JP6503054B2 - 電解水生成装置、電極ユニット、および電解水生成方法 - Google Patents

電解水生成装置、電極ユニット、および電解水生成方法 Download PDF

Info

Publication number
JP6503054B2
JP6503054B2 JP2017506007A JP2017506007A JP6503054B2 JP 6503054 B2 JP6503054 B2 JP 6503054B2 JP 2017506007 A JP2017506007 A JP 2017506007A JP 2017506007 A JP2017506007 A JP 2017506007A JP 6503054 B2 JP6503054 B2 JP 6503054B2
Authority
JP
Japan
Prior art keywords
water
chamber
electrolyte
electrolytic
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017506007A
Other languages
English (en)
Other versions
JPWO2016147434A1 (ja
Inventor
横田 昌広
昌広 横田
修 小野
修 小野
二階堂 勝
勝 二階堂
齋藤 誠
誠 齋藤
英男 太田
英男 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Publication of JPWO2016147434A1 publication Critical patent/JPWO2016147434A1/ja
Application granted granted Critical
Publication of JP6503054B2 publication Critical patent/JP6503054B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/24Halogens or compounds thereof
    • C25B1/26Chlorine; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

ここで述べる実施形態は、電解水生成装置、電極ユニット、および電解水生成方法に関する。
近年、次亜塩素酸水やアルカリイオン水などの電解水を電解で生成する電解水生成装置が知られている。このような電解水生成装置としては、1隔膜2室型の電解槽や、2隔膜3室型の電解槽に電解液(電解質液)および水を流水して電解水を生成する流水式の電解水生成装置が提案されている。流水式の電解水生成装置では、生成水を陽極室あるいは陰極室に取り込んで流水させるため、配管やポンプが必要となる。そのため、装置全体の構成が複雑になり、また、流水圧力による特性変動が生じやすい。
給排水に係る配管を持たず比較的簡素な構造の電解水生成装置として、陽極および陰極を有し電解液を充填した電極ユニットを、水を収容したタンク等の容器内に入れ、この容器内の水を電極ユニットで電解して電解水へと変える静水式(バッチ式)の電解水生成装置が提案されている。
しかしながら、このような静水式の電解水生成装置では、所望の電解水が生成される前に電極ユニット内の電解液が枯渇し、逆に、電解水が生成された後も無駄に電力を消費してしまう場合がある。
特許第3500173号公報 特許第3551288号公報 特許第4024278号公報
本実施形態が解決しようとする課題は、安定して電解水を生成できる簡易な構造の電解水生成装置、電極ユニット、および電解水生成方法を提供することにある。
実施形態によれば、電解水生成装置は、電解液を充填する電解液室と、前記電解液室を仕切る隔膜と、前記隔膜の両側に設けられ互いに対向した一対の電極と、を有する電極ユニットと、前記電極に電解電流を供給する電源と、電解液濃度の低下に起因する電解電圧の上昇を検知し、電解を停止する検知回路と、を備え、前記電極ユニットを容器内の水に浸漬させた状態で水を電解して電解水を生成する。前記電解液室の容量が前記容器内の水の容量の1/100以下、2mL以上に形成され、前記検知回路は、前記電解液濃度が13%程度に低下した時点で生じる電解電圧上昇を検知して前記電源からの給電を停止するように構成され、有効塩素濃度が500ppm以下の電解水を生成する。
図1は、第1の実施形態に係る電解水生成装置の概略的な構成を示す断面図。 図2は、第1の実施形態に係る電解水生成装置おける電解経過時間と生成水の有効塩素濃度および電解電圧との関係を示す図。 図3は、電解液濃度と電解電圧との関係を示す図。 図4は、電解液濃度と電解電圧との関係を示す図。 図5は、電解液濃度と生成効率の関係を示す図。 図6は、電解液濃度と生成効率の関係を示す図。 図7は、第2の実施形態に係る電解水生成装置の概略的構成を示す断面図。
以下に、図面を参照しながら、種々の実施形態について説明する。なお、実施形態を通して共通の構成には同一の符号を付すものとし、重複する説明は省略する。また、各図は実施形態とその理解を促すための模式図であり、その形状や寸法、比などは実際の装置と異なる個所があるが、これらは以下の説明と公知の技術を参酌して適宜、設計変更することができる。
(第1の実施形態)
図1は、第1の実施形態に係る電解水生成装置を概略的に示す断面図である。本実施形態において、電解水生成装置10は、次亜塩素酸水を生成する静水式あるいはバッチ式の電解水生成装置として構成されている。電解水生成装置10は、水等の液体を収容した既存のタンク(あるいは容器)12に投入する電極ユニット20と、電極ユニット20の電極に電解電力を供給する給電部30と、を備えている。給電部30は、図示しない直流電源に接続される。なお、給電部30は、定電圧を供給する電池等で構成してもよい。
電極ユニット20は、電解液室22および陰極室24を有するほぼ矩形箱状の筐体26と、筐体26の一側面に開口する電解液室22の開口を塞ぐように配置され、電解液室22と外部(ここでは、タンク12内部)とを仕切る第1隔膜28aと、筐体26内に第1隔膜28aと対向して配置され、電解液室22と陰極室24とを仕切る第2隔膜28bと、を備えている。第1隔膜28aおよび第2隔膜28bとして、化学耐性に優れたポリフッ化ビニリデン(PolyVinylidene DiFuoride:PVDF)と酸化チタンとを含有する多孔質隔膜を用いている。
電極ユニット20は、更に、第1隔膜28aのタンク側(外側)に隣接、対向して設けられた陽極14と、陰極室24内で、第2隔膜28bに隣接、対向して設けられた陰極16と、を備えている。陽極14および陰極16は、第1および第2隔膜28a、28b、並びに電解液室22を間に挟んで、互いに対向している。陽極14および陰極16は、配線を介して給電部30に電気的に接続されている。
本実施形態において、電極ユニット20は、陰極室24の上部に接続され、陰極室24で発生するガスを排気するためのガスベント管32と、陽極14の外側に設けられた複数の撹拌板34と、電解液室22から上方に延出する注入管36と、を備えている。注入管36を通して、電解液室22に電解液(電解質液)を注入することができる。ただし、注入管36は、電解液室22への電解液の充填を簡便にするために設けたもので、必ずしも必要ではなく、省略可能である。例えば、筐体26に注入口を設け、この注入口から電解液室に電解液を充填した後、注入口を詮で閉じる構成としてもよい。
上記のように構成された電極ユニット20の電解液室22には、予め、塩化物を含有する電解液として、例えば、飽和食塩水が充填され、陰極室24には予め水が充填されている。飽和食塩水は、電解液室22の容量と同量だけ電解液室22に充填され、電解液室22を満たしている。ここで、タンク12の容量、ここでは、タンク12に収容されている水(静水)の容量が100Lであるとした場合、電解液室22の容量は、タンク12の容量の1/100以下、例えば、100mLに形成され、陰極室24の容量は200mLに形成されている。電解水生成時、電極ユニット20は、タンク12の水に浸漬され、筐体26は、水面よりも下に配置される。ガスベント管32および注入管36の上端部は、タンク12の上部開口を貫通してタンク12の外部に延出している。
上記のように電極ユニット20をタンク12の水に浸漬した状態で、給電部30から陽極14および陰極16に1.8Aの電流を200分程度通電することで、タンク12の水を50ppm程度のほとんど塩分を含まない次亜塩素酸水に生成することができる。具体的には、電解液室22から第1隔膜28aを介して陽極14に拡散した塩素イオンは陽極14で電子を奪われて塩素ガスとなり、タンク12の水内に拡散する。そして、この塩素ガスが水と反応して次亜塩素酸と塩酸を生じる。この際、撹拌板34は、陽極14で発生する次亜塩素酸と塩酸が気泡(主に酸素ガス)とともに真上に高濃度で上がるのを防ぎ、水平方向へ撹拌されるようにしている。これにより、タンク12内の水を次亜塩素酸水に変えることができる。電極ユニット20は、電解液室22に飽和食塩水を一度充填しただけで、取り換えることなく、タンク12の水を電解水に変えることができる。
次亜塩素酸水の生成と同時に、陰極室24では陰極16で水が分解されて水素ガスと水酸イオンを生じ、第2隔膜28bを介して電解液室22から陰極16に拡散したナトリウムイオンとともに水酸化ナトリウム水を生じる。発生した水素ガスはガスベント管32を介してタンク12の外に排出される。
このように構成した電解水生成装置では、上述したように電解液室22の容量は100mLであり、タンク12の容量(100L)の1/1000に設定されている。有効塩素濃度50ppmの次亜塩素酸水100Lを生成するのに必要な塩量は、生成効率90%(10%は酸素ガス生成で無駄に消費される)で12g強であり、飽和食塩水にすると50mL弱となる。容量100mLの電解液室22に充填されている飽和食塩水も100mLであり、タンク12の100Lの水を50ppm程度の次亜塩素酸水に変えた場合は、100mLの飽和塩水に含まれる塩分の約半分を消費する。そのため、飽和食塩水の初期の飽和濃度26%が13%程度に低下する。このような飽和濃度の低下により後述する電解電圧の上昇が起こり、これを検知することで電解を停止し、所望の有効酸素濃度(50ppm)の電解水を生成している。
図2は、電解時間と、電解電圧およびタンクの水の有効塩素濃度(次亜塩素酸生成濃度)との関係を示す図である。図2において、横軸は電解時間(電流は1.8A一定)を示し、縦軸は、タンクの水の有効塩素濃度(次亜塩素酸生成濃度)と電解電圧を示している。この図から分かるように、タンク12内の水の有効塩素濃度(プロットA)は、電解時間とともに線形に上昇し、やがて150分を超えるあたりから飽和する挙動を示す。また、電解電圧(プロットB)は、150分まで4.8〜5.0Vでほぼ一定であるが、150分を超えるあたりから上昇し、200分を超えると5.8V程度に達する。
本実施形態において、電極ユニット20の電極に通電する給電部30は、電源31と電解電圧を検知するセンサあるいは検知回路35とを備えている。給電部30は、電極に1.8A定電流を供給するとともに、検知回路35により電解電圧を検知する。そして、給電部30は、電解電圧が初期電圧(4.8V)より0.8V上昇した時点で、電極への通電を停止するように構成されている。このため、図2に示すように、電解時間が205分の段階で電極への通電を停止し、タンク12の水は有効塩素濃度45ppmの次亜塩素酸水となり、ほぼ目標の有効塩素濃度50ppm程度の次亜塩素酸水を生成できている。
図3および図4は、それぞれ電解液濃度(塩水濃度)と電解電圧との関係を示し、図3は通常のグラフ、図4は、対数グラフである。これらの図から分かるように、電解電圧は塩水濃度15%以上ではほぼ一定であり、15%以下の塩水濃度になると上昇する。具体的には、塩水濃度10%で+0.8V、塩水濃度5%で+1.2V、塩水濃度2%で+3Vの電圧上昇となる。これは、電解液中の電解質(塩化物)が低濃度になることで、電解液の拡散抵抗が上昇したためである。塩水濃度15%以上では他の電圧上昇要因が主因で目立たないが、塩水濃度15%以下では電解液濃度が主因になり電圧上昇として現れるためである。基本的に、電解液濃度の対数値と電圧上昇が比例関係となる。
図5および図6は、それぞれ電解液濃度(塩水濃度)と電解水の生成効率との関係を示し、図5は通常のグラフ、図6は、対数グラフである。これらの図から分かるように、生成効率も同様に塩水濃度15%以下で低下し始める。ここで生成効率とは、供給した電荷に対する電解水の有効塩素濃度(次亜塩素酸濃度)である。塩素イオン濃度が薄くなると、競合する酸素ガス生成が発生する(酸素ガス生成では次亜塩素酸が形成されない)ため、供給した電荷に相当する有効塩素濃度が得られなくなる傾向にある。具体的には、塩水濃度15%まで生成効率80〜90%であるが、塩水濃度10%で生成効率70%、塩水濃度5%で生成効率60%、塩水濃度2%では生成効率50%以下に低下していく。
以上の特性を考慮し、本実施形態に係る電解水生成装置は、50ppm濃度の次亜塩素酸水を生成するにあたり、電解液室22の容量(電解液の容量)をタンク12の容量の1/1000とし、電解による塩分の消費により電解液の塩分濃度を飽和濃度から13%程度にまで低下させ、この時に生じる電圧上昇を検知して電解を終了させる、すなわち、電極への通電を停止する、構成としている。
電解液室22の容量としては、タンク容量の1/100より小さく、2mLより大きく設定することが望ましい。これは、次亜塩素酸水としては、殺菌力の高い濃度500ppm程度の次亜塩素酸水が求められることと、電解液室22の容量を小さくし過ぎると電解液室内部に電解液を注入することが難しくなるためである。
以上のように、本実施形態に係る電解水生成装置および電極ユニットによれば、電解液室の容量をタンク(容器)の容量や目的とする電解水特性にあわせて、電解による電解質の消費により電解液濃度が13%以下になるよう電解液室の容量を設定することで、電圧上昇を検出して所望の電解水特性となるように電解を終了させるとともに、過不足なく電解液を消費させることができる。これにより、電解液の枯渇や無駄な消費を生じることなく、安定して電解水を生成できる簡易な構造の電解水生成装置、電極ユニット、および電解水生成方法が得られる。
次に、他の実施形態に係る電解水生成装置について説明する。なお、以下に説明する他の実施形態において、前述した第1の実施形態と同一の部分には、同一の参照符号を付してその詳細な説明を省略し、第1の実施形態と異なる部分を中心に詳しく説明する。
(第2の実施形態)
図7は、第2の実施形態に係る電解水生成装置を示す断面図である。第2の実施形態によれば、電解水生成装置10は、例えば、容量5Lの専用の生成容器(タンク)40と、より簡易な構造の電極ユニット20と、を備え、濃度100ppmの次亜塩素酸水を生成する装置を構成している。
生成容器40は、例えば、上端が開口した円錐台形状に形成されている。注入排水口42を有する蓋体44が生成容器40の上端開口に装着され、この上端開口を閉塞している。電極ユニット20は、蓋体44に支持された状態で、生成容器40内に配置される。
電極ユニット20は、例えば、細長い角柱形状の筐体26を備え、この筐体26の下半部に電解液室22が形成されている。筐体26の上端部は、蓋体44を貫通し蓋体44から上方に延出している。電解液室22は、陰極室を兼ねている。電解液室22の容量は、生成容器40の容量の1/100以下、例えば、6mLに形成されている。電解液室22は、筐体26の一側面に開口している。
電極ユニット20は第1隔膜28aを有し、この第1隔膜28aは、電解液室22の開口を塞ぐように筐体26に設けられ、電解液室22と外部(ここでは、生成容器40内部)とを仕切っている。電極ユニット20は、更に、第1隔膜28aの外側に隣接、対向して設けられた陽極14と、電解液室22内に配設され陰極16と、を備えている。陰極16は、第1隔膜28aおよび電解液室22を挟んで陽極14と対向している。陽極14および陰極16は、配線を介して給電部30に電気的に接続されている。給電部30は、定電圧を供給する電池等の電源を有している。第1隔膜28aとして、化学耐性に優れたPVDFと酸化チタンとを含有する多孔質隔膜を用いている。
筐体26は、陰極16で生じる水素ガスを排気するガス排気路46を有している。ガス排気路46は、電解液室22の上端から筐体26の上端まで略垂直に延び、筐体26の上端面に開口している。このガス排気路46は、電解液室22に電解液を注入するための注入路としても利用可能である。あるいは、独立した注入路を筐体26に形成してもよい。
上記のように構成された電極ユニット20の電解液室22には、予め、塩化物を含有する電解液として例えば、6mLの飽和食塩水が充填されている。一度、電解液室22に充填された飽和食塩水は、取り換えることなく、電解水生成の間、使用される。電解水生成時には、生成容器40に所定量、例えば、5Lの水を入れ、生成容器40内に静水状態で収容する。これにより、電極ユニット20の電解液室22、陽極14および陰極16は水の中に浸漬される。この状態で、給電部30により、陽極14および陰極16に5Vの定電圧が30分印加される。
電解開始直後の電解液室22の塩水濃度は26%程度であり、1〜2Aの電流が流れるが、10分経過するあたりで電解液室22の塩水濃度が13%を下回り、流れる電流が0.5〜1.5A程度に低下する。更に、15〜25分経過時点では、電解液室22の塩水濃度が5%を下回り、流れる電流は0.5A以下となる。以降、電流低下によりほぼ電解が進まない状態となる。
上述した経過は、水温や電極ユニットのばらつきで若干の差異を生じるが、電解液室22の容量が規定されているため、30分経過後の電解水の水質は非常に安定し、次亜塩素酸濃度100±10ppm程度となる。
以上のように構成された電解水生成装置によれば、電解液室22の塩水が消費され尽くすことで自発的に生成容器(タンク)40の容量と電解液容量との比率で決まる電解水の水質に収まり、安定した電解水生成を行うことができる。すなわち、電極ユニット20は、電解液室22に飽和食塩水を一度充填しただけで、取り換えることなく、生成容器40の水を電解水に変えることができる。また、給電部30の電解電源には、一定の上限電圧を設定した簡易的な電源を用いることができ、電圧条件や最大電流の設計を注意すれば乾電池でも電解可能となる。更に、電極ユニットは、電解液を事前に充填する構成のため、構成が極めてシンプルであり、低価格で電極ユニットおよび電解水生成装置を供給することができる。
本発明は上述した実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。
例えば、上述した実施形態では、電解液を塩水、生成水を次亜塩素酸水としたが、これらに限定されることなく、本実施形態に係る電解水生成装置は、種々の電解液および種々の生成水を適用することができる。生成容器は、上述した実施形態に限定されることなく、種々の容器、水槽、その他、水を貯められるものであれば適用することができる。
陰極および陽極は、矩形状に限定されることなく、他の種々の形状を選択可能である。上述した実施形態では、隔膜は、PVDFと酸化チタンとを含有する多孔質隔膜を用いているが、これに限らず、透水性を有する種々の多孔質膜を適用可能である。また、隔膜は、イオン選択性のあるイオン交換膜を用いてもよい。第2の実施形態において、電極ユニットは、陽極の外側に設けられる撹拌板を備えていてもよい。

Claims (8)

  1. 電解液を充填する電解液室と、前記電解液室を仕切る隔膜と、前記隔膜の両側に設けられ互いに対向した一対の電極と、を有する電極ユニットと、前記電極に電解電流を供給する電源と、電解液濃度の低下に起因する電解電圧の上昇を検知し、電解を停止する検知回路と、を備え、前記電極ユニットを容器内の水に浸漬させた状態で水を電解して電解水を生成する電解水生成装置であって、
    前記電解液室の容量が前記容器内の水の容量の1/100以下、2mL以上に形成され、前記検知回路は、前記電解液濃度が13%程度に低下した時点で生じる電解電圧上昇を検知して前記電源からの給電を停止するように構成され、有効塩素濃度が500ppm以下の電解水を生成する電解水生成装置。
  2. 前記電解液は塩化物を含有し、前記電解液室を満たす量だけ、前記電解液室に充填され、前記電解水は次亜塩素酸水である請求項1に記載の電解水生成装置。
  3. 前記電極ユニットは、電解液が充填される前記電解液室と、陰極室と、前記電解液室と前記容器内とを仕切る第1隔膜と、前記電解液室と前記陰極室との間を仕切る第2隔膜と、前記第1隔膜の外側に隣接して設けられた陽極と、前記陰極室に設けられた陰極と、前記陰極室で発生する陰極生成ガスを前記容器の外部に排気する排気路と、を備え、前記電解液室は前記第1隔膜を介して前記容器内の水に連通する請求項1に記載の電解水生成装置。
  4. 前記電極ユニットは、前記電解液室と前記容器内の水との間を仕切る隔膜と、前記隔膜の外側に隣接して設けられた陽極と、前記電解液室内に設けられ、前記隔膜を挟んで前記陽極に対向する陰極と、前記陰極で発生する生成ガスを前記容器の外部に排気する排気路と、を有し、前記電解液室は前記隔膜を介して前記容器内の水に連通する請求項1に記載の電解水生成装置。
  5. 水を収容する生成容器を備え、前記電極ユニットは、前記生成容器内に配置されている請求項1からのいずれか1項に記載の電解水生成装置。
  6. 容器内の水の容量の1/100以下、2mL以上の容量に形成され電解液を充填する電解液室と、前記電解液室を仕切る隔膜と、前記隔膜の両側に設けられ互いに対向した一対の電極と、を備える電極ユニットと、前記電極に給電する電源と、電解液濃度の低下に起因する電解電圧の上昇を検知し、電解を停止する検知回路と、により容器内の水を電解水に生成する電解水生成方法であって、
    前記電解液室を満たす量だけ、前記電解液室に電解液を充填し、
    前記電極ユニットを前記容器内の水に浸漬し、
    前記電源から前記電極に通電して前記電解液を電解し、
    前記電解液の濃度が13%程度に低下した時点で生じる電解電圧上昇を検知して前記電源からの給電を停止し、
    前記電解液室に充填した電解液を取り換えることなく、前記電解により前記容器内の水を有効塩素濃度が500ppm以下の電解水に生成する電解水生成方法。
  7. 前記電解により前記電解液室の電解液濃度が低下することで引き起こされる電解電圧の上昇を前記検知回路で検知し、前記電解電圧の上昇を検知した際に電解を停止する請求項に記載の電解水生成方法。
  8. 前記電解により前記電解液室の電解液濃度が低下することで引き起こされる電解電流の低下により、前記電解が実質的に停止する請求項に記載の電解水生成方法。
JP2017506007A 2015-03-16 2015-08-31 電解水生成装置、電極ユニット、および電解水生成方法 Active JP6503054B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015052298 2015-03-16
JP2015052298 2015-03-16
PCT/JP2015/074724 WO2016147434A1 (ja) 2015-03-16 2015-08-31 電解水生成装置、電極ユニット、および電解水生成方法

Publications (2)

Publication Number Publication Date
JPWO2016147434A1 JPWO2016147434A1 (ja) 2017-11-30
JP6503054B2 true JP6503054B2 (ja) 2019-04-17

Family

ID=56918759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017506007A Active JP6503054B2 (ja) 2015-03-16 2015-08-31 電解水生成装置、電極ユニット、および電解水生成方法

Country Status (2)

Country Link
JP (1) JP6503054B2 (ja)
WO (1) WO2016147434A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7369986B1 (ja) 2021-12-08 2023-10-27 パナソニックIpマネジメント株式会社 水電解装置の運転方法及び水電解装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001062452A (ja) * 1999-08-31 2001-03-13 Energy Support Corp イオン水生成装置
JP2003251350A (ja) * 2002-02-28 2003-09-09 Energy Support Corp イオン水生成装置
JP2004305871A (ja) * 2003-04-04 2004-11-04 Sawada Kinji 電解水生成装置
JP4713537B2 (ja) * 2007-04-25 2011-06-29 優章 荒井 電解水の製造方法および電解水

Also Published As

Publication number Publication date
JPWO2016147434A1 (ja) 2017-11-30
WO2016147434A1 (ja) 2016-09-22

Similar Documents

Publication Publication Date Title
JP4712915B1 (ja) 電解装置および微酸性電解水の製造方法
KR101361651B1 (ko) 양극성 막을 사용하는 해수 전해 장치 및 이를 사용한 차아염소산 용액과 수소의 제조방법
JP7195662B2 (ja) 水素ガス生成装置
JP2019178356A (ja) 水素製造装置及び水素製造方法
CN102812160B (zh) 电解装置
JP6503054B2 (ja) 電解水生成装置、電極ユニット、および電解水生成方法
JP6353115B2 (ja) 電解水生成装置
KR102400469B1 (ko) 전해셀 및 전해셀용 전극판
WO2008032947A1 (en) Apparatus for replenishing water in salt water tank included in apparatus for producing sodium hypochlorite
KR101919571B1 (ko) 담수 또는 수돗물의 수소 농도를 강화하기 위한 전극 구조물, 이를 이용한 수소수 제조 장치 및 이를 이용한 무선 수소수 제조 장치
CN112030180A (zh) 次氯酸发生器
JP3667436B2 (ja) 電解水生成装置
JP2017056377A (ja) 電解水生成装置
CN106163995B (zh) 电解水生成装置、电极单元以及电解水生成方法
JP2017087087A (ja) 水素水製造装置
JP2016027261A (ja) 作動装置およびこれを用いたポンプ
JP6675112B2 (ja) 電解原水貯留式電解装置
CN206359291U (zh) 电解水生成装置、电极单元
CN212451661U (zh) 次氯酸发生器
JP7052121B1 (ja) 電解セル、及び電解水生成装置
WO2016143165A1 (ja) 電解水生成装置及び電解水生成方法
CN208104562U (zh) 弱酸性次氯酸消毒液生成装置
KR100367895B1 (ko) 전해수생성장치
JP2000070945A (ja) 電解装置
JP2015178062A (ja) 電解水生成装置及び電解液供給装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190322

R151 Written notification of patent or utility model registration

Ref document number: 6503054

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151