WO2009150751A1 - スイッチング素子 - Google Patents

スイッチング素子 Download PDF

Info

Publication number
WO2009150751A1
WO2009150751A1 PCT/JP2008/060914 JP2008060914W WO2009150751A1 WO 2009150751 A1 WO2009150751 A1 WO 2009150751A1 JP 2008060914 W JP2008060914 W JP 2008060914W WO 2009150751 A1 WO2009150751 A1 WO 2009150751A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
insulator
switching element
gap
hole
Prior art date
Application number
PCT/JP2008/060914
Other languages
English (en)
French (fr)
Inventor
成生 古田
剛 高橋
雅敏 小野
泰久 内藤
哲夫 清水
Original Assignee
株式会社船井電機新応用技術研究所
独立行政法人産業技術総合研究所
船井電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社船井電機新応用技術研究所, 独立行政法人産業技術総合研究所, 船井電機株式会社 filed Critical 株式会社船井電機新応用技術研究所
Priority to PCT/JP2008/060914 priority Critical patent/WO2009150751A1/ja
Priority to US12/997,316 priority patent/US8653912B2/en
Priority to CN200880129794.4A priority patent/CN102084512B/zh
Publication of WO2009150751A1 publication Critical patent/WO2009150751A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • H10N70/8265Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices on sidewalls of dielectric structures, e.g. mesa-shaped or cup-shaped devices

Definitions

  • the present invention relates to a switching element using a nanogap electrode.
  • an element using two electrodes separated by a fine gap and bridging the gap with a functional organic molecule has attracted attention.
  • a device in which catenane-based molecules are arranged in a gap between nanogap electrodes formed using platinum is known (for example, see Non-Patent Document 1). By applying a voltage to the electrode, the catenane molecule undergoes an oxidation-reduction reaction and can perform a switching operation.
  • a nanogap electrode an element in which the gap is bridged with nano-particles is also attracting attention.
  • a nanogap electrode is prepared using silver sulfide and platinum, and silver particles are arranged in the gap (see, for example, Non-Patent Document 2).
  • a voltage By applying a voltage to the electrodes, an electrochemical reaction takes place and the silver particles expand and contract, whereby the electrodes can be cross-linked and disconnected, and a switching operation is possible.
  • any of the above switching elements a special synthetic molecule or a complex metal complex system is required between the nanogap electrodes.
  • a chemical reaction is used for the switching operation, there is a problem that the element is likely to be deteriorated. Therefore, a switching element made of a stable material such as silicon oxide and gold, manufactured by a simple manufacturing method called gradient deposition, and capable of stably and repeatedly performing a switching operation has been developed (for example, see Patent Document 1). . Science, 289 (2000) 1172-1175. Nature, 433 (2005) 47-50. JP 2005-79335 A
  • An object of the present invention is to provide a switching element that can be integrated at a higher density and can be easily stacked.
  • the invention described in claim 1 An insulating substrate; An insulator provided on an upper surface of the insulating substrate; A first electrode provided on the insulating substrate; A second electrode provided above the first electrode; Between electrodes having a gap on the order of nanometers provided between the first electrode and the second electrode and causing a switching phenomenon of resistance when a predetermined voltage is applied between the first electrode and the second electrode A gap, A sealing member that shuts off the inter-electrode gap portion from the atmosphere by enclosing the inter-electrode gap portion, and the first electrode is provided in contact with a side surface of the insulator, The second electrode is provided in contact with the upper surface of the insulator and the side surface of the insulator, The inter-electrode gap portion is provided between the first electrode provided on the side surface of the insulator and the second electrode provided on the side surface of the insulator. To do.
  • the invention described in claim 2 An insulating substrate; A first electrode provided on the insulating substrate; A second electrode provided above the first electrode; Between electrodes having a gap on the order of nanometers provided between the first electrode and the second electrode and causing a switching phenomenon of resistance when a predetermined voltage is applied between the first electrode and the second electrode A gap, It is characterized by providing.
  • the switching element according to claim 2 Comprising an insulator provided on the upper surface of the insulating substrate; The first electrode is provided in contact with a side surface of the insulator, The second electrode is provided in contact with the upper surface of the insulator and the side surface of the insulator, The inter-electrode gap portion is provided between the first electrode provided on the side surface of the insulator and the second electrode provided on the side surface of the insulator. To do.
  • the invention according to claim 4 The switching element according to claim 2, An insulator provided between the first electrode and the second electrode; The second electrode is provided in contact with an upper surface of the insulator and a side surface of the insulator; The inter-electrode gap portion is provided between the first electrode and the second electrode provided on the side surface of the insulator.
  • the invention described in claim 5 The switching element according to claim 2, An insulator provided to cover the first electrode;
  • the insulator includes a hole for exposing a part of the upper surface of the first electrode,
  • the second electrode is provided in contact with the upper surface of the insulator and the inner surface of the hole,
  • the inter-electrode gap portion is provided between the first electrode and the second electrode provided on the inner surface of the hole.
  • the invention described in claim 7 The switching element according to claim 2, An insulator provided to cover the first electrode;
  • the insulator includes a hole for exposing a part of the upper surface of the first electrode,
  • the second electrode is provided so as to shield the inside of the hole from the atmosphere by covering the opening of the hole, and a second electrode protruding toward the first electrode in a portion covering the opening of the hole With protrusions,
  • the inter-electrode gap is provided between the first electrode and the second electrode protrusion.
  • the invention according to claim 8 provides: The switching element according to claim 7, wherein The tip of the second electrode protrusion is provided on the inner surface of the hole, The inter-electrode gap is provided between the first electrode and a tip of the second electrode protrusion provided on the inner surface of the hole.
  • the invention described in claim 9 The switching element according to claim 7, wherein The lower surface of the second electrode protruding portion protrudes in a substantially concave shape toward the first electrode,
  • the first electrode includes a first electrode protruding portion whose upper surface protrudes in a substantially concave shape toward the second electrode at a portion exposed by the hole,
  • the end of the first electrode protrusion and the end of the second electrode protrusion are configured to face each other in the vertical direction,
  • the interelectrode gap is provided between an end of the first electrode protrusion and an end of the second electrode protrusion.
  • the invention according to claim 10 is: The switching element according to claim 2,
  • the insulating substrate has a recess
  • the first electrode is provided in the concave portion of the insulating substrate, and includes a first electrode concave portion on an upper surface
  • the second electrode is provided so as to shield the first electrode from the atmosphere by covering the top of the first electrode, and includes a second electrode recess in a portion covering the top of the first electrode,
  • the end of the first electrode recess and the end of the second electrode recess are configured to face each other in the vertical direction
  • the inter-electrode gap is provided between an end of the first electrode recess and an end of the second electrode recess.
  • the invention according to claim 11 The switching element according to claim 2, An insulator provided to cover the first electrode;
  • the insulator includes a hole for separating the insulator from the first electrode and exposing a portion above the first electrode,
  • the first electrode has a first electrode protrusion on the upper surface protruding toward the second electrode,
  • the second electrode is provided so as to shield the inside of the hole from the atmosphere by covering the opening of the hole,
  • the inter-electrode gap is provided between the tip of the first electrode protrusion and the second electrode.
  • the insulating substrate, the insulator provided on the upper surface of the insulating substrate, the first electrode provided on the insulating substrate, and the first electrode are provided above the first electrode.
  • An electrode provided between the second electrode and the first electrode and the second electrode and having a gap on the order of nanometers in which a switching phenomenon of resistance occurs when a predetermined voltage is applied between the first electrode and the second electrode A switching element is constituted by the gap portion (between nanogap electrodes).
  • the first electrode constituting the interelectrode gap, the interelectrode gap, and the second electrode constituting the interelectrode gap are arranged side by side in the vertical direction, it can be integrated at a higher density. And lamination becomes easy.
  • the first electrode is provided in contact with the side surface of the insulator
  • the second electrode is provided in contact with the upper surface of the insulator and the side surface of the insulator.
  • the inter-electrode gap portion is provided between the first electrode provided on the side surface of the insulator and the second electrode provided on the side surface of the insulator. That is, an insulator is formed on the upper surface of the insulating substrate, electrodes (first electrode and second electrode) are formed on the upper surface of the insulating substrate, the side surface of the insulator, and the upper surface of the insulator, and the gap between the electrodes Since it is only necessary to form the portion, it can be manufactured easily.
  • the sealing member is provided that includes the inter-electrode gap portion so as to block the inter-electrode gap portion from the atmosphere.
  • the switching element can be operated more stably.
  • An element is configured.
  • the first electrode constituting the interelectrode gap, the interelectrode gap, and the second electrode constituting the interelectrode gap are arranged side by side in the vertical direction, it can be integrated at a higher density. And lamination becomes easy.
  • the first electrode includes the insulator provided on the upper surface of the insulating substrate.
  • the second electrode is provided in contact with the side surface of the insulator, the second electrode is provided in contact with the upper surface of the insulator and the side surface of the insulator, and the interelectrode gap is provided in the first electrode provided on the side surface of the insulator. And the second electrode provided on the side surface of the insulator.
  • an insulator is formed on the upper surface of the insulating substrate, electrodes (first electrode and second electrode) are formed on the upper surface of the insulating substrate, the side surface of the insulator, and the upper surface of the insulator, and the gap between the electrodes Since it is only necessary to form the portion, it can be manufactured easily.
  • the insulator is provided so as to cover the first electrode.
  • a hole for exposing a part of the upper surface of the first electrode is provided, the second electrode is provided in contact with the upper surface of the insulator and the inner surface of the hole, and the interelectrode gap is formed between the first electrode, It is provided between the second electrode provided on the inner surface of the hole. That is, an electrode (first electrode) is formed on the upper surface of the insulating substrate, an insulator is formed so as to cover the electrode, and a hole for exposing a part of the upper surface of the electrode is formed in the insulator. Since the electrodes (first electrode and second electrode) need only be formed on the upper surface of the insulator and the inner surface of the hole, it can be easily manufactured.
  • the second electrode covers the hole opening by covering the hole. It is provided to block the inside from the atmosphere. That is, since the gap between the electrodes is configured not to come into contact with the atmosphere or moisture, the switching element can be operated more stably, and the first electrode and the second electrode constituting the gap between the electrodes The range of choice of materials expands.
  • the insulator is provided so as to cover the first electrode, and the insulator is a hole for exposing a part of the upper surface of the first electrode.
  • the second electrode is provided so as to cover the opening of the hole, and the second electrode protruding portion that protrudes toward the first electrode is provided in a portion covering the opening of the hole. It is provided between the first electrode and the second electrode protrusion. That is, a first electrode is formed on the upper surface of the insulating substrate, an insulator is formed so as to cover the first electrode, and a hole for exposing a part of the upper surface of the first electrode is formed in the insulator.
  • the opening of the hole, and the inside of the hole it can be easily manufactured.
  • the second electrode covers the first electrode by covering the upper side of the first electrode. It is provided to block from the atmosphere. That is, since the gap between the electrodes is configured not to come into contact with the atmosphere or moisture, the switching element can be operated more stably, and the first electrode and the second electrode constituting the gap between the electrodes The range of choice of materials expands.
  • the insulating substrate has a recess
  • the first electrode is provided in the recess of the insulating substrate, and has the first electrode recess on the upper surface
  • the second electrode is provided so as to cover the top of the first electrode, and includes a second electrode recess in a portion covering the top of the first electrode, and an end of the first electrode recess and an end of the second electrode recess Are configured to oppose each other in the vertical direction, and the inter-electrode gap is provided between the end of the first electrode recess and the end of the second electrode recess. That is, it is only necessary to create the first electrode in the concave portion of the insulating substrate and to create the second electrode so as to cover the first electrode. In addition, since an insulator is not required, the first electrode can be easily manufactured.
  • the insulator is provided so as to cover the first electrode.
  • the insulator is separated from the first electrode, and has a hole for exposing a part above the first electrode.
  • the first electrode protrudes toward the second electrode on the upper surface.
  • the second electrode is provided so as to shield the inside of the hole from the atmosphere by covering the opening of the hole, and the inter-electrode gap is formed between the tip of the first electrode protrusion and the second electrode. It is provided in between. That is, since the gap between the electrodes is configured not to come into contact with the atmosphere or moisture, the switching element can be operated more stably, and the first electrode and the second electrode constituting the gap between the electrodes The range of choice of materials expands.
  • FIG. 1 is a cross-sectional view schematically showing a main part of a switching element 100 exemplified as an embodiment to which the present invention is applied.
  • FIG. 2 is a schematic diagram showing an example in which a sealing member 60 is provided in the switching element 100 of FIG.
  • the switching element 100 is provided with an insulating substrate 10, an insulator 20 provided on the upper surface of the insulating substrate 10, and an upper surface of the insulating substrate 10.
  • the insulator 20 is provided in contact with the upper surface of the insulating substrate 10, and the first electrode 30 includes the upper surface of the insulating substrate 10, the lower side of the side surface 21 of the insulator 20,
  • the second electrode 40 is provided in contact with the upper surface of the insulator 20 and the upper side of the side surface 21 of the insulator 20, and the interelectrode gap 50 is provided on the side surface of the insulator 20.
  • 21 is provided between the first electrode 30 provided on the lower side and the second electrode 40 provided on the upper side of the side surface 21 of the insulator 20.
  • the insulating substrate 10 constitutes a support for providing, for example, an electrode (first electrode 30) of the switching element 100.
  • the structure and material of the insulating substrate 10 are not particularly limited. Specifically, for example, the surface shape of the insulating substrate 10 may be a flat surface or may have irregularities. Further, the insulating substrate 10 may be, for example, a substrate in which an oxide film or the like is provided on the surface of a semiconductor substrate such as Si, or the substrate itself may be insulative.
  • an oxide such as silicon oxide (SiO 2 ), a nitride such as silicon nitride (Si 3 N 4 ), or the like is preferable, and among these, silicon oxide (SiO 2).
  • SiO 2 silicon oxide
  • Si 3 N 4 silicon nitride
  • the insulator 20 constitutes a support for providing, for example, two electrodes (the first electrode 30 and the second electrode 40) of the switching element 100 apart from each other.
  • the structure and material of the insulator 20 are not particularly limited. Specifically, for example, as long as the insulator 20 is provided on the upper surface of the insulating substrate 10, the shape of the surface of the insulator 20 may be a flat surface or may have irregularities.
  • the insulator 20 may be, for example, a part of the insulating substrate 10 provided with an oxide film or the like, or a part of the insulating substrate 10 provided with an oxide film or the like, and a part thereof removed. It may be.
  • an oxide such as silicon oxide (SiO 2 ), a nitride such as silicon nitride (Si 3 N 4 ), or the like is preferable.
  • silicon oxide (SiO 2 ) is preferable.
  • the first electrode 30 is, for example, for performing a switching operation of the switching element 100 in a pair with the second electrode 40.
  • the shape of the first electrode 30 is not particularly limited as long as the first electrode 30 is provided on the insulating substrate 10 and in contact with the side surface 21 of the insulator 20. Can be changed.
  • the material of the first electrode 30 is not particularly limited, and is selected from, for example, gold, silver, platinum, palladium, nickel, aluminum, cobalt, chromium, rhodium, copper, tungsten, tantalum, carbon, and alloys thereof. It is preferable that it is at least one.
  • the first electrode 30 may use two or more layers of different metals, for example, in order to enhance the adhesion between the insulating substrate 10 and the insulator 20.
  • the first electrode 30 may have a laminated (multilayer) structure of chromium and gold.
  • the second electrode 40 is paired with the first electrode 30 to enable the switching operation of the switching element 100.
  • the shape of the second electrode 40 is as long as the second electrode 40 is provided above the first electrode 30 and is in contact with the upper surface of the insulator 20 and the side surface 21 of the insulator 20.
  • the material of the second electrode 40 is not particularly limited, and is selected from, for example, gold, silver, platinum, palladium, nickel, aluminum, cobalt, chromium, rhodium, copper, tungsten, tantalum, carbon, and alloys thereof. It is preferable that it is at least one.
  • the second electrode 40 may be used by stacking two or more different metals.
  • the second electrode 40 may have a laminated (multilayer) structure of chromium and gold.
  • the inter-electrode gap 50 has, for example, a nanometer-order gap in which a resistance switching phenomenon occurs when a predetermined voltage is applied between the first electrode 30 and the second electrode 40. It has the role of expressing the switching phenomenon.
  • the width of the gap of the interelectrode gap 50 is, for example, 0 nm ⁇ G ⁇ 13 nm. Preferably, 0.8 nm ⁇ G ⁇ 2.2 nm.
  • the reason why the upper limit value of the distance G is set to 13 nm is that, for example, in the case of forming by gradient deposition, switching does not occur when the gap interval is larger than 13 nm.
  • the lower limit value of the distance G is 0 nm, the first electrode 30 and the second electrode 40 are short-circuited.
  • the graph of the measurement result of the current-voltage characteristics of Example 1 (for example, FIG. 6). ) Changes in the vicinity of 0 V, and it is clear that there is a gap larger than 0 nm.
  • the lower limit value is difficult to determine by microscopic measurement, but can be said to be the minimum distance at which a tunnel current can occur. That is, the lower limit value is a theoretical value of the distance at which the quantum-mechanical tunnel effect is observed when the device is operated and the current-voltage characteristic does not follow Ohm's law. If a resistance value is substituted into the theoretical formula of the tunnel current, a range of 0.8 nm ⁇ G ⁇ 2.2 nm is obtained as a calculation result of the gap interval.
  • the DC electric resistance of the interelectrode gap 50 (between the first electrode 30 and the second electrode 40) is, for example, preferably greater than 1 k ⁇ and less than 10 T ⁇ , and more preferably greater than 10 k ⁇ .
  • the upper limit value of the resistance is set to 10 T ⁇ because switching does not occur when the resistance is 10 T ⁇ or more.
  • the reason why the lower limit value of the resistance is set to 1 k ⁇ is that it has never been lowered to 1 k ⁇ or less at present, and this is set as the lower limit.
  • the higher the resistance in the OFF state the better. Therefore, it is preferable that the upper limit value be higher.
  • the lower limit is preferably about 10 k ⁇ because other elements may be destroyed.
  • one or a plurality of closest portions (interelectrode gap portion 50) between the first electrode 30 and the second electrode 40 are formed in a region where the first electrode 30 and the second electrode 40 face each other, for example. It may be.
  • the island part (Nakasu part) which consists of the material of the said 1st electrode 30 and the 2nd electrode 40 etc. may be formed, for example.
  • a predetermined gap (interelectrode gap portion 50) is formed between the first electrode 30 and the island portion, and between the second electrode 40 and the island portion. It is sufficient that the two electrodes 40 are not short-circuited.
  • the switching element 100 configured as described above is enclosed (sealed) by a sealing member 60 to form a switching device 1000.
  • lead wires L1 and L2 are connected to the first electrode 30 and the second electrode 40, respectively, and the lead wires L1 and L2 extend outside the sealing member 60 (see FIG. 2). ).
  • the sealing member 60 is, for example, for blocking the interelectrode gap portion 50 from the atmosphere and causing the switching element 100 to operate more stably.
  • the sealing member 60 is preferably provided so as to include at least the interelectrode gap 50, and the entire switching element 100 including the insulating substrate 10 is preferably sealed.
  • the shape and material of the sealing member 60 can be arbitrarily changed as long as it has a function of blocking the interelectrode gap 50 from the atmosphere.
  • a known semiconductor sealing material can be used, and a gas barrier layer made of a known substance may be provided as necessary. Note that when the entire first electrode 30 and second electrode 40 (nano gap electrode) are installed in, for example, a suitable vacuum chamber (not shown) and used as a switching element, the sealing member 60 is used. Can be omitted.
  • the inside of the sealing member 60 can be, for example, a reduced pressure environment or can be filled with various substances.
  • the pressure P inside the sealing member 60 is preferably 10 ⁇ 6 Pa ⁇ P ⁇ 2 ⁇ 10 5 Pa, and more preferably 10 2 Pa ⁇ P ⁇ 10 5 Pa.
  • the upper limit of the pressure P operates at a pressure of up to 10 5 Pa, since it is difficult to handle at a higher pressure than this, the pressure is slightly increased in consideration of air leakage and the like. 2 ⁇ 10 5 Pa, which is the upper limit value.
  • the lower limit of the pressure P has been confirmed to operate at pressures up to 10 ⁇ 6 Pa, but it is difficult to handle at lower pressures than this, so that it can be reached with an industrially simple vacuum system. More preferably, 10 2 Pa is set as the lower limit.
  • the inside of the sealing member 60 may be filled with, for example, an inert gas such as dry air, nitrogen, or a rare gas such as Ar, or an electrically inactive organic solvent such as toluene.
  • the switching element 100 includes, for example, (a) an insulator 20 formed on the upper surface of the insulating substrate 10, and (b) electrodes on the upper surface of the insulating substrate 10, the side surfaces 21 of the insulator 20, and the upper surface of the insulator 20.
  • the pattern P is produced, and (c) the first electrode 30 and the second electrode 40 are produced from the electrode pattern P to form the interelectrode gap 50.
  • the switching element 100 includes, for example, (1) a step of preparing the insulating substrate 10, (2) a step of forming the insulator 20, (3) a first resist pattern forming step, and (4) an insulator. 20 etching process, (5) resist pattern peeling process, (6) second resist pattern forming process, (7) vapor deposition process, (8) lift-off process, (9) electric field breaking process, and (10) sealing process. It is manufactured by performing.
  • insulating substrate 10 for example, a Si substrate with an oxide film, a substrate having an insulating surface, or the like is used.
  • a conductive substrate such as Si
  • a desired insulating film is provided on the surface by a known method such as heat treatment, oxidation treatment, vapor deposition, sputtering, etc., and the insulating film is insulated.
  • a conductive substrate such as Si
  • an insulating substrate such as glass can be used as the insulating substrate 10.
  • the film forming process of the insulator 20 is performed using, for example, PECVD (Plasma Enhanced Chemical Vapor Deposition) or the like, and the insulator 20 is formed on the entire upper surface of the insulating substrate 10. .
  • PECVD Pulsma Enhanced Chemical Vapor Deposition
  • the thickness of the insulator 20 can be arbitrarily changed, for example, and for example, when a voltage of 10 V is applied between the first electrode 30 and the second electrode 40, it is preferably 15 nm or more.
  • First resist pattern forming step The first resist pattern forming step is performed using, for example, photolithography, and a first resist pattern (not shown) for etching a part of the insulator 20 is used. Form. Note that the thickness of the first resist pattern can be arbitrarily changed, for example, and is specifically set to 0.7 ⁇ m, for example.
  • Etching process of insulator 20 The etching process of the insulator 20 is performed using, for example, a gas suitable for the material of the insulator 20, and as a result of the process, the etching process of the first resist pattern is formed. In the portion where the first resist pattern does not exist, the insulator 20 is removed and the insulating substrate 10 is exposed, and in the portion where the first resist pattern formed in the first resist pattern forming step exists, the insulator 20 Remains.
  • Resist pattern stripping step The resist pattern stripping step is performed using, for example, a stripping solution that matches the material of the first resist pattern formed in the first resist pattern forming step. The remaining portion 20 is exposed to form an insulator pattern (not shown).
  • Second Resist Pattern Formation Step The second resist pattern formation step is performed using, for example, photolithography and the like, and a second resist pattern (illustrated) for forming the first electrode 30 and the second electrode 40 is illustrated. (Omitted).
  • Vapor deposition process A vapor deposition process is performed, for example using a predetermined vapor deposition apparatus, and vapor-deposits the electrode pattern P used as the 1st electrode 30 and the 2nd electrode 40 later (refer FIG. 3).
  • a vapor deposition process is performed by gradient vapor deposition, for example.
  • the insulating substrate 10 has, for example, at least one of the upper surface of the insulating substrate 10, the upper surface of the insulator 20, and the side surface 21 of the insulator 20, the flying direction of particles evaporated from the vapor deposition source. Are arranged so as to be inclined. Specifically, for example, as shown in FIG.
  • the insulating substrate 10 has an angle formed between the upper surface of the insulating substrate 10 and the side surface 21 of the insulator 20 by ⁇ 1, and the upper surface of the insulating substrate 10 and the evaporation source.
  • the angle formed by the flying direction of the particles to be evaporated is ⁇ 2, it is arranged so that 0 ° ⁇ 1 ⁇ 2 ⁇ 180 °.
  • the electrode pattern P is deposited on the upper surface of the insulating substrate 10, the side surface 21 of the insulator 20, and the upper surface of the insulator 20.
  • the vapor deposition step for example, at least one substance selected from gold, silver, platinum, palladium, nickel, aluminum, cobalt, chromium, rhodium, copper, tungsten, tantalum, carbon, and alloys thereof is used once or plural times. It is designed to be evaporated once.
  • the thickness of the electrode pattern P to be deposited can be arbitrarily changed, for example, and for example, the electrode pattern P to be deposited on the side surface 21 of the insulator 20 in the deposited electrode pattern P. The thickness is preferably 10 nm or less in order to facilitate the subsequent electric field breaking step.
  • Lift-off process is performed using, for example, a stripping solution that matches the material of the second resist pattern formed in the second resist pattern forming process.
  • An electrode pattern P to be the second electrode 40 is formed.
  • the first electrode 30 and the second electrode 40 Is formed by adjusting the resistance value of the variable resistor from the initial value (resistance large) so that the resistance slowly decreases, and stopping the application of the voltage when the current stops flowing, the first electrode 30 and the second electrode 40 Is formed, and a nanogap electrode having a desired interelectrode distance G can be obtained.
  • the sealing process is performed by using, for example, a predetermined hermetic sealing technique, and specifically performed by ceramic sealing, glass sealing, plastic sealing, or sealing with a metal cap. Is called. Further, the sealing step may be performed in a predetermined atmosphere.
  • the manufacturing method of said switching element 100 is an example, Comprising: It is not restricted to this.
  • FIG. 4 shows an example of a current-voltage curve when the voltage applied to the interelectrode gap 50 (between nanogap electrodes) is increased from 0 V to the switching element 100 in the OFF state (FIG. 4). 4) and an example of a current-voltage curve when the voltage applied to the interelectrode gap 50 (between nanogap electrodes) is increased from 0 V to the switching element 100 in the ON state. (Curve indicated by the alternate long and short dash line in FIG. 4), and the horizontal axis corresponds to the voltage applied between the nanogap electrodes, and the vertical axis corresponds to the current flowing between the nanogap electrodes.
  • FIG. 5 (a) is a diagram schematically showing the correspondence between the voltage applied between the nanogap electrodes and the elapsed time
  • FIG. 5 (b) shows the current flowing between the nanogap electrodes. It is a figure which shows typically the correspondence with elapsed time.
  • the switching element 100 repeats the switching operation in the ON state and the OFF state in the same manner.
  • Example 1 A method for manufacturing the switching element 100 according to the first embodiment will be described.
  • insulating substrate 10 As a substrate, a silicon oxide layer having a thickness of 100 nm was formed on the surface of a p-type silicon substrate. Here, the silicon oxide layer on the surface was used as the insulating substrate 10.
  • Second resist pattern forming step Next, a second resist pattern having a thickness of 320 nm was formed.
  • Vapor deposition step Next, an angle ⁇ 2 formed by the upper surface of the insulating substrate 10 and the flying direction of particles evaporated from the vapor deposition source is set to 90 °, and chromium having a thickness of 1 nm is deposited on the portion in contact with the insulating substrate 10. Thereafter, gold was vapor-deposited, and an electrode pattern P having a total thickness of 20 nm on the surface of the insulating substrate 10 was vapor-deposited. The total thickness of the electrode pattern P on the side surface 21 of the insulator 20 is about 5 nm.
  • the switching element 100 manufactured as described above was placed in a vacuum chamber.
  • the pressure in the vacuum chamber was, for example, about 1 Pa.
  • FIG. 6 is a diagram showing measurement results of IV characteristics between the nanogap electrodes when a voltage is applied between the first electrode 30 and the second electrode 40, and the horizontal axis represents the nanogap electrode. The voltage applied between them indicates the current, and the vertical axis indicates the current flowing between the nanogap electrodes.
  • the voltage applied between the nanogap electrodes is set to 0 V at the start of measurement, and then is swept to ⁇ 20 V at a sweep rate of ⁇ 0.2 V / s, and then +0 . Sweeped to +20 V at a sweep speed of 2 V / s.
  • the points changed in the order of 0 point ⁇ A point ⁇ B point ⁇ C point ⁇ D point ⁇ E point.
  • the current value changed only between about 0A and about ⁇ 5 ⁇ 10 ⁇ 5 A, and a large current did not flow. It was.
  • the point B was changed to the point C, the current value reached about ⁇ 1.5 ⁇ 10 ⁇ 4 A, and a clear current peak was observed (that is, the switching element 100 was turned on). ).
  • the insulating substrate 10 the insulator 20 provided on the upper surface of the insulating substrate 10, the first electrode 30 provided on the insulating substrate 10, the first The second electrode 40 provided above the first electrode 30 is provided between the first electrode 30 and the second electrode 40, and a predetermined voltage is applied between the first electrode 30 and the second electrode 40.
  • an inter-electrode gap 50 (between nano-gap electrodes) having a gap of nanometer order in which a resistance switching phenomenon occurs.
  • the first electrode 30 constituting the interelectrode gap 50, the interelectrode gap 50, and the second electrode 40 constituting the interelectrode gap 50 are arranged side by side in the vertical direction, It can be integrated at a high density and can be easily stacked. Furthermore, since the insulating substrate 10, the insulator 20, the first electrode 30, the second electrode 40, and the inter-electrode gap portion 50 are configured only, no organic molecules or inorganic particles are required. It can be configured with a simpler structure. Furthermore, since the switching element 100 does not include a substance that deteriorates, the switching operation can be stably repeated. Furthermore, the switching element 100 is non-volatile and can maintain the operation state of the switching element 100 even if there is no external input after the switching operation.
  • the first electrode 30 is provided in contact with the side surface 21 of the insulator 20, and the second electrode 40 includes the upper surface of the insulator 20 and the side surface 21 of the insulator 20.
  • the inter-electrode gap 50 is provided between the first electrode 30 provided on the side surface 21 of the insulator 20 and the second electrode 40 provided on the side surface 21 of the insulator 20. Is provided. That is, the insulator 20 is formed on the upper surface of the insulating substrate 10, and electrodes (first electrode 30 and second electrode 40) are formed on the upper surface of the insulating substrate 10, the side surface 21 of the insulator 20, and the upper surface of the insulator 20. It is only necessary to form the gap between the electrodes and form the inter-electrode gap portion 50, so that it can be easily manufactured.
  • the sealing member 60 that includes the inter-electrode gap 50 and shields the inter-electrode gap 50 from the atmosphere is provided. That is, since the interelectrode gap portion 50 is configured not to come into contact with air or moisture by the sealing member 60, the switching element 100 can be operated more stably.
  • the inside of the sealing member 60 is, for example, a reduced pressure environment, an inert gas such as dry air, nitrogen, or a rare gas, or various substances such as an electrically inactive organic solvent such as toluene.
  • the inter-electrode gap 50 between nanogap electrodes
  • the switching operation can be made more stable.
  • the switching element 100 is configured such that the switching element 100 includes an insulating substrate 10, a first electrode 30 provided on the insulating substrate 10, a second electrode 40 provided above the first electrode 30, and a first electrode 30.
  • An inter-electrode gap portion provided between the electrode 30 and the second electrode 40 and having a gap on the order of nanometers in which a resistance switching phenomenon occurs when a predetermined voltage is applied between the first electrode 30 and the second electrode 40 50, that is, a portion constituting the interelectrode gap portion 50 of the first electrode 30, a portion constituting the interelectrode gap portion 50 of the second electrode 40, and an electrode
  • the switching element 100 may be, for example, [Modification 1] to [Modification 7] shown below.
  • the switching element 100 ⁇ / b> A of Modification 1 includes an insulating substrate 10, an insulator 20, a first electrode 30, a second electrode 40, an interelectrode gap 50, and a sealing And the like.
  • the sealing insulator 60A is, for example, for blocking the interelectrode gap portion 50 from the atmosphere and causing the switching element 100A to operate more stably.
  • the sealing insulator 60A is provided, for example, so as to surround the inter-electrode gap 50 while keeping the gap of the inter-electrode gap 50 without closing.
  • the structure and material of the sealing insulator 60A are not particularly limited.
  • the shape of the sealing insulator 60A is such that the sealing insulator 60A surrounds the inter-electrode gap 50 without closing the gap of the inter-electrode gap 50. If it is, it will not specifically limit and it can change arbitrarily arbitrarily.
  • the material of the sealing insulator 60A for example, glass, oxides such as silicon oxide (SiO 2 ), nitrides such as silicon nitride (Si 3 N 4 ), and the like are preferable.
  • SiO 2 is suitable in that the adhesion between the first electrode 40 and the second electrode 30 and the degree of freedom in manufacturing thereof are large.
  • the switching element 100 ⁇ / b> A of Modification 1 includes (a) an insulator 20 formed on the upper surface of the insulating substrate 10, and (b) the upper surface of the insulating substrate 10, the side surface 21 of the insulator 20, and the insulator 20.
  • An electrode pattern P is formed on the upper surface of the first electrode 30, (c) the first electrode 30 and the second electrode 40 are formed from the electrode pattern P to form the interelectrode gap 50, and (d) the side surface 21 of the insulator 20 is formed.
  • a gap forming material for holding the gap of the inter-electrode gap portion 50 at an opposing position without being blocked is created, and (e) the upper surface of the first electrode 30, the surface of the gap forming material, and the second electrode 40.
  • the insulating member 60A for sealing is formed on the upper surface, and (f) the gap forming material is thermally decomposed.
  • the gap forming material for example, a substance that is easily thermally decomposed, such as an organic substance, is suitable.
  • the manufacturing method of said switching element 100A is an example, Comprising: It is not restricted to this.
  • the switching element 100A of Modification 1 is enclosed by the sealing member 60, for example, like the switching element 100 of the above embodiment. Or, it can be used as a switching element without being installed in a vacuum chamber (not shown).
  • the switching element 100A of the first modification can stably repeat the switching operation, similarly to the switching element 100 of the above-described embodiment.
  • the interelectrode gap 50 is blocked from the atmosphere by the sealing insulator 60A. That is, since the inter-electrode gap portion 50 is configured not to come into contact with air or moisture, the switching element 100 can be operated more stably and the first electrode 30 constituting the inter-electrode gap portion 50 can be obtained. And the range of selection of the material of the second electrode 40 is expanded.
  • the switching element 100 ⁇ / b> B of Modification 2 includes an insulating substrate 10, an insulator 20 ⁇ / b> B, a first electrode 30 ⁇ / b> B, a second electrode 40 ⁇ / b> B, an interelectrode gap portion 50, and the like. It is prepared for.
  • the insulator 20B is provided between the first electrode 30B and the second electrode 40B, and the first electrode 30B includes the upper surface of the insulating substrate 10 and the side surface 21B of the insulator 20B.
  • the second electrode 40B is provided in contact with the lower surface and the lower surface of the insulator 20B.
  • the second electrode 40B is provided in contact with the upper surface of the insulator 20B and the side surface 21B of the insulator 20B.
  • the gap 50 is provided between the first electrode 30B provided below the side surface 21B of the insulator 20B and the second electrode 40B provided above the side surface 21B of the insulator 20B.
  • the shape of the insulator 20B, the first electrode 30B, and the second electrode 40B is such that the insulator 20B is provided between the first electrode 30B and the second electrode 40B, and the second electrode 40B is the insulator 20B. As long as it is provided in contact with the upper surface and the side surface 21B of the insulator 20B, it is not particularly limited and can be appropriately changed.
  • the switching element 100B according to the second modification includes (a) a first electrode pattern formed on the upper surface of the insulating substrate 10, (b) an insulator 20B formed on the upper surface of the first electrode pattern, and (c ) Create a second electrode pattern in contact with the first electrode pattern at the lower end of the side surface 21B of the insulator 20B on the upper surface and the side surface 21B of the insulator 20B, and (d) first from the first electrode pattern and the second electrode pattern. It is manufactured by forming the electrode 30B and the second electrode 40B to form the interelectrode gap 50.
  • the manufacturing method of said switching element 100B is an example, Comprising: It is not restricted to this.
  • the switching element 100B of Modification 2 When used as a switching element, for example, the switching element 100B of Modification 2 is enclosed by a sealing member 60 or installed in a vacuum chamber (not shown) like the switching element 100 of the above embodiment. Thus, the interelectrode gap 50 may be blocked from the atmosphere.
  • the switching element 100B of the modification 2 can repeat switching operation stably similarly to the switching element 100 of the said embodiment.
  • the insulator 20B is provided between the first electrode 30B and the second electrode 40B, and the second electrode 40B is insulated from the upper surface of the insulator 20B.
  • the inter-electrode gap portion 50 is provided between the first electrode 30B and the second electrode 40B provided on the side surface 21B of the insulator 20B. That is, an electrode (first electrode 30B) is formed on the upper surface of the insulating substrate 10, an insulator 20B is formed on the upper surface of the electrode, and an electrode (first electrode) is formed on the side surface 21B of the insulator 20B and the upper surface of the insulator 20B. Since the first electrode 30B and the second electrode 40B) need only be formed to form the interelectrode gap 50, they can be manufactured easily.
  • the switching element 100 ⁇ / b> C of Modification 3 includes an insulating substrate 10, an insulator 20 ⁇ / b> C, a first electrode 30 ⁇ / b> C, a second electrode 40 ⁇ / b> C, and interelectrode gaps 50 and 50. And so on.
  • the insulator 20C is provided in contact with the upper surface of the insulating substrate 10 and is provided so as to cover the first electrode 30C, and a part of the upper surface of the first electrode 30C is exposed.
  • the first electrode 30C is covered with the insulator 20C from the side surface to the upper surface end, the upper surface of the insulating substrate 10, the lower side of the inner surface 23C of the hole 22C,
  • the second electrode 40C is provided in contact with the upper surface of the insulator 20C and the upper surface of the inner surface 23C of the hole 22C, and the inter-electrode gap portion 50 is provided below the inner surface 23C of the hole 22C.
  • the first electrode 30C provided on the side and the second electrode 40C provided on the upper surface of the inner surface 23C of the hole 22C are provided.
  • the shapes of the insulator 20C, the first electrode 30C, and the second electrode 40C are such that the insulator 20C is provided so as to cover the first electrode 30C, and a part of the upper surface of the first electrode 30C is exposed.
  • the hole 22C is not particularly limited and can be arbitrarily changed. .
  • the switching element 100 ⁇ / b> C of the third modification includes (a) creating a first electrode pattern on the upper surface of the insulating substrate 10, and (b) creating an insulator 20 ⁇ / b> C so as to cover the first electrode pattern, ( c) A hole 22C for exposing a part of the upper surface of the first electrode pattern is formed in the insulator 20C, and (d) the upper surface of the insulator 20C and the inner surface 23C of the hole 22C are formed at the lower end of the inner surface 23C of the hole 22C. A second electrode pattern in contact with the first electrode pattern is created, and (f) the first electrode 30C and the second electrode 40C are created from the first electrode pattern and the second electrode pattern to form the interelectrode gap 50. It is manufactured by.
  • the manufacturing method of said switching element 100C is an example, Comprising: It is not restricted to this.
  • the switching element 100C of Modification 3 is used as a switching element, for example, like the switching element 100 of the above-described embodiment, the switching element 100C is enclosed by a sealing member 60 or installed in a vacuum chamber (not shown). Thus, the interelectrode gap 50 may be blocked from the atmosphere.
  • the switching element 100C of the modification 3 can repeat switching operation stably similarly to the switching element 100 of the said embodiment.
  • the insulator 20C is provided so as to cover the first electrode 30C, and the insulator 20C exposes a part of the upper surface of the first electrode 30C.
  • the second electrode 40C is provided in contact with the upper surface of the insulator 20C and the inner surface 23C of the hole 22C, and the interelectrode gap 50 is formed between the first electrode 30C and the inner surface 23C of the hole 22C. It is provided between the provided second electrode 40C. That is, an electrode (first electrode 30C) is formed on the upper surface of the insulating substrate 10, the insulator 20C is formed so as to cover the electrode, and a part of the upper surface of the electrode is exposed to the insulator 20C.
  • the switching element 100 ⁇ / b> D of Modification 4 includes an insulating substrate 10, an insulator 20 ⁇ / b> D, a first electrode 30 ⁇ / b> D, a second electrode 40 ⁇ / b> D, an interelectrode gap 50, and the like. It is prepared for.
  • the insulator 20D is provided in contact with the upper surface of the insulating substrate 10 and is provided so as to cover the first electrode 30D, and a part of the upper surface of the first electrode 30D is exposed.
  • the first electrode 30 ⁇ / b> D is covered with the insulator 20 ⁇ / b> D from the side surface to the upper surface end and is in contact with the upper surface of the insulating substrate 10.
  • 40D is provided in contact with the upper surface of the insulator 20D, is provided so as to block the inside of the hole 22D from the atmosphere by covering the opening of the hole 22D, and covers the opening of the hole 22D.
  • the second electrode protrusion 41D protrudes toward the first electrode 30D, the tip of the second electrode protrusion 41D is provided on the inner surface 23D of the hole 22D, and the interelectrode gap 50 is And the electrode 30D, is provided between the tip of the second electrode projection 41D on the inner surface 23D of the hole 22D.
  • the shapes of the insulator 20D, the first electrode 30D, and the second electrode 40D are such that the insulator 20D is provided so as to cover the first electrode 30D, and a part of the upper surface of the first electrode 30D is exposed.
  • the hole 22D is provided, and the second electrode 40D is provided so as to block the inside of the hole 22D from the atmosphere by covering the opening of the hole 22D, and the first electrode 30D is provided in a portion covering the opening of the hole 22D.
  • 2nd electrode protrusion part 41D which protrudes toward, it will not specifically limit, It can change arbitrarily arbitrarily.
  • the tip of the second electrode protrusion 41D may be provided in a portion other than the inner surface 23D of the hole 22D.
  • the number of second electrode protrusions 41D may be plural.
  • the first electrode 30D is formed on the upper surface of the insulating substrate 10, and (b) the insulator 20D is formed so as to cover the first electrode 30D.
  • a hole 22D for exposing a part of the upper surface of the first electrode 30D is created in the insulator 20D, and (d) the upper surface of the insulator 20D, the opening of the hole 22D, and the hole 22D are formed by inclined deposition. It is manufactured by forming the second electrode 40 ⁇ / b> D therein and forming the interelectrode gap 50.
  • the manufacturing method of said switching element 100D is an example, Comprising: It is not restricted to this.
  • the switching element 100D of Modification 4 is enclosed by the sealing member 60, for example, like the switching element 100 of the above embodiment, Even if it is not installed in a vacuum chamber (not shown), it can be used as a switching element.
  • the switching element 100D of the modification 4 can repeat a switching operation stably similarly to the switching element 100 of the above-described embodiment.
  • the second electrode 40D is provided so as to shield the inside of the hole 22D from the atmosphere by covering the opening of the hole 22D. That is, since the inter-electrode gap portion 50 is configured not to come into contact with the air or moisture, the switching element 100D can be operated more stably and the first electrode 30D constituting the inter-electrode gap portion 50 can be obtained. And the range of selection of the material of the second electrode 40D is expanded.
  • the insulator 20D is provided so as to cover the first electrode 30D, and the insulator 20D is a hole for exposing a part of the upper surface of the first electrode 30D.
  • the second electrode 40D is provided so as to cover the opening of the hole 22D, and a portion covering the opening of the hole 22D includes a second electrode protruding portion 41D protruding toward the first electrode 30D,
  • the tip of the second electrode protrusion 41D is provided on the inner surface 23D of the hole 22D, and the interelectrode gap 50 is formed between the first electrode 30D and the tip of the second electrode protrusion 41D provided on the inner surface 23D of the hole 22D. , Is provided between.
  • the first electrode 30D is formed on the upper surface of the insulating substrate 10
  • the insulator 20D is formed so as to cover the first electrode 30D, and a part of the upper surface of the first electrode 30D is exposed to the insulator 20D. Therefore, it is only necessary to form the hole 22D for forming the second electrode 40D in the upper surface of the insulator 20D, the opening of the hole 22D, and the inside of the hole 22D.
  • the switching element 100 ⁇ / b> E of Modification 5 includes an insulating substrate 10, an insulator 20 ⁇ / b> E, a first electrode 30 ⁇ / b> E, a second electrode 40 ⁇ / b> E, interelectrode gaps 50 and 50, And so on.
  • the insulator 20E is provided in contact with the upper surface of the insulating substrate 10 and is provided so as to cover the first electrode 30E, and a part of the upper surface of the first electrode 30E is exposed.
  • the first electrode 30E is covered with the insulator 20E from the side surface to the upper surface end, is in contact with the upper surface of the insulating substrate 10, and is formed by the hole 22E.
  • the exposed portion includes a first electrode protrusion 31E whose upper surface protrudes in a substantially concave shape toward the second electrode 40E.
  • the second electrode 40E is provided in contact with the upper surface of the insulator 20E.
  • the hole 22E is provided so as to block the inside of the hole 22E from the atmosphere by covering the opening, and the lower surface protrudes in a substantially concave shape toward the first electrode 30E in a portion covering the opening of the hole 22E.
  • the second electrode protruding portion 41E is provided, and the end portions 32E and 32E of the first electrode protruding portion 31E and the end portions 42E and 42E of the second electrode protruding portion 41E are arranged in the hole 22E so as to face each other in the vertical direction.
  • the inter-electrode gap portions 50, 50 are provided on the inner surface 23E, and the first electrode protrusion portions 31E provided on the inner surface 23E of the hole 22E have end portions 32E, 32E and the inner surface 23E of the hole 22E. It is provided between the end portions 42E and 42E of the two-electrode protruding portion 41E.
  • the shapes of the insulator 20E, the first electrode 30E, and the second electrode 40E are such that the insulator 20E is provided so as to cover the first electrode 30E, and a part of the upper surface of the first electrode 30E is exposed.
  • the first electrode 30E is provided with a first electrode protruding portion 31E whose upper surface protrudes in a substantially concave shape toward the second electrode 40E at a portion where the first electrode 30E is exposed by the hole 22E.
  • the second electrode is provided so as to block the inside of the hole 22E from the atmosphere by covering the opening of the 22E, and the bottom surface of the hole 22E covers the opening of the hole 22E so that the lower surface protrudes in a substantially concave shape toward the first electrode 30E.
  • the protrusion 41E and the end portions 32E, 32E of the first electrode protrusion portion 31E and the end portions 42E, 42E of the second electrode protrusion portion 41E are configured to face each other in the up-down direction, it is particularly limited. Rumo Rather, it may be modified into any shape. Specifically, for example, the end portions 32E and 32E of the first electrode protruding portion 31E and the end portions 42E and 42E of the second electrode protruding portion 41E may be provided in portions other than the inner surface 23E of the hole 22E. In addition, the number of the substantially concave portions provided on the upper surface of the first electrode protruding portion 31E and the number of the substantially concave portions provided on the lower surface of the second electrode protruding portion 41E may be plural.
  • the switching element 100E of the modification 5 includes, for example, (a) a first electrode 30E formed on the upper surface of the insulating substrate 10, and (b) an insulator 20E formed so as to cover the first electrode 30E. c) A hole 22E is formed in the insulator 20E to expose a part of the upper surface of the first electrode 30E (the upper surface of the first electrode protrusion 31E), and (d) an electrode is formed on the upper surface of the first electrode protrusion 31E. A gap forming material for forming the interspace 50 is created, and (e) the second electrode 40E is formed on the upper surface of the insulator 20E, the opening of the hole 22E, and the inside of the hole 22E (upper surface of the gap forming material). And (f) the gap forming material is pyrolyzed to form the interelectrode gap 50.
  • the gap forming material for example, a substance that is easily thermally decomposed, such as an organic substance, is suitable.
  • the manufacturing method of said switching element 100D is an example, Comprising: It is not restricted to this.
  • the switching element 100E of Modification 5 is enclosed by the sealing member 60, for example, like the switching element 100 of the above embodiment, Even if it is not installed in a vacuum chamber (not shown), it can be used as a switching element.
  • the switching element 100E of the modification 5 can repeat switching operation stably similarly to the switching element 100 of the said embodiment.
  • the second electrode 40E is provided so as to block the inside of the hole 22E from the atmosphere by covering the opening of the hole 22E. That is, since the inter-electrode gap portion 50 is configured not to come into contact with the atmosphere or moisture, the switching element 100E can be operated more stably and the first electrode 30E constituting the inter-electrode gap portion 50 can be obtained. And the range of selection of the material of the second electrode 40E is widened.
  • the insulator 20E is provided so as to cover the first electrode 30E, and the insulator 20E is a hole for exposing a part of the upper surface of the first electrode 30E. 22E, the second electrode 30E is provided so as to cover the opening of the hole 22E, and the second electrode protrusion whose bottom surface protrudes in a substantially concave shape toward the first electrode 30E in a portion covering the opening of the hole 22E
  • the first electrode 30E includes a first electrode protruding portion 31E whose upper surface protrudes in a substantially concave shape toward the second electrode 40E at a portion exposed by the hole 22E, and the first electrode 30E includes a first electrode protruding portion 31E.
  • the end portion 32E and the end portion 42E of the second electrode protruding portion 41E are configured to face each other in the vertical direction, and the inter-electrode gap portion 50 includes the end portion 32E of the first electrode protruding portion 31E and the second electrode. Protrusion 41E And the end 42E, is provided between the. That is, the first electrode 30E is formed on the upper surface of the insulating substrate 10, the insulator 20E is formed so as to cover the first electrode 30E, and a part of the upper surface of the first electrode 30E is exposed to the insulator 20E. Therefore, it is only necessary to form the hole 22E for forming the second electrode 40E in the upper surface of the insulator 40E, the opening of the hole 22E, and the inside of the hole 22E.
  • the switching element 100 ⁇ / b> F of Modification 6 includes an insulating substrate 10 ⁇ / b> F, a first electrode 30 ⁇ / b> F, a second electrode 40 ⁇ / b> F, interelectrode gaps 50, 50, 50, 50, and the like. It is configured with.
  • the insulating substrate 10F has a recess 11F on the upper surface, and the first electrode 30F is provided in the recess 11F of the insulating substrate 10F, and the first electrode recess 33F, 33F, 33F, and the second electrode 40F is provided so as to shield the first electrode 30F from the atmosphere by covering the upper side of the first electrode 30F, and is provided in contact with the upper surface of the insulating substrate 10F.
  • second electrode recesses 43F, 43F, and 43F are provided in portions that cover the top of the first electrode 30F, and end portions 34F, 34F, 34F, and 34F of the first electrode recesses 33F, 33F, and 33F
  • the end portions 44F, 44F, 44F, and 44F of the two-electrode recess portions 43F, 43F, and 43F are configured to face each other in the vertical direction, and the inter-electrode gap portions 50, 50, 50, and 50 are formed as the first electrode recess portions.
  • 33F, 33F, the ends of 33F 34F, 34F, 34F, and 34F, the second electrode recess 43F, 43F, the ends of 43F 44F, 44F, 44F, are provided between the 44F,.
  • the insulating substrate 10F, the first electrode 30F, and the second electrode 40F are formed such that the insulating substrate 10F has a recess 11F, and the first electrode 30F is provided in the recess 11F of the insulating substrate 10F.
  • a first electrode recess 33F is provided on the upper surface, and the second electrode 40F is provided so as to shield the first electrode 30F from the atmosphere by covering the upper side of the first electrode 30F, and above the first electrode 30F.
  • the covering portion is provided with the second electrode recess 43F, and the end portions 34F, 34F of the first electrode recess 33F and the end portions 44F, 44F of the second electrode recess 43F are configured to face each other in the vertical direction, in particular It is not limited and can be arbitrarily changed. Specifically, for example, the number of the first electrode recesses 33F and the second electrode recesses 43F may be one or plural.
  • the first electrode 30F is formed in the recess 11F of the insulating substrate 10F, and (b) the upper surface of the first electrode 30F (the upper surface of the first electrode recess 33F). Then, a gap forming material for forming the inter-electrode gap 50 is created, and (c) the second electrode 40F is created on the upper surface of the insulating substrate 10F and the upper surface of the gap forming material, and (d) the gap forming material. Is produced by thermally decomposing the electrode to form the interelectrode gap 50.
  • the gap forming material for example, a substance that is easily thermally decomposed, such as an organic substance, is suitable.
  • the manufacturing method of said switching element 100D is an example, Comprising: It is not restricted to this.
  • the inter-electrode gap 50 is blocked from the atmosphere by the second electrode 40F in the switching element 100F of Modification 6, for example, like the switching element 100 of the above-described embodiment, Even if it is not installed in a vacuum chamber (not shown), it can be used as a switching element.
  • the switching element 100F of the modification 6 can repeat switching operation stably similarly to the switching element 100 of the said embodiment.
  • the second electrode 40F is provided so as to block the first electrode 30F from the atmosphere by covering the upper side of the first electrode 30F. That is, since the inter-electrode gap portion 50 is configured not to come into contact with the air or moisture, the switching element 100F can be operated more stably, and the first electrode 30F constituting the inter-electrode gap portion 50 can be obtained. And the range of selection of the material of the second electrode 40F is expanded.
  • the insulating substrate 10F has the recess 11F, and the first electrode 30F is provided in the recess 11F of the insulating substrate 10F, and the first electrode is provided on the upper surface.
  • the electrode recess 33F is provided, the second electrode 40F is provided so as to cover the upper side of the first electrode 30F, the second electrode recess 43F is provided in a portion covering the upper side of the first electrode 30F, and the end of the first electrode recess 33F
  • the portion 34F and the end 44F of the second electrode recess 43F are configured to face each other in the vertical direction, and the inter-electrode gap 50 is formed between the end 34F of the first electrode recess 33F and the end of the second electrode recess 43F.
  • the first electrode 30F may be formed in the recess 11F of the insulating substrate 10F, and the second electrode 40F may be formed so as to cover the first electrode 30F.
  • the insulators 20, 20A to 20E, 20G Since it is not necessary, it can be manufactured easily.
  • the switching element 100 ⁇ / b> G of Modification 7 includes an insulating substrate 10, an insulator 20 ⁇ / b> G, a first electrode 30 ⁇ / b> G, a second electrode 40 ⁇ / b> G, an interelectrode gap 50, and the like. It is prepared for.
  • the insulator 20G is provided so as to cover the first electrode 30G, separates the insulator 20G from the first electrode 30G, and exposes a part above the first electrode 30G.
  • the hole 22G is provided, the first electrode 30G is provided in contact with the upper surface of the insulating substrate 10, and the upper surface includes a first electrode protruding portion 31G protruding toward the second electrode 40G.
  • the second electrode 40G is provided in contact with the upper surface of the insulator 20G, and is provided so as to block the inside of the hole 22G from the atmosphere by covering the opening of the hole 22G. Is provided between the tip of the first electrode protrusion 31G and the portion covering the opening of the hole 22G of the second electrode 40G.
  • the shapes of the insulator 20G, the first electrode 30G, and the second electrode 40G are such that the insulator 20G is provided so as to cover the first electrode 30G, and the insulator 20G is separated from the first electrode 30G.
  • the first electrode 30G is provided with a hole 22G for exposing a part above the first electrode 30G
  • the first electrode 30G is provided with a first electrode protrusion 31G protruding toward the second electrode 40G on the upper surface
  • the second electrode As long as 40G is provided so as to block the inside of the hole 22G from the atmosphere by covering the opening of the hole 22G, it is not particularly limited and can be arbitrarily changed.
  • the number of first electrode protrusions 31G may be plural.
  • a conductive film or the like may be added so that the first electrode 30G and the outside of the switching element 100G can be easily electrically connected.
  • a conductive film or the like disposed from the first electrode 30G to the outside of the switching element 100G through the insulating substrate 10 and the insulator 20G may be added.
  • the switching element 100G of Modification 7 is enclosed by the sealing member 60, for example, like the switching element 100 of the above embodiment, Even if it is not installed in a vacuum chamber (not shown), it can be used as a switching element.
  • the switching element 100G of the modification 7 can repeat a switching operation stably similarly to the switching element 100 of the said embodiment.
  • the insulator 20G is provided so as to cover the first electrode 30G.
  • the insulator 20G separates the insulator 20G from the first electrode 30G, and
  • the first electrode 30G is provided with a first electrode protrusion 31G that protrudes toward the second electrode 40G on the upper surface, and the second electrode 40G
  • the hole 22G is provided so as to block the inside of the hole 22G from the atmosphere by covering the opening of the hole 22G, and the interelectrode gap 50 is provided between the tip of the first electrode protrusion 31G and the second electrode 40G. It has been.
  • the switching element 100G can be operated more stably and the first electrode 30G constituting the inter-electrode gap portion 50 can be obtained. And the range of selection of the material of the second electrode 40G is expanded.
  • the side on which the first electrodes 30, 30A to 30G and the second electrodes 40, 40A to 40G are provided on the insulating substrates 10 and 10F is defined as the upper side.
  • the present invention is not limited to this, and the first electrodes 30, 30A to 30G and the second electrodes 40, 40A to 40G may be provided on one side of the insulating substrates 10, 10F. It may be provided on the lower side.
  • FIG. 9 is a cross-sectional view schematically showing a main part of a switching element according to Modification 1.
  • FIG. 10 is a cross-sectional view schematically showing a main part of a switching element according to Modification 2.
  • FIG. 10 is a cross-sectional view schematically showing a main part of a switching element according to Modification 3.
  • FIG. 10 is a cross-sectional view schematically showing a main part of a switching element according to modification example 4;
  • FIG. 10 is a cross-sectional view schematically showing a main part of a switching element according to Modification 5.
  • FIG. 10 is a cross-sectional view schematically showing a main part of a switching element according to modification example 6.
  • FIG. 10 is a cross-sectional view schematically showing a main part of a switching element according to Modification 7.

Landscapes

  • Semiconductor Memories (AREA)
  • Manufacture Of Switches (AREA)
  • Micromachines (AREA)

Abstract

 より高密度で集積でき、且つ、積層化が容易になるスイッチング素子を提供する。  スイッチング素子100において、絶縁性基板10と、絶縁性基板10に設けられた第1電極30と、第1電極30の上方に設けられた第2電極40と、第1電極30と第2電極40との間に設けられ、第1電極30と第2電極40との間への所定電圧の印加により抵抗のスイッチング現象が生じるナノメートルオーダーの間隙を有する電極間間隙部50と、を備えるよう構成した。

Description

スイッチング素子
 本発明は、ナノギャップ電極を用いたスイッチング素子に関する。
 現在、デバイスの小型化、高密度化に伴い、電気素子の一層の微細化が望まれている。その一例として、微細な間隙を隔てた2つの電極(ナノギャップ電極)を用い、その間隙を機能性有機分子にて橋架けした素子が注目されている。例えば、白金を用いて形成されたナノギャップ電極の間隙に、カテナン系分子を配置したものが知られている(例えば、非特許文献1参照)。当該電極に電圧を印加することにより、カテナン系分子は酸化還元反応を受け、スイッチング動作が可能となっている。
 また、ナノギャップ電極としては、その間隙をナノ微粒子にて橋架けした素子も注目されている。例えば、硫化銀及び白金を用いてナノギャップ電極を作成し、その間隙に銀粒子を配置したものが知られている(例えば、非特許文献2参照)。当該電極に電圧を印加することにより、電気化学反応が起きて銀粒子が伸縮することで、電極間を架橋・切断でき、スイッチング動作が可能となっている。
 ところが、上記の何れのスイッチング素子にあっても、ナノギャップ電極間に特殊な合成分子や複雑な金属の複合系が必要となっている。また、スイッチング動作に化学反応を利用するため、素子の劣化が起こりやすいという問題がある。
 そこで、酸化シリコンと金という安定な材料からなり、傾斜蒸着という簡便な製造方法により製造され、スイッチング動作を安定的に繰り返し行うことができるスイッチング素子が開発されている(例えば、特許文献1参照)。
Science,289(2000)1172-1175 Nature,433(2005)47-50 特開2005-79335号公報
 しかしながら、上記のスイッチング素子は、平らな絶縁性基板上に2次元的に作成されているため、集積密度を上げるのが困難であるとともに、積層化も困難であるという問題がある。
 本発明の課題は、より高密度で集積でき、且つ、積層化が容易になるスイッチング素子を提供することにある。
 上記課題を解決するため、請求項1に記載の発明は、
 絶縁性基板と、
 前記絶縁性基板の上面に設けられた絶縁体と、
 前記絶縁性基板に設けられた第1電極と、
 前記第1電極の上方に設けられた第2電極と、
 前記第1電極と前記第2電極との間に設けられ、前記第1電極と前記第2電極との間への所定電圧の印加により抵抗のスイッチング現象が生じるナノメートルオーダーの間隙を有する電極間間隙部と、
 前記電極間間隙部を内包することにより当該電極間間隙部を大気と遮断する封止部材と、を備え、 前記第1電極は、前記絶縁体の側面に接して設けられ、
 前記第2電極は、前記絶縁体の上面と、前記絶縁体の前記側面と、に接して設けられ、
 前記電極間間隙部は、前記絶縁体の前記側面に設けられた前記第1電極と、当該絶縁体の当該側面に設けられた前記第2電極と、の間に設けられていることを特徴とする。
 請求項2に記載の発明は、
 絶縁性基板と、
 前記絶縁性基板に設けられた第1電極と、
 前記第1電極の上方に設けられた第2電極と、
 前記第1電極と前記第2電極との間に設けられ、前記第1電極と前記第2電極との間への所定電圧の印加により抵抗のスイッチング現象が生じるナノメートルオーダーの間隙を有する電極間間隙部と、
 を備えることを特徴とする。
 請求項3に記載の発明は、
 請求項2に記載のスイッチング素子において、
 前記絶縁性基板の上面に設けられた絶縁体を備え、
 前記第1電極は、前記絶縁体の側面に接して設けられ、
 前記第2電極は、前記絶縁体の上面と、前記絶縁体の前記側面と、に接して設けられ、
 前記電極間間隙部は、前記絶縁体の前記側面に設けられた前記第1電極と、当該絶縁体の当該側面に設けられた前記第2電極と、の間に設けられていることを特徴とする。
 請求項4に記載の発明は、
 請求項2に記載のスイッチング素子において、
 前記第1電極と前記第2電極との間に設けられた絶縁体を備え、
 前記第2電極は、前記絶縁体の上面と、前記絶縁体の側面と、に接して設けられ、
 前記電極間間隙部は、前記第1電極と、前記絶縁体の前記側面に設けられた前記第2電極と、の間に設けられていることを特徴とする。
 請求項5に記載の発明は、
 請求項2に記載のスイッチング素子において、
 前記第1電極を覆うように設けられた絶縁体を備え、
 前記絶縁体は、前記第1電極の上面の一部を露出するためのホールを備え、
 前記第2電極は、前記絶縁体の上面と、前記ホールの内面と、に接して設けられ、
 前記電極間間隙部は、前記第1電極と、前記ホールの前記内面に設けられた前記第2電極と、の間に設けられていることを特徴とする。
 請求項6に記載の発明は、
 請求項2~5の何れか一項に記載のスイッチング素子において、
 前記電極間間隙部が大気と遮断されていることを特徴とする。
 請求項7に記載の発明は、
 請求項2に記載のスイッチング素子において、
 前記第1電極を覆うように設けられた絶縁体を備え、
 前記絶縁体は、前記第1電極の上面の一部を露出するためのホールを備え、
 前記第2電極は、前記ホールの開口部を覆うことにより当該ホール内を大気と遮断するように設けられ、前記ホールの開口部を覆う部分に、前記第1電極に向かって突出する第2電極突出部を備え、
 前記電極間間隙部は、前記第1電極と、前記第2電極突出部と、の間に設けられていることを特徴とする。
 請求項8に記載の発明は、
 請求項7に記載のスイッチング素子において、
 前記第2電極突出部の先端は、前記ホールの内面に設けられ、
 前記電極間間隙部は、前記第1電極と、前記ホールの前記内面に設けられた前記第2電極突出部の先端と、の間に設けられていることを特徴とする。
 請求項9に記載の発明は、
 請求項7に記載のスイッチング素子において、
 前記第2電極突出部は、前記第1電極に向かって下面が略凹状に突出しており、
 前記第1電極は、前記ホールにより露出された部分に、前記第2電極に向かって上面が略凹状に突出する第1電極突出部を備え、
 前記第1電極突出部の端部と、前記第2電極突出部の端部と、は上下方向に対向するように構成され、
 前記電極間間隙部は、前記第1電極突出部の端部と、前記第2電極突出部の端部と、の間に設けられていることを特徴とする。
 請求項10に記載の発明は、
 請求項2に記載のスイッチング素子において、
 前記絶縁性基板は、凹部を有し、
 前記第1電極は、前記絶縁性基板の前記凹部内に設けられているとともに、上面に第1電極凹部を備え、
 前記第2電極は、前記第1電極の上方を覆うことにより当該第1電極を大気と遮断するように設けられ、前記第1電極の上方を覆う部分に第2電極凹部を備え、
 前記第1電極凹部の端部と、前記第2電極凹部の端部と、は上下方向に対向するよう構成され、
 前記電極間間隙部は、前記第1電極凹部の端部と、前記第2電極凹部の端部と、の間に設けられていることを特徴とする。
 請求項11に記載の発明は、
 請求項2に記載のスイッチング素子において、
 前記第1電極を覆うように設けられた絶縁体を備え、
 前記絶縁体は、当該絶縁体を前記第1電極と離間させるとともに、前記第1電極の上方の一部を露出するためのホールを備え、
 前記第1電極は、上面に、前記第2電極に向かって突出する第1電極突出部を備え、
 前記第2電極は、前記ホールの開口部を覆うことにより当該ホール内を大気と遮断するように設けられ、
 前記電極間間隙部は、前記第1電極突出部の先端と、前記第2電極と、の間に設けられていることを特徴とする。
 請求項1に記載の発明によれば、絶縁性基板と、絶縁性基板の上面に設けられた絶縁体と、絶縁性基板に設けられた第1電極と、第1電極の上方に設けられた第2電極と、第1電極と第2電極との間に設けられ、第1電極と第2電極との間への所定電圧の印加により抵抗のスイッチング現象が生じるナノメートルオーダーの間隙を有する電極間間隙部(ナノギャップ電極間)と、によってスイッチング素子が構成されている。すなわち、電極間間隙部を構成する第1電極と、電極間間隙部と、電極間間隙部を構成する第2電極と、が上下方向に並んで配置されているため、より高密度で集積でき、且つ、積層化が容易になる。
また、請求項1に記載の発明によれば、第1電極は、絶縁体の側面に接して設けられ、第2電極は、絶縁体の上面と、絶縁体の側面と、に接して設けられ、電極間間隙部は、絶縁体の側面に設けられた第1電極と、当該絶縁体の当該側面に設けられた第2電極と、の間に設けられている。すなわち、絶縁性基板の上面に絶縁体を作成して、絶縁性基板の上面、絶縁体の側面、及び絶縁体の上面に電極(第1電極及び第2電極)を作成して、電極間間隙部を形成するだけでよいため、簡単に製造することができる。
 また、請求項1に記載の発明によれば、電極間間隙部を内包することにより当該電極間間隙部を大気と遮断する封止部材を備えている。すなわち、封止部材によって電極間間隙部が大気や水分と接触しないように構成されているため、当該スイッチング素子をさらに安定的に動作させることができる。
 請求項2に記載の発明によれば、絶縁性基板と、絶縁性基板に設けられた第1電極と、第1電極の上方に設けられた第2電極と、第1電極と第2電極との間に設けられ、第1電極と第2電極との間への所定電圧の印加により抵抗のスイッチング現象が生じるナノメートルオーダーの間隙を有する電極間間隙部(ナノギャップ電極間)と、によってスイッチング素子が構成されている。すなわち、電極間間隙部を構成する第1電極と、電極間間隙部と、電極間間隙部を構成する第2電極と、が上下方向に並んで配置されているため、より高密度で集積でき、且つ、積層化が容易になる。
 請求項3に記載の発明によれば、請求項2に記載の発明と同様の効果が得られるのは無論のこと、絶縁性基板の上面に設けられた絶縁体を備え、第1電極は、絶縁体の側面に接して設けられ、第2電極は、絶縁体の上面と、絶縁体の側面と、に接して設けられ、電極間間隙部は、絶縁体の側面に設けられた第1電極と、当該絶縁体の当該側面に設けられた第2電極と、の間に設けられている。すなわち、絶縁性基板の上面に絶縁体を作成して、絶縁性基板の上面、絶縁体の側面、及び絶縁体の上面に電極(第1電極及び第2電極)を作成して、電極間間隙部を形成するだけでよいため、簡単に製造することができる。
 請求項4に記載の発明によれば、請求項2に記載の発明と同様の効果が得られるのは無論のこと、第1電極と第2電極との間に設けられた絶縁体を備え、第2電極は、絶縁体の上面と、絶縁体の側面と、に接して設けられ、電極間間隙部は、第1電極と、絶縁体の側面に設けられた第2電極と、の間に設けられている。すなわち、絶縁性基板の上面に電極(第1電極)を作成して、当該電極の上面に絶縁体を作成して、絶縁体の側面及び絶縁体の上面に電極(第1電極及び第2電極)を作成して、電極間間隙部を形成するだけでよいため、簡単に製造することができる。
 請求項5に記載の発明によれば、請求項2に記載の発明と同様の効果が得られるのは無論のこと、第1電極を覆うように設けられた絶縁体を備え、絶縁体は、第1電極の上面の一部を露出するためのホールを備え、第2電極は、絶縁体の上面と、ホールの内面と、に接して設けられ、電極間間隙部は、第1電極と、ホールの内面に設けられた第2電極と、の間に設けられている。すなわち、絶縁性基板の上面に電極(第1電極)を作成して、当該電極を覆うように絶縁体を作成して、絶縁体に当該電極の上面の一部を露出するためのホールを形成して、絶縁体の上面及びホールの内面に電極(第1電極及び第2電極)を作成するだけでよいため、簡単に製造することができる。
 請求項6に記載の発明によれば、請求項2~5の何れか一項に記載の発明と同様の効果が得られるのは無論のこと、電極間間隙部が大気と遮断されている。すなわち、電極間間隙部が大気や水分と接触しないように構成されているため、当該スイッチング素子をさらに安定的に動作させることができるとともに、電極間間隙部を構成する第1電極及び第2電極の材質の選択の幅が広がる。
 請求項7,8,9に記載の発明によれば、請求項2に記載の発明と同様の効果が得られるのは無論のこと、第2電極は、ホールの開口部を覆うことにより当該ホール内を大気と遮断するように設けられている。すなわち、電極間間隙部が大気や水分と接触しないように構成されているため、当該スイッチング素子をさらに安定的に動作させることができるとともに、電極間間隙部を構成する第1電極及び第2電極の材質の選択の幅が広がる。
 また、請求項7,8,9に記載の発明によれば、第1電極を覆うように設けられた絶縁体を備え、絶縁体は、第1電極の上面の一部を露出するためのホールを備え、第2電極は、ホールの開口部を覆うように設けられ、ホールの開口部を覆う部分に、第1電極に向かって突出する第2電極突出部を備え、電極間間隙部は、第1電極と、第2電極突出部と、の間に設けられている。すなわち、絶縁性基板の上面に第1電極を作成して、第1電極を覆うように絶縁体を作成して、絶縁体に第1電極の上面の一部を露出するためのホールを形成して、絶縁体の上面、ホールの開口部、及びホールの内部に第2電極を作成するだけでよいため、簡単に製造することができる。
 請求項10に記載の発明によれば、請求項2に記載の発明と同様の効果が得られることは無論のこと、第2電極は、第1電極の上方を覆うことにより当該第1電極を大気と遮断するように設けられている。すなわち、電極間間隙部が大気や水分と接触しないように構成されているため、当該スイッチング素子をさらに安定的に動作させることができるとともに、電極間間隙部を構成する第1電極及び第2電極の材質の選択の幅が広がる。
 また、請求項10に記載の発明によれば、絶縁性基板は、凹部を有し、第1電極は、絶縁性基板の凹部内に設けられているとともに、上面に第1電極凹部を備え、第2電極は、第1電極の上方を覆うように設けられ、第1電極の上方を覆う部分に第2電極凹部を備え、第1電極凹部の端部と、第2電極凹部の端部と、は上下方向に対向するよう構成され、電極間間隙部は、第1電極凹部の端部と、第2電極凹部の端部と、の間に設けられている。すなわち、絶縁性基板の凹部に第1電極を作成して、第1電極を覆うように第2電極を作成するだけでよく、加えて絶縁体が必要ないため、簡単に製造することができる。
 請求項11に記載の発明によれば、請求項2に記載の発明と同様の効果が得られることは無論のこと、第1電極を覆うように設けられた絶縁体を備え、絶縁体は、当該絶縁体を第1電極と離間させるとともに、第1電極の上方の一部を露出するためのホールを備え、第1電極は、上面に、第2電極に向かって突出する第1電極突出部を備え、第2電極は、ホールの開口部を覆うことにより当該ホール内を大気と遮断するように設けられ、電極間間隙部は、第1電極突出部の先端と、第2電極と、の間に設けられている。すなわち、電極間間隙部が大気や水分と接触しないように構成されているため、当該スイッチング素子をさらに安定的に動作させることができるとともに、電極間間隙部を構成する第1電極及び第2電極の材質の選択の幅が広がる。
 以下に、本発明について、図面を用いて具体的な態様を説明する。ただし、発明の範囲は、図示例に限定されない。
 ここで、図1は、本発明を適用した一実施形態として例示するスイッチング素子100の要部を模式的に示す断面図である。また、図2は、図1のスイッチング素子100に封止部材60を設けてスイッチングデバイス1000とした例を示す模式図である。
 本実施形態にかかるスイッチング素子100は、例えば、図1に示すように、絶縁性基板10と、絶縁性基板10の上面に設けられた絶縁体20と、絶縁性基板10の上面に設けられた第1電極30と、第1電極30の上方に設けられた第2電極40と、第1電極30と第2電極40との間に設けられた電極間間隙部50と、などを備えて構成される。
 具体的には、例えば、絶縁体20は、絶縁性基板10の上面に接して設けられており、第1電極30は、絶縁性基板10の上面と、絶縁体20の側面21下側と、に接して設けられており、第2電極40は、絶縁体20の上面と、絶縁体20の側面21上側と、に接して設けられており、電極間間隙部50は、絶縁体20の側面21下側に設けられた第1電極30と、絶縁体20の側面21上側に設けられた第2電極40と、の間に設けられている。
 絶縁性基板10は、例えば、スイッチング素子100の電極(第1電極30)を設けるための支持体を構成している。
 絶縁性基板10の構造及び材質は、特に限定されるものではない。具体的には、例えば、絶縁性基板10の表面の形状は、平面であってもよいし、凹凸を有していてもよい。また、絶縁性基板10は、例えば、Si等の半導体基板の表面に酸化膜等を設けたものであってもよいし、基板そのものが絶縁性とされたものであってもよい。また、絶縁性基板10の材質としては、例えば、ガラス、酸化珪素(SiO)などの酸化物、窒化珪素(Si)などの窒化物等が好ましく、このうち、酸化珪素(SiO)が、第1電極30との密着性と、その製造における自由度と、が大きい点で好適となっている。
 絶縁体20は、例えば、スイッチング素子100の2つの電極(第1電極30及び第2電極40)を隔てて設けるための支持体を構成している。
 絶縁体20の構造及び材質は、特に限定されるものではない。具体的には、例えば、絶縁体20の表面の形状は、絶縁体20が絶縁性基板10の上面に設けられていれば、平面であってもよいし、凹凸を有していてもよい。また、絶縁体20は、例えば、絶縁性基板10の一部に酸化膜等を設けたものであってもよいし、絶縁性基板10全面に酸化膜等を設け、その一部を取り去ったものであってもよい。また、絶縁体20の材質としては、例えば、ガラス、酸化珪素(SiO)などの酸化物、窒化珪素(Si)などの窒化物等が好ましく、このうち、酸化珪素(SiO)が、第1電極40及び第2電極30との密着性と、その製造における自由度と、が大きい点で好適となっている。
 第1電極30は、例えば、第2電極40と対になって当該スイッチング素子100のスイッチング動作を行うためのものである。
 第1電極30の形状は、第1電極30が、絶縁性基板10に設けられているとともに、絶縁体20の側面21に接して設けられていれば、特に限定されるものではなく、適宜任意に変更することができる。
 第1電極30の材質は、特に限定されるものではなく、例えば、金、銀、白金、パラジウム、ニッケル、アルミニウム、コバルト、クロム、ロジウム、銅、タングステン、タンタル、カーボン、及びこれらの合金から選ばれる少なくとも1つであることが好ましい。ここで、第1電極30は、絶縁性基板10及び絶縁体20との接着性を強化するために、例えば、異なる金属を2層以上重ねて用いてもよい。具体的には、例えば、第1電極30は、クロム及び金の積層(多層)構造としてもよい。
 第2電極40は、例えば、第1電極30と対になって当該スイッチング素子100のスイッチング動作を可能にする。
 第2電極40の形状は、第2電極40が、第1電極30の上方に設けられているとともに、絶縁体20の上面と、絶縁体20の側面21と、に接して設けられていれば、特に限定されるものではなく、適宜任意に変更することができる。
 第2電極40の材質は、特に限定されるものではなく、例えば、金、銀、白金、パラジウム、ニッケル、アルミニウム、コバルト、クロム、ロジウム、銅、タングステン、タンタル、カーボン、及びこれらの合金から選ばれる少なくとも1つであることが好ましい。ここで、第2電極40は、絶縁体20との接着性を強化するために、異なる金属を2層以上重ねて用いてもよい。具体的には、例えば、第2電極40は、クロム及び金の積層(多層)構造としてもよい。
 電極間間隙部50は、例えば、第1電極30と第2電極40との間への所定電圧の印加により抵抗のスイッチング現象が生じるナノメートルオーダーの間隙を有するものであり、当該スイッチング素子100のスイッチング現象を発現する役割を具備している。
 電極間間隙部50が有する間隙の幅、すなわち、第1電極30と第2電極40との間(ナノギャップ電極間)の距離(間隔)Gは、例えば、0nm<G≦13nmであるのが好ましく、0.8nm<G<2.2nmであるのがより好ましい。
 ここで、距離Gの上限値を13nmとしたのは、例えば、傾斜蒸着で作成する場合には、ギャップ間隔が13nmより大きくなるとスイッチングが起きなくなるためである。
 一方、距離Gの下限値は、0nmとすると第1電極30と第2電極40とが短絡していることになるが、実施例1の電流-電圧特性の測定結果のグラフ(例えば、図6)は0V付近で変化しており、0nmより大きいギャップが存在することが明らかである。なお、下限値は、顕微鏡測定によって決定することは困難であるが、トンネル電流が生じうる最小距離であるということができる。即ち、下限値は、素子が動作したときに、電流-電圧特性がオームの法則に従わずに量子力学的なトンネル効果が観測される距離の理論値である。
 なお、トンネル電流の理論式に抵抗値を代入すると、ギャップ間隔の計算結果として0.8nm<G<2.2nmの範囲が求められる。
 また、電極間間隙部50(第1電極30と第2電極40との間)の直流電気抵抗は、例えば、1kΩより大きく10TΩ未満であるのが好ましく、10kΩより大きいのがより好ましい。
 ここで、抵抗の上限値を10TΩとしたのは、10TΩ以上とすると、スイッチングが起きなくなるためである。
 一方、抵抗の下限値を1kΩとしたのは、現状では1kΩ以下に下がったことがないためであり、これを下限としている。
 なお、スイッチとして考えると、OFF状態での抵抗は高いほどよいため、上限値はより高い値となるのが好ましいが、ON状態での抵抗が1kΩであると、mAオーダーの電流が簡単に流れてしまい、他の素子を破壊する可能性があるため、下限値は10kΩ程度とするのが好ましい。
 なお、第1電極30と第2電極40との間の最近接部位(電極間間隙部50)は、例えば、第1電極30と第2電極40とが対向する領域に1若しくは複数箇所形成されていてもよい。
 また、第1電極30と第2電極40との間には、例えば、当該第1電極30及び第2電極40の構成材料等からなる島部分(中州部分)が形成されていてもよい。この場合には、例えば、第1電極30と島部分との間、第2電極40と島部分との間に所定の間隙(電極間間隙部50)が形成されて、第1電極30と第2電極40とが短絡していなければよい。
 上記構成のスイッチング素子100は、例えば、図2に示すように、封止部材60により内包(封止)されることによってスイッチングデバイス1000を形成するようになっている。
 なお、第1電極30及び第2電極40の各々には、リード線L1,L2が接続されており、当該リード線L1,L2は封止部材60の外側に延出されている(図2参照)。
封止部材60は、例えば、電極間間隙部50を大気から遮断して、当該スイッチング素子100をさらに安定に動作させるためのものである。この封止部材60は、例えば、少なくとも電極間間隙部50を内包するように設けられ、絶縁性基板10を含め当該スイッチング素子100全体が封止されることが好ましい。
 封止部材60の形状及び材質は、電極間間隙部50を大気から遮断する機能を具備する限り、適宜任意に変更することができる。封止部材60の材質は、例えば、公知の半導体封止材料を用いることができ、必要に応じて、公知の物質からなる気体バリヤ層等を設けてもよい。
 なお、第1電極30及び第2電極40(ナノギャップ電極)の全体を、例えば、適当な真空チャンバー(図示省略)内に設置して、これをスイッチング素子として使用する場合は、封止部材60は省略できる。
 封止部材60の内部は、例えば、減圧環境とすることができるほか、種々の物質で満たすことができる。封止部材60の内部の圧力Pは、例えば、10-6Pa<P<2×10Paとするのが好ましく、10Pa<P<10Paとするのがより好ましい。
 ここで、圧力Pの上限値は、10Paまでの圧力で動作することは確認しているが、これ以上の高圧での取り扱いが難しいため、空気漏れ等を考慮して圧力を少し上げる程度である2×10Paを上限値としたものである。
 一方、圧力Pの下限値は、10-6Paまでの圧力で動作することは確認しているが、これ以上の低圧での取り扱いが難しいため、工業的に簡単な真空系で到達できる程度である10Paを下限値とするのがより好ましい。
 また、封止部材60の内部は、例えば、乾燥空気、窒素、Arなどの希ガス等の不活性な気体又はトルエンなどの電気的に不活な有機溶剤で満たしてもよい。
 次に、スイッチング素子100の製造方法について説明する。
 スイッチング素子100は、例えば、(a)絶縁性基板10の上面に絶縁体20を作成して、(b)絶縁性基板10の上面、絶縁体20の側面21、及び絶縁体20の上面に電極パターンPを作成して、(c)電極パターンPから第1電極30及び第2電極40を作成して電極間間隙部50を形成することにより製造される。
 具体的には、スイッチング素子100は、例えば、(1)絶縁性基板10の準備工程、(2)絶縁体20の成膜工程、(3)第1のレジストパターン形成工程、(4)絶縁体20のエッチング工程、(5)レジストパターン剥離工程、(6)第2のレジストパターン形成工程、(7)蒸着工程、(8)リフトオフ工程、(9)電界破断工程、及び(10)封止工程を行うことにより製造される。
(1)絶縁性基板10の準備工程
 絶縁性基板10としては、例えば、酸化膜付きSi基板、その他表面が絶縁性の基板等が用いられる。具体的には、例えば、Si等の導電性の基板を用いる場合には、その表面に所望の絶縁膜を、熱処理、酸化処理、蒸着、スパッタ等の公知の方法によって設け、当該絶縁膜を絶縁性基板10として用いることができる。また、例えば、ガラス等の絶縁性の基板も、絶縁性基板10として用いることができる。
(2)絶縁体20の成膜工程
 絶縁体20の成膜工程は、例えば、PECVD(Plasma Enhanced Chemical Vapor Deposition)等を用いて行われ、絶縁性基板10の上面全体に絶縁体20を形成する。
 なお、絶縁体20の厚さは、例えば、適宜任意に変更することができ、例えば、第1電極30と第2電極40との間に10Vの電圧を印加する場合は、15nm以上が好ましい。
(3)第1のレジストパターン形成工程
 第1のレジストパターン形成工程は、例えば、フォトリソグラフィー等を用いて行われ、絶縁体20の一部をエッチングするための第1レジストパターン(図示省略)を形成する。
 なお、第1レジストパターンの厚さは、例えば、適宜任意に変更することができ、具体的には、例えば、0.7μmとされている。
(4)絶縁体20のエッチング工程
 絶縁体20のエッチング工程は、例えば、絶縁体20の材質に適合するガスを用いて行われ、当該工程の結果、第1のレジストパターン形成工程で形成された第1レジストパターンが存在しない部分では、絶縁体20が取り去られて絶縁性基板10が露出し、第1のレジストパターン形成工程で形成された第1レジストパターンが存在する部分では、絶縁体20が残留する。
(5)レジストパターン剥離工程
 レジストパターン剥離工程は、例えば、第1のレジストパターン形成工程で形成された第1レジストパターンの材質に適合する剥離液を用いて行われ、当該工程の結果、絶縁体20の残留部分が露出し、絶縁体パターン(図示省略)を形成する。
(6)第2のレジストパターン形成工程
 第2のレジストパターン形成工程は、例えば、フォトリソグラフィー等を用いて行われ、第1電極30及び第2電極40を形成するための第2レジストパターン(図示省略)を形成する。
(7)蒸着工程
 蒸着工程は、例えば、所定の蒸着装置を用いて行われ、後に第1電極30及び第2電極40となる電極パターンPを蒸着する(図3参照)。
 ここで、蒸着工程は、例えば、傾斜蒸着によって行われる。すなわち、絶縁性基板10は、例えば、絶縁性基板10の上面及び絶縁体20の上面と、絶縁体20の側面21と、のうちの少なくとも一方に対して、蒸着源から蒸散する粒子の飛来方向が傾斜するように配置される。具体的には、絶縁性基板10は、例えば、図3に示すように、絶縁性基板10の上面と絶縁体20の側面21とがなす角をθ1、絶縁性基板10の上面と蒸着源から蒸散する粒子の飛来方向とがなす角をθ2としたとき、0°<θ1<θ2<180°となるように配置される。この結果、絶縁性基板10の上面、絶縁体20の側面21、及び絶縁体20の上面に電極パターンPが蒸着される。
 蒸着工程は、例えば、金、銀、白金、パラジウム、ニッケル、アルミニウム、コバルト、クロム、ロジウム、銅、タングステン、タンタル、カーボン、及びこれらの合金から選ばれる少なくとも何れか一つの物質を1回又は複数回蒸着するようになっている。
 なお、蒸着される電極パターンPの厚さは、例えば、適宜任意に変更することができ、例えば、蒸着される電極パターンPのうちの、絶縁体20の側面21に蒸着される電極パターンPの厚さは、後の電界破断工程を容易に行うために、10nm以下であることが好ましい。
(8)リフトオフ工程
 リフトオフ工程は、例えば、第2のレジストパターン形成工程で形成された第2レジストパターンの材質に適合する剥離液を用いて行われ、当該工程の結果、後に第1電極30及び第2電極40となる電極パターンPが形成される。
(9)電界破断工程 リフトオフ工程が終了した段階では、例えば、図3に示すように、ナノギャップ電極が短絡しているため、当該電界破断工程を行う必要がある。すなわち、電界破断工程では、電極パターンPを破断させて第1電極30と第2電極40とに分離することによって、電極間間隙部50を形成する。
 電界破断工程は、例えば、短絡しているナノギャップ電極(電極パターンP)と直列に可変抵抗、固定抵抗及び電源(何れも図示省略)を接続して電圧を印加する。そして、可変抵抗の抵抗値を初期値(抵抗大)からゆっくり抵抗が小さくなるように調節して、電流が流れなくなる時点で電圧の印加を止めることにより、第1電極30と第2電極40とが形成されて、所望の電極間距離Gを有するナノギャップ電極を得ることができる。
(10)封止工程
 封止工程は、例えば、所定の気密封止技術を利用して行われ、具体的には、セラミック封止、ガラス封止、プラスチツク封止又は金属キャップによる封止により行われる。
 また、封止工程は、所定の雰囲気中で行うようにしてもよい。
 なお、上記のスイッチング素子100の製造方法は、一例であって、これに限られるものではない。
 次に、スイッチング素子100のスイッチング動作について、図4及び図5を参照して説明する。
 ここで、図4は、OFF状態のスイッチング素子100に対して、電極間間隙部50(ナノギャップ電極間)に印加する電圧を0Vから上げていった際の、電流-電圧曲線の一例(図4において点線で示す曲線)と、ON状態のスイッチング素子100に対して、電極間間隙部50(ナノギャップ電極間)に印加する電圧を0Vから上げていった際の、電流-電圧曲線の一例(図4において一点鎖線で示す曲線)と、を模式的に示す図であり、横軸はナノギャップ電極間に印加される電圧に対応し、縦軸はナノギャップ電極間を流れる電流に対応している。なお、図4には、説明のために、A、B、及び0の符号を付した。
 また、図4にあっては、電圧が正の部分のみを示すが、実際には0点について点対称となっており、ナノギャップ電極間に印加する電圧及びナノギャップ電極間を流れる電流は、ナノギャップ電極の極性に依存しない。また、以下の説明にあっては、電圧が負の部分については省略するものとする。
 まず、ナノギャップ電極間に印加される電圧と流れる電流との関係における、ON状態とOFF状態との差について、図4を参照して説明する。
 図4に示すように、OFF状態では、ナノギャップ電極間にA-B間の電圧を印加した際に、当該ナノギャップ電極間に電流が流れるようになる。
 これに対して、ON状態では、ナノギャップ電極間にA-B間の電圧を印加した際のみならず、ナノギャップ電極間にA点よりも低い電圧を印加した際も、当該ナノギャップ電極間に電流が流れるようになる。
 次に、スイッチング素子100の動作について、図5を参照して説明する。
 ここで、図5(a)は、ナノギャップ電極間に印加される電圧と経過時間との対応関係を模式的に示す図であり、図5(b)は、ナノギャップ電極間を流れる電流と経過時間との対応関係を模式的に示す図である。
 図5に示すように、まず、ナノギャップ電極間に矩形パルスIのON電圧を印加して、その後、読出電圧R1を印加すると(図5(a)参照)、ナノギャップ電極間に大きな電流が流れ、スイッチング素子100がON状態になったことが確認される(図5(b)参照)。 次に、ナノギャップ電極間に矩形パルスJのOFF電圧を印加して、その後、読出電圧R2を印加すると(図5(a)参照)、ナノギャップ電極間には電流が流れず、スイッチング素子100がOFF状態になったことが確認される(図5(b)参照)。
 なお、これ以降は、同様にON電圧K、OFF電圧Lを繰り返して印加すると、スイッチング素子100は、ON状態、OFF状態のスイッチング動作を同様に繰り返すようになっているため、説明を省略するものとする。
 次に、本発明を実施例により具体的に説明するが、本発明はこれらに限定されるものではない。
[実施例1]
 実施例1にかかるスイッチング素子100の製造方法について説明する。
(1) 絶縁性基板10の準備工程
 基板として、p型シリコン基板表面に、厚さ100nmの酸化シリコン層を成膜したものを用いた。ここで、表面の酸化シリコン層を絶縁性基板10とした。
(2)絶縁体20の成膜工程
 次いで、PECVDを用いて、絶縁性基板10上に厚さ200nmの酸化シリコン層を成膜し、絶縁体20とした。
(3)第1のレジストパターン形成工程
 次いで、厚さが0.7μmの第1レジストパターンを形成した。
(4)絶縁体20のエッチング工程
 次いで、RIE(Reactive Ion Etching)を用いたエッチングにより、絶縁体20の一部を取り去り、絶縁体20を取り去った部分の絶縁性基板10を露出させた。
(5)レジストパターン剥離工程
 次いで、第1レジストパターンを剥離し、絶縁体20の残留部分を露出させた。
(6)第2のレジストパターン形成工程
 次いで、厚さが320nmの第2レジストパターンを形成した。
(7)蒸着工程
 次いで、絶縁性基板10の上面と蒸着源から蒸散する粒子の飛来方向とがなす角θ2を90°として、絶縁性基板10と接触する部分に厚さ1nmのクロムを蒸着し、その後、金を蒸着して、絶縁性基板10の表面での合計の厚さが20nmとなる電極パターンPを蒸着した。なお、絶縁体20の側面21での電極パターンPの合計の厚さは、5nm程度になっている。
(8)リフトオフ工程
 次いで、第2レジストパターンをリフトオフした。
(9)電界破断工程
 次いで、電界破断工程を実施して、電極パターンPを破断させて第1電極30と第2電極間40とを作成することによって、電極間間隙部50を形成した。具体的には、電界破断の条件として、印加電圧を0Vから徐々に上げていくことにより、電流量を徐々に増加させていった。 なお、電界破断を起こしたときの、電流量は1mA以下であった。
 以上のようにして製造したスイッチング素子100を真空チャンバー内に設置した。
 なお、真空チャンバー内の圧力は、例えば、1Pa台であった。
 以下に、第1電極30と第2電極40との間に電圧を印加し、その電圧を連続的に変化させた場合の、ナノギャップ電極間の電流-電圧(I-V)特性について、図6を参照して説明する。
 ここで、図6は、第1電極30と第2電極40との間に電圧を印加した場合のナノギャップ電極間のI-V特性の測定結果を示す図であり、横軸はナノギャップ電極間に印加された電圧を示し、縦軸はナノギャップ電極間に流れた電流を示している。
 まず、OFF状態のスイッチング素子100に対し、ナノギャップ電極間に印加する電圧を測定開始時において0Vとし、その後、-0.2V/sの掃印速度で-20Vまで掃印し、その後、+0.2V/sの掃印速度で+20Vまで掃印した。
 具体的には、例えば、図6中の記号A~E及び0を用いて説明すると、0点→A点→B点→C点→D点→E点の順に変化した。
 まず、0点からB点の間では、スイッチング素子100がOFF状態で測定を開始したため、電流値が約0Aから約-5×10-5Aの間でしか変化せず、大きな電流が流れなかった。
 次に、B点からC点に変化させると、電流値が約-1.5×10-4Aに達して、明確な電流ピークが観察された(すなわち、スイッチング素子100がON状態になった)。
 次に、C点からD点に変化させると、電流値が1.5×10-4A以上に達して、B点からC点に変化させた場合と同程度の電流ピークが観察された。
 次に、D点からE点に変化させると、電流値が0Aに近づいていった。
 なお、これ以降については、図6には示されていないが、同じ条件で測定を繰り返すと、0点からB点の間では、大きな電流が流れなかった(すなわち、スイッチング素子100がOFF状態になった)。よって、これ以降についても、同じ条件で測定を繰り返すと、スイッチング素子100は、ON状態、OFF状態のスイッチング動作を同様に繰り返すことが分かった。
 以上説明した本実施形態のスイッチング素子100によれば、絶縁性基板10と、絶縁性基板10の上面に設けられた絶縁体20と、絶縁性基板10に設けられた第1電極30と、第1電極30の上方に設けられた第2電極40と、第1電極30と第2電極40との間に設けられ、第1電極30と第2電極40との間への所定電圧の印加により抵抗のスイッチング現象が生じるナノメートルオーダーの間隙を有する電極間間隙部50(ナノギャップ電極間)と、によって構成されている。すなわち、電極間間隙部50を構成する第1電極30と、電極間間隙部50と、電極間間隙部50を構成する第2電極40と、が上下方向に並んで配置されているため、より高密度で集積でき、且つ、積層化が容易になる。
 さらに、絶縁性基板10と、絶縁体20と、第1電極30と、第2電極40と、電極間間隙部50と、のみによって構成されているため、有機分子や無機粒子などが不要で、より単純な構造で構成することができる。
 さらに、当該スイッチング素子100は劣化する物質を含まないため、スイッチング動作を安定的に繰り返すことができる。
 さらに、スイッチング素子100は不揮発性を有し、スイッチング動作後に外部入力がなくとも、当該スイッチング素子100の動作状態を維持することができる。
 また、本実施形態のスイッチング素子100によれば、第1電極30は、絶縁体20の側面21に接して設けられ、第2電極40は、絶縁体20の上面と、絶縁体20の側面21と、に接して設けられ、電極間間隙部50は、絶縁体20の側面21に設けられた第1電極30と、絶縁体20の側面21に設けられた第2電極40と、の間に設けられている。すなわち、絶縁性基板10の上面に絶縁体20を作成して、絶縁性基板10の上面、絶縁体20の側面21、及び絶縁体20の上面に電極(第1電極30及び第2電極40)を作成して、電極間間隙部50を形成するだけでよいため、簡単に製造することができる。
 また、本実施形態のスイッチング素子100によれば、電極間間隙部50を内包することにより電極間間隙部50を大気と遮断する封止部材60を備えている。すなわち、封止部材60によって電極間間隙部50が大気や水分と接触しないように構成されているため、当該スイッチング素子100をさらに安定的に動作させることができる。
 具体的には、封止部材60の内部を、例えば、減圧環境としたり、乾燥空気、窒素、希ガス等の不活性な気体又はトルエンなどの電気的に不活な有機溶剤等の種々の物質で満たしたりすることにより、電極間間隙部50(ナノギャップ電極間)を大気と接触しないようにすることができるため、スイッチング動作をより安定なものとすることができる。
 なお、本発明は、上記実施形態に限定されることなく、本発明の趣旨を逸脱しない範囲において、種々の改良並びに設計の変更を行ってもよい。
 スイッチング素子100の形状は、スイッチング素子100が、絶縁性基板10と、絶縁性基板10に設けられた第1電極30と、第1電極30の上方に設けられた第2電極40と、第1電極30と第2電極40との間に設けられ、第1電極30と第2電極40との間への所定電圧の印加により抵抗のスイッチング現象が生じるナノメートルオーダーの間隙を有する電極間間隙部50と、を備えているのであれば、すなわち、第1電極30のうちの電極間間隙部50を構成する部分と、第2電極40のうちの電極間間隙部50を構成する部分と、電極間間隙部50と、が上下方向に並んで配置されるのであれば、特に限定されるものではなく、適宜任意に変更することができる。
 具体的には、スイッチング素子100は、例えば、以下に示す[変形例1]~[変形例7]等であってもよい。
[変形例1]
 変形例1のスイッチング素子100Aは、例えば、図7に示すように、絶縁性基板10と、絶縁体20と、第1電極30と、第2電極40と、電極間間隙部50と、封止用絶縁体60Aと、などを備えて構成される。
 封止用絶縁体60Aは、例えば、電極間間隙部50を大気から遮断して、当該スイッチング素子100Aをさらに安定に動作させるためのものである。
 具体的には、封止用絶縁体60Aは、例えば、電極間間隙部50が有する間隙を塞ぐことなく保持したまま電極間間隙部50を囲うように設けられている。
 封止用絶縁体60Aの構造及び材質は、特に限定されるものではない。具体的には、例えば、封止用絶縁体60Aの形状は、封止用絶縁体60Aが、電極間間隙部50が有する間隙を塞ぐことなく電極間間隙部50を囲うように設けられていれば、特に限定されるものではなく、適宜任意に変更することができる。また、封止用絶縁体60Aの材質としては、例えば、ガラス、酸化珪素(SiO)などの酸化物、窒化珪素(Si)などの窒化物等が好ましく、このうち、酸化珪素(SiO)が、第1電極40及び第2電極30との密着性と、その製造における自由度と、が大きい点で好適となっている。
 変形例1のスイッチング素子100Aは、例えば、(a)絶縁性基板10の上面に絶縁体20を作成して、(b)絶縁性基板10の上面、絶縁体20の側面21、及び絶縁体20の上面に電極パターンPを作成して、(c)電極パターンPから第1電極30及び第2電極40を作成して電極間間隙部50を形成し、(d)絶縁体20の側面21に対向する位置に、電極間間隙部50が有する間隙を塞ぐことなく保持するためのギャップ形成材を作成して、(e)第1電極30の上面、ギャップ形成材の表面、及び第2電極40の上面に封止用絶縁体60Aを作成して、(f)ギャップ形成材を熱分解することにより製造される。
 ここで、ギャップ形成材としては、例えば、有機物などの熱分解しやすい物質が好適である。
 なお、上記のスイッチング素子100Aの製造方法は、一例であって、これに限られるものではない。
 変形例1のスイッチング素子100Aは、封止用絶縁体60Aによって電極間間隙部50が大気から遮断されているため、例えば、上記実施形態のスイッチング素子100のように、封止部材60により内包したり、真空チャンバー(図示省略)内に設置したりしなくても、スイッチング素子として使用することができる。
 なお、変形例1のスイッチング素子100Aは、上記実施形態のスイッチング素子100と同様、安定的にスイッチング動作を繰り返すことができる。
 以上説明した変形例1のスイッチング素子100Aによれば、封止用絶縁体60Aによって、電極間間隙部50が大気と遮断されている。すなわち、電極間間隙部50が大気や水分と接触しないように構成されているため、当該スイッチング素子100をさらに安定的に動作させることができるとともに、電極間間隙部50を構成する第1電極30及び第2電極40の材質の選択の幅が広がる。
[変形例2]
 変形例2のスイッチング素子100Bは、例えば、図8に示すように、絶縁性基板10と、絶縁体20Bと、第1電極30Bと、第2電極40Bと、電極間間隙部50と、などを備えて構成される。
 具体的には、例えば、絶縁体20Bは、第1電極30Bと第2電極40Bとの間に設けられており、第1電極30Bは、絶縁性基板10の上面と、絶縁体20Bの側面21B下側と、絶縁体20Bの下面と、に接して設けられており、第2電極40Bは、絶縁体20Bの上面と、絶縁体20Bの側面21B上側と、に接して設けられており、電極間間隙部50は、絶縁体20Bの側面21B下側に設けられた第1電極30Bと、絶縁体20Bの側面21B上側に設けられた第2電極40Bと、の間に設けられている。
 なお、絶縁体20B、第1電極30B、及び第2電極40Bの形状は、絶縁体20Bが、第1電極30Bと第2電極40Bとの間に設けられ、第2電極40Bが、絶縁体20Bの上面と、絶縁体20Bの側面21Bと、に接して設けられていれば、特に限定されるものではなく、適宜任意に変更することができる。
 変形例2のスイッチング素子100Bは、例えば、(a)絶縁性基板10の上面に第1電極パターンを作成して、(b)第1電極パターンの上面に絶縁体20Bを作成して、(c)絶縁体20Bの上面及び側面21Bに、絶縁体20Bの側面21B下端において第1電極パターンと接触する第2電極パターンを作成して、(d)第1電極パターン及び第2電極パターンから第1電極30B及び第2電極40Bを作成して電極間間隙部50を形成することにより製造される。
 なお、上記のスイッチング素子100Bの製造方法は、一例であって、これに限られるものではない。
 変形例2のスイッチング素子100Bは、スイッチング素子として使用する際、例えば、上記実施形態のスイッチング素子100のように、封止部材60により内包したり、真空チャンバー(図示省略)内に設置したりして、電極間間隙部50を大気から遮断するとよい。
 なお、変形例2のスイッチング素子100Bは、上記実施形態のスイッチング素子100と同様、安定的にスイッチング動作を繰り返すことができる。
 以上説明した変形例2のスイッチング素子100Bによれば、第1電極30Bと第2電極40Bとの間に設けられた絶縁体20Bを備え、第2電極40Bは、絶縁体20Bの上面と、絶縁体20Bの側面21Bと、に接して設けられ、電極間間隙部50は、第1電極30Bと、絶縁体20Bの側面21Bに設けられた第2電極40Bと、の間に設けられている。すなわち、絶縁性基板10の上面に電極(第1電極30B)を作成して、当該電極の上面に絶縁体20Bを作成して、絶縁体20Bの側面21B及び絶縁体20Bの上面に電極(第1電極30B及び第2電極40B)を作成して、電極間間隙部50を形成するだけでよいため、簡単に製造することができる。
[変形例3]
 変形例3のスイッチング素子100Cは、例えば、図9に示すように、絶縁性基板10と、絶縁体20Cと、第1電極30Cと、第2電極40Cと、電極間間隙部50,50と、などを備えて構成される。
 具体的には、例えば、絶縁体20Cは、絶縁性基板10の上面に接して設けられているとともに、第1電極30Cを覆うように設けられ、第1電極30Cの上面の一部を露出するためのホール22Cを備えており、第1電極30Cは、側面から上面端部に亘って絶縁体20Cに覆われているとともに、絶縁性基板10の上面と、ホール22Cの内面23C下側と、に接して設けられており、第2電極40Cは、絶縁体20Cの上面と、ホール22Cの内面23C上側と、に接して設けられており、電極間間隙部50は、ホール22Cの内面23C下側に設けられた第1電極30Cと、ホール22Cの内面23C上側に設けられた第2電極40Cと、の間に設けられている。
 なお、絶縁体20C、第1電極30C、及び第2電極40Cの形状は、絶縁体20Cが、第1電極30Cを覆うように設けられ、第1電極30Cの上面の一部を露出するためのホール22Cを備え、第2電極40Cが、絶縁体20Cの上面と、ホール22Cの内面23Cと、に接して設けられていれば、特に限定されるものではなく、適宜任意に変更することができる。
 変形例3のスイッチング素子100Cは、例えば、(a)絶縁性基板10の上面に第1電極パターンを作成して、(b)第1電極パターンを覆うように絶縁体20Cを作成して、(c)絶縁体20Cに第1電極パターンの上面の一部を露出するためのホール22Cを作成して、(d)絶縁体20Cの上面及びホール22Cの内面23Cに、ホール22Cの内面23C下端において第1電極パターンと接触する第2電極パターンを作成して、(f)第1電極パターン及び第2電極パターンから第1電極30C及び第2電極40Cを作成して電極間間隙部50を形成することにより製造される。
 なお、上記のスイッチング素子100Cの製造方法は、一例であって、これに限られるものではない。
変形例3のスイッチング素子100Cは、スイッチング素子として使用する際、例えば、上記実施形態のスイッチング素子100のように、封止部材60により内包したり、真空チャンバー(図示省略)内に設置したりして、電極間間隙部50を大気から遮断するとよい。
 なお、変形例3のスイッチング素子100Cは、上記実施形態のスイッチング素子100と同様、安定的にスイッチング動作を繰り返すことができる。
 以上説明した変形例3のスイッチング素子100Cによれば、第1電極30Cを覆うように設けられた絶縁体20Cを備え、絶縁体20Cは、第1電極30Cの上面の一部を露出するためのホール22Cを備え、第2電極40Cは、絶縁体20Cの上面と、ホール22Cの内面23Cと、に接して設けられ、電極間間隙部50は、第1電極30Cと、ホール22Cの内面23Cに設けられた第2電極40Cと、の間に設けられている。すなわち、絶縁性基板10の上面に電極(第1電極30C)を作成して、当該電極を覆うように絶縁体20Cを作成して、絶縁体20Cに当該電極の上面の一部を露出するためのホール22Cを形成して、絶縁体20Cの上面及びホール22Cの内面23Cに電極(第1電極30C及び第2電極40C)を作成して、電極間間隙部50を形成するだけでよいため、簡単に製造することができる。
[変形例4]
 変形例4のスイッチング素子100Dは、例えば、図10に示すように、絶縁性基板10と、絶縁体20Dと、第1電極30Dと、第2電極40Dと、電極間間隙部50と、などを備えて構成される。
 具体的には、例えば、絶縁体20Dは、絶縁性基板10の上面に接して設けられているとともに、第1電極30Dを覆うように設けられ、第1電極30Dの上面の一部を露出するためのホール22Dを備えており、第1電極30Dは、側面から上面端部に亘って絶縁体20Dに覆われているとともに、絶縁性基板10の上面に接して設けられており、第2電極40Dは、絶縁体20Dの上面に接して設けられているとともに、ホール22Dの開口部を覆うことによりホール22D内を大気と遮断するように設けられ、且つ、ホール22Dの開口部を覆う部分に、第1電極30Dに向かって突出する第2電極突出部41Dを備えており、第2電極突出部41Dの先端は、ホール22Dの内面23Dに設けられており、電極間間隙部50は、第1電極30Dと、ホール22Dの内面23Dに設けられた第2電極突出部41Dの先端と、の間に設けられている。
 なお、絶縁体20D、第1電極30D、及び第2電極40Dの形状は、絶縁体20Dが、第1電極30Dを覆うように設けられ、第1電極30Dの上面の一部を露出するためのホール22Dを備え、第2電極40Dが、ホール22Dの開口部を覆うことによりホール22D内を大気と遮断するように設けられ、且つ、ホール22Dの開口部を覆う部分に、第1電極30Dに向かって突出する第2電極突出部41Dを備えていれば、特に限定されるものではなく、適宜任意に変更することができる。
 具体的には、例えば、第2電極突出部41Dの先端は、ホール22Dの内面23D以外の部分に設けられていてもよい。また、例えば、第2電極突出部41Dの個数は、複数であってもよい。
 変形例4のスイッチング素子100Dは、例えば、(a)絶縁性基板10の上面に第1電極30Dを作成して、(b)第1電極30Dを覆うように絶縁体20Dを作成して、(c)絶縁体20Dに第1電極30Dの上面の一部を露出するためのホール22Dを作成して、(d)傾斜蒸着で、絶縁体20Dの上面、ホール22Dの開口部、及びホール22Dの内部に第2電極40Dを作成して電極間間隙部50を形成することにより製造される。
 なお、上記のスイッチング素子100Dの製造方法は、一例であって、これに限られるものではない。
 変形例4のスイッチング素子100Dは、第2電極40Dによって電極間間隙部50が大気から遮断されているため、例えば、上記実施形態のスイッチング素子100のように、封止部材60により内包したり、真空チャンバー(図示省略)内に設置したりしなくても、スイッチング素子として使用することができる。
 なお、変形例4のスイッチング素子100Dは、上記実施形態のスイッチング素子100と同様、安定的にスイッチング動作を繰り返すことができる。
 以上説明した変形例4のスイッチング素子100Dによれば、第2電極40Dは、ホール22Dの開口部を覆うことにより当該ホール22D内を大気と遮断するように設けられている。すなわち、電極間間隙部50が大気や水分と接触しないように構成されているため、当該スイッチング素子100Dをさらに安定的に動作させることができるとともに、電極間間隙部50を構成する第1電極30D及び第2電極40Dの材質の選択の幅が広がる。
 また、変形例4のスイッチング素子100Dによれば、第1電極30Dを覆うように設けられた絶縁体20Dを備え、絶縁体20Dは、第1電極30Dの上面の一部を露出するためのホール22Dを備え、第2電極40Dは、ホール22Dの開口部を覆うように設けられ、ホール22Dの開口部を覆う部分に、第1電極30Dに向かって突出する第2電極突出部41Dを備え、第2電極突出部41Dの先端は、ホール22Dの内面23Dに設けられ、電極間間隙部50は、第1電極30Dと、ホール22Dの内面23Dに設けられた第2電極突出部41Dの先端と、の間に設けられている。すなわち、絶縁性基板10の上面に第1電極30Dを作成して、第1電極30Dを覆うように絶縁体20Dを作成して、絶縁体20Dに第1電極30Dの上面の一部を露出するためのホール22Dを形成して、絶縁体20Dの上面、ホール22Dの開口部、及びホール22Dの内部に第2電極40Dを作成するだけでよいため、簡単に製造することができる。
[変形例5]
 変形例5のスイッチング素子100Eは、例えば、図11に示すように、絶縁性基板10と、絶縁体20Eと、第1電極30Eと、第2電極40Eと、電極間間隙部50,50と、などを備えて構成される。
 具体的には、例えば、絶縁体20Eは、絶縁性基板10の上面に接して設けられているとともに、第1電極30Eを覆うように設けられ、第1電極30Eの上面の一部を露出するためのホール22Eを備えており、第1電極30Eは、側面から上面端部に亘って絶縁体20Eに覆われ、且つ、絶縁性基板10の上面に接して設けられているとともに、ホール22Eにより露出された部分に、第2電極40Eに向かって上面が略凹状に突出する第1電極突出部31Eを備えており、第2電極40Eは、絶縁体20Eの上面に接して設けられているとともに、ホール22Eの開口部を覆うことによりホール22E内を大気と遮断するように設けられ、且つ、ホール22Eの開口部を覆う部分に、第1電極30Eに向かって下面が略凹状に突出する第2電極突出部41Eを備えており、第1電極突出部31Eの端部32E,32Eと第2電極突出部41Eの端部42E,42Eとは、上下方向に対向するように、ホール22Eの内面23Eに設けられており、電極間間隙部50,50は、ホール22Eの内面23Eに設けられた第1電極突出部31Eの端部32E,32Eと、ホール22Eの内面23Eに設けられた第2電極突出部41Eの端部42E,42Eと、の間に設けられている。
 なお、絶縁体20E、第1電極30E、及び第2電極40Eの形状は、絶縁体20Eが、第1電極30Eを覆うように設けられ、第1電極30Eの上面の一部を露出するためのホール22Eを備え、第1電極30Eが、ホール22Eにより露出された部分に、第2電極40Eに向かって上面が略凹状に突出する第1電極突出部31Eを備え、第2電極40Eが、ホール22Eの開口部を覆うことによりホール22E内を大気と遮断するように設けられ、且つ、ホール22Eの開口部を覆う部分に、第1電極30Eに向かって下面が略凹状に突出する第2電極突出部41Eを備え、第1電極突出部31Eの端部32E,32Eと第2電極突出部41Eの端部42E,42Eとが、上下方向に対向するように構成されていれば、特に限定されるものではなく、適宜任意に変更することができる。
 具体的には、例えば、第1電極突出部31Eの端部32E,32E及び第2電極突出部41Eの端部42E,42Eは、ホール22Eの内面23E以外の部分に設けられていてもよい。また、第1電極突出部31Eの上面に設けられた略凹状の部分及び第2電極突出部41Eの下面に設けられた略凹状の部分の個数は、複数であってもよい。
 変形例5のスイッチング素子100Eは、例えば、(a)絶縁性基板10の上面に第1電極30Eを作成して、(b)第1電極30Eを覆うように絶縁体20Eを作成して、(c)絶縁体20Eに第1電極30Eの上面の一部(第1電極突出部31Eの上面)を露出するためのホール22Eを作成して、(d)第1電極突出部31Eの上面に電極間間隙部50を形成するためのギャップ形成材を作成して、(e)絶縁体20Eの上面、ホール22Eの開口部、及びホール22Eの内部(ギャップ形成材の上面)に第2電極40Eを作成して、(f)ギャップ形成材を熱分解して電極間間隙部50を形成することにより製造される。
 ここで、ギャップ形成材としては、例えば、有機物などの熱分解しやすい物質が好適である。
 なお、上記のスイッチング素子100Dの製造方法は、一例であって、これに限られるものではない。
 変形例5のスイッチング素子100Eは、第2電極40Eによって電極間間隙部50が大気から遮断されているため、例えば、上記実施形態のスイッチング素子100のように、封止部材60により内包したり、真空チャンバー(図示省略)内に設置したりしなくても、スイッチング素子として使用することができる。
 なお、変形例5のスイッチング素子100Eは、上記実施形態のスイッチング素子100と同様、スイッチング動作を安定的に繰り返すことができる。
 以上説明した変形例5のスイッチング素子100Eによれば、第2電極40Eは、ホール22Eの開口部を覆うことによりホール22E内を大気と遮断するように設けられている。すなわち、電極間間隙部50が大気や水分と接触しないように構成されているため、当該スイッチング素子100Eをさらに安定的に動作させることができるとともに、電極間間隙部50を構成する第1電極30E及び第2電極40Eの材質の選択の幅が広がる。
 また、変形例5のスイッチング素子100Eによれば、第1電極30Eを覆うように設けられた絶縁体20Eを備え、絶縁体20Eは、第1電極30Eの上面の一部を露出するためのホール22Eを備え、第2電極30Eは、ホール22Eの開口部を覆うように設けられ、ホール22Eの開口部を覆う部分に、第1電極30Eに向かって下面が略凹状に突出する第2電極突出部31Eを備え、第1電極30Eは、ホール22Eにより露出された部分に、第2電極40Eに向かって上面が略凹状に突出する第1電極突出部31Eを備え、第1電極突出部31Eの端部32Eと、第2電極突出部41Eの端部42Eと、は上下方向に対向するように構成され、電極間間隙部50は、第1電極突出部31Eの端部32Eと、第2電極突出部41Eの端部42Eと、の間に設けられている。すなわち、絶縁性基板10の上面に第1電極30Eを作成して、第1電極30Eを覆うように絶縁体20Eを作成して、絶縁体20Eに第1電極30Eの上面の一部を露出するためのホール22Eを形成して、絶縁体40Eの上面、ホール22Eの開口部、及びホール22Eの内部に第2電極40Eを作成するだけでよいため、簡単に製造することができる。
[変形例6]
 変形例6のスイッチング素子100Fは、例えば、図12に示すように、絶縁性基板10Fと、第1電極30Fと、第2電極40Fと、電極間間隙部50,50,50,50と、などを備えて構成される。
 具体的には、絶縁性基板10Fは、上面に凹部11Fを有しており、第1電極30Fは、絶縁性基板10Fの凹部11F内に設けられているとともに、上面に第1電極凹部33F,33F,33Fを備えており、第2電極40Fは、第1電極30Fの上方を覆うことにより第1電極30Fを大気と遮断するように設けられ、且つ、絶縁性基板10Fの上面に接して設けられているとともに、第1電極30Fの上方を覆う部分に第2電極凹部43F,43F,43Fを備えており、第1電極凹部33F,33F,33Fの端部34F,34F,34F,34Fと第2電極凹部43F,43F,43Fの端部44F,44F,44F,44Fとは、上下方向に対向するよう構成されており、電極間間隙部50,50,50,50は、第1電極凹部33F,33F,33Fの端部34F,34F,34F,34Fと、第2電極凹部43F,43F,43Fの端部44F,44F,44F,44Fと、の間に設けられている。
 なお、絶縁性基板10F、第1電極30F、及び第2電極40Fの形状は、絶縁性基板10Fが、凹部11Fを有し、第1電極30Fが、絶縁性基板10Fの凹部11F内に設けられているとともに、上面に第1電極凹部33Fを備え、第2電極40Fが、第1電極30Fの上方を覆うことにより第1電極30Fを大気と遮断するよう設けられ、第1電極30Fの上方を覆う部分に第2電極凹部43Fを備え、第1電極凹部33Fの端部34F,34Fと第2電極凹部43Fの端部44F,44Fとが、上下方向に対向するよう構成されていれば、特に限定されるものではなく、適宜任意に変更することができる。
 具体的には、例えば、第1電極凹部33F及び第2電極凹部43Fの個数は、1つであってもよいし、複数であってもよい。
 変形例6のスイッチング素子100Fは、例えば、(a)絶縁性基板10Fの凹部11Fに第1電極30Fを作成して、(b)第1電極30Fの上面(第1電極凹部33Fの上面)に、電極間間隙部50を形成するためのギャップ形成材を作成して、(c)絶縁性基板10Fの上面及びギャップ形成材の上面に第2電極40Fを作成して、(d)ギャップ形成材を熱分解して電極間間隙部50を形成することにより製造される。
 ここで、ギャップ形成材としては、例えば、有機物などの熱分解しやすい物質が好適である。
 なお、上記のスイッチング素子100Dの製造方法は、一例であって、これに限られるものではない。
 変形例6のスイッチング素子100Fは、第2電極40Fによって電極間間隙部50が大気から遮断されているため、例えば、上記実施形態のスイッチング素子100のように、封止部材60により内包したり、真空チャンバー(図示省略)内に設置したりしなくても、スイッチング素子として使用することができる。
なお、変形例6のスイッチング素子100Fは、上記実施形態のスイッチング素子100と同様、スイッチング動作を安定的に繰り返すことができる。
 以上説明した変形例6のスイッチング素子100Fによれば、第2電極40Fは、第1電極30Fの上方を覆うことにより第1電極30Fを大気と遮断するように設けられている。すなわち、電極間間隙部50が大気や水分と接触しないように構成されているため、当該スイッチング素子100Fをさらに安定的に動作させることができるとともに、電極間間隙部50を構成する第1電極30F及び第2電極40Fの材質の選択の幅が広がる。
 また、変形例6のスイッチング素子100Fによれば、絶縁性基板10Fは、凹部11Fを有し、第1電極30Fは、絶縁性基板10Fの凹部11F内に設けられているとともに、上面に第1電極凹部33Fを備え、第2電極40Fは、第1電極30Fの上方を覆うように設けられ、第1電極30Fの上方を覆う部分に第2電極凹部43Fを備え、第1電極凹部33Fの端部34Fと、第2電極凹部43Fの端部44Fと、は上下方向に対向するよう構成され、電極間間隙部50は、第1電極凹部33Fの端部34Fと、第2電極凹部43Fの端部44Fと、の間に設けられている。すなわち、絶縁性基板10Fの凹部11Fに第1電極30Fを作成して、第1電極30Fを覆うように第2電極40Fを作成するだけでよく、加えて絶縁体20,20A~20E,20Gが必要ないため、簡単に製造することができる。
[変形例7]
 変形例7のスイッチング素子100Gは、例えば、図13に示すように、絶縁性基板10と、絶縁体20Gと、第1電極30Gと、第2電極40Gと、電極間間隙部50と、などを備えて構成される。
 具体的には、例えば、絶縁体20Gは、第1電極30Gを覆うように設けられ、絶縁体20Gを第1電極30Gと離間させるとともに、第1電極30Gの上方の一部を露出するためのホール22Gを備えており、第1電極30Gは、絶縁性基板10の上面に接して設けられているとともに、上面に、第2電極40Gに向かって突出する第1電極突出部31Gを備えており、第2電極40Gは、絶縁体20Gの上面に接して設けられているとともに、ホール22Gの開口部を覆うことによりホール22G内を大気と遮断するように設けられており、電極間間隙部50は、第1電極突出部31Gの先端と、第2電極40Gのホール22Gの開口部を覆う部分と、の間に設けられている。
 なお、絶縁体20G、第1電極30G、及び第2電極40Gの形状は、絶縁体20Gが、第1電極30Gを覆うように設けられ、且つ、絶縁体20Gを第1電極30Gと離間させるとともに、第1電極30Gの上方の一部を露出するためのホール22Gを備え、第1電極30Gが、上面に、第2電極40Gに向かって突出する第1電極突出部31Gを備え、第2電極40Gが、ホール22Gの開口部を覆うことによりホール22G内を大気と遮断するように設けられていれば、特に限定されるものではなく、適宜任意に変更することができる。
 具体的には、第1電極突出部31Gの個数は、複数であってもよい。
 また、第1電極30Gに対する電圧印加を容易にするために、例えば、導電膜等を追加して、第1電極30Gとスイッチング素子100Gの外部とを容易に電気的接続できるようにしても良い。具体的には、例えば、第1電極30Gから、絶縁性基板10と絶縁体20Gとの間を通り、スイッチング素子100Gの外部に向かって配置された導電膜等を追加しても良い。
 変形例7のスイッチング素子100Gは、第2電極40Gによって電極間間隙部50が大気から遮断されているため、例えば、上記実施形態のスイッチング素子100のように、封止部材60により内包したり、真空チャンバー(図示省略)内に設置したりしなくても、スイッチング素子として使用することができる。
 なお、変形例7のスイッチング素子100Gは、上記実施形態のスイッチング素子100と同様、スイッチング動作を安定的に繰り返すことができる。
 以上説明した変形例7のスイッチング素子100Gによれば、第1電極30Gを覆うように設けられた絶縁体20Gを備え、絶縁体20Gは、絶縁体20Gを第1電極30Gと離間させるとともに、第1電極30Gの上方の一部を露出するためのホール22Gを備え、第1電極30Gは、上面に、第2電極40Gに向かって突出する第1電極突出部31Gを備え、第2電極40Gは、ホール22Gの開口部を覆うことによりホール22G内を大気と遮断するように設けられ、電極間間隙部50は、第1電極突出部31Gの先端と、第2電極40Gと、の間に設けられている。すなわち、電極間間隙部50が大気や水分と接触しないように構成されているため、当該スイッチング素子100Gをさらに安定的に動作させることができるとともに、電極間間隙部50を構成する第1電極30G及び第2電極40Gの材質の選択の幅が広がる。
 上記実施形態及び変形例1~7では、説明の便宜上、絶縁性基板10,10Fにおける、第1電極30,30A~30G及び第2電極40,40A~40Gが設けられた側を、上側としたが、これに限られるものではなく、第1電極30,30A~30G及び第2電極40,40A~40Gは、絶縁性基板10,10Fの一側に設けられればよく、絶縁性基板10,10Fの下側に設けられてもよい。
 スイッチング素子100,100A~100Gの構成や各部の形状などについて、上記実施形態に例示したものは一例であり、これらに限られるものではない。
本発明を適用した一実施形態として例示するスイッチング素子の要部を模式的に示す断面図である。 図1のスイッチング素子に封止部材を設けてスイッチングデバイスとした例を示す模式図である。 図1のスイッチング素子の製造工程における蒸着工程を模式的に示す断面図である。 スイッチング素子のナノギャップ電極間に印加される電圧と、ナノギャップ電極間を流れる電流と、の対応関係を示す図である。 スイッチング素子のナノギャップ電極間に印加される電圧と経過時間との対応関係を示す図である。 ナノギャップ電極間を流れる電流と経過時間との対応関係を示す図である。 ナノギャップ電極間に電圧を印加した際の電流-電圧特性の測定結果を示す図である。 変形例1のスイッチング素子の要部を模式的に示す断面図である。 変形例2のスイッチング素子の要部を模式的に示す断面図である。 変形例3のスイッチング素子の要部を模式的に示す断面図である。 変形例4のスイッチング素子の要部を模式的に示す断面図である。 変形例5のスイッチング素子の要部を模式的に示す断面図である。 変形例6のスイッチング素子の要部を模式的に示す断面図である。 変形例7のスイッチング素子の要部を模式的に示す断面図である。
符号の説明
10,10F 絶縁性基板
11F 凹部
20,20B,20C,20D,20E,20G 絶縁体
21,21B 側面
22C,22D,22E,22G ホール
23C,23D 内面
30,30B,30C,30D,30E,30F,30G 第1電極
31E,31G 第1電極突出部
32E (第1電極突出部の)端部
33F 第1電極凹部
34F (第1電極凹部の)端部
40,40B,40C,40D,40E,40F,40G 第2電極
41D,41E 第2電極突出部
42E (第2電極突出部の)端部
43F 第2電極凹部
44F (第2電極凹部の)端部
50 電極間間隙部
60 封止部材
100,100A,100B,100C,100D,100E,100F,100G スイッチング素子

Claims (11)

  1.  絶縁性基板と、
     前記絶縁性基板の上面に設けられた絶縁体と、
     前記絶縁性基板に設けられた第1電極と、
     前記第1電極の上方に設けられた第2電極と、
     前記第1電極と前記第2電極との間に設けられ、前記第1電極と前記第2電極との間への所定電圧の印加により抵抗のスイッチング現象が生じるナノメートルオーダーの間隙を有する電極間間隙部と、
     前記電極間間隙部を内包することにより当該電極間間隙部を大気と遮断する封止部材と、を備え、
     前記第1電極は、前記絶縁体の側面に接して設けられ、
     前記第2電極は、前記絶縁体の上面と、前記絶縁体の前記側面と、に接して設けられ、
     前記電極間間隙部は、前記絶縁体の前記側面に設けられた前記第1電極と、当該絶縁体の当該側面に設けられた前記第2電極と、の間に設けられていることを特徴とするスイッチング素子。
  2.  絶縁性基板と、
     前記絶縁性基板に設けられた第1電極と、
     前記第1電極の上方に設けられた第2電極と、
     前記第1電極と前記第2電極との間に設けられ、前記第1電極と前記第2電極との間への所定電圧の印加により抵抗のスイッチング現象が生じるナノメートルオーダーの間隙を有する電極間間隙部と、
     を備えることを特徴とするスイッチング素子。
  3.  請求項2に記載のスイッチング素子において、
     前記絶縁性基板の上面に設けられた絶縁体を備え、
     前記第1電極は、前記絶縁体の側面に接して設けられ、
     前記第2電極は、前記絶縁体の上面と、前記絶縁体の前記側面と、に接して設けられ、
     前記電極間間隙部は、前記絶縁体の前記側面に設けられた前記第1電極と、当該絶縁体の当該側面に設けられた前記第2電極と、の間に設けられていることを特徴とするスイッチング素子。
  4.  請求項2に記載のスイッチング素子において、
     前記第1電極と前記第2電極との間に設けられた絶縁体を備え、
     前記第2電極は、前記絶縁体の上面と、前記絶縁体の側面と、に接して設けられ、
     前記電極間間隙部は、前記第1電極と、前記絶縁体の前記側面に設けられた前記第2電極と、の間に設けられていることを特徴とするスイッチング素子。
  5.  請求項2に記載のスイッチング素子において、
     前記第1電極を覆うように設けられた絶縁体を備え、
     前記絶縁体は、前記第1電極の上面の一部を露出するためのホールを備え、
     前記第2電極は、前記絶縁体の上面と、前記ホールの内面と、に接して設けられ、
     前記電極間間隙部は、前記第1電極と、前記ホールの前記内面に設けられた前記第2電極と、の間に設けられていることを特徴とするスイッチング素子。
  6.  請求項2~5の何れか一項に記載のスイッチング素子において、
     前記電極間間隙部が大気と遮断されていることを特徴とするスイッチング素子。
  7.  請求項2に記載のスイッチング素子において、 前記第1電極を覆うように設けられた絶縁体を備え、
     前記絶縁体は、前記第1電極の上面の一部を露出するためのホールを備え、
     前記第2電極は、前記ホールの開口部を覆うことにより当該ホール内を大気と遮断するように設けられ、前記ホールの開口部を覆う部分に、前記第1電極に向かって突出する第2電極突出部を備え、
     前記電極間間隙部は、前記第1電極と、前記第2電極突出部と、の間に設けられていることを特徴とするスイッチング素子。
  8.  請求項7に記載のスイッチング素子において、
     前記第2電極突出部の先端は、前記ホールの内面に設けられ、
     前記電極間間隙部は、前記第1電極と、前記ホールの前記内面に設けられた前記第2電極突出部の先端と、の間に設けられていることを特徴とするスイッチング素子。
  9.  請求項7に記載のスイッチング素子において、
     前記第2電極突出部は、前記第1電極に向かって下面が略凹状に突出しており、
     前記第1電極は、前記ホールにより露出された部分に、前記第2電極に向かって上面が略凹状に突出する第1電極突出部を備え、
     前記第1電極突出部の端部と、前記第2電極突出部の端部と、は上下方向に対向するように構成され、
     前記電極間間隙部は、前記第1電極突出部の端部と、前記第2電極突出部の端部と、の間に設けられていることを特徴とするスイッチング素子。
  10.  請求項2に記載のスイッチング素子において、
     前記絶縁性基板は、凹部を有し、
     前記第1電極は、前記絶縁性基板の前記凹部内に設けられているとともに、上面に第1電極凹部を備え、
     前記第2電極は、前記第1電極の上方を覆うことにより当該第1電極を大気と遮断するように設けられ、前記第1電極の上方を覆う部分に第2電極凹部を備え、
     前記第1電極凹部の端部と、前記第2電極凹部の端部と、は上下方向に対向するよう構成され、
     前記電極間間隙部は、前記第1電極凹部の端部と、前記第2電極凹部の端部と、の間に設けられていることを特徴とするスイッチング素子。
  11.  請求項2に記載のスイッチング素子において、
     前記第1電極を覆うように設けられた絶縁体を備え、
     前記絶縁体は、当該絶縁体を前記第1電極と離間させるとともに、前記第1電極の上方の一部を露出するためのホールを備え、
     前記第1電極は、上面に、前記第2電極に向かって突出する第1電極突出部を備え、
     前記第2電極は、前記ホールの開口部を覆うことにより当該ホール内を大気と遮断するように設けられ、
     前記電極間間隙部は、前記第1電極突出部の先端と、前記第2電極と、の間に設けられていることを特徴とするスイッチング素子。
PCT/JP2008/060914 2008-06-13 2008-06-13 スイッチング素子 WO2009150751A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2008/060914 WO2009150751A1 (ja) 2008-06-13 2008-06-13 スイッチング素子
US12/997,316 US8653912B2 (en) 2008-06-13 2008-06-13 Switching element
CN200880129794.4A CN102084512B (zh) 2008-06-13 2008-06-13 开关元件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/060914 WO2009150751A1 (ja) 2008-06-13 2008-06-13 スイッチング素子

Publications (1)

Publication Number Publication Date
WO2009150751A1 true WO2009150751A1 (ja) 2009-12-17

Family

ID=41416472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/060914 WO2009150751A1 (ja) 2008-06-13 2008-06-13 スイッチング素子

Country Status (3)

Country Link
US (1) US8653912B2 (ja)
CN (1) CN102084512B (ja)
WO (1) WO2009150751A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011176211A (ja) * 2010-02-25 2011-09-08 National Institute Of Advanced Industrial Science & Technology スイッチング素子

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4919146B2 (ja) * 2005-09-27 2012-04-18 独立行政法人産業技術総合研究所 スイッチング素子
JP5942349B2 (ja) * 2011-07-07 2016-06-29 セイコーエプソン株式会社 センサー装置
US20140301121A1 (en) * 2013-04-05 2014-10-09 Anam Nanotechnology, Inc. Tunneling Electric Contacts And Related Methods, Systems And Applications
US10396175B2 (en) 2014-11-25 2019-08-27 University Of Kentucky Research Foundation Nanogaps on atomically thin materials as non-volatile read/writable memory devices
JP6549552B2 (ja) * 2016-12-27 2019-07-24 トヨタ自動車株式会社 スイッチング素子の製造方法
FR3141284B1 (fr) * 2022-10-25 2024-10-18 Commissariat Energie Atomique Dispositif mémoire résistive et procédé de réalisation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0519295A (ja) * 1991-07-12 1993-01-29 Matsushita Electric Ind Co Ltd 非線形抵抗素子
JP2005079335A (ja) * 2003-08-29 2005-03-24 National Institute Of Advanced Industrial & Technology ナノギャップ電極の製造方法及び該方法により製造されたナノギャップ電極を有する素子
JP2005175164A (ja) * 2003-12-10 2005-06-30 National Institute Of Advanced Industrial & Technology ナノギャップ電極の製造方法及び該方法により製造されたナノギャップ電極を用いた素子
JP2006128438A (ja) * 2004-10-29 2006-05-18 National Institute Of Advanced Industrial & Technology ナノギャップ電極の形成方法及びこれによって得られたナノギャップ電極並びに該電極を備えた素子
JP2007123828A (ja) * 2005-09-27 2007-05-17 National Institute Of Advanced Industrial & Technology スイッチング素子

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5367136A (en) * 1993-07-26 1994-11-22 Westinghouse Electric Corp. Non-contact two position microeletronic cantilever switch
JP3595744B2 (ja) 1999-02-26 2004-12-02 キヤノン株式会社 電子放出素子、電子源及び画像形成装置
US6534839B1 (en) * 1999-12-23 2003-03-18 Texas Instruments Incorporated Nanomechanical switches and circuits
US6384353B1 (en) * 2000-02-01 2002-05-07 Motorola, Inc. Micro-electromechanical system device
US7875883B2 (en) 2001-09-25 2011-01-25 Japan Science And Technology Agency Electric device using solid electrolyte
JP4332881B2 (ja) 2002-04-30 2009-09-16 独立行政法人科学技術振興機構 固体電解質スイッチング素子及びそれを用いたfpga、メモリ素子、並びに固体電解質スイッチング素子の製造方法
KR100565174B1 (ko) * 2003-11-20 2006-03-30 한국전자통신연구원 나노갭 전극소자의 제작 방법
US7741832B2 (en) * 2004-06-07 2010-06-22 General Electric Company Micro-electromechanical system (MEMS) based current and magnetic field sensor using tunneling current sensing
JP4489651B2 (ja) * 2005-07-22 2010-06-23 株式会社日立製作所 半導体装置およびその製造方法
JP5365829B2 (ja) 2005-12-15 2013-12-11 日本電気株式会社 スイッチング素子およびその製造方法
JP4446054B2 (ja) * 2007-03-23 2010-04-07 独立行政法人産業技術総合研究所 不揮発性記憶素子
JP2008311449A (ja) * 2007-06-15 2008-12-25 National Institute Of Advanced Industrial & Technology シリコンによる2端子抵抗スイッチ素子及び半導体デバイス

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0519295A (ja) * 1991-07-12 1993-01-29 Matsushita Electric Ind Co Ltd 非線形抵抗素子
JP2005079335A (ja) * 2003-08-29 2005-03-24 National Institute Of Advanced Industrial & Technology ナノギャップ電極の製造方法及び該方法により製造されたナノギャップ電極を有する素子
JP2005175164A (ja) * 2003-12-10 2005-06-30 National Institute Of Advanced Industrial & Technology ナノギャップ電極の製造方法及び該方法により製造されたナノギャップ電極を用いた素子
JP2006128438A (ja) * 2004-10-29 2006-05-18 National Institute Of Advanced Industrial & Technology ナノギャップ電極の形成方法及びこれによって得られたナノギャップ電極並びに該電極を備えた素子
JP2007123828A (ja) * 2005-09-27 2007-05-17 National Institute Of Advanced Industrial & Technology スイッチング素子

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011176211A (ja) * 2010-02-25 2011-09-08 National Institute Of Advanced Industrial Science & Technology スイッチング素子

Also Published As

Publication number Publication date
US8653912B2 (en) 2014-02-18
US20110108399A1 (en) 2011-05-12
CN102084512A (zh) 2011-06-01
CN102084512B (zh) 2014-06-04

Similar Documents

Publication Publication Date Title
JP5170615B2 (ja) スイッチング素子
JP4919146B2 (ja) スイッチング素子
WO2009150751A1 (ja) スイッチング素子
JP5120874B2 (ja) スイッチング素子
US20150200362A1 (en) Two terminal resistive switching device structure and method of fabricating
KR101198301B1 (ko) 금속 나노입자를 이용하고 환원된 그래핀 산화물에 기반한 양쪽극 기억소자 및 이의 제조방법
WO2008038365A1 (en) Variable-resistance element
KR20140010720A (ko) 그래핀을 이용한 전계효과 트랜지스터
US20100213789A1 (en) Electrostatic drive mems element and method of producing the same
JP2008235816A (ja) 不揮発性記憶素子
JP2008177469A (ja) 抵抗変化型素子および抵抗変化型素子製造方法
KR101449916B1 (ko) 스위칭 소자, 스위칭 소자의 제조방법 및 메모리 소자 어레이
WO2016203751A1 (ja) 整流素子、スイッチング素子および整流素子の製造方法
JP5120872B2 (ja) スイッチング素子
JP5526341B2 (ja) スイッチング素子
KR101472512B1 (ko) 나노 필라멘트 구조체
US8604458B2 (en) Two-terminal resistance switching device and semiconductor device
US9236569B2 (en) Storage element
JPWO2014050198A1 (ja) スイッチング素子およびスイッチング素子の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880129794.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08777225

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12997316

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 08777225

Country of ref document: EP

Kind code of ref document: A1