WO2009150844A1 - 半導体記憶装置、半導体装置、および光ディスク再生装置 - Google Patents

半導体記憶装置、半導体装置、および光ディスク再生装置 Download PDF

Info

Publication number
WO2009150844A1
WO2009150844A1 PCT/JP2009/002652 JP2009002652W WO2009150844A1 WO 2009150844 A1 WO2009150844 A1 WO 2009150844A1 JP 2009002652 W JP2009002652 W JP 2009002652W WO 2009150844 A1 WO2009150844 A1 WO 2009150844A1
Authority
WO
WIPO (PCT)
Prior art keywords
clock
circuit
signal
semiconductor memory
memory device
Prior art date
Application number
PCT/JP2009/002652
Other languages
English (en)
French (fr)
Inventor
中井信行
貞方博之
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2010516762A priority Critical patent/JPWO2009150844A1/ja
Priority to US12/937,174 priority patent/US20110026385A1/en
Priority to CN2009801212349A priority patent/CN102057436A/zh
Publication of WO2009150844A1 publication Critical patent/WO2009150844A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/406Management or control of the refreshing or charge-regeneration cycles
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/10009Improvement or modification of read or write signals
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/10009Improvement or modification of read or write signals
    • G11B20/10222Improvement or modification of read or write signals clock-related aspects, e.g. phase or frequency adjustment or bit synchronisation
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/14Digital recording or reproducing using self-clocking codes
    • G11B20/1403Digital recording or reproducing using self-clocking codes characterised by the use of two levels
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/4076Timing circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/22Read-write [R-W] timing or clocking circuits; Read-write [R-W] control signal generators or management 
    • G11C7/222Clock generating, synchronizing or distributing circuits within memory device
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B2220/00Record carriers by type
    • G11B2220/20Disc-shaped record carriers
    • G11B2220/25Disc-shaped record carriers characterised in that the disc is based on a specific recording technology
    • G11B2220/2537Optical discs
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B2220/00Record carriers by type
    • G11B2220/60Solid state media
    • G11B2220/61Solid state media wherein solid state memory is used for storing A/V content
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/005Reproducing

Definitions

  • the present invention relates to a refresh function of a semiconductor memory device. For example, even when the operating frequency specification of a mounted semiconductor device is low, the data transfer rate is prevented from being lowered, and layout design is facilitated by low power consumption and power leveling.
  • the present invention relates to circuit operations that contribute to noise reduction and the like.
  • a semiconductor device called a system LSI, which consists of a microprocessor, ASIC (Application Specific Integrated Circuit), custom logic circuit, etc. and a large-capacity memory on a single semiconductor chip, is the performance and differentiation of the mounted product.
  • ASIC Application Specific Integrated Circuit
  • a large-capacity memory on a single semiconductor chip is the performance and differentiation of the mounted product.
  • a key device that can appeal high added value it is a product in the product field that each manufacturer is focusing on.
  • a memory classified as DRAM (Dynamic Random Access Memory), ROM (Read Only Memory), SRAM (Static Random Access Memory), etc., which is mounted on the semiconductor device is hardware. Used as a library, various specifications are required.
  • system LSI applications are centered on AV (Audio / Visual) devices with short product cycles, and this is no exception in the hardware library installed.
  • AV Audio / Visual
  • more specific system LSI applications cover consumer and in-vehicle applications, and by field, the main ones are in a wide range of genres such as optical disk recording / playback devices, digital television receivers, digital cameras, and digital audio equipment. It extends. How efficiently a hardware library including a semiconductor storage device that can be commonly applied to a wide variety of system LSI groups can be developed is a factor that affects the profits of each company.
  • FIG. 1 shows a basic circuit configuration of a semiconductor device including a conventional DRAM.
  • FIG. 101 is a memory cell region in which memory cells are arranged in a matrix, 102, a row decoder circuit for outputting a selection signal for selecting one of the groups of memory cells arranged in the row direction in the memory cell region 101;
  • 103 is a column decoder circuit for outputting a selection signal for selecting one of the groups of memory cells arranged in the column direction in the memory cell region 101;
  • 104 is a sense read / write amplifier circuit for reading / writing data from / to the memory cells selected and designated by the row decoder circuit 102 and the column decoder circuit 103;
  • 105 is an internal data input / output line;
  • 106 is an external data input / output line;
  • 107 is a data input / output circuit for inputting / outputting data transmitted / received to / from the sense read / write amplifier circuit 104 to / from the large-scale logic circuit region 124 via
  • Reference numeral 122 denotes a control area including an address input circuit 111, a control circuit 113, a refresh circuit 115, a timing generation circuit 117, and a clock generation circuit 119.
  • 123 is a semiconductor memory device comprising the memory array area 121 and the control area 122;
  • 124 is a large-scale logic circuit area configured using standard cells, 125 is a redundant relief address storage circuit; 126 is a redundant relief address line for connecting the redundant relief address storage circuit 125 to the memory array region 121;
  • 127 is an external terminal group connected to the semiconductor memory device 123 and the large-scale logic circuit area 124;
  • a semiconductor device 128 includes the semiconductor memory device 123, the large-scale logic circuit region 124, the redundant relief address memory circuit 125, and the external terminal group 127.
  • the clock generation circuit 119 is provided as necessary, such as the ability to drive the control circuit 113 and the like.
  • the clock generation circuit 119 is composed of, for example, a buffer circuit and has the same logic level as the input external clock signal 120.
  • the internal synchronous clock signal 118 is output.
  • the clock generation circuit 119 In response to the external clock signal 120 input from the external terminal group 127, the clock generation circuit 119 outputs the internal synchronous clock signal 118, and the data input / output circuit 107, the address input circuit 111, the control circuit 113, the The refresh circuit 115 and the timing generation circuit 117 are supplied as a clock for synchronization.
  • the control circuit 113 generates the address control signal 110 and inputs it to the address input circuit 111 in accordance with the external control signal 112 under the internal synchronization clock signal 118.
  • the address input circuit 111 generates the row address 108 and inputs it to the row decoder circuit 102, and generates the column address 109 and inputs it to the column decoder circuit 103.
  • a memory cell in the memory cell region 101 is selected in accordance with values input to the row decoder circuit 102 and the column decoder circuit 103, and a read / write operation is performed with the sense read / write amplifier circuit 104.
  • a data input / output operation is performed with the large-scale logic circuit region 124 through the internal data input / output line 105, the data input / output circuit 107, and the external data input / output line 106.
  • the operation of the refresh circuit 115 is basically the same as described above.
  • the address control signal 110 is input to the address input circuit 111.
  • a similar operation is performed. The only difference is that the data read into the sense read / write amplifier circuit 104 is written into the memory cell, and the internal data input / output line 105, the data input / output circuit 107, and the external data input / output line 106 are connected. No data input / output operation is performed with respect to the large-scale logic circuit area 124.
  • the memory array region 121 and the large-scale logic circuit region 124 are provided on one semiconductor integrated circuit, so that the external data input / output line 106 is connected to a multi-bit. It is relatively easy to use a bus. Therefore, it is easy to achieve low power consumption by reducing the frequency of the clock signal while ensuring the data transfer rate.
  • the refresh operation of the memory array area 121 as described above needs to be performed at a predetermined frequency every predetermined cycle. Since the refresh frequency is constant regardless of the frequency of the clock signal, the lower the frequency of the clock signal, the lower the band in which operations other than refresh, such as data transfer, are performed (for example, the ratio of clock pulses used).
  • an external clock signal 120 of a certain frequency requires two refresh operations with two clock pulses per 20 clock pulses, the remaining 18 clock pulses, that is, 90% It is possible to perform operations such as command processing in the bandwidth.
  • the clock pulse that can be used for command processing is 3 clock pulses per 5 clock pulses. The bandwidth will drop to 60%.
  • the present invention has been made in view of such points, and it is possible to easily reduce the frequency of a clock signal while appropriately refreshing a memory and ensuring a data transfer rate. Objective.
  • An example of the first invention is: A semiconductor memory device comprising a memory cell and having a refresh function of the memory cell, A clock generation circuit configured to generate and output a second clock from a reverse phase of the first clock with the first clock as an input; The refresh function is operated in synchronization with at least one of the first clock and the second clock.
  • An example of the second invention is: A semiconductor memory device according to an example of the first invention, further comprising: Controls whether refresh operation is performed in synchronization with only the first clock, only in synchronization with the second clock, or in synchronization with the first clock and the second clock A selection circuit that switches according to a signal is provided.
  • An example of the third invention is a semiconductor device, A semiconductor memory device of an example of the second invention; Logic circuit; An input / output circuit for inputting / outputting a signal to / from the outside, and an IO block having an electrode pad connected to the input / output circuit; An external signal input via an IO block is input to the logic circuit, and the control signal for controlling switching of the selection circuit is generated.
  • An example of the fourth invention is: A semiconductor device according to an example of a third invention, further comprising: A PLL circuit that generates a clock having a frequency controlled by an external signal input through the IO block and inputs the clock to the semiconductor memory device and the logic circuit is provided.
  • An example of the fifth invention is: A semiconductor device according to an example of any one of the third and fourth aspects, The semiconductor memory device that performs a refresh operation in synchronization with only the first clock; The semiconductor memory device performing a refresh operation in synchronization with only the second clock; The semiconductor memory device that performs a refresh operation in synchronization with the first clock and the second clock is provided in any combination.
  • the current consumption due to the refresh operation can be dispersed along the time axis, so that the semiconductor device can achieve the effect of leveling the power consumption.
  • An example of the sixth invention is an optical disk reproducing apparatus,
  • the refresh function of the memory cell and the clock generator for generating and outputting the second clock from the reverse phase of the first clock with the first clock as an input and the refresh operation are synchronized with only the first clock.
  • a semiconductor memory circuit comprising a selection circuit that switches between selection by a control signal, whether to perform in synchronization with only the second clock, or in synchronization with the first clock and the second clock;
  • a semiconductor device comprising: a logic circuit; an IO block having an input / output circuit for inputting / outputting a signal and an electrode pad connected to the input / output circuit; and a PLL circuit capable of changing a frequency of a generated clock by a control signal
  • An optical disc reproducing apparatus comprising a circuit for outputting a signal capable of discriminating a plurality of types of information recording media based on a data signal read by the optical pickup; A signal capable of discriminating between the plurality of types of information recording media is input as an external signal to the
  • An example of the seventh invention is an optical disk reproducing device, In a semiconductor memory circuit having a refresh function for a memory cell, a clock generator that receives a first clock as an input and generates and outputs a second clock from a phase opposite to the first clock, and a refresh operation are provided.
  • a selection circuit that switches between a selection of whether to perform in synchronization with only the first clock, only in synchronization with the second clock, or in synchronization with the first clock and the second clock by a control signal
  • a semiconductor device comprising: With an optical pickup, An optical disc reproducing apparatus comprising a circuit for outputting a signal capable of discriminating a plurality of types of information recording media based on a data signal read by the optical pickup; A signal capable of discriminating between the plurality of types of information recording media is input as an external signal to the IO block of the semiconductor device, A frequency of a clock input to the semiconductor memory device and the logic circuit is changed by the external signal.
  • An example of the eighth invention is A semiconductor memory device according to an example of the first invention,
  • the clock generation circuit generates the second clock including two pulses per clock cycle.
  • An example of the ninth invention is: A semiconductor memory device according to an example of the eighth invention,
  • the clock generation circuit includes: A NOT circuit for inverting the first clock and outputting a reverse phase signal;
  • An EXNOR circuit that generates the second clock based on the first clock and the reverse phase signal; It is characterized by having.
  • An example of the tenth invention is A semiconductor memory device according to an example of the eighth invention,
  • the clock generation circuit includes: There is provided a selector for selecting one of the first and second clocks.
  • An example of the eleventh invention is A semiconductor memory device according to an example of the tenth invention, The selector performs the selection according to a control signal input from the outside of the semiconductor memory device.
  • An example of the twelfth invention is A semiconductor memory device according to an example of the tenth invention, The selector is configured to fixedly select one of the first and second clocks during refresh.
  • An example of the thirteenth invention is A semiconductor memory device according to an example of the eighth invention,
  • the clock generation circuit includes a selector,
  • the clock generation circuit is further configured to generate a third clock for performing the refresh by shifting at a timing shifted from a transition timing of the first clock,
  • the selector selects any one of the first, second, and third clocks.
  • An example of the fourteenth invention is A semiconductor memory device according to an example of a thirteenth invention,
  • the clock generation circuit includes: A NOT circuit for inverting the first clock and outputting a reverse phase signal; A NOR circuit for generating the third clock based on the first clock and the reverse phase signal; It is characterized by having.
  • the efficiency of the clock signal can be increased, and the current can be dispersed during the refresh.
  • An example of the fifteenth invention is A semiconductor memory device according to an example of a thirteenth invention, The selector selects one of the first and second clocks.
  • An example of the sixteenth invention is A semiconductor memory device according to an example of a thirteenth invention, A first set of the memory cells and a clock generation circuit; and a second set; The first set of selectors selects the first clock fixedly, The second set of selectors may select one of the first and third clocks during refresh.
  • An example of the seventeenth invention is A semiconductor memory device according to an example of the sixteenth invention,
  • the second set of selectors is configured to fixedly select the third clock during refresh.
  • An example of the eighteenth invention is A semiconductor device comprising the semiconductor memory device of the example of the tenth invention,
  • the selector selects the first clock when the first clock has a first frequency, and selects the second clock when the first clock has a second frequency lower than the first frequency. It is characterized by doing.
  • An example of the nineteenth invention is An optical disk reproducing device including a semiconductor device according to an example of the eighteenth invention, further, An optical pickup for reading information recorded on a recording medium; A determination circuit for determining a frequency of a clock to be supplied to the semiconductor memory device in the semiconductor device for processing information read from the recording medium, and outputting a determination signal; With The selector selects the first or second clock according to the determination signal.
  • An example of the twentieth invention is An optical disk reproducing apparatus according to an example of the nineteenth invention, Furthermore, a PLL circuit that generates a first clock having a frequency corresponding to the determination signal is provided.
  • the efficiency of the clock signal can be increased when the frequency of the first clock is low.
  • the reduction in the data transfer rate is improved, and the effect of improving the performance while maintaining the low power consumption is obtained in the semiconductor device equipped with the semiconductor memory device. It is done.
  • FIG. 1 is a block diagram showing a configuration of a semiconductor device 128 including a conventional semiconductor memory device 123.
  • FIG. 2 is a timing chart showing an example of signals of the main part of the conventional semiconductor memory device 123.
  • FIG. 3 is a timing chart showing another example of the signal of the main part of the conventional semiconductor memory device 123.
  • FIG. 4 is a block diagram showing a configuration of the semiconductor device 628 according to the first embodiment of the present invention.
  • FIG. 5 is a circuit diagram showing a configuration of a clock generation circuit 619 provided in the semiconductor memory device 623 of the semiconductor device 628.
  • FIG. 6 is a timing chart showing an example of signals at various parts of the clock generation circuit 619 when the frequency of the clock signal is high.
  • FIG. 1 is a block diagram showing a configuration of a semiconductor device 128 including a conventional semiconductor memory device 123.
  • FIG. 2 is a timing chart showing an example of signals of the main part of the conventional semiconductor memory device 123.
  • FIG. 3 is
  • FIG. 7 is a timing chart showing an example of signals at various parts of the clock generation circuit 619 when the frequency of the clock signal is low.
  • FIG. 8 is a block diagram showing a configuration of an optical disk reproducing apparatus using the semiconductor device 628.
  • FIG. 9 is a block diagram showing a configuration of the semiconductor device 628 according to the second embodiment of the present invention.
  • FIG. 10 is a circuit diagram showing a configuration of a clock generation circuit 819 provided in the semiconductor memory devices 623 and 623 ′ of the semiconductor device 628.
  • FIG. 11 is a timing chart showing an example of signals at various parts of the clock generation circuit 819 when the frequency of the clock signal is high.
  • FIG. 12 is a timing chart showing an example of signals at various parts of the clock generation circuit 819 when the frequency of the clock signal is low.
  • Embodiment 1 of the Invention As a first embodiment of the present invention, a semiconductor device 628 provided with a semiconductor memory device 623 and an optical disk reproducing device using the semiconductor device 628 will be described with reference to FIGS.
  • a DRAM Dynamic Random Access Memory
  • FIG. 4 is a block diagram illustrating a configuration of the semiconductor device 628.
  • the semiconductor device 628 includes a semiconductor memory device 623 and a large-scale logic circuit area 624, a redundant relief address memory circuit 625, and an external terminal group 627.
  • the semiconductor memory device 623 has a memory array area 621 and a control area 622.
  • Reference numeral 601 denotes a memory cell region in which memory cells are arranged in a matrix
  • a row decoder circuit 602 outputs a selection signal for selecting one of the groups of memory cells arranged in the row direction in the memory cell region 601
  • 603 is a column decoder circuit for outputting a selection signal for selecting one of the groups of memory cells arranged in the column direction in the memory cell region 601
  • Reference numeral 604 denotes a sense read / write amplifier circuit for reading and writing data from / to the memory cells selected and designated by the row decoder circuit 602 and the column decoder circuit 603
  • 605 is an internal data input / output line
  • 606 is an external data input / output line
  • 607 is a data input / output circuit for inputting / outputting data transmitted / received to / from the sense read / write amplifier circuit 604 to / from the large-scale logic circuit area 624 via the external data input / output line 606; It is.
  • Reference numeral 608 denotes a row address for designating the row decoder circuit 602 to select one of a group of memory cells arranged in the row direction.
  • 609 is a column address for designating the column decoder circuit 603 to select one of the groups of memory cells arranged in the column direction,
  • Reference numeral 610 denotes an address control signal indicating a memory cell for reading and writing data in accordance with an instruction from the outside of the semiconductor memory device 623, and the like.
  • An address input 611 outputs the row address 608 to the row decoder circuit 602 and outputs the column address 609 to the column decoder circuit 603 in accordance with the address control signal 610 (or an internal address control signal 614 described later).
  • 612 is an external control signal indicating an instruction such as data reading / writing
  • 613 is a control circuit for outputting the address control signal 610 according to the external control signal 612
  • 614 is an internal address control signal equivalent to the address control signal 610, indicating a memory cell to be refreshed
  • 615 is a refresh circuit for generating the internal address control signal 614 for causing the memory cell region 601 to perform a refresh operation
  • 616 is a timing adjustment signal
  • 617 is a timing generation circuit
  • 619 is a clock generation circuit
  • 410 is a clock output signal
  • 401 is a clock input signal
  • 402 is a refresh control signal
  • 403 is a low-speed operation control signal, It is.
  • the timing generation circuit 617 outputs a timing adjustment signal 616 in order to adjust the operation timing of the address input circuit 611, the control circuit 613, and the refresh operation of the refresh circuit 615. Specifically, for example, the clock output signal 410 output from the clock generation circuit 619 rises from “L” (Low level) to “H” while the refresh control signal 402 is “H” (High level). In this case, a timing adjustment signal 616 for instructing a refresh operation is output to each unit.
  • the clock generation circuit 619 is for synchronizing each part in the semiconductor memory device 623, specifically, the data input / output circuit 607, the address input circuit 611, the control circuit 613, the refresh circuit 615, the timing generation circuit 617, and the like.
  • the clock output signal 410 is output.
  • clock generation circuit 619 (Specific configuration of clock generation circuit 619) Specifically, the clock generation circuit 619 is configured, for example, as shown in FIG.
  • 401 is a clock input signal (external clock signal)
  • 402 is a refresh control signal for instructing a refresh operation
  • 403 is a low speed operation control signal
  • 404 is an inverting circuit (NOT circuit)
  • 405 is an inverting exclusive OR circuit.
  • EXNOR circuit 406 is a logical product circuit (AND circuit)
  • 407 is a signal selection circuit
  • 408 is a switching signal of the signal selection circuit 407
  • 409 is an internal clock signal
  • 410 is a clock output signal (internal synchronization clock signal). is there.
  • the clock output signal 410 output from the clock generation circuit 619 is a clock input signal 401, a refresh control signal 402, and a low-speed operation control signal 403 input from the outside of the semiconductor device 628 or the large-scale logic circuit region 624. Based on.
  • a predetermined high frequency (FIG. 6) or a quarter lower frequency (FIG. 6) is selected depending on the processing contents of the semiconductor device 628. 7) is selectively inputted.
  • the low-speed operation control signal 403 is a signal indicating whether the clock input signal 401 is a high frequency or a low frequency. For example, when a high-frequency signal is input, the low-speed operation control signal 403 is maintained at “L”. When it is input, it is maintained at “H”.
  • the refresh control signal 402 is the same signal that is input to the timing generation circuit 617. For example, when the clock input signal 401 has the high frequency, the refresh control signal 402 is set to “H” twice for each period T for 20 cycles at the high frequency, and only for one cycle. It has become. Further, when the clock output signal 410 has the low frequency, it is set to “H” once for the period T, that is, once every five periods at the low frequency for one period.
  • the low-speed operation control signal 403 is maintained at “L”, so that the clock is selected by the signal selection circuit 407.
  • the input signal 401 is output as it is as the clock output signal 410.
  • the refresh control signal 402 becomes “H” twice within the period T as described above, but does not affect the clock output signal 410.
  • the timing generation circuit In 617 an appropriate refresh operation is performed by inputting the refresh control signal 402 that becomes “H” twice within the period T as described above. Also, command processing or the like indicated by the external control signal 612 is performed during a period of 18 cycles when the refresh control signal 402 is “L”.
  • the low speed operation control signal 403 is maintained at “H”, so that the refresh control signal 402 becomes the clock input signal.
  • the internal clock signal 409 is selected by the selection of the signal selection circuit 407 during that period. That is, two pulses that become “H” for the delay time of the inverting circuit 404 at the rising and falling timings of the clock input signal 401 are output as the clock output signal 410.
  • the refresh operation is appropriately performed twice per period T as in the case where the frequency of the clock input signal 401 is high.
  • the clock input signal 401 is output as it is as the clock output signal 410.
  • Command processing or the like indicated by the control signal 612 is performed.
  • the large-scale logic circuit region 624 in the semiconductor device 628 is configured using, for example, standard cells, and is formed with an IO (Input / Output) function and a circuit that performs the main function as a system LSI.
  • IO Input / Output
  • the redundant relief address storage circuit 625 stores an address indicating a memory cell to be redundantly repaired.
  • the redundant relief address line 626 connects the redundant relief address storage circuit 625 to the memory array area 621.
  • the external terminal group 627 relays signals input / output between the semiconductor memory device 623, the large-scale logic circuit region 624, and the like and the outside of the semiconductor device 628.
  • the clock generation circuit 619 uses the clock output signal 401 based on the clock input signal 401 input from the external terminal group 627 or the like.
  • 410 is supplied as a clock for synchronizing the data input / output circuit 607, the address input circuit 611, the control circuit 613, the refresh circuit 615, and the timing generation circuit 617.
  • the control circuit 613 generates the address control signal 610 in accordance with the external control signal 612 in synchronization with the clock output signal 410 and inputs it to the address input circuit 611.
  • the address input circuit 611 generates the row address 608 and inputs it to the row decoder circuit 602, and also generates the column address 609 and inputs it to the column decoder circuit 603.
  • a memory cell in the memory cell region 601 is selected in accordance with values input to the row decoder circuit 602 and the column decoder circuit 603, and a read / write operation with the sense read / write amplifier circuit 604 is performed.
  • the sense read / write amplifier circuit 604 and the large-scale logic circuit region 624 are connected via the internal data input / output line 605, the data input / output circuit 607, and the external data input / output line 606. Data input / output operations are performed.
  • the timing generation circuit 617 outputs the timing adjustment signal 616 for instructing the refresh operation. Therefore, for example, when the refresh circuit 615 counts up a count value of an internal counter (not shown) and outputs the count value as the internal address control signal 114, the control circuit 113 outputs the address control signal 110.
  • a refresh operation is performed on the same predetermined address area. The refresh operation itself is basically the same as when data is actually read and written.
  • the only difference is that the data read to the sense read / write amplifier circuit 604 is written into the memory cell, and the internal data input / output line 605, the data input / output circuit 607, and the external data input / output line 606 are different. No data input / output operation is performed with respect to the large-scale logic circuit area 624 via the.
  • the refresh control signal 402 when the frequency of the clock input signal 401 is low, the refresh control signal 402 is merely “H” for one period of the clock input signal 401 and the clock generation circuit 619 generates a clock.
  • the refresh operation is performed twice per period T. Therefore, four clock pulses out of the five clock pulses can be used for command processing such as data transfer and reading / writing within the period T, so that the processing capability of the semiconductor device 628 can be easily ensured.
  • the power consumption can be easily reduced by setting the frequency of the clock input signal 401 lower.
  • FIG. 8 is a block diagram showing a system configuration of an optical disk reproducing apparatus using the semiconductor device 628 including the semiconductor memory device 623.
  • reference numeral 701 denotes an information recording medium, such as a DVD (Digital Video Disc, Digital Versatile Disc) and a CD (Compact Disc), which have different data amounts, data structures, and the like and are required for data processing.
  • a plurality of types of information recording media 701 having different frequencies can be loaded.
  • 702 is an optical pickup that reads information recorded on the information recording medium 701
  • 703 is a data signal corresponding to the data read by the optical pickup 702
  • 704 is an optical disc determination that determines the type of the information recording medium 701 from the contents of the data signal 703.
  • 705 is a data signal including the data signal 703 and a signal that discriminates the type of the information recording medium 701
  • 706 is a circuit that processes the data signal 705
  • 707 is a PLL (Phase Locked Loop) circuit
  • 709 is a logic circuit 706.
  • the semiconductor device 628 includes the logic circuit 706, the PLL circuit 707, and the semiconductor memory device 623.
  • the logic circuit 706 and the PLL circuit 707 are formed in, for example, the large-scale logic circuit region 624 shown in FIG.
  • the clock input signal 401 is output from the PLL circuit 707 and input to the semiconductor memory device 623.
  • the refresh control signal 402 and the low speed operation control signal 403 are output from the logic circuit 706 together with other control signals, and are input to the semiconductor memory device 623.
  • the optical disc discriminating circuit 704 discriminates from the data signal 703 read by the optical pickup 702 from the information recording medium 701 that the information recording medium 701 is “a medium with a small amount of data processing”, and a data signal 705 is used to indicate this. Is set to “H”, for example.
  • the data signal 705 set to “H” is input to the logic circuit 706.
  • the logic circuit 706 enters a “mode capable of signal processing at low speed” corresponding to “medium with a small amount of data processing”, and outputs a control signal 709 that instructs the PLL circuit 707 to lower the frequency.
  • the PLL circuit 707 sets the clock output signal 710 output to the logic circuit 706 and the clock input signal 401 output to the semiconductor memory device 623 to a predetermined low frequency.
  • the logic circuit 706 further sets the low speed operation control signal 403 to “H” so as to indicate that the clock input signal 401 input to the semiconductor memory device 623 has a low frequency.
  • the logic circuit 706 also sets the refresh control signal 402 for instructing the refresh operation to the semiconductor memory device 623 to “H” for only one period every period T for five periods in the clock input signal 401, for example. 623 is controlled. Therefore, from the clock generation circuit 619 (FIG. 5) in the semiconductor memory device 623, two pulses are generated as the clock output signal 410 in one period of the period when the refresh control signal 402 becomes “H” every period T. In addition to being output, the clock input signal 401 is output as it is during the period of four cycles when the refresh control signal 402 is “L”. As a result, two refresh operations and four command processes are performed.
  • a clock is used for signal processing for exchanging data between the semiconductor memory device 623 and the logic circuit 706 by the data bus 713. It is possible to use pulses. Therefore, it is possible to realize a system that can easily improve the data transfer rate, suppress a decrease in the data transfer rate, or reduce power consumption.
  • the optical disc discriminating circuit 704 discriminates that the information recording medium 701 is a “medium with a large amount of data processing” from the data signal 703 read from the information recording medium 701 by the optical pickup 702, and the data signal 705 to indicate this. Is set to “L”, for example.
  • the data signal 705 having the “L” level is input to the logic circuit 706.
  • the logic circuit 706 enters a “high-speed signal processing mode” corresponding to “a medium with a large amount of data processing”, and outputs a control signal 709 that instructs the PLL circuit 707 to increase the frequency.
  • the PLL circuit 707 sets the clock output signal 710 output to the logic circuit 706 and the clock input signal 401 output to the semiconductor memory device 623 to a predetermined high frequency.
  • the logic circuit 706 further sets the low speed operation control signal 403 to “L” to indicate that the clock input signal 401 input to the semiconductor memory device 623 has a high frequency.
  • the logic circuit 706 also controls the semiconductor memory device 623 by setting the refresh control signal 402 for instructing the semiconductor memory device 623 to perform a refresh operation to “H” for a period of two cycles in total, for example, every 20 cycles in the clock input signal 401. . Therefore, in the clock generation circuit 619 (FIG. 5) in the semiconductor memory device 623, the clock input signal 401 is selected by the signal selection circuit 407 and output as the clock output signal 410 regardless of the level of the refresh control signal 402.
  • the clock output signal 410 is not limited to be switched according to the frequency of the clock input signal 401, and two clock pulses may always be output during refresh.
  • a clock generation circuit 619 is used as a common circuit or a macro to configure a semiconductor device or an optical disc reproducing device similar to that of the first embodiment, and as indicated by reference numeral A in FIG.
  • the low speed operation control signal 403 may be fixed to “H”. Such a configuration can be applied to the case where the clock efficiency is improved regardless of the frequency of the clock input signal 401.
  • the refresh control signal 402 may be fixed to “L”, as indicated by the symbol B in FIG.
  • the clock input signal 401 is always output as the clock output signal 410 via the signal selection circuit 407. Therefore, for example, the clock generation circuit 619 can function as a buffer or the like using a circuit common to the first embodiment.
  • Embodiment 2 of the Invention Compared with the semiconductor memory device 623 (FIGS. 4 and 5) of the first embodiment, the semiconductor memory device of the second embodiment has a clock generation circuit 819, instead of the clock generation circuit 619, as shown in FIGS. Two semiconductor memory devices 623 and 623 ′ using 819 ′ are provided. The other points are the same as in the first embodiment, and the same applies to the point applicable to the optical disk reproducing apparatus as shown in FIG.
  • the clock generation circuits 819 and 819 ′ further include an inverting OR circuit (NOR) 806 and a signal selection circuit 808 that is switched and controlled by a low-speed operation dispersion signal 811.
  • NOR inverting OR circuit
  • Other components are substantially the same as those in the first embodiment.
  • 801 is a clock input signal
  • 802 is a refresh control signal for instructing a refresh operation
  • 803 and 803 ′ are low-speed operation control signals
  • 804 is an inversion circuit (NOT circuit)
  • 805 is inversion exclusive.
  • An OR circuit (EXNOR circuit), 806 is an inverted OR circuit (NOR circuit), 807 is an AND circuit (AND circuit), 808 and 809 are signal selection circuits, 810 is a switching signal for the signal selection circuit 809, and 811 is A low-speed operation dispersion signal that becomes a switching signal of the signal selection circuit 808, 812 is an internal clock signal a, 813 is an internal clock signal b, 814 is an output signal of the signal selection circuit 808, and 815 and 815 ′ are clock output signals.
  • 11 and 12 are waveform diagrams of input / output signals of the clock generation circuits 819 and 819 'and internal signals. That is, the clock generation circuits 819 and 819 ′ receive the clock input signal 801, the refresh control signal 802, the low speed operation control signals 803 and 803 ′, and the low speed operation distribution signal 811 as shown in FIG. 815 and 815 'are output.
  • the refresh timing condition requires two refresh operations per period T as in the first embodiment.
  • the clock generation circuits 819 and 819 ′ as the clock input signal 801, a signal having a predetermined high frequency according to the determination of the type of the information recording medium or the like, or a signal having a low frequency that is 1 ⁇ 4 thereof, is used as in the first embodiment. It is designed to be selectively input.
  • the low speed operation control signal 803 input to the clock generation circuit 819 is maintained at “L” when the clock input signal 401 is at a high frequency and at “H” when the clock input signal 401 is at a low frequency.
  • the low-speed operation control signal 803 ′ input to the clock generation circuit 819 ′ is always fixed to “L” as indicated by a symbol C in FIG. 10, for example.
  • the low-speed operation dispersion signal 811 is always fixed to “H” in both the clock generation circuits 819 and 819 ′. Further, when the clock input signal 801 has a high frequency, the refresh control signal 802 becomes “H” twice in the period T as in the first embodiment, and when the clock input signal 801 has a low frequency, It is set to “H” for a period of two cycles at the low frequency.
  • the low speed operation control signal 803 ′ is always fixed to “L”, so that the clock input signal 801 is selected and output by the signal selection circuit 809.
  • the clock generation circuit 819 when the frequency of the clock input signal 801 is high, the low-speed operation control signal 803 is maintained at “L”, so that the clock input signal 801 is also selected and output.
  • the low speed operation control signal 803 ′ is always fixed to “L”, so that the clock input signal 801 is selected and output by the signal selection circuit 808.
  • the clock generation circuit 819 when the refresh control signal 802 is “L”, the clock input signal 801 is similarly selected and output. Therefore, command processing and the like are performed three times per period T.
  • the low-speed operation distribution signal 811 is fixed to “H”, and the low-speed operation control signal 803 and the refresh control signal 802 become “H”, and the switching signal 810 becomes “H”. Therefore, the internal clock signal b 813 and the output signal 814 are selected by the signal selection circuit 808 and the signal selection circuit 809, respectively. Since the internal clock signal b813 is an inverting OR circuit of the clock input signal 801 and its inverted signal, a pulse that becomes “H” only for the delay time of the inverting circuit 804 is generated at the timing when the clock input signal 801 falls. , Output as a clock output signal 815.
  • the semiconductor memory device 623 'performs refresh at the rising timing of the clock input signal 801, and the semiconductor memory device 623 performs refresh at the falling timing of the clock input signal 801.
  • the timing at which the refresh current is consumed is dispersed to reduce the concentration of power consumption, and the average current consumption of the semiconductor device Can be reduced.
  • the low-speed operation control signal 803 is set to “H” only when the frequency of the clock input signal 801 is low. As indicated by symbol D in conjunction with FIG. 10, the low-speed operation control signal 803 is always fixed to “H”, and the refresh operation is performed regardless of the frequency of the clock input signal 801, and the semiconductor memory devices 623, 623 ′. In this case, the steps may always be shifted from each other.
  • a single or a plurality of semiconductor memory devices 623 in which the low-speed operation control signal 803 is fixed to “L” may be provided. That is, in this case, as described in the modification of the first embodiment, the clock generation circuit 619 can function as a buffer or the like using a circuit common to the second embodiment.
  • the low-speed operation dispersion signal 811 is not limited to “H”, but may be fixed to “L” as indicated by a symbol E in FIG.
  • the signal selection circuit 808 since the signal selection circuit 808 always selects the internal clock signal a812, the same operation as that of the clock generation circuit 619 in the first embodiment and its modification is performed according to the refresh control signal 802 and the low speed operation control signal 803. To improve the clock efficiency. Therefore, the circuit can be easily shared.
  • the low-speed operation dispersion signal 811 is not limited to “H” or “L”, but is dynamically controlled by the logic circuit 706 or the like according to, for example, required command processing capability and current consumption.
  • the refresh may be performed twice in one clock cycle, or the refresh timing may be shifted from each other in the plurality of semiconductor memory devices 623.
  • the number of clocks required for the apparent refresh operation can be reduced by half, and the timing at which the refresh current is consumed can be distributed. Therefore, in the semiconductor device, it is possible to realize a configuration that can reduce or disperse power consumption with respect to an optical disk reproducing device using the semiconductor device while improving the decrease in the data transfer rate.
  • a single or a plurality of semiconductor devices are provided with a semiconductor memory device.
  • the low-speed operation dispersion signal 811 and the low-speed operation control signals 803 and 403 are set to “H” and “L”.
  • an example of an optical disk playback device has been described.
  • the present invention is not limited to an optical disk playback device, and can be applied to a semiconductor device or the like mounted on a system having a different data transfer rate with a memory depending on operation specifications. Easy.
  • the embodiment as described above covers a wide range of genres such as optical disc, digital TV, digital camera, digital audio, etc. As a result, it is possible to efficiently develop a semiconductor device that extends to the above-mentioned range, and as a result, an effect of improving profits can be obtained.
  • the semiconductor memory device of the present invention is useful for, for example, reducing the power consumption of a semiconductor device and improving the data transfer rate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Dram (AREA)
  • Signal Processing For Digital Recording And Reproducing (AREA)
  • Optical Recording Or Reproduction (AREA)

Abstract

 半導体記憶装置は、メモリセルを備え、上記メモリセルのリフレッシュ機能を有する半導体記憶装置において、第1のクロックを入力として、前記第1のクロックの逆相から第2のクロックを生成して出力するクロック発生回路を備え、前記第1のクロックと前記第2のクロックの少なくとも1つのクロックに同期して、前記リフレッシュ機能の動作を行う。

Description

半導体記憶装置、半導体装置、および光ディスク再生装置
 本発明は、半導体記憶装置のリフレッシュ機能に関し、例えば、搭載される半導体装置の動作周波数仕様が低い場合でもデータ転送レートの低下を防止するとともに、低消費電力化や電力平準化によるレイアウト設計容易化、ノイズ低減などに寄与する回路動作に関するものである。
 近年の半導体装置は、微細化技術の進歩による高集積化が、半導体メーカ間の競争も相俟ってますます加速している。なかでもマイクロプロセッサやASIC(Application Specific Integrated Circuit)、カスタムロジック回路などと、大容量のメモリとを1つの半導体チップ上に構成したシステムLSIと呼ばれる半導体装置は、実装される製品の性能、差別化を決定付ける、高付加価値を訴求できるキーデバイスとして、各メーカが注力している製品分野の製品である。
 このような半導体装置を設計する上で、半導体装置に搭載される、DRAM(Dynamic Random Access Memory)、ROM(Read Only Memory)、SRAM(Static Random Access Memory)などと分類されるメモリは、ハードウェアライブラリとして用いられ、様々な仕様が要求される。
 しかも、システムLSIの用途は製品サイクルが短いAV(Audio / Visual)機器を中心としており、それは、搭載されるハードウェアライブラリにおいても例外では無い。また、より具体的なシステムLSIの用途別では民生用途から車載用途までをカバーし、分野別では、主なものでも光ディスク記録再生装置、ディジタルテレビ受像機、ディジタルカメラ、ディジタルオーディオ機器など幅広いジャンルに及んでいる。これら、多種多様なシステムLSI群に共通で適用出来る、半導体記憶装置を含むハードウェアライブラリを如何に効率的に開発出来るかが、各社の収益を左右する要因ともなっている。
 なお、上記の説明は、本発明の半導体記憶装置が適用される一例であって、用途や用い方の限定を意味するものではない。
 次に、従来のDRAMを含む半導体装置の基本回路構成を図1に示す。図1において、
101は、メモリセルをマトリックス状に配列したメモリセル領域、
102は、前記メモリセル領域101における行方向に並んだメモリセルからなるグループのうちの1つを選択するための選択信号を出力する行デコーダ回路、
103は、前記メモリセル領域101における列方向に並んだメモリセルからなるグループのうちの1つを選択するための選択信号を出力する列デコーダ回路、
104は、前記行デコーダ回路102および前記列デコーダ回路103により選択指示されたメモリセルに対してデータを読み書きするセンスリードライトアンプ回路、
105は、内部データ入出力線、
106は、外部データ入出力線、
107は、前記センスリードライトアンプ回路104との間で送受されるデータを外部データ入出力線106を介して大規模論理回路領域124との間で入出力するデータ入出力回路、
108は、行方向に並んだメモリセルからなるグループのうちの1つの選択を前記行デコーダ回路102に指定する行アドレス、
109は、列方向に並んだメモリセルからなるグループのうちの1つの選択を前記列デコーダ回路103に指定する列アドレス、
110は、アドレス制御信号、
111は、前記アドレス制御信号110に従い、前記行デコーダ回路102に前記行アドレス108を出力するとともに、前記列デコーダ回路103に前記列アドレス109を出力するアドレス入力回路、
112は、外部制御信号、
113は、前記アドレス制御信号110を前記外部制御信号112に従い出力する制御回路、
114は、内部アドレス制御信号、
115は、待機時に前記アドレス制御信号110と等価な内部アドレス制御信号114を発生して前記メモリセル領域101のリフレッシュ動作を行わせるリフレッシュ回路、
116は、タイミング調整信号、
117は、前記アドレス入力回路111と前記制御回路113と前記リフレッシュ回路115のタイミング調整を前記タイミング調整信号116を出力して行うタイミング発生回路、
118は、内部同期クロック信号、
119は、前記データ入出力回路107と前記アドレス入力回路111と前記制御回路113と前記リフレッシュ回路115と前記タイミング発生回路117の同期を前記内部同期クロック信号118を出力して取るクロック発生回路、
120は、外部クロック信号、
121は、メモリセル領域101、行デコーダ回路102、列デコーダ回路103、センスリードライトアンプ回路104、およびデータ入出力回路107から構成されるメモリアレイ領域、
122は、アドレス入力回路111、制御回路113、リフレッシュ回路115、タイミング発生回路117、およびクロック発生回路119から構成される制御領域、
123は、前記メモリアレイ領域121、および前記制御領域122から構成される半導体記憶装置、
124は、スタンダードセルを用いて構成される大規模論理回路領域、
125は、冗長救済アドレス記憶回路、
126は、前記冗長救済アドレス記憶回路125を前記メモリアレイ領域121に接続する冗長救済アドレス線、
127は、前記半導体記憶装置123や大規模論理回路領域124に接続される外部端子群、
128は、前記半導体記憶装置123、前記大規模論理回路領域124、前記冗長救済アドレス記憶回路125、および前記外部端子群127から構成される半導体装置である。
 ここで、上記クロック発生回路119は、制御回路113等を駆動する能力等の必要に応じて設けられるもので、具体的には例えばバッファ回路から成り、入力された外部クロック信号120と同じ論理レベルの内部同期クロック信号118を出力するものである。
 図1に従い、簡単に動作の概要を説明する。
 前記外部端子群127から入力される前記外部クロック信号120により前記クロック発生回路119が前記内部同期クロック信号118を出力し、前記データ入出力回路107、前記アドレス入力回路111、前記制御回路113、前記リフレッシュ回路115、前記タイミング発生回路117間の同期を取るクロックとして供給する。前記内部同期クロック信号118のもとで、前記外部制御信号112に従い、前記制御回路113は前記アドレス制御信号110を発生し、前記アドレス入力回路111に入力する。
 前記アドレス入力回路111は前記行アドレス108を発生し前記行デコーダ回路102に入力し、前記列アドレス109を発生し前記列デコーダ回路103へ入力する。前記行デコーダ回路102と前記列デコーダ回路103に入力された値に応じて、前記メモリセル領域101内のメモリセルが選択され、前記センスリードライトアンプ回路104との間での読み書き動作が行われ、前記内部データ入出力線105、前記データ入出力回路107、前記外部データ入出力線106を介して、前記大規模論理回路領域124との間でデータの入出力動作が行われる。
 前記リフレッシュ回路115による動作は、基本的に上記と同様であり、内部アドレス制御信号114がアドレス入力回路111に入力されることによって、前記アドレス制御信号110がアドレス入力回路111に入力される場合と同じような動作が行われる。異なるのは、前記センスリードライトアンプ回路104に読み出されたデータが前記メモリセルに書き込まれるだけで、前記内部データ入出力線105、前記データ入出力回路107、前記外部データ入出力線106を介した前記大規模論理回路領域124との間でのデータの入出力動作が行われない点である。
 前記冗長救済アドレス記憶回路125、冗長救済アドレス線126による動作の説明は割愛する。
 以上説明したような動作をする半導体記憶装置では、メモリアレイ領域121と大規模論理回路領域124とが1つの半導体集積回路上に設けられていることによって、前記外部データ入出力線106を多ビットバスにする事が比較的容易であり、したがって、データ転送レートを確保しつつ、クロック信号の周波数を低くして、低消費電力化を図りやすい。
特開平8-138374号公報
 しかしながら、上記のようなメモリアレイ領域121のリフレッシュ動作は、所定の周期ごとに所定回数の頻度で行われる必要がある。このリフレッシュ頻度は、クロック信号の周波数に係わらず一定なので、クロック信号の周波数が低いほど、データの転送等、リフレッシュ以外の動作が行われる帯域(例えば用いられるクロックパルスの割合)が低下する。
 具体的には、例えば図2に示すように、ある周波数の外部クロック信号120に対して20クロックパルスあたり2つのクロックパルスによって2回のリフレッシュ動作が必要だとすると、残りの18クロックパルス、すなわち90%の帯域でコマンド処理等の動作を行えることになる。これに対して、図3に示すように、例えば外部クロック信号120の周波数を1/4に低下させると、コマンド処理等に用いることのできるクロックパルスは、5クロックパルスあたり3クロックパルスになるので、帯域は60%に低下することになる。
 このため、クロック信号の周波数を大幅に低下させて消費電力を低減することが困難であった。特に、例えば、映像信号処理を行う半導体装置に比べて音声信号処理を行う半導体装置のように処理する信号のデータ量が桁違いに少ない場合でも、クロック信号の周波数を大幅に低下させることが困難である。上記のような課題は、例えば、音声信号処理を行う携帯機器などのように、処理するデータ量が少なく、かつ低消費電力に対する要求が特に強い機器に搭載される半導体装置などの場合には、より顕著なものとなる。
 本発明は、かかる点に鑑みてなされたものであり、メモリのリフレッシュを適切に行い、かつ、データ転送レートの確保等を図りつつ、クロック信号の周波数を容易に低下できるようにすることなどを目的とする。
 上記の課題を解決するため、
 第1の発明の例は、
 メモリセルを備え、上記メモリセルのリフレッシュ機能を有する半導体記憶装置であって、
 第1のクロックを入力として、前記第1のクロックの逆相から第2のクロックを生成して出力するクロック発生回路を備え、
 前記第1のクロックと前記第2のクロックの少なくとも1つのクロックに同期して、前記リフレッシュ機能の動作を行うことを特徴とする。
 これにより、低速周波数仕様の場合に、データ転送レートの低下を改善し、半導体記憶装置を搭載する半導体装置において、低消費電力化を維持したまま、性能を向上させる効果が得られる。
 第2の発明の例は、
 第1の発明の例の半導体記憶装置であって、さらに、
 リフレッシュ動作を前記第1のクロックのみに同期して行うか、前記第2のクロックのみに同期して行うか、前記第1のクロックおよび前記第2のクロックに同期して行うかの選択を制御信号により切換える選択回路を備えたことを特徴とする。
 これにより、低速周波数仕様の場合に、データ転送レートの低下を改善し、低消費電力化を維持したまま、性能を向上させる効果が簡便な回路追加で実現出来る効果が得られる。
 第3の発明の例は、半導体装置であって、
 第2の発明の例の半導体記憶装置と、
 論理回路と、
 外部との間で信号を入出力する入出力回路、および前記入出力回路に接続される電極パッドを有するIOブロックとを備え、
 IOブロックを介して入力された外部信号が前記論理回路に入力されて、前記選択回路の切換えを制御する前記制御信号が生成されることを特徴とする。
 これにより、簡単に制御出来る効果が得られる。
 第4の発明の例は、
 第3の発明の例の半導体装置であって、さらに、
 前記IOブロックを介して入力された外部信号によって制御される周波数のクロックを発生し、前記半導体記憶装置、および前記論理回路に入力するPLL回路を備えたことを特徴とする。
 これにより、前記半導体記憶装置や前記論理回路へ入力されるクロックの周波数を簡単に変更する事が出来る効果が得られる。
 第5の発明の例は、
 第3および第4のうち何れか1つの発明の例の半導体装置であって、
 前記第1のクロックのみに同期してリフレッシュ動作を行う前記半導体記憶装置と、
 前記第2のクロックのみに同期してリフレッシュ動作を行う前記半導体記憶装置と、
 前記第1のクロックおよび前記第2のクロックに同期してリフレッシュ動作を行う前記半導体記憶装置を任意の組み合わせで備えたことを特徴とする。
 これにより、リフレッシュ動作による消費電流が時間軸で分散出来るので、半導体装置としても消費電力の平準化を実現出来る効果が得られる。
 第6の発明の例は、光ディスク再生装置であって、
 メモリセルのリフレッシュ機能および、第1のクロックを入力として、前記第1のクロックの逆相から第2のクロックを生成して出力するクロック発生器およびリフレッシュ動作を前記第1のクロックのみに同期して行うか、前記第2のクロックのみに同期して行うか、前記第1のクロックおよび前記第2のクロックに同期して行うかの選択を制御信号により切換える選択回路を備えた半導体記憶回路と、論理回路と、信号を入出力する入出力回路および前記入出力回路に接続される電極パッドを有するIOブロックと、発生するクロックの周波数が制御信号により変更可能なPLL回路とを備えた半導体装置と、
 光ピックアップと、
 前記光ピックアップが読み取ったデータ信号に基づいて複数の種類の情報記録媒体を判別出来る信号を出力する回路とを備えた光ディスク再生装置であって、
 前記複数の種類の情報記録媒体を判別出来る信号を前記半導体装置のIOブロックへ外部信号として入力し、
 前記外部信号が前記論理回路に入力されて、前記半導体記憶装置の選択回路へ入力される前記制御信号を生成して、前記半導体記憶装置のリフレッシュ動作を制御することを特徴とする。
 これにより、動作状況に応じて、消費電流の平準化や低減を実現する事が出来る効果が得られる。
 第7の発明の例は、光ディスク再生装置であって、
 メモリセルのリフレッシュ機能を備えた半導体記憶回路において、第1のクロックを入力として、前記第1のクロックの逆相から第2のクロックを生成して出力するクロック発生器およびリフレッシュ動作を前記第1のクロックのみに同期して行うか、前記第2のクロックのみに同期して行うか、前記第1のクロックおよび前記第2のクロックに同期して行うかの選択を制御信号により切換える選択回路を備えた半導体記憶回路と、論理回路と、信号を入出力する入出力回路および前記入出力回路に接続される電極パッドを有するIOブロックと、発生するクロックの周波数が制御信号により変更可能なPLL回路とを備えた半導体装置と、
 光ピックアップと、
 前記光ピックアップが読み取ったデータ信号に基づいて複数の種類の情報記録媒体を判別出来る信号を出力する回路とを備えた光ディスク再生装置であって、
 前記複数の種類の情報記録媒体を判別出来る信号を前記半導体装置のIOブロックへ外部信号として入力し、
 前記外部信号により前記半導体記憶装置および前記論理回路へ入力されるクロックの周波数を変更することを特徴とする。
 これにより、動作状況に応じて、消費電流の平準化や低減を実現する事が出来る効果が得られる。
 第8の発明の例は、
 第1の発明の例の半導体記憶装置であって、
 前記クロック発生回路は、1クロック周期あたり2つのパルスを含む前記第2のクロックを生成することを特徴とする。
 第9の発明の例は、
 第8の発明の例の半導体記憶装置であって、
 前記クロック発生回路は、
 前記第1のクロックを反転させて逆相信号を出力するNOT回路と、
 前記第1のクロックと逆相信号とに基いて、前記第2のクロックを生成するEXNOR回路と、
 を有することを特徴とする。
 第10の発明の例は、
 第8の発明の例の半導体記憶装置であって、
 前記クロック発生回路は、
 前記第1、および第2のクロックの一方を選択するセレクタを備えたことを特徴とする。
 これらにより、クロック信号の効率を高くすることなどができる。
 第11の発明の例は、
 第10の発明の例の半導体記憶装置であって、
 前記セレクタは、当該半導体記憶装置の外部から入力される制御信号に応じて上記選択をすることを特徴とする。
 これにより、クロック信号の効率を高くするかどうかを容易に制御できる。
 第12の発明の例は、
 第10の発明の例の半導体記憶装置であって、
 前記セレクタは、リフレッシュ時に、第1、および第2のクロックの一方を固定的に選択するように構成されていることを特徴とする。
 これにより、上記のような回路を用いてバッファなどとして機能させたり、クロック信号の効率を高くしたりすることなどができる。
 第13の発明の例は、
 第8の発明の例の半導体記憶装置であって、
 前記クロック発生回路は、セレクタを備えるとともに、
 前記クロック発生回路は、さらに、第1のクロックの遷移タイミングに対して、ずれたタイミングで遷移して前記リフレッシュを行わせる第3のクロックを生成するように構成され、
 前記セレクタは、前記第1、第2、および第3のクロックのうちの何れかを選択することを特徴とする。
 第14の発明の例は、
 第13の発明の例の半導体記憶装置であって、
 前記クロック発生回路は、
 前記第1のクロックを反転させて逆相信号を出力するNOT回路と、
 前記第1のクロックと逆相信号とに基いて、前記第3のクロックを生成するNOR回路と、
 を有することを特徴とする。
 これらにより、クロック信号の効率を高くしたり、リフレッシュ時に電流を分散させたりすることなどができる。
 第15の発明の例は、
 第13の発明の例の半導体記憶装置であって、
 前記セレクタは、前記第1、および第2のクロックのうちの一方を選択することを特徴とする。
 これにより、第3のクロックを生成可能な装置を用いて、第11の発明の例の装置と同じような動作をさせることなどができる。
 第16の発明の例は、
 第13の発明の例の半導体記憶装置であって、
 前記メモリセルとクロック発生回路との第1の組と、第2の組とを有し、
 前記第1の組のセレクタは、前記第1のクロックを固定的に選択する一方、
 前記第2の組のセレクタは、リフレッシュ時に、前記第1、および第3のクロックのうちの一方を選択することを特徴とする。
 第17の発明の例は、
 第16の発明の例の半導体記憶装置であって、
 前記第2の組のセレクタは、リフレッシュ時に、第3のクロックを固定的に選択するように構成されていることを特徴とする。
 これらにより、リフレッシュ時に電流を分散させたりすることなどができる。
 第18の発明の例は、
 第10の発明の例の半導体記憶装置を備えた半導体装置であって、
 前記セレクタは前記第1のクロックが第1の周波数の場合に、前記第1のクロックを選択する一方、前記第1の周波数よりも低い第2の周波数の場合に、前記第2のクロックを選択することを特徴とする。
 第19の発明の例は、
 第18の発明の例の半導体装置を備えた光ディスク再生装置であって、
 さらに、
 記録媒体に記録された情報を読み出す光ピックアップと、
 記録媒体から読み出された情報の処理のために前記半導体装置における半導体記憶装置に供給されるべきクロックの周波数を判別し、判別信号を出力する判別回路と、
 を備え、
 前記セレクタは、前記判別信号に応じて、前記第1または第2のクロックを選択することを特徴とする。
 第20の発明の例は、
 第19の発明の例の光ディスク再生装置であって、
 さらに、前記判別信号に応じた周波数の第1のクロックを生成するPLL回路を備えたことを特徴とする。
 これらにより、第1のクロックの周波数が低い場合にクロック信号の効率を高くすることなどができる。
 本発明によれば、低速周波数仕様の場合に、データ転送レートの低下を改善し、半導体記憶装置を搭載する半導体装置において、低消費電力化を維持したまま、性能を向上させるなどの効果が得られる。
図1は、従来の半導体記憶装置123を含む半導体装置128の構成を示すブロック図である。 図2は、上記従来の半導体記憶装置123の要部の信号の例を示すタイミングチャートである。 図3は、上記従来の半導体記憶装置123の要部の信号の他の例を示すタイミングチャートである。 図4は、本発明の実施形態1の半導体装置628の構成を示すブロック図である。 図5は、上記半導体装置628の半導体記憶装置623に設けられるクロック発生回路619の構成を示す回路図である。 図6は、クロック信号の周波数が高い場合の上記クロック発生回路619の各部の信号の例を示すタイミングチャートである。 図7は、クロック信号の周波数が低い場合の上記クロック発生回路619の各部の信号の例を示すタイミングチャートである。 図8は、上記半導体装置628を用いた光ディスク再生装置の構成を示すブロック図である。 図9は、本発明の実施形態2の半導体装置628の構成を示すブロック図である。 図10は、上記半導体装置628の半導体記憶装置623,623’に設けられるクロック発生回路819の構成を示す回路図である。 図11は、クロック信号の周波数が高い場合の上記クロック発生回路819の各部の信号の例を示すタイミングチャートである。 図12は、クロック信号の周波数が低い場合の上記クロック発生回路819の各部の信号の例を示すタイミングチャートである。
 以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、以下の各実施形態において、他の実施形態と同様の機能を有する構成要素については適宜同一の符号を付して説明を省略する。
 《発明の実施形態1》
 本発明の第1の実施形態として、図4~図8に基づき、半導体記憶装置623を備えた半導体装置628、およびその半導体装置628用いた光ディスク再生装置について説明する。この例では、半導体記憶装置623としてDRAM(Dynamic Random Access Memory)が用いられている。
 (半導体装置628の構成)
 まず、半導体装置628の構成について説明する。図4は、半導体装置628の構成を示すブロック図である。この半導体装置628は、半導体記憶装置623を備えるとともに、大規模論理回路領域624、冗長救済アドレス記憶回路625、および外部端子群627を備えて構成されている。
 (半導体装置628における半導体記憶装置623の構成)
 上記半導体記憶装置623は、メモリアレイ領域621と、制御領域622とを有している。
 上記メモリアレイ領域621において、
601は、メモリセルをマトリックス状に配列したメモリセル領域、
602は、前記メモリセル領域601における行方向に並んだメモリセルからなるグループのうちの1つを選択するための選択信号を出力する行デコーダ回路、
603は、前記メモリセル領域601における列方向に並んだメモリセルからなるグループのうちの1つを選択するための選択信号を出力する列デコーダ回路、
604は、前記行デコーダ回路602および前記列デコーダ回路603により選択指示されたメモリセルに対してデータを読み書きするセンスリードライトアンプ回路、
605は、内部データ入出力線、
606は、外部データ入出力線、
607は、前記センスリードライトアンプ回路604との間で送受されるデータを外部データ入出力線606を介して大規模論理回路領域624との間で入出力するデータ入出力回路、
である。
 また、上記制御領域622において、
608は、行方向に並んだメモリセルからなるグループのうちの1つの選択を前記行デコーダ回路602に指定する行アドレス、
609は、列方向に並んだメモリセルからなるグループのうちの1つの選択を前記列デコーダ回路603に指定する列アドレス、
610は、半導体記憶装置623の外部等からの指示に従って、データを読み書きするメモリセルを示すアドレス制御信号、
611は、前記アドレス制御信号610(または後述する内部アドレス制御信号614)に従い、前記行デコーダ回路602に前記行アドレス608を出力するとともに、前記列デコーダ回路603に前記列アドレス609を出力するアドレス入力回路、
612は、データの読み書き等の指示を示す外部制御信号、
613は、前記アドレス制御信号610を前記外部制御信号612に従い出力する制御回路、
614は、リフレッシュされるメモリセルを示す、前記アドレス制御信号610と等価な内部アドレス制御信号、
615は、前記メモリセル領域601にリフレッシュ動作を行わせるために、前記内部アドレス制御信号614を発生するリフレッシュ回路、
616は、タイミング調整信号、
617は、タイミング発生回路、
619は、クロック発生回路、
410は、クロック出力信号、
401は、クロック入力信号、
402は、リフレッシュ制御信号、
403は、低速動作制御信号、
である。
 上記タイミング発生回路617は、アドレス入力回路611、制御回路613、およびリフレッシュ回路615のリフレッシュ動作等の動作タイミングを調整するために、タイミング調整信号616を出力するものである。具体的には、例えば、リフレッシュ制御信号402が“H”(Highレベル)の状態で、クロック発生回路619から出力されるクロック出力信号410が“L”(Lowレベル)から“H”に立ち上がった場合に、リフレッシュ動作を指示するタイミング調整信号616を各部に出力するようになっている。
 上記クロック発生回路619は、半導体記憶装置623内の各部、具体的には、データ入出力回路607、アドレス入力回路611、制御回路613、リフレッシュ回路615、およびタイミング発生回路617などの同期を取るためのクロック出力信号410を出力するようになっている。
 (クロック発生回路619具体的な構成)
 上記クロック発生回路619は、具体的には、例えば図5に示すように構成されている。
 図5において、401はクロック入力信号(外部クロック信号)、402はリフレッシュ動作を指示するリフレッシュ制御信号、403は低速動作制御信号、404は反転回路(NOT回路)、405は反転排他的論理和回路(EXNOR回路)、406は論理積回路(AND回路)、407は信号選択回路、408は前記信号選択回路407の切換え信号、409は内部クロック信号、410はクロック出力信号(内部同期クロック信号)である。
 上記クロック発生回路619から出力されるクロック出力信号410は、半導体装置628の外部、または大規模論理回路領域624等から入力されるクロック入力信号401、リフレッシュ制御信号402、および低速動作制御信号403に基づいて生成される。
 上記クロック入力信号401としては、半導体装置628の処理内容等に応じて、例えば、図6、図7に示すように、所定の高い周波数(図6)、またはその1/4の低い周波数(図7)の信号が選択的に入力される。
 上記低速動作制御信号403は、上記クロック入力信号401が高い周波数か低い周波数かを示す信号で、例えば高い周波数の信号が入力される場合に“L”に維持される一方、低い周波数の信号が入力される場合に“H”に維持されるようになっている。
 また、上記リフレッシュ制御信号402は、タイミング発生回路617に入力されるのと同じ信号である。このリフレッシュ制御信号402は、例えば上記クロック入力信号401が上記高い周波数の場合には、その高い周波数における20周期分の期間Tあたりに2回、それぞれ1周期の期間だけ“H”になるようになっている。また、クロック出力信号410が上記低い周波数の場合には、上記期間Tあたりに、すなわち低い周波数における5周期あたりに1回、1周期の期間だけ“H”になるようになっている。
 上記クロック発生回路619に入力されるクロック入力信号401の周波数が高い場合には(図6)、低速動作制御信号403が“L”に維持されることによって、信号選択回路407の選択により、クロック入力信号401がそのままクロック出力信号410として出力される。この場合、リフレッシュ制御信号402は、前記のように期間T内に2回“H”になるが、上記クロック出力信号410には影響しない。
 ここで、本実施形態の半導体記憶装置623において、例えば上記高い周波数のクロック入力信号401における20周期分の期間Tあたりに、任意間隔で2回のリフレッシュ動作が必要であるとすると、タイミング発生回路617に、上記のような期間T内に2回“H”になるリフレッシュ制御信号402が入力されることによって、適切なリフレッシュ動作が行われる。また、リフレッシュ制御信号402が“L”になる18周期分の期間には、外部制御信号612によって示されるコマンド処理等が行われる。
 一方、クロック発生回路619に入力されるクロック入力信号401の周波数が低い場合には(図7)、低速動作制御信号403が“H”に維持されることによって、リフレッシュ制御信号402がクロック入力信号401における1周期の期間だけ“H”になると、その期間は、信号選択回路407の選択によって内部クロック信号409が選択される。すなわち、クロック入力信号401の立ち上がり、および立ち下がりタイミングで、それぞれ反転回路404の遅延時間だけ“H”になる2つのパルスが、クロック出力信号410として出力される。このクロック出力信号410がタイミング発生回路617に入力されることによって、上記クロック入力信号401の周波数が高い場合と同様、期間Tあたりに2回のリフレッシュ動作が適切に行われる。また、リフレッシュ制御信号402が“L”でリフレッシュ動作が行われない期間、すなわち、クロック入力信号401における5周期あたり4周期の期間は、クロック入力信号401がそのままクロック出力信号410として出力され、外部制御信号612によって示されるコマンド処理等が行われる。
 (半導体装置628におけるその他の部分について)
 半導体装置628における大規模論理回路領域624は、例えばスタンダードセルを用いて構成され、IO(Input / Output)機能や、システムLSIとしての主な機能を果たす回路などが形成されたものである。
 冗長救済アドレス記憶回路625は、冗長救済するメモリセルを示すアドレスを記憶するものである。
 冗長救済アドレス線626は、前記冗長救済アドレス記憶回路625を前記メモリアレイ領域621に接続するものである。
 外部端子群627は、前記半導体記憶装置623や大規模論理回路領域624等と半導体装置628の外部との間で入出力される信号を中継するものである。
 (半導体装置628の動作)
 リフレッシュ制御信号402が“L”であって通常の動作が行われる場合には、前記クロック発生回路619が、前記外部端子群627等から入力される前記クロック入力信号401に基づいて前記クロック出力信号410を発生し、前記データ入出力回路607、前記アドレス入力回路611、前記制御回路613、前記リフレッシュ回路615、および前記タイミング発生回路617間の同期を取るクロックとして供給する。前記制御回路613は、前記クロック出力信号410に同期して、前記外部制御信号612に従い、前記アドレス制御信号610を発生して、前記アドレス入力回路611に入力する。
 前記アドレス入力回路611は前記行アドレス608を発生して前記行デコーダ回路602に入力するとともに、前記列アドレス609を発生して前記列デコーダ回路603へ入力する。前記行デコーダ回路602と前記列デコーダ回路603とに入力された値に応じて、前記メモリセル領域601内のメモリセルが選択され、前記センスリードライトアンプ回路604との間での読み書き動作が行われて、前記内部データ入出力線605、前記データ入出力回路607、および前記外部データ入出力線606を介して、前記センスリードライトアンプ回路604と前記大規模論理回路領域624との間でのデータの入出力動作が行われる。
 また、リフレッシュ制御信号402が“H”となるリフレッシュ時には、クロック出力信号410が“H”に立ち上がると、タイミング発生回路617がリフレッシュ動作を指示するタイミング調整信号616を出力する。そこで、例えば、リフレッシュ回路615が内部カウンタ(不図示)のカウント値をカウントアップし、そのカウント値を内部アドレス制御信号114として出力することにより、制御回路113がアドレス制御信号110を出力した場合と同様の所定のアドレス領域に対してリフレッシュ動作が行われる。リフレッシュ動作自体は、実際にデータの読み書きがなされる場合と基本的に同様である。異なるのは、前記センスリードライトアンプ回路604に読み出されたデータが前記メモリセルに書き込まれるだけで、前記内部データ入出力線605、前記データ入出力回路607、および前記外部データ入出力線606を介した前記大規模論理回路領域624との間のデータの入出力動作が行われない点である。
 ここで、上記リフレッシュ動作においては、クロック入力信号401の周波数が低い場合には、リフレッシュ制御信号402がクロック入力信号401における1周期の期間、“H”になるだけで、クロック発生回路619からクロック出力信号410として期間Tあたり2回のリフレッシュ動作が行われる。それゆえ、上記期間T内に、5クロックパルスのうちの4クロックパルスをデータの転送や読み書きなどのコマンド処理に用いることができるので、半導体装置628の処理能力を確保することが容易にできる。または、クロック入力信号401の周波数をより低く設定して消費電力の低下を図ることなども容易にできる。
 (上記半導体装置628用いた光ディスク再生装置の構成)
 図8は、上記半導体記憶装置623を含む半導体装置628を用いた光ディスク再生装置のシステム構成を示すブロック図である。
 図8において、701は情報記録媒体であり、例えばDVD(Digital Video Disc、Digital Versatile Disc)とCD(Compact Disc)のように、データ量やデータ構造などが異なるためにデータ処理に必要なクロック信号の周波数が異なる複数種類の情報記録媒体701が装填可能になっている。702は情報記録媒体701に記録された情報を読み取る光ピックアップ、703は光ピックアップ702が読み取ったデータに応じたデータ信号、704はデータ信号703の内容から情報記録媒体701の種類を判別する光ディスク判別回路、705はデータ信号703と情報記録媒体701の種類を判別した信号を含むデータ信号、706はデータ信号705を信号処理する回路、707はPLL(Phase Locked Loop)回路、709は論理回路706がPLL回路707を制御するための信号、710はPLL回路707が論理回路706に出力するクロック出力信号、713は半導体記憶装置623と論理回路706とがデータをやり取りする為のデータバスである。
 半導体装置628は、上記論理回路706、PLL回路707、および半導体記憶装置623が設けられて構成される。上記論理回路706、およびPLL回路707は、例えば、図4に示した大規模論理回路領域624などに形成されている。
 クロック入力信号401は、PLL回路707から出力されて、半導体記憶装置623に入力されるようになっている。
 また、リフレッシュ制御信号402、および低速動作制御信号403は、他の制御信号とともに論理回路706から出力されて、半導体記憶装置623に入力されるようになっている。
 (光ディスク再生装置の動作)
 以下、上記のように構成された光ディスク再生装置の動作を説明する。
 まず、情報記録媒体701が“データ処理量が少ない媒体”である場合の動作について説明する。光ディスク判別回路704は、光ピックアップ702が情報記録媒体701から読み取ったデータ信号703から、情報記録媒体701が“データ処理量が少ない媒体”である事を判別し、これを示すためにデータ信号705を例えば“H”にする。
 上記“H”にされたデータ信号705は、論理回路706に入力される。論理回路706は、“データ処理量が少ない媒体”に対応して、“低速で信号処理出来るモード”になり、PLL回路707に周波数を低くすることを指示する制御信号709を出力する。これに応じて、PLL回路707は、論理回路706に出力するクロック出力信号710と、半導体記憶装置623に出力するクロック入力信号401とを所定の低い周波数にする。
 論理回路706は、さらに、半導体記憶装置623に入力されるクロック入力信号401が低い周波数であることを示すように低速動作制御信号403を“H”にする。論理回路706は、また、半導体記憶装置623にリフレッシュ動作を指示するリフレッシュ制御信号402をクロック入力信号401における例えば5周期分の期間Tごとに1周期の期間だけ“H”にして、半導体記憶装置623を制御する。そこで、半導体記憶装置623におけるクロック発生回路619(図5)からは、上記期間Tごとに、クロック出力信号410として、リフレッシュ制御信号402が“H”になる1周期分の期間に2つのパルスが出力されるとともに、リフレッシュ制御信号402が“L”になる4周期分の期間にはクロック入力信号401がそのまま出力される。これにより、2回のリフレッシュ動作と、4回のコマンド処理等とが行われる。
 すなわち、見かけ上のリフレッシュ動作に必要なクロックの回数を半分に減らす事が可能となり、その分、データバス713による半導体記憶装置623と論理回路706との間でデータをやり取りする信号処理等にクロックパルスを使用する事が可能になる。それゆえ、データ転送レートを向上させたり、データ転送レートの低下を少なく抑えたり、または消費電力を低減したりすることが容易にできるシステムを実現する事が可能となる。
 次に、情報記録媒体701が“データ処理量が多い媒体”である場合の動作について説明する。光ディスク判別回路704は、光ピックアップ702が情報記録媒体701から読み取ったデータ信号703から、情報記録媒体701が“データ処理量が多い媒体”である事を判別し、これを示すためにデータ信号705を例えば“L”にする。
 上記“L”にされたデータ信号705は、論理回路706に入力される。論理回路706は、“データ処理量が多い媒体”に対応して、“高速で信号処理するモード”になり、PLL回路707に周波数を高くすることを指示する制御信号709を出力する。これに応じて、PLL回路707は、論理回路706に出力するクロック出力信号710と、半導体記憶装置623に出力するクロック入力信号401とを所定の高い周波数にする。
 この場合、論理回路706は、さらに、半導体記憶装置623に入力されるクロック入力信号401が高い周波数であることを示すように低速動作制御信号403を“L”にする。論理回路706は、また、半導体記憶装置623にリフレッシュ動作を指示するリフレッシュ制御信号402をクロック入力信号401における例えば20周期ごとに合計2周期の期間“H”にして、半導体記憶装置623を制御する。そこで、半導体記憶装置623におけるクロック発生回路619(図5)では、リフレッシュ制御信号402のレベルに係わらず、クロック入力信号401が信号選択回路407により選択されてクロック出力信号410として出力される。これにより、クロック入力信号401が直接、またはバッファを介してリフレッシュ回路615等に入力される場合などと同様に、クロック入力信号401における20周期分の期間Tごとに、2回のリフレッシュ動作と、18回のコマンド処理等とが行われる。
 《発明の実施形態1の変形例》
 上記のようにクロック入力信号401の周波数に応じてクロック出力信号410を切換えるのに限らず、常にリフレッシュ時にはクロックパルスが2つ出力されるようにしてもよい。具体的には、例えば、クロック発生回路619を共通の回路やマクロとして用いるなどして、実施形態1と同様の半導体装置や光ディスク再生装置を構成するとともに、図5に併せて符号Aで示すように、低速動作制御信号403が“H”に固定されるようにしてもよい。このような構成は、クロック入力信号401の周波数に係わらずクロック効率を向上させる場合などに適用できる。
 一方、図5に符号Bで示すように、リフレッシュ制御信号402が“L”に固定されるようにしてもよい。この場合には、常にクロック入力信号401が信号選択回路407を介してクロック出力信号410として出力される。それゆえ、例えば、実施形態1と共通の回路を用いて、クロック発生回路619をバッファ等として機能させることなどができる。
 《発明の実施形態2》
 (半導体装置628等の構成)
 実施形態2の半導体記憶装置は、実施形態1の半導体記憶装置623(図4、図5)と比べて、図9、図10に示すように、クロック発生回路619に代えてクロック発生回路819,819’が用いられた2つの半導体記憶装置623,623’を備えている。その他の点は実施形態1と同様であり、図8に示したような光ディスク再生装置等に適用できる点も同様である。
 上記クロック発生回路819,819’は、実施形態1のクロック発生回路619と比べて、さらに、反転論理和回路(NOR)806と、低速動作分散信号811により切換え制御される信号選択回路808とを備える点が異なる。他の構成要素は、実質的に実施形態1と同じである。具体的には、図10において、801はクロック入力信号、802はリフレッシュ動作を指示するリフレッシュ制御信号、803,803’は低速動作制御信号、804は反転回路(NOT回路)、805は反転排他的論理和回路(EXNOR回路)、806は反転論理和回路(NOR回路)、807は論理積回路(AND回路)、808、809はそれぞれ信号選択回路、810は信号選択回路809の切換え信号、811は信号選択回路808の切換え信号となる低速動作分散信号、812は内部クロック信号a、813は内部クロック信号b、814は信号選択回路808の出力信号、815,815’はクロック出力信号である。
 図11、図12は、上記クロック発生回路819,819’の入出力信号、および内部の信号の波形図である。すなわち、クロック発生回路819,819’は、同図に示すようなクロック入力信号801、リフレッシュ制御信号802、低速動作制御信号803,803’、および低速動作分散信号811が入力されて、クロック出力信号815,815’を出力するようになっている。
 ここで、リフレッシュタイミングの条件は、実施形態1と同じく、期間Tあたり2回のリフレッシュ動作が必要であるとする。
 クロック発生回路819,819’には、クロック入力信号801として、実施形態1と同様に、情報記録媒体の種類の判別等に応じた所定の高い周波数、またはその1/4の低い周波数の信号が選択的に入力されるようになっている。クロック発生回路819に入力される低速動作制御信号803は、上記クロック入力信号401が高い周波数の場合に“L”、低い周波数の場合に“H”に維持されるようになっている。一方、クロック発生回路819’に入力される低速動作制御信号803’は、例えば図10に符号Cで示すように、常に“L”に固定されている。また、上記低速動作分散信号811は、クロック発生回路819,819’共に、常に“H”に固定されている。さらに、リフレッシュ制御信号802は、クロック入力信号801が高い周波数の場合には、実施形態1と同様、期間Tに2回“H”になるとともに、クロック入力信号801が低い周波数の場合には、その低い周波数での2周期分の期間、“H”にされるようになっている。
 (半導体装置628等の動作)
 <高クロック周波数の場合における、リフレッシュ期間および他の期間>
 クロック入力信号801の周波数が高い場合には(図11)、リフレッシュ期間であるかどうかに係わらず、クロック発生回路819,819’共に、クロック入力信号801がそのままクロック出力信号815,815’として出力される。
 すなわち、クロック発生回路819’では、常に低速動作制御信号803’が“L”に固定されているので、クロック入力信号801が信号選択回路809により選択されて出力される。
 また、クロック発生回路819では、クロック入力信号801の周波数が高い場合には、低速動作制御信号803が“L”に維持されることによって、やはりクロック入力信号801が選択されて出力される。
 それゆえ、実施形態1と同様に、リフレッシュ制御信号802が期間T内に2回“H”になることによって、クロック出力信号815,815’が立ち上がるタイミングで適切なリフレッシュ動作が行われるとともに、リフレッシュ制御信号802が“L”の期間に18回のコマンド処理等が行われる。
 <低クロック周波数の場合における、リフレッシュ以外の期間>
 クロック入力信号801の周波数が低い場合でも(図12)、リフレッシュ期間以外は、やはり、クロック発生回路819,819’共に、クロック入力信号801がそのままクロック出力信号815,815’として出力される。
 すなわち、クロック発生回路819’では、常に低速動作制御信号803’が“L”に固定されていることにより、信号選択回路808によってクロック入力信号801が選択されて出力される。
 また、クロック発生回路819では、リフレッシュ制御信号802が“L”であることにより、同様にクロック入力信号801が選択されて出力される。そこで、期間Tあたり3回のコマンド処理等が行われる。
 <低クロック周波数の場合における、リフレッシュ期間>
 クロック入力信号801の周波数が低い場合(図12)のリフレッシュ期間では、クロック発生回路819’では、やはり、常に低速動作制御信号803’が“L”に固定されていることによって、クロック入力信号801がそのままクロック出力信号815’として出力される。
 一方、クロック発生回路819では、低速動作分散信号811は“H”に固定されているとともに、低速動作制御信号803およびリフレッシュ制御信号802が“H”になって切換え信号810が“H”になるので、信号選択回路808、および信号選択回路809によって、それぞれ内部クロック信号b813、および出力信号814が選択される。上記内部クロック信号b813は、クロック入力信号801と、その反転信号との反転論理和回路なので、クロック入力信号801が立ち下がるタイミングで、反転回路804の遅延時間だけ“H”になるパルスが生成され、クロック出力信号815として出力される。
 この場合、半導体記憶装置623’では、クロック入力信号801の立ち上がりタイミングでリフレッシュが行われ、半導体記憶装置623では、クロック入力信号801の立ち下がりタイミングでリフレッシュが行われる。すなわち、クロック入力信号801の周波数が低い場合には互いにずれたタイミングでリフレッシュが行われるので、リフレッシュ電流が消費されるタイミングを分散させて、消費電力の集中を緩和し、半導体装置の平均消費電流を低減する事が可能となる。
 《発明の実施形態2の変形例》
 上記の例では、一方の半導体記憶装置623については、クロック入力信号801の周波数が低いときにだけ、低速動作制御信号803が“H”にされる例を示したが、これに限らず、例えば図10に併せて符号Dで示すように、常に低速動作制御信号803が“H”に固定されるようにして、リフレッシュ動作がクロック入力信号801の周波数に係わらず、半導体記憶装置623,623’で常に互いにずれて行われるようにしてもよい。
 また、低速動作制御信号803が“L”に固定された半導体記憶装置623を単独で、または複数設けるようにしてもい。すなわち、この場合には、前記実施形態1の変形例で説明したのと同じように、実施形態2と共通の回路を用いて、クロック発生回路619をバッファ等として機能させることなどができる。
 また、低速動作分散信号811が“H”に固定されるのに限らず、図10に併せて符号Eで示すように、“L”に固定されるようにしてもよい。この場合には、信号選択回路808は常に内部クロック信号a812を選択するので、リフレッシュ制御信号802、および低速動作制御信号803に応じて、実施形態1やその変形例におけるクロック発生回路619と同じ動作をさせて、クロック効率を向上させることなどができる。よって、やはり回路の共通化を図ることなどが容易にできる。
 さらに、低速動作分散信号811が“H”または“L”に固定されるのに限らず、例えば、要求されるコマンド処理能力や、消費電流に応じて、論理回路706等により動的に制御されて、実施形態1と同様に1クロック周期で2回リフレッシュが行われるようにしたり、複数の半導体記憶装置623でリフレッシュタイミングが互いにずれるようにしたりしてもよい。すなわち、これにより、例えば、見かけ上のリフレッシュ動作に必要なクロック数を半分に減らす事や、リフレッシュ電流が消費されるタイミングを分散する事などが可能となる。よって、半導体装置において、データ転送レートの低下を改善しながら、半導体装置を使用する光ディスク再生装置に対して消費電力の低減や分散も出来る構成を実現する事などが可能となる。
 《その他の事項》
 上記のように、単独、または複数の半導体装置に半導体記憶装置を設け、個々の半導体記憶装置に対して、低速動作分散信号811や、低速動作制御信号803,403の“H”“L”の状態を固定的または動的に種々に制御して、様々に低速動作制御や低速分散制御を組み合わせる事により、光ディスク再生装置等として最適な低消費電力などを実現する事も可能である。
 なお、上記実施形態では、DRAMが用いられる例を説明したが、DRAMに限らず、リフレッシュ動作が必要な全てのメモリセルを用いる事もまた、極めて容易である。
 また、上記実施形態では、光ディスク再生装置の例を説明したが、光ディスク再生装置に限らず、動作仕様によりメモリとのデータ転送レートが異なるシステムに搭載する半導体装置等に適用する事もまた、極めて容易である。
 上記のような実施形態によれば、製品サイクルが短いAV機器を中心として民生用途から車載用途までをカバーし、分野別では、主なものでも光ディスク、デジタルTV、デジタルカメラ、デジタルオーディオなど幅広いジャンルに及んでいる半導体装置を効率的に開発する事が可能であり、結果として収益を向上させる効果が得られる。
 本発明の半導体記憶装置は、例えば、半導体装置の低消費電力化、データ転送レートの向上等に有用である。
    401   クロック入力信号
    402   リフレッシュ制御信号
    403   低速動作制御信号
    404   反転回路
    405   反転排他的論理和回路
    406   論理積回路
    407   信号選択回路
    408   切換え信号
    409   内部クロック信号
    410   クロック出力信号
    601   メモリセル領域
    602   行デコーダ回路
    603   列デコーダ回路
    604   センスリードライトアンプ回路
    605   内部データ入出力線
    606   外部データ入出力線
    607   データ入出力回路
    608   行アドレス
    609   列アドレス
    610   アドレス制御信号
    611   アドレス入力回路
    612   外部制御信号
    613   制御回路
    614   内部アドレス制御信号
    615   リフレッシュ回路
    616   タイミング調整信号
    617   タイミング発生回路
    619   クロック発生回路
    621   メモリアレイ領域
    622   制御領域
    623   半導体記憶装置
    623’  半導体記憶装置
    624   大規模論理回路領域
    625   冗長救済アドレス記憶回路
    626   冗長救済アドレス線
    627   外部端子群
    628   半導体装置
    701   情報記録媒体
    702   光ピックアップ
    703   データ信号
    704   光ディスク判別回路
    705   データ信号
    706   論理回路
    707   PLL回路
    709   制御信号
    710   クロック出力信号
    713   データバス
    801   クロック入力信号
    802   リフレッシュ制御信号
    803   低速動作制御信号
    803’  低速動作制御信号
    804   反転回路
    805   反転排他的論理和回路
    806   反転論理和回路
    808   信号選択回路
    809   信号選択回路
    810   切換え信号
    811   低速動作分散信号
    812   内部クロック信号a
    813   内部クロック信号b
    814   出力信号
    815   クロック出力信号
    815’  クロック出力信号
    819   クロック発生回路
    819’  クロック発生回路

Claims (20)

  1.  メモリセルを備え、上記メモリセルのリフレッシュ機能を有する半導体記憶装置であって、
     第1のクロックを入力として、前記第1のクロックの逆相から第2のクロックを生成して出力するクロック発生回路を備え、
     前記第1のクロックと前記第2のクロックの少なくとも1つのクロックに同期して、前記リフレッシュ機能の動作を行うことを特徴とする半導体記憶装置。
  2.  請求項1の半導体記憶装置であって、さらに、
     リフレッシュ動作を前記第1のクロックのみに同期して行うか、前記第2のクロックのみに同期して行うか、前記第1のクロックおよび前記第2のクロックに同期して行うかの選択を制御信号により切換える選択回路を備えたことを特徴とする半導体記憶装置。
  3.  請求項2の半導体記憶装置と、
     論理回路と、
     外部との間で信号を入出力する入出力回路、および前記入出力回路に接続される電極パッドを有するIOブロックとを備え、
     IOブロックを介して入力された外部信号が前記論理回路に入力されて、前記選択回路の切換えを制御する前記制御信号が生成されることを特徴とする半導体装置。
  4.  請求項3の半導体装置であって、さらに、
     前記IOブロックを介して入力された外部信号によって制御される周波数のクロックを発生し、前記半導体記憶装置、および前記論理回路に入力するPLL回路を備えたことを特徴とする半導体装置。
  5.  請求項3および請求項4のうち何れか1項の半導体装置であって、
     前記第1のクロックのみに同期してリフレッシュ動作を行う前記半導体記憶装置と、
     前記第2のクロックのみに同期してリフレッシュ動作を行う前記半導体記憶装置と、
     前記第1のクロックおよび前記第2のクロックに同期してリフレッシュ動作を行う前記半導体記憶装置を任意の組み合わせで備えたことを特徴とする半導体装置。
  6.  メモリセルのリフレッシュ機能および、第1のクロックを入力として、前記第1のクロックの逆相から第2のクロックを生成して出力するクロック発生器およびリフレッシュ動作を前記第1のクロックのみに同期して行うか、前記第2のクロックのみに同期して行うか、前記第1のクロックおよび前記第2のクロックに同期して行うかの選択を制御信号により切換える選択回路を備えた半導体記憶回路と、論理回路と、信号を入出力する入出力回路および前記入出力回路に接続される電極パッドを有するIOブロックと、発生するクロックの周波数が制御信号により変更可能なPLL回路とを備えた半導体装置と、
     光ピックアップと、
     前記光ピックアップが読み取ったデータ信号に基づいて複数の種類の情報記録媒体を判別出来る信号を出力する回路とを備えた光ディスク再生装置であって、
     前記複数の種類の情報記録媒体を判別出来る信号を前記半導体装置のIOブロックへ外部信号として入力し、
     前記外部信号が前記論理回路に入力されて、前記半導体記憶装置の選択回路へ入力される前記制御信号を生成して、前記半導体記憶装置のリフレッシュ動作を制御することを特徴とする光ディスク再生装置。
  7.  メモリセルのリフレッシュ機能を備えた半導体記憶回路において、第1のクロックを入力として、前記第1のクロックの逆相から第2のクロックを生成して出力するクロック発生器およびリフレッシュ動作を前記第1のクロックのみに同期して行うか、前記第2のクロックのみに同期して行うか、前記第1のクロックおよび前記第2のクロックに同期して行うかの選択を制御信号により切換える選択回路を備えた半導体記憶回路と、論理回路と、信号を入出力する入出力回路および前記入出力回路に接続される電極パッドを有するIOブロックと、発生するクロックの周波数が制御信号により変更可能なPLL回路とを備えた半導体装置と、
     光ピックアップと、
     前記光ピックアップが読み取ったデータ信号に基づいて複数の種類の情報記録媒体を判別出来る信号を出力する回路とを備えた光ディスク再生装置であって、
     前記複数の種類の情報記録媒体を判別出来る信号を前記半導体装置のIOブロックへ外部信号として入力し、
     前記外部信号により前記半導体記憶装置および前記論理回路へ入力されるクロックの周波数を変更することを特徴とする光ディスク再生装置。
  8.  請求項1の半導体記憶装置であって、
     前記クロック発生回路は、1クロック周期あたり2つのパルスを含む前記第2のクロックを生成することを特徴とする半導体記憶装置。
  9.  請求項8の半導体記憶装置であって、
     前記クロック発生回路は、
     前記第1のクロックを反転させて逆相信号を出力するNOT回路と、
     前記第1のクロックと逆相信号とに基いて、前記第2のクロックを生成するEXNOR回路と、
     を有することを特徴とする半導体記憶装置。
  10.  請求項8の半導体記憶装置であって、
     前記クロック発生回路は、
     前記第1、および第2のクロックの一方を選択するセレクタを備えたことを特徴とする半導体記憶装置。
  11.  請求項10の半導体記憶装置であって、
     前記セレクタは、当該半導体記憶装置の外部から入力される制御信号に応じて上記選択をすることを特徴とする半導体記憶装置。
  12.  請求項10の半導体記憶装置であって、
     前記セレクタは、リフレッシュ時に、第1、および第2のクロックの一方を固定的に選択するように構成されていることを特徴とする半導体記憶装置。
  13.  請求項8の半導体記憶装置であって、
     前記クロック発生回路は、セレクタを備えるとともに、
     前記クロック発生回路は、さらに、第1のクロックの遷移タイミングに対して、ずれたタイミングで遷移して前記リフレッシュを行わせる第3のクロックを生成するように構成され、
     前記セレクタは、前記第1、第2、および第3のクロックのうちの何れかを選択することを特徴とする半導体記憶装置。
  14.  請求項13の半導体記憶装置であって、
     前記クロック発生回路は、
     前記第1のクロックを反転させて逆相信号を出力するNOT回路と、
     前記第1のクロックと逆相信号とに基いて、前記第3のクロックを生成するNOR回路と、
     を有することを特徴とする半導体記憶装置。
  15.  請求項13の半導体記憶装置であって、
     前記セレクタは、前記第1、および第2のクロックのうちの一方を選択することを特徴とする半導体記憶装置。
  16.  請求項13の半導体記憶装置であって、
     前記メモリセルとクロック発生回路との第1の組と、第2の組とを有し、
     前記第1の組のセレクタは、前記第1のクロックを固定的に選択する一方、
     前記第2の組のセレクタは、リフレッシュ時に、前記第1、および第3のクロックのうちの一方を選択することを特徴とする半導体記憶装置。
  17.  請求項16の半導体記憶装置であって、
     前記第2の組のセレクタは、リフレッシュ時に、第3のクロックを固定的に選択するように構成されていることを特徴とする半導体記憶装置。
  18.  請求項10の半導体記憶装置を備えた半導体装置であって、
     前記セレクタは前記第1のクロックが第1の周波数の場合に、前記第1のクロックを選択する一方、前記第1の周波数よりも低い第2の周波数の場合に、前記第2のクロックを選択することを特徴とする半導体装置。
  19.  請求項18の半導体装置を備えた光ディスク再生装置であって、
     さらに、
     記録媒体に記録された情報を読み出す光ピックアップと、
     記録媒体から読み出された情報の処理のために前記半導体装置における半導体記憶装置に供給されるべきクロックの周波数を判別し、判別信号を出力する判別回路と、
     を備え、
     前記セレクタは、前記判別信号に応じて、前記第1または第2のクロックを選択することを特徴とする光ディスク再生装置。
  20.  請求項19の光ディスク再生装置であって、
     さらに、前記判別信号に応じた周波数の第1のクロックを生成するPLL回路を備えたことを特徴とする光ディスク再生装置。
PCT/JP2009/002652 2008-06-12 2009-06-11 半導体記憶装置、半導体装置、および光ディスク再生装置 WO2009150844A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010516762A JPWO2009150844A1 (ja) 2008-06-12 2009-06-11 半導体記憶装置、半導体装置、および光ディスク再生装置
US12/937,174 US20110026385A1 (en) 2008-06-12 2009-06-11 Semiconductor storage device, semiconductor device and optical disc reproducing device
CN2009801212349A CN102057436A (zh) 2008-06-12 2009-06-11 半导体存储装置、半导体装置及光盘再生装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008154089 2008-06-12
JP2008-154089 2008-06-12

Publications (1)

Publication Number Publication Date
WO2009150844A1 true WO2009150844A1 (ja) 2009-12-17

Family

ID=41416558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/002652 WO2009150844A1 (ja) 2008-06-12 2009-06-11 半導体記憶装置、半導体装置、および光ディスク再生装置

Country Status (4)

Country Link
US (1) US20110026385A1 (ja)
JP (1) JPWO2009150844A1 (ja)
CN (1) CN102057436A (ja)
WO (1) WO2009150844A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013095530A1 (en) * 2011-12-22 2013-06-27 Intel Corporation Efficient pcms refresh mechanism background
KR101837239B1 (ko) * 2011-12-29 2018-03-09 르네사스 일렉트로닉스 가부시키가이샤 반도체 장치
JP2014086062A (ja) * 2012-10-29 2014-05-12 Sony Corp 記憶制御装置、記憶装置、情報処理システム、および、記憶制御方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001210074A (ja) * 1999-11-16 2001-08-03 Matsushita Electric Ind Co Ltd 半導体記憶装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4747082A (en) * 1984-11-28 1988-05-24 Hitachi Ltd. Semiconductor memory with automatic refresh means
KR0171930B1 (ko) * 1993-12-15 1999-03-30 모리시다 요이치 반도체 메모리, 동화기억 메모리, 동화기억장치, 동화표시장치, 정지화기억 메모리 및 전자노트
JPH08138374A (ja) * 1994-11-10 1996-05-31 Nec Corp 半導体メモリ装置およびそのリフレッシュ方法
JP4000206B2 (ja) * 1996-08-29 2007-10-31 富士通株式会社 半導体記憶装置
JPH11162003A (ja) * 1997-11-28 1999-06-18 Sony Corp 光ピックアップ、光ディスク装置および光ディスク再生方法
JPH11306579A (ja) * 1998-04-15 1999-11-05 Sony Corp ビームスプリッタ及び光ピックアップ装置
US6222785B1 (en) * 1999-01-20 2001-04-24 Monolithic System Technology, Inc. Method and apparatus for refreshing a semiconductor memory using idle memory cycles
JP2002093164A (ja) * 2000-09-12 2002-03-29 Seiko Epson Corp 半導体装置、そのリフレッシュ方法、メモリシステムおよび電子機器
JP5034149B2 (ja) * 2000-10-05 2012-09-26 富士通セミコンダクター株式会社 半導体メモリおよびその制御方法
JP4606565B2 (ja) * 2000-11-02 2011-01-05 富士通セミコンダクター株式会社 同期型半導体記憶装置
JP2003059298A (ja) * 2001-08-09 2003-02-28 Mitsubishi Electric Corp 半導体記憶装置
US6780703B2 (en) * 2002-08-27 2004-08-24 Freescale Semiconductor, Inc. Method for forming a semiconductor device
JP4632114B2 (ja) * 2003-11-25 2011-02-16 エルピーダメモリ株式会社 半導体集積回路装置
JP4608235B2 (ja) * 2004-04-14 2011-01-12 ルネサスエレクトロニクス株式会社 半導体記憶装置及び半導体記憶システム
JP4951786B2 (ja) * 2007-05-10 2012-06-13 ルネサスエレクトロニクス株式会社 半導体記憶装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001210074A (ja) * 1999-11-16 2001-08-03 Matsushita Electric Ind Co Ltd 半導体記憶装置

Also Published As

Publication number Publication date
JPWO2009150844A1 (ja) 2011-11-10
CN102057436A (zh) 2011-05-11
US20110026385A1 (en) 2011-02-03

Similar Documents

Publication Publication Date Title
JP5086572B2 (ja) 遅延固定ループのクロックドライバー制御装置
JP5228468B2 (ja) システム装置およびシステム装置の動作方法
JP5528724B2 (ja) 半導体記憶装置及びこれを制御するメモリコントローラ、並びに、情報処理システム
JP4989022B2 (ja) デュアルデータストローブモードと反転を有する単一データストローブモードとを選択で具現できるメモリシステム及び方法
JP2001110183A (ja) 半導体記憶装置
JP5456275B2 (ja) カウンタ回路、レイテンシカウンタ及びこれを備える半導体記憶装置、並びに、データ処理システム
US8208340B2 (en) Latency counter, semiconductor memory device including the same, and data processing system
JP2010135040A (ja) 半導体メモリ、半導体装置およびシステム
US7750712B2 (en) Timing control circuit, timing generation system, timing control method and semiconductor memory device
US8947971B2 (en) Semiconductor device generating a clock signal when required
JP2009501399A (ja) コマンド信号と動作状態に基づいてコマンドをデコードするためのシステムおよび方法
JP2013069360A (ja) 半導体装置及びデータ処理システム
JP2009277305A (ja) レイテンシカウンタ及びこれを備える半導体記憶装置、並びに、データ処理システム
WO2009150844A1 (ja) 半導体記憶装置、半導体装置、および光ディスク再生装置
JP5666077B2 (ja) アドレスカウンタ及びこれを有する半導体記憶装置、並びに、データ処理システム
JP2013069359A (ja) 半導体装置及びデータ処理システム
JP3967559B2 (ja) 制御回路及び半導体記憶装置
US8295119B2 (en) Latency counter, semiconductor memory device including the same, and data processing system
US8576656B2 (en) Latency counter, semiconductor memory device including the same, and data processing system
US20110242905A1 (en) Semiconductor module including module control circuit and method for controlling the same
JPH0528756A (ja) 半導体記憶装置
US7978547B2 (en) Data I/O control signal generating circuit in a semiconductor memory apparatus
CN114496016A (zh) 半导体存储器件及其操作方法
US7593283B2 (en) Semiconductor memory device
JP2003100083A (ja) メモリ装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980121234.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09762275

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010516762

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12937174

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09762275

Country of ref document: EP

Kind code of ref document: A1