WO2014142040A1 - 電子素子 - Google Patents

電子素子 Download PDF

Info

Publication number
WO2014142040A1
WO2014142040A1 PCT/JP2014/056080 JP2014056080W WO2014142040A1 WO 2014142040 A1 WO2014142040 A1 WO 2014142040A1 JP 2014056080 W JP2014056080 W JP 2014056080W WO 2014142040 A1 WO2014142040 A1 WO 2014142040A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
electrode
current
read
shows
Prior art date
Application number
PCT/JP2014/056080
Other languages
English (en)
French (fr)
Inventor
真島 豊
寺西 利治
康男 東
雅典 坂本
伸也 加納
エドゥアルド ウルタド サリナス ダニエル
Original Assignee
独立行政法人科学技術振興機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人科学技術振興機構 filed Critical 独立行政法人科学技術振興機構
Priority to KR1020157028244A priority Critical patent/KR102123955B1/ko
Priority to EP14762487.8A priority patent/EP2966684B1/en
Priority to US14/773,547 priority patent/US9595604B2/en
Priority to JP2015505449A priority patent/JP6225347B2/ja
Priority to CN201480013411.2A priority patent/CN105103291B/zh
Publication of WO2014142040A1 publication Critical patent/WO2014142040A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/7613Single electron transistors; Coulomb blockade devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/122Single quantum well structures
    • H01L29/127Quantum box structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/413Nanosized electrodes, e.g. nanowire electrodes comprising one or a plurality of nanowires
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/701Organic molecular electronic devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/671Organic radiation-sensitive molecular electronic devices

Definitions

  • the present invention relates to an electronic element having a switching function and a memory function.
  • Patent Document 1 Electronic devices in which bridges, fine wires, point contacts, etc. are formed between opposing electrodes have been developed (for example, Patent Document 1).
  • the present inventors have focused on gold nanoparticles as coulomb islands in single-electron devices in order to establish a manufacturing technique for single-electron transistors. It has been revealed that it functions as Coulomb Island.
  • a technology for producing nanogap electrodes having a gap length of 5 nm at a high yield at a time using electroless plating has been established.
  • the operation of a single-electron transistor in which gold nanoparticles protected with alkanethiol molecules are introduced by a chemical adsorption method between nanogap electrodes has been reported (Non-Patent Documents 1 to 5).
  • an object of the present invention is to provide an electronic element that functions as switching or memory without using metal nanoparticles.
  • the present invention takes the following measures.
  • the one electrode and the other electrode arranged to have a nanogap, and a halogen ion provided on at least one of the electrodes between the one electrode and the other electrode,
  • An electronic device comprising: [2] When the voltage is continuously changed from a positive value to a negative value and / or from a negative value to a positive value between the one electrode and the other electrode, the one electrode and the The electronic device according to [1], wherein a current waveform flowing between the other electrode is asymmetric.
  • the electronic device according to [1] wherein a current characteristic with respect to a voltage between the one electrode and the other electrode has a negative differential conductance.
  • an electronic element having a memory function or a switching function can be provided without arranging metal nanoparticles in the gap between the electrodes.
  • FIG. 1 is a diagram showing an SEM image of a sample manufactured in Example 1.
  • FIG. 4 is a graph showing a first current-voltage characteristic of a sample manufactured in Example 1.
  • FIG. 4 is a diagram illustrating current-voltage characteristics of a sample manufactured in Example 1 after the second time.
  • the On / Off ratio which is the ratio between the On state current value when the read voltage is applied after the write voltage is applied and the Off state current value when the read voltage is applied after the erase voltage is applied in the sample manufactured in Example 1 It is a figure which shows the read voltage dependence.
  • a pulse voltage sequence (with a period of 20 s and a frequency of 50 mHz) corresponding to a write voltage, a read voltage, an erase voltage, and a read voltage of 5 s (seconds) was applied to the sample produced in Example 1. It is a figure which shows the current characteristic at the time.
  • FIG. 6 shows the result of evaluating the sample produced in Example 1, and the write voltage when the reciprocal of the time required for a pulse voltage train of a set of write voltage, read voltage, erase voltage, and read voltage is defined as a frequency. It is a figure which shows the frequency dependence of On / Off ratio which is a ratio of the electric current value of the On state at the time of read voltage application after application, and the electric current value of the Off state at the time of read voltage application after erasing voltage application.
  • FIG. 6 is a diagram showing the results of evaluating the sample produced in Example 1 and showing current-voltage characteristics measured under a vacuum of ⁇ 40 ° C.
  • FIG. 5 shows the results of evaluating the sample manufactured in Example 1, and shows the On state current value when a read voltage is applied after applying a write voltage under a vacuum of ⁇ 40 ° C. and the Off value when a read voltage is applied after applying an erase voltage. It is a figure which shows the read voltage dependence of On / Off ratio which is a ratio with the electric current value of a state.
  • FIG. 6 shows the results of evaluation of the sample manufactured in Example 1, and shows a pulse voltage sequence (period) corresponding to a write voltage, a read voltage, an erase voltage, and a read voltage of 5 s (seconds) under a vacuum of ⁇ 40 ° C., respectively.
  • FIG. 5 shows the results of evaluation of the characteristics of the sample manufactured in Example 1, in which the current value of the On state when a read voltage is applied after applying a write voltage under vacuum at 120 ° C. and the value when the read voltage is applied after applying an erase voltage are shown. It is a figure which shows the read voltage dependence of On / Off ratio which is a ratio with the electric current value of an Off state.
  • FIG. 6 shows the result of evaluating the characteristics of the sample manufactured in Example 1, and a pulse voltage sequence (period) corresponding to a write voltage, a read voltage, an erase voltage, and a read voltage of 5 s (seconds) each under a vacuum of 120 ° C.
  • FIG. 1 It is a figure which shows the electric current characteristic at the time of applying 20s and a frequency corresponding to 50 mHz.
  • the frequency dependence of the On / Off ratio which is the ratio of the On state current value when applying the read voltage after applying the write voltage under vacuum and the Off state current value when applying the read voltage after applying the erase voltage.
  • FIG. It is a figure which shows the current voltage characteristic in the 120 degreeC air in the sample produced in Example 1.
  • FIG. 5 shows the results of evaluation of the characteristics of the sample manufactured in Example 1, and the pulse voltage sequence corresponding to the write voltage, read voltage, erase voltage, and read voltage of 5 s (seconds) in air at 120 ° C. ( It is a figure which shows the electric current characteristic at the time of applying a cycle 20s and a frequency corresponding to 50 mHz.
  • FIG. 6 is a diagram showing an SEM image of a sample produced in Example 2.
  • FIG. 6 is a diagram showing a first current-voltage characteristic of a sample manufactured in Example 2. It is a figure which shows the current-voltage characteristic after forming of the sample produced in Example 2.
  • FIG. 6 is a diagram showing an SEM image of a sample produced in Example 2.
  • FIG. 6 is a diagram showing a first current-voltage characteristic of a sample manufactured in Example 2. It is a figure which shows the current-voltage characteristic after forming of the sample produced in Example 2.
  • a pulse voltage train (period 20 s, corresponding to 50 mHz as a frequency) corresponding to a write voltage / read voltage / erase voltage / read voltage of 5 s (seconds) is applied. It is a figure which shows an electric current characteristic.
  • (A) shows the current-voltage characteristics before and after immersing the sample prepared in Example 1 in an aqueous hexamethonium bromide solution
  • (B) immersing the sample prepared in Example 2 in an aqueous hexamethonium bromide solution It is a figure which shows the current-voltage characteristic before and after letting it be made.
  • the sample produced as a reference example shows current-voltage characteristics when a voltage is swept in the positive and negative bias directions, (A) shows the first measurement result, and (B) shows the second and subsequent measurement results. It is.
  • a sample prepared as a reference example is provided with a pulse voltage sequence (corresponding to a period of 20 s and a frequency of 50 mHz) corresponding to a write voltage, a read voltage, an erase voltage, and a read voltage of 5 s (seconds) at room temperature and in air. It is a figure which shows the electric current characteristic at the time of applying.
  • Substrate 2 Insulating layer 3A, 3B, 4A, 4B: Metal layer 5A: Nanogap electrode (one electrode) 5B: Nanogap electrode (the other electrode) 6: Halogen ion 10: Electronic device
  • FIG. 1A and 1B show a configuration of an electronic device according to an embodiment of the present invention, in which FIG. 1A is a cross-sectional view and FIG. 1B is a plan view.
  • An electronic device 10 according to an embodiment of the present invention includes a substrate 1, an insulating layer 2 provided on the substrate 1, one electrode 5A provided on the insulating layer 2 so as to have a nanogap length, and the other electrode 5A.
  • An electrode 5B, and halogen ions 6 provided on at least one of the electrode 5A and the other electrode 5B.
  • the nanogap length is a dimension of several nm, for example, 0.3 nm to 12 nm.
  • One electrode 5A and the other electrode 5B constitute a nanogap electrode.
  • the substrate 1 various semiconductor substrates such as a Si substrate can be used.
  • the insulating layer 2 can be formed of SiO 2 , Si 3 N 4 or the like.
  • One electrode 5A and the other electrode 5B may be formed of Au, Al, Ag, Cu, Ni, or the like.
  • One electrode 5A and the other electrode 5B may be formed by sequentially laminating the adhesion layers 3A and 3B and the metal layers 4A and 4B.
  • the adhesion layers 3A and 3B can be formed of Ti, Cr, Ni, etc.
  • the metal layers 4A and 4B can be formed on the adhesion layers 3A and 3B with another layer such as Au, Al, Ag, Cu, and Ni. Or it can be formed of the same metal.
  • the halogen ions 6 are bromine ions, chlorine ions, and iodine ions. Halogen ions 6 that exist between the nanogap electrodes and contribute to electrical conduction are not arranged in an equal number on one electrode 5A and the other electrode 5B, but are biased to one of them.
  • FIG. 2 shows current-voltage characteristics of the electronic device shown in FIG.
  • the horizontal axis is the voltage V (V), and the vertical axis is the current I (A).
  • V voltage
  • I current
  • a voltage is applied between one electrode 5A and the other electrode 5B of the electronic element 10. With the other electrode 5B grounded, a voltage is swept to one electrode 5A.
  • the positive bias is increased, the current increases, and even if it is decreased after reaching a certain voltage, the original current waveform is not obtained.
  • the negative bias is increased, a negative differential conductance region is obtained when a certain voltage is exceeded.
  • the state of the halogen ions 6 can be changed between the one electrode 5A and the other electrode 5B.
  • the current-voltage waveform of the electronic element 10 has a voltage continuously from a positive value to a negative value, one or both of a negative value to a positive value, once or a plurality of times.
  • hysteresis is drawn in which the current waveform becomes asymmetric. From this fact, the electrode structure between the nanogaps that contributes to electrical conduction is electrically asymmetric because of the adsorption of halogen ions on any electrode surface.
  • the current-voltage characteristics shown in FIG. 2 can be obtained by applying a voltage between the nanogap electrodes to change the valence of halogen ions existing between the gaps, resulting in a redox reaction.
  • the number of halogen ions existing between the gaps changes, and as a result, the number of halogen ions contributing to conduction changes, and the conductivity between the nanogap electrodes changes.
  • the conductivity has changed because ions migrated by applying a voltage between the nanogap electrodes.
  • the electronic element 10 when the voltage applied to one electrode 5A of the electronic element 10 is V write , the read voltage is V read , and the erase voltage is V erase , Write voltage V write ⁇ 0 ⁇ read voltage V read ⁇ erase voltage V erase Or, the write voltage V write >0> read voltage V read > erase voltage V erase Each voltage is set so that. Then, the electronic element 10 can be used as a memory element and can be used as a switching element.
  • a method for manufacturing the electronic device shown in FIG. 1 will be described. First, as a first step, the first insulating layer 2 is formed on the substrate 1. Next, as a second step, nanogap electrodes 5A and 5B are formed by a molecular ruler electroless plating method.
  • the metal layers 3A and 3B are formed on the first insulating layer 2 so as to form a pair with a gap wider than the nano gap.
  • the substrate 1 is immersed in an electroless plating solution.
  • the electroless plating solution is prepared by mixing a reducing agent and a surfactant into an electrolytic solution containing metal ions.
  • the metal ions are reduced by the reducing agent, and the metal is deposited on the surfaces of the metal layers 3A and 3B to form the metal layer 4A and the metal layer 4B, and the metal layer 4A and the metal layer.
  • the gap with 4B becomes narrow, and the surfactant contained in the electroless plating solution is chemically adsorbed on the metal layers 4A and 4B formed by the deposition.
  • the surfactant controls the length of the gap between the electrodes (simply referred to as “gap length”) to a nanometer size. Since the metal ions in the electrolytic solution are reduced by the reducing agent and the metal is deposited, such a method is classified as an electroless plating method.
  • Metal layers 4A and 4B are formed on the metal layers 3A and 3B by plating, and a pair of electrodes 5A and 5B is obtained.
  • the gap length is set by the electroless plating method (hereinafter referred to as “molecular ruler electroless plating method”) using a surfactant molecule as a molecular ruler on the surfaces of the nanogap electrodes 5A and 5B. Controlled by surfactant molecules. Accordingly, the nanogap electrodes 5A and 5B can be formed with high accuracy, and the source of the halogen ions can be arranged on the nanogap electrodes 5A and 5B by various surfactants having halogen ions as counter ions.
  • the nano-gap electrode is subjected to ashing treatment of molecules attached to the surface by performing UV cleaning and / or O 2 plasma ashing.
  • the counter ion of the surfactant is adsorbed to one electrode 5A and the other electrode 5B, and the ionic state is changed by applying a voltage to one electrode 5A and the other electrode 5B, or the ion Will migrate or both.
  • the electronic device 10 As described above, the electronic device 10 according to the embodiment of the present invention can be manufactured.
  • the plating solution which is a mixed solution, includes a surfactant that functions as a molecular ruler, and an aqueous solution in which deposited metal cations are mixed, for example, an aqueous solution of gold chloride (III) acid and a reducing agent, It is preferable that this mixed solution contains an acid as described later.
  • alkyltrimethylammonium bromide As the molecular ruler, for example, a surfactant, an alkyltrimethylammonium bromide (Alkyltrimethylammonium bromide) molecule is used. Specific examples of alkyltrimethylammonium bromide include decyltrimethylammonium bromide (DTAB), lauryltrimethylammonium bromide (LTAB), myristyltrimethylammonium bromide (MTAB), and odor.
  • DTAB decyltrimethylammonium bromide
  • LTAB lauryltrimethylammonium bromide
  • MTAB myristyltrimethylammonium bromide
  • CAB Cetyltrimethylammonium bromide
  • STAB stearyltrimethylammonium bromide
  • HMB hexamethonium bromide
  • OMB octamethonium bromide
  • DMB decamethonium bromide
  • molecular rulers include alkyltrimethylammonium halide, alkyltrimethylammonium chloride, alkyltrimethylammonium iodide, dialkyldimethylammonium bromide, dialkyldimethylammonium chloride, dialkyldimethylammonium iodide, alkylbenzyldimethylammonium bromide.
  • examples of the long-chain aliphatic alkyl group include alkane groups such as hexyl, octyl, decyl, dodecyl, tetradecyl, hexadecyl, and octadecyl, and alkylene groups. As expected, it is not limited to these examples.
  • an organic solvent is a gold chloride (III) acid aqueous solution, a sodium chloride gold (III) acid aqueous solution, a potassium chloride gold (III) acid aqueous solution, a gold chloride (III) aqueous solution, or an ammonium chloride gold (III) acid salt.
  • the ammonium salt include the ammonium salts described above
  • examples of the organic solvent include aliphatic hydrocarbons, benzene, toluene, chloromethane, dichloromethane, chloroform, and carbon tetrachloride.
  • ascorbic acid Ascorbic acid, hydrazine, primary amine, secondary amine, primary alcohol, secondary alcohol, polyol containing diol, sodium sulfite, hydroxylammonium borohydride, lithium aluminum hydride, oxalic acid, formic acid, etc. Is mentioned.
  • Ascorbic acid which has a relatively low reducing power, for example, enables reduction of gold to zero by autocatalytic plating using the electrode surface as a catalyst. If the reducing power is strong, the reduction occurs at other than the electrodes, and many clusters are generated. That is, gold fine particles are generated in the solution and adhere to the electrode, and gold cannot be selectively deposited on the electrode. Conversely, if the reducing agent is weaker, such as ascorbic acid, the autocatalytic plating reaction does not proceed. In addition, a cluster is a gold nanoparticle formed by plating on a nucleus that enables electroless plating on the surface. L (+)-ascorbic acid is used as a reducing agent because it has a weak reducing action among the reducing agents described above, reduces the formation of clusters, and reduces gold to zero using the electrode surface as a catalyst. Is preferred.
  • the electroless plating solution is preferably mixed with an acid that functions to suppress the formation of clusters. This is because the cluster can be dissolved in an unstable state where it has begun to nucleate.
  • an acid hydrochloric acid, nitric acid, and acetic acid can be used.
  • FIG. 3 is a diagram schematically showing the chemical structure of a surfactant molecule (CTAB) used as a molecular ruler.
  • CTAB is a molecule having an alkyl chain length of C16, that is, 16 straight-chain carbon atoms.
  • five molecules are shown as an example of the best mode, including derivatives having different alkyl chains, DTAB as the alkyl chain C10, LTAB as the C12, MTAB as the C14, and STAB as the C18.
  • the initials D, L, M, C, and S are taken from the initials of 10 Decyl, 12 Lauryl, 14 Myristyl, 16 Cetyl, and 18 Stearyl, respectively.
  • the material of the initial electrode may be copper as the electrode material.
  • a copper electrode is formed by using an electron beam lithography method or an optical lithography method, and then the surface of the copper electrode is made of copper chloride.
  • a gold chloride solution using ascorbic acid as a reducing agent is used as a plating solution, and the copper electrode surface is covered with gold.
  • a surfactant alkyltrimethylammonium bromide C n H 2n + 1 [CH 3 ] 3 N + ⁇ Br ⁇ is mixed into an aqueous solution of gold chloride (III) acid, a reducing agent L (+)-ascorbic acid is added, Autocatalytic electroless gold plating is performed on the gap electrode. Thereafter, a nanogap electrode having a gold surface is prepared by molecular ruler plating.
  • Example 1 an electronic device was fabricated using a molecular ruler electroless plating method in the following manner. First, a substrate on which a silicon oxide film 2 is provided on the entire surface of a silicon substrate 1 is prepared, a resist is applied on the substrate, and initial electrodes as metal layers 3A and 3B having a gap length of 30 nm by EB lithography technology. The pattern was drawn. After development, a Ti film of 2 nm was deposited by EB (Electron Beam) deposition, and Au was deposited on the Ti film by 10 nm to prepare initial gold nanogap electrodes as the metal layers 3A and 3B.
  • EB Electro Beam
  • an electroless plating solution was prepared.
  • As a molecular ruler measure 25 milliliters of 25 mmol of alkyltrimethylammonium bromide (Alkyltrimethylammonium bromide).
  • 50 mmol of an aqueous chloroauric acid solution is measured and added to 120 microliters.
  • 1 ml of acetic acid was added as an acid
  • 0.1 mol and 3.6 ml of L (+)-ascorbic acid (Ascorbic acid) serving as a reducing agent was added, and the mixture was stirred well to obtain a plating solution.
  • Example 1 LTAB molecules were used as alkyltrimethylammonium bromide.
  • An already prepared substrate with a gold nanogap electrode was immersed in an electroless plating solution for about 30 minutes.
  • an electrode having a nanogap length was produced by the molecular ruler electroless plating method of Example 1.
  • oxygen plasma ashing was performed to remove the linear portion of LTAB used as the molecular ruler, and the remaining counter ions were unevenly distributed on either one of the nanogap electrodes.
  • FIG. 4 is a diagram showing an SEM image of the sample produced in Example 1.
  • FIG. The nanogap between the electrodes was 2.48 nm.
  • a side gate was also produced at the same time.
  • FIG. 5 shows the first-time current-voltage characteristics of the sample produced in Example 1.
  • the horizontal axis is voltage V (V), and the vertical axis is current I ( ⁇ A).
  • V voltage
  • I current
  • the current-voltage characteristic has hysteresis, and when the voltage is continuously changed from a negative value to a positive value between one electrode 5A and the other electrode 5B, one electrode 5A and the other electrode
  • the current waveform flowing between 5B becomes asymmetric. That is, it has been found that the current waveform includes asymmetric hysteresis depending on the voltage sweep direction.
  • the arrow in a figure has shown the sweep direction of the voltage. The measurement was performed at room temperature.
  • FIG. 6 shows the current-voltage characteristics of the sample produced in Example 1 after the second time. The measurement was performed at room temperature. From the figure, it was found that the current characteristics are different depending on whether the voltage is positive or negative, and that a negative differential conductance region exists when a negative bias is applied. It has also been found that about ⁇ 0.4 V may be set as a read voltage, about ⁇ 1.0 V as an erase voltage, and about 0.75 V as a write voltage.
  • FIG. 7 is a ratio between the On state current value when the read voltage is applied after the write voltage is applied and the Off state current value when the read voltage is applied after the erase voltage is applied in the sample manufactured in Example 1. It is a figure which shows the read-out voltage dependence of On / Off ratio. The horizontal axis is voltage (V), and the vertical axis is the On / Off ratio. The measurement was performed at room temperature. It was found that the On / Off ratio was the highest when the read voltage was -0.35V.
  • the horizontal axis is time (s)
  • the left vertical axis is voltage (V)
  • the right vertical axis is current ( ⁇ A). The measurement was performed at room temperature.
  • the current waveform corresponds to the change in the pulse voltage, and the current value when the read voltage is applied after applying the write voltage (that is, the On state) and the read voltage after applying the erase voltage (that is, when the read voltage is applied) A difference appears with the current value in the Off state), indicating that the memory is operating.
  • FIG. 9 shows the result of evaluating the sample manufactured in Example 1, where the time required for a pulse train of a set of write voltage, read voltage, erase voltage, and read voltage is one cycle, and the reciprocal number is defined as frequency.
  • the On / Off ratio which is the ratio between the On state current value when the read voltage is applied after the write voltage is applied and the Off state current value when the read voltage is applied after the erase voltage is applied, is dependent on the frequency. Showing gender.
  • the horizontal axis represents frequency (Hz), and the vertical axis represents On / Off ratio. The measurement was performed at room temperature.
  • the current followed the voltage change at any frequency.
  • FIG. 10 is a diagram showing current-voltage characteristics.
  • the horizontal axis is voltage V (V), and the vertical axis is current ( ⁇ A). Similar to FIG. 6, the current characteristics are different depending on whether the voltage is positive or negative, and it was found that a negative differential conductance region exists when a negative bias is applied. It was also found that about ⁇ 0.3 V should be set as the read voltage, about ⁇ 1.0 V as the erase voltage, and about 0.8 V as the write voltage.
  • FIG. 11 shows the dependence of the On / Off ratio on the read voltage, which is the ratio between the current value in the On state when the read voltage is applied after the write voltage is applied and the current value in the Off state when the read voltage is applied after the erase voltage is applied. It is a figure which shows sex. The horizontal axis is the voltage V (V), and the vertical axis is the On / Off ratio. It was found that the On / Off ratio was the highest when the read voltage was -0.3V.
  • the horizontal axis represents time (s)
  • the left vertical axis represents voltage (V)
  • the right vertical axis represents current ( ⁇ A).
  • FIG. 13 shows the current value in the On state when the read voltage is applied after the write voltage is applied, where the frequency is defined as the reciprocal of the time required for a set of write voltage, read voltage, erase voltage, and read voltage pulse train. And the frequency dependence of the On / Off ratio, which is the ratio of the current value in the off state when the read voltage is applied after the erase voltage is applied.
  • the horizontal axis represents frequency (Hz), and the vertical axis represents On / Off ratio.
  • the current followed the voltage change at any frequency.
  • FIG. 14 is a diagram showing current-voltage characteristics.
  • the horizontal axis is voltage V (V), and the vertical axis is current I ( ⁇ A). Similar to FIG. 6, the current characteristics are different depending on whether the voltage is positive or negative, and it was found that a negative differential conductance region exists when a negative bias is applied. It has also been found that about ⁇ 0.2 V may be set as a read voltage, about ⁇ 1.0 V as an erase voltage, and about 0.8 V as a write voltage.
  • FIG. 15 shows the dependence of the On / Off ratio on the read voltage, which is the ratio of the On state current value when the read voltage is applied after the write voltage is applied to the Off state current value when the read voltage is applied after the erase voltage is applied.
  • V the voltage
  • V the vertical axis
  • the horizontal axis is time (s)
  • the left vertical axis is voltage (V)
  • the right vertical axis is current ( ⁇ A).
  • FIG. 17 shows the current value in the On state when the read voltage is applied after the write voltage is applied, where the frequency is defined as the reciprocal of the time required for a set of write voltage, read voltage, erase voltage, and read voltage pulse train.
  • the frequency dependence of the On / Off ratio which is the ratio of the current value in the off state when the read voltage is applied after the erase voltage is applied.
  • the horizontal axis represents frequency (Hz), and the vertical axis represents On / Off ratio.
  • FIG. 18 is a diagram showing current-voltage characteristics.
  • the horizontal axis is voltage V (V), and the vertical axis is current ( ⁇ A). Similar to FIG. 6, the current characteristics are different depending on whether the voltage is positive or negative, but in this result, it was found that a negative differential conductance region exists when a positive bias is applied. It has also been found that about + 0.1V may be set as a read voltage, about + 1.1V as an erase voltage, and about ⁇ 0.85V as a write voltage.
  • FIG. 19 shows the dependence of the On / Off ratio on the read voltage, which is the ratio between the current value in the On state when the read voltage is applied after the write voltage is applied and the current value in the Off state when the read voltage is applied after the erase voltage is applied. It is a figure which shows sex. The horizontal axis is the voltage V (V), and the vertical axis is the On / Off ratio. It was found that the On / Off ratio was the highest when the read voltage was + 0.1V.
  • FIG. 21 shows the On state current value when the read voltage is applied after the write voltage is applied, where the frequency is defined as the reciprocal of the time required for a pulse train of a set of write voltage, read voltage, erase voltage, and read voltage. It is a figure of the frequency dependence of On / Off ratio which is a ratio with the electric current value of the OFF state at the time of read voltage application after erase voltage application.
  • the horizontal axis represents frequency (Hz), and the vertical axis represents On / Off ratio.
  • the current followed the voltage change at any frequency.
  • Example 1 operates as a memory element regardless of the usage environment such as temperature and atmosphere.
  • Example 2 The sample used in Example 2 was produced by the same method as in Example 1.
  • FIG. 22 is an SEM image of the sample manufactured in Example 2.
  • the nanogap between the electrodes was 1.79 nm.
  • a side gate was also produced at the same time.
  • FIG. 23 shows the first current-voltage characteristics of the sample produced in Example 2.
  • the horizontal axis is voltage V (V), and the vertical axis is current ( ⁇ A).
  • V voltage
  • ⁇ A current
  • the first and second current-voltage characteristics have no hysteresis, but the third and fourth times have current-voltage characteristics, and negative differential conductance is observed in the third sweep. It was found that the current waveform became asymmetric when changed from a positive value to a negative value and then continuously changed from a negative value to a positive value.
  • hysteresis appears when continuous voltage sweep is performed.
  • the continuous voltage sweep for developing the hysteresis will be referred to as forming here.
  • the arrow in a figure has shown the sweep direction of the voltage. The measurement was performed at room temperature.
  • FIG. 24 shows the current-voltage characteristics after forming.
  • the horizontal axis is voltage V (V), and the vertical axis is current ( ⁇ A).
  • V voltage
  • ⁇ A current
  • the measurement was performed at room temperature. Similar to the first embodiment, the current-voltage characteristic has hysteresis, and a characteristic in which a negative differential conductance region exists is obtained.
  • Example 1 the samples prepared in Example 1 and Example 2 were immersed in an aqueous hexamethonium bromide (HMB) solution containing bromine ions. The change in electrical characteristics before and after that was investigated.
  • HMB hexamethonium bromide
  • FIG. 26A shows the current-voltage characteristics of the sample prepared in Example 1 before and after immersion in the HMB aqueous solution
  • FIG. 26B shows the current-voltage characteristics of the sample prepared in Example 2 before and after immersion in the HMB aqueous solution. is there. Both Examples 1 and 2 were performed in vacuum at room temperature.
  • the vertical axis represents current ( ⁇ A), and the horizontal axis represents voltage.
  • FIGS. 27A and 27B show current-voltage characteristics when a voltage is swept in a positive and negative bias direction in a sample manufactured as a reference example, where FIG. 27A shows the first measurement, and FIG. 27B shows the second and subsequent measurement results.
  • FIG. In either case, the horizontal axis represents voltage (V), and the vertical axis represents current ( ⁇ A).
  • V voltage
  • ⁇ A current
  • the conductance changed from a high state to a low state.
  • the current response showed a clear hysteresis with different states at -0.5V.
  • the write voltage, read voltage, and erase voltage should be set to + 0.6V, -0.4V, and -1.0V, respectively.
  • the horizontal axis represents time (s)
  • the left vertical axis represents voltage (V)
  • the right vertical axis represents current ( ⁇ A).
  • the memory operation reproducible with a solid state device is shown, and it was found that it can be realized as a switching element and a memory element at room temperature.
  • Example 1 and Example 2 are compared with the comparative example, the same tendency is obtained qualitatively without arranging the metal nanoparticles between the nanogap of the electrode. It was found that the device characteristics were not greatly affected by the presence or absence of particles. Further, even when the first and second embodiments are compared with the comparative example, the current values are in the same order, and the current is characterized by being 100 ⁇ A higher than the value predicted from the element size and structure. Since the current changes relatively continuously, it is predicted that paths are formed in parallel between the electrodes.
  • a nanogap electrode was produced by iodine electroless gold plating.
  • a substrate having a silicon oxide film 2 provided on the entire surface of a silicon substrate 1 is prepared, a resist is applied on the substrate, and initial electrodes as metal layers 3A and 3B having a gap length of 30 nm are formed by EB lithography technology. Draw a pattern.
  • a 2 nm Ti film was deposited by EB deposition, and Au was deposited on the Ti film by 10 nm to prepare initial gold nanogap electrodes as the metal layers 3A and 3B.
  • an iodine electroless plating solution was prepared.
  • FIG. 29 shows current-voltage characteristics between nanogap electrodes produced by iodine electroless gold plating, (A) shows current-voltage characteristics, and (B) shows current characteristics when a pulse voltage train is applied. .
  • the figure shows the current-voltage characteristics after forming.

Abstract

 金属ナノ粒子を用いなくても、スイッチングやメモリとして機能する電子素子を提供する。電子素子が、ナノギャップを有するように配置された一方の電極及び他方の電極5A,5Bと、一方の電極5Aと他方の電極5Bとの間で少なくとも何れかの電極上に設けられたハロゲンイオン6と、を備える。一方の電極5Aと他方の電極5Bとの間に電圧を正の値から負の値まで、負の値から正の値まで連続的に繰り返し変化させると、一方の電極5Aと他方の電極5Bとの間に流れる電流波形が非対称となる。一方の電極5Aと他方の電極5Bとの間に印加する電圧の値に応じてハロゲンイオン6の状態を変化させ、一方の電極5Aと他方の電極5Bとの間に流れる電流の値に対応させて情報の書き込み状態と情報の消去状態とを維持する。

Description

電子素子
 本発明は、スイッチング機能やメモリ機能を有する電子素子に関する。
 対向する電極間に架橋、細線、ポイントコンタクトなどを形成した電子素子が開発されている(例えば特許文献1)。一方、本発明者らは、単電子トランジスタの製造技術の確立のために、単電子デバイスにおけるクーロン島として金ナノ粒子に注目し、STMを用いて1.8nmの粒径の金ナノ粒子が常温でクーロン島として機能していることを明らかにしてきた。また、固体基板上に電子デバイスの構築に向けて、無電解メッキを用いて5nmのギャップ長を有するナノギャップ電極を一度に高歩留まりで作製する技術を確立してきた。さらに、ナノギャップ電極間に、アルカンチオール分子で保護された金ナノ粒子を化学吸着法により導入した単電子トランジスタの動作について報告してきた(非特許文献1乃至5)。
特許第4119950号公報
S. Kano, Y. Azuma, M. Kanehara, T. Teranishi, Y. Majima, Appl. Phys. Express, 3, 105003 (2010) Y. Yasutake, K. Kono, M. Kanehara, T. Teranishi, M. R. Buitelaar, C. G. Smith, Y. Majima, Appl. Phys. Lett., 91, 203107 (2007) Victor M. Serdio V., Yasuo Azuma, Shuhei Takeshita, Taro Muraki, Toshiharu Teranishi and Yutaka Majima, Nanoscale, 4, 7161 (2012) N. Okabayashi, K. Maeda, T. Muraki, D. Tanaka, M. Sakamoto, T. Teranishi, Y. Majima, Appl. Phys. Lett., 100, 033101 (2012) 猪川洋、藤原聡、高橋庸夫、信学技報、ED2001-241、SDM2001-250、15-20頁
 しかしながら、そのような単電子トランジスタでは、アルカンチオール分子で保護された金属ナノ粒子を一対のナノギャップ電極の間に配置することが必要であり、そのためには、ナノギャップ電極の表面にアルカンチオール/アルカンジチオールの混合自己組織化単分子膜を形成し、アルカンジチオールをアンカー分子として用いて、金属ナノ粒子を化学吸着させることで、ナノギャップ電極間に金属ナノ粒子を導入することが必要である。このように、化学吸着法を用いた単電子トランジスタの製造方法では、上述のアルカンチオール/アルカンジチオールの混合自己組織化単分子膜を形成する工程、金属ナノ粒子を導入する工程を加える必要があるため、製造工程が複雑となっていた。
 そこで、本発明の目的は、上記課題に鑑み、金属ナノ粒子を用いなくてもスイッチングやメモリとして機能する電子素子を提供することにある。
 上記目的を達成するために、本発明は次の手段を講じる。
〔1〕 ナノギャップを有するように配置された前記一方の電極及び前記他方の電極と、前記一方の電極と前記他方の電極との間で少なくとも何れかの電極上に設けられたハロゲンイオンと、を備える、電子素子。
〔2〕 前記一方の電極と前記他方の電極との間に電圧を正の値から負の値まで及び/又は負の値から正の値まで連続的に変化させると、前記一方の電極と前記他方の電極との間に流れる電流波形が非対称となる、前記〔1〕に記載の電子素子。
〔3〕 前記一方の電極と前記他方の電極との間の電圧に対する電流特性が、負性微分コンダクタンスを有する、前記〔1〕に記載の電子素子。
〔4〕 前記一方の電極と前記他方の電極との間に印加する電圧の値に応じてハロゲンイオンの状態を変化させ、前記一方の電極と前記他方の電極との間に流れる電流の値に対応させて情報の書き込み状態と情報の消去状態とを維持する、前記〔1〕に記載の電子素子。
 本発明によれば、金属ナノ粒子を電極と電極との間の隙間に配置しなくても、メモリ機能又はスイッチング機能を備えた電子素子を提供することができる。
本発明の実施形態に係る電子素子の構成を示しており、(A)は断面図、(B)は平面図である。 図1に示す電子素子の電流電圧特性を示す図である。 分子定規として用いる界面活性剤分子(CTAB)の化学構造を模式的に示す図である。 実施例1で作製したサンプルのSEM像を示す図である。 実施例1で作製したサンプルの1回目の電流電圧特性を示す図である。 実施例1で作製したサンプルの2回目以降の電流電圧特性を示す図である。 実施例1で作製したサンプルにおける書込電圧印加後の読出電圧印加時のOn状態の電流値と消去電圧印加後の読出電圧印加時のOff状態の電流値との比である、On/Off比の読出電圧依存性を示す図である。 実施例1で作製したサンプルに対して、それぞれ5s(秒)ずつの書込電圧・読出電圧・消去電圧・読出電圧に対応するパルス電圧列(周期20s、周波数としては50mHzに対応)を印加した際の電流特性を示す図である。 実施例1で作製したサンプルを評価した結果であって、一組の書込電圧・読出電圧・消去電圧・読出電圧のパルス電圧列に要する時間の逆数を周波数と定義した場合の、書込電圧印加後の読出電圧印加時のOn状態の電流値と、消去電圧印加後の読出電圧印加時のOff状態の電流値との比である、On/Off比の周波数依存性を示す図である。 実施例1で作製したサンプルを評価した結果であって、-40℃の真空下において測定した電流電圧特性を示す図である。 実施例1で作製したサンプルを評価した結果であって、-40℃の真空下における書込電圧印加後の読出電圧印加時のOn状態の電流値と消去電圧印加後の読出電圧印加時のOff状態の電流値との比である、On/Off比の読出電圧依存性を示す図である。 実施例1で作製したサンプルを評価した結果であって、-40℃の真空下において、それぞれ5s(秒)ずつの書込電圧・読出電圧・消去電圧・読出電圧に対応するパルス電圧列(周期20s、周波数としては50mHzに対応)を印加した際の電流特性を示す図である。 実施例1で作製したサンプルの特性を評価した結果であって、一組の書込電圧・読出電圧・消去電圧・読出電圧のパルス電圧列に要する時間の逆数を周波数と定義した場合の、-40℃、真空下における書込電圧印加後の読出電圧印加時のOn状態の電流値と消去電圧印加後の読出電圧印加時のOff状態の電流値との比である、On/Off比の周波数依存性を示す図である。 実施例1で作製したサンプルの特性を評価した結果であって、120℃、真空下における電流電圧特性を示す図である。 実施例1で作製したサンプルの特性を評価した結果であって、120℃、真空下における書込電圧印加後の読出電圧印加時のOn状態の電流値と消去電圧印加後の読出電圧印加時のOff状態の電流値との比である、On/Off比の読出電圧依存性を示す図である。 実施例1で作製したサンプルの特性を評価した結果であって、120℃の真空下、それぞれ5s(秒)ずつの書込電圧・読出電圧・消去電圧・読出電圧に対応するパルス電圧列(周期20s、周波数としては50mHzに対応)を印加した際の電流特性を示す図である。 実施例1で作製したサンプルの特性を評価した結果であって、一組の書込電圧・読出電圧・消去電圧・読出電圧のパルス列に要する時間の逆数を周波数と定義した場合の、120℃、真空下における書込電圧印加後の読出電圧印加時のOn状態の電流値と消去電圧印加後の読出電圧印加時のOff状態の電流値との比である、On/Off比の周波数依存性を示す図である。 実施例1で作製したサンプルの120℃、空気中における電流電圧特性を示す図である。 実施例1で作製したサンプルの特性を評価した結果であって、120℃で空気中における書込電圧印加後の読出電圧印加時のOn状態の電流値と消去電圧印加後の読出電圧印加時のOff状態の電流値との比である、On/Off比の読出電圧依存性を示す図である。 実施例1で作製したサンプルの特性を評価した結果であって、120℃で空気中において、それぞれ5s(秒)ずつの書込電圧・読出電圧・消去電圧・読出電圧に対応するパルス電圧列(周期20s、周波数としては50mHzに対応)を印加した際の電流特性を示す図である。 実施例1で作製したサンプルの特性を評価した結果であって、一組の書込電圧・読出電圧・消去電圧・読出電圧のパルス列に要する時間の逆数を周波数と定義した場合の、120℃で空気中における書込電圧印加後の読出電圧印加時のOn状態の電流値と消去電圧印加後の読出電圧印加時のOff状態の電流値との比である、On/Off比の周波数依存性を示す図である。 実施例2で作製したサンプルのSEM像を示す図である。 実施例2で作製したサンプルの第1回目の電流電圧特性を示す図である。 実施例2で作製したサンプルのフォーミング後の電流電圧特性を示す図である。 実施例2で作製したサンプルにおいて、それぞれ5s(秒)ずつの書込電圧・読出電圧・消去電圧・読出電圧に対応するパルス電圧列(周期20s、周波数としては50mHzに対応)を印加した際の電流特性を示す図である。 (A)は実施例1で作製したサンプルを臭化ヘキサメトニウム水溶液に浸漬させた前後における電流電圧特性を示し、(B)は実施例2で作製したサンプルを臭化ヘキサメトニウム水溶液に浸漬させた前後における電流電圧特性を示す図である。 参考例として作製したサンプルに正負のバイアス方向に電圧を掃引したときの電流電圧特性を示し、(A)は第1回目の測定結果を、(B)は第2回目以降の測定結果を示す図である。 参考例として作製したサンプルを室温、空気中において、それぞれ5s(秒)ずつの書込電圧・読出電圧・消去電圧・読出電圧に対応するパルス電圧列(周期20s、周波数としては50mHzに対応)を印加した際の電流特性を示す図である。 実施例3としてヨウ素無電解金メッキで作製したナノギャップ電極間の電流電圧特性を示し、(A)は電流電圧特性を、(B)はパスル電圧列を印加したときの電流特性を示す図である。
 1:基板
 2:絶縁層
 3A,3B,4A,4B:金属層
 5A:ナノギャップ電極(一方の電極)
 5B:ナノギャップ電極(他方の電極)
 6:ハロゲンイオン
10:電子素子
 以下、図面を参照しながら本発明の実施形態について説明するが、本発明の実施形態は特許請求の範囲に記載した発明の範囲において適宜変更して実施することができる。
〔電子素子の構成〕
 図1は、本発明の実施形態に係る電子素子の構成を示しており、(A)は断面図、(B)は平面図である。本発明の実施形態に係る電子素子10は、基板1と、基板1上に設けられた絶縁層2と、絶縁層2上にナノギャップ長を有するように設けられた一方の電極5A及び他方の電極5Bと、一方の電極5A、他方の電極5Bの少なくとも何れかの電極に設けられたハロゲンイオン6と、を備える。ここで、ナノギャップ長とは数nm、例えば0.3nm~12nmの寸法である。一方の電極5Aと他方の電極5Bでナノギャップ電極が構成される。
 基板1にはSi基板など各種の半導体基板が用いられ得る。絶縁層2は、SiO、Siなどにより形成され得る。
 一方の電極5A及び他方の電極5Bは、Au、Al、Ag、Cu、Niなどにより形成され得る。一方の電極5A及び他方の電極5Bは、密着層3A,3Bと金属層4A,4Bとを順に積層することで形成されてもよい。ここで、密着層3A,3BはTi、Cr、Niなどで形成されることができ、金属層4A,4Bは、密着層3A,3B上にAu、Al、Ag、Cu、Niなどの別の又は同一の金属で形成され得る。
 ハロゲンイオン6としては、臭素イオン,塩素イオン,ヨウ素イオンである。ナノギャップ電極間に存在し、電気伝導に寄与するハロゲンイオン6は、一方の電極5A,他方の電極5Bに均等の数で配置されているのではなく、何れか一方に偏って配置される。
〔電子素子の特性〕
 図1に示す電子素子の特性について説明する。図2は図1に示す電子素子の電流電圧特性を示す。横軸は電圧V(V)であり、縦軸は電流I(A)である。電子素子10の一方の電極5Aと他方の電極5Bとの間に電圧を印加する。他方の電極5Bを接地した状態で、一方の電極5Aに電圧を掃引する。正バイアスを増加させると電流が増加し、或る電圧に達した後に減少させても元の電流波形とはならない。また、負バイアスを増加させると、或る電圧を超えると負性微分コンダクタンスの領域となる。つまり、或る負バイアスのとき、一方の電極5Aと他方の電極5Bとの間においてハロゲンイオン6の状態を変化させることができる。図1に示すように、電子素子10の電流電圧波形は、電圧を正の値から負の値まで、負の値から正の値までの何れか又は双方を、一回又は複数回、連続的に変化させた場合に電流波形が非対称となるヒステリシスを描く。このことから、何れかの電極表面にハロゲンイオンが吸着していることにより、電気伝導に寄与するナノギャップ間の電極構造が電気的に非対称となっている。
 ここで、図2に示すような電流-電圧特性が得られる理由について説明する。
 図2に示すような電流-電圧特性が得られるのは、ナノギャップ電極間に電圧を印加することにより、ギャップ間に存在するハロゲンイオンの価数が変化してその結果として酸化還元反応が生じ、又はギャップ間に存在するハロゲンイオンの個数が変化してその結果として伝導に寄与するハロゲンイオンの個数が変化し、ナノギャップ電極間の導電性が変化しているためと考えられる。このことは、後述するナノギャップ電極間に存在するハロゲンイオンの個数が電気伝導度に影響を与えていることから示唆されるものである。また、ナノギャップ電極間に電圧を印加することにより、イオンがマイグレーションしたため、導電性が変化したとも考えられる。
 そこで、電子素子10の一方の電極5Aに印加する電圧の大きさとして、書込電圧をVwrite,読取電圧をVread,消去電圧をVeraseとすると、
 書込電圧Vwrite<0<読取電圧Vread<消去電圧Verase
 又は、書込電圧Vwrite>0>読取電圧Vread>消去電圧Verase
が成り立つように、各電圧を設定する。すると、電子素子10をメモリ素子として用いることができ、またスイッチング素子として用いることができる。
〔電子素子の製造方法〕
 図1に示す電子素子の製造方法について説明する。先ず、第1ステップとして基板1上に第1の絶縁層2を形成する。次に、第2ステップとして、分子定規無電解メッキ法によりナノギャップ電極5A,5Bを形成する。
 例えば、第1の絶縁層2上にナノギャップよりも広いギャップを有するように金属層3A,3Bを間隔をあけて対を成すように形成しておく。次に、無電解メッキ液に基板1を浸漬する。無電解メッキ液は、金属イオンを含む電解液に還元剤及び界面活性剤が混入されて作製される。この無電解メッキ液に基板1を浸すと、金属イオンが還元剤により還元されて、金属が金属層3A,3Bの表面に析出して金属層4Aと金属層4Bとなり、金属層4Aと金属層4Bとのギャップが狭くなり、無電解メッキ液に含まれる界面活性剤が、その析出により形成される金属層4A,4Bに化学吸着する。界面活性剤は電極間のギャップの長さ(単に「ギャップ長」と呼ぶ。)をナノメートルサイズに制御する。電解液中の金属イオンが還元剤により還元されて金属が析出するため、このような手法は無電解メッキ法に分類される。金属層3A、3Bに金属層4A、4Bがメッキにより形成され、電極5A,5Bの対が得られる。このように、ナノギャップ電極5A,5B表面に保護基である界面活性剤分子を分子定規として用いた無電解メッキ法(以下、「分子定規無電解メッキ法」と呼ぶ。)により、ギャップ長を界面活性剤の分子によって制御する。これにより、ナノギャップ電極5A,5Bを精度よく形成することができると共に、ハロゲンイオンをカウンターイオンとして備える各種界面活性剤により、ハロゲンイオンの元をナノギャップ電極5A,5Bに配置することができる。
 その後、第3ステップとして、ナノギャップ電極に、UV洗浄及び/又はO2プラズマアッシングを行うことで、表面に付着した分子を灰化処理する。そのとき、界面活性剤のカウンターイオンが一方の電極5A,他方の電極5Bに吸着した状態となり、一方の電極5A、他方の電極5Bに電圧を印加することにより、イオン状態が変化するか又はイオンがマイグレーションするか、その双方が生じる。
 以上により、本発明の実施形態に係る電子素子10を作製することができる。
 ここで、第2ステップについて詳細に説明する。
 混合溶液であるメッキ液には、分子定規の機能を果たす界面活性剤と、析出する金属の陽イオンが混入されている水溶液、例えば塩化金(III)酸水溶液と還元剤と、が含まれ、この混合液に後述するように酸が含まれていることが好ましい。
 分子定規には、例えば、界面活性剤である臭化アルキルトリメチルアンモニウム(Alkyltrimethylammonium Bromide)分子が用いられる。臭化アルキルトリメチルアンモニウムとしては、具体的には、臭化デシルトリメチルアンモニウム(DTAB:Decyltrimethylammonium Bromide)、臭化ラウリルトリメチルアンモニウム(LTAB:Lauryltrimethylammonium Bromide)、臭化ミリスチルトリメチルアンモニウム(MTAB:Myristyltrimethylammonium Bromide)、臭化セチルトリメチルアンモニウム(CTAB:Cetyltrimethylammonium Bromide)、臭化ステアリルトリメチルアンモニウム(STAB:Stearyltrimethylammonium Bromide)、臭化ヘキサメトニウム(HMB:Hexamethonium Bromide)、臭化オクタメトニウム(OMB:Octamethonium Bromide)、臭化デカメトニウム(DMB:Decamethonium Bromide)が用いられる。
 分子定規には、それ以外にも、ハロゲン化アルキルトリメチルアンモニウム、塩化アルキルトリメチルアンモニウム、ヨウ化アルキルトリメチルアンモニウム、臭化ジアルキルジメチルアンモニウム、塩化ジアルキルジメチルアンモニウム、ヨウ化ジアルキルジメチルアンモニウム、臭化アルキルベンジルジメチルアンモニウム、塩化アルキルベンジルジメチルアンモニウム、ヨウ化アルキルベンジルジメチルアンモニウム、アルキルアミン、N-メチル-1-アルキルアミン、N-メチル-1-ジアルキルアミン、トリアルキルアミン、オレイルアミン、アルキルジメチルホスフィン、トリアルキルホスフィン、アルキルチオールの何れかが挙げられる。ここで、長鎖脂肪族アルキル基としては、ヘキシル、オクチル、デシル、ドデシル、テトラデシル、ヘキサデシル、オクタデシルなどのアルカン基、アルキレン基などがあるが、長鎖脂肪族アルキル基であれば同様の機能が期待されるため、これらの例に限らない。
 分子定規としては、DDAB(ジデシルジメチルアンモニウムブロミド)以外にも、ヘキサメトニウムブロミド、N,N'-(1,20-イコサンジイル)ビス(トリメチルアミニウム)ジブロミド、1,1'-(デカン-1,10-ジイル)ビス[4-アザ-1-アゾニアビシクロ[2.2.2]オクタン]ジブロミド、塩化プロピルジトリメチルアンモニウム、1,1'-ジメチル-4,4'-ビピリジニウムジクロリド、1,1'-ジメチル-4,4'-ビピリジニウムジヨージド、1,1'-ジエチル-4,4'-ビピリジニウムジブロミド、1,1'-ジヘプチル-4,4'-ビピリジニウムジブロミドの何れかを用いてもよい。
 電解液としては、塩化金(III)酸水溶液、塩化金(III)酸ナトリウム水溶液、塩化金(III)酸カリウム水溶液、塩化金(III)水溶液、塩化金(III)酸アンモニウム塩が有機溶媒に溶解した溶液を用いる。ここで、アンモニウム塩には上述したアンモニウム塩、有機溶媒には脂肪族炭化水素、ベンゼン、トルエン、クロロメタン、ジクロロメタン、クロロホルム、四塩化炭素などが挙げられる。
 還元剤としては、アスコルビン酸、ヒドラジン、一級アミン、二級アミン、一級アルコール、二級アルコール、ジオールを含むポリオール、亜硫酸ナトリウム、塩化ヒドロキシルアンモニウム水素化ホウ素塩、水素化アルミニウムリチウム、シュウ酸、ギ酸などが挙げられる。
 還元力が比較的弱い、例えばアスコルビン酸は、電極表面を触媒にした自己触媒型のメッキにより金の0価への還元を可能にする。還元力が強いと、電極以外でも還元が起こり、クラスターが多く生成する。即ち、溶液中に金微粒子が生成して電極上に付着してしまい、電極上に選択的に金を析出させることができないため好ましくない。逆に、アスコルビン酸など、より弱い還元剤であると、自己触媒型のメッキ反応が進まない。なお、クラスターとは、無電解メッキを可能にする核が表面にあってその核の上にメッキにより形成された金のナノ粒子のことである。
 L(+)-アスコルビン酸は、上述した還元剤の中では還元作用が弱く、クラスターの生成をより少なくし、電極表面を触媒にして金を0価へ還元するため、還元剤として用いるのが好適である。
 無電解メッキ液には、クラスターの生成を抑える働きがある酸を混入させておくことが好ましい。クラスターが核形成をし始めた不安定な状態で溶かすことができるからである。酸としては、塩酸、硝酸、酢酸を用いることができる。
 図3は分子定規として用いる界面活性剤分子(CTAB)の化学構造を模式的に示す図である。CTABはC16、即ち直鎖の炭素が16個結合しているアルキル鎖長を有する分子である。この他にもアルキル鎖の異なる誘導体、アルキル鎖C10となるDTAB、C12となるLTAB、C14となるMTAB、C18となるSTABの合わせて5分子を最良の形態の一例として示す。頭文字のD,L、M、C、Sはそれぞれ10のDecyl、12のLauryl、14のMyristyl、16のCetyl、18のStearylの頭文字からとられている。
 上述では、電極材料として金を用いているが、金に限らず別の金属であってもよい。例えば、電極材料としてイニシャル電極の材料を銅としてもよい。その際、イニシャル電極は、電子ビームリソグラフィー(Electron Beam Lithography)法又は光リソグラフィー法を用いて銅電極を形成し、その後、銅電極表面を塩化銅とする。次いで、メッキ液としてアスコルビン酸を還元剤として用いた塩化金溶液を用い、銅電極表面を金で覆う。具体的には、塩化金(III)酸水溶液に界面活性剤臭化アルキルトリメチルアンモニウムC2n+1〔CH33・Brを混ぜ、還元剤L(+)-アスコルビン酸を加え、ギャップ電極上に、自己触媒型無電解金メッキを行う。その後、分子定規メッキ法により表面が金のナノギャップ電極を作製する。
 実施例1として、以下の要領で分子定規無電解メッキ法を用いて電子素子を作製した。
 最初に、シリコン基板1上にシリコン酸化膜2が全面に設けられた基板を用意し、その基板上にレジストを塗布し、EBリソグラフィー技術によりギャップ長30nmとなる金属層3A,3Bとしてのイニシャル電極のパターンを描画した。現像後、EB(Electron Beam)蒸着により2nmのTi膜を蒸着し、そのTi膜上にAuを10nm蒸着して、金属層3A,3Bとしてのイニシャルの金ナノギャップ電極を作製した。
 次に、無電解メッキ液を用意した。分子定規として25ミリモルの臭化アルキルトリメチルアンモニウム(Alkyltrimethylammonium Bromide)を28ミリリットル測って取る。そこに、塩化金酸水溶液50ミリモルを120マイクロリットル測って加える。酸として酢酸を1ミリリットル加え、還元剤となるL(+)-アスコルビン酸(Ascorbic acid)を0.1モル、3.6ミリリットル加え、よく撹拌してメッキ液とした。
 実施例1では、臭化アルキルトリメチルアンモニウムとして、LTAB分子を用いた。既に作製した、金ナノギャップ電極付きの基板を無電解メッキ液に30分程度浸漬した。これにより、実施例1の分子定規無電解メッキ法によりナノギャップ長を有する電極を作製した。
 その後、酸素プラズマアッシングを行って、分子定規として用いたLTABの直鎖部分を除去し、残りのカウンターイオンをナノギャップ電極の何れか一方に偏在させた。
 図4は、実施例1で作製したサンプルのSEM像を示す図である。電極の間のナノギャップが2.48nmであった。なお、実施例1ではサイドゲートも同時に作製した。
 図5は、実施例1で作製したサンプルの1回目の電流電圧特性を示す。横軸は電圧V(V)であり、縦軸は電流I(μA)である。1回目の電流電圧特性の測定として、先ず、0Vから-1Vまで印加して0Vまで戻し、その後、0Vから1Vまで印加して0Vまで戻し、さらに、0Vから-1Vまで印加して0Vまで戻した。図から、電流電圧特性がヒステリシスを有し、一方の電極5Aと他方の電極5Bとの間に電圧を負の値から正の値まで連続的に変化させると、一方の電極5Aと他方の電極5Bとの間に流れる電流波形が非対称となる。つまり、電圧の掃引方向に依存して非対称なヒステリシスを含む電流波形を有していることが分かった。なお、図中の矢印は、電圧の掃引方向を示している。測定は室温で行った。
 図6は、実施例1で作製したサンプルの二回目以降の電流電圧特性を示す。測定は室温で行った。図から、電圧の正負で電流の特性が異なり、負バイアスを印加した状態において負性微分コンダクタンス領域が存在することが分かった。また、約-0.4Vを読出電圧、約-1.0Vを消去電圧、約0.75Vを書込電圧として設定すればよいことが分かった。
 図7は、実施例1で作製したサンプルにおける書込電圧印加後の読出電圧印加時のOn状態の電流値と、消去電圧印加後の読出電圧印加時のOff状態の電流値との比である、On/Off比の読出電圧依存性を示す図である。横軸は電圧(V)であり、縦軸はOn/Off比である。測定は室温で行った。読出電圧を-0.35VとしたときがOn/Off比が最も高いことが分かった。
 図8は、実施例1で作製したサンプルに対して、それぞれ5s(秒)ずつの書込電圧Vwrite=0.8V・読出電圧Vread=-0.35V・消去電圧Verase=-1.0V・読出電圧Vread=-0.35Vのパルス列(周期20s、周波数としては50mHzに対応)を印加したときの電流特性を示す図である。横軸は時間(s)であり、左縦軸は電圧(V)であり、右縦軸は電流(μA)である。測定は室温で行った。パルス電圧の変化に電流波形が対応しており、書込電圧を印加した後に読出電圧を印加したとき(すなわちOn状態)の電流値と、消去電圧を印加した後に読出電圧を印加したとき(すなわちOff状態)の電流値とで差が現れており、メモリ動作していることが分かる。この場合のOn/Off比は、178.6μA/47.4μA=3.76であった。
 図9は、実施例1で作製したサンプルを評価した結果であって、一組の書込電圧・読出電圧・消去電圧・読出電圧のパルス列に要する時間を1周期とし、その逆数を周波数と定義した場合の、書込電圧印加後の読出電圧印加時のOn状態の電流値と、消去電圧印加後の読出電圧印加時のOff状態の電流値との比である、On/Off比の周波数依存性を示す。横軸は周波数(Hz)であり、縦軸はOn/Off比である。測定は室温で行った。パルス列の周波数を50mHz,500mHz,5Hz,50Hz,500Hz,5kHzと増加させると、On/Off比は3.76(=178.6μA/47.4μA),2.87(=145.8μA/50.8μA),2.36(=114.8μA/48.6μA),1.65(=85.6μA/51.9μA),1.28(=70.4μA/54.9μA),1.13(=62.6μA/55.5μA)と減少することが分かった。なお、何れの周波数でも電圧の変化に電流が追従していた。
 次に、実施例1で作製したサンプルを-40℃の真空中で測定した結果について述べる。
 図10は電流電圧特性を示す図である。横軸は電圧V(V)であり、縦軸は電流(μA)である。図6と同様に電圧の正負で電流の特性が異なり、負バイアスを印加した状態において負性微分コンダクタンス領域が存在することが分かった。また、約-0.3Vを読出電圧、約-1.0Vを消去電圧、約0.8Vを書込電圧として設定すればよいことが分かった。
 図11は書込電圧印加後の読出電圧印加時のOn状態の電流値と、消去電圧印加後の読出電圧印加時のOff状態の電流値との比である、On/Off比の読出電圧依存性を示す図である。横軸は電圧V(V)であり、縦軸はOn/Off比である。読出電圧を-0.3VとしたときがOn/Off比が最も高いことが分かった。
 図12は5s(秒)ずつの書込電圧Vwrite=0.8V・読出電圧Vread=-0.35V・消去電圧Verase=-1.0V・読出電圧Vread=-0.35Vのパルス列を印加した場合の電流特性を示す図である。横軸は時間(s)、左縦軸は電圧(V)、右縦軸は電流(μA)である。この場合のOn/Off比は、143.0μA/39.5μA=3.62であった。
 図13は、一組の書込電圧・読出電圧・消去電圧・読出電圧のパルス列に要する時間の逆数を周波数と定義した場合の、書込電圧印加後の読出電圧印加時のOn状態の電流値と、消去電圧印加後の読出電圧印加時のOff状態の電流値との比である、On/Off比の周波数依存性を示す。横軸は周波数(Hz)であり、縦軸はOn/Off比である。パルス列の周波数を50mHz,500mHz,5Hz,50Hz,500Hz,5kHzと増加させると、On/Off比は3.62(=143.0μA/39.5μA),2.45(=105.0μA/62.1μA),1.82(=80.4μA/44.1μA),1.51(=71.6μA/47.4μA),1.19(=59.8μA/50.2μA),1.17(=56.4μA/48.0μA)と減少することが分かった。なお、何れの周波数でも電圧の変化に電流が追従していた。
 次に、実施例1で作製したサンプルを、120℃の真空中で測定した結果について述べる。
 図14は電流電圧特性を示す図である。横軸は電圧V(V)であり、縦軸は電流I(μA)である。図6と同様に電圧の正負で電流の特性が異なり、負バイアスを印加した状態において負性微分コンダクタンス領域が存在することが分かった。また、約-0.2Vを読出電圧、約-1.0Vを消去電圧、約0.8Vを書込電圧として設定すればよいことが分かった。
 図15は書込電圧印加後の読出電圧印加時のOn状態の電流値と消去電圧印加後の読出電圧印加時のOff状態の電流値の比であるOn/Off比の読出電圧依存性を示す図である。横軸は電圧V(V)であり、縦軸はOn/Off比である。電圧を-0.2VとしたときがOn/Off比が最も高いことが分かった。
 図16は5s(秒)ずつの書込電圧Vwrite=0.8V・読出電圧Vread=-0.2V・消去電圧Verase=-1.0V・読出電圧Vread=-0.2Vのパルス列を印加した場合の電流特性を示す図である。横軸は時間(s)であり、左縦軸は電圧(V)であり、右縦軸は電流(μA)である。この場合のOn/Off比は、112.9μA/33.7μA=3.55であった。
 図17は、一組の書込電圧・読出電圧・消去電圧・読出電圧のパルス列に要する時間の逆数を周波数と定義した場合の、書込電圧印加後の読出電圧印加時のOn状態の電流値と、消去電圧印加後の読出電圧印加時のOff状態の電流値との比である、On/Off比の周波数依存性を示す。横軸は周波数(Hz)であり、縦軸はOn/Off比である。パルス列の周波数を50mHz,500mHz,5Hz,50Hz,500Hz,5kHzと増加させると、On/Off比は3.55(=112.9μA/33.7μA),2.62(=100.3μA/38.3μA),1.97(=78.5μA/39.9μA),1.54(=62.4μA/40.6μA),1.25(=50.4μA/40.5μA),1.14(=46.4μA/40.8μA)と減少することが分かった。なお、何れの周波数でも電圧の変化に電流が追従していた。
 次に、120℃の空気中で測定した結果について述べる。
 図18は電流電圧特性を示す図である。横軸は電圧V(V)であり、縦軸は電流(μA)である。図6と同様に電圧の正負で電流の特性が異なるが、この結果では正バイアスを印加した状態において負性微分コンダクタンス領域が存在することが分かった。また、約+0.1Vを読出電圧、約+1.1Vを消去電圧、約-0.85Vを書込電圧として設定すればよいことが分かった。
 図19は書込電圧印加後の読出電圧印加時のOn状態の電流値と、消去電圧印加後の読出電圧印加時のOff状態の電流値との比である、On/Off比の読出電圧依存性を示す図である。横軸は電圧V(V)であり、縦軸はOn/Off比である。読出電圧を+0.1VとしたときがOn/Off比が最も高いことが分かった。
 図20は5s(秒)ずつの書込電圧Vwrite=―0.85V・読出電圧Vread=+0.1V・消去電圧Verase=+1.1V・読出電圧Vread=+0.1Vのパルス列を印加したときの電流特性を示す図である。横軸は時間(s)、左縦軸は電圧(V)、右縦軸は電流(μA)である。この場合のOn/Off比は、45.0μA/19.9μA=2.26であった。
 図21は、一組の書込電圧・読出電圧・消去電圧・読出電圧のパルス列に要する時間の逆数を周波数と定義したときの、書込電圧印加後の読出電圧印加時のOn状態の電流値と、消去電圧印加後の読出電圧印加時のOff状態の電流値との比である、On/Off比の周波数依存性の図である。横軸は周波数(Hz)であり、縦軸はOn/Off比である。パルス列の周波数を50mHz,500mHz,5Hz,50Hz,500Hz,5kHzと増加させると、On/Off比は2.26(=45.0μA/19.9μA),1.79(=35.8μA/20.0μA),1.36(=29.4μA/21.6μA),1.14(=24.9μA/21.8μA),1.05(=22.3μA/21.3μA),1.05(=22.1μA/21.1μA)と減少することが分かった。なお、何れの周波数でも電圧の変化に電流が追従していた。
 よって、実施例1で作製したサンプルは、温度・雰囲気などの使用環境によらずメモリ素子として動作することが分かった。
 実施例2で用いたサンプルは、実施例1と同様の手法で作製したものである。図22は、実施例2で作製したサンプルのSEM像である。電極の間のナノギャップは1.79nmであった。なお、実施例2ではサイドゲートも同時に作製した。
 図23は、実施例2で作製したサンプルの第1回目の電流電圧特性を示す。横軸は電圧V(V)であり、縦軸は電流(μA)である。1回目の電流電圧特性の測定として、室温状態で、先ず、0Vから負バイアス側に増加させて0Vまで戻し、次に、0Vから正バイアス側に増加させて0Vまで戻し、その後、0Vから負バイアス側に増加させて0Vまで戻し、さらに、0Vから正バイアス側に増加させて0Vまで戻した。図から、1回目と2回目の電流電圧特性にはヒステリシスを有しないが、3回目と4回目は電流電圧特性がヒステリシスを有し、3回目の掃引では負性微分コンダクタンスが観察され、電圧を正の値から負の値まで変化させ次に負の値から正の値まで連続的に変化させると、電流波形が非対称となることが分かった。図23より、連続的な電圧掃引を行うと、ヒステリシスが発現する。ヒステリシスを発現させるための連続的な電圧掃引をフォーミングとここでは呼ぶことにする。なお、図中の矢印は、電圧の掃引方向を示している。測定は室温で行った。
 図24は、フォーミング後の電流電圧特性を示す。横軸は電圧V(V)であり、縦軸は電流(μA)である。測定は室温で行なった。実施例1と同様に電流電圧特性がヒステリシスを有し、負性微分コンダクタンス領域が存在する特性が得られている。
 図25は実施例2で作製したサンプルに対して、5s(秒)ずつの書込電圧Vwrite=―0.9V・読出電圧Vread=+0.7V・消去電圧Verase=+1.1V・読出電圧Vread=+0.7Vのパルス列(周期20s、周波数としては50mHzに対応)を印加した際の電流特性を示す図である。測定は室温で行なった。横軸は時間(s)であり、左縦軸は電圧V(V)であり、右縦軸は電流(μA)である。図8と同様にパルス列に対応した電流が観測されており、そのOn/Off比は読出電圧0.7Vにおいて、548.6μA/231.1μA=2.26であった。
 次に、本メモリ素子においてハロゲンイオンが素子動作に影響することを示すため、実施例1及び実施例2で作製したサンプルを、臭素イオンを含む臭化ヘキサメトニウム(HMB)水溶液中に浸漬させ、その前後における電気特性の変化を調べた。
 図26(A)は実施例1で作製したサンプルの、HMB水溶液の浸漬前後における電流電圧特性を示し、(B)は実施例2で作製したサンプルの、HMB水溶液の浸漬前後における電流電圧特性である。実施例1、2共に室温で真空中で行った。縦軸は電流(μA)、横軸は電圧である。
 双方の結果において、HMB水溶液への浸漬に伴い、電流電圧特性に変化が現れ、HMBに浸漬させた後の方が、電流量が大きくなっていることがわかった。特に図26(B)では8倍程度の電流量の増加が見られている。また、浸漬前後において、On/Off比は殆ど変化しなかった。すなわち、実施例1のサンプルにおける読出電圧+0.1VでのOn/Off比は、浸漬前は2.46(=28.1μA/11.4μA)、浸漬後のOn/Off比は2.52(=27.4μA/10.9μA)であり、実施例2のサンプルにおける電圧―0.1VでのOn/Off比は、浸漬前は2.74(=1.5μA/0.55μA)、浸漬後のOn/Off比は2.45(=26.1μA/10.6μA)であった。HMB水溶液へのナノギャップ電極の浸漬により、ナノギャップ電極間に導入された臭素イオンの個数は、浸漬前よりも浸漬後の方が多くなっていることが予想される。従って、ナノギャップ間に存在する臭素イオンの増加が、電流電圧特性の変化として素子動作に影響を与えていると考えられる。
〔比較例〕
 実施例1と同様に作製したナノギャップを有する電極の隙間に、下記化学式で示されるチオール官能化オリゴ(フェニレンエチニレン)(OPE)で保護された金ナノ粒子を配置した。具体的には、Auで3.6nmのナノギャップ電極を電子ビームリソグラフィーと分子定規無電解メッキを用いて作製した。その後、チオール官能基で保護されたAuナノ粒子(2.0nmのコア平均直径サイズ)の溶液中に、Auナノギャップ電極を浸漬した。電気的な測定は室温で行った。
Figure JPOXMLDOC01-appb-C000001
 図27は、参考例として作製したサンプルに正負のバイアス方向に電圧を掃引したときの電流電圧特性を示し、(A)は第1回目の測定、(B)は第2回目以降の測定結果を示す図である。何れも、横軸は電圧(V)であり、縦軸は電流(μA)である。第2回目以降の測定では、コンダクタンスが高い状態から低い状態に変化していることが分かった。電流応答は、-0.5Vで異なる状態を含んだ明確なヒステリシスを示した。スイッチング動作の観測のために、書込電圧、読取電圧及び消去電圧を、それぞれ+0.6V、-0.4V、-1.0Vに設定すればよいことが分かった。図28は参考例として作製したサンプルを室温、空気中において、それぞれ5sずつの書込電圧Vwrite=+0.6V・読出電圧Vread=-0.4V・消去電圧Verase=-1.0V・読出電圧Vread=-0.4Vのパルス列(周期20s、周波数としては50mHzに対応)を印加したときの電流特性を示す図である。横軸は時間(s)、左縦軸は電圧(V)、右縦軸は電流(μA)である。固体デバイスで再現可能なメモリ動作を示しており、室温でスイッチング素子及びメモリ素子として実現できることが分かった。
 ここで、実施例1及び実施例2と比較例とを比較すると、金属ナノ粒子を電極のナノギャップ間に配置しなくても、定性的に同様の傾向が得られていることから、金属ナノ粒子の有無にあまり素子特性が影響を受けないことが分かった。また、実施例1及び実施例2と比較例を比べても、電流の値が同じオーダーであり、素子サイズ及び構造から予測される値よりも電流が100μAと高いことが特徴でもある。電流が比較的連続的に変化していることから、電極同士の間でパスが並列に形成されていることが予測される。
 なお、図1に示すように、何れか一方の電極で、他方の電極に対向するようにハロゲンイオンが設けられている場合に限らず、双方の電極で対向する表面にハロゲンイオンが設けられてもよい。ただ、その場合には、一方の電極に設けられているハロゲンイオンの数と、他方の電極に設けられているハロゲンイオンの数とで差が生じていればよい。
 実施例3として、ヨウ素無電解金メッキでナノギャップ電極を作製した。
 最初に、シリコン基板1上にシリコン酸化膜2を全面に設けた基板を用意し、その基板上にレジストを塗布し、EBリソグラフィー技術によりギャップ長30nmとなる金属層3A,3Bとしてのイニシャル電極のパターンを描画した。現像後、EB蒸着により2nmのTi膜を蒸着し、そのTi膜上にAuを10nm蒸着して、金属層3A,3Bとしてのイニシャルの金ナノギャップ電極を作製した。
 次に、ヨウ素無電解メッキ液を用意した。ヨードチンキ溶液に金箔を溶かすことにより、[AuI]イオンとして金を溶かし、還元剤としてL(+)-アスコルビン酸を加え、[AuI]イオンに還元する。この溶液をメッキ液とし、室温下でメッキ液へのサンプルの浸漬処理を複数回繰り返すことにより、ヨウ素無電解メッキを用いて、種電極層にメッキを施す。
 図29は、ヨウ素無電解金メッキで作製したナノギャップ電極間の電流電圧特性を示し、(A)は電流電圧特性図、(B)はパスル電圧列を印加したときの電流特性を示す図である。図はフォーミング後の電流電圧特性であり、電圧0Vから電圧を正方向に連続的に掃引させると、1.2Vあたりでショルダーが観察されコンダクタンスが減少している。2Vから0Vまで電圧を負方向に掃引させると、直前に正方向に掃引した場合よりも同じ電圧における電流値が小さく非対称となっている。連続して負方向に0Vから-2Vまで負方向に掃引すると、電流値は電圧の絶対値の増加に伴って負方向に増大する。連続して-2Vから0Vまで電圧を正方向に掃引させると、今度は直前に負方向に掃引したときよりも同じ負の電圧における電流の絶対値が大きくなり非対称となっている。すなわち、図29では正の電圧領域における正方向から負方向への連続した電圧掃引では、時計回りのヒステリシスになり、負の電圧領域における負方向から正方向への連続した電圧掃引では、時計回りのヒステリシスとなっている。このことから、正の電圧領域における掃引では、コンダクタンスが高い状態から低い状態に変化し、負の電圧領域における掃引では、コンダクタンスが低い状態から高い状態に変化しており、結果としてスイッチ特性が得られており、この素子には極性があることになる。なお、このようなスイッチ特性を得るためには、フォーミングが必要であるが、どちらの極性になるかという点は、いずれの場合もあり得る。
 本発明は実施形態及び実施例に限定されるものではなく、特許請求の範囲に記載した発明の範囲において種々変更して適用することが可能である。

Claims (4)

  1.  ナノギャップを有するように配置された一方の電極及び他方の電極と、
     上記一方の電極と上記他方の電極との間で少なくとも何れかの電極上に設けられたハロゲンイオンと、
    を備える、電子素子。
  2.  前記一方の電極と前記他方の電極との間に電圧を正の値から負の値まで及び/又は負の値から正の値まで連続的に変化させると、前記一方の電極と前記他方の電極との間に流れる電流波形が非対称となる、請求項1に記載の電子素子。
  3.  前記一方の電極と前記他方の電極との間の電圧に対する電流特性が負性微分コンダクタンスを有する、請求項1に記載の電子素子。
  4.  前記一方の電極と前記他方の電極との間に印加する電圧の値に応じて前記ハロゲンイオンの状態を変化させ、前記一方の電極と前記他方の電極との間に流れる電流の値に対応させて情報の書き込み状態と情報の消去状態とを維持する、請求項1に記載の電子素子。
PCT/JP2014/056080 2013-03-09 2014-03-09 電子素子 WO2014142040A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020157028244A KR102123955B1 (ko) 2013-03-09 2014-03-09 전자 소자
EP14762487.8A EP2966684B1 (en) 2013-03-09 2014-03-09 Electronic element
US14/773,547 US9595604B2 (en) 2013-03-09 2014-03-09 Electronic element
JP2015505449A JP6225347B2 (ja) 2013-03-09 2014-03-09 電子素子
CN201480013411.2A CN105103291B (zh) 2013-03-09 2014-03-09 电子元件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013047422 2013-03-09
JP2013-047422 2013-03-09

Publications (1)

Publication Number Publication Date
WO2014142040A1 true WO2014142040A1 (ja) 2014-09-18

Family

ID=51536699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/056080 WO2014142040A1 (ja) 2013-03-09 2014-03-09 電子素子

Country Status (7)

Country Link
US (1) US9595604B2 (ja)
EP (1) EP2966684B1 (ja)
JP (1) JP6225347B2 (ja)
KR (1) KR102123955B1 (ja)
CN (1) CN105103291B (ja)
TW (1) TWI612663B (ja)
WO (1) WO2014142040A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019168123A1 (ja) * 2018-03-02 2019-09-06 国立研究開発法人科学技術振興機構 ナノギャップ電極及びその作製方法、並びにナノギャップ電極を有するナノデバイス

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10590541B2 (en) * 2018-06-15 2020-03-17 Rohm And Haas Electronic Materials Llc Electroless copper plating compositions and methods for electroless plating copper on substrates

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005286084A (ja) * 2004-03-30 2005-10-13 Univ Waseda 量子化コンダクタンス素子、これを用いた磁場変化検出方法及び磁気検出方法、並びに量子化コンダクタンス素子の製造方法
WO2007069725A1 (ja) * 2005-12-15 2007-06-21 Nec Corporation スイッチング素子およびその製造方法
JP4119950B2 (ja) 2000-09-01 2008-07-16 独立行政法人科学技術振興機構 コンダクタンスの制御が可能な電子素子
JP2008311449A (ja) * 2007-06-15 2008-12-25 National Institute Of Advanced Industrial & Technology シリコンによる2端子抵抗スイッチ素子及び半導体デバイス
WO2012121067A1 (ja) * 2011-03-08 2012-09-13 独立行政法人科学技術振興機構 ナノギャップ長を有する電極構造の作製方法並びにそれにより得られるナノギャップ長を有する電極構造及びナノデバイス
WO2013129535A1 (ja) * 2012-02-28 2013-09-06 独立行政法人科学技術振興機構 ナノデバイス及びその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0770731B2 (ja) * 1990-11-22 1995-07-31 松下電器産業株式会社 電気可塑性素子
WO2002091494A1 (en) * 2001-05-07 2002-11-14 Advanced Micro Devices, Inc. Switch element having memeory effect
TWI227516B (en) * 2003-12-26 2005-02-01 Ind Tech Res Inst Nano-electronic devices using discrete exposure method
JP4919146B2 (ja) * 2005-09-27 2012-04-18 独立行政法人産業技術総合研究所 スイッチング素子
WO2007091364A1 (ja) * 2006-02-06 2007-08-16 Matsushita Electric Industrial Co., Ltd. 単電子半導体素子の製造方法
JP4925037B2 (ja) * 2006-06-23 2012-04-25 独立行政法人物質・材料研究機構 光ナノスイッチ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4119950B2 (ja) 2000-09-01 2008-07-16 独立行政法人科学技術振興機構 コンダクタンスの制御が可能な電子素子
JP2005286084A (ja) * 2004-03-30 2005-10-13 Univ Waseda 量子化コンダクタンス素子、これを用いた磁場変化検出方法及び磁気検出方法、並びに量子化コンダクタンス素子の製造方法
WO2007069725A1 (ja) * 2005-12-15 2007-06-21 Nec Corporation スイッチング素子およびその製造方法
JP2008311449A (ja) * 2007-06-15 2008-12-25 National Institute Of Advanced Industrial & Technology シリコンによる2端子抵抗スイッチ素子及び半導体デバイス
WO2012121067A1 (ja) * 2011-03-08 2012-09-13 独立行政法人科学技術振興機構 ナノギャップ長を有する電極構造の作製方法並びにそれにより得られるナノギャップ長を有する電極構造及びナノデバイス
WO2013129535A1 (ja) * 2012-02-28 2013-09-06 独立行政法人科学技術振興機構 ナノデバイス及びその製造方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
HIROSHI IGAWA; SATOSHI FUJIWARA; YASUO TAKAHASHI, TECHNICAL REPORT OF IEICE, ED2001-241, SDM2001-250, pages 15 - 20
N. OKABAYASHI; K. MAEDA; T. MURAKI; D. TANAKA; M. SAKAMOTO; T. TERANISHI; Y. MAJIMA, APPL. PHYS. LETT., vol. 100, 2012, pages 033101
S. KANO; Y. AZUMA; M. KANEHARA; T. TERANISHI; Y. MAJIMA, APPL. PHYS. EXPRESS, vol. 3, 2010, pages 105003
See also references of EP2966684A4
VICTOR M.; SERDIO V.; YASUO AZUMA; SHUHEI TAKESHITA; TARO MURAKI; TOSHIHARU TERANISHI; YUTAKA MAJIMA, NANOSCALE, vol. 4, 2012, pages 7161
Y. YASUTAKE; K. KONO; M. KANEHARA; T. TERANISHI; M. R. BUITELAAR; C. G. SMITH; Y. MAJIMA, APPL. PHYS. LETT., vol. 91, 2007, pages 203107

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019168123A1 (ja) * 2018-03-02 2019-09-06 国立研究開発法人科学技術振興機構 ナノギャップ電極及びその作製方法、並びにナノギャップ電極を有するナノデバイス
JPWO2019168123A1 (ja) * 2018-03-02 2020-07-30 国立研究開発法人科学技術振興機構 ナノギャップ電極及びその作製方法、並びにナノギャップ電極を有するナノデバイス
CN111989775A (zh) * 2018-03-02 2020-11-24 国立研究开发法人科学技术振兴机构 纳米间隙电极、其制造方法以及具有纳米间隙电极的纳米器件
TWI772618B (zh) * 2018-03-02 2022-08-01 國立研究開發法人科學技術振興機構 奈米縫隙電極及其製作方法以及具有奈米縫隙電極的奈米裝置

Also Published As

Publication number Publication date
EP2966684B1 (en) 2020-10-14
EP2966684A1 (en) 2016-01-13
TW201503365A (zh) 2015-01-16
KR20150127680A (ko) 2015-11-17
JPWO2014142040A1 (ja) 2017-02-16
CN105103291A (zh) 2015-11-25
KR102123955B1 (ko) 2020-06-17
CN105103291B (zh) 2018-01-16
EP2966684A4 (en) 2016-11-16
US20160020311A1 (en) 2016-01-21
TWI612663B (zh) 2018-01-21
US9595604B2 (en) 2017-03-14
JP6225347B2 (ja) 2017-11-08

Similar Documents

Publication Publication Date Title
Bai et al. Anti-resonance features of destructive quantum interference in single-molecule thiophene junctions achieved by electrochemical gating
Lee et al. Hydrogen-atom-mediated electrochemistry
Xia et al. Measurement of the quantum capacitance of graphene
Wang et al. CVD graphene as an electrochemical sensing platform for simultaneous detection of biomolecules
CN106206685B (zh) 具有纳米间隙长度的电极结构的制作方法、通过该方法得到的具有纳米间隙长度的电极结构和纳米器件
Gu et al. Tuning surface d bands with bimetallic electrodes to facilitate electron transport across molecular junctions
US8895417B2 (en) Reducing contact resistance for field-effect transistor devices
KR101985347B1 (ko) 나노 디바이스 및 그 제조 방법
Chaudhary et al. Ultrafast responsive humidity sensor based on roasted gram derived carbon quantum dots: experimental and theoretical study
Lim et al. Designed patterning of mesoporous metal films based on electrochemical micelle assembly combined with lithographical techniques
WO2013170103A1 (en) Nanoparticle electrides
JP6225347B2 (ja) 電子素子
Nichols Molecular electronics at electrode–electrolyte interfaces
Kim et al. Selective gas detection and quantification using a resistive sensor based on Pd-decorated soda-lime glass
JP6763595B2 (ja) ナノギャップ電極及びその作製方法、並びにナノギャップ電極を有するナノデバイス
Wu et al. Batch fabrication of gold–gold nanogaps by E-beam lithography and electrochemical deposition
Angizi et al. Graphene versus concentrated aqueous electrolytes: the role of the electrochemical double layer in determining the screening length of an electrolyte
Allen et al. Metallic LiMo3Se3 nanowire film sensors for electrical detection of metal ions in water
EP2991118A1 (en) Logical operation element
Missault et al. Bridging parallel electrodes by electrodeposition
Grüter Mechanically controllable break junction in liquid environment: a tool to measure electronic transport through single molecules
Lu The electronic, structural and sensing properties of graphene nanostructures
Robinson Kinetics of electron transfer through organic monolayers on electrodes
Michalitsch et al. Functionalization of Underpotentially Deposited Metal Layers with Organics, Metals, and Ions
이석하 Electrical channel formed by the tunneling electroplating

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480013411.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14762487

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14773547

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015505449

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157028244

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014762487

Country of ref document: EP