the second member A2, and the second gasket member G2, the cation exchange membrane 7, and the second member A2 and the third member A3.
  • the third gasket member G3 is arranged in this order, and the fourth gasket member G4 is arranged between the third member A3 and the fourth member A4.
  • the second gasket member G2 is disposed such that the through space 27 faces the anode chamber 3 of the second member A2, and the third gasket member G3 is disposed of the cathode space of the third member A3. 5 so as to face 5.
  • the fourth gasket member G4 is arranged such that one through hole 36 faces the communication path 31 of the third member A3 and the other through hole 37 faces the cathode chamber 5 of the third member A3. Further, the fourth member A4 is arranged so that the two through holes 32 and 33 respectively face the two through holes 36 and 37 of the fourth gasket member G4.
  • a rectangular parallelepiped or cubic chlorine dioxide production kit K is completed.
  • the 3rd communication path P3 connected from the 1st drainage tank 10 of 2nd member A2 to the cathode chamber 5 of 3rd member A3 is formed.
  • the anode chamber 3 of the second member A2 and the through space 27 of the second gasket member G2 communicate with each other
  • the cathode chamber 5 of the third member A3 and the through space 38 of the third gasket member G3 communicate with each other.
  • the anode chamber 3 of the two member A2 and the cathode chamber 5 of the third member A3 are arranged to face each other with the cation exchange membrane 7 interposed therebetween, so that the diaphragm type electrolytic cell 2 is formed.
  • the configuration of the chlorine dioxide production apparatus can be made compact.
  • a chlorine dioxide production kit K having a width of 73 mm, a height of 148 mm, and a thickness of 45 mm, comprising an anode 4 and a cathode 5 having an electrode size of width 18 mm, height 46 mm, and thickness 1 mm was produced.
  • the aeration means 14 is connected to the first and second gas introduction pipes 21 and 22 of the chlorine dioxide production kit K, the supply means 8 is connected to the anolyte introduction pipe 20 of the chlorine dioxide production kit K, and the chlorine dioxide production kit
  • the chlorine dioxide production apparatus 1 was configured by connecting the neutralizing means 12 to the second neutralizing agent introduction pipe 25 of K.
  • An anolyte was prepared by dissolving 800 mL of 25 wt% sodium chlorite and 50 g of potassium chloride in water to 1 L. This anolyte was fed at 14 mL / hour by a feed pump of the supply means 8.
  • the anode 4 and the cathode 6 are energized at 800 mA. Further, air is supplied to the anode chamber 3 and the deaeration tank 9 by the aeration pump of the aeration means 14, and chlorine dioxide released from the sampling tube 15 is supplied. Absorbed with a potassium iodide solution for a predetermined time, and liberated iodine was titrated with a predetermined aqueous sodium thiosulfate solution. As a result, it was confirmed that 1.2 g / hour of chlorine dioxide was generated. Further, the drainage discharged from the drainage pipe 17 contained almost no chlorine dioxide and had a pH of 7.8, which could be safely discarded.
  • the chlorine dioxide production apparatus and chlorine dioxide production method according to the present invention can be suitably used in industrial fields related to environmental sterilization and deodorization by chlorine dioxide.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

 陽極室3と陰極室5とを有し、陽極室3に供給された亜塩素酸塩を含む陽極液を電解処理して二酸化塩素を発生させる隔膜式電解槽2と、陽極室3と陰極室5とを連通する流路部Cと、陰極室5と外部とを連通する排出部Dと、供給量調節自在に曝気気体を陽極室に供給する曝気手段14と、陰極室5及び排出部Dの少なくともいずれか一方に中和剤を供給する中和手段12とを備える二酸化塩素製造装置1。

Description

二酸化塩素製造装置及び二酸化塩素製造方法
 本発明は、陽極室と陰極室とを有する隔膜式電解槽を使用して、亜塩素酸塩を含む陽極液を電気分解することによって二酸化塩素を製造する装置及び方法に関するものである。
 従来の二酸化塩素製造装置及び二酸化塩素製造方法としては、例えば以下の特許文献1に示すものが挙げられる。この文献には、隔膜式電解槽の陽極室及び陰極室のそれぞれに、亜塩素酸塩を含む陽極液、及び水酸化ナトリウムや塩化ナトリウム等を含む陰極液を供給しながら電解処理を実施して二酸化塩素を発生させる装置及び方法が記載されている。
特公昭59-6915号公報
 隔膜式電解槽を備える二酸化塩素製造装置は、隔膜を使用しない1液型の二酸化塩素製造装置と比べて二酸化塩素の生成効率が高い。その反面、発生した二酸化塩素が装置内で高濃度になり易く、爆発を引き起こす危険性が高まるため、二酸化塩素をできる限り速やかに希釈する必要がある。上記特許文献1の二酸化塩素製造装置では、二酸化塩素が溶存する陽極液を、配管を介して曝気槽に移送して曝気処理することによって二酸化塩素を回収・希釈するように構成されているため、曝気槽に移送する途中で、二酸化塩素が陽極液に溶解し切れなくなって爆発する虞があると共に、装置構成が複雑なものとなっていた。
 また、上述の二酸化塩素製造装置では、陽極室及び陰極室のそれぞれに、陽極液及び陰極液を独立して供給する構成であったため、陽極液及び陰極液を供給するための貯留タンクや送液ポンプ等の供給系が、陽極室用と陰極室用のそれぞれに必要となる。これにより、装置構成が複雑化して、設計、製造、稼働、保守点検等の種々の点においてコスト高となる場合があった。
 さらに、上述の二酸化塩素製造装置では、回収されずに残留する二酸化塩素を含む陽極液、及び高いpHを有する陰極液のそれぞれの廃液処理を別々に行う必要があるため、その煩わしさから、廃液処理が必ずしも適切に実施されていない虞があり、環境汚染についての懸念があった。
 本発明の目的は、より簡略な構成及び方法で二酸化塩素を製造して、且つ迅速に二酸化塩素の濃度を希釈することができ、さらに陽極液及び陰極液のそれぞれの廃液処理を簡便に実施することができる二酸化塩素製造装置及び二酸化塩素製造方法を提供することにある。
 本発明の二酸化塩素製造装置に係る第1特徴構成は、陽極室と陰極室とを有し、前記陽極室に供給された亜塩素酸塩を含む陽極液を電解処理して二酸化塩素を発生させる隔膜式電解槽と、前記陽極室と前記陰極室とを連通する流路部と、前記陰極室と外部とを連通する排出部と、供給量調節自在に曝気気体を前記陽極室に供給する曝気手段と、前記陰極室及び前記排出部の少なくともいずれか一方に中和剤を供給する中和手段と、を備え、前記陽極室において前記陽極液を電解処理して二酸化塩素を発生させ、前記曝気手段により曝気気体を前記陽極室の陽極液に供給することによって、発生した二酸化塩素を回収し、前記陽極室にて電解処理及び曝気処理された後の陽極液が、前記流路部を通って前記陰極室に移流して陰極液として電解処理された後、前記陰極室及び前記排出部の少なくともいずれか一方で中和処理されるように構成される点にある。
〔作用及び効果〕
 本構成によれば、曝気手段によって曝気気体を陽極室に供給して陽極液を曝気処理することができる。これにより、発生した二酸化塩素の陽極液への溶解を抑えながら、二酸化塩素濃度を速やかに希釈して爆発を回避することが可能となるため、発生した二酸化塩素をより効率的且つ安全に回収することができる。さらに、曝気気体を陽極室に直接供給する構成であることから、別に曝気槽等を設ける必要がなく、装置構成が簡素化される。
 また本構成によれば、陽極室にて電解処理及び曝気処理された後の陽極液を、流路部を介して陰極室に移流させて、そのまま陰極液として使用することが可能となる。従来は、陽極室及び陰極室のそれぞれに陽極液及び陰極液を独立して供給する構成であったため、陽極液及び陰極液を供給するための貯留タンクや送液ポンプ等の供給系が、陽極室用と陰極室用のそれぞれに必要であった。しかし、本構成であれば、陽極室用の供給系だけで済むため、装置構成が簡素化されて種々のコストを削減することができる。
 さらに本構成によれば、陽極室にて電解処理及び曝気処理された後の陽極液が、流路部を介して陰極室に移流して電解処理される。これにより、たとえ、発生した二酸化塩素の一部が陽極室で回収されずに陽極液中に残留していたとしても、陰極室において陰極還元されて亜塩素酸塩となる。またさらに、陰極室にて電解処理された後の、高いpHを有する陰極液が、中和手段から供給される中和剤により、陰極室及び排出部の少なくともいずれか一方で中和処理される。
 つまり、本構成のごとく、陽極室にて電解処理及び曝気処理された後の陽極液をそのまま陰極液として使用し、陰極室にて電解処理された後の陰極液を中和処理するという構成を採用することによって、残留二酸化塩素を含む陽極液、及び高いpHを有する陰極液のそれぞれの廃液処理が、それぞれ別々にではなく、陰極室から排出部を経て排出されるまでの間にまとめて実施されるようになるため廃液処理が簡便化される。
 第2特徴構成は、前記隔膜式電解槽、前記流路部、及び前記排出部が一体化されている点にある。
〔作用及び効果〕
 本構成によれば、隔膜式電解槽、前記流路部、及び前記排出部が一体化されているため、二酸化塩素製造装置の構成をコンパクト化することができる。
 第3特徴構成は、前記流路部に脱気槽を設け、前記曝気手段が前記陽極室及び前記脱気槽に曝気気体を供給するように構成される点にある。
〔作用及び効果〕
 本構成によれば、曝気処理が陽極室だけでなく、脱気槽においても実施されることになる。そのため、生成された二酸化塩素のうち、陽極室で回収されなかった二酸化塩素を、脱気槽で回収することができるようになり、生成された二酸化塩素をより確実に回収することができる。
 第4特徴構成は、前記排出部に中和槽を設け、前記中和手段が前記中和槽に中和剤を供給するように構成される点にある。
〔作用及び効果〕
 本構成のごとく、中和処置する専用の中和槽を設けることによって、より効率的に中和処理が実施される。
 本発明の二酸化塩素製造方法に係る特徴構成は、陽極室と陰極室とを有する隔膜式電解槽を用いる二酸化塩素製造方法であって、前記隔膜式電解槽の陽極室に亜塩素酸塩を含む陽極液を供給する供給工程と、前記陽極液を電解処理して二酸化塩素を発生させる陽極電解工程と、曝気気体を前記陽極室の陽極液に供給することによって、発生した二酸化塩素を回収する曝気工程と、前記陽極室にて電解処理及び曝気処理された後の陽極液を、陰極液として前記陰極室にて電解処理する陰極電解工程と、前記陰極室にて電解処理された後の陰極液を排出する排出工程と、前記陰極電解工程、及び前記排出工程の少なくともいずれか一方において陰極液を中和処理する中和工程と、を包含する点にある。
〔作用及び効果〕
 本構成によれば、曝気工程によって曝気気体を陽極室に供給して陽極液を曝気処理することができる。これにより、発生した二酸化塩素の陽極液への溶解を抑えながら、二酸化塩素濃度を速やかに希釈して爆発を回避することが可能となるため、発生した二酸化塩素をより効率的且つ安全に回収することができる。
 また本構成によれば、陽極室にて電解処理された後の陽極液を、そのまま陰極液として使用するため、陰極室に別途陰極液を供給する工程が不要となり、製造方法が簡素化されて種々のコストを削減することができる。
 さらに本構成によれば、陽極室にて電解処理及び曝気処理された後の陽極液が、陰極液として陰極室にて電解処理されるため、たとえ、発生した二酸化塩素の一部が陽極室で回収されずに陽極液中に残留していたとしても、陰極室において陰極還元されて亜塩素酸塩等となる。またさらに、陰極室にて電解処理された後の、高いpHを有する陰極液が、陰極電解工程、及び排出工程の少なくともいずれか一方において中和処理される。
 つまり、本構成のごとく、陽極室にて電解処理及び曝気処理された後の陽極液をそのまま陰極液として使用し、陰極室にて電解処理された後の陰極液を中和処理するという構成を採用することによって、残留二酸化塩素を含む陽極液、及び高いpHを有する陰極液のそれぞれの廃液処理が、それぞれ別々にではなく、陰極室から排出されるまでの間にまとめて実施されるようになるため廃液処理が簡便化される。
本発明の二酸化塩素製造装置の概略流路図である。 本発明の二酸化塩素製造装置の分解斜視図である。 第2板状部材の縦断面図である。 第3板状部材の縦断面図である。
 以下、本発明の二酸化塩素製造装置及び二酸化塩素製造方法の一実施形態を説明する。
〔実施形態〕
〔1〕二酸化塩素製造装置
 図1に示すように、本実施形態に係る二酸化塩素製造装置1は、陽極室3と陰極室5とを有する隔膜式電解槽2、亜塩素酸塩を含む陽極液を隔膜式電解槽2に供給する供給手段8、脱気槽9、第1排液槽10、電解処理後の陰極液を中和処理する中和槽11、中和剤を供給する中和手段12、第2排液槽13、及び曝気気体を供給する曝気手段14を備えて構成される。
 陽極室3と脱気槽9とが第1連通路P1によって連通され、脱気槽9と第1排液槽10とが第2連通路P2によって連通され、第1排液槽10と陰極室5とが第3連通路P3によって連通され、陰極室5と中和槽11とが第4連通路P4によって連通され、中和槽11と第2排液槽13とが第5連通路P5によって連通されている。即ち、二酸化塩素製造装置1は、第1~第5連通路P1~P5によって、陽極室3、脱気槽9、第1排液槽10、陰極室5、中和槽11、第2排液槽13が直列的に連通接続されている。
 尚、本実施形態において、陽極室3と陰極室5とを連通する流路部Cが、第1連通路P1、脱気槽9、第2連通路P2、第1排液槽10、及び第3連通路P3によって形成されている。しかしながら、流路部Cはこの構成に限定されるものではなく、例えば、脱気槽9や第1排液槽10等を設けることなく第1連通路P1のみで構成し、陽極室3と陰極室5とを直接連通させる構成としても良い。
 また本実施形態において、陰極室5と外部とを連通する排出部Dが、第4連通路P4、中和槽11、第5連通路P5、第2排液槽13、及び排液管17によって形成されている。しかしながら、排出部Dはこの構成に限定されるものではなく、例えば、中和槽11や第2排液槽13等を設けることなく排液管17のみで構成し、陰極室5と外部とを直接連通させる構成としても良い。ただしその場合、中和手段12は、陰極室5に中和剤を供給する構成となる。
 (隔膜式電解槽)
 隔膜式電解槽2としては、陽極室3と陰極室5とが陽イオン交換膜7によって仕切られている従来公知の電解槽を使用することができる。
 陽極室3及び陰極室5のそれぞれには、電極として陽極4及び陰極6が設けられている。これらの電極については、従来公知のものを使用することができる。例えば、陰極材料としては、チタン、ステンレス鋼、ニッケル、ニッケル・クロム合金、又は他のバルブ金属が挙げられる。また、陽極材料としては、白金、金、パラジウム、イリジウム、ロジウム、又はルテニウムなどの貴金属、黒鉛、黒鉛フェルト、多層黒鉛布、黒鉛織布、炭素、あるいはチタン上に白金を電気メッキした白金被覆材料、チタン、タンタル、ニオブ、又はジルコニウムのバルブ金属の酸化物で構成された電極などが挙げられ、電極触媒をコーティングしたものが好適に用いられる。
 陽イオン交換膜7についても従来公知のものを使用することができるが、選択透過性、耐久性などが優れたフルオロカーボン系の陽イオン交換膜7が好適である。
 (中和手段)
 本実施形態における中和手段12は、陰極室5及び中和槽11の少なくともいずれか一方に中和剤を供給するように構成されている。しかし、中和手段12は、この構成に限定されるものではなく、陰極室5及び排出部Dの少なくともいずれか一方で中和処理する構成とすれば良い。排出部Dで中和処理する場合、例えば、中和槽11に限らず、排出部Dを構成する、第4連通路P4、第5連通路P5、第2排液槽13、及び排液管17のいずれかに中和剤を供給するようにしても良い。
 中和手段12としては、従来公知の構成、例えば、中和剤を貯留する貯留タンク、送液ポンプ、及び送液管等を備えるものを使用することができる。使用可能な中和剤としては、例えば、塩酸、硫酸、クエン酸、フマル酸、ギ酸、乳酸、リン酸、酒石酸、酪酸、各種リン酸塩などが挙げられる。これらは1種を単独で用いてもよいし、2種以上を併用しても構わない。
 (供給手段)
 供給手段8としては、従来公知の構成、例えば、亜塩素酸塩を含む陽極液を貯留する貯留タンク、送液ポンプ、及び送液管等を備えるものを使用することができる。使用可能な亜塩素酸塩としては、例えば亜塩素酸アルカリ金属塩や亜塩素酸アルカリ土類金属塩が挙げられる。亜塩素酸アルカリ金属塩としては、例えば、亜塩素酸ナトリウム、亜塩素酸カリウム、亜塩素酸リチウムが挙げられ、亜塩素酸アルカリ土類金属塩としては、亜塩素酸カルシウム、亜塩素酸マグネシウム、亜塩素酸バリウムが挙げられる。なかでも、入手が容易という点から、亜塩素酸ナトリウム、亜塩素酸カリウムが好ましく、亜塩素酸ナトリウムが最も好ましい。これら亜塩素酸塩は1種を単独で用いてもよいし、2種以上を併用しても構わない。陽極液における亜塩素酸塩の濃度は、二酸化塩素の発生効率、安全性、安定性、亜塩素酸塩の結晶析出防止などを考慮すると、1重量%~25重量%であることが好ましい。
 (曝気手段)
 曝気手段14は、例えば、曝気気体の供給量を調節することのできる曝気ポンプと、曝気ポンプからの曝気気体を各槽に導入する導入管等とを備える従来公知の装置を使用することができる。
 本実施形態における曝気手段14は、隔膜式電解槽2の陽極室3、脱気槽9、及び中和槽11のそれぞれに曝気気体を供給するように構成されている。また使用可能な曝気気体としては、例えば、空気、あるいは窒素やアルゴンなどの不活性ガスが挙げられる。
〔2〕二酸化塩素製造方法
 上記二酸化塩素製造装置1を用いて二酸化塩素を製造する方法について以下に説明する。供給手段8を作動させることによって、亜塩素酸塩を含む陽極液(亜塩素酸塩水溶液)を隔膜式電解槽2の陽極室3に連続的に供給する(供給工程)。また最初のうちだけ、陰極液又は2倍希釈した陽極液を、隔膜式電解槽2の陰極室5に予め供給して貯めておく。
 陽極室3に供給された陽極液は、電解処理される。即ち陽極室3には、亜塩素酸イオン(ClO2 -)と陽イオン(亜塩素酸塩として亜塩素酸ナトリウムを用いた場合はナトリウムイオン)とが存在するため、隔膜式電解槽2に直流電源装置(図示せず)より直流を負荷すると、以下の式(1)に示すように、亜塩素酸イオンが陽極で電子(e)を放出するため、二酸化塩素(ClO2)が発生する(陽極電解工程)。
   ClO2 -→ClO2+e・・・・・式(1)
一方、陽イオンは、陽イオン交換膜7を通過して陰極室5に入る。
 上記式(1)により発生した二酸化塩素は、その高い溶解性により陽極液中に溶け込むが、曝気手段14によって吹き込まれた曝気気体によって、気液平衡関係に従い液中濃度が下がるため液外に追い出される。追い出された二酸化塩素は、供給された曝気気体によって、爆発回避可能な濃度(およそ10%v/v)よりもさらに低い濃度に希釈されながら採取管15より回収される(曝気工程)。
 陽極室3にて電解処理された後の陽極液は、第1連通路P1を通って脱気槽9に移流する。脱気槽9においても、曝気手段14によって吹き込まれた曝気気体によって再び曝気処理がなされ、陽極液中に残存する二酸化塩素が液外に追い出される。追い出された二酸化塩素は、陽極室3と脱気槽9とを連通する第6連通路P6を通って再び陽極室3に戻り採取管15より回収される。この脱気槽9においても、追い出された二酸化塩素は、曝気気体によって、爆発回避可能な濃度(およそ10%v/v)よりもさらに低い濃度に希釈される。
 尚、本実施形態においては、陽極室3及び脱気槽9への曝気気体の供給量を調節可能に構成することによって、二酸化塩素濃度をコントロールし、希釈と同時にユーザーの所望する濃度の二酸化塩素を製造するように構成しても良い。
 脱気槽9で曝気処理された後の陽極液は、第2連通路P2を通って第1排液槽10に移流する。そして、第1排液槽10に移流した陽極液は、第3連通路P3を通り、今度は陰極液として、隔膜式電解槽2の陰極室5内に供給される。
 陰極室5では、陰極液として供給された陽極液中に、仮に二酸化塩素の一部が、陽極室3又は脱気槽9で回収されずに残留していた場合、その残留二酸化塩素は、陰極室5の陰極6によって陰極還元されて亜塩素酸塩となる。
 また陰極室5では、供給された陽極液(陰極液)の水の一部が、水素イオン(H+)と水酸化物イオン(OH-)に分かれており、以下の式(2)に示すように、水素イオンが陰極6で電子を得て水素ガス(H2)が発生する(陰極電解工程)。
   2H++2e→H2・・・・・式(2)
 一方、残された水酸化物イオンは、アルカリ(例えば、陽イオンがナトリウムイオンの場合は、水酸化ナトリウム)となる。よって、陰極室5で電解処理された後の陰極液は、アルカリを多量に含むため高いpHを有する。この高いpHを有する陰極液は、中和手段12から供給される中和剤によって中和される(中和工程)。
 本実施形態における中和手段12は、陰極室5及び中和槽11の少なくともいずれか一方に中和剤を供給するように構成されているため、高いpHを有する陰極液は、陰極室5及び中和槽11の少なくともいずれか一方で中和される。
 特に、陰極液が、本実施形態の中和槽11にて中和される場合、陰極室5で電解処理された後の高いpHの陰極液が第4連通路P4を通って中和槽11に移流すると、曝気手段14によって吹き込まれる曝気気体によって、中和手段12から供給される中和剤と共に激しく攪拌・混合されるため、効率的な中和処理が実施される。
 中和槽11に供給された曝気気体はその後、陰極室5と中和槽11とを連通する第7連通路P7を通って陰極室5に移流する。移流した曝気気体は、陰極室5で発生した水素ガスを爆発回避可能な濃度(およそ4%v/v)よりもさらに低い濃度に希釈しながら、水素ガスと共に排気管16より排出される。
 中和槽11で中和処理された後の陰極液は、第5連通路P5を通って第2排液槽13に移流する。そして、第2排液槽13に移流した陰極液は、排液管17から装置外に排出される。
 〔その他の実施形態〕
 上述の実施形態の隔膜式電解槽において、陽極室と陰極室とを仕切る隔膜として陽イオン交換膜を使用しているが、これに限定されるものではなく、中性隔膜を使用しても良い。
 以下、本発明の二酸化塩素製造装置に適用される二酸化塩素製造キットKの実施例を図面に基づいて説明する。尚、本明細書中において「厚み方向」、「高さ方向」、「幅方向」のそれぞれは、図2における矢印X1、X2、X3に沿う方向を意味する。
 図2に示すように、本実施例に係る二酸化塩素製造キットKは、第1~第4部材A1~A4、第1~第4ガスケット部材G1~G4、陽イオン交換膜7、及び図示しない外枠部材を備える。尚、第1~第4部材A1~A4、第1~第4ガスケット部材G1~G4、及び陽イオン交換膜7はいずれも矩形の部材であり、それらの幅と高さは同じ寸法に設定されている。
 第1~第4部材A1~A4はいずれも矩形の板状部材であって、例えば、ポリ塩化ビニル等の耐久性素材を構成素材とする。尚、第1部材A1及び第4部材A4のそれぞれの厚みは、第2部材A2及び第3部材A3のそれぞれの厚みよりも薄く設定されている。
 図2及び図3に示すように、第2部材A2には、厚み方向に貫通する直方体状の3つの貫通空間が設けられており、これら3つの貫通空間のそれぞれが、陽極室3、脱気槽9、及び第1排液槽10を構成する。
 陽極4は、第2部材A2の陽極室3の中に配置される。
 第2部材A2における陽極室3側の横側壁には、陽極室3の二酸化塩素を回収するための採取管15、及び供給手段8(図1参照)から陽極液を陽極室3に導入するための陽極液導入管20が設けられている。尚、陽極液導入管20は、採取管15の下側に設けられる。
 曝気手段14(図1参照)から曝気気体を陽極室3に導入するための第1気体導入管21が、第2部材A2の上側壁を貫通して、その先端が、陽極室3の下部空間に開口するように設けられている。
 曝気手段14から曝気気体を脱気槽9に導入するための第2気体導入管22が、第2部材A2の上側壁を貫通して、その先端が、脱気槽9の下部空間に開口するように設けられている。
 陽極室3と脱気槽9との間の仕切壁の上部及び下部のそれぞれには、陽極室3と脱気槽9とを連通する第6連通路P6及び第1連通路P1が設けられている。また、脱気槽9と第1排液槽10との間の仕切壁の下部には、脱気槽9と第1排液槽10とを連通する第2連通路P2が設けられている。
 第2部材A2における第1排液槽10側の横側壁には、第1排液槽10の内壁面から第2ガスケット部材G2との合わせ面に通じるL字状の連通路30が設けられている。
 図2及び図4に示すように、第3部材A3には、厚み方向に貫通する直方体状の3つの貫通空間が設けられており、これら3つの貫通空間のそれぞれが、陰極室5、中和槽11、及び第2排液槽13を構成する。
 陰極6は、第3部材A3の陰極室5の中に配置される。
 第3部材A3における陰極室5側の横側壁には、陰極室5で発生した水素ガスを排出するための排気管16が設けられている。
 中和手段12から中和剤を陰極室5に導入するための第1中和剤導入管24が、第3部材A3の上側壁を貫通して、その先端が、陰極室5の下部空間に開口するように設けられている。
 曝気手段14から曝気気体を中和槽11に導入するための第3気体導入管23と、中和手段12(図1参照)から中和剤を中和槽11に導入するための第2中和剤導入管25が、第3部材A3の上側壁を貫通して、各先端が、中和槽11の下部空間に開口するように設けられている。
 陰極室5と中和槽11との間の仕切壁の上部及び下部のそれぞれには、陰極室5と中和槽11とを連通する第7連通路P7及び第4連通路P4が設けられている。また、中和槽11と第2排液槽13との間の仕切壁の下部には、中和槽11と第2排液槽13とを連通する第5連通路P5が設けられている。
 第3部材A3における第2排液槽13側の横側壁には、第2排液槽13の陰極液を装置外に排出するための排液管17と、厚み方向に貫通する連通路31が設けられている。尚、連通路31は、排液管17の下側に設けられる。
 図2に示すように、第4部材A4は、幅方向の両端部のそれぞれに、厚み方向に貫通する貫通孔32,33を有し、これらの貫通孔32,33が、コの字状の配管34を介して連通接続されている。
 第1~第4ガスケット部材G1~G4は、例えば、エチレン-プロピレン-ジエンゴム(EPDM)等の耐薬品性素材を構成素材とする、いずれも矩形の板状部材である。第1~第4ガスケット部材G1~G4によって、二酸化塩素製造キットKに高い水密性が付与され、二酸化塩素製造キットKからの液漏れが防止される。
 図2に示すように、第2ガスケット部材G2は、幅方向の一端部にて厚み方向に貫通する貫通孔26を有し、他端部にて厚み方向に貫通する直方体状の貫通空間27を有する。また、第3ガスケット部材G3は、第2ガスケット部材G2と同様に、幅方向の一端部にて厚み方向に貫通する貫通孔35を有し、他端部にて厚み方向に貫通する直方体状の貫通空間38を有する。第2ガスケット部材G2の貫通空間27の幅及び高さは、第2部材A2の陽極室3の幅及び高さと同じか、あるいは第2部材A2の陽極室3の幅及び高さよりも小さく設定しても良く、また第3ガスケット部材G3の貫通空間38の幅及び高さについても、第3部材A3の陰極室5の幅及び高さと同じか、あるいは第3部材A3の陰極室5の幅及び高さよりも小さく設定して良い。
 第4ガスケット部材G4は、幅方向の両端部のそれぞれに、厚み方向に貫通する貫通孔36,37を有する。また、陽イオン交換膜7は、幅方向の一端部に、厚み方向に貫通する図示しない貫通孔を有する。
 二酸化塩素製造キットKを組み立てる場合は、第1~第4部材A1~A4、第1~第4ガスケット部材G1~G4、及び陽イオン交換膜7を図2に示すように配置する。即ち、第1部材A1と第2部材A2との間に第1ガスケット部材G1を配置し、第2部材A2と第3部材A3との間に第2ガスケット部材G2、陽イオン交換膜7、及び第3ガスケット部材G3をこの順序で配置し、第3部材A3と第4部材A4との間に第4ガスケット部材G4を配置する。
 このとき、第2ガスケット部材G2を、その貫通空間27が第2部材A2の陽極室3に対向するように配置し、第3ガスケット部材G3を、その貫通空間38が第3部材A3の陰極室5に対向するように配置する。また、第4ガスケット部材G4を、その一方の貫通孔36が第3部材A3の連通路31に対向し、他方の貫通孔37が第3部材A3の陰極室5に対向するように配置する。また、第4部材A4を、その2つの貫通孔32,33のそれぞれが第4ガスケット部材G4の2つの貫通孔36,37に対向するように配置する。
 図2のように配置した第1~第4部材A1~A4、第1~第4ガスケット部材G1~G4、及び陽イオン交換膜7のそれぞれの端を揃えつつ、互いに密着させた状態で、図示しない外枠部材に嵌め込むことによって、直方体状又は立方体状の二酸化塩素製造キットKが完成する。
 二酸化塩素製造キットKの内部では、第2部材A2の連通路30、第2ガスケット部材G2の貫通孔26、陽イオン交換膜7の貫通孔(図示せず)、第3ガスケット部材G3の貫通孔35、第3部材A3の連通路31、第4ガスケット部材G4の一方の貫通孔36、第4部材A4の一方の貫通孔32、配管34、第4部材A4の他方の貫通孔33、及び第4ガスケット部材G4の他方の貫通孔37が連通する。これにより、第2部材A2の第1排液槽10から第3部材A3の陰極室5にわたって連通する第3連通路P3が形成される。
 また、第2部材A2の陽極室3と第2ガスケット部材G2の貫通空間27とが連通し、第3部材A3の陰極室5と第3ガスケット部材G3の貫通空間38とが連通するため、第2部材A2の陽極室3と第3部材A3の陰極室5とが陽イオン交換膜7を介して対向配置されて、隔膜式電解槽2が形成される。
 即ち、上記二酸化塩素製造キットKでは、隔膜式電解槽2、流路部C、及び排出部Dが一体化されている。そのため、この二酸化塩素製造キットKを使用することによって、二酸化塩素製造装置の構成をコンパクト化することができる。
 次いで、上記構成の二酸化塩素製造キットKを使用して二酸化塩素を製造した。
 電極寸法が幅18mm、高さ46mm、厚さ1mmの陽極4及び陰極5を備える、幅73mm、高さ148mm、厚さ45mmの二酸化塩素製造キットKを作製した。そしてその二酸化塩素製造キットKの第1及び第2気体導入管21,22に曝気手段14を接続し、二酸化塩素製造キットKの陽極液導入管20に供給手段8を接続し、二酸化塩素製造キットKの第2中和剤導入管25に中和手段12を接続して二酸化塩素製造装置1を構成した。
 25重量%の亜塩素酸ナトリウム800mLと塩化カリウム50gとを水に溶解して1Lとして、陽極液を調製した。この陽極液を供給手段8の送液ポンプによって14mL/時間で送液した。
 また、リン酸二水素カリウム200gとリン酸一水素カリウム100gとを水に溶解して1Lとして、中和剤を調製した。この中和剤を中和手段12の送液ポンプによって14mL/時間で送液した。
 そして、陽極4及び陰極6に対して800mAで通電し、さらに、陽極室3と脱気槽9に対して曝気手段14の曝気ポンプにより空気を供給し、採取管15から放出された二酸化塩素をヨウ化カリウム溶液で所定時間吸収し、遊離されたヨウ素を所定のチオ硫酸ナトリウム水溶液で滴定した。その結果、1.2g/時間の二酸化塩素が発生していたことが確認された。また、排液管17から排出された排液には、ほとんど二酸化塩素が含まれず、pHも7.8であり、安全に廃棄することが可能であった。
 本発明に係る二酸化塩素製造装置及び二酸化塩素製造方法は、二酸化塩素による環境除菌や消臭等に関する産業分野に好適に利用することができる。
1 二酸化塩素製造装置
2 隔膜式電解槽
3 陽極室
4 陽極
5 陰極室
6 陰極
7 陽イオン交換膜
8 供給手段
9 脱気槽
10 第1排液槽
11 中和槽
12 中和手段
13 第2排液槽
14 曝気手段
15 採取管
16 排気管
17 排液管
P1~P7 第1~第7連通路
C 流路部
D 排出部

Claims (5)

  1.  陽極室と陰極室とを有し、前記陽極室に供給された亜塩素酸塩を含む陽極液を電解処理して二酸化塩素を発生させる隔膜式電解槽と、
     前記陽極室と前記陰極室とを連通する流路部と、
     前記陰極室と外部とを連通する排出部と、
     供給量調節自在に曝気気体を前記陽極室に供給する曝気手段と、
     前記陰極室及び前記排出部の少なくともいずれか一方に中和剤を供給する中和手段と、を備え、
     前記陽極室において前記陽極液を電解処理して二酸化塩素を発生させ、
     前記曝気手段により曝気気体を前記陽極室の陽極液に供給することによって、発生した二酸化塩素を回収し、
     前記陽極室にて電解処理及び曝気処理された後の陽極液が、前記流路部を通って前記陰極室に移流して陰極液として電解処理された後、前記陰極室及び前記排出部の少なくともいずれか一方で中和処理されるように構成される二酸化塩素製造装置。
  2.  前記隔膜式電解槽、前記流路部、及び前記排出部が一体化されている請求項1に記載の二酸化塩素製造装置。
  3.  前記流路部に脱気槽を設け、前記曝気手段が前記陽極室及び前記脱気槽に曝気気体を供給するように構成される請求項2に記載の二酸化塩素製造装置。
  4.  前記排出部に中和槽を設け、前記中和手段が前記中和槽に中和剤を供給するように構成される請求項2又は3に記載の二酸化塩素製造装置。
  5.  陽極室と陰極室とを有する隔膜式電解槽を用いる二酸化塩素製造方法であって、
     前記隔膜式電解槽の陽極室に亜塩素酸塩を含む陽極液を供給する供給工程と、
     前記陽極液を電解処理して二酸化塩素を発生させる陽極電解工程と、
     曝気気体を前記陽極室の陽極液に供給することによって、発生した二酸化塩素を回収する曝気工程と、
     前記陽極室にて電解処理及び曝気処理された後の陽極液を、陰極液として前記陰極室にて電解処理する陰極電解工程と、
     前記陰極室にて電解処理された後の陰極液を排出する排出工程と、
     前記陰極電解工程、及び前記排出工程の少なくともいずれか一方において陰極液を中和処理する中和工程と、を包含する二酸化塩素製造方法。
PCT/JP2014/072910 2013-09-09 2014-09-01 二酸化塩素製造装置及び二酸化塩素製造方法 WO2015033887A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020167005801A KR20160054471A (ko) 2013-09-09 2014-09-01 이산화염소 제조 장치 및 이산화염소 제조 방법
CN201480049450.8A CN105683417B (zh) 2013-09-09 2014-09-01 二氧化氯制造装置及二氧化氯制造方法
EP14843084.6A EP3045568A4 (en) 2013-09-09 2014-09-01 Chlorine dioxide production device and chlorine dioxide production method
US14/911,931 US10094029B2 (en) 2013-09-09 2014-09-01 Chlorine dioxide production device and chlorine dioxide production method
JP2015535457A JP6448540B2 (ja) 2013-09-09 2014-09-01 二酸化塩素製造装置及び二酸化塩素製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-186366 2013-09-09
JP2013186366 2013-09-09

Publications (1)

Publication Number Publication Date
WO2015033887A1 true WO2015033887A1 (ja) 2015-03-12

Family

ID=52628361

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/072910 WO2015033887A1 (ja) 2013-09-09 2014-09-01 二酸化塩素製造装置及び二酸化塩素製造方法

Country Status (8)

Country Link
US (1) US10094029B2 (ja)
EP (1) EP3045568A4 (ja)
JP (1) JP6448540B2 (ja)
KR (1) KR20160054471A (ja)
CN (1) CN105683417B (ja)
HK (2) HK1225418B (ja)
TW (1) TWI646223B (ja)
WO (1) WO2015033887A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107313067A (zh) * 2016-04-27 2017-11-03 曾瑞波 稳定生产高纯度食品级二氧化氯的辅助装置与系统

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CL2014003049A1 (es) * 2014-11-10 2015-05-29 Propipe Maquinarias Limitada Dispositivo electrolitico multiproposito para procesos forzados o espontaneos de electro obtencion de metales con electrolitos independientes, que permite la transformacion electrolítica de iones en forma controlada, con alta eficiencia de corriente faradica y con un alto rendimiento energetico; procedimiento.
JP6891894B2 (ja) * 2016-09-05 2021-06-18 株式会社大阪ソーダ 二酸化塩素発生装置及び二酸化塩素発生方法
CN111621803A (zh) * 2020-06-05 2020-09-04 池晓雷 一种二氧化氯发生装置及应用
CN114921799A (zh) * 2022-05-11 2022-08-19 上海交通大学 单原子阴阳极同时合成高纯二氧化氯气体的方法及其装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56158883A (en) * 1980-05-13 1981-12-07 Japan Carlit Co Ltd:The Method and device for electrolytic production of chlorine dioxide
JPH02205693A (ja) * 1989-02-03 1990-08-15 Japan Carlit Co Ltd:The 二酸化塩素の電解生成方法およびその装置
WO2011115220A1 (ja) * 2010-03-19 2011-09-22 大幸薬品株式会社 電気分解装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2163793A (en) 1937-06-08 1939-06-27 Mathieson Alkall Works Inc Production of chlorine dioxide
US5158658A (en) * 1990-10-31 1992-10-27 Olin Corporation Electrochemical chlorine dioxide generator
JP3849725B2 (ja) * 1996-04-11 2006-11-22 水道機工株式会社 二酸化塩素の製造方法
US7754057B2 (en) * 2004-07-29 2010-07-13 Pureline Treatment Systems, Llc Chlorine dioxide solution generator
JP5469601B2 (ja) * 2008-06-19 2014-04-16 大幸薬品株式会社 1液型電解式の二酸化塩素製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56158883A (en) * 1980-05-13 1981-12-07 Japan Carlit Co Ltd:The Method and device for electrolytic production of chlorine dioxide
JPS596915B2 (ja) 1980-05-13 1984-02-15 日本カ−リツト株式会社 二酸化塩素の電解製造方法
JPH02205693A (ja) * 1989-02-03 1990-08-15 Japan Carlit Co Ltd:The 二酸化塩素の電解生成方法およびその装置
WO2011115220A1 (ja) * 2010-03-19 2011-09-22 大幸薬品株式会社 電気分解装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3045568A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107313067A (zh) * 2016-04-27 2017-11-03 曾瑞波 稳定生产高纯度食品级二氧化氯的辅助装置与系统
CN107313067B (zh) * 2016-04-27 2019-06-07 曾瑞波 稳定生产高纯度食品级二氧化氯的辅助装置与系统

Also Published As

Publication number Publication date
TWI646223B (zh) 2019-01-01
JPWO2015033887A1 (ja) 2017-03-02
US10094029B2 (en) 2018-10-09
CN105683417A (zh) 2016-06-15
JP6448540B2 (ja) 2019-01-09
CN105683417B (zh) 2018-04-10
HK1225418B (zh) 2017-09-08
EP3045568A1 (en) 2016-07-20
HK1226451A1 (zh) 2017-09-29
US20160201203A1 (en) 2016-07-14
EP3045568A4 (en) 2017-04-12
TW201606137A (zh) 2016-02-16
KR20160054471A (ko) 2016-05-16

Similar Documents

Publication Publication Date Title
JP6448540B2 (ja) 二酸化塩素製造装置及び二酸化塩素製造方法
TWI614375B (zh) 電解水之產生方法及產生器
US6274009B1 (en) Generator for generating chlorine dioxide under vacuum eduction in a single pass
WO2017030153A1 (ja) 電解装置及び電解方法
KR101118795B1 (ko) 소독부산물 저감형 고효율 차아염소산나트륨 발생장치
TWI434958B (zh) 1液型電解式的二氧化氯之製造方法
US20010022273A1 (en) Electrochemical treatment of water and aqueous salt solutions
KR100883894B1 (ko) 미산성 차아염소산수 제조장치 및 미산성 차아염소산수제조방법
US20130101499A1 (en) METHODS FOR ELECTROCHEMICAL DECHLORINATION OF ANOLYTE BRINE FROM NaCl ELECTROLYSIS
KR101436139B1 (ko) 차아염소산용액 생성용 염수의 전기분해장치
US20140246308A1 (en) Three-compartment-cell one-port type electrolysis apparatus
JP3380658B2 (ja) アルカリ溶液の精製方法
US9533897B2 (en) Method for electro-chemical activation of water
JP3746932B2 (ja) 電解水生成装置
JP6891894B2 (ja) 二酸化塩素発生装置及び二酸化塩素発生方法
JP2012091121A (ja) 電解水製造装置
JP2000005757A (ja) 経済的な電解殺菌水の製造方法
JP3568290B2 (ja) 電解水生成装置
JP3893693B2 (ja) 電解水製造装置
JP2892120B2 (ja) 電解による次亜塩素酸含有殺菌水の製造方法
KR100523982B1 (ko) 전기화학적 살균제 발생기
JP2892121B2 (ja) 電解による次亜塩素酸含有殺菌水の製造方法
TWI427189B (zh) Method and apparatus for producing high concentration hypochlorochloride sterilized water
KR20220105790A (ko) 미산성 차아염소산수 생성장치
JP2001122601A (ja) 過酸化水素の製造方法及び装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14843084

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14911931

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015535457

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014843084

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014843084

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167005801

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE