WO2007069725A1 - スイッチング素子およびその製造方法 - Google Patents

スイッチング素子およびその製造方法 Download PDF

Info

Publication number
WO2007069725A1
WO2007069725A1 PCT/JP2006/325050 JP2006325050W WO2007069725A1 WO 2007069725 A1 WO2007069725 A1 WO 2007069725A1 JP 2006325050 W JP2006325050 W JP 2006325050W WO 2007069725 A1 WO2007069725 A1 WO 2007069725A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
switching element
ion
metal
opening
Prior art date
Application number
PCT/JP2006/325050
Other languages
English (en)
French (fr)
Inventor
Toshitsugu Sakamoto
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to JP2007550242A priority Critical patent/JP5365829B2/ja
Priority to US12/097,468 priority patent/US20090289371A1/en
Publication of WO2007069725A1 publication Critical patent/WO2007069725A1/ja

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/041Modification of switching materials after formation, e.g. doping
    • H10N70/046Modification of switching materials after formation, e.g. doping by diffusion, e.g. photo-dissolution
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/061Shaping switching materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/24Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies
    • H10N70/245Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies the species being metal cations, e.g. programmable metallization cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • H10N70/8265Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices on sidewalls of dielectric structures, e.g. mesa-shaped or cup-shaped devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/882Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
    • H10N70/8822Sulfides, e.g. CuS

Definitions

  • the present invention relates to a switching element utilizing an electrochemical reaction and a method for producing the same.
  • Metal atom transfer switching elements are classified into two-terminal and three-terminal types depending on the number of electrodes required. Furthermore, each is classified into an internal type and a surface type depending on where the metal ions are deposited in the ion conductor. In the following, the configuration and operation of an internal element among conventional metal atom transfer switching elements will be described.
  • FIG. 1A and FIG. 1B are cross-sectional schematic diagrams showing the configuration of a two-terminal-internal type metal atom transfer switching element in the first conventional example (Special Table 2002-536840 Publication: International Publication WOOO Z48196 Publication) It is.
  • Metal atom transfer switching element is an ion conductor (Cu S)
  • the ion conduction part 410 having two forces, the second electrode (Ti) 412 in contact with the ion conduction part 410, and the metal (Cu +) that is in contact with the ion conduction part 410 and serving as a source of metal ions (Cu +) And a first electrode 411 that is powerful.
  • the material which comprises each part of FIG. 1A and FIG. 1B is an illustration.
  • metal ions (Cu +) in the vicinity of the contact surface of the ion conducting portion 410 with the second electrode 412 are reduced.
  • Metal (Cu) is deposited on the contact surface of the on-conductive portion 410 with the second electrode 412.
  • the metal (Cu) of the first electrode 411 is oxidized and melts into the ion conducting portion 410 in the form of metal ions (Cu +), and the balance of positive and negative ions in the ion conducting layer is balanced. Maintained.
  • the deposited metal (Cu) grows in the direction of the first electrode 411 inside the ion conductive layer. When the deposited metal (Cu) contacts the first electrode 411, the switching element becomes conductive (see FIG. 1A).
  • FIG. 2A and 2B are diagrams showing a configuration of a two-terminal surface-type metal atom transfer switching element as a second conventional example.
  • FIG. 2A is a schematic plan view (upper side) and a schematic sectional view (lower side) showing the configuration.
  • Figure 2B is a planar micrograph showing the metal deposited on the electrode.
  • the metal atom transfer switching element uses an ion conductive layer 420 made of an ion conductor (Ag-doped A s S) and a metal (Au) in contact with the ion conductive layer 420 as an electric current.
  • ion conductive layer 420 made of an ion conductor (Ag-doped A s S) and a metal (Au) in contact with the ion conductive layer 420 as an electric current.
  • the electrode includes an Au electrode 422 that is an electrode, and an Ag electrode 421 that is in contact with the ion conductive layer 420 and uses a metal (Ag) as a supply source of metal ions (Ag +).
  • the ion conductive layer 420 is formed on the slide glass 425.
  • metal ions (Ag +) in the vicinity of the contact surface of the ion conductive layer 420 with the Au electrode 422 are generated as in the first conventional example.
  • Reduced and metal (Ag) is deposited on the contact surface of the ion conductive layer 420 with the Au electrode 422.
  • the deposited metal (Ag) grows with the ion conductive layer surface facing the Ag electrode 421 (FIG. 2B), and comes into contact with the Ag electrode 421.
  • the Ag electrode 421 and the Au electrode 422 are electrically connected (ON state).
  • a reverse voltage is applied, a part of the deposited metal is cut off and turned off.
  • FIG. 3 is a schematic cross-sectional view showing a configuration of a three-terminal-internal type metal atom transfer switching element as a third conventional example (International Publication WO 2005Z008783).
  • the metal atom transfer switching element includes an ion conductive layer 430 made of an ion conductor (Cu S),
  • the third electrode 433 is formed on the substrate 435.
  • the material which comprises each part of FIG. 3 is an illustration.
  • the first electrode 431 and the second electrode 432 are arranged on the same plane on the ion conductive layer 430.
  • the distance between the third electrode 433 and the first electrode 431 and the distance between the third electrode 433 and the second electrode 432 are determined by the equivalent film thickness of the ion conducting layer 430.
  • the distance between the first electrode 431 and the second electrode 432 is smaller than the film thickness of the ion conductive layer 430.
  • metal ions (Cu +) in the vicinity of the contact surface of the ion conductive layer 430 with the second electrode 432 are reduced, and ion conduction is performed.
  • Metal (Cu) is deposited on the contact surface of the layer 430 with the second electrode 432.
  • the metal (Cu) of the third electrode 433 is oxidized and dissolved in the ion conduction layer 430 in the form of metal ions (Cu +), and the balance of positive and negative ions in the ion conduction layer. Is maintained.
  • the deposited metal (Cu) grows on the surface of the ion conductive layer.
  • the switching element When the deposited metal (Cu) comes into contact with the first electrode 431, the switching element is turned on. Conversely, when a negative voltage is applied to the third electrode 433 with the second electrode 432 as a reference, a completely reverse electrochemical reaction proceeds. As a result, the deposited metal (Cu) does not come into contact with the first electrode 431, and the switching element is cut (off). [0012] As described above, the metal atoms (Cu) constituting the third electrode 433 move between the second electrode 432 and the first electrode 431 in the form of a precipitate by an electrochemical reaction, and conduct ( In the ON state, the metal wiring electrically connects the second electrode 432 and the first electrode 431.
  • FIG. 4 is a schematic cross-sectional view showing a configuration of a metal atom transfer switching element applicable to a surface type as a fourth conventional example (US Pat. No. 6825489).
  • the metal atom transfer switching element includes a lower electrode 441, an ion conductor 440 provided on the side wall of the opening 450 of the insulating film 444 formed on the lower electrode, and an insulating film on the insulating film.
  • the upper electrode 442 is formed.
  • the upper electrode 442 is in contact with the upper surface of the ion conductor 440. Even in this configuration, the element can be turned on and off in the same manner as in the third conventional example.
  • Japanese Patent Application Laid-Open No. 2002-76325 discloses an electronic element capable of controlling conductance.
  • This electronic element is composed of a first electrode made of a mixed conductor material having ionic conductivity and electronic conductivity and a second electrode made of a conductive substance, and the conductance between the electrodes can be controlled.
  • Japanese Unexamined Patent Application Publication No. 2005-101535 discloses a semiconductor device.
  • the semiconductor device includes first and second wiring layers having different layers, vias connecting the wirings of the first wiring layer and the wirings of the second wiring layer, and members having variable conductivity.
  • the via includes a contact portion between the via and the first wiring as a first terminal, and a contact portion between the via and the second wiring as a second terminal.
  • the connection state between the first terminal and the second terminal can be variably set to a short circuit, an open state, or an intermediate state between the short circuit and the open state.
  • Japanese Patent Application Laid-Open No. 6-224412 discloses an atomic switch circuit and system.
  • This atomic switch circuit comprises means for changing the conductivity of an atomic wire by moving a specific atom in the atomic wire formed by arranging a plurality of atoms so that each other's electrons interact. It has a memory or logic function of information.
  • This atomic switch circuit comprises means for changing the conductivity of an atomic wire by moving a specific atom in the atomic wire formed by arranging a plurality of atoms so that each other's electrons interact. It has a memory or logic function of information.
  • the thickness of the metal bridge be as large as possible with the switch turned on. This is because the phenomenon of metal atom movement (elect port migration) occurs due to the flow of electrons when the switch is turned on, and the metal bridge may be broken.
  • metal is deposited in the space in the opening as shown in Fig. 4 when the switch is turned on, so that the ion conduction layer is not subjected to structural stress (with a diameter of lOnm or more). ) Can be formed.
  • FIG. 4 shown as a surface element is a cross-sectional view in the middle of manufacturing.
  • an upper layer such as a wiring layer or a protective film is subsequently formed on the upper electrode for incorporation into an LSI
  • the ion conductive layer is exposed on the surface on the opening side, so that the void in the opening is formed in the upper layer. It will be embedded with. If metal is deposited between the electrodes with the upper layer embedded in the gap, structural stress is generated in the ion conductive layer.
  • An object of the present invention is to provide a switching element and a method for manufacturing the same, in which structural stress generated inside when turned on is further reduced.
  • Another object of the present invention is to provide a switching element and a method for manufacturing the same that can make the ON state of the switch more stable.
  • a switching element of the present invention for achieving the above object includes a first electrode, a second electrode, an ion conducting portion, and a buffer portion.
  • the first electrode can supply metal ions.
  • the ion conductive portion includes an ion conductor that is in contact with the first electrode and the second electrode and in which metal ions can move.
  • the buffer portion is smaller in hardness than the ion conductor, and is provided along the ion conductive portion between the first electrode and the second electrode. Due to the potential difference between the first electrode and the second electrode, the metal is deposited or dissolved between the first electrode and the second electrode, so that the electrical characteristics are switched.
  • the buffer portion may include a porous material. Up In the switching element described above, the buffer portion may be a gap.
  • an insulating film having openings reaching the first electrode and the second electrode may be further provided between the first electrode and the second electrode.
  • the ion conducting part is placed on the side wall of the opening!
  • the second electrode may be disposed on the substrate.
  • the first electrode may be disposed on the ion conductive portion and the buffer portion, and the ion conductive portion and the buffer portion may be disposed on the second electrode.
  • the switching element may further include a third electrode that is in contact with the ion conducting portion and capable of supplying metal ions. Even if the electrical characteristics change because the metal is deposited or dissolved between the first electrode and the second electrode due to the potential difference between the first electrode, the second electrode, and the third electrode. good.
  • the first electrode and the third electrode may be provided on the same plane.
  • An insulating film having openings reaching these three electrodes is provided between the first electrode, the third electrode, and the second electrode.
  • the ion conducting part may be disposed on the side wall of the opening.
  • the second electrode may be disposed on the substrate.
  • An ion conducting portion and a buffer portion are disposed on the second electrode.
  • the first electrode and the third electrode force may be disposed on the S ion conduction part and the buffer part.
  • a method for manufacturing a switching element of the present invention for achieving the above object includes: (a) a step of forming a second electrode on a substrate; and (b) a step of covering the substrate and the second electrode. Forming an opening substantially perpendicular to the substrate so that the second electrode is partially applied to the inter-layer insulating layer; and (c) forming an ionic conductor so as to cover the side wall of the opening. (D) filling a filling film inside the ionic conductor; (e) forming a first electrode so as to cover a part of the interlayer insulating layer, the ionic conductor and the filling film; It comprises.
  • the first electrode can supply metal ions.
  • the ionic conduction part includes an ionic conductor through which metal ions can move.
  • the filled film is smaller in hardness than the ionic conductor.
  • the method may further include (f) a step of removing the filling film.
  • step (e) is formed away from the first electrode so as to cover (el) part of the interlayer insulating layer, ion conductor, and filling film. A process may be provided.
  • FIG. 1A is a schematic cross-sectional view showing a configuration of a metal atom migration switching element of Conventional Example 1.
  • FIG. 1B is a schematic cross-sectional view showing a configuration of a metal atom transfer switching element of Conventional Example 1.
  • FIG. 2A is a schematic plan view and a schematic cross-sectional view showing a configuration of a metal atom migration switching element of Conventional Example 2.
  • FIG. 2B is a planar micrograph showing metal deposited on the electrode of the metal atom transfer switching element of Conventional Example 2.
  • FIG. 3 is a schematic cross-sectional view showing a configuration of a metal atom migration switching element of Conventional Example 3.
  • FIG. 4 is a schematic cross-sectional view showing a configuration of a metal atom transfer switching element of Conventional Example 4.
  • FIG. 5A is a perspective view showing one structural example of a basic two-terminal switch.
  • FIG. 5B is a schematic cross-sectional view showing one structural example of a basic two-terminal switch.
  • FIG. 5C is a schematic cross-sectional view showing another configuration example of the basic two-terminal switch.
  • FIG. 6A is a schematic plan view showing a configuration example of a two-terminal switch of Example 1.
  • FIG. 6B is a schematic cross-sectional view showing a configuration example of the two-terminal switch of Example 1.
  • FIG. 7A is a schematic cross-sectional view showing the method for manufacturing the two-terminal switch of Example 1.
  • FIG. 7B is a schematic cross-sectional view showing the method for manufacturing the two-terminal switch of Example 1.
  • FIG. 7C is a schematic cross-sectional view showing the method for manufacturing the two-terminal switch of Example 1.
  • FIG. 7D is a schematic cross-sectional view showing the method for manufacturing the two-terminal switch of Example 1.
  • FIG. 7E is a schematic cross-sectional view showing the method for manufacturing the two-terminal switch of Example 1.
  • FIG. 7F is a schematic cross sectional view showing the method for manufacturing the two-terminal switch of Example 1.
  • FIG. 7G is a schematic cross sectional view showing the method for manufacturing the two-terminal switch of Example 1.
  • FIG. 7H is a schematic cross sectional view showing the method for manufacturing the two-terminal switch of Example 1.
  • FIG. 8A is a schematic plan view showing a structural example of a two-terminal switch of Example 2.
  • FIG. 8B is a schematic cross-sectional view showing a configuration example of a two-terminal switch of Example 2.
  • FIG. 9A is a schematic plan view showing one structural example of a three-terminal switch of Example 3.
  • FIG. 9B is a schematic plan view showing one structural example of a three-terminal switch of Example 3.
  • FIG. 10A is a schematic plan view showing another configuration example of the three-terminal switch of Example 3.
  • FIG. 10B is a schematic plan view showing another configuration example of the three-terminal switch of Example 3.
  • the switching element of the present invention is characterized in that a buffer portion for relaxing structural stress generated when metal is deposited is provided along the ionic conductor.
  • the basic configuration and operation principle of a two-terminal metal atom switching element and a three-terminal metal atom transfer switching element related to the present invention will be described in the case of a two-terminal element.
  • the two-terminal type metal atom switching element is referred to as a two-terminal switch
  • the three-terminal type metal atom transfer switching element is referred to as a three-terminal switch.
  • FIG. 5A and FIG. 5B are a perspective view and a schematic cross-sectional view showing one configuration example in the embodiment of the two-terminal switch of the present invention.
  • the two-terminal switch includes an ion conductor 10 having a gap 13 formed therein, and a first terminal provided at both ends of the ion conductor 10 so as to be in contact with the gap 13.
  • the electrode 11 and the second electrode 12 are included.
  • the metal ions in the vicinity of the contact surface of the ion conductor 10 with the second electrode 12 are reduced, and the second of the ion conductor 10 is reduced.
  • Metal is deposited on the contact surface with the electrode 12.
  • the metal is mainly deposited on the surface of the ionic conductor on the side of the gap 13 with less structural stress inside the ionic conductor.
  • the metal of the first electrode 11 is oxidized and dissolved in the ion conductor 10 in the form of metal ions, and the balance of positive and negative ions in the ion conductor is maintained.
  • the deposited metal grows by directing the surface of the ionic conductor toward the first electrode 11. When the deposited metal comes into contact with the first electrode 11, the switching element becomes conductive (ON).
  • the positive or negative potential difference between the first electrode 11 and the second electrode 12 causes the first
  • Electrode 11 moves between the first electrode 11 and the second electrode 12 in the form of precipitates by an electrochemical reaction, and in the conductive (ON) state, the first electrode 11 and the second electrode This is the metal wiring that connects 12 electrically.
  • a chalcogenide nano which is a compound containing a chalcogen element and a halogen compound which is a compound containing a rogen element are applicable.
  • Chalcogen elements are oxygen, sulfur, selenium, tellurium and polonium.
  • Halogen elements are fluorine, chlorine, bromine, iodine, and astatine.
  • metals for chalcogenides, metals, and lozenges, materials with high ion conductivity of metal ions (copper sulfide, silver sulfide, silver telluride, rubidium copper chloride, silver iodide, copper iodide, etc.) There are low materials (acid tantalum, acid silicon, tungsten oxide, alumina, etc.).
  • the material of the first electrode 11 includes copper and silver.
  • the metal ions are silver ions.
  • a barrier metal W, Ta, TaN, Ti, TiN, etc.
  • the metal ions are copper.
  • a buffer portion is provided in contact with the ionic conductor 10 in order to reduce structural stress.
  • the buffer portion is made of a material that is more easily deposited with metal than the inside of the ionic conductor 10.
  • a material for example, a material whose hardness is smaller than that of the ionic conductor 10, and a gas filled in the gap is also included. That is, for example, the gap 13 is provided as a buffer part.
  • the metal can be easily deposited.
  • the soft material absorbs the shape change caused by the deposition of metal, so that the structure of the ionic conductor 10 It is because it can reduce stress.
  • the soft material mentioned here includes an elastic material. Specific examples of the hydrophilic material include synthetic resin and synthetic rubber.
  • the material that fills the voids is not limited to a soft material, and may be a porous material having a structure having pores inside.
  • the porous material include methylsiloxy acid (also composed of silicon, carbon, and oxygen power).
  • Methyl siloxy acid has a methyl group (CH—) attached to silicon.
  • 6A and 6B are a schematic plan view and a schematic cross-sectional view showing a configuration example of the two-terminal switch of this embodiment.
  • the cross section taken along JJ 'in Fig. 6A (plan view) corresponds to Fig. 6B (cross section).
  • the two-terminal switch includes a second electrode 22 on the substrate 100 and an interlayer insulating film in which an opening 26 is formed so that a part of the second electrode 22 is exposed. 25, an ion conductor 20 provided on the side wall of the opening 26, and a first electrode 21 provided so as to cover a part of the opening 26.
  • the first electrode 21 is made of copper
  • the second electrode 22 is made of platinum.
  • the ion conductor 20 is made of copper sulfide
  • the interlayer insulating film 25 is made of a silicon oxide film.
  • the ion conductor 20 By providing the ion conductor 20 only on the side wall of the opening 26, it is generated at the time of metal deposition, compared to the case where the film between the first electrode 21 and the second electrode 22 is entirely formed by the film of the ion conductor 20.
  • the stress can be diffused not only to the gap 27 but also to the interlayer insulating film 25 side. That is, the ionic conductor 20 can deposit metal without being subjected to structural stress, and the on-state can be further stabilized.
  • FIG. 7A force FIG. 7H is a schematic cross-sectional view showing the manufacturing method of the two-terminal switch of this example.
  • a silicon oxide film having a thickness of 300 nm is formed on the surface of the silicon substrate to obtain a substrate 100.
  • a resist pattern is formed on the substrate 100 where the second electrode 22 is not formed.
  • platinum having a thickness of 100 ⁇ m is formed on the resist pattern by vacuum deposition.
  • the resist pattern and platinum formed thereon are removed by a lift-off technique, and the remaining portion of platinum is formed as the second electrode 22 as shown in FIG. 7A.
  • the length of the second electrode 22 in the left-right direction in FIG. 7A is the width
  • the width dimension of the second electrode 22 is made larger than lOOnm.
  • the length of the second electrode 22 in the depth direction of FIG. 7A is set to be larger than 150 nm.
  • a 300 nm silicon oxide film to be the interlayer insulating film 25 is formed so as to cover the second electrode 22 and the exposed portion of the upper surface of the substrate.
  • a resist pattern for forming the opening 26 is formed on the interlayer insulating film 25 by a conventional lithography technique.
  • the opening provided in the resist pattern covers a part of the pattern of the second electrode 22 when the substrate surface is viewed from above.
  • the upper force of the resist pattern is also etched by reactive chemical etching on the interlayer insulating film 25 until the upper surface of the second electrode 22 is exposed. Thereafter, the resist pattern is removed. In this way, an opening 26 is formed as shown in FIG. 7B.
  • the dimension of the opening 26 is such that the width that is the length in the left-right direction in FIG. 7B is lOOnm, and the length in the depth direction in FIG. 7B is 300 nm.
  • the depth of the opening 26 is 200 to 300 nm.
  • the depth direction 150 nm force in FIG. 7B overlaps the pattern of the second electrode 22.
  • a sputtering method is used so that the copper sulfide serving as the ion conductor 20 has a uniform thickness so as to cover the upper surface of the interlayer insulating film 25 and the opening 26.
  • anisotropic etching is performed on the ion conductor 20 using a reactive ion etching method to remove the copper sulfide on the interlayer insulating film 25 and the bottom surface of the opening 26 (FIG. 7D). Since the etching rate of the side wall portion of the opening portion 26 is slower than that of the bottom surface portion of the opening portion 26, a part of the ion conductor 20 remains without being etched.
  • an LOR resist (manufactured by Dow Cowing Co.) serving as a sacrificial layer is applied by spin coating for about 20 Onm.
  • An organic solvent containing a resin such as LOR resist has a low viscosity even if there is a large step or deep opening force S on the base, so that the step or opening is filled and the surface becomes almost flat. Therefore, the thickness of the opening 26 of the sacrificial layer 28 formed by the spin coating method is thicker than that on the interlayer insulating film 25.
  • the sacrificial layer 28 on the interlayer insulating film 25 is removed, leaving the sacrificial layer 28 accumulated in the opening 26, as shown in FIG. 7F.
  • the thickness of the sacrificial layer 28 in the opening 26 is not only thicker than that on the interlayer insulating film 25, but the etching rate for the sacrificial film 28 in the opening 26 is slower than that on the interlayer insulating film 25.
  • the sacrificial layer 28 can be left.
  • a resist pattern is formed in a portion where the first electrode 21 is not formed, and copper having a thickness of lOOnm is formed on the resist pattern by vacuum evaporation. To do.
  • the sacrificial film 28 is embedded in the opening 26, copper can be formed also on the opening 26 via the sacrificial film 28.
  • the resist pattern and the copper formed thereon are removed by lift-off technology, and the remaining copper is formed as the first electrode 21 (FIG. 7G).
  • a part of the opening 26 is not covered with the first electrode 21 and is exposed.
  • the stripping solution also penetrates into the gap 27 between the first electrode 21 and the second electrode 22 as shown in FIG. 7H. Layer 28 is completely removed from opening 26.
  • the sacrificial layer 28 is embedded in the opening 26 when copper for the first electrode 21 is formed, the sacrificial layer 28 is removed later and the gap 27 is removed. Copper can also be formed almost flat on the part to be.
  • the sacrificial layer 28 in the region covered with the first electrode 21 is removed by exposing the part of the opening 26 and isotropic etching of the stripping solution, thereby removing the first electrode. A gap 27 can be formed between the electrode 21 and the second electrode 22.
  • the sacrificial layer 28 is not limited to the above material as long as it can be formed by spin coating and can be removed by isotropic etching, and other materials may be used.
  • a problem with the conventional internal element is that structural stress is generated in the ion conductor due to volume expansion due to metal deposition.
  • the conventional surface type device has a smaller structural stress than the internal type device, the formation of the space portion itself has been a problem.
  • the switching element of this example relaxes stress in the surface type by the method described above. It is possible to incorporate it into an LSI while leaving a gap to be integrated. As a result, the metal can be deposited without the ionic conductor 20 being subjected to structural stress. As a result, a thicker bridge can be formed, and the on-state can be further stabilized.
  • the vertical area in which the second electrode 22, the ionic conductor 20, the air gap 27, and the first electrode 21 are formed in order upward with respect to the substrate 100 can reduce the area occupied by the plane. Can be achieved. Therefore, it is more advantageous for LSI integration.
  • the sacrificial layer 28 is softer than the ion conductor 20, it can absorb the shape change caused by the deposition of metal. As a result, the structural stress of the ion conductor 20 can be reduced, a thicker bridge can be formed, and the on-state can be further stabilized.
  • FIG. 8A and 8B are a schematic plan view and a schematic cross-sectional view showing a configuration example of the two-terminal switch of this embodiment.
  • the cross section taken along KK 'in Fig. 8A (plan view) corresponds to Fig. 8B (cross section).
  • the two-terminal switch includes the second electrode 32 on the substrate 100 and an interlayer insulating film 35 in which an opening is formed so that a part of the second electrode 32 is exposed. And an ion conductor 30 provided on the side wall of the opening, and a first electrode 31 provided so as to cover the opening.
  • the first electrode 31 is made of copper
  • the second electrode 32 is made of platinum.
  • the ion conductor 30 is made of copper sulfide
  • the interlayer insulating film 35 is made of a silicon oxide film.
  • a soft material 37 is embedded in the opening having the ion conductor 30 as a side wall.
  • the upper surface of the soft material 37 embedded in the opening is covered with the first electrode 21.
  • the patterns of the first electrode 31 and the second electrode 32 have substantially the same shape, and these patterns appear to overlap as shown in the plan view of FIG. 8A. If the ion conductor 30 and the soft material 37 are sandwiched between the first electrode 31 and the second electrode 32, the patterns of these two electrodes are not necessarily the same.
  • the soft material 37 is softer than the ionic conductor 30, it can absorb the shape change caused by the deposition of metal. Thereby, structural stress of the ion conductor 30 can be reduced, a thicker bridge can be formed, and the on-state can be further stabilized.
  • the soft material 37 is a material having a hardness lower than that of the ion conductor 30 as described above.
  • the LOR resist described in Example 1 can be used.
  • the sacrificial layer 28 shown in Example 1 is a soft material 37.
  • the width of the opening in the horizontal direction of the drawing is 1 OOnm
  • the length in the depth direction of the drawing is lOOnm
  • the opening is formed on the second electrode 32.
  • the pattern of the opening is within the pattern of the second electrode 32.
  • the first electrode 31 when the first electrode 31 is formed, the first electrode 31 covers the upper surface of the soft material 37 and the ion conductor 30 embedded in the opening.
  • the process described in FIG. 7H is not performed.
  • the two-terminal switch of the present embodiment can be manufactured by making the above-described changes to the manufacturing method described in the first embodiment.
  • the two-terminal switch of this embodiment can achieve the same effect as the first embodiment, and can further reduce the area occupied by the plane.
  • the soft material 37 serving as a buffer portion is embedded in the opening, the first electrode 31 covering it can be formed more flatly.
  • FIGS. 9A and 9B are a schematic plan view and a schematic cross-sectional view showing a configuration example of the three-terminal switch of this embodiment.
  • the cross section taken along LL 'in Fig. 9A (plan view) corresponds to Fig. 9B (cross section).
  • the three-terminal switch includes a second electrode 42 on the substrate 100 and an interlayer insulating film in which an opening 46 is formed so that a part of the second electrode 42 is exposed. 45, the ion conductor 40 provided on the side wall of the opening 46, the first electrode 41 covering a part of the opening 46 and directly above the second electrode 42, and the opening 46
  • the third electrode 43 is provided so as to cover a part.
  • the first electrode 41 and the third electrode 43 are made of copper, and the second electrode
  • the pole 42 is made of platinum.
  • the ion conductor 40 is made of copper sulfide, and the interlayer insulating film 45 is made of a silicon oxide film.
  • a gap 47 is provided in the opening 46 having the ion conductor 40 as a side wall.
  • a soft material may be embedded as a buffer portion in the gap 47 as the buffer portion.
  • 10A and 10B are a schematic plan view and a schematic cross-sectional view showing another configuration example of the three-terminal switch of this embodiment.
  • the cross section taken along M M ′ in FIG. 10A (plan view) corresponds to FIG. 10B (cross section).
  • the gap is filled with the soft material 47a.
  • the soft material include the LOR resist described in the first embodiment.
  • a porous material may be used as the soft material.
  • the soft material is softer than the ionic conductor 40, it is possible to absorb the shape change caused by the deposition of the metal. As a result, the structural stress of the ion conductor 40 can be reduced, a thicker bridge can be formed, and the on-state can be further stabilized.
  • the copper of the first electrode 41 becomes copper ions and dissolves in the ion conductor 40. Then, copper ions in the ion conductor are deposited as copper on the surfaces of the first electrode 41 and the second electrode 42, and the deposited copper forms a metal bridge that connects the first electrode 41 and the second electrode 42. The When the first electrode 41 and the second electrode 42 are electrically connected by metal bridge, the three-terminal switch is turned on.
  • the metal bridge copper is dissolved in the ion conductor 40 and a part of the metal bridge is cut.
  • the electrical connection between the first electrode 41 and the second electrode 42 is broken, and the three-terminal switch is turned off. It should be noted that the electrical characteristics have changed, such as the resistance between the first electrode 41 and the second electrode 42 has increased, the capacitance between the electrodes has changed, etc. The electrical connection is broken.
  • a positive voltage may be applied to the third electrode 43 to turn on the off-state force.
  • the copper of the third electrode 43 becomes copper ions and dissolves in the ion conductor 40.
  • the copper ions dissolved in the ionic conductor 40 are deposited as copper at the metal cross-link breaks, and the metal cross-links electrically connect the first electrode 41 and the second electrode 42.
  • the on state and the off state can be controlled by the positive or negative potential difference between the first electrode 41, the second electrode 42, and the third electrode 43.
  • the opening 46 is formed with the dimension of the opening 46 set to ⁇ ⁇ m as the width in the horizontal direction of the drawing and the length in the depth direction of 500 nm as shown in the drawing.
  • the third electrode 43 is also formed at the same time.
  • soft material is provided in the gap 47, the process described in FIG. 7H is not performed.
  • the three-terminal switch of the present embodiment can be manufactured by adding the above-described changes to the manufacturing method described in the first embodiment.
  • the ion conductor 40 only on the side wall of the opening 46, metal deposition can be achieved as compared with the case where the entire area between the first electrode 41 and the second electrode 42 is formed by the film of the ion conductor 40.
  • the stress that is sometimes generated can be diffused not only to the gap 47 but also to the interlayer insulating film 45 side.
  • the metal when the switch is turned on, the metal is deposited in a region having a hardness lower than that of the ion conductive portion, and thus structural stress generated in the ion conductive portion is further suppressed.
  • the metal when the switch is turned on, the metal is deposited in a region having a hardness lower than that of the ionic conductor, so that the structural stress received by the ionic conductor is reduced and a thick metal bridge can be formed. As a result, the on state is more stable.
  • the switching element of the present invention is a semiconductor device such as an LSI, DRAM or flash memory.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

 スイッチング素子は、第1の電極と、第2の電極と、イオン伝導部と、緩衝部とを具備する。第1の電極は、金属イオンを供給可能である。イオン伝導部は、第1の電極および第2の電極に接触し、金属イオンがその内部を移動可能なイオン伝導体を含む。緩衝部は、硬度がイオン伝導体よりも小さく、第1の電極と第2の電極との間にイオン伝導部に沿って設けられている。第1の電極と第2の電極との間の電位差により、当該第1の電極と当該第2の電極との間で金属が析出または溶解することで、電気的特性が切り替わる。

Description

明 細 書
スイッチング素子およびその製造方法
技術分野
[0001] 本発明は、電気化学反応を利用したスイッチング素子およびその製造方法に関す る。
背景技術
[0002] プログラマブルロジックの機能を多様ィ匕し、電子機器などへの実装を推進して行く ためには、ロジックセル間を相互に結線するスイッチング素子のサイズを小さくし、そ のオン抵抗を小さくすることが必要となる。力かる要件を満たし得るスイッチング素子 として、イオン伝導体 (イオンがその内部を自由に動き回ることのできる物質)中の金 属イオン移動と、電気化学反応による金属の析出'溶解を利用したスイッチング素子 (以下、金属原子移動スイッチング素子と呼ぶ)が提案されている。金属原子移動ス イッチング素子は、これまでのプログラマブルロジックでよく用いられてきた半導体ス イッチング素子 (MOSFETなど)よりもサイズが小さぐオン抵抗が小さいことが知ら れている。金属原子移動スイッチング素子は必要な電極数によって 2端子型、 3端子 型に分けられ、さらに、それぞれについて、金属イオンがイオン伝導体のどの場所に 析出するかによって内部型、表面型に分けられる。以下に、従来の金属原子移動ス イッチング素子のうち、内部型素子の構成と動作について説明する。
[0003] 図 1A及び図 1Bは、第 1の従来例(特表 2002— 536840号公報:国際公開 WOOO Z48196号公報)における 2端子—内部型の金属原子移動スイッチング素子の構成 を示す断面模式図である。金属原子移動スイッチング素子は、イオン伝導体 (Cu S)
2 力もなるイオン伝導部 410と、イオン伝導部 410に接触して 、る第 2の電極 (Ti) 412 と、イオン伝導部 410に接触し、金属イオン (Cu+)の供給源となる金属 (Cu)力ゝらな る第 1の電極 411とを有する構成である。なお、図 1 A及び図 1Bの各部を構成する材 料は例示である。
[0004] 第 1の電極 411を基準として第 2の電極 412に負の電圧を印加すると、イオン伝導 部 410の第 2の電極 412との接触面近傍における金属イオン (Cu+)が還元され、ィ オン伝導部 410の第 2の電極 412との接触面において金属(Cu)が析出する。金属( Cu)の析出に対応して、第 1の電極 411の金属(Cu)が酸化され、金属イオン (Cu+ )の形でイオン伝導部 410に溶け込み、イオン伝導層内の正負イオンのバランスが維 持される。析出した金属(Cu)はイオン伝導層内部を第 1の電極 411の方向に向かつ て成長する。析出した金属(Cu)が第 1の電極 411に接触すると、スイッチング素子は 導通 (オン)状態となる(図 1 Aを参照)。
[0005] 逆に、第 1の電極 411を基準として第 2の電極 412に正の電圧を印加すると、全く逆 の電気化学反応が進行する。その結果、析出した金属 (Cu)が第 1の電極 411に接 触しなくなり、スイッチング素子は切断 (オフ)状態となる(図 1Bを参照)。以上のように 、第 1の電極 411を構成する金属原子 (Cu)が、電気化学反応により、析出物の形で 第 2の電極 412と第 1の電極 411の間に移動し、導通(オン)状態では、第 2の電極 4 12と第 1の電極 411を電気的に接続する金属配線となる。
[0006] 次に、第 2の従来例(Y. Hirose and H. Hirose, "Polarity- dependent me mory switching and behavior of Ag dendrite in Ag― photodoped a morphous As S films , Journal of Applied Physics, (US) , vol. 47,
2 3
No. 6, June, 1976, p. 2767— 2772)〖こつ!/ヽて説明する。第 2の従来 f列【ま 、別の内部型素子に関する。図 2A及び図 2Bは、第 2の従来例として、 2端子 表面 型の金属原子移動スイッチング素子の構成を示す図である。図 2Aは、その構成を示 す平面模式図 (上側)及び断面模式図(下側)である。図 2Bは、電極に析出した金属 を示す平面顕微鏡写真である。
[0007] 図 2Aに示すように、金属原子移動スイッチング素子は、イオン伝導体 (Agドープ A s S )からなるイオン伝導層 420と、イオン伝導層 420に接触している金属 (Au)を電
2 3
極とする Au電極 422と、イオン伝導層 420に接触し、金属イオン (Ag + )の供給源と なる金属 (Ag)を電極とする Ag電極 421とを有する構成である。イオン伝導層 420は スライドガラス 425上に形成されている。
[0008] Au電極 422に負電圧、 Ag電極 421に正電圧を印加すると、第 1の従来例と同様 に、イオン伝導層 420の Au電極 422との接触面近傍における金属イオン (Ag + )が 還元され、イオン伝導層 420の Au電極 422との接触面において金属 (Ag)が析出す る。析出した金属 (Ag)はイオン伝導層表面を Ag電極 421の方向に向カゝつて成長し (図 2B)、 Ag電極 421と接触する。このとき、 Ag電極 421と Au電極 422間は導通(ォ ン状態)する。逆の電圧を印加すると、析出した金属の一部が切断されて、オフ状態 となる。
[0009] さらに、第 3の従来例について説明する。第 3の従来例は、更に別の内部型素子に 関する。図 3は、第 3の従来例(国際公開 WO 2005Z008783号公報)として、 3端 子-内部型の金属原子移動スイッチング素子の構成を示す断面模式図である。金 属原子移動スイッチング素子は、イオン伝導体 (Cu S)からなるイオン伝導層 430と、
2
イオン伝導層 430に接触して ヽる第 2電極 (Ti) 432と、イオン伝導層 430に接触し、 金属イオン (Cu+)の供給源となる金属 (Cu)力もなる第 1電極 431と、イオン伝導層 430に接触し、金属イオン (Cu+)の供給源となる金属(Cu)力もなる第 3電極 433と を有する構成である。第 3の電極 433は基板 435上に形成されている。なお、図 3の 各部を構成する材料は例示である。
[0010] 上記 3つの電極の配置について述べる。図 3に示すように、第 1電極 431および第 2 電極 432は、イオン伝導層 430上の同一平面に配置されている。第 3電極 433と第 1 電極 431間の距離、および第 3電極 433と第 2電極 432間の距離は等しぐイオン伝 導層 430の膜厚で決定される。第 1電極 431と第 2電極 432間の距離はイオン伝導 層 430の膜厚よりも小さい。
[0011] 第 2電極 432を基準として第 3電極 433に正の電圧を印加すると、イオン伝導層 43 0の第 2電極 432との接触面近傍における金属イオン (Cu+)が還元され、イオン伝 導層 430の第 2電極 432との接触面にぉ 、て金属 (Cu)が析出する。金属(Cu)の析 出に対応して、第 3電極 433の金属(Cu)が酸化され、金属イオン (Cu+)の形でィ オン伝導層 430に溶け込み、イオン伝導層内の正負イオンのバランスが維持される。 析出した金属 (Cu)はイオン伝導層表面に成長する。析出した金属 (Cu)が第 1電極 431に接触すると、スイッチング素子は導通 (オン)状態となる。逆に、第 2電極 432を 基準として第 3電極 433に負の電圧を印加すると、全く逆の電気化学反応が進行す る。その結果、析出した金属 (Cu)が第 1電極 431に接触しなくなり、スイッチング素 子は切断 (オフ)状態となる。 [0012] 以上のように、第 3電極 433を構成する金属原子 (Cu)が、電気化学反応により、析 出物の形で第 2電極 432と第 1電極 431の間に移動し、導通 (オン)状態では、第 2電 極 432と第 1電極 431を電気的に接続する金属配線となる。
[0013] 次に、第 4の従来例について説明する。第 4の従来例は、表面型素子に関する。図 4は、第 4の従来例(米国特許 6825489号公報)として、表面型に適応可能な金属 原子移動スイッチング素子の構成を示す断面模式図である。図 4に示すように、金属 原子移動スイッチング素子は、下部電極 441と、下部電極上に形成された絶縁膜 44 4の開口部 450の側壁に設けられたイオン伝導体 440と、絶縁膜上に形成された上 部電極 442とを有する構成である。上部電極 442はイオン伝導体 440の上面と接触 している。この構成においても、第 3の従来例と同様にして素子をオンさせたり、オフ させたりすることができる。
[0014] 関連する技術として特開 2002— 76325号公報にコンダクタンスの制御が可能な電 子素子が開示されている。この電子素子は、イオン伝導性及び電子伝導性を有する 混合導電体材料から成る第一電極及び導電性物質から成る第二電極により構成さ れ、電極間のコンダクタンスを制御することが可能である。
[0015] 関連する技術として特開 2005— 101535号公報に半導体装置が開示されている 。この半導体装置は、互いに層の異なる第 1及び第 2の配線層と、前記第 1の配線層 の配線と前記第 2の配線層の配線を接続するビアであって、導電率の可変な部材を 含むビアを有する。前記ビアは、前記ビアと前記第 1の配線との接触部を第 1の端子 、前記ビアと前記第 2の配線との接触部を第 2の端子とする、導電率可変型のスイツ チ素子をなす。前記スィッチ素子は、前記第 1の端子と前記第 2の端子間の接続状 態が、短絡、開放、又は、前記短絡と前記開放の中間状態に、可変に設定自在とさ れてなる。
[0016] 関連する技術として特開平 6— 224412号公報に原子スィッチ回路及びシステムが 開示されている。この原子スィッチ回路は、原子を互いの電子が相互作用を持つよう に複数個並べて形成した原子細線中の特定の原子を移動させることにより、その原 子細線の電導度を変化させる手段を具備し、情報の記憶作用あるいは論理作用を 持つ。 [0017] 内部型素子の場合、イオン伝導層内部に金属を析出させようとすると、構造ストレス により析出量が制限され、電極間に太い金属架橋を形成することは困難である。第 1 の従来例における金属架橋の太さは数ナノメートルである。一方、内部型素子を LSI (Large Scale Integrated Circuit)で使用するには、スィッチがオンの状態で金 属架橋の太さができるだけ太い方が望ましい。これは、スィッチオン時の電子の流れ によって、金属原子が移動する現象 (エレクト口マイグレーション)が発生し、金属架 橋が切れてしまうおそれがあるためである。これに対して、表面型では、スィッチオン 時に図 4に示したような開口部内の空間に金属が析出するため、イオン伝導層が構 造的なストレスを受けることがなぐ太いブリッジ (直径 lOnm以上)を形成することが 可能である。
[0018] 一方、表面型素子として示した図 4の構造は製造途中の断面図である。 LSIに組み 込むために、その後に上部電極の上に配線層や保護膜等の上層を形成すると、ィォ ン伝導層が開口部側の表面で露出しているため、開口部内の空隙が上層で埋め込 まれてしまう。空隙内に上層が埋め込まれた状態で電極間に金属を析出させようとす ると、イオン伝導層に構造的ストレスが発生することになる。
発明の開示
[0019] 本発明の目的は、オンさせる際に内部に発生する構造的ストレスをより緩和したスィ ツチング素子とその製造方法を提供することを目的とする。
[0020] 本発明の別の目的は、スィッチのオンの状態をより安定ィ匕させることが可能なスイツ チング素子とその製造方法を提供することを目的とする。
[0021] 上記目的を達成するための本発明のスイッチング素子は、第 1の電極と、第 2の電 極と、イオン伝導部と、緩衝部とを具備する。第 1の電極は、金属イオンを供給可能で ある。イオン伝導部は、第 1の電極および第 2の電極に接触し、金属イオンがその内 部を移動可能なイオン伝導体を含む。緩衝部は、硬度がイオン伝導体よりも小さく、 第 1の電極と第 2の電極との間にイオン伝導部に沿って設けられている。第 1の電極 と第 2の電極との間の電位差により、当該第 1の電極と当該第 2の電極との間で金属 が析出または溶解することで、電気的特性が切り替わる。
[0022] 上記のスイッチング素子にぉ 、て、緩衝部は、有孔性材料を含んで 、ても良 、。上 記のスイッチング素子において、緩衝部は、空隙であっても良い。
[0023] 上記のスイッチング素子において、第 1の電極と第 2の電極との間に、第 1の電極お よび第 2の電極に達する開口部を有する絶縁膜を更に具備していても良い。イオン 伝導部が開口部の側壁に配置されて!ヽても良!ヽ。
[0024] 上記のスイッチング素子において、第 2の電極が基板上に配置されていても良い。
イオン伝導部および緩衝部が第 2の電極上に配置されている第 1の電極がイオン伝 導部および緩衝部の上に配置されて 、ても良 、。
[0025] 上記のスイッチング素子にぉ 、て、イオン伝導部と接触し、金属イオンを供給可能 な第 3の電極を更に具備していても良い。第 1の電極と第 2電極と第 3の電極との間の 電位差により、当該第 1の電極と第 2の電極との間で金属が析出または溶解すること で、電気的特性が切り替わっても良い。
[0026] 上記のスイッチング素子において、第 1の電極および第 3の電極が同一平面に設け られていても良い。第 1の電極および第 3の電極と第 2の電極との間にこれら 3つの電 極に達する開口部を有する絶縁膜が設けられている。イオン伝導部が開口部の側壁 に配置されていても良い。
[0027] 上記のスイッチング素子において、第 2の電極が基板上に配置されていても良い。
イオン伝導部および緩衝部が第 2の電極上に配置されて 、る。第 1の電極および第 3 の電極力 Sイオン伝導部および緩衝部の上に配置されて 、ても良 、。
[0028] 上記目的を達成するための本発明のスイッチング素子の製造方法は、 (a)基板上 に第 2の電極を形成する工程と、(b)基板及び第 2の電極を覆うように設けられた層 間絶縁層に、第 2の電極に一部力かるように、基板に略垂直に開口部を形成するェ 程と、(c)開口部の側壁を覆うようにイオン導電体を形成する工程と、(d)イオン導電 体の内側に充填膜を充填する工程と、(e)層間絶縁層、イオン導電体及び充填膜の 一部を覆うように第 1の電極を形成する工程とを具備する。第 1の電極は、金属イオン を供給可能である。イオン伝導部は、金属イオンがその内部を移動可能なイオン伝 導体を含む。充填膜は、硬度がイオン伝導体よりも小さい。
[0029] 上記のスイッチング素子の製造方法において、(f)充填膜を除去する工程を更に具 備していても良い。 [0030] 上記のスイッチング素子の製造方法において、(e)工程は、(el)層間絶縁層、ィォ ン導電体及び充填膜の一部を覆うように、第 1の電極と離れて形成する工程を備えて いても良い。
図面の簡単な説明
[0031] [図 1A]従来例 1の金属原子移動スイッチング素子の構成を示す断面模式図である。
[図 1B]従来例 1の金属原子移動スイッチング素子の構成を示す断面模式図である。
[図 2A]従来例 2の金属原子移動スイッチング素子の構成を示す平面模式図及び断 面模式図である。
[図 2B]従来例 2の金属原子移動スイッチング素子の電極に析出した金属を示す平面 顕微鏡写真である。
[図 3]従来例 3の金属原子移動スイッチング素子の構成を示す断面模式図である。
[図 4]従来例 4の金属原子移動スイッチング素子の構成を示す断面模式図である。
[図 5A]基本的な 2端子スィッチの一構成例を示す斜視図である。
[図 5B]基本的な 2端子スィッチの一構成例を示す断面模式図である。
[図 5C]基本的な 2端子スィッチの他の一構成例を示す断面模式図である。
[図 6A]実施例 1の 2端子スィッチの一構成例を示す平面模式図である。
[図 6B]実施例 1の 2端子スィッチの一構成例を示す断面模式図である。
[図 7A]実施例 1の 2端子スィッチの製造方法を示す断面模式図である。
[図 7B]実施例 1の 2端子スィッチの製造方法を示す断面模式図である。
[図 7C]実施例 1の 2端子スィッチの製造方法を示す断面模式図である。
[図 7D]実施例 1の 2端子スィッチの製造方法を示す断面模式図である。
[図 7E]実施例 1の 2端子スィッチの製造方法を示す断面模式図である。
[図 7F]実施例 1の 2端子スィッチの製造方法を示す断面模式図である。
[図 7G]実施例 1の 2端子スィッチの製造方法を示す断面模式図である。
[図 7H]実施例 1の 2端子スィッチの製造方法を示す断面模式図である。
[図 8A]実施例 2の 2端子スィッチの一構成例を示す平面模式図である。
[図 8B]実施例 2の 2端子スィッチの一構成例を示す断面模式図である。
[図 9A]実施例 3の 3端子スィッチの一構成例を示す平面模式図である。 [図 9B]実施例 3の 3端子スィッチの一構成例を示す平面模式図である。
[図 10A]実施例 3の 3端子スィッチの他の一構成例を示す平面模式図である。
[図 10B]実施例 3の 3端子スィッチの他の一構成例を示す平面模式図である。
発明を実施するための最良の形態
[0032] 本発明のスイッチング素子は、金属を析出させる際に発生する構造的ストレスを緩 和するための緩衝部をイオン伝導体に沿って設けたことを特徴とする。
[0033] はじめに、本発明に関連する 2端子型金属原子スイッチング素子および 3端子型金 属原子移動スイッチング素子の基本的な構成および動作原理を 2端子型の素子の 場合で説明する。なお、以下では、 2端子型金属原子スイッチング素子を 2端子スィ ツチと称し、 3端子型金属原子移動スイッチング素子を 3端子スィッチと称する。
[0034] 図 5A及び図 5Bは、本発明の 2端子スィッチの実施の形態における一構成例を示 す斜視図および断面模式図である。
[0035] 図 5Aに示すように、 2端子スィッチは、その内部に空隙 13が形成されたイオン伝導 体 10と、イオン伝導体 10の両端にあって空隙 13に接するように設けられた第 1電極 11および第 2電極 12とを有する構成である。
[0036] 図 5A及び図 5Bに示した 2端子スィッチの動作について説明する。
[0037] 第 1電極 11を基準として第 2電極 12に負の電圧を印加すると、イオン伝導体 10の 第 2電極 12との接触面近傍における金属イオンが還元され、イオン伝導体 10の第 2 電極 12との接触面において金属が析出する。金属は、イオン伝導体内部ではなぐ 構造的なストレスのより少ない、空隙 13側のイオン伝導体表面に主に析出する。金 属の析出に対応して、第 1電極 11の金属が酸化され、金属イオンの形でイオン伝導 体 10に溶け込み、イオン伝導体内の正負イオンのバランスが維持される。析出した 金属はイオン伝導体表面を第 1電極 11の方向に向力つて成長する。析出した金属が 第 1電極 11に接触すると、スイッチング素子は導通 (オン)状態となる。
[0038] 逆に、第 1電極 11を基準として第 2電極 12に正の電圧を印加すると、全く逆の電気 化学反応が進行する。その結果、析出した金属力イオン伝導体 10に溶解し、第 2電 極 12から伸びて第 1電極 11に接触して 、た金属が切れ、スイッチング素子は切断( オフ)状態となる。なお、電気的接続が完全に切れる前の段階力も第 1電極 11および 第 2電極 12間の抵抗が大きくなつたり、電極間容量が変化したりするなど電気特性が 変化し、最終的に電気的接続が切れる。
[0039] 以上のように、第 1の電極 11と第 2の電極 12との間の正又は負の電位差により、第
1電極 11を構成する金属原子が、電気化学反応により、析出物の形で第 1電極 11と 第 2電極 12の間に移動し、導通 (オン)状態では、第 1電極 11と第 2電極 12を電気的 に接続する金属配線となる。
[0040] イオン伝導体 10に含む材料として、カルコゲン元素を含む化合物であるカルコゲナ イドゃノ、ロゲン元素を含む化合物であるハロゲンィ匕物を適用可能である。カルコゲン 元素とは、酸素、硫黄、セレン、テルル、およびポロニウムである。ハロゲン元素とは、 フッ素、塩素、臭素、ヨウ素、およびアスタチンである。そして、カルコゲナイドおよび ノ、ロゲンィ匕物には、金属イオンのイオン伝導度の高い材料 (硫化銅、硫化銀、テルル 化銀、塩化ルビジウム銅、よう化銀、よう化銅など)やイオン伝導度の低い材料 (酸ィ匕 タンタル、酸ィ匕シリコン、酸化タングステン、アルミナなど)がある。
[0041] 第 1電極 11の材料としては銅や銀がある。第 1電極 11が銀の場合は、金属イオン は銀イオンとなる。このような第 1電極 11の材料に対して、第 2電極 12の材料としてバ リア金属 (W、 Ta、 TaN、 Ti、 TiNなど)を適用可能である。イオン伝導体 10を硫化銅 とし、第 1電極 11を銅とし、第 2電極 12を Tiとすると、金属イオンは銅となる。
[0042] 上述したように、本発明では、構造的ストレスを緩和させるためにイオン導電体 10 に接して緩衝部を設ける。緩衝部は、イオン導電体 10内部へよりも金属が析出し易 い材料で構成されている。そのような材料としては、例えば、イオン導電体 10よりも硬 度が小さい材料であり、空隙内に満たされた気体も含まれる。すなわち、例えば、緩 衝部として空隙 13を設ける。それにより、空隙 13内の空間に金属が析出するため、 イオン伝導体 10が構造的なストレスを受けることなく金属を析出させることが可能とな る。それにより、より太いブリッジを形成することができ、オン状態をより安定化させるこ とが可能となる。
[0043] なお、図 5Cに示されるように、緩衝部となる空隙 13に、イオン伝導体 10よりも硬度 力 、さい軟材料 13aを満たしても、金属を容易に析出させることが可能となる。金属 が析出することによる形状変化を軟材料が吸収することで、イオン導電体 10の構造 的なストレスを軽減できるからである。ここで言う軟材料には弾性材料が含まれる。弹 性材料の具体的なものとして、合成樹脂、合成ゴムなどがある。
[0044] また、空隙を満たす材料としては、軟材料に限らず、内部に孔を有する構造の有孔 性 (porous)材料であってもよい。有孔性材料には、例えば、メチルシロキ酸 (珪素、 炭素、酸素力も構成)がある。メチルシロキ酸は、酸ィ匕シリコンにメチル基 (CH—)を
3 加えたような材料で、メチル基の周辺に数 nm程度の孔が生じて 、る構造である。
[0045] (実施例 1)
本実施例の構成について説明する。図 6A及び図 6Bは、本実施例の 2端子スイツ チのー構成例を示す平面模式図および断面模式図である。図 6A (平面図)の JJ'で 切った部分の断面が図 6B (断面図)に相当する。
[0046] 図 6Aおよび図 6Bに示すように、 2端子スィッチは、基板 100上の第 2電極 22と、第 2電極 22の一部が露出するように開口部 26が形成された層間絶縁膜 25と、開口部 26の側壁に設けられたイオン伝導体 20と、開口部 26の一部を覆うように設けられた 第 1電極 21とを有する構成である。第 1電極 21は銅で形成され、第 2電極 22は白金 で形成されている。イオン伝導体 20は硫化銅で形成され、層間絶縁膜 25はシリコン 酸化膜で形成されている。
[0047] 図 6Aの平面図に示すように、開口部 26のパターンは約半分が第 2電極 22の上に 力かっている。また、第 1電極 21のパターンのうち開口部 26を覆う部位は第 2電極 22 の上方にある。イオン伝導体 20を側壁とする開口部 26のうち、第 1電極 21と第 2電 極 22とで挟まれる空間力 図 6Bに示す、金属析出のための空隙 27となる。
[0048] 開口部 26の側壁にのみイオン伝導体 20を設けることで、第 1電極 21と第 2電極 22 の間を全てイオン伝導体 20の膜で形成する場合に比べて、金属析出時に発生する ストレスが、空隙 27に限らず層間絶縁膜 25側に発散することが可能となる。すなわち 、イオン伝導体 20が構造的なストレスを受けることなく金属を析出させることができ、 オン状態をより安定化させることが可能となる。
[0049] 次に、図 6A及び図 6Bに示した 2端子スィッチの製造方法について説明する。図 7 A力 図 7Hは、本実施例の 2端子スィッチの製造方法を示す断面模式図である。
[0050] シリコン基板の表面に膜厚 300nmのシリコン酸ィ匕膜を形成して、基板 100とする。 従来のリソグラフィ技術を用いて、第 2電極 22を形成しない部位の基板 100上にレジ ストパターンを形成する。続いて、レジストパターンの上から真空蒸着法で膜厚 100η mの白金を形成する。その後、リフトオフ技術によりレジストパターンとその上に形成さ れた白金を除去し、図 7Aに示すように、白金の残った部分を第 2電極 22として形成 する。このとき、図 7Aの左右方向における第 2電極 22の長さを幅とすると、第 2電極 2 2の幅寸法を lOOnmよりも大きくしている。また、図 7Aの奥行方向における第 2電極 22の長さは 150nmよりも大きくしている。
[0051] 次に、第 2電極 22および基板上面の露出部を覆うように、層間絶縁膜 25となる 300 nmのシリコン酸ィ匕膜を形成する。続いて、層間絶縁膜 25の上に開口部 26を形成す るためのレジストパターンを従来のリソグラフィ技術で形成する。このとき、基板面を垂 直上方から見て、レジストパターンに設けられた開口が第 2電極 22のパターンの一部 にかかるようにしている。そして、第 2電極 22の上面が露出するまで、層間絶縁膜 25 に対して反応性ィ匕学エッチングでレジストパターンの上力もエッチングする。その後、 レジストパターンを除去する。このようにして、図 7Bに示すように、開口部 26を形成す る。開口部 26の寸法は、図 7Bの左右方向の長さである幅を lOOnmとし、図 7Bの奥 行方向の長さを 300nmとした。開口部 26の深さは 200〜300nmとなる。開口部 26 のうち図 7Bの奥行方向 150nm力 第 2電極 22のパターンに重なっている。
[0052] 続いて、図 7Cに示すように、層間絶縁膜 25の上面および開口部 26を被覆するよう に、イオン伝導体 20となる硫化銅を膜厚が均一になるようにスパッタ法を用いて形成 する。続いて、反応性イオンエッチング法を用いてイオン伝導体 20に対して異方性 エッチングを行い、層間絶縁膜 25上と、開口部 26の底面上の硫化銅を除去する(図 7D)。開口部 26の側壁部分は開口部 26の底面部分よりもエッチング速度が遅 、た め、イオン伝導体 20の一部がエッチングされずに残る。
[0053] その後、図 7Eに示すように、犠牲層となる LORレジスト (ダウコーユング社製)を 20 Onm程度、スピン塗布法により塗布する。 LORレジストのような、榭脂を含む有機溶 剤は、下地に大きな段差や深い開口力 Sあっても、粘性が低いため段差や開口を埋め 、表面がほぼ平坦になる。そのため、スピン塗布法により形成された犠牲層 28の開 口部 26の膜厚は、層間絶縁膜 25上に比べると厚くなる。続いて、剥離液により犠牲 層 28に対して等方性エッチングを行うと、図 7Fに示すように、開口部 26に溜まった 犠牲層 28を残して層間絶縁膜 25上の犠牲層 28が除去される。開口部 26の犠牲層 28の膜厚が層間絶縁膜 25上に比べて厚いだけでなぐ開口部 26の犠牲膜 28に対 するエッチングレートが層間絶縁膜 25上に比べて遅いため、開口部 26の犠牲層 28 を残すことが可能となる。
[0054] 次に、第 2電極 22の形成方法と同様にして、第 1電極 21を形成しない部位にレジス トパターンを形成し、レジストパターンの上から真空蒸着法で膜厚 lOOnmの銅を形 成する。このとき、開口部 26には犠牲膜 28が埋め込まれているため、開口部 26の上 にも犠牲膜 28を介して銅を形成することが可能となる。続いて、リフトオフ技術により レジストパターンとその上に形成された銅を除去し、銅の残った部分を第 1電極 21と して形成する(図 7G)。第 1電極形成後、図 6Aに示したように開口部 26の一部は、 第 1電極 21に被覆されず、露出している。そして、剥離液に浸す処理を行うと、開口 部 26の露出した部位力も剥離液が第 1電極 21と第 2電極 22の間の空隙 27にまで侵 入し、図 7Hに示すように、犠牲層 28が開口部 26から全て除去される。
[0055] 本実施例の 2端子スィッチの製造方法では、第 1電極 21のための銅を形成する際 、開口部 26に犠牲層 28を埋め込んでいるため、後に犠牲層 28を取り除いて空隙 27 となる部位の上にも銅をほぼ平坦に形成できる。また、第 1電極形成後、開口部 26の 一部が露出していることと剥離液の等方性エッチングとにより、第 1電極 21で覆われ た部位の犠牲層 28を取り除いて、第 1電極 21と第 2電極 22との間に空隙 27を形成 できる。
[0056] なお、犠牲層 28は、スピン塗布により形成可能で、かつ等方性エッチングにより除 去可能あれば、上記材料に限定されず、他の材料であってもよい。
[0057] 従来の内部型素子では、金属の析出による体積膨張のため構造的なストレスがィ オン伝導体に発生することが課題であった。また、従来の表面型素子では、内部型 素子に比べて構造的なストレスは小さくなるものの、空間部分自体の形成が課題であ つた。空隙を残しつつ上層を形成する方法についての記述が米国特許 6825489号 公報にはなぐ第 4の従来例の素子をそのまま LSIに適用することは困難であった。 本実施例のスイッチング素子は、上述した方法により、表面型においてストレスを緩 和する空隙部分を残した状態で LSIに組み込むことが可能となる。その結果、イオン 伝導体 20が構造的なストレスを受けることなく金属を析出させることが可能となる。そ れにより、より太いブリッジを形成することができ、オン状態をより安定化させることが 可能となる。
[0058] また、第 2電極 22と、イオン伝導体 20および空隙 27と、第 1電極 21とを基板 100に 対して上方に順に形成した縦構造にすることで、平面に占める面積の縮小化が図れ る。そのため、 LSIの集積ィ匕により有利となる。
[0059] また、図 7Hで説明した工程を行わないで、犠牲層 28を軟材料として使用することも 可能である。犠牲層 28は、イオン導電体 20よりも軟らかいので、金属が析出すること による形状変化を吸収することができる。それにより、イオン導電体 20の構造的なスト レスを軽減でき、より太いブリッジを形成することができ、オン状態をより安定化させる ことが可能となる。
[0060] (実施例 2)
図 8A及び図 8Bは、本実施例の 2端子スィッチの一構成例を示す平面模式図およ び断面模式図である。図 8A (平面図)の KK'で切った部分の断面が図 8B (断面図) に相当する。
[0061] 図 8Aおよび図 8Bに示すように、 2端子スィッチは、基板 100上の第 2電極 32と、第 2電極 32の一部が露出するように開口部が形成された層間絶縁膜 35と、開口部の 側壁に設けられたイオン伝導体 30と、開口部を覆うように設けられた第 1電極 31とを 有する構成である。第 1電極 31は銅で形成され、第 2電極 32は白金で形成されてい る。イオン伝導体 30は硫化銅で形成され、層間絶縁膜 35はシリコン酸ィ匕膜で形成さ れている。
[0062] 本実施例では、図 8Aに示すように、イオン伝導体 30を側壁とする開口部には軟材 料 37が埋め込まれている。開口部に埋め込まれた軟材料 37の上面は第 1電極 21で 覆われている。また、実施例 1と異なり、第 1電極 31と第 2電極 32のパターンはほぼ 同一形状であり、図 8Aの平面図に示すように、これらのパターンは重なって見える。 なお、イオン伝導体 30および軟材料 37が第 1電極 31と第 2電極 32とで挟まれてい れば、これら 2つの電極のパターンは必ずしも同一である必要はない。 [0063] 軟材料 37は、イオン導電体 30よりも軟らかいので、金属が析出することによる形状 変化を吸収することができる。それにより、イオン導電体 30の構造的なストレスを軽減 でき、より太いブリッジを形成することができ、オン状態をより安定化させることが可能 となる。
[0064] ここで、軟材料 37とは、上述したようにイオン伝導体 30よりも硬度が小さ 、材料であ る。例えば、実施例 1で述べた LORレジストを挙げることができる。
[0065] 次に、図 8Aおよび図 8Bに示した 2端子スィッチの製造方法について説明する。な お、実施例 1と同様な工程についてはその詳細な説明を省略する。実施例 1で示し た犠牲層 28を軟材料 37とする。
[0066] 図 7Bで説明した工程で、開口部の寸法について図の左右方向の長さである幅を 1 OOnmとし、図の奥行方向の長さを lOOnmとして、第 2電極 32上に開口部を形成す る。開口部のパターンは第 2電極 32のパターン内に入る。図 7Gで説明した工程で、 第 1電極 31を形成する際、第 1電極 31が開口部に埋め込まれた軟材料 37とイオン 伝導体 30の上面を覆うようにする。そして、本実施例では、図 7Hで説明した工程を 行わない。以上のようにして、実施例 1で説明した製造方法に上述の変更を加えるこ とで、本実施例の 2端子スィッチを製造することができる。
[0067] 本実施例の 2端子スィッチは、第 1実施例と同様の効果が得られる他に、平面に占 める面積の縮小化がさらに図れる。また、開口部内に緩衝部となる軟材料 37が埋め 込まれているため、その上を覆う第 1電極 31がより平坦に形成可能となる。
[0068] (実施例 3)
図 9Aおよび図 9Bは本実施例の 3端子スィッチの一構成例を示す平面模式図およ び断面模式図である。図 9A (平面図)の LL'で切った部分の断面が図 9B (断面図) に相当する。
[0069] 図 9Aおよび図 9Bに示すように、 3端子スィッチは、基板 100上の第 2電極 42と、第 2電極 42の一部が露出するように開口部 46が形成された層間絶縁膜 45と、開口部 46の側壁に設けられたイオン伝導体 40と、開口部 46の一部を覆い、かつ第 2電極 4 2の真上に設けられた第 1電極 41と、開口部 46の一部を覆うように設けられた第 3電 極 43とを有する構成である。第 1電極 41および第 3電極 43は銅で形成され、第 2電 極 42は白金で形成されている。イオン伝導体 40は硫化銅で形成され、層間絶縁膜 4 5はシリコン酸ィ匕膜で形成されている。イオン伝導体 40を側壁とする開口部 46には、 空隙 47が設けられている。
[0070] なお、実施例 1、 2で述べたように、この緩衝部としての空隙 47に、緩衝部として軟 材料が埋め込まれていてもよい。図 10Aおよび図 10Bは本実施例の 3端子スィッチ の他の一構成例を示す平面模式図および断面模式図である。図 10A (平面図)の M M'で切った部分の断面が図 10B (断面図)に相当する。図 10A及び図 10Bに示す ように、空隙内を軟材料 47aで満たす。軟材料としては、例えば、実施例 1で述べた L ORレジストを挙げることができる。また、軟材料として有孔性材料を用いてもよい。
[0071] 軟材料は、イオン導電体 40よりも軟らかいので、金属が析出することによる形状変 化を吸収することができる。それにより、イオン導電体 40の構造的なストレスを軽減で き、より太いブリッジを形成することができ、オン状態をより安定化させることが可能と なる。
[0072] 次に、図 9A及び図 9Bに示した 3端子スィッチの動作について説明する。
[0073] 第 1電極 41および第 3電極 43を接地して、第 2電極 42に負電圧を印加すると第 1 電極 41の銅が銅イオンになってイオン伝導体 40に溶解する。そして、イオン伝導体 中の銅イオンが第 1電極 41および第 2電極 42の表面に銅になって析出し、析出した 銅により第 1電極 41と第 2電極 42を接続する金属架橋が形成される。金属架橋で第 1電極 41と第 2電極 42が電気的に接続することで、 3端子スィッチがオン状態になる
[0074] 一方、上記オン状態で第 2電極 42を接地して、第 3電極 43に負電圧を印加すると、 金属架橋の銅がイオン伝導体 40に溶解し、金属架橋の一部が切れる。これにより、 第 1電極 41と第 2電極 42との電気的接続が切れ、 3端子スィッチがオフ状態になる。 なお、電気的接続が完全に切れる前の段階力ゝら第 1電極 41および第 2電極 42間の 抵抗が大きくなつたり、電極間容量が変化したりするなど電気特性が変化し、最終的 に電気的接続が切れる。
[0075] また、上記オフ状態力 オン状態にするには、第 3電極 43に正の電圧を印加すれ ばよい。これにより、第 3電極 43の銅が銅イオンになってイオン伝導体 40に溶解する 。そして、イオン伝導体 40に溶解した銅イオンが金属架橋の切断箇所に銅になって 析出し、金属架橋が第 1電極 41と第 2電極 42を電気的に接続する。
[0076] 以上のように、第 1の電極 41と第 2の電極 42と第 3の電極 43との間の正又は負の 電位差により、オン状態及びオフ状態を制御することが出来る。
[0077] 次に、図 9Aおよび図 9Bに示した 3端子スィッチの製造方法について説明する。な お、実施例 1と同様な工程についてはその詳細な説明を省略する。
[0078] 図 7Bで説明した工程で、開口部 46の寸法を図の左右方向の長さである幅を ΙΟΟη mとし、図の奥行方向の長さを 500nmとして、開口部 46を形成する。図 7Gで説明し た工程で、第 1電極 41を形成する際、第 3電極 43も同時に形成する。空隙 47に軟材 料を設ける場合には図 7Hで説明した工程を行わない。以上のようにして、実施例 1 で説明した製造方法に上述の変更を加えることで、本実施例の 3端子スィッチを製造 することができる。
[0079] オン Zオフ制御用の第 3電極 43を設けた 3端子スィッチの場合でも、空隙を残した まま LSIに組み込み可能となり、実施例 1と同様に、金属析出の際に発生する構造ス トレスを緩和させる効果が得られる。
[0080] また、第 2電極 42と、イオン伝導体 40および空隙 47と、第 1電極 41および第 3電極
43とを基板 100に対して上方に順に形成した縦構造にすることで、平面に占める面 積の縮小化が図れる。そのため、 LSIの集積ィ匕により有利となる。
[0081] さらに、開口部 46の側壁にのみイオン伝導体 40を設けることで、第 1電極 41と第 2 電極 42の間を全てイオン伝導体 40の膜で形成する場合に比べて、金属析出時に発 生するストレスが、空隙 47に限らず層間絶縁膜 45側に発散することが可能となる。
[0082] 本発明では、スィッチオン時にイオン伝導部よりも硬度の小さい領域に金属が析出 するため、イオン伝導部に発生する構造的ストレスがより抑制される。
[0083] 本発明では、スィッチオン時にイオン伝導体よりも硬度の小さい領域に金属が析出 するため、イオン伝導体の受ける構造的なストレスがより小さくなり、太い金属ブリッジ を形成できる。その結果、オン状態がより安定する。
[0084] 本発明のスイッチング素子は、 LSIのような半導体装置や DRAMやフラッシュメモリ
、 MRAMのような半導体記憶装置に適用できる。

Claims

請求の範囲
[1] 金属イオンを供給可能な第 1の電極と、
第 2の電極と、
前記第 1の電極および前記第 2の電極に接触し、前記金属イオンがその内部を移 動可能なイオン伝導体を含むイオン伝導部と、
硬度が前記イオン伝導体よりも小さぐ前記第 1の電極と前記第 2の電極との間に前 記イオン伝導部に沿って設けられた緩衝部と
を具備し、
前記第 1の電極と前記第 2の電極との間の電位差により、当該第 1の電極と当該第 2の電極との間で前記金属が析出または溶解することで、電気的特性が切り替わる スイッチング素子。
[2] 請求の範囲 1記載のスイッチング素子において、
前記緩衝部は、有孔性材料を含む
スイッチング素子。
[3] 請求の範囲 1記載のスイッチング素子において、
前記緩衝部は、空隙である
スイッチング素子。
[4] 請求の範囲 1乃至 3のいずれか一項に記載のスイッチング素子において、
前記第 1の電極と前記第 2の電極との間に、前記第 1の電極および前記第 2の電極 に達する開口部を有する絶縁膜を更に具備し、
前記イオン伝導部が前記開口部の側壁に配置されて ヽる
スイッチング素子。
[5] 請求の範囲 1乃至 4のいずれか一項に記載のスイッチング素子において、
前記第 2の電極が基板上に配置され、
前記イオン伝導部および前記緩衝部が前記第 2の電極上に配置され、 前記第 1の電極が前記イオン伝導部および前記緩衝部の上に配置されている スイッチング素子。
[6] 請求の範囲 1乃至 5のいずれか一項に記載のスイッチング素子において、 前記イオン伝導部と接触し、前記金属イオンを供給可能な第 3の電極を更に具備し 前記第 1の電極と前記第 2電極と前記第 3の電極との間の電位差により、当該第 1 の電極と前記第 2の電極との間で前記金属が析出または溶解することで、電気的特 性が切り替わる
スイッチング素子。
[7] 請求の範囲 6に記載のスイッチング素子において、
前記第 1の電極および前記第 3の電極が同一平面に設けられ、
前記第 1の電極および前記第 3の電極と前記第 2の電極との間にこれら 3つの電極 に達する開口部を有する絶縁膜が設けられ、
前記イオン伝導部が前記開口部の側壁に配置されて ヽる
スイッチング素子。
[8] 請求の範囲 6又は 7に記載のスイッチング素子において、
前記第 2の電極が基板上に配置され、
前記イオン伝導部および前記緩衝部が前記第 2の電極上に配置され、 前記第 1の電極および前記第 3の電極が前記イオン伝導部および前記緩衝部の上 に配置されている
スイッチング素子。
[9] (a)基板上に第 2の電極を形成する工程と、
(b)前記基板及び前記第 2の電極を覆うように設けられた層間絶縁層に、前記第 2 の電極に一部力かるように、前記基板に略垂直に開口部を形成する工程と、
(c)前記開口部の側壁を覆うようにイオン導電体を形成する工程と、
(d)前記イオン導電体の内側に充填膜を充填する工程と、
(e)前記層間絶縁層、前記イオン導電体及び前記充填膜の一部を覆うように第 1の 電極を形成する工程と
を具備し、
前記第 1の電極は、金属イオンを供給可能であり、
前記イオン伝導部は、前記金属イオンがその内部を移動可能なイオン伝導体を含 み、
前記充填膜は、硬度が前記イオン伝導体よりも小さ 、
スイッチング素子の製造方法。
[10] 請求の範囲 9に記載のスイッチング素子の製造方法において、
(f)前記充填膜を除去する工程を更に具備する
スイッチング素子の製造方法。
[11] 請求の範囲 9又は 10に記載のスイッチング素子の製造方法において、
前記 )工程は、
(el)前記層間絶縁層、前記イオン導電体及び前記充填膜の一部を覆うように、前 記第 1の電極と離れて形成する工程を備える
スイッチング素子の製造方法。
PCT/JP2006/325050 2005-12-15 2006-12-15 スイッチング素子およびその製造方法 WO2007069725A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007550242A JP5365829B2 (ja) 2005-12-15 2006-12-15 スイッチング素子およびその製造方法
US12/097,468 US20090289371A1 (en) 2005-12-15 2006-12-15 Switching element and method of manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005361826 2005-12-15
JP2005-361826 2005-12-15

Publications (1)

Publication Number Publication Date
WO2007069725A1 true WO2007069725A1 (ja) 2007-06-21

Family

ID=38163027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/325050 WO2007069725A1 (ja) 2005-12-15 2006-12-15 スイッチング素子およびその製造方法

Country Status (3)

Country Link
US (1) US20090289371A1 (ja)
JP (1) JP5365829B2 (ja)
WO (1) WO2007069725A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008244090A (ja) * 2007-03-27 2008-10-09 Nec Corp スイッチング素子およびスイッチング素子の製造方法
JP2008243986A (ja) * 2007-03-26 2008-10-09 Funai Electric Advanced Applied Technology Research Institute Inc スイッチング素子
WO2009020041A1 (ja) * 2007-08-06 2009-02-12 Sony Corporation 記憶素子および記憶装置
US8653912B2 (en) 2008-06-13 2014-02-18 Funai Electric Advanced Applied Technology Research Institute Inc. Switching element
US8664651B2 (en) 2007-12-19 2014-03-04 Nec Corporation Switching device and method of manufacturing the same
WO2014142040A1 (ja) * 2013-03-09 2014-09-18 独立行政法人科学技術振興機構 電子素子
US9024287B2 (en) 2013-09-17 2015-05-05 Kabushiki Kaisha Toshiba Memory device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006030323A1 (de) * 2006-04-21 2007-10-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Oberflächenbehandlung einer metallischen Substratoberfläche
US9171613B2 (en) * 2009-07-28 2015-10-27 Hewlett-Packard Development Company, L.P. Memristors with asymmetric electrodes

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000512058A (ja) * 1996-05-30 2000-09-12 アクソン テクノロジーズ コーポレイション プログラマブルメタライゼーションセル構造およびその作製方法
JP2001525606A (ja) * 1997-12-04 2001-12-11 アクソン テクノロジーズ コーポレイション プログラム可能なサブサーフェス集合メタライゼーション構造およびその作製方法
JP2002536840A (ja) * 1999-02-11 2002-10-29 アリゾナ ボード オブ リージェンツ プログラマブルマイクロエレクトロニックデバイスおよびその形成およびプログラミング方法
JP2003092387A (ja) * 2001-09-19 2003-03-28 Akira Doi イオン伝導体のイオン伝導を利用した記憶素子
WO2003094227A1 (en) * 2002-04-30 2003-11-13 Japan Science And Technology Agency Solid electrolyte switching device, fpga using same, memory device, and method for manufacturing solid electrolyte switching device
WO2005008783A1 (ja) * 2003-07-18 2005-01-27 Nec Corporation スイッチング素子、スイッチング素子の駆動方法、書き換え可能な論理集積回路およびメモリ素子

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3247734B2 (ja) * 1992-09-22 2002-01-21 株式会社日立製作所 原子細線による論理回路
US6487106B1 (en) * 1999-01-12 2002-11-26 Arizona Board Of Regents Programmable microelectronic devices and method of forming and programming same
US6825489B2 (en) * 2001-04-06 2004-11-30 Axon Technologies Corporation Microelectronic device, structure, and system, including a memory structure having a variable programmable property and method of forming the same
US6635914B2 (en) * 2000-09-08 2003-10-21 Axon Technologies Corp. Microelectronic programmable device and methods of forming and programming the same
US7385219B2 (en) * 2000-02-11 2008-06-10 A{umlaut over (x)}on Technologies Corporation Optimized solid electrolyte for programmable metallization cell devices and structures
AU2001288971A1 (en) * 2000-09-08 2002-03-22 Axon Technologies Corporation Microelectronic programmable device and methods of forming and programming the same
WO2003032392A2 (en) * 2001-10-09 2003-04-17 Axon Technologies Corporation Programmable microelectronic device, structure, and system, and method of forming the same
WO2003079463A2 (en) * 2002-03-15 2003-09-25 Axon Technologies Corporation Programmable structure, an array including the structure, and methods of forming the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000512058A (ja) * 1996-05-30 2000-09-12 アクソン テクノロジーズ コーポレイション プログラマブルメタライゼーションセル構造およびその作製方法
JP2001525606A (ja) * 1997-12-04 2001-12-11 アクソン テクノロジーズ コーポレイション プログラム可能なサブサーフェス集合メタライゼーション構造およびその作製方法
JP2002536840A (ja) * 1999-02-11 2002-10-29 アリゾナ ボード オブ リージェンツ プログラマブルマイクロエレクトロニックデバイスおよびその形成およびプログラミング方法
JP2003092387A (ja) * 2001-09-19 2003-03-28 Akira Doi イオン伝導体のイオン伝導を利用した記憶素子
WO2003094227A1 (en) * 2002-04-30 2003-11-13 Japan Science And Technology Agency Solid electrolyte switching device, fpga using same, memory device, and method for manufacturing solid electrolyte switching device
WO2005008783A1 (ja) * 2003-07-18 2005-01-27 Nec Corporation スイッチング素子、スイッチング素子の駆動方法、書き換え可能な論理集積回路およびメモリ素子

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SAKAMOTO T. ET AL.: "A nonvolatile programmable solid electrolyte nanometer switch", SOLID-STATE CIRCUITS CONFERENCE, 2004. DIGEST OF TECHNICAL PAPERS. ISSCC. 2004 IEEE INTERNATIONAL, 2004, pages 290 - 299, XP010722267 *
SAKAMOTO T. ET AL.: "Nanometer-scale switches using copper sulfide", APPLIED PHYSICS LETTERS, vol. 82, no. 18, 2003, pages 3032 - 3034, XP012033941 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008243986A (ja) * 2007-03-26 2008-10-09 Funai Electric Advanced Applied Technology Research Institute Inc スイッチング素子
JP2008244090A (ja) * 2007-03-27 2008-10-09 Nec Corp スイッチング素子およびスイッチング素子の製造方法
WO2009020041A1 (ja) * 2007-08-06 2009-02-12 Sony Corporation 記憶素子および記憶装置
JP2009043757A (ja) * 2007-08-06 2009-02-26 Sony Corp 記憶素子および記憶装置
US8492740B2 (en) 2007-08-06 2013-07-23 Sony Corporation Memory element and memory device
TWI489622B (zh) * 2007-08-06 2015-06-21 Sony Corp Memory elements and memory devices
US8664651B2 (en) 2007-12-19 2014-03-04 Nec Corporation Switching device and method of manufacturing the same
JP5458892B2 (ja) * 2007-12-19 2014-04-02 日本電気株式会社 スイッチング素子およびその製造方法
US8653912B2 (en) 2008-06-13 2014-02-18 Funai Electric Advanced Applied Technology Research Institute Inc. Switching element
WO2014142040A1 (ja) * 2013-03-09 2014-09-18 独立行政法人科学技術振興機構 電子素子
JPWO2014142040A1 (ja) * 2013-03-09 2017-02-16 国立研究開発法人科学技術振興機構 電子素子
US9595604B2 (en) 2013-03-09 2017-03-14 Japan Science And Technology Agency Electronic element
US9024287B2 (en) 2013-09-17 2015-05-05 Kabushiki Kaisha Toshiba Memory device

Also Published As

Publication number Publication date
JPWO2007069725A1 (ja) 2009-05-28
JP5365829B2 (ja) 2013-12-11
US20090289371A1 (en) 2009-11-26

Similar Documents

Publication Publication Date Title
WO2007069725A1 (ja) スイッチング素子およびその製造方法
JP5863302B2 (ja) 二端子抵抗性スイッチングデバイス構造及びその製造方法
KR102659033B1 (ko) 3차원 상변화 메모리 디바이스들
JP5066918B2 (ja) スイッチング素子、書き換え可能な論理集積回路、およびメモリ素子
US7888228B2 (en) Method of manufacturing an integrated circuit, an integrated circuit, and a memory module
JP5218053B2 (ja) スイッチング素子、半導体装置、書き換え可能な論理集積回路、およびメモリ素子
TWI401796B (zh) 導通微通道記憶體元件及其製造方法
US9178153B2 (en) Memristor structure with a dopant source
US20060018175A1 (en) Electrical via connection and associated contact means as well as a method for their manufacture
WO2006070693A1 (ja) スイッチング素子、スイッチング素子の駆動方法および製造方法、書き換え可能な論理集積回路、メモリ素子
KR20040111563A (ko) 고체 전해질 스위칭 소자와 그것을 이용한 fpga,메모리 소자, 및 고체 전해질 스위칭 소자의 제조 방법
JP2006319028A (ja) スイッチング素子、書き換え可能な論理集積回路、およびメモリ素子
US7180104B2 (en) Micromechanical structure, device including the structure, and methods of forming and using same
JP2008244090A (ja) スイッチング素子およびスイッチング素子の製造方法
JP5417709B2 (ja) スイッチング素子、書き換え可能な論理集積回路、およびメモリ素子
WO2009157479A1 (ja) スイッチング素子およびスイッチング素子の製造方法
CN100539232C (zh) 开关器件、用于该开关器件的驱动和制造方法、集成电路器件和存储器件
WO2018123678A1 (ja) 抵抗変化素子と半導体装置および製造方法
US8237147B2 (en) Switching element and manufacturing method thereof
JP7165976B2 (ja) 抵抗変化素子、および抵抗変化素子の製造方法
CN108123032B (zh) 阻变随机存储器存储单元及其制作方法、电子装置
JP5135796B2 (ja) スイッチング素子、および書き換え可能な論理集積回路
US7799696B2 (en) Method of manufacturing an integrated circuit
US20090212006A1 (en) Horizontal nanotube/nanofiber growth method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007550242

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12097468

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06834793

Country of ref document: EP

Kind code of ref document: A1