WO2016147434A1 - 電解水生成装置、電極ユニット、および電解水生成方法 - Google Patents

電解水生成装置、電極ユニット、および電解水生成方法 Download PDF

Info

Publication number
WO2016147434A1
WO2016147434A1 PCT/JP2015/074724 JP2015074724W WO2016147434A1 WO 2016147434 A1 WO2016147434 A1 WO 2016147434A1 JP 2015074724 W JP2015074724 W JP 2015074724W WO 2016147434 A1 WO2016147434 A1 WO 2016147434A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
water
electrolyte
electrolysis
electrolyzed water
Prior art date
Application number
PCT/JP2015/074724
Other languages
English (en)
French (fr)
Inventor
横田 昌広
修 小野
二階堂 勝
齋藤 誠
英男 太田
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to JP2017506007A priority Critical patent/JP6503054B2/ja
Priority to CN201590000315.4U priority patent/CN206359291U/zh
Publication of WO2016147434A1 publication Critical patent/WO2016147434A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/24Halogens or compounds thereof
    • C25B1/26Chlorine; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features

Definitions

  • Embodiment described here is related with an electrolyzed water generating device, an electrode unit, and an electrolyzed water generating method.
  • electrolyzed water generating apparatuses that generate electrolyzed water such as hypochlorous acid water or alkaline ionized water by electrolysis are known.
  • an electrolyzed water electrolysis system that generates electrolyzed water by flowing an electrolytic solution (electrolyte solution) and water into an electrolyzer having a two-diaphragm and two-chamber three-chamber type.
  • Water generators have been proposed.
  • piping and a pump are required to take the generated water into the anode chamber or the cathode chamber and cause it to flow. Therefore, the configuration of the entire apparatus becomes complicated, and characteristic fluctuations due to flowing water pressure are likely to occur.
  • an electrolyzed water generating device having a relatively simple structure without piping related to water supply and drainage, an electrode unit having an anode and a cathode and filled with an electrolytic solution is placed in a container such as a tank containing water.
  • a hydrostatic (batch type) electrolyzed water generator that electrolyzes water into an electrolyzed water using an electrode unit.
  • the electrolyte in the electrode unit is depleted before the desired electrolyzed water is generated, and conversely, power is wasted even after the electrolyzed water is generated. May end up.
  • the problem to be solved by the present embodiment is to provide an electrolyzed water generating device, an electrode unit, and an electrolyzed water generating method having a simple structure capable of stably generating electrolyzed water.
  • the electrolyzed water generating apparatus includes an electrolytic solution chamber filled with an electrolytic solution, a diaphragm partitioning the electrolytic solution chamber, and a pair of electrodes provided on both sides of the diaphragm and facing each other. And water in the container is generated into electrolyzed water by the electrode unit.
  • the capacity of the electrolyte chamber is formed to be 1/100 or less of the capacity of water in the container.
  • FIG. 1 is a cross-sectional view illustrating a schematic configuration of an electrolyzed water generating device according to a first embodiment.
  • FIG. 2 is a diagram showing a relationship between an electrolysis elapsed time, an effective chlorine concentration of generated water, and an electrolysis voltage in the electrolyzed water generating apparatus according to the first embodiment.
  • FIG. 3 is a diagram showing the relationship between the electrolytic solution concentration and the electrolytic voltage.
  • FIG. 4 is a diagram showing the relationship between the electrolytic solution concentration and the electrolytic voltage.
  • FIG. 5 is a diagram showing the relationship between the electrolytic solution concentration and production efficiency.
  • FIG. 6 is a diagram showing the relationship between the electrolytic solution concentration and production efficiency.
  • FIG. 7 is a cross-sectional view illustrating a schematic configuration of an electrolyzed water generating device according to a second embodiment.
  • FIG. 1 is a cross-sectional view schematically showing an electrolyzed water generating apparatus according to the first embodiment.
  • the electrolyzed water generating apparatus 10 is configured as a hydrostatic or batch-type electrolyzed water generating apparatus that generates hypochlorous acid water.
  • the electrolyzed water generating apparatus 10 includes an electrode unit 20 that is put into an existing tank (or container) 12 that contains a liquid such as water, and a power supply unit 30 that supplies electrolytic power to the electrodes of the electrode unit 20. .
  • the power feeding unit 30 is connected to a DC power source (not shown). In addition, you may comprise the electric power feeding part 30 with the battery etc. which supply a constant voltage.
  • the electrode unit 20 is arranged so as to close the opening of the substantially rectangular box-shaped housing 26 having the electrolytic solution chamber 22 and the cathode chamber 24 and the electrolytic solution chamber 22 opened on one side surface of the housing 26.
  • the first diaphragm 28 a that partitions the outer wall 22 and the outside (in this case, the inside of the tank 12), and the second diaphragm that is disposed in the housing 26 so as to face the first diaphragm 28 a and partitions the electrolyte chamber 22 and the cathode chamber 24. 28b.
  • porous diaphragms containing polyvinylidene fluoride (PolyVinylidene DiFuoride: PVDF) excellent in chemical resistance and titanium oxide are used.
  • the electrode unit 20 further includes an anode 14 provided adjacent to and facing the tank side (outside) of the first diaphragm 28a, and a cathode provided adjacent to and opposed to the second diaphragm 28b in the cathode chamber 24. 16.
  • the anode 14 and the cathode 16 are opposed to each other with the first and second diaphragms 28a and 28b and the electrolyte chamber 22 interposed therebetween.
  • the anode 14 and the cathode 16 are electrically connected to the power feeding unit 30 through wiring.
  • the electrode unit 20 is connected to the upper part of the cathode chamber 24, a gas vent pipe 32 for exhausting the gas generated in the cathode chamber 24, and a plurality of stirring plates 34 provided outside the anode 14.
  • an injection tube 36 extending upward from the electrolyte chamber 22.
  • An electrolytic solution electrolytic solution
  • electrolytic solution can be injected into the electrolytic solution chamber 22 through the injection tube 36.
  • the injection pipe 36 is provided for simplifying the filling of the electrolytic solution into the electrolytic solution chamber 22, and is not necessarily required and can be omitted. For example, it is good also as a structure which provides an injection port in the housing
  • the electrolyte chamber 22 of the electrode unit 20 configured as described above is previously filled with, for example, saturated saline as an electrolyte containing chloride, and the cathode chamber 24 is previously filled with water. .
  • the saturated saline solution is filled in the electrolytic solution chamber 22 by the same amount as that of the electrolytic solution chamber 22 to fill the electrolytic solution chamber 22.
  • the capacity of the tank 12 here, the capacity of water (static water) accommodated in the tank 12 is 100 L
  • the capacity of the electrolyte chamber 22 is 1/100 or less of the capacity of the tank 12, For example, it is formed to 100 mL
  • the capacity of the cathode chamber 24 is formed to 200 mL.
  • the electrode unit 20 When the electrolyzed water is generated, the electrode unit 20 is immersed in the water of the tank 12, and the casing 26 is disposed below the water surface.
  • the upper ends of the gas vent pipe 32 and the injection pipe 36 pass through the upper opening of the tank 12 and extend to the outside of the tank 12.
  • a current of 1.8 A is supplied from the power feeding unit 30 to the anode 14 and the cathode 16 for about 200 minutes, so that the water in the tank 12 is about 50 ppm. It can be produced in hypochlorous acid water containing almost no salt. Specifically, chlorine ions diffused from the electrolyte chamber 22 to the anode 14 via the first diaphragm 28 a are deprived of electrons by the anode 14 to become chlorine gas and diffuse into the water of the tank 12. This chlorine gas reacts with water to produce hypochlorous acid and hydrochloric acid.
  • the stirring plate 34 prevents hypochlorous acid and hydrochloric acid generated at the anode 14 from rising at a high concentration directly with bubbles (mainly oxygen gas), and is stirred in the horizontal direction. Thereby, the water in the tank 12 can be changed to hypochlorous acid water.
  • the electrode unit 20 can change the water in the tank 12 to electrolyzed water without replacing it by filling the electrolytic solution chamber 22 with saturated saline once.
  • water is decomposed at the cathode 16 in the cathode chamber 24 to generate hydrogen gas and hydroxide ions, and sodium ions diffused from the electrolyte chamber 22 to the cathode 16 through the second diaphragm 28b.
  • sodium hydroxide water is produced.
  • the generated hydrogen gas is discharged out of the tank 12 through the gas vent pipe 32.
  • the capacity of the electrolytic solution chamber 22 is 100 mL as described above, and is set to 1/1000 of the capacity (100 L) of the tank 12.
  • the amount of salt required to produce 100 L of hypochlorous acid water with an effective chlorine concentration of 50 ppm is a little over 12 g with a production efficiency of 90% (10% is wasted due to oxygen gas production). Then, it becomes a little less than 50 mL.
  • the saturated saline solution filled in the electrolytic chamber 22 having a capacity of 100 mL is also 100 mL, and when 100 L of water in the tank 12 is changed to about 50 ppm of hypochlorous acid water, the salinity contained in 100 mL of saturated brine is obtained.
  • the initial saturated concentration 26% of the saturated saline solution is reduced to about 13%.
  • Such a decrease in saturation concentration causes an increase in electrolysis voltage, which will be described later.
  • electrolysis is stopped, and electrolyzed water having a desired effective oxygen concentration (50 ppm) is generated.
  • FIG. 2 is a graph showing the relationship between the electrolysis time, the electrolysis voltage, and the effective chlorine concentration (hypochlorous acid production concentration) in the tank water.
  • the horizontal axis represents electrolysis time (current is constant at 1.8 A), and the vertical axis represents the effective chlorine concentration (hypochlorous acid production concentration) of the tank water and the electrolysis voltage.
  • the effective chlorine concentration (plot A) of the water in the tank 12 increases linearly with the electrolysis time, and eventually saturates from around 150 minutes.
  • the electrolytic voltage (plot B) is substantially constant at 4.8 to 5.0 V until 150 minutes, but rises from around 150 minutes and reaches about 5.8 V after 200 minutes.
  • the power feeding unit 30 that energizes the electrodes of the electrode unit 20 includes a power source 31 and a sensor or a detection circuit 35 that detects an electrolytic voltage.
  • the power feeding unit 30 supplies a constant current of 1.8 A to the electrodes and detects the electrolytic voltage by the detection circuit 35.
  • the electric power feeding part 30 is comprised so that the electricity supply to an electrode may be stopped, when an electrolysis voltage rises 0.8V from an initial voltage (4.8V). For this reason, as shown in FIG. 2, the energization to the electrode is stopped when the electrolysis time is 205 minutes, and the water in the tank 12 becomes hypochlorous acid water having an effective chlorine concentration of 45 ppm, and the target effective chlorine concentration is 50 ppm. A certain amount of hypochlorous acid water can be produced.
  • FIG. 3 and 4 show the relationship between the electrolytic solution concentration (salt water concentration) and the electrolytic voltage, respectively.
  • FIG. 3 is a normal graph
  • FIG. 4 is a logarithmic graph.
  • the electrolysis voltage is substantially constant when the salt water concentration is 15% or more, and increases when the salt water concentration is 15% or less. Specifically, the voltage rise is +0.8 V at a salt water concentration of 10%, +1.2 V at a salt water concentration of 5%, and +3 V at a salt water concentration of 2%. This is because the diffusion resistance of the electrolytic solution is increased by reducing the concentration of the electrolyte (chloride) in the electrolytic solution.
  • the electrolyte concentration is the main cause and appears as a voltage increase.
  • the logarithmic value of the electrolyte concentration is proportional to the voltage rise.
  • FIG. 5 and 6 show the relationship between the electrolytic solution concentration (salt water concentration) and the generation efficiency of the electrolytic water, respectively.
  • FIG. 5 is a normal graph
  • FIG. 6 is a logarithmic graph.
  • the production efficiency similarly starts to decrease at a salt water concentration of 15% or less.
  • the generation efficiency is the effective chlorine concentration (hypochlorous acid concentration) of the electrolyzed water with respect to the supplied charge.
  • the chlorine ion concentration is reduced, competing oxygen gas generation occurs (hypochlorous acid is not formed in the oxygen gas generation), so that an effective chlorine concentration corresponding to the supplied charge tends not to be obtained.
  • the production efficiency is 80 to 90% up to a salt water concentration of 15%, but the production efficiency is 70% at a salt water concentration of 10%, the production efficiency of 60% at a salt water concentration of 5%, and the production efficiency of 50% or less at a salt water concentration of 2%. It will drop to.
  • the electrolyzed water generating apparatus generates a capacity of the electrolyte chamber 22 (capacitance of the electrolyte) that is 1 of the capacity of the tank 12 when generating 50 ppm hypochlorous acid water. / 1000, the salt concentration of the electrolytic solution is reduced from the saturated concentration to about 13% due to the consumption of salt by electrolysis, the voltage increase occurring at this time is detected and the electrolysis is terminated, that is, the energization to the electrode is stopped. , The configuration.
  • the capacity of the electrolyte chamber 22 is preferably set to be smaller than 1/100 of the tank capacity and larger than 2 mL. This is because, as hypochlorous acid water, hypochlorous acid water having a high sterilizing power and a concentration of about 500 ppm is required, and when the capacity of the electrolyte chamber 22 is made too small, the electrolyte is injected into the electrolyte chamber. Because it becomes difficult to do.
  • the electrolyte chamber volume is adjusted according to the capacity of the tank (container) and the desired electrolyzed water characteristics, by consuming the electrolyte by electrolysis.
  • the volume of the electrolytic solution chamber so that the electrolytic solution concentration is 13% or less, the voltage rise is detected and the electrolysis is terminated so that the desired electrolytic water characteristics are obtained, and the electrolytic solution is consumed without excess or deficiency. be able to.
  • an electrolyzed water generating device, an electrode unit, and an electrolyzed water generating method having a simple structure that can stably generate electrolyzed water without causing depletion or wasteful consumption of the electrolytic solution can be obtained.
  • FIG. 7 is a cross-sectional view illustrating the electrolyzed water generating device according to the second embodiment.
  • the electrolyzed water generating apparatus 10 includes, for example, a dedicated generating container (tank) 40 having a capacity of 5 L and an electrode unit 20 having a simpler structure, and hypochlorous acid having a concentration of 100 ppm.
  • generates acid water is comprised.
  • the generation container 40 is formed in, for example, a truncated cone shape having an upper end opened.
  • a lid 44 having an inlet / outlet 42 is attached to the upper end opening of the production container 40 and closes the upper end opening.
  • the electrode unit 20 is disposed in the generation container 40 while being supported by the lid 44.
  • the electrode unit 20 includes, for example, an elongated prismatic housing 26, and an electrolyte chamber 22 is formed in the lower half of the housing 26.
  • the upper end portion of the housing 26 passes through the lid body 44 and extends upward from the lid body 44.
  • the electrolyte chamber 22 also serves as a cathode chamber.
  • the capacity of the electrolytic solution chamber 22 is 1/100 or less of the capacity of the production container 40, for example, 6 mL.
  • the electrolyte chamber 22 is open on one side of the housing 26.
  • the electrode unit 20 includes a first diaphragm 28a.
  • the first diaphragm 28a is provided in the casing 26 so as to close the opening of the electrolyte chamber 22, and is connected to the electrolyte chamber 22 and the outside (here, the inside of the generation container 40). ).
  • the electrode unit 20 further includes an anode 14 provided adjacent to and opposed to the outside of the first diaphragm 28a, and a cathode 16 disposed in the electrolyte chamber 22.
  • the cathode 16 faces the anode 14 with the first diaphragm 28a and the electrolyte solution chamber 22 interposed therebetween.
  • the anode 14 and the cathode 16 are electrically connected to the power feeding unit 30 through wiring.
  • the power feeding unit 30 has a power source such as a battery for supplying a constant voltage.
  • As the first diaphragm 28a a porous diaphragm containing PVDF and titanium oxide excellent in chemical resistance is used.
  • the housing 26 has a gas exhaust path 46 for exhausting hydrogen gas generated at the cathode 16.
  • the gas exhaust path 46 extends substantially vertically from the upper end of the electrolyte chamber 22 to the upper end of the casing 26 and opens at the upper end surface of the casing 26.
  • the gas exhaust path 46 can also be used as an injection path for injecting the electrolyte into the electrolyte chamber 22. Alternatively, an independent injection path may be formed in the housing 26.
  • the electrolyte chamber 22 of the electrode unit 20 configured as described above is previously filled with, for example, 6 mL of saturated saline as an electrolyte containing chloride.
  • the saturated saline once filled in the electrolytic solution chamber 22 is used during the generation of the electrolytic water without replacement.
  • a predetermined amount, for example, 5 L of water is put in the generation container 40 and is stored in the generation container 40 in a still water state.
  • the electrolyte chamber 22, the anode 14, and the cathode 16 of the electrode unit 20 are immersed in water. In this state, a constant voltage of 5 V is applied to the anode 14 and the cathode 16 by the power feeding unit 30 for 30 minutes.
  • the salt water concentration in the electrolyte chamber 22 immediately after the start of electrolysis is about 26%, and a current of 1 to 2 A flows. However, the salt water concentration in the electrolyte chamber 22 falls below 13% after 10 minutes, and the flowing current is 0. Reduced to about 5 to 1.5A. Furthermore, when 15 to 25 minutes have elapsed, the concentration of the salt water in the electrolyte chamber 22 is less than 5%, and the flowing current is 0.5 A or less. Thereafter, the electrolysis does not proceed substantially due to the current drop.
  • the above-described process causes a slight difference due to variations in water temperature and electrode unit, since the capacity of the electrolyte chamber 22 is defined, the quality of the electrolyzed water after 30 minutes is very stable and hypochlorous acid.
  • the acid concentration is about 100 ⁇ 10 ppm.
  • the electrolyzed water determined spontaneously by the ratio between the capacity of the generating container (tank) 40 and the electrolytic solution capacity when the salt water in the electrolytic solution chamber 22 is completely consumed.
  • Stable electrolyzed water generation can be performed within the water quality. That is, the electrode unit 20 can change the water in the production container 40 to electrolytic water without having to replace it once by filling the electrolytic solution chamber 22 with saturated saline once.
  • a simple power source having a fixed upper limit voltage can be used as the electrolysis power source of the power supply unit 30, and even a dry battery can be electrolyzed if attention is paid to the voltage conditions and the design of the maximum current.
  • the electrode unit is configured to be filled with the electrolytic solution in advance, the configuration is extremely simple, and the electrode unit and the electrolyzed water generating device can be supplied at a low price.
  • the present invention is not limited to the above-described embodiments as they are, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage.
  • various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment.
  • constituent elements over different embodiments may be appropriately combined.
  • the electrolytic solution is salt water and the generated water is hypochlorous acid water.
  • the present invention is not limited thereto, and the electrolyzed water generating apparatus according to this embodiment includes various electrolytic solutions and various types.
  • the produced water can be applied.
  • generation container is not limited to embodiment mentioned above, A various container, a water tank, etc. can be applied if it can store water.
  • the cathode and the anode are not limited to a rectangular shape, and various other shapes can be selected.
  • the diaphragm uses a porous diaphragm containing PVDF and titanium oxide, but is not limited to this, and various porous films having water permeability can be applied. Moreover, you may use an ion exchange membrane with ion selectivity for a diaphragm.
  • the electrode unit may include a stirring plate provided outside the anode.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

 実施形態によれば、電解水生成装置は、電解液を充填する電解液室22と、電解液室を仕切る隔膜28aと、隔膜の両側に設けられ互いに対向する一対の電極14、16と、を有する電極ユニット20を備え、この電極ユニットにより容器内の水を電解水に生成する。電解液室の容量は容器内の水の容量の1/100以下に形成されている。

Description

電解水生成装置、電極ユニット、および電解水生成方法
 ここで述べる実施形態は、電解水生成装置、電極ユニット、および電解水生成方法に関する。
 近年、次亜塩素酸水やアルカリイオン水などの電解水を電解で生成する電解水生成装置が知られている。このような電解水生成装置としては、1隔膜2室型の電解槽や、2隔膜3室型の電解槽に電解液(電解質液)および水を流水して電解水を生成する流水式の電解水生成装置が提案されている。流水式の電解水生成装置では、生成水を陽極室あるいは陰極室に取り込んで流水させるため、配管やポンプが必要となる。そのため、装置全体の構成が複雑になり、また、流水圧力による特性変動が生じやすい。
 給排水に係る配管を持たず比較的簡素な構造の電解水生成装置として、陽極および陰極を有し電解液を充填した電極ユニットを、水を収容したタンク等の容器内に入れ、この容器内の水を電極ユニットで電解して電解水へと変える静水式(バッチ式)の電解水生成装置が提案されている。 
 しかしながら、このような静水式の電解水生成装置では、所望の電解水が生成される前に電極ユニット内の電解液が枯渇し、逆に、電解水が生成された後も無駄に電力を消費してしまう場合がある。
特許第3500173号公報 特許第3551288号公報 特許第4024278号公報
 本実施形態が解決しようとする課題は、安定して電解水を生成できる簡易な構造の電解水生成装置、電極ユニット、および電解水生成方法を提供することにある。
 実施形態によれば、電解水生成装置は、電解液を充填する電解液室と、前記電解液室を仕切る隔膜と、前記隔膜の両側に設けられ互いに対向した一対の電極と、を有する電極ユニットを備え、前記電極ユニットにより容器内の水を電解水に生成する。前記電解液室の容量は、前記容器内の水の容量の1/100以下に形成されている。
図1は、第1の実施形態に係る電解水生成装置の概略的な構成を示す断面図。 図2は、第1の実施形態に係る電解水生成装置おける電解経過時間と生成水の有効塩素濃度および電解電圧との関係を示す図。 図3は、電解液濃度と電解電圧との関係を示す図。 図4は、電解液濃度と電解電圧との関係を示す図。 図5は、電解液濃度と生成効率の関係を示す図。 図6は、電解液濃度と生成効率の関係を示す図。 図7は、第2の実施形態に係る電解水生成装置の概略的構成を示す断面図。
 以下に、図面を参照しながら、種々の実施形態について説明する。なお、実施形態を通して共通の構成には同一の符号を付すものとし、重複する説明は省略する。また、各図は実施形態とその理解を促すための模式図であり、その形状や寸法、比などは実際の装置と異なる個所があるが、これらは以下の説明と公知の技術を参酌して適宜、設計変更することができる。
 (第1の実施形態) 
 図1は、第1の実施形態に係る電解水生成装置を概略的に示す断面図である。本実施形態において、電解水生成装置10は、次亜塩素酸水を生成する静水式あるいはバッチ式の電解水生成装置として構成されている。電解水生成装置10は、水等の液体を収容した既存のタンク(あるいは容器)12に投入する電極ユニット20と、電極ユニット20の電極に電解電力を供給する給電部30と、を備えている。給電部30は、図示しない直流電源に接続される。なお、給電部30は、定電圧を供給する電池等で構成してもよい。
 電極ユニット20は、電解液室22および陰極室24を有するほぼ矩形箱状の筐体26と、筐体26の一側面に開口する電解液室22の開口を塞ぐように配置され、電解液室22と外部(ここでは、タンク12内部)とを仕切る第1隔膜28aと、筐体26内に第1隔膜28aと対向して配置され、電解液室22と陰極室24とを仕切る第2隔膜28bと、を備えている。第1隔膜28aおよび第2隔膜28bとして、化学耐性に優れたポリフッ化ビニリデン(PolyVinylidene DiFuoride:PVDF)と酸化チタンとを含有する多孔質隔膜を用いている。
 電極ユニット20は、更に、第1隔膜28aのタンク側(外側)に隣接、対向して設けられた陽極14と、陰極室24内で、第2隔膜28bに隣接、対向して設けられた陰極16と、を備えている。陽極14および陰極16は、第1および第2隔膜28a、28b、並びに電解液室22を間に挟んで、互いに対向している。陽極14および陰極16は、配線を介して給電部30に電気的に接続されている。
 本実施形態において、電極ユニット20は、陰極室24の上部に接続され、陰極室24で発生するガスを排気するためのガスベント管32と、陽極14の外側に設けられた複数の撹拌板34と、電解液室22から上方に延出する注入管36と、を備えている。注入管36を通して、電解液室22に電解液(電解質液)を注入することができる。ただし、注入管36は、電解液室22への電解液の充填を簡便にするために設けたもので、必ずしも必要ではなく、省略可能である。例えば、筐体26に注入口を設け、この注入口から電解液室に電解液を充填した後、注入口を詮で閉じる構成としてもよい。
 上記のように構成された電極ユニット20の電解液室22には、予め、塩化物を含有する電解液として、例えば、飽和食塩水が充填され、陰極室24には予め水が充填されている。飽和食塩水は、電解液室22の容量と同量だけ電解液室22に充填され、電解液室22を満たしている。ここで、タンク12の容量、ここでは、タンク12に収容されている水(静水)の容量が100Lであるとした場合、電解液室22の容量は、タンク12の容量の1/100以下、例えば、100mLに形成され、陰極室24の容量は200mLに形成されている。電解水生成時、電極ユニット20は、タンク12の水に浸漬され、筐体26は、水面よりも下に配置される。ガスベント管32および注入管36の上端部は、タンク12の上部開口を貫通してタンク12の外部に延出している。
 上記のように電極ユニット20をタンク12の水に浸漬した状態で、給電部30から陽極14および陰極16に1.8Aの電流を200分程度通電することで、タンク12の水を50ppm程度のほとんど塩分を含まない次亜塩素酸水に生成することができる。具体的には、電解液室22から第1隔膜28aを介して陽極14に拡散した塩素イオンは陽極14で電子を奪われて塩素ガスとなり、タンク12の水内に拡散する。そして、この塩素ガスが水と反応して次亜塩素酸と塩酸を生じる。この際、撹拌板34は、陽極14で発生する次亜塩素酸と塩酸が気泡(主に酸素ガス)とともに真上に高濃度で上がるのを防ぎ、水平方向へ撹拌されるようにしている。これにより、タンク12内の水を次亜塩素酸水に変えることができる。電極ユニット20は、電解液室22に飽和食塩水を一度充填しただけで、取り換えることなく、タンク12の水を電解水に変えることができる。
 次亜塩素酸水の生成と同時に、陰極室24では陰極16で水が分解されて水素ガスと水酸イオンを生じ、第2隔膜28bを介して電解液室22から陰極16に拡散したナトリウムイオンとともに水酸化ナトリウム水を生じる。発生した水素ガスはガスベント管32を介してタンク12の外に排出される。
 このように構成した電解水生成装置では、上述したように電解液室22の容量は100mLであり、タンク12の容量(100L)の1/1000に設定されている。有効塩素濃度50ppmの次亜塩素酸水100Lを生成するのに必要な塩量は、生成効率90%(10%は酸素ガス生成で無駄に消費される)で12g強であり、飽和食塩水にすると50mL弱となる。容量100mLの電解液室22に充填されている飽和食塩水も100mLであり、タンク12の100Lの水を50ppm程度の次亜塩素酸水に変えた場合は、100mLの飽和塩水に含まれる塩分の約半分を消費する。そのため、飽和食塩水の初期の飽和濃度26%が13%程度に低下する。このような飽和濃度の低下により後述する電解電圧の上昇が起こり、これを検知することで電解を停止し、所望の有効酸素濃度(50ppm)の電解水を生成している。
 図2は、電解時間と、電解電圧およびタンクの水の有効塩素濃度(次亜塩素酸生成濃度)との関係を示す図である。図2において、横軸は電解時間(電流は1.8A一定)を示し、縦軸は、タンクの水の有効塩素濃度(次亜塩素酸生成濃度)と電解電圧を示している。この図から分かるように、タンク12内の水の有効塩素濃度(プロットA)は、電解時間とともに線形に上昇し、やがて150分を超えるあたりから飽和する挙動を示す。また、電解電圧(プロットB)は、150分まで4.8~5.0Vでほぼ一定であるが、150分を超えるあたりから上昇し、200分を超えると5.8V程度に達する。
 本実施形態において、電極ユニット20の電極に通電する給電部30は、電源31と電解電圧を検知するセンサあるいは検知回路35とを備えている。給電部30は、電極に1.8A定電流を供給するとともに、検知回路35により電解電圧を検知する。そして、給電部30は、電解電圧が初期電圧(4.8V)より0.8V上昇した時点で、電極への通電を停止するように構成されている。このため、図2に示すように、電解時間が205分の段階で電極への通電を停止し、タンク12の水は有効塩素濃度45ppmの次亜塩素酸水となり、ほぼ目標の有効塩素濃度50ppm程度の次亜塩素酸水を生成できている。
 図3および図4は、それぞれ電解液濃度(塩水濃度)と電解電圧との関係を示し、図3は通常のグラフ、図4は、対数グラフである。これらの図から分かるように、電解電圧は塩水濃度15%以上ではほぼ一定であり、15%以下の塩水濃度になると上昇する。具体的には、塩水濃度10%で+0.8V、塩水濃度5%で+1.2V、塩水濃度2%で+3Vの電圧上昇となる。これは、電解液中の電解質(塩化物)が低濃度になることで、電解液の拡散抵抗が上昇したためである。塩水濃度15%以上では他の電圧上昇要因が主因で目立たないが、塩水濃度15%以下では電解液濃度が主因になり電圧上昇として現れるためである。基本的に、電解液濃度の対数値と電圧上昇が比例関係となる。
 図5および図6は、それぞれ電解液濃度(塩水濃度)と電解水の生成効率との関係を示し、図5は通常のグラフ、図6は、対数グラフである。これらの図から分かるように、生成効率も同様に塩水濃度15%以下で低下し始める。ここで生成効率とは、供給した電荷に対する電解水の有効塩素濃度(次亜塩素酸濃度)である。塩素イオン濃度が薄くなると、競合する酸素ガス生成が発生する(酸素ガス生成では次亜塩素酸が形成されない)ため、供給した電荷に相当する有効塩素濃度が得られなくなる傾向にある。具体的には、塩水濃度15%まで生成効率80~90%であるが、塩水濃度10%で生成効率70%、塩水濃度5%で生成効率60%、塩水濃度2%では生成効率50%以下に低下していく。
 以上の特性を考慮し、本実施形態に係る電解水生成装置は、50ppm濃度の次亜塩素酸水を生成するにあたり、電解液室22の容量(電解液の容量)をタンク12の容量の1/1000とし、電解による塩分の消費により電解液の塩分濃度を飽和濃度から13%程度にまで低下させ、この時に生じる電圧上昇を検知して電解を終了させる、すなわち、電極への通電を停止する、構成としている。
 電解液室22の容量としては、タンク容量の1/100より小さく、2mLより大きく設定することが望ましい。これは、次亜塩素酸水としては、殺菌力の高い濃度500ppm程度の次亜塩素酸水が求められることと、電解液室22の容量を小さくし過ぎると電解液室内部に電解液を注入することが難しくなるためである。
 以上のように、本実施形態に係る電解水生成装置および電極ユニットによれば、電解液室の容量をタンク(容器)の容量や目的とする電解水特性にあわせて、電解による電解質の消費により電解液濃度が13%以下になるよう電解液室の容量を設定することで、電圧上昇を検出して所望の電解水特性となるように電解を終了させるとともに、過不足なく電解液を消費させることができる。これにより、電解液の枯渇や無駄な消費を生じることなく、安定して電解水を生成できる簡易な構造の電解水生成装置、電極ユニット、および電解水生成方法が得られる。
 次に、他の実施形態に係る電解水生成装置について説明する。なお、以下に説明する他の実施形態において、前述した第1の実施形態と同一の部分には、同一の参照符号を付してその詳細な説明を省略し、第1の実施形態と異なる部分を中心に詳しく説明する。
(第2の実施形態) 
 図7は、第2の実施形態に係る電解水生成装置を示す断面図である。第2の実施形態によれば、電解水生成装置10は、例えば、容量5Lの専用の生成容器(タンク)40と、より簡易な構造の電極ユニット20と、を備え、濃度100ppmの次亜塩素酸水を生成する装置を構成している。
 生成容器40は、例えば、上端が開口した円錐台形状に形成されている。注入排水口42を有する蓋体44が生成容器40の上端開口に装着され、この上端開口を閉塞している。電極ユニット20は、蓋体44に支持された状態で、生成容器40内に配置される。
 電極ユニット20は、例えば、細長い角柱形状の筐体26を備え、この筐体26の下半部に電解液室22が形成されている。筐体26の上端部は、蓋体44を貫通し蓋体44から上方に延出している。電解液室22は、陰極室を兼ねている。電解液室22の容量は、生成容器40の容量の1/100以下、例えば、6mLに形成されている。電解液室22は、筐体26の一側面に開口している。
 電極ユニット20は第1隔膜28aを有し、この第1隔膜28aは、電解液室22の開口を塞ぐように筐体26に設けられ、電解液室22と外部(ここでは、生成容器40内部)とを仕切っている。電極ユニット20は、更に、第1隔膜28aの外側に隣接、対向して設けられた陽極14と、電解液室22内に配設され陰極16と、を備えている。陰極16は、第1隔膜28aおよび電解液室22を挟んで陽極14と対向している。陽極14および陰極16は、配線を介して給電部30に電気的に接続されている。給電部30は、定電圧を供給する電池等の電源を有している。第1隔膜28aとして、化学耐性に優れたPVDFと酸化チタンとを含有する多孔質隔膜を用いている。
 筐体26は、陰極16で生じる水素ガスを排気するガス排気路46を有している。ガス排気路46は、電解液室22の上端から筐体26の上端まで略垂直に延び、筐体26の上端面に開口している。このガス排気路46は、電解液室22に電解液を注入するための注入路としても利用可能である。あるいは、独立した注入路を筐体26に形成してもよい。
 上記のように構成された電極ユニット20の電解液室22には、予め、塩化物を含有する電解液として例えば、6mLの飽和食塩水が充填されている。一度、電解液室22に充填された飽和食塩水は、取り換えることなく、電解水生成の間、使用される。電解水生成時には、生成容器40に所定量、例えば、5Lの水を入れ、生成容器40内に静水状態で収容する。これにより、電極ユニット20の電解液室22、陽極14および陰極16は水の中に浸漬される。この状態で、給電部30により、陽極14および陰極16に5Vの定電圧が30分印加される。
 電解開始直後の電解液室22の塩水濃度は26%程度であり、1~2Aの電流が流れるが、10分経過するあたりで電解液室22の塩水濃度が13%を下回り、流れる電流が0.5~1.5A程度に低下する。更に、15~25分経過時点では、電解液室22の塩水濃度が5%を下回り、流れる電流は0.5A以下となる。以降、電流低下によりほぼ電解が進まない状態となる。
 上述した経過は、水温や電極ユニットのばらつきで若干の差異を生じるが、電解液室22の容量が規定されているため、30分経過後の電解水の水質は非常に安定し、次亜塩素酸濃度100±10ppm程度となる。
 以上のように構成された電解水生成装置によれば、電解液室22の塩水が消費され尽くすことで自発的に生成容器(タンク)40の容量と電解液容量との比率で決まる電解水の水質に収まり、安定した電解水生成を行うことができる。すなわち、電極ユニット20は、電解液室22に飽和食塩水を一度充填しただけで、取り換えることなく、生成容器40の水を電解水に変えることができる。また、給電部30の電解電源には、一定の上限電圧を設定した簡易的な電源を用いることができ、電圧条件や最大電流の設計を注意すれば乾電池でも電解可能となる。更に、電極ユニットは、電解液を事前に充填する構成のため、構成が極めてシンプルであり、低価格で電極ユニットおよび電解水生成装置を供給することができる。
 本発明は上述した実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。 
 例えば、上述した実施形態では、電解液を塩水、生成水を次亜塩素酸水としたが、これらに限定されることなく、本実施形態に係る電解水生成装置は、種々の電解液および種々の生成水を適用することができる。生成容器は、上述した実施形態に限定されることなく、種々の容器、水槽、その他、水を貯められるものであれば適用することができる。
 陰極および陽極は、矩形状に限定されることなく、他の種々の形状を選択可能である。上述した実施形態では、隔膜は、PVDFと酸化チタンとを含有する多孔質隔膜を用いているが、これに限らず、透水性を有する種々の多孔質膜を適用可能である。また、隔膜は、イオン選択性のあるイオン交換膜を用いてもよい。第2の実施形態において、電極ユニットは、陽極の外側に設けられる撹拌板を備えていてもよい。

Claims (16)

  1.  電解液を充填する電解液室と、前記電解液室を仕切る隔膜と、前記隔膜の両側に設けられ互いに対向した一対の電極と、を有する電極ユニットを備え、前記電極ユニットにより容器内の水を電解水に生成する電解水生成装置であって、
     前記電解液室の容量が前記容器内の水の容量の1/100以下に形成されている電解水生成装置。
  2.  前記電解液は塩化物を含有し、前記電解液室を満たす量だけ、前記電解液室に充填され、前記電解水は次亜塩素酸水である請求項1に記載の電解水生成装置。
  3.  前記電解液室の容量は2mL以上であり、前記容器の容量は0.2L以上である請求項1に記載の電解水生成装置。
  4.  前記電極ユニットは、電解液が充填される前記電解液室と、陰極室と、前記電解液室と前記容器内とを仕切る第1隔膜と、前記電解液室と前記陰極室との間を仕切る第2隔膜と、前記第1隔膜の外側に隣接して設けられた陽極と、前記陰極室に設けられた陰極と、を備え、前記電解液室は前記第1隔膜を介して前記容器内の水に連通する請求項1に記載の電解水生成装置。
  5.  前記電極ユニットは、前記電解液室と前記容器内の水との間を仕切る隔膜と、前記隔膜の外側に隣接して設けられた陽極と、前記電解液室内に設けられ、前記隔膜を挟んで前記陽極に対向する陰極と、を有し、前記電解液室は前記隔膜を介して前記容器内の水に連通する請求項1に記載の電解水生成装置。
  6.  前記一対の電極に電解電流を供給する給電部を備え、電解により前記電解液室内の電解液濃度が低下することで電解水の特性を制御する請求項1から5のいずれか1項に記載の電解水生成装置。
  7.  前記一対の電極に電解電流を供給する電源と、前記電解液室の電解液濃度が電解により低下することで引き起こされる電解電圧の上昇を検知し、電解を停止する検知回路と、を備える請求項1から4のいずれか1項に記載の電解水生成装置。
  8.  前記一対の電極に電解電流を供給する給電部を備え、前記電解液室の電解液濃度が電解により低下することで引き起こされる電解電流の低下により電解が実質的に停止する請求項1から3、5のいずれか1項に記載の電解水生成装置。
  9.  水を収容する生成容器を備え、前記電極ユニットは、前記生成容器内に配置されている請求項1から5のいずれか1項に記載の電解水生成装置。
  10.  電解液を充填する電解液室と、前記電解液室を仕切る隔膜と、前記隔膜の両側に設けられ互いに対向した一対の電極と、を備え、容器内の水を電解水に生成する電極ユニットであって、前記電解液室の容量が前記容器内の水の容量の1/100以下に形成されている電極ユニット。
  11.  前記電解液は塩化物を含有し、前記電解液室を満たす量だけ、前記電解液室に充填され、前記電解水は次亜塩素酸水である請求項10に記載の電極ユニット。
  12.  前記電解液室の容量は2mL以上であり、前記容器の容量は0.2L以上である請求項10又は11に記載の電極ユニット。
  13.  容器内の水の容量の1/100以下の容量に形成され電解液を充填する電解液室と、前記電解液室を仕切る隔膜と、前記隔膜の両側に設けられ互いに対向した一対の電極と、を備える電極ユニットにより容器内の水を電解水に生成する電解水生成方法であって、
     前記電解液室を満たす量だけ、前記電解液室に電解液を充填し、
     前記電極ユニットを前記容器内の水に浸漬し、
     前記電極に通電して前記電解液を電解し、
     前記電解液室に充填した電解液を取り換えることなく、前記電解により前記容器内の水を電解水に生成する電解水生成方法。
  14.  前記電解により前記電解液室内の電解液濃度が低下することで、生成される電解水の特性を制御する請求項13に記載の電解水生成方法。
  15.  前記電解により前記電解液室の電解液濃度が低下することで引き起こされる電解電圧の上昇を検知し、前記電解電圧の上昇を検知した際に電解を停止する請求項13又は14に記載の電解水生成方法。
  16.  前記電解により前記電解液室の電解液濃度が低下することで引き起こされる電解電流の低下により、前記電解が実質的に停止する請求項13又は14に記載の電解水生成方法。
PCT/JP2015/074724 2015-03-16 2015-08-31 電解水生成装置、電極ユニット、および電解水生成方法 WO2016147434A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017506007A JP6503054B2 (ja) 2015-03-16 2015-08-31 電解水生成装置、電極ユニット、および電解水生成方法
CN201590000315.4U CN206359291U (zh) 2015-03-16 2015-08-31 电解水生成装置、电极单元

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-052298 2015-03-16
JP2015052298 2015-03-16

Publications (1)

Publication Number Publication Date
WO2016147434A1 true WO2016147434A1 (ja) 2016-09-22

Family

ID=56918759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/074724 WO2016147434A1 (ja) 2015-03-16 2015-08-31 電解水生成装置、電極ユニット、および電解水生成方法

Country Status (2)

Country Link
JP (1) JP6503054B2 (ja)
WO (1) WO2016147434A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023106075A1 (ja) * 2021-12-08 2023-06-15 パナソニックIpマネジメント株式会社 水電解装置の運転方法及び水電解装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001062452A (ja) * 1999-08-31 2001-03-13 Energy Support Corp イオン水生成装置
JP2003251350A (ja) * 2002-02-28 2003-09-09 Energy Support Corp イオン水生成装置
JP2004305871A (ja) * 2003-04-04 2004-11-04 Sawada Kinji 電解水生成装置
JP2008264744A (ja) * 2007-04-25 2008-11-06 Masaaki Arai 電解水製造ユニット、電解水の製造装置、電解水の製造方法および電解水

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001062452A (ja) * 1999-08-31 2001-03-13 Energy Support Corp イオン水生成装置
JP2003251350A (ja) * 2002-02-28 2003-09-09 Energy Support Corp イオン水生成装置
JP2004305871A (ja) * 2003-04-04 2004-11-04 Sawada Kinji 電解水生成装置
JP2008264744A (ja) * 2007-04-25 2008-11-06 Masaaki Arai 電解水製造ユニット、電解水の製造装置、電解水の製造方法および電解水

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023106075A1 (ja) * 2021-12-08 2023-06-15 パナソニックIpマネジメント株式会社 水電解装置の運転方法及び水電解装置
JP7369986B1 (ja) * 2021-12-08 2023-10-27 パナソニックIpマネジメント株式会社 水電解装置の運転方法及び水電解装置

Also Published As

Publication number Publication date
JP6503054B2 (ja) 2019-04-17
JPWO2016147434A1 (ja) 2017-11-30

Similar Documents

Publication Publication Date Title
JP4653708B2 (ja) 電解水の生成方法及びそれに用いる電解水生成装置
US8419926B2 (en) Electrolyzed water producing method and apparatus
JP5210455B1 (ja) 洗浄水生成装置
JP2004008983A (ja) 電解水生成装置及び方法
JP5687789B1 (ja) 電解水の生成装置
WO2016147434A1 (ja) 電解水生成装置、電極ユニット、および電解水生成方法
CN108474123B (zh) 过氧化氢生成装置
KR102400469B1 (ko) 전해셀 및 전해셀용 전극판
JP2000218271A (ja) 電解装置
WO2008032947A1 (en) Apparatus for replenishing water in salt water tank included in apparatus for producing sodium hypochlorite
KR101919571B1 (ko) 담수 또는 수돗물의 수소 농도를 강화하기 위한 전극 구조물, 이를 이용한 수소수 제조 장치 및 이를 이용한 무선 수소수 제조 장치
KR102250773B1 (ko) 산화제 생성 시스템
JP2008086886A (ja) 電解水生成装置
JP2018153781A (ja) 電解水生成方法
JP2018158285A (ja) 電解水生成装置
JP2001191079A (ja) 電解水生成装置
JP6675112B2 (ja) 電解原水貯留式電解装置
CN106163995B (zh) 电解水生成装置、电极单元以及电解水生成方法
JP2017087087A (ja) 水素水製造装置
CN112030180A (zh) 次氯酸发生器
CN105332001A (zh) 半隔膜次氯酸钠发生器
JP3568290B2 (ja) 電解水生成装置
JP7052121B1 (ja) 電解セル、及び電解水生成装置
JP2000070945A (ja) 電解装置
CN206359291U (zh) 电解水生成装置、电极单元

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15885528

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017506007

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15885528

Country of ref document: EP

Kind code of ref document: A1