WO2006070693A1 - スイッチング素子、スイッチング素子の駆動方法および製造方法、書き換え可能な論理集積回路、メモリ素子 - Google Patents

スイッチング素子、スイッチング素子の駆動方法および製造方法、書き換え可能な論理集積回路、メモリ素子 Download PDF

Info

Publication number
WO2006070693A1
WO2006070693A1 PCT/JP2005/023628 JP2005023628W WO2006070693A1 WO 2006070693 A1 WO2006070693 A1 WO 2006070693A1 JP 2005023628 W JP2005023628 W JP 2005023628W WO 2006070693 A1 WO2006070693 A1 WO 2006070693A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
ion
metal
switching element
conductor
Prior art date
Application number
PCT/JP2005/023628
Other languages
English (en)
French (fr)
Inventor
Toshitsugu Sakamoto
Hisao Kawaura
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to JP2006550728A priority Critical patent/JP5135798B2/ja
Priority to US11/722,982 priority patent/US7960712B2/en
Publication of WO2006070693A1 publication Critical patent/WO2006070693A1/ja

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/24Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies
    • H10N70/245Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies the species being metal cations, e.g. programmable metallization cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/253Multistable switching devices, e.g. memristors having three or more electrodes, e.g. transistor-like devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/061Shaping switching materials
    • H10N70/066Shaping switching materials by filling of openings, e.g. damascene method
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/823Device geometry adapted for essentially horizontal current flow, e.g. bridge type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/841Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/841Electrodes
    • H10N70/8416Electrodes adapted for supplying ionic species
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/882Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
    • H10N70/8822Sulfides, e.g. CuS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/525Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body with adaptable interconnections
    • H01L23/5252Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body with adaptable interconnections comprising anti-fuses, i.e. connections having their state changed from non-conductive to conductive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/30Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having three or more electrodes, e.g. transistors

Definitions

  • Switching element switching element driving method and manufacturing method, rewritable logic integrated circuit, memory element
  • the present invention relates to a switching element used in an integrated circuit, a switching element driving method, a switching element manufacturing method, a rewritable logic integrated circuit using the switching element, and a memory element using the switching element.
  • ASIC Application Special Integrated Circuit
  • the arrangement of cells logical circuits such as AND circuits and ⁇ R circuits
  • the connection between cells are performed in the integrated circuit manufacturing process, so the circuit configuration cannot be changed after manufacturing.
  • the programmable logic is configured by connecting a plurality of logic cells to each other via switching elements.
  • a logic cell is a logic circuit that is a unit for building programmable logic.
  • Typical examples of programmable logic include FPGA (Field-Programmable Gate Array) and DRP (Dynamically Reconfiguraole Processor) power.
  • FIG. 1 is a schematic diagram for explaining a conventional metal atom transfer switching element.
  • the metal atom transfer switching element shown in Fig. 1 is an ion transporter consisting of an ion conductor (Cu S).
  • a conductive layer, a first electrode (Ti) in contact with the ion conductive layer, and a second electrode made of metal (Cu) in contact with the ion conductive layer and serving as a metal ion (Cu + ) supply source This is a metal atom transfer switching element composed of The material which comprises each part is an illustration.
  • metal atoms constituting the second electrode move between the first electrode and the second electrode in the form of precipitates by an electrochemical reaction, and in a conductive (ON) state,
  • the metal wiring electrically connects the first electrode and the second electrode.
  • the two-terminal metal atom transfer switching element as described with reference to FIG. 1 has a problem that the electoric port migration resistance is low.
  • the electrification migration refers to a phenomenon in which metal atoms constituting the metal wiring move due to collision with electrons flowing through the metal wiring. If a current with a current density of a certain level or higher is continuously supplied to the metal wiring in a high temperature environment, serious problems such as disconnection of the metal wiring due to the movement of metal atoms due to electo port migration will occur.
  • the metal atoms moved in the form of precipitates from the second electrode between the first electrode and the second electrode by the electrochemical reaction are electrically connected ( In the ON state), a metal wiring that electrically connects the first electrode and the second electrode is formed.
  • a metal wiring that electrically connects the first electrode and the second electrode is formed.
  • the absolute value of the negative voltage applied to the first electrode with respect to the second electrode must be increased, but once the first electrode and the second electrode are If a metal wiring that electrically connects the electrodes is formed, the voltage applied between the first electrode and the second electrode contributes to flowing a large amount of current through the metal wiring. This is because it does not contribute to increasing the amount of deposits and thickening the metal wiring. On the contrary, even if the voltage is increased to prevent electoric port migration, a large amount of current flows through the metal wiring, which may even induce electoric port migration.
  • An object of the present invention is to suppress a variation in on-resistance between switching elements in the same wafer, and to increase the electoric port migration resistance.
  • An object of the present invention is to provide a method for manufacturing an atom transfer switching element, a rewritable logic integrated circuit using a metal atom transfer switching element, and a memory element using a metal atom transfer switching element.
  • the present invention has been made to solve the above-described problems of the prior art, and suppresses variations in on-resistance between switching elements in the same wafer, thereby improving electoric port migration resistance.
  • one of the switching elements of the present invention is in contact with an ion conductive portion including an ion conductor that allows metal ions to freely move inside the ion conductive portion. It is formed so as to contact the first electrode and the ion conducting part and sandwich the ion conducting part together with the first electrode, to supply the metal ion to the ion conductor, or to receive the ion conductor force metal ion. And a second electrode for depositing a metal corresponding to the metal ion. Further, an introduction path having a predetermined thickness made of the above-described metal for electrically connecting the first electrode and the second electrode is formed in a predetermined position in the ion conductive portion. Then, by applying a voltage to the first electrode with respect to the second electrode, the electrical characteristics are switched by an electrochemical reaction that proceeds between the introduction path and the second electrode.
  • the route of the metal wiring depends on the route of the introduction route, If the path of the introduction path is unified in each switching element, variation in on-resistance between switching elements in the same wafer can be suppressed.
  • the thickness of the metal wiring depends on the thickness of the introduction path, if the thickness of the introduction path formed by force is increased sufficiently, the electrification port migration resistance can be increased.
  • FIG. 1 is a schematic diagram for explaining the configuration of a conventional metal atom transfer switching element.
  • FIG. 2 is a schematic cross-sectional view showing one structural example of a metal atom transfer switching element of the first embodiment.
  • FIG. 3A is a schematic cross-sectional view for illustrating the method for manufacturing the metal atom transfer switching element of the first embodiment.
  • FIG. 3B is a schematic cross-sectional view for describing the method for manufacturing the metal atom transfer switching element of the first embodiment.
  • FIG. 3C is a schematic cross-sectional view for explaining the method for manufacturing the metal atom transfer switching element of the first embodiment.
  • FIG. 3D is a schematic cross-sectional view for describing the method for manufacturing the metal atom transfer switching element of the first embodiment.
  • FIG. 3E is a schematic cross-sectional view for describing the method for manufacturing the metal atom transfer switching element of the first embodiment.
  • FIG. 3F is a schematic cross-sectional view for illustrating the method for manufacturing the metal atom transfer switching element of the first embodiment.
  • FIG. 3G is a schematic cross-sectional view for describing the method for manufacturing the metal atom transfer switching element of the first embodiment.
  • FIG. 3H is a schematic cross-sectional view for illustrating the method for manufacturing the metal atom transfer switching element of the first embodiment.
  • FIG. 31 is a schematic cross-sectional view for explaining the method for manufacturing the metal atom transfer switching element of the first embodiment.
  • FIG. 4 is a sectional view showing an example of the configuration of the metal atom transfer switching element of the second embodiment. It is a surface schematic diagram.
  • FIG. 5A is a schematic cross-sectional view for explaining the method for manufacturing the metal atom transfer switching element of the second embodiment.
  • FIG. 5B is a schematic cross-sectional view for explaining the method for manufacturing the metal atom transfer switching element of the second embodiment.
  • FIG. 5C is a schematic cross-sectional view for explaining the method for manufacturing the metal atom transfer switching element of the second embodiment.
  • FIG. 5D is a schematic cross-sectional view for explaining the method for manufacturing the metal atom transfer switching element of the second embodiment.
  • FIG. 5E is a schematic cross-sectional view for explaining the method for manufacturing the metal atom transfer switching element of the second embodiment.
  • FIG. 5F is a schematic cross-sectional view for explaining the method for manufacturing the metal atom transfer switching element of the second embodiment.
  • FIG. 5G is a schematic cross-sectional view for explaining the method for manufacturing the metal atom transfer switching element of the second embodiment.
  • FIG. 6 is a schematic cross-sectional view showing a structural example of the metal atom transfer switching element of the third embodiment.
  • FIG. 7A is a diagram illustrating the first embodiment by applying a negative voltage to the first electrode 1 with respect to the second electrode 2 in the metal atom transfer switching element of the third embodiment of FIG. 6 is a graph showing that an introduction path is formed between an electrode 1 and a second electrode 2.
  • FIG. 7B shows the first electrode 1 by applying a voltage to the first electrode 1 with respect to the third electrode 3 in the metal atom transfer switching element of the third embodiment of FIG. 4 is a graph showing that an electrochemical reaction proceeds between the introduction path formed between the first electrode 2 and the second electrode 2 and the third electrode 3 to perform a switching operation.
  • FIG. 8 is a schematic cross-sectional view showing a structural example of the metal atom transfer switching element of the fourth embodiment.
  • FIG. 9 is a schematic cross-sectional view showing a configuration example of the metal atom transfer switching element of the fifth embodiment.
  • FIG. 10A is a schematic plan view showing one structural example of a metal atom transfer switching element of a sixth embodiment.
  • FIG. 10B is a schematic sectional view of the metal atom transfer switching element shown in FIG. 10A.
  • FIG. 11A shows a metal atom transfer switching element according to the sixth embodiment, in which a metal is deposited between the first electrode and the second electrode by applying a negative voltage to the first electrode. It is a graph which shows that.
  • FIG. 11B is an electron micrograph showing that the metal atom transfer switching device of the sixth embodiment is formed on the surface of the metal force S ion conduction layer.
  • FIG. 12A shows the metal force deposited between the first electrode and the second electrode by applying a positive voltage to the third electrode in the metal atom transfer switching element of the sixth embodiment.
  • S is a graph showing that fatness is further increased.
  • FIG. 12B is an electron micrograph showing that the deposited metal is further thickened by applying a positive voltage to the third electrode in the metal atom transfer switching element of the sixth embodiment. .
  • FIG. 13 is a schematic diagram showing a configuration example of programmable logic using a three-terminal switch.
  • FIG. 14 is a schematic diagram showing one configuration example of programmable logic using a two-terminal switch.
  • FIG. 15 is a circuit schematic diagram showing an example of the configuration of a memory element using a three-terminal switch.
  • FIG. 16 is a circuit schematic diagram showing an example of the configuration of a memory element using a two-terminal switch.
  • the metal atom transfer switching element of this embodiment is a design stage in which the position of the introduction path for electrically connecting the first electrode and the second electrode is compared with the conventional two-terminal metal atom transfer switching element.
  • the introduction path is formed using the metal constituting the second electrode at the manufacturing stage in advance.
  • the route of the metal wiring depending on the path of the introduction path is determined in the design stage and the production stage.
  • the introduction path formed in advance in the design and manufacturing stages should be made sufficiently thick. Since the thickness of the metal wiring depends on the thickness of the introduction path, it is possible to increase the electoric port migration resistance.
  • FIG. 2 is a schematic cross-sectional view showing a configuration example of the metal atom migration switching element of the present embodiment.
  • the metal atom transfer switching element of the present embodiment includes a first electrode 1 (Ta) and a second electrode.
  • the second electrode 2 is formed on a substrate 0 which is an Si substrate on which an integrated circuit is formed and whose surface is covered with SiO. No. 2
  • the side and bottom surfaces of the electrode 2 are covered with a barrier metal 7 (Ta).
  • An ion conductive layer 4 and an introduction path 5 are formed on the second electrode 2.
  • the ion conductive layer 4 is formed so as to surround the side surface of the introduction path 5.
  • the first electrode 1 is provided on the ion conductive layer 4 and the introduction path 5.
  • the first electrode 1 and the second electrode 2 are in contact with the ion conducting portion 4.
  • the introduction path 5 is provided at a predetermined position in the design stage in order to electrically connect the first electrode 1 and the second electrode 2. And is formed at that position in the manufacturing stage.
  • the introduction path 5 is made of the same metal as that constituting the second electrode 2.
  • the introduction path 5 is composed of all the switching elements in the same wafer, is configured by the same path, and is formed with a predetermined thickness that can be expected to be resistant to the electret port migration.
  • the barrier metal 7 prevents metal ions (Cu + ) from diffusing from the second electrode 2.
  • the first electrode 1, the second electrode 2, and the ion conductive layer 4 are different from each other in an interlayer insulating film 8 (SiO)
  • the introduction path 5 is embedded in the same interlayer insulating film 8 as the ion conductive layer 4.
  • the interlayer insulating film 8 has a function of reducing the capacitance of the switching element.
  • the barrier insulating film 9 (SiN) formed on the interlayer insulating film 8 serves as a stopper in chemical mechanical polishing (CMP) in the manufacturing method described below.
  • the wiring 10 (Cu) whose side and bottom surfaces are covered with the first electrode 1 serves as a wiring for electrically connecting the switching element and the integrated circuit. Used in the first electrode 1
  • Ta also has a function of preventing metal ions (Cu + ) from diffusing from the wiring 10.
  • the operation of the metal atom transfer switching element according to the first embodiment of the present invention will be described.
  • a positive voltage is applied to the first electrode 1 with respect to the second electrode 2 to turn the switching element off.
  • the metal (Cu) in the introduction path 5 becomes metal ions (Cu + ), moves through the ion conductive layer 4, and is deposited as metal (Cu) in the second electrode 2.
  • a part of the introduction path 5 is electrically disconnected, and the switching element transitions to the off state.
  • a negative voltage is applied to the first electrode 1 relative to the second electrode 2 from this state, the reverse electrochemical reaction proceeds and the switching element transitions to the on state.
  • the initial state of the switching element is the off state
  • the switching element when a negative voltage is applied to the first electrode 1 with respect to the second electrode 2, the switching element is turned on.
  • a positive voltage when a positive voltage is applied to the first electrode 1, it is turned off.
  • a voltage is applied between two electrodes.
  • the two electrodes were electrically connected by the deposited metal.
  • the introduction path 5 formed by controlling the path and its thickness between the first electrode 1 and the second electrode 2 is used as the metal wiring.
  • the voltage applied between the two electrodes is controlled as described above, and the metal wiring by the introduction path 5 is cut or reconnected between the two electrodes. Even if the switch is turned on and off repeatedly, the metal wiring that connects the two electrodes is pre-formed to a predetermined thickness, so there is no significant change in the path and thickness of the metal wiring. As a result, the resistance to elector port migration is higher than before.
  • the switch Since the switch is in the on state when the switching element is manufactured, if the switch is to be turned off before the switching operation is performed, the first electrode 1 is compared to the second electrode 2 after the switching element is manufactured. Apply a positive voltage to
  • FIG. 3A Force FIG. 31 is a schematic sectional view for explaining the method for manufacturing the metal atom transfer switching element of the present embodiment.
  • the thickness of the interlayer insulating film 8 on the substrate 0 is 0 ⁇ 5 111 of 310, and the thickness of the barrier insulating film 9 is 0 ⁇ 05.
  • the interlayer insulating film 8 may contain fluorine, carbon, etc. in order to further lower the dielectric constant.
  • the barrier insulating film 9 may be SiC having higher CMP resistance. After these films are deposited, a resist pattern is formed by lithography, and openings are provided in the interlayer insulating film 8 and the barrier insulating film 9 by etching. Thereafter, the resist pattern is removed.
  • a 0.05 ⁇ m-thick Ta film that forms the barrier metal 7 is formed using a sputtering method, and a 1- ⁇ m film thickness that forms the second electrode 2 using a plating method.
  • Form Cu The barrier metal 7 may be a stacked structure of Ta and TaN.
  • the material other than the barrier metal 7 and the second electrode 2 in the opening is scraped off using the CMP method.
  • the barrier insulating film 9 serves as a CMP stopper.
  • a sputtering method is used to form a SiO film with a thickness of 0.00 to be the interlayer insulating film 8 and a SiN film with a thickness of 0.05 zm to form the NORA insulating film 9.
  • Deposit in order After these films are deposited, a resist pattern is formed by lithography, and openings are formed in the interlayer insulating film 8 and the barrier insulating film 9 by etching. Thereafter, the resist pattern is removed.
  • a film thickness of 0.3 to be the ion conductive layer 4 is formed using a sputtering method.
  • the ion conductive layer on the barrier insulating film 9 is formed by anisotropic etching.
  • the ion conductive layer 4 on the side wall of the opening remains as a sidewall without being etched.
  • the side wall is cylindrical, rounded at the top edge, and the outside is in contact with the side wall of the opening.
  • Cu having a thickness of 1 ⁇ m is formed for the introduction path 5 by using a sputtering method and a plating method.
  • the Cu that becomes the introduction path 5 is left in the opening, and the Cu in other portions is scraped off.
  • the rear insulating film 9 serves as a CMP stopper.
  • the following processing is performed. Using a sputtering method, the thickness of 0 ⁇ 5/1 111 to become the interlayer insulating film 8 and the thickness of 0 ⁇ 05 / im of SiN to become the barrier insulating film 9 are sequentially formed.
  • NOR insulating film 9 serves as a CMP stopper.
  • the introduction path 5 is formed so as to electrically connect the first electrode 1 and the second electrode 2, but the present invention is not limited to this case. If the path and thickness of the metal wiring generated by the switching operation grow to an extent that depends on the path and thickness of the introduction path 5, the introduction path 5 connects the first electrode 1 and the second electrode 2 to each other. It ’s completely connected. It is not necessary to be in a state. Even in this case, as in the case of complete connection, the effects of preventing variation in on-resistance and electoric port migration can be obtained. However, in this case, the state of the switch when the switching element is manufactured is OFF.
  • the combination of the introduction path 5 and the ion conductive layer 4 includes a metal (Cu) and an ion conductor (Cu 2 S).
  • ion mobility moving inside is high, high ion conductor that is ionic conductor, and low mobility of ions moving inside, ion conduction It can be combined with the low ionic conductor that is the body. Specifically, a combination of Cu S, a high ionic conductor, and Ta O or SiO, a low ionic conductor.
  • the high ion conductor easily conducts metal ions (Cu + ) selectively, precipitates are likely to grow selectively along the route of the high ion conductor.
  • the path of the high ionic conductor By forming the path of the high ionic conductor in advance, it becomes equivalent to determining the path of the metal wiring depending on the path of the high ionic conductor at the design stage and the manufacturing stage, and switching elements within the same wafer. Variation in on-resistance between the two can be reduced.
  • the thickness of the metal wiring depends on the thickness of the path of the high ion conductor. By making the path of the high ionic conductor formed beforehand sufficiently thick, it is possible to increase the electoric port migration resistance. However, in this case, since the path of the high ion conductor does not electrically connect the first electrode 1 and the second electrode 2, the state at the time of manufacturing the switching element is OFF.
  • an introduction path for electrically connecting the first electrode and the second electrode is formed in a predetermined position in a method different from that of the first embodiment. Is.
  • the introduction path formed in advance in the design and manufacturing stages should be made sufficiently thick. Since the thickness of the metal wiring depends on the thickness of the introduction path, it is possible to increase the electoric port migration resistance.
  • a third electrode made of metal constituting the introduction path is provided, and a three-terminal metal atom transfer is provided.
  • a switching element is used. This can further increase the resistance to electo port migration.
  • the metal wiring is merely the electrical connection between the first electrode and the second electrode.
  • the voltage applied to the third electrode does not contribute much to increasing the current flowing in the metal wiring that electrically connects the first electrode and the second electrode, and the amount of precipitates is exclusively increased. This contributes to increasing the thickness of the metal wiring. By increasing the thickness of the metal wiring, it is possible to further increase the electostatic migration resistance.
  • FIG. 4 is a schematic cross-sectional view showing a configuration example of the metal atom migration switching element of the present embodiment.
  • One electrode l is formed.
  • the first electrode 1, the second electrode 2, and the third electrode 3 are in contact with the ion conductive layer 4.
  • the introduction path 5 (Cu) is formed in advance at the stage of design and manufacture in order to electrically connect the first electrode 1 and the second electrode 2.
  • the introduction path 5 is made of the same metal as that constituting the second electrode 2 and the third electrode 3.
  • the introduction path 5 is a switching element in the same wafer, is configured by the same path, and is formed with a predetermined thickness which can be expected to have electrification port migration resistance.
  • the barrier metal 7 (Ta), the interlayer insulating film 8 (SiO 2), the barrier insulating film 9 (SiN), and the wiring 10 (Cu) are each in the first
  • the two electrodes are electrically connected by the metal deposited by applying a voltage between the two electrodes.
  • the metal wiring composed of the introduction path 5 whose path and thickness are controlled is provided between the first electrode 1 and the second electrode 2. Make electrical connections in advance. In order to perform the switching operation, a voltage is applied between the two electrodes (the first electrode 1 and the second electrode 2 or the first electrode 1 and the third electrode 3). Cutting metal wiring Or reconnect. Therefore, the metal wiring that electrically connects the first electrode 1 and the second electrode 2 does not change much in the path and thickness even if the on / off is repeated.
  • the first electrode 1 is positively connected to the second electrode 2 after the switching element is manufactured. Apply a voltage of. Alternatively, a positive voltage is applied to the first electrode 1 with respect to the third electrode 3.
  • the operation of the metal atom transfer switching element according to the second embodiment of the present invention will be described.
  • a positive voltage is applied to the first electrode 1 with respect to the second electrode 2 or the third electrode 3 in order to turn the switching element off.
  • the metal (Cu) in the introduction path 5 becomes a metal ion (Cu + ), moves through the ion conductive layer 4, and precipitates as a metal (Cu) in the second electrode 2 or the third electrode 3.
  • part of the introduction path 5 is electrically disconnected, and the switching element transitions to the off state.
  • a negative voltage is applied to the first electrode 1 with respect to the second electrode 2 or the third electrode 3 from this state, the reverse electrochemical reaction proceeds and the switching element is turned on. Transition.
  • the switching element when the initial state of the switching element is in the off state, when a negative voltage is applied to the first electrode 1 with respect to the second electrode 2 or the third electrode 3, the switching element is turned on. When a positive voltage is applied to the first electrode 1 with respect to the second electrode 2 or the third electrode 3, the state is turned off.
  • the first electrode 1 When changing from the off state to the on state by applying a negative voltage to the first electrode 1 with respect to the second electrode 2, the first electrode 1 can be used even if the metal at the connection point is thin. The growth of the metal stops when the second electrode 2 and the second electrode 2 are connected. In such a case, with the first electrode 1 and the second electrode 2 electrically connected, a negative voltage is applied to the first electrode with respect to the third electrode, and the metal wiring is further thickened. You can do it.
  • the introduction path 5 that is the originally formed wiring may deteriorate.
  • a negative voltage is applied to the first electrode with respect to the third electrode to repair the metal wiring. May be.
  • FIG. 5A to FIG. 5G are cross-sectional schematic diagrams for explaining the method for manufacturing the metal atom transfer switching element of the present embodiment.
  • a sputtering method is used to form an interlayer insulating film 8 on a substrate 0 with a film thickness of 0.5111 and a barrier insulating layer of SiN with a thickness of 0.05 xm. To deposit.
  • Interlayer insulating film 8 is formed on a substrate 0 with a film thickness of 0.5111 and a barrier insulating layer of SiN with a thickness of 0.05 xm.
  • the insulating film 8 may contain fluorine, carbon or the like in order to further lower the dielectric constant.
  • the insulating film 9 can be SiC with higher CMP resistance.
  • a resist pattern is formed by lithography, and openings are formed in the interlayer insulating film 8 and the barrier insulating film 9 by etching.
  • a sputtering method and a plating method are used to form barrier metal 7 with a thickness of 0.05 ⁇ m Ta, second electrode 2 and third electrode 3 with a thickness of 1 ⁇ m.
  • Barrier metal 7 can be a stacked structure of Ta and TaN.
  • a material other than the barrier metal 7, the second electrode 2, and the third electrode 3 in the opening is scraped using the CMP method.
  • the barrier insulating film 9 serves as a CMP stopper.
  • Cu S to be the ion conductive layer 4 is deposited by sputtering.
  • a pattern is formed so as to connect the second electrode 2 and the third electrode 3 by etching.
  • a 0.2 ⁇ m-thick SiO film that becomes the interlayer insulating film 8 and a 0.5 ⁇ im SiN film that forms the barrier insulating film 8 are deposited by sputtering.
  • openings are formed in the interlayer insulating film 8 and the barrier insulating film 9 by etching.
  • Cu S having a film thickness of 0.3 zm to be the ion conductive layer 4 is formed by sputtering.
  • ions on the barrier insulating film 9 are anisotropically etched.
  • the ion conductive layer 4 on the side wall of the opening remains as a side wall without being etched.
  • the side wall is cylindrical, rounded at the upper end, and the outside is in contact with the side wall of the opening.
  • a 0.5 ⁇ m-thick silicon oxide film that will be the interlayer insulating film 8 and a SiN film that will be the barrier insulating film 9 are deposited by sputtering.
  • a resist pattern is formed by lithography, and openings are formed in the interlayer insulating film 8 and the barrier insulating film 9 by etching.
  • Ta having a thickness of 0.05 ⁇ m to be the first electrode 1 and Cu having a thickness of 1 ⁇ m to be the wiring 10 are formed.
  • materials other than the first electrode 1 and the wiring 10 in the opening are scraped off using the CMP method.
  • the NOR insulating film 9 serves as a CMP stopper.
  • the force and the thickness of the generated metal wiring are such that the introduction path 5 is formed so as to electrically connect the first electrode 1 and the second electrode 2.
  • the introduction path 5 does not need to completely connect the first electrode 1 and the second electrode 2 as long as the introduction path 5 is formed so as to depend on the path and thickness of the introduction path 5. Even in this case, the same effect as that in the case of complete connection, that is, the effect of preventing variation in on-resistance and electoric port migration resistance can be obtained. However, in this case, the state when the switching element is manufactured is OFF.
  • the second electrode 2 is not necessarily made of the same metal (Cu) as the introduction path 5.
  • Switching can be done using only electrode 3 of 3. This is because the introduction path 5 is already formed between the first electrode 1 and the second electrode, and even if switching is performed using only the third electrode 3, the first electrode 1 and the third electrode This is because a metal wiring made of precipitates is formed between the electrodes 3 and there is no risk of the switching element malfunctioning.
  • the combination of the introduction path 5 and the ion conductive layer 4 is made of a metal (Cu) and an ion conductor (Cu
  • Cu S which is a high ionic conductor
  • Ta and Si
  • High ion conductors tend to selectively conduct metal ions (Cu + ), and therefore precipitates tend to grow selectively along the path of high ion conductors. Therefore, by forming the path of the high ion conductor in advance, the metal distribution that depends on the path of the high ion conductor Since the path of the line is determined at the design stage and the manufacturing stage, it is possible to reduce the variation in on-resistance between switching elements in the same wafer.
  • the path of the high ion conductor to be formed by force is made sufficiently thick. Since the thickness of the metal wiring depends on the thickness of the path of the high ionic conductor, it is possible to increase the resistance to electrification.
  • the second electrode 2 needs to be made of a metal (Cu) that can supply metal ions to the ion conductor. Because, in this case, a metal wiring is not yet formed between the first electrode 1 and the second electrode 2, and if switching is performed using only the third electrode 3, the first electrode 1 and This is because a metal wiring made of a precipitate is formed between the third electrodes 3 and the switching element may malfunction. In this case, since the path of the high ion conductor does not electrically connect the first electrode 1 and the second electrode 2, the state when the switching element is manufactured is OFF.
  • the introduction path 5 is previously formed at a predetermined position between the first electrode 1 and the second electrode 2 at the design stage and the manufacturing stage, thereby allowing the design.
  • the path of the metal wiring was determined at the stage and the manufacturing stage, and the variation in on-resistance between switching elements in the same wafer was reduced.
  • the metal wiring made of precipitates is connected to the first electrode and the second electrode. It is also formed between the first electrode and the third electrode, and there is a concern that the switching element malfunctions.
  • the metal atom transfer switching element of the present embodiment by forming the introduction path at the design stage and the manufacturing stage, not only the problem of variation in on-resistance but also the first electrode and the third electrode can be made of metal. This solves the above problem that the wiring is formed. Furthermore, if we focus only on the latter problem, it can be solved in a simpler way. [0072]
  • One simple way to solve this problem is to connect the first to third electrodes and the ion conduction so that the metal wiring is preferentially formed between the first electrode and the second electrode. Part. Specifically, the mutual distance between the first to third electrodes and the ion conducting part is optimized. However, even in this case, there is a possibility that a metal wiring is formed between the first electrode and the third electrode while the ON / OFF state is repeatedly changed.
  • metal wiring is also provided between the first electrode and the third electrode, more simply and more effectively than the above-described method. Solve the problem of being formed.
  • the third electrode is provided, the resistance to electrification migration can be increased.
  • FIG. 6 is a schematic cross-sectional view showing a configuration example of the metal atom migration switching element of the present embodiment.
  • One electrode l is formed.
  • the first electrode 1, the second electrode 2, and the third electrode 3 are in contact with the ion conductive layer 4.
  • the introduction path 5 is formed electrically in order to electrically connect the first electrode 1 and the second electrode 2.
  • the insulating layer 6 (calixarene) is an insulating layer for reducing the area where the first electrode 1 is in contact with the ion conductive layer 4.
  • Cu S is formed by the laser abrasion method. A 120-nm thick film on Cu S
  • 7A and 7B are graphs showing the switching operation of the metal atom transfer switching element of this embodiment.
  • FIG. 7A shows the current flowing from the first electrode 1 to the second electrode 2 while changing the voltage applied to the first electrode 1 with respect to the second electrode 2. -0. The current increases rapidly in the negative direction at a voltage of 3V. This increase in current indicates that the first electrode 1 and the second electrode 2 are electrically connected. Thus, the introduction path 5 was formed.
  • a negative voltage may be applied to the first electrode 1 with respect to the third electrode 3 to grow the metal wiring of the introduction path 5 thicker. Thereby, elect mouth migration tolerance can be improved.
  • a voltage is applied to the first electrode 1 with respect to the third electrode 3 (see FIG. 7B).
  • a very small voltage (10 mV) is applied to the first electrode 1 with respect to the second electrode 2.
  • the first electrode 1 and the second electrode 2 are in a connected state (ON state).
  • the introduction path for electrically connecting the first electrode 1 and the second electrode 2 is formed in advance.
  • the metal wiring for electrically connecting the first electrode and the second electrode is formed by the structure of the switching element in which such an introduction path is not formed in advance. Fix the place where the resulting precipitate is formed. As a result, the path of the metal wiring is fixed, so that variation in on-resistance between switching elements in the same wafer can be reduced.
  • the third electrode is provided in the same manner as the metal atom transfer switching element of the second or third embodiment, it is possible to increase the electoric port migration resistance. Furthermore, since the metal wiring is reliably formed between the first electrode and the second electrode, the switching element is caused by the metal wiring being formed between the first electrode and the third electrode. Can be prevented from malfunctioning.
  • FIG. 8 is a schematic view for explaining the configuration of the metal atom migration switching element of the present embodiment.
  • the third electrode 3 (Cu) and the ion conductive layer 4 (Cu S) are laminated, and the ion conduction
  • a pole l (Pt) and a second electrode 2 (Cu) are formed.
  • the first electrode 1 and the second electrode 2 are formed on the same plane.
  • the first electrode 1, the second electrode 2, and the third electrode 3 are in contact with the ion conductive layer 4.
  • the exposed surfaces of the first electrode 1, the second electrode 2, and the ion conductive layer 4 are protected by a protective film 11 (photoresist).
  • the protective film 11 serves to prevent the oxidation of copper such as the second electrode 2.
  • Pt with a thickness of 40 nm to be the first electrode 1 and Cu with a thickness of 40 nm to be the second electrode 2 are formed using conventional techniques.
  • a photoresist is applied and solidified by heat treatment at 150 degrees.
  • the ion conductive layer 4 formed by the protective film 11 may be exposed to the atmosphere.
  • the protective film 11 is not limited to a photoresist, and may be made of a material force that is not dense and not hard, such as an acrylic resin or an insulating material. If the protective film 11 is not dense and has a non-hard material force, the stress applied to the precipitate is smaller when growing at the interface between the ion conductive layer 4 and the protective film 11 than inside the ion conductive layer 4. Metal wiring is formed preferentially at the interface between the ion conductive layer 4 and the protective film 11. That is, the same effect as the case where the introduction path is formed at the interface between the ion conductive layer 4 and the protective film 11 can be obtained by this embodiment.
  • the metal atom transfer switching element of the present embodiment also has the first electrode and the second electrode due to the structure of the switching element without forming the introduction path in advance. Fix the place where the precipitates that form the metal wiring that electrically connects the electrodes are formed. Thereby, since the path of the metal wiring is fixed, it is possible to reduce the variation in the on-resistance between the switching elements in the same wafer.
  • FIG. 9 is a schematic cross-sectional view showing a configuration example of the metal atom migration switching element of the present embodiment.
  • An ion conductive layer 4 (Cu 2 S) is formed on the substrate 0. And the ion conduction layer 4
  • Electrode 3 (Cu) is formed.
  • the third electrode 3 is formed on a linear extension line connecting the first electrode 1 and the second electrode 2. It is desirable.
  • Cu S which is an ion conductive layer 4 having a thickness of 40 nm, is formed.
  • the metal atom transfer switching element of the present embodiment also has the first electrode and the second electrode due to the structure of the switching element without forming the introduction path in advance. Fix the place where the precipitates that form the metal wiring that electrically connects the electrodes are formed. Thereby, since the path of the metal wiring is fixed, it is possible to reduce the variation in the on-resistance between the switching elements in the same wafer.
  • FIG. 1 OA is a schematic plan view showing a configuration example of a metal atom migration switching element of this embodiment.
  • FIG. 10B is a schematic cross-sectional view taken along line AA ′ in the schematic plan view shown in FIG. 10A.
  • an ion conductive layer 4 (Cu 2 S) is laminated on the substrate 0.
  • the first electrode l (Cu) and the second electrode 2 (Cu) are formed.
  • the third electrode 3 (Cu) is on the same layer as the first electrode 1 and the second electrode 2, and a predetermined distance (in the order of lnm to lOOnm) from these other electrodes. Only formed away.
  • the first electrode 1, the second electrode 2 and the third electrode 3 are in contact with the ion conductive layer 4.
  • the shape of the planar pattern of the first electrode 1 and the second electrode 2 becomes thinner as they approach each other, and the shortest distance between the first electrode 1 and the second electrode 2 At the end la, 2a, which is the distance, the length of the opposite side is the smallest. Therefore, the path of the deposited metal is formed near the surface of the ion conductive layer 4 between the end portion la of the first electrode 1 and the end portion 2a of the second electrode 2, and in the case of the fourth embodiment More fixed than.
  • the distance between the end portion la of the first electrode 1 and the end portion 2a of the second electrode 2 is defined as a first predetermined distance.
  • the force in which the first electrode 1, the second electrode 2 and the third electrode 3 are formed on the same plane is the second electrode 2 and the first electrode 1. It was located between the third electrode 3.
  • the first electrode 1 and the second electrode 2 are opposed to each other, and the third electrode 3 is separated from each of the first electrode 1 and the second electrode 2.
  • the third electrode 3 is closer to the metal deposited between the first electrode 1 and the second electrode 2, the electrical characteristics between the two electrodes can be controlled more easily. If the shortest distance from each of the first electrode 1 and the second electrode 2 to the third electrode 3 is the second predetermined distance, the second predetermined distance is greater than the first predetermined distance. It is getting bigger.
  • FIG. 11A is a graph showing a current flowing through the first electrode 1 with respect to a change in voltage when a negative voltage is applied to the first electrode.
  • Fig. 11B is an electron micrograph of the precipitates after voltage application.
  • FIG. 12A is a graph showing the time change of the current flowing through the first electrode 1 when a voltage is applied to the third electrode 3.
  • Fig. 12B is an electron micrograph observing the precipitate after voltage application. A constant voltage of 0. IV is applied to the first electrode 1, and a constant voltage of IV is applied to the third electrode 3. From the graph shown in FIG. 12A, the current flowing through the first electrode 1 increases with time. From the photograph shown in Fig. 12B, it can be seen that the wiring of the deposited metal is thicker than the state shown in Fig. 11B. In this way, electrification migration resistance can be increased by thickening the metal wiring.
  • Laminate Cu S is formed by the laser abrasion method. next
  • Cu having a thickness of 40 nm is formed to be the first, second and third electrodes. Since the stress applied to the precipitate is smaller when growing on the surface of the ion conductive layer 4 than inside the ion conductive layer 4, metal wiring is formed preferentially at the interface between the ion conductive layer 4 and the protective film 11. That is, the present embodiment can obtain the same effect as when the introduction path is formed on the surface of the ion conductive layer 4.
  • the material constituting the electrode that does not supply metal ions to the ion conductive layer 4 is not limited to Ti, Ta, Pt, Refractory metal W, silicide (titanium silicide, cobalt silicide), etc. may be used.
  • the metal constituting the electrodes (third electrode and some second electrodes) for supplying metal ions to the ion conductive layer 4 may be Ag, Pb, or the like, not just Cu.
  • a chalcogen element ⁇ , S, S
  • a chalcogen element is not limited to Cu S alone.
  • the metal atom transfer switching element of the present invention can be applied as follows. That is, a rewritable logic integrated circuit (programmable logic) can be configured by using the metal atom transfer switching element of the present invention as a programming element.
  • programmable logic programmable logic
  • FIG. 13 is a schematic diagram showing one configuration example of the programmable logic.
  • the programmer logic 90 is configured to connect a large number of logic sensors 92 arranged in a two-dimensional array, wiring for connecting logic cells, and connection / disconnection between wirings. It consists of a number of switches 94 for switching. By changing the connection state (connected or not connected) between the two terminals, it is possible to set the configuration of wiring between logic cells, the function of the logic cell, etc., and obtain a logic integrated circuit that meets the specifications.
  • the switch is a transistor element including a drain electrode D, a source electrode S, and a gate electrode G.
  • the first electrode corresponds to the drain electrode D
  • the second electrode corresponds to the source electrode S
  • the third electrode corresponds to the gate electrode G.
  • the source electrode S is connected to the logic cell 92 and the drain electrode D is connected to the signal line 96 in the programmable logic 90.
  • the three-terminal switch set to the on state maintains the state where the source electrode S and the drain electrode D are electrically connected.
  • the logic signal reaches the drain electrode D via the signal line 96, it enters the logic cell 92 via the source electrode S.
  • the three-terminal switch set to the off state maintains the state where the source electrode S and the drain electrode D are electrically disconnected. In this case, even if the logic signal reaches the drain electrode D via the signal line 96, it cannot enter the logic cell 92 connected to the source electrode S. In this way, in the programmable logic 90, the connection state between logic cells can be set by the user.
  • the leakage current in the OFF state of the switch is reduced, and the current consumption of the entire programmable logic has been reduced. Smaller than.
  • Fig. 14 shows the case where the two-terminal switch of the first embodiment is applied to programmable logic.
  • the two-terminal switch of the first embodiment is applied to the switch 97 shown in FIG.
  • the connection / disconnection with the logic cell 92 can be set by turning the switch 97 on or off.
  • the switching element of the present invention is used for switching between connection and non-connection to a logic cell, but it can also be applied to a switch for switching wiring and switching a function of a logic cell.
  • FIG. 15 is a schematic diagram showing a configuration example of a memory element.
  • the memory element includes a switching element 71 for holding information and a transistor element 72 for reading information of the switching element 71.
  • the three-terminal switch of the above embodiment is applied to the switching element 71.
  • the switching element 71 has the same configuration as that of a transistor including a drain electrode, a source electrode, and a gate electrode, and each electrode corresponds to the first electrode, the second electrode, and the third electrode of the three-terminal switch. is doing.
  • the transistor element 72 has a source electrode connected to the bit line 73 and a gate electrode connected to the word line 74.
  • the switching element 71 has a source electrode connected to the bit line 76 and a gate electrode connected to the word line 75.
  • the drain electrode of the switching element 71 is connected to the drain electrode of the transistor element 72.
  • the on state of the switching element is “:! “Off” and off state “0”.
  • the switching voltage of the switching element is Vt, and the operating voltage of the transistor element 72 is VR.
  • the voltage Vt is applied to the word line 75 connected to the gate electrode of the switching element 71, and the voltage of the bit line 76 connected to the source electrode is set to OV. To. Then, a voltage (VtZ2) is applied to the bit line 73. The switching element 71 is turned on, and information “1” is written therein.
  • the voltage of the word line 75 connected to the gate electrode of the switching element 71 is set to 0V, and the voltage Vt is applied to the bit line 76 connected to the source electrode. Apply. Then, a voltage (Vt / 2) is applied to the bit line 73. The switching element 71 is turned off, and information “0” is written therein.
  • the voltage VR is applied to the word line 74 to turn on the transistor element 72, and the resistance value between the bit line 73 and the bit line 76 is obtained.
  • This resistance value is a combined resistance value of the ON resistance of the transistor element 72 and the switching element 71.
  • this combined resistance value is too large to be measured, it can be determined that the switching element 71 is in an off state, and the information held in the memory element is “0”.
  • the combined resistance value is smaller than the predetermined value, it can be determined that the switching element 71 is in the on state, and the information force S "l" held in the memory element is found.
  • the leakage current in the OFF state of the switch is reduced. Therefore, if the memory element of this embodiment is used for a memory device in which a plurality of memory elements are arranged in an array, the current consumption of the entire memory device is smaller than that of the conventional device.
  • FIG. 16 shows the case where the two-terminal switch of the first embodiment is applied to a memory element.
  • the two-terminal switch of the first embodiment is applied to the switching element 77 shown in FIG.
  • the switching element 77 can hold information.
  • the two-terminal switch of the first embodiment for the memory element the same effect as the memory element shown in FIG. 15 can be obtained. can get.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Memories (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

 本発明のスイッチング素子は、金属イオンが内部を自由に移動できるイオン伝導層4と、イオン伝導層4と接触している第1の電極1と、イオン伝導部4と接触し、第1の電極1とともにイオン伝導層4を挟み込むように形成され、イオン伝導層4に金属イオンを供給し、または、イオン伝導層4から金属イオンを受け取って金属イオンに対応する金属を析出させる第2の電極2とを有する。さらに、イオン伝導層4には、第1の電極1と第2の電極2を電気的に接続するための、上記金属からなる所定の太さの導入路5があらかじめ設けられている。そして、第2の電極2に対する第1の電極1への電圧印加により導入路5と第2の電極2の間で進行する電気化学反応によって電気的特性が切り替わる。

Description

明 細 書
スイッチング素子、スイッチング素子の駆動方法および製造方法、書き換 え可能な論理集積回路、メモリ素子
技術分野
[0001] 本発明は、集積回路などで用いられるスイッチング素子、スイッチング素子の駆動 方法、スイッチング素子の製造方法、スイッチング素子を用いた書き換え可能な論理 集積回路、スイッチング素子を用いたメモリ素子に関する。
背景技術
[0002] 現在、電子機器などでは、多くの集積回路が用いられている。電子機器で用いられ ている多くの集積回路は、いわゆる特定用途向け集積回路 (ASIC Application S pecific Integrated Circuit)であり、当該電子機器のために設計された専用回路 である。このような特定用途向け集積回路では、セル (AND回路、〇R回路などの論 理回路)の配置やセル相互の結線が集積回路製造工程で行われるため、製造後は 回路構成の変更ができない。
[0003] 近年、電子機器の開発競争が激化し、また、電子機器の小型化が進んでいる。この ような状況のもとで、製造後においても、電子信号により回路構成を変更し、 1つのチ ップで多くの機能を提供できるプログラマブルロジックが注目を集めている。プロダラ マブルロジックは、複数のロジックセルがスイッチング素子を介して相互に結線されて 構成される。ロジックセルはプログラマブルロジックを組み立ててレ、くうえでの単位とな る論理回路である。プログラマブルロジックの代表例としては、 FPGA (Field - Progr ammable Gate Array)や DRP (Dynamically Reconfiguraole Processor)力、あ る。
[0004] このように注目を集めるプログラマブルロジックではある力 これまでのところ、プログ ラマブルロジックの電子機器などへの実装は限られている。これは以下の理由による 。これまでのプログラマブルロジックでは、ロジックセル間を相互に結線するスィッチン グ素子のサイズが大きぐそのオン抵抗が高い。そこで、これまでのプログラマブル口 ジックは、このようにサイズが大きぐオン抵抗の高いスイッチング素子の数をできるだ け減らすために、トランジスタ数の多いロジックセルを少数用いて構成されていた。そ の結果、ロジックセルの組み合わせの自由度が小さくなり、プログラマブルロジックの 提供できる機能は限られていた。つまり、スイッチング素子の大きいサイズとオン抵抗 の高さが、プログラマブルロジックの機能を限定し、プログラマブルロジックの電子機 器などへの実装の適用範囲を限定してきたのである。
[0005] プログラマブルロジックの機能を多様化し、電子機器などへの実装を推進して行く ためには、ロジックセル間を相互に結線するスイッチング素子のサイズを小さくし、そ のオン抵抗を小さくすることが必要となる。力、かる要件を満たし得るスイッチング素子 として、特表 2002— 536840号公報に、イオン伝導体 (イオンがその内部を自由に 動き回ることのできる物質)中の金属イオン移動と、電気化学反応を利用したスィッチ ング素子 (以下、金属原子移動スイッチング素子と呼ぶ)が提案されている。金属原 子移動スイッチング素子は、これまでのプログラマブルロジックでよく用いられてきた 半導体スイッチング素子(MOSFETなど)よりもサイズが小さぐオン抵抗が小さいこ とが知られている。
[0006] 図 1は、従来の金属原子移動スイッチング素子を説明するための模式図である。図
1に示す金属原子移動スイッチング素子は、イオン伝導体 (Cu S)からなるイオン伝
2
導層と、イオン伝導層に接触している第 1の電極 (Ti)と、イオン伝導層に接触し、金 属イオン (Cu+)の供給源となる金属(Cu)からなる第 2の電極で構成された金属原子 移動スイッチング素子である。各部を構成する材料は例示である。
[0007] 第 2の電極(Cu)を基準として第 1の電極 (Ti)に負の電圧を印加すると、イオン伝導 層の第 1の電極 (Ti)との接触面近傍における金属イオン (Cu+)が還元され、イオン 伝導層の第 1の電極 (Ti)との接触面において金属(Cu)が析出する。金属(Cu)の 析出に対応して、第 2の電極の金属(Cu)が酸化され、金属イオン (Cu+)の形でィォ ン伝導層に溶け込み、イオン伝導層内の正負イオンのバランスが維持される。析出し た金属(Cu)はイオン伝導層内を第 2の電極(Cu)の方向に向かって成長する。析出 した金属(Cu)が第 2の電極 (Cu)に接触すると、スイッチング素子は導通(オン)状態 となる(図 1の左図を参照)。
[0008] 逆に、第 2の電極(Cu)を基準として第 1の電極 (Ti)に正の電圧を印加すると、全く 逆の電気化学反応が進行する。その結果、第 1の電極 (Ti)から第 2の電極(Cu)に 伸びた金属(Cu)が切れ、スイッチング素子は切断 (オフ)状態となる(図 1の右図を 参照)。
[0009] 以上のように、第 2の電極を構成する金属原子が、電気化学反応により、析出物の 形で第 1の電極と第 2の電極の間に移動し、導通(オン)状態では、第 1の電極と第 2 の電極を電気的に接続する金属配線となる。
発明の開示
[0010] 図 1を参照して説明した金属原子移動スイッチング素子では、イオン伝導層内に形 成される、析出物からなる金属配線の経路を制御することができない。その結果、金 属配線の経路に依存するスイッチング素子のオン抵抗が、同一ウェハ内に存在する スイッチング素子間でばらついてしまうという問題点が生じる。これは、イオン伝導層 の第 1の電極との接触面において、析出物が形成されやすい場所が、同一ウェハ内 に存在するスイッチング素子間で異なることなどに起因するものと思われる。このよう なオン抵抗のばらつきは、金属原子移動スイッチング素子に対する信頼性を大きく低 下させる。
[0011] さらに、図 1を参照して説明したような 2端子型の金属原子移動スイッチング素子で は、エレクト口マイグレーション耐性が低いという問題点がある。ここで、エレクト口マイ グレーシヨンとは、金属配線を構成する金属原子が、金属配線を流れる電子との衝突 により移動する現象をいう。高温環境下において、ある一定以上の電流密度の電流 を金属配線に流し続けると、エレクト口マイグレーションによる金属原子の移動により、 金属配線が断線するなどの深刻な問題が発生する。
[0012] 金属原子移動スイッチング素子では、上述のように、電気化学反応により第 2の電 極から第 1の電極と第 2の電極の間へ析出物の形で移動した金属原子は、導通(ォ ン)状態では、第 1の電極と第 2の電極を電気的に接続する金属配線を構成する。こ の金属配線におけるエレクト口マイグレーションを防止するには、析出物の量を増加 させて金属配線を太くし、金属配線を流れる電流の密度を下げる必要がある。
[0013] し力 ながら、図 1を参照して説明したような 2端子型の金属原子移動スイッチング 素子では、析出物の量を増加させて金属配線を太くするのは容易ではない。なぜな ら、析出物の量を増加させるためには、第 2の電極を基準として第 1の電極に印加す る負電圧の絶対値を大きくしなければならないが、いったん第 1の電極と第 2の電極 を電気的に接続する金属配線が形成されてしまうと、第 1の電極と第 2の電極の間に 印加されている電圧は、この金属配線に大量の電流を流すことに寄与してしまレ、、析 出物の量を増加させ、金属配線を太くすることには寄与しないからである。それどころ か、エレクト口マイグレーションを防止するために電圧を上げたにもかかわらず、金属 配線に大量の電流が流れることになつて、逆にエレクト口マイグレーションを誘発する 恐れすらある。
[0014] 本発明の目的は、同一ウェハ内のスイッチング素子間のオン抵抗のばらつきが抑 えられ、エレクト口マイグレーション耐性が高められた金属原子移動スイッチング素子 、金属原子移動スイッチング素子の駆動方法、金属原子移動スィッチング素子の製 造方法、金属原子移動スイッチング素子を用いた書き換え可能な論理集積回路、金 属原子移動スイッチング素子を用いたメモリ素子を提供することにある。
[0015] 本発明は上述したような従来の技術が有する問題点を解決するためになされたも のであり、同一ウェハ内のスイッチング素子間のオン抵抗のばらつきを抑え、エレクト 口マイグレーション耐性を高めたスイッチング素子、スイッチング素子の駆動方法およ び製造方法、書き換え可能な論理集積回路、メモリ素子を提供することを目的とする
[0016] 上記目的を達成するために、本発明のスイッチング素子の 1つは、金属イオンがそ の内部を自由に移動できるイオン伝導体を含むイオン伝導部と、イオン伝導部と接触 している第 1の電極と、イオン伝導部と接触し、第 1の電極とともにイオン伝導部を挟 み込むように形成され、イオン伝導体に金属イオンを供給し、または、イオン伝導体 力 金属イオンを受け取って金属イオンに対応する金属を析出させる第 2の電極とを 有している。さらに、イオン伝導部には、第 1の電極と第 2の電極を電気的に接続する ための、上記金属からなる所定の太さの導入路があらかじめ所定の位置に形成され ている。そして、第 2の電極に対する第 1の電極への電圧印加により導入路と第 2の 電極の間で進行する電気化学反応によって電気的特性が切り替わる。
[0017] 本発明では、金属配線の経路は導入路の経路に依存するので、あらかじめウェハ 内の各スイッチング素子で導入路の経路を統一しておけば、同一ウェハ内のスィッチ ング素子間のオン抵抗のばらつきを抑えることができる。また、金属配線の太さは、導 入路の太さに依存するので、あら力じめ形成する導入路の太さを十分太くしておけば 、エレクト口マイグレーション耐性を高めることができる。
図面の簡単な説明
[図 1]図 1は従来の金属原子移動スイッチング素子の構成を説明するための模式図 である。
[図 2]図 2は第 1の実施形態の金属原子移動スイッチング素子の一構成例を示す断 面模式図である。
[図 3A]図 3Aは第 1の実施形態の金属原子移動スイッチング素子の製造方法を説明 するための断面模式図である。
[図 3B]図 3Bは第 1の実施形態の金属原子移動スイッチング素子の製造方法を説明 するための断面模式図である。
[図 3C]図 3Cは第 1の実施形態の金属原子移動スイッチング素子の製造方法を説明 するための断面模式図である。
[図 3D]図 3Dは第 1の実施形態の金属原子移動スイッチング素子の製造方法を説明 するための断面模式図である。
[図 3E]図 3Eは第 1の実施形態の金属原子移動スイッチング素子の製造方法を説明 するための断面模式図である。
[図 3F]図 3Fは第 1の実施形態の金属原子移動スイッチング素子の製造方法を説明 するための断面模式図である。
[図 3G]図 3Gは第 1の実施形態の金属原子移動スイッチング素子の製造方法を説明 するための断面模式図である。
[図 3H]図 3Hは第 1の実施形態の金属原子移動スイッチング素子の製造方法を説明 するための断面模式図である。
[図 31]図 31は第 1の実施形態の金属原子移動スイッチング素子の製造方法を説明す るための断面模式図である。
[図 4]図 4は第 2の実施形態の金属原子移動スイッチング素子の一構成例を示す断 面模式図である。
園 5A]図 5Aは第 2の実施形態の金属原子移動スイッチング素子の製造方法を説明 するための断面模式図である。
園 5B]図 5Bは第 2の実施形態の金属原子移動スイッチング素子の製造方法を説明 するための断面模式図である。
園 5C]図 5Cは第 2の実施形態の金属原子移動スイッチング素子の製造方法を説明 するための断面模式図である。
園 5D]図 5Dは第 2の実施形態の金属原子移動スイッチング素子の製造方法を説明 するための断面模式図である。
園 5E]図 5Eは第 2の実施形態の金属原子移動スイッチング素子の製造方法を説明 するための断面模式図である。
園 5F]図 5Fは第 2の実施形態の金属原子移動スイッチング素子の製造方法を説明 するための断面模式図である。
[図 5G]図 5Gは第 2の実施形態の金属原子移動スイッチング素子の製造方法を説明 するための断面模式図である。
園 6]図 6は第 3の実施形態の金属原子移動スイッチング素子の一構成例を示す断 面模式図である。
[図 7A]図 7Aは、図 6の第 3の実施形態の金属原子移動スイッチング素子において、 第 2の電極 2に対して第 1の電極 1に負の電圧を印加することにより、第 1の電極 1と第 2の電極 2の間に導入路が形成されたことを示すグラフである。
[図 7B]図 7Bは、図 6の第 3の実施形態の金属原子移動スイッチング素子において、 第 3の電極 3に対して第 1の電極 1に電圧を印加することにより、第 1の電極 1と第 2の 電極 2の間に形成された導入路と第 3の電極 3の間に電気化学反応が進行し、スイツ チング動作が行われていることを示すグラフである。
園 8]図 8は第 4の実施形態の金属原子移動スイッチング素子の一構成例を示す断 面模式図である。
園 9]図 9は第 5の実施形態の金属原子移動スイッチング素子の一構成例を示す断 面模式図である。 [図 10A]図 1 OAは第 6の実施形態の金属原子移動スイッチング素子の一構成例を示 す平面模式図である。
[図 10B]図 10Bは図 10Aに示した金属原子移動スイッチング素子の断面模式図であ る。
[図 11A]図 11Aは第 6の実施形態の金属原子移動スイッチング素子において、第 1の 電極に負の電圧を印加することにより、第 1の電極と第 2の電極の間に金属が析出し たことを示すグラフである。
[図 11B]図 11Bは第 6の実施形態の金属原子移動スイッチング素子において、金属 力 Sイオン伝導層の表面に形成されていることを示す電子顕微鏡写真である。
[図 12A]図 12Aは第 6の実施形態の金属原子移動スイッチング素子において、第 3の 電極に正の電圧を印加することにより、第 1の電極と第 2の電極の間に析出した金属 力 Sさらに太ることを示すグラフである。
[図 12B]図 12Bは第 6の実施形態の金属原子移動スイッチング素子において、第 3の 電極に正の電圧を印加することにより、析出した金属がさらに太ることを示す電子顕 微鏡写真である。
[図 13]図 13は 3端子スィッチを用いたプログラマブルロジックの一構成例を示す模式 図である。
[図 14]図 14は 2端子スィッチを用いたプログラマブルロジックの一構成例を示す模式 図である。
[図 15]図 15は 3端子スィッチを用いたメモリ素子の一構成例を示す回路模式図であ る。
[図 16]図 16は 2端子スィッチを用いたメモリ素子の一構成例を示す回路模式図であ る。
符号の説明
0 基板
1 第 1の電極
2 第 2の電極
3 第 3の電極 4 イオン伝導層
5 導入路
発明を実施するための最良の形態
[0020] 次に、本発明の実施の形態について、図面を参照して詳細に説明する。
[0021] (第 1の実施形態)
本実施形態の金属原子移動スィッチング素子は、従来の 2端子型金属原子移動ス イッチング素子に対して、第 1の電極と第 2の電極を電気的に接続するための導入路 の位置を設計段階であらかじめ決め、その位置に製造段階で第 2の電極を構成する 金属を用いて導入路を形成したものである。このように、導入路を設計段階および製 造段階であらかじめ所定の位置に設けることで、導入路の経路に依存する金属配線 の経路が設計段階および製造段階で決定されることになる。そして、かかる所定の位 置を同一ウェハ内の全スイッチング素子で共通にすることにより、金属配線の経路が 全スイッチング素子で共通になり、同一ウェハ内のスイッチング素子間のオン抵抗の ばらつきを小さくできる。また、設計段階および製造段階であらかじめ形成する導入 路を十分太くしておく。金属配線の太さは導入路の太さに依存するので、これにより、 エレクト口マイグレーション耐性を高めることができる。
[0022] 図 2は、本実施形態の金属原子移動スイッチング素子の一構成例を示す断面模式 図である。
[0023] 本実施形態の金属原子移動スィッチング素子は、第 1の電極 1 (Ta)と、第 2の電極
2 (Cu)と、イオン伝導層 4 (Cu S)と、導入路 5 (Cu)とを有する。なお、それぞれの構
2
成の材料の一例を括弧内に示す。図 2に示すように、集積回路が形成され、かつ表 面が Si〇で覆われた Si基板となる基板 0の上に第 2の電極 2が形成されている。第 2
2
の電極 2の側面と底面はバリア金属 7 (Ta)で覆われている。第 2の電極 2の上にィォ ン伝導層 4と導入路 5が形成されてレ、る。イオン伝導層 4は導入路 5の側面を囲むよう に形成されている。第 1の電極 1はイオン伝導層 4および導入路 5の上に設けられて いる。
[0024] 第 1の電極 1と第 2の電極 2は、イオン伝導部 4に接触している。導入路 5は、第 1の 電極 1と第 2の電極 2を電気的に接続するために設計段階であらかじめ所定の位置 に決められ、製造段階でその位置に形成される。導入路 5は、第 2の電極 2を構成す る金属と同じ金属により構成される。導入路 5は、同一ウェハ内の全スイッチング素子 で、同一の経路により構成されるとともに、エレクト口マイグレーション耐性が期待でき る所定の太さで形成される。
[0025] バリア金属 7は、第 2の電極 2から金属イオン (Cu+)が拡散するのを防止する。第 1 の電極 1と、第 2の電極 2と、イオン伝導層 4とがそれぞれ異なる層間絶縁膜 8 (Si〇 )
2 に埋め込まれている。導入路 5はイオン伝導層 4と同一の層間絶縁膜 8に埋め込まれ ている。層間絶縁膜 8は、スイッチング素子の静電容量を下げる機能を有する。層間 絶縁膜 8の上に形成されたバリア絶縁膜 9 (SiN)は、以下で説明する製造方法にお いて、化学機械的研磨(CMP : Chemical Mechanical Polishing)の際のストッパ となる。第 1の電極 1で側面および底面が覆われた配線 10 (Cu)は、スイッチング素 子と集積回路を電気的に接続するための配線となる。第 1の電極 1で用いられている
Taは、この配線 10から金属イオン(Cu+)が拡散するのを防止する機能も有している
[0026] 次に、本発明の第 1の実施形態の金属原子移動スイッチング素子の動作について 説明する。スイッチング素子の初期状態がオン状態の場合、スイッチング素子をオフ 状態にするには、第 2の電極 2に対して第 1の電極 1に正の電圧を印加する。これに より、導入路 5の金属(Cu)は、金属イオン (Cu+)となってイオン伝導層 4を移動し、 第 2の電極 2において金属(Cu)となって析出する。その結果、導入路 5の一部が電 気的に切断され、スイッチング素子はオフ状態に遷移する。次に、この状態から、第 2 の電極 2に対して第 1の電極 1に負の電圧を印加すると、逆の電気化学反応が進行 し、スイッチング素子はオン状態に遷移する。
[0027] 他方、スイッチング素子の初期状態がオフ状態の場合、第 2の電極 2に対して第 1 の電極 1に負の電圧を印加するとオン状態になり、この状態から第 2の電極 2に対し て第 1の電極 1に正の電圧を印加するとオフ状態になる。なお、電気的接続が完全に 切れる前の段階から第 1の電極 1および第 2の電極 2間の抵抗が大きくなつたり、電極 間容量が変化したりするなど電気的特性が変化し、最終的に電気的接続が切れる。
[0028] 従来の金属原子移動スィッチング素子では、 2電極間に電圧を印加することにより 析出する金属によって、 2電極間を電気的に接続していた。これに対して、本実施形 態の金属原子移動スイッチング素子では、第 1の電極 1と第 2の電極 2の間に経路お よびその太さを制御して形成した導入路 5を金属配線として設け、これら 2つの電極 をあらかじめ電気的に接続している。そして、スイッチング動作させるには、上述した ように 2電極間に印加する電圧を制御して、導入路 5による金属配線を 2電極間で切 断したり、再接続したりする。スィッチのオン Zオフを繰り返しても、 2電極を接続する 金属配線があらかじめ所定の太さに形成されているため、金属配線の経路および太 さに大きな変化がなレ、。そのため、従来よりもエレクト口マイグレーション耐性が高くな る。
[0029] なお、スイッチング素子製造時にはスィッチがオン状態なので、スイッチング動作さ せる前の段階でスィッチをオフ状態にしたい場合は、スイッチング素子製造後、第 2 の電極 2に対して第 1の電極 1に正の電圧を印加すればょレ、。
[0030] 次に、本実施形態の金属原子移動スイッチング素子の製造方法を説明する。
[0031] 図 3A力 図 31は本実施形態の金属原子移動スイッチング素子の製造方法を説明 するための断面模式図である。
[0032] 図 3Aに示す工程では、次のような処理を行う。スパッタリング法を用いて、基板 0上 に層間絶縁膜 8となる膜厚 0· 5 111の31〇と、バリア絶縁膜 9となる膜厚 0· 05
2
の SiNを堆積する。層間絶縁膜 8は、誘電率をさらに下げるために、フッ素、炭素など を含有してもよい。バリア絶縁膜 9は、 CMP耐性がより高い SiCでもよい。これらの膜 の堆積後、リソグラフィ一によりレジストパターンを形成し、エッチングにより層間絶縁 膜 8およびバリア絶縁膜 9に開口部を設ける。その後、レジストパターンを除去する。
[0033] 図 3Bに示す工程では、スパッタリング法を用いてバリア金属 7となる膜厚 0. 05 μ m の Taを形成し、メツキ法を用いて第 2の電極 2となる膜厚 1 μ mの Cuを形成する。バリ ァ金属 7は、 Taと TaNの積層構造などでもよい。
[0034] 図 3Cに示す工程では、 CMP法を用いて、開口部中のバリア金属 7、第 2の電極 2 以外の材料を削り取る。この際、バリア絶縁膜 9が CMPのストッパとなる。
[0035] 図 3Dに示す工程では、次のような処理を行う。スパッタリング法を用いて、層間絶 縁膜 8となる膜厚 0. の SiOと、ノ リア絶縁膜 9となる膜厚 0. 05 z mの SiNとを 順に堆積する。これらの膜の堆積後、リソグラフィ一によりレジストパターンを形成し、 エッチングにより層間絶縁膜 8およびバリア絶縁膜 9に開口部を設ける。その後、レジ ストパターンを除去する。
[0036] 図 3Eに示す工程では、スパッタリング法を用いて、イオン伝導層 4となる膜厚 0. 3
μ mの Cu Sを形成する。
2
[0037] 図 3Fに示す工程では、異方性エッチングにより、バリア絶縁膜 9上のイオン伝導層
4を取り除く。このとき、開口部の側壁のイオン伝導層 4は、サイドウォールとなってェ ツチングされずに残る。サイドウォールは、円筒状で、上部の端に丸みを持ち、外側 が開口部の側壁と接触している。イオン伝導層 4の膜厚と、エッチング時間を制御す ることにより、サイドウォールにより形成される開口の大きさ(導入路 5の太さを規定す る)を正確に制御することが可能となる。その結果、リソグラフィー限界を超えるような 小さなサイズの開口を形成することが可能である。
[0038] 図 3Gに示す工程では、スパッタリング法およびメツキ法を用いて、導入路 5のため の、膜厚 1 μ mの Cuを形成する。
[0039] 図 3Hに示す工程では、 CMP法を用いて、開口部中に導入路 5となる Cuを残し、 それ以外の部位の Cuを削り取る。この際、ノくリア絶縁膜 9が CMPのストッパとなる。
[0040] 図 31に示す工程では、次のような処理を行う。スパッタリング法を用いて、層間絶縁 膜 8となる膜厚 0· 5 /1 111の310と、バリア絶縁膜 9となる膜厚 0· 05 /i mの SiNを順に
2
堆積する。これらの膜の堆積後、リソグラフィ一によりレジストパターンを形成し、エツ チングにより層間絶縁膜 8およびバリア絶縁膜 9に開口部を設ける。その後、レジスト パターンを除去する。次に、スパッタリング法およびメツキ法を用いて、第 1の電極 1と なる膜厚 0. 05 111の丁&と、配線 10となる膜厚: mの Cuを形成する。続いて、 CM P法を用いて、第 1の電極 1と配線 10を開口部中に残し、それ以外の部位を削り取る 。この際、ノ リア絶縁膜 9が CMPのストッパとなる。
[0041] なお、本実施形態では、第 1の電極 1と第 2の電極 2を電気的に接続するように導入 路 5を形成することとしたが、この場合に限られない。スイッチング動作で生成される 金属配線の経路および太さが導入路 5の経路および太さに依存する程度に成長す るのであれば、導入路 5が第 1の電極 1と第 2の電極 2をあら力 め完全に接続してい る状態である必要はない。この場合でも、完全に接続した場合と同様に、オン抵抗の ばらつき防止とエレクト口マイグレーション耐性という効果が得られる。ただし、この場 合、スイッチング素子製造時のスィッチの状態はオフである。
[0042] また、導入路 5とイオン伝導層 4の組み合わせは、金属(Cu)とイオン伝導体(Cu S
2
)に限られない。金属とイオン伝導体の組み合わせの代わりに、内部を移動するィォ ンの移動度が高レ、イオン伝導体である高イオン伝導体と、内部を移動するイオンの 移動度が低レ、イオン伝導体である低イオン伝導体との組み合わせでもよレ、。具体的 には、高イオン伝導体の Cu Sと、低イオン伝導体の Ta Oまたは Si〇との組み合わ
2 2 2
せが考えられる。
[0043] 高イオン伝導体は、金属イオン (Cu+)を選択的に伝導させやすいため、高イオン 伝導体の経路で析出物が選択的に成長しやすい。高イオン伝導体の経路をあらかじ め形成することで、高イオン伝導体の経路に依存する金属配線の経路が設計段階 および製造段階で決定されることと同等になり、同一ウェハ内のスイッチング素子間 のオン抵抗のばらつきを小さくできる。
[0044] また、金属配線の太さは高イオン伝導体の経路の太さに依存する。あらかじめ形成 する高イオン伝導体の経路を十分太くしておくことで、エレクト口マイグレーション耐性 を高めることができる。ただし、この場合、高イオン伝導体の経路は、第 1の電極 1と第 2の電極 2を電気的に接続するものではないので、スイッチング素子製造時の状態は オフである。
[0045] (第 2の実施形態)
本実施形態の金属原子移動スイッチング素子では、第 1の実施形態とは異なる方 法で、第 1の電極と第 2の電極を電気的に接続するための導入路をあらかじめ所定 の位置に形成するものである。このように、導入路を設計段階および製造段階であら 力、じめ所定の位置に形成することで、導入路の経路に依存する金属配線の経路が 設計段階および製造段階で決定される。これにより、同一ウェハ内のスイッチング素 子間のオン抵抗のばらつきを小さくできる。また、設計段階および製造段階であらか じめ形成する導入路を十分太くしておく。金属配線の太さは導入路の太さに依存す るので、これにより、エレクト口マイグレーション耐性を高めることができる。 [0046] これに加え、本実施形態の金属原子移動スィッチング素子では、金属配線の太さ を制御するために、導入路を構成する金属からなる第 3の電極を設け、 3端子型金属 原子移動スィッチング素子とする。これにより、エレクト口マイグレーション耐性をさら に高めることができる。
[0047] このように、第 3の電極を設けると、エレクト口マイグレーション耐性をさらに高めるこ とができる。以下に、その理由を説明する。金属配線は、あくまで第 1の電極と第 2の 電極を電気的に接続しているにすぎなレ、。第 3の電極に印加された電圧は、第 1の電 極と第 2の電極を電気的に接続する金属配線に流れる電流を増大させることにはあ まり寄与せず、もっぱら析出物の量を増加させ、金属配線を太くすることに寄与する。 金属配線を太くすることで、エレクト口マイグレーション耐性をさらに高めることができ る。
[0048] 図 4は、本実施形態の金属原子移動スイッチング素子の一構成例を示す断面模式 図である。
[0049] 基板 0の上に、第 2の電極 2 (Cu)、第 3の電極 3 (Cu)、イオン伝導層 4 (Cu S)、第
2
1の電極 l (Ta)が形成されている。第 1の電極 1、第 2の電極 2、第 3の電極 3は、ィォ ン伝導層 4に接触している。導入路 5 (Cu)は、第 1の電極 1と第 2の電極 2を電気的 に接続するために設計および製造の段階であらかじめ形成される。導入路 5は、第 2 の電極 2および第 3の電極 3を構成する金属と同じ金属により構成される。導入路 5は 、同一ウェハ内のスイッチング素子で、同一の経路により構成されるとともに、エレクト 口マイグレーション耐性が期待できる所定の太さで形成される。バリア金属 7 (Ta)、層 間絶縁膜 8 (SiO )、バリア絶縁膜 9 (SiN)および配線 10 (Cu)はそれぞれ第 1の実
2
施形態と同様の機能を有する。
[0050] 従来の金属原子移動スイッチング素子では、 2電極間に電圧を印加することにより 析出する金属によって、 2電極間を電気的に接続していた。これに対して、第 2の実 施形態の金属原子移動スイッチング素子では、第 1の電極 1と第 2の電極 2の間を、 経路および太さの制御された導入路 5からなる金属配線であらかじめ電気的に接続 する。そして、スイッチング動作をさせるには、 2電極間(第 1の電極 1と第 2の電極 2ま たは第 1の電極 1と第 3の電極 3)に電圧を印加し、導入路 5からなる金属配線を切断 または再接続する。したがって、第 1の電極 1と第 2の電極 2を電気的に接続する金属 配線は、オン/オフを繰り返しても、経路および太さにあまり変化がない。
[0051] このように、スイッチング素子製造時にはスィッチの状態がオンであるので、これを オフ状態にしたい場合は、スイッチング素子製造後、第 2の電極 2に対して第 1の電 極 1に正の電圧を印加する。または、第 3の電極 3に対して第 1の電極 1に正の電圧を 印加する。
[0052] 次に、本発明の第 2の実施形態の金属原子移動スイッチング素子の動作について 説明する。スイッチング素子の初期状態がオン状態の場合、スイッチング素子をオフ 状態にするには、第 2の電極 2または第 3の電極 3に対して第 1の電極 1に正の電圧 を印加する。これにより、導入路 5の金属(Cu)は、金属イオン (Cu+)となってイオン 伝導層 4を移動し、第 2の電極 2または第 3の電極 3において金属(Cu)となって析出 する。その結果、導入路 5の一部が電気的に切断され、スイッチング素子はオフ状態 に遷移する。次に、この状態から、第 2の電極 2または第 3の電極 3に対して第 1の電 極 1に負の電圧を印加すると、逆の電気化学反応が進行し、スイッチング素子はオン 状態に遷移する。
[0053] 他方、スイッチング素子の初期状態がオフ状態の場合、第 2の電極 2または第 3の 電極 3に対して第 1の電極 1に負の電圧を印加するとオン状態になり、この状態から 第 2の電極 2または第 3の電極 3に対して第 1の電極 1に正の電圧を印加するとオフ状 態になる。
[0054] オフの状態から、第 2の電極 2に対して第 1の電極 1に負の電圧を印加してオン状 態に変える場合、接続箇所の金属が細くても、第 1の電極 1と第 2の電極 2が接続した 時点で金属の成長は止まる。このような場合、第 1の電極 1と第 2の電極 2が電気的に 接続された状態で、第 3の電極に対して第 1の電極に負の電圧を印加し、金属配線 をさらに太くしてもよレ、。
[0055] また、スィッチのオン/オフを繰り返すと、当初形成した配線である導入路 5が劣化 してくる場合がある。このような場合、第 1の電極 1と第 2の電極 2が電気的に接続され た状態で、第 3の電極に対して第 1の電極に負の電圧を印加し、金属配線を修復し てもよい。 [0056] 次に、本実施形態の金属原子移動スイッチング素子の製造方法を説明する。
[0057] 図 5Aから図 5Gは、本実施形態の金属原子移動スィッチング素子の製造方法を説 明するための断面模式図である。
[0058] 図 5Aに示す工程では、スパッタリング法を用いて、基板 0上に層間絶縁膜 8となる 膜厚 0. 5 111の31〇と、バリア絶縁層となる膜厚 0. 05 x mの SiNを堆積する。層間
2
絶縁膜 8は誘電率をさらに下げるために、フッ素、炭素などを含有してもよい。ノ^ァ 絶縁膜 9は、 CMP耐性がより高い SiCでもよレ、。堆積後、リソグラフィ一によりレジスト パターンを形成し、エッチングにより層間絶縁膜 8およびバリア絶縁膜 9に開口部を 設ける。次に、スパッタリング法およびメツキ法を用いて、バリア金属 7である膜厚 0. 0 5 μ mの Ta、第 2の電極 2、第 3の電極 3となる膜厚 1 μ mの Cuを形成する。バリア金 属 7は、 Taと TaNの積層構造などでもよレ、。次に、 CMP法を用いて、開口部中のバ リア金属 7、第 2の電極 2、第 3の電極 3以外の材料を削り取る。この際、バリア絶縁膜 9が CMPのストッパになる。
[0059] 図 5Bに示す工程では、スパッタリング法を用いてイオン伝導層 4となる Cu Sを堆積
2 する。次に、リソグラフィ一によりレジストパターンを形成後、エッチングにより第 2の電 極 2と第 3の電極 3を接続するようなパターンを形成する。
[0060] 図 5Cに示す工程では、スパッタリング法を用いて、層間絶縁膜 8となる膜厚 0. 2 μ mの SiOとバリア絶縁膜 8となる 0· 5 /i mの SiNを堆積する。次に、 CMP法を用いて
2
表面を平坦化する。
[0061] 図 5Dに示す工程では、リソグラフィ一によりレジストパターンを形成後、エッチング により層間絶縁膜 8およびバリア絶縁膜 9に開口部を設ける。
[0062] 図 5Eに示す工程では、スパッタリング法を用いて、イオン伝導層 4となる膜厚 0. 3 z mの Cu Sを形成する。次に、異方性エッチングにより、バリア絶縁膜 9上のイオン
2
伝導層 4を取り除く。このとき、開口部の側壁のイオン伝導層 4は、サイドウォールとな つてエッチングされずに残る。サイドウォールは、円筒状で、上部の端に丸みを持ち、 外側が開口部の側壁と接触している。イオン伝導層 4の膜厚、エッチング時間を制御 することにより、サイドウォールにより形成される開口の大きさ(導入路 5の太さを規定 する)を正確に制御することが可能であり、リソグラフィー限界を超えるような小さなサ ィズの開口を形成することが可能である。
[0063] 図 5Fに示す工程では、スパッタリング法およびメツキ法を用いて、膜厚 1 μ mの導 入路 5となる Cuを形成する。次に、 CMP法を用いて、開口部中の導入路 5以外の材 料を削り取る。この際、ノ リア絶縁膜 9が CMPのストッパになる。
[0064] 図 5Gに示す工程では、スパッタリング法を用いて、層間絶縁膜 8となる膜厚 0. 5 μ mのシリコン酸化膜と、バリア絶縁膜 9となる 0. の SiNを堆積する。堆積後、リ ソグラフィ一によりレジストパターンを形成し、エッチングにより層間絶縁膜 8およびバ リア絶縁膜 9に開口部を設ける。次に、スパッタリング法およびメツキ法を用いて、第 1 の電極 1となる膜厚 0. 05 μ mの Taおよび配線 10となる膜厚 1 μ mの Cuを形成する 。次に、 CMP法を用いて、開口部中の第 1の電極 1、配線 10以外の材料を削り取る 。この際、ノ リア絶縁膜 9が CMPのストツバになる。
[0065] なお、本実施形態では、第 1の電極 1と第 2の電極 2を電気的に接続するように導入 路 5を形成することとした力 生成される金属配線の経路および太さが導入路 5の経 路および太さに依存する程度に形成されるのであれば、導入路 5は、第 1の電極 1と 第 2の電極 2を完全に接続している必要はない。この場合でも、完全に接続した場合 と同様な効果、すなわち、オン抵抗のばらつき防止とエレクト口マイグレーション耐性 という効果が得られる。ただし、この場合、スイッチング素子製造時の状態はオフであ る。
[0066] また、第 2の電極 2は、導入路 5と同じ金属(Cu)から構成されている必要はなぐ第
3の電極 3のみを用いてスイッチングを行ってもよレ、。なぜなら、第 1の電極 1と第 2の 電極の間にはすでに導入路 5が形成されており、第 3の電極 3のみを用いてスィッチ ングを行っても、第 1の電極 1と第 3の電極 3の間に析出物からなる金属配線が形成さ れ、スイッチング素子が誤動作する恐れはなレ、からである。
[0067] さらに、導入路 5とイオン伝導層 4の組み合わせは、金属(Cu)とイオン伝導体(Cu
2
S)だけではなぐ高イオン伝導体である Cu Sと低イオン伝導体である Ta〇や Si〇
2 2 2 でもよレ、。高イオン伝導体は、金属イオン (Cu+)を選択的に伝導させやすいために、 高イオン伝導体の経路で析出物が選択的に成長しやすい。したがって、高イオン伝 導体の経路をあらかじめ形成することで、高イオン伝導体の経路に依存する金属配 線の経路が設計段階および製造段階で決定されるので、同一ウェハ内のスィッチン グ素子間のオン抵抗のばらつきを小さくできる。
[0068] また、あら力じめ形成する高イオン伝導体の経路を十分太くしておく。金属配線の 太さは高イオン伝導体の経路の太さに依存するので、これにより、エレクト口マイダレ ーシヨン耐性を高めることができる。この場合、第 2の電極 2は、イオン伝導体に金属 イオンを供給できる金属(Cu)から構成されている必要がある。なぜなら、この場合、 第 1の電極 1と第 2の電極 2の間に金属配線がまだ形成されていないので、第 3の電 極 3のみを用いてスイッチングを行うと、第 1の電極 1と第 3の電極 3の間に析出物から なる金属配線が形成され、スイッチング素子が誤動作する恐れがあるからである。ま た、この場合、高イオン伝導体の経路は、第 1の電極 1と第 2の電極 2を電気的に接 続するものではないので、スイッチング素子製造時の状態はオフである。
[0069] (第 3の実施形態)
第 2の実施形態の金属原子移動スイッチング素子では、第 1の電極 1と第 2の電極 2 の間の所定の位置に、設計段階および製造段階であらかじめ導入路 5を形成するこ とで、設計段階および製造段階で金属配線の経路を決定し、同一ウェハ内のスイツ チング素子間のオン抵抗のばらつきを小さくしていた。第 2の実施形態の金属原子移 動スイッチング素子のような 3端子型金属原子移動スイッチング素子では、オン抵抗 のばらつき以外に、析出物からなる金属配線が、第 1の電極と第 2の電極の間にでは なぐ第 1の電極と第 3の電極の間にも形成され、スイッチング素子が誤動作すること が懸念される。
[0070] そこで、 3端子型金属原子移動スイッチング素子では、オン抵抗のばらつきを防止 するためだけではなぐ金属配線が第 1の電極と第 3の電極の間に形成され、スイツ チング素子が誤動作するのを防止するためにも、金属配線の経路の制御が必要とな る。
[0071] 本実施形態の金属原子移動スィッチング素子では、設計段階および製造段階で導 入路を形成することにより、オン抵抗のばらつきの問題だけではなぐ第 1の電極と第 3の電極にも金属配線が形成されるという上記問題を解決していたことになる。もっと も、後者の問題のみに焦点を当てるのであれば、より簡単な方法で解決可能である。 [0072] この問題を解決する簡単な方法の 1つは、第 1の電極と第 2の電極の間に金属配線 が優先して形成されるように、第 1から第 3の電極およびイオン伝導部を配置すること である。具体的には、第 1から第 3の電極およびイオン伝導部の相互の距離を最適化 することである。し力、しながら、この場合でも、オン Zオフの状態を繰り返し変えていく うちに、第 1の電極と第 3の電極の間に金属配線が形成される可能性が残る。
[0073] そこで、本実施形態の金属原子移動スィッチング素子では、第 2の実施形態よりも 簡単に、上記方法よりも効果的に、第 1の電極と第 3の電極の間にも金属配線が形成 されるという問題を解決する。また、第 3の電極を有するので、エレクト口マイグレーシ ヨン耐性を高めることができる。
[0074] 図 6は、本実施形態の金属原子移動スイッチング素子の一構成例を示す断面模式 図である。
[0075] 基板 0の上に、第 2の電極 2 (Cu)、第 3の電極 3 (Cu)、イオン伝導層 4 (Cu S)、第
2
1の電極 l (Pt)が形成されている。第 1の電極 1、第 2の電極 2、第 3の電極 3は、ィォ ン伝導層 4に接触している。導入路 5 (Cu)は、第 1の電極 1と第 2の電極 2を電気的 に接続するためにあらかじめ形成される力 第 1および第 2の実施形態とは異なり、電 気的に形成される。絶縁層 6 (カリックスァレーン)は、第 1の電極 1がイオン伝導層 4 に接触する面積を減らすための絶縁層である。
[0076] まず、導入路 5 (Cu)以外の形成方法について説明する。膜厚 300nmの Si〇で覆
2 われた Si基板を基板 0として用いる。従来技術のリソグラフィー技術とリフトオフ技術を 用いて、 SiO上に膜厚 lOOnmの Cuを形成し、第 2の電極 2および第 3の電極 3とす
2
る。次に、同様の技術を用いて、膜厚 40nmのイオン伝導層 4である Cu Sを積層する
2
。 Cu Sはレーザーアブレーシヨン法によって形成する。 Cu S上に膜厚 120nmのス
2 2
ピンコートによりカリックスァレーンを塗布し、リソグラフィー技術によりパターユングを 行う(絶縁層 6の形成)。最後に、従来技術を用いて膜厚 40nmの Ptを形成し、第 1の 電極 1とする。 Ptは真空蒸着法またはスパッタリング法によって堆積する。
[0077] 次に、導入路 5 (Cu)の形成方法について説明する。図 7Aおよび図 7Bは本実施 形態の金属原子移動スイッチング素子のスイッチング動作を示すグラフである。
[0078] 第 2の電極 2に対して第 1の電極 1に— 0. 3V程度の負の電圧を印加する。電圧印 加によって第 1の電極 1と第 2の電極 2の間に Cuの析出物が成長し、両電極間が電 気的に接続される(この操作を操作 1と呼ぶ)。図 7Aは、第 2の電極 2に対して第 1の 電極 1に印加する電圧を変えながら、第 1の電極 1から第 2の電極 2に流れる電流を 観測したものである。 -0. 3Vの電圧において電流が急激に負の方向に増大してい ること力 Sわ力る。この電流増大は、第 1の電極 1と第 2の電極 2の間が電気的に接続さ れたことを示している。以上により、導入路 5が形成された。
[0079] 導入路 5形成後に、第 3の電極 3に対して第 1の電極 1に負の電圧を印加し、導入 路 5の金属配線を太くするように成長させてもよレ、。これにより、エレクト口マイグレー シヨン耐性を高めることができる。
[0080] スイッチング動作をさせるには、第 3の電極 3に対して第 1の電極 1に電圧を印加す る(図 7Bを参照)。なお、第 1の電極 1と第 2の電極 2の電気的接続の状態を知るため に、第 2の電極 2に対して第 1の電極 1にごく小さな電圧(10mV)を加えている。初期 状態において、第 1の電極 1と第 2の電極 2の間は接続された状態 (オン状態)にある
[0081] 第 3の電極 3に対して第 1の電極 1に正の電圧を印加すると、析出物の一部が電気 化学反応によってイオン伝導層 4に溶解し、オフ状態に遷移する(この操作を操作 2 と呼ぶ)。オフ状態において、第 3の電極 3に対して第 1の電極 1に負の電圧を印加す ると、 Cuが再び析出し、オン状態に遷移する(この操作を操作 3と呼ぶ)。操作 2で溶 解した析出物が、操作 3によって再析出し、操作 1によって成長した析出物の形状に 戻ると考えられる。操作 1を行わずに操作 3を行うと、第 1の電極 1と第 2の電極 2が電 気的に接続される場合だけではなぐ第 1の電極 1と第 3の電極 3が電気的に接続さ れる場合が存在した。このことは、操作 1による導入路 5の形成によって、第 1の電極 1 と第 2の電極 2の間にのみ金属配線を形成することが可能であることを示している。
[0082] (第 4の実施形態)
第 1から第 3の実施形態の金属原子移動スイッチング素子では、第 1の電極 1と第 2 の電極 2を電気的に接続する導入路をあらかじめ形成した。本実施形態の金属原子 移動スイッチング素子では、このような導入路をあらかじめ形成することなぐスィッチ ング素子の構造により、第 1の電極と第 2の電極を電気的に接続する金属配線を構 成する析出物が形成される箇所を固定する。これにより、金属配線の経路が固定さ れるので、同一ウェハ内のスイッチング素子間のオン抵抗のばらつきを小さくできる。 また、第 2または第 3の実施形態の金属原子移動スイッチング素子と同様に、第 3の 電極を有するので、エレクト口マイグレーション耐性を高めることができる。さらに、金 属配線は第 1の電極と第 2の電極の間に確実に形成されるので、金属配線が第 1の 電極と第 3の電極の間に形成されることに起因する、スイッチング素子の誤動作を防 止できる。
[0083] 図 8は、本実施形態の金属原子移動スイッチング素子の構成を説明するための模 式図である。
[0084] 基板 0の上に、第 3の電極 3 (Cu)、イオン伝導層 4 (Cu S)が積層され、イオン伝導
2
層 4 (Cu S)の上に、所定の距離(lnmから lOOnmのオーダー)を離して、第 1の電
2
極 l (Pt)と第 2の電極 2 (Cu)が形成されている。第 1の電極 1と第 2の電極 2とが同一 平面に形成されている。第 1の電極 1、第 2の電極 2、第 3の電極 3は、イオン伝導層 4 に接触している。第 1の電極 1、第 2の電極 2、イオン伝導層 4の露出面は、保護膜 11 (フォトレジスト)によって保護されている。保護膜 11は第 2の電極 2などの銅の酸化を 防止する役目を果たしてレ、る。
[0085] 第 2の電極 2に対して第 1の電極 1に負の電圧を印加すると、第 1の電極 1と第 2の 電極 2の間のイオン伝導層 4の表面 (保護膜 11側)に析出物が成長し、第 1の電極 1 と第 2の電極 2が電気的に接続される。これは、第 1の電極 1と第 2の電極 2とがイオン 伝導層 4の同一表面上に形成されているため、イオン伝導層 4の内部よりも保護膜 1 1との界面に金属が析出しやすくなる。このように、析出物が成長する場所が固定さ れているので、同一ウェハ内のスイッチング素子間のオン抵抗のばらつきを小さくで きる。
[0086] 第 1の電極 1と第 2の電極 2が電気的に接続された状態で、第 3の電極 3に対して第 1の電極 1に負の電圧を印加すると、金属配線をさらに太くできる。これにより、エレク トロマイグレーション耐性を高めることができる。
[0087] また、第 1の電極 1と第 2の電極 2が電気的に接続された状態から、第 3の電極 3に 対して第 1の電極 1に電圧を印加してスイッチング操作させれば、金属配線が第 1の 電極と第 3の電極の間に形成されることに起因する、スイッチング素子の誤動作を防 止できる。
[0088] 次に、製造方法について説明する。膜厚 300nmの Si〇で覆われた Si基板を、基
2
板 0として用いる。従来技術のリソグラフィー技術とリフトオフ技術を用いて、 SiO上に
2 膜厚 lOOnmの Cuを形成し、第 3の電極 3とする。次に、同様の技術を用いて、膜厚 4 Onmのイオン伝導層 4である Cu Sを積層する。 Cu Sはレーザーアブレーシヨン法に
2 2
よって形成する。次に、従来技術を用いて第 1の電極 1となる膜厚 40nmの Pt、第 2の 電極 2となる膜厚 40nmの Cuを形成する。最後に、保護膜 11として、フォトレジストを 塗布し、 150度で熱処理することによって固化させる。
[0089] なお、保護膜 11がなぐイオン伝導層 4が大気に露出している構造であってもよい。
また、保護膜 11は、フォトレジストに限らず、アクリル系樹脂、絶縁物など、緻密でなく 堅くない材料力 構成されてもよい。保護膜 11が緻密でなく堅くない材料力 構成さ れていると、イオン伝導層 4内部よりもイオン伝導層 4と保護膜 11の界面に成長する 方が析出物に力かる応力が小さくなるので、イオン伝導層 4と保護膜 11の界面に優 先的に金属配線が形成される。すなわち、イオン伝導層 4と保護膜 11の界面に導入 路を形成した場合と同じ効果が本実施形態により得られる。
[0090] (第5の実施形態)
本実施形態の金属原子移動スィッチング素子でも、第 4の実施形態の金属原子移 動スイッチング素子と同様に、導入路をあらかじめ形成することなぐスイッチング素 子の構造により、第 1の電極と第 2の電極を電気的に接続する金属配線を構成する 析出物が形成される箇所を固定する。これにより、金属配線の経路が固定されるので 、同一ウェハ内のスイッチング素子間のオン抵抗のばらつきを小さくできる。
[0091] 図 9は、本実施形態の金属原子移動スイッチング素子の一構成例を示す断面模式 図である。
[0092] 基板 0の上に、イオン伝導層 4 (Cu S)が形成されてレ、る。そして、イオン伝導層 4の
2
上に、第 1の電極 l (Pt)、第 1の電極 1と所定の距離だけ離れて第 2の電極 2 (Pt)、さ らに第 1の電極 1と所定の距離だけ離れて第 3の電極 3 (Cu)が形成されている。なお 、第 3の電極 3は、第 1の電極 1と第 2の電極 2を結ぶ直線の延長線上に形成されてい ることが望ましい。
[0093] 第 3の電極 3に対して第 1の電極 1に負の電圧を印加すると、第 1の電極 1と第 3の 電極 3の間のイオン伝導層 4の表面近傍に析出物が成長しはじめ、その途中で、この 析出物は、第 1の電極 1と第 2の電極 2を電気的に接続する。すなわち、第 1の電極 1 と第 2の電極 2の間に導入路を形成した場合と同じ効果が本実施形態により得られる
[0094] このように、析出物が成長する場所力イオン伝導層 4の表面近傍に固定されている ので、同一ウェハ内のスイッチング素子間のオン抵抗のばらつきを小さくできる。
[0095] また、析出物からなる金属配線が第 1の電極 1と第 2の電極 2を電気的に接続した 段階で電圧印加を止めれば、第 1の電極 1と第 3の電極 3が電気的に接続されること はなぐこれに起因するスイッチング素子の誤動作を防止できる。
[0096] 次に、製造方法について説明する。膜厚 300nmの Si〇で覆われた Si基板を、基
2
板 0として用いる。次に、 SiO上に、従来技術のリソグラフィー技術とリフトオフ技術を
2
用いて、膜厚 40nmのイオン伝導層 4である Cu Sを形成する。 Cu Sはレーザーアブ
2 2
レーシヨン法によって形成する。次に、同様の技術を用いて、第 1の電極 1となる膜厚 40nmの Pt、第 2の電極 2となる膜厚 40nmの Pt、第 3の電極 3となる膜厚 40nmの C uを形成する。
[0097] (第 6の実施形態)
本実施形態の金属原子移動スィッチング素子でも、第 4の実施形態の金属原子移 動スイッチング素子と同様に、導入路をあらかじめ形成することなぐスイッチング素 子の構造により、第 1の電極と第 2の電極を電気的に接続する金属配線を構成する 析出物が形成される箇所を固定する。これにより、金属配線の経路が固定されるので 、同一ウェハ内のスイッチング素子間のオン抵抗のばらつきを小さくできる。
[0098] 図 1 OAは本実施形態の金属原子移動スイッチング素子の一構成例を示す平面模 式図である。図 10Bは図 10Aに示した平面模式図において線分 AA'で切った部位 の断面模式図である。
[0099] 図 10Bに示すように、基板 0の上にイオン伝導層 4 (Cu S)が積層されている。そし
2
て、イオン伝導層 4 (Cu S)の上に、所定の距離(lnmから lOOnmのオーダー)離れ て、第 1の電極 l (Cu)および第 2の電極 2 (Cu)が形成されている。また、図 10Aに示 すように、第 1の電極 1および第 2の電極 2と同一層に第 3の電極 3 (Cu)がこれらの他 の電極と所定の距離(lnmから lOOnmのオーダー)だけ離れて形成されている。第 1の電極 1、第 2の電極 2および第 3の電極 3は、イオン伝導層 4に接触している。
[0100] また、図 10Aに示すように、第 1の電極 1および第 2の電極 2の平面パターンの形状 は相互に近づくにつれて細くなり、第 1の電極 1および第 2の電極 2間の最短距離と なる端部 la、 2aで、対向する辺の長さが最も小さくつている。そのため、析出金属の 経路が、第 1の電極 1の端部 laと第 2の電極 2の端部 2aとの間でイオン伝導層 4の表 面近くに形成され、第 4の実施形態の場合に比べてより固定される。第 1の電極 1の 端部 laと第 2の電極 2の端部 2a間の距離を第 1の所定の距離とする。
[0101] さらに、第 5の実施形態でも、第 1の電極 1、第 2の電極 2および第 3の電極 3が同一 平面に形成されていた力 第 2の電極 2が第 1の電極 1と第 3の電極 3との間に位置し ていた。本実施形態では、図 10Aに示すように、第 1の電極 1と第 2の電極 2とを対向 させ、第 3の電極 3を第 1の電極 1および第 2の電極 2のそれぞれの電極からの最短 距離が同等になるように配置している。この場合では、第 3の電極 3が第 1の電極 1お よび第 2の電極 2間に析出される金属により近くなるため、両電極間の電気的特性を より制御しやすくなる。第 1の電極 1および第 2の電極 2のそれぞれの電極から第 3の 電極 3までの最短距離を第 2の所定の距離とすると、第 2の所定の距離を第 1の所定 の距離よりも大きくしている。
[0102] 図 11Aは、第 1の電極に負の電圧を印加した場合の、電圧の変化に対する第 1の 電極 1を流れる電流を示すグラフである。図 11Bは、電圧印加後の析出物を観測した 電子顕微鏡写真である。
[0103] 第 2の電極 2に対して第 1の電極 1に負の電圧を印加すると、図 11Aのグラフに示 すように、 -0. 5V付近で電流が負に増大している。これは、電圧を—0. 6Vから OV の方に近づけていくと、第 1の電極 1と第 2の電極 2の間のイオン伝導層 4の表面に析 出物が成長し、 -0. 5V付近でこれら 2つの電極が電気的に接続されることを示して いる。図 11Bに示す写真から、第 1の電極 1と第 2の電極 2とが、析出した金属で接続 されていることがわかる。このようにして、析出物が成長する場所が固定されているの で、同一ウェハ内のスイッチング素子間のオン抵抗のばらつきを小さくできる。
[0104] 図 12Aは、第 3の電極 3に電圧を印加した場合の、第 1の電極 1を流れる電流の時 間変化を示すグラフである。図 12Bは、電圧印加後の析出物を観測した電子顕微鏡 写真である。第 1の電極 1には 0. IVの定電圧を印加し、第 3の電極 3には IVの定電 圧を印加している。図 12Aに示すグラフから、時間とともに第 1の電極 1を流れる電流 は増大する。図 12Bに示す写真から、析出した金属による配線が図 11Bに示した状 態よりも太っていることがわかる。このようにして、金属配線を太らせることでエレクト口 マイグレーション耐性を高めることができる。
[0105] また、第 1の電極 1と第 2の電極 2が電気的に接続された状態から、第 3の電極 3に 対して第 1の電極 1に電圧を印加してスイッチング操作させれば、金属配線が第 1の 電極 1と第 3の電極 3の間に形成されることに起因する、スイッチング素子の誤動作を 防止できる。
[0106] 次に、本実施形態の金属原子移動スイッチング素子の製造方法について簡単に 説明する。膜厚 300nmの SiOで覆われた Si基板を基板 0として用いる。従来技術の
2
リソグラフィー技術とリフトオフ技術を用いて、 SiO上に膜厚 40nmのイオン伝導層 4
2
である Cu Sを積層する。 Cu Sはレーザーアブレーシヨン法によって形成する。次に
2 2
、従来技術を用いて第 1、第 2および第 3の電極となる膜厚 40nmの Cuを形成する。 イオン伝導層 4内部よりもイオン伝導層 4の表面に成長する方が析出物に力かる応力 が小さくなるので、イオン伝導層 4と保護膜 11の界面に優先的に金属配線が形成さ れる。すなわち、イオン伝導層 4の表面に導入路を形成した場合と同じ効果が本実施 形態により得られる。
[0107] (その他)
なお、以上の実施形態において、イオン伝導層 4に金属イオンを供給しない電極( 第 1の電極と、一部の第 2の電極)を構成する材料としては、 Ti、 Ta、 Ptだけではなく 、高融点金属の W、シリサイド(チタンシリサイド、コバルトシリサイド)などでもよい。ま た、イオン伝導層 4に金属イオンを供給する電極(第 3の電極と、一部の第 2の電極) を構成する金属としては、 Cuだけではなぐ Ag、 Pbなどでもよい。さらに、イオン伝導 部 4を構成するイオン伝導体としては、 Cu Sだけではなぐカルコゲン元素(〇、 S、 S e、 Te)と金属の化合物、シリコンを含む絶縁物(酸化シリコン、窒化シリコン、酸窒化 シリコン)、ぺロブスカイト型酸化物(ABO、 A: Mg、 Ca、 Sr、 Ba、 B :Ti)などでもよ
3
レ、。
[0108] 本発明の金属原子移動スイッチング素子は次のような応用が可能である。すなわち 、本発明の金属原子移動スイッチング素子をプログラム用素子として用いることにより 、書き換え可能な論理集積回路 (プログラマブルロジック)を構成することができる。
[0109] 上記 3端子型金属原子移動スイッチング素子をプログラマブルロジックに適用した 場合を説明する。図 13はプログラマブルロジックの一構成例を示す模式図である。
[0110] 図 13に示すように、プログラマブノレロジック 90は、 2次元配列状に配置された多数 のロジックセノレ 92と、ロジックセル間を接続するための配線、配線間の接続'非接続 を切り替えるための多数のスィッチ 94から構成される。 2端子間の接続状態 (接続'非 接続)を変えることにより、ロジックセル間の配線の構成、ロジックセルの機能等を設 定し、仕様に合わせた論理集積回路を得ることが可能となる。
[0111] スィッチは、ドレイン電極 D、ソース電極 S、およびゲート電極 Gからなるトランジスタ 素子である。上記実施形態の 3端子スィッチをこのスィッチに適用することで、第 1電 極がドレイン電極 Dに相当し、第 2電極がソース電極 Sに相当し、第 3電極がゲート電 極 Gに相当する。そして、図 13に示すようにソース電極 Sがロジックセル 92に接続さ れ、ドレイン電極 Dがプログラマブルロジック 90内の信号線 96に接続されている。
[0112] オン状態に設定された 3端子スィッチは、ソース電極 Sとドレイン電極 Dが電気的に 接続された状態を維持する。そして、ロジック信号が信号線 96を介してドレイン電極 Dに到達すると、ソース電極 Sを経由してロジックセル 92に入る。その反対に、オフ状 態に設定された 3端子スィッチは、ソース電極 Sとドレイン電極 Dが電気的に接続が切 れた状態を維持する。この場合、ロジック信号は、信号線 96を介してドレイン電極 D に到達しても、ソース電極 Sに接続されたロジックセル 92に入ることはできなレ、。この ようにして、プログラマブルロジック 90では、ユーザによりロジックセル同士の接続状 態を設定できる。
[0113] 本発明の 3端子スィッチをプログラマブルロジックのスィッチに用いることで、スイツ チのオフ状態のリーク電流が低減し、プログラマブルロジック全体の消費電流が従来 よりも小さくなる。
[0114] なお、第 1の実施形態の 2端子スィッチをプログラマブルロジックに適用した場合を 図 14に示す。図 13に示したプログラマブルロジックと同様な構成については同一の 符号を付している。図 14に示すスィッチ 97に第 1の実施形態の 2端子スィッチを適用 する。第 1の実施形態で説明したように、スィッチ 97をオン状態またはオフ状態にす ることで、ロジックセル 92との接続'非接続を設定できる。第 1の実施形態の 2端子ス イッチをプログラマブルロジックのスィッチに適用することで、図 13に示したプログラマ ブルロジックと同様の効果が得られる。
[0115] ここでは、本発明のスイッチング素子をロジックセルへの接続'非接続を切り替える ために用いたが、配線の切り替えやロジックセルの機能の切り替えのスィッチに適用 することも可能である。
[0116] また、本発明の金属原子移動スイッチング素子と、本発明の金属原子移動スィッチ ング素子の電気的特性を読み出すトランジスタを備えることにより、メモリ素子を構成 すること力 Sできる。
[0117] 上記 3端子型金属原子移動スイッチング素子をメモリ素子に適用した場合を説明す る。図 15はメモリ素子の一構成例を示す模式図である。
[0118] 図 15に示すように、メモリ素子は、情報を保持するためのスイッチング素子 71と、ス イッチング素子 71の情報を読み出すためのトランジスタ素子 72とを有する。このスィ ツチング素子 71に上記実施例の 3端子スィッチを適用する。スイッチング素子 71はド レイン電極、ソース電極およびゲート電極からなるトランジスタの構成と同様であり、そ れぞれの電極が 3端子スィッチの第 1電極、第 2電極および第 3電極のそれぞれに対 応している。
[0119] トランジスタ素子 72は、ソース電極がビット線 73に接続され、ゲート電極がワード線 74に接続されている。スイッチング素子 71は、ソース電極がビット線 76に接続され、 ゲート電極がワード線 75に接続されている。そして、スイッチング素子 71のドレイン電 極はトランジスタ素子 72のドレイン電極に接続されている。
[0120] 次に、メモリ素子への情報の書き込み方法について説明する。なお、保持する情報 "1"ど' 0"のうち、スイッチング素子のオン状態を":!"とし、オフ状態を" 0"とする。また 、スイッチング素子のスイッチング電圧を Vtとし、トランジスタ素子 72の動作電圧を V Rとする。
[0121] メモリ素子に情報 "1 "を書き込む場合には、スイッチング素子 71のゲート電極に接 続されたワード線 75に電圧 Vtを印加し、ソース電極に接続されたビット線 76の電圧 を OVにする。そして、ビット線 73に電圧 (VtZ2)を印加する。スイッチング素子 71は 、オン状態になり、情報" 1 "が書き込まれる。
[0122] メモリセ素子に情報" 0"を書き込む場合には、スイッチング素子 71のゲート電極に 接続されたワード線 75の電圧を 0Vにして、ソース電極に接続されたビット線 76に電 圧 Vtを印加する。そして、ビット線 73に電圧 (Vt/2)を印加する。スイッチング素子 7 1は、オフ状態になり、情報" 0"が書き込まれる。
[0123] 次に、メモリ素子に保持された情報の読み出し方法について説明する。
[0124] ワード線 74に電圧 VRを印加してトランジスタ素子 72をオンさせ、ビット線 73とビット 線 76との間の抵抗値を求める。この抵抗値はトランジスタ素子 72のオン抵抗とスイツ チング素子 71との合成抵抗値となる。この合成抵抗値が測定できないほど大きい場 合にはスイッチング素子 71がオフ状態と判定でき、メモリ素子に保持された情報が" 0 "であることがわかる。一方、合成抵抗値が所定の値より小さい場合にはスイッチング 素子 71がオン状態と判定でき、メモリ素子に保持された情報力 S"l "であることがわか る。
[0125] 本発明の 3端子スィッチをメモリ素子の情報保持のためのスイッチング素子に用い ることで、スィッチのオフ状態のリーク電流が低減する。そのため、メモリ素子がアレイ 状に複数配置されたメモリデバイスに本実施形態のメモリ素子を用いれば、メモリデ バイス全体の消費電流が従来よりも小さくなる。
[0126] なお、第 1の実施形態の 2端子スィッチをメモリ素子に適用した場合を図 16に示す 。図 15に示したメモリ素子と同様な構成については同一の符号を付している。図 16 に示すスイッチング素子 77に第 1の実施形態の 2端子スィッチを適用する。第 1の実 施形態で説明したように、スイッチング素子 77をオン状態またはオフ状態に設定する ことで、スイッチング素子 77に情報を保持させることが可能となる。第 1の実施形態の 2端子スィッチをメモリ素子に用いることで、図 15に示したメモリ素子と同様の効果が 得られる。
また、本発明は上記実施例に限定されることなぐ発明の範囲内で種々の変形が可 能であり、それらも本発明の範囲内に含まれることはいうまでもない。

Claims

請求の範囲
[1] 金属イオンがその内部を自由に移動できるイオン伝導体を含むイオン伝導部と、 前記イオン伝導部と接触している第 1の電極と、
前記イオン伝導部と接触し、前記第 1の電極とともに前記イオン伝導部を挟み込む ように形成され、前記イオン伝導体に前記金属イオンを供給し、または、前記イオン 伝導体から前記金属イオンを受け取って前記金属イオンに対応する金属を析出させ る第 2の電極と、
前記イオン伝導部に設けられ、前記第 1の電極と前記第 2の電極を電気的に接続 するための、前記金属からなる所定の太さの導入路とを有し、
前記第 2の電極に対する前記第 1の電極への電圧印加により前記導入路と前記第 2の電極の間で進行する電気化学反応によって電気的特性が切り替わるスィッチン グ素子。
[2] 金属イオンがその内部を自由に移動できるイオン伝導体を含むイオン伝導部と、 前記イオン伝導部と接触している第 1の電極と、
前記イオン伝導部と接触し、前記第 1の電極とともに前記イオン伝導部を挟み込む ように形成された第 2の電極と、
前記イオン伝導部と接触して形成され、前記イオン伝導体に前記金属イオンを供 給し、または、前記イオン伝導体から前記金属イオンを受け取って前記金属イオンに 対応する金属を析出させる第 3の電極と、
前記イオン伝導部に設けられ、前記第 1の電極と前記第 2の電極を電気的に接続 するための、前記金属からなる所定の太さの導入路とを有し、
前記第 3の電極に対する前記第 1の電極への電圧印加により前記導入路と前記第 3の電極の間で進行する電気化学反応によって電気的特性が切り替わるスィッチン グ素子。
[3] 金属イオンがその内部を自由に移動できるイオン伝導体を含むイオン伝導部と、 前記イオン伝導部と接触している第 1の電極と、
前記イオン伝導部と接触し、前記第 1の電極とともに前記イオン伝導部を挟み込む ように形成され、前記イオン伝導体に前記金属イオンを供給し、または、前記イオン 伝導体から前記金属イオンを受け取って前記金属イオンに対応する金属を析出させ る第 2の電極とを有し、
前記イオン伝導部は、前記第 1の電極および前記第 2の電極に接触する、イオン移 動度の異なる 2つの領域を含む、スイッチング素子。
[4] 金属イオンがその内部を自由に移動できるイオン伝導体を含むイオン伝導部と、 前記イオン伝導部と接触している第 1の電極と、
前記イオン伝導部と接触し、前記第 1の電極とともに前記イオン伝導部を挟み込む ように形成され、前記イオン伝導体に前記金属イオンを供給し、または、前記イオン 伝導体から前記金属イオンを受け取って前記金属イオンに対応する金属を析出させ る第 2の電極と、
前記イオン伝導部と接触して形成され、前記イオン伝導体に前記金属イオンを供 給し、または、前記イオン伝導体から前記金属イオンを受け取って前記金属イオンに 対応する金属を析出させる第 3の電極とを有し、
前記イオン伝導部は、前記第 1の電極および前記第 2の電極に接触する、イオン移 動度の異なる 2つの領域を含む、スイッチング素子。
[5] 金属イオンがその内部を自由に移動できるイオン伝導体を含むイオン伝導部と、 前記イオン伝導部と接触している第 1の電極と、
前記イオン伝導部と接触し、前記第 1の電極とともに前記イオン伝導部を挟み込む ように形成され、前記イオン伝導体に前記金属イオンを供給し、または、前記イオン 伝導体から前記金属イオンを受け取って前記金属イオンに対応する金属を析出させ る第 2の電極と、
前記イオン伝導部と接触して形成され、前記イオン伝導体に前記金属イオンを供 給し、または、前記イオン伝導体から前記金属イオンを受け取って前記金属イオンに 対応する金属を析出させる第 3の電極と、
前記第 2の電極に対して前記第 1の電極に負の電圧を印加することにより、該第 1 の電極と該第 2の電極を電気的に接続するための、前記イオン伝導部に形成された 、前記金属からなる導入路とを有し、
前記第 2の電極または前記第 3の電極に対する前記第 1の電極への電圧印加によ り前記導入路と前記第 2の電極または前記第 3の電極の間で進行する電気化学反応 によって電気的特性が切り替わるスイッチング素子。
[6] 金属イオンがその内部を自由に移動できるイオン伝導体を含むイオン伝導部と、 前記イオン伝導部の上に接触して形成された第 1の電極と、
前記第 1の電極と所定の距離だけ離れ、前記イオン伝導部の上に接触して形成さ れ、前記イオン伝導体に前記金属イオンを供給し、または、前記イオン伝導体から前 記金属イオンを受け取って前記金属イオンに対応する金属を析出させる第 2の電極 と、
前記イオン伝導部の下に接触して形成され、前記イオン伝導体に前記金属イオン を供給し、または、前記イオン伝導体から前記金属イオンを受け取って前記金属ィォ ンに対応する金属を析出させる第 3の電極と、
を有するスイッチング素子。
[7] 金属イオンがその内部を自由に移動できるイオン伝導体を含むイオン伝導部と、 前記イオン伝導部の上に接触して形成された第 1の電極と、
前記第 1の電極と第 1の所定の距離だけ離れて、前記イオン伝導部の上に接触し て形成された第 2の電極と、
前記第 1の電極と前記第 1の所定の距離よりも大きい第 2の所定の距離だけ離れ、 前記イオン伝導部の上に接触して形成され、前記イオン伝導体に前記金属イオンを 供給し、または、前記イオン伝導体から前記金属イオンを受け取って前記金属イオン に対応する金属を析出させる第 3の電極と、
を有するスイッチング素子。
[8] 金属イオンがその内部を自由に移動できるイオン伝導体を含むイオン伝導部と、 前記イオン伝導部の上に接触して形成された第 1の電極と、
前記第 1の電極と第 1の所定の距離だけ離れて、前記イオン伝導部の上に接触し て形成された第 2の電極と、
前記第 1の電極および前記第 2の電極のそれぞれと前記第 1の所定の距離よりも大 きい第 2の所定の距離だけ離れ、前記イオン伝導部の上に接触して形成され、前記 イオン伝導体に前記金属イオンを供給し、または、前記イオン伝導体から前記金属ィ オンを受け取って前記金属イオンに対応する金属を析出させる第 3の電極と、 を有するスイッチング素子。
[9] 前記第 1の電極と前記第 2の電極間の前記イオン伝導体の表面に前記金属が析出 する、請求項 6記載のスイッチング素子。
[10] 前記第 1の電極と前記第 2の電極間の前記イオン伝導体の表面に前記金属が析出 する、請求項 7記載のスイッチング素子。
[11] 前記第 1の電極と前記第 2の電極間の前記イオン伝導体の表面に前記金属が析出 する、請求項 8記載のスイッチング素子。
[12] 前記金属は Cu、 Agおよび Pbのうちいずれかである請求項 1から 11のいずれか 1 項に記載のスイッチング素子。
[13] 前記イオン伝導体は、カルコゲン元素と金属の化合物、シリコンを含む絶縁物、お よびぺロブスカイト型酸化物のうちいずれかの物質である請求項 1から 11のいずれか
1項に記載のスイッチング素子。
[14] 前記イオン移動度の異なる 2つの領域のうち一方は Cu Sからなり、該 2つの領域の
2
他方は Ta Oからなる、請求項 3または 4に記載のスイッチング素子。
2
[15] 金属イオンがその内部を自由に移動できるイオン伝導体を含むイオン伝導部と、前 記イオン伝導部と接触している第 1の電極と、前記イオン伝導部と接触し、前記第 1の 電極とともに前記イオン伝導部を挟み込むように形成され、前記イオン伝導体に前記 金属イオンを供給し、または、前記イオン伝導体から前記金属イオンを受け取って前 記金属イオンに対応する金属を析出させる第 2の電極と、前記イオン伝導部と接触し て形成され、前記イオン伝導体に前記金属イオンを供給し、または、前記イオン伝導 体から前記金属イオンを受け取って前記金属イオンに対応する金属を析出させる第 3の電極とを有するスイッチング素子の駆動方法において、
前記第 2の電極に対して前記第 1の電極に負の電圧を印加し、前記金属からなる 析出物を成長させた後、前記第 3の電極に対して前記第 1の電極に正または負の電 圧を印加することによって電気的特性を切り替えることを特徴とするスイッチング素子 の駆動方法。
[16] 請求項 4または 6に記載のスイッチング素子の駆動方法であって、 前記第 2の電極に対して前記第 1の電極に負の電圧を印加し、前記金属からなる 析出物を成長させた後、前記第 3の電極に対して前記第 1の電極に正または負の電 圧を印加することによって電気的特性を切り替える、スイッチング素子の駆動方法。
[17] スイッチング素子の製造方法において、
2つの電極と接触し、該 2つの電極に挟まれたイオン伝導部の形成の際に、 前記イオン伝導部用の開口が設けられたウェハ全面にイオン伝導体を堆積させ る第 1の工程と、
前記第 1の工程の後、異方性エッチングにより、前記開口の側壁以外に堆積され た前記イオン伝導体を除去する第 2の工程と、
前記第 2の工程の後、前記イオン伝導体を移動する金属イオンに対応する金属を ウェハ全面に堆積させ、前記側壁に前記イオン伝導体が形成された前記開口に該 金属を埋め込む第 3の工程と、
を有することを特徴とするスィッチング素子の製造方法。
[18] スイッチング素子の製造方法において、
2つの電極と接触し、該 2つの電極に挟まれたイオン伝導部の形成の際に、 前記イオン伝導部用の開口が設けられたウェハ全面に第 1のイオン伝導体を堆 積させる第 1の工程と、
前記第 1の工程の後、異方性エッチングにより、前記開口の側壁以外に堆積され た前記第 1のイオン伝導体を除去する第 2の工程と、
前記第 2の工程の後、前記第 1のイオン伝導体よりもイオン移動度が大きい第 2の イオン伝導体をウェハ全面に堆積させ、前記側壁に前記第 1のイオン伝導体が形成 された前記開口に該第 2のイオン伝導体を埋め込む第 3の工程と、
を有することを特徴とするスィッチング素子の製造方法。
[19] 請求項 1から 11のいずれ力、 1項に記載のスイッチング素子をプログラム用素子とし て用いる書き換え可能な論理集積回路。
[20] 請求項 1から 11のいずれ力、 1項に記載のスイッチング素子と、
前記スイッチング素子の前記電気的特性を読み出すトランジスタと、
を有するメモリ素子。
PCT/JP2005/023628 2004-12-27 2005-12-22 スイッチング素子、スイッチング素子の駆動方法および製造方法、書き換え可能な論理集積回路、メモリ素子 WO2006070693A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006550728A JP5135798B2 (ja) 2004-12-27 2005-12-22 スイッチング素子、スイッチング素子の駆動方法、書き換え可能な論理集積回路、およびメモリ素子
US11/722,982 US7960712B2 (en) 2004-12-27 2005-12-22 Switching element, switching element drive method and fabrication method, reconfigurable logic integrated circuit, and memory element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004377607 2004-12-27
JP2004-377607 2004-12-27

Publications (1)

Publication Number Publication Date
WO2006070693A1 true WO2006070693A1 (ja) 2006-07-06

Family

ID=36614810

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/023628 WO2006070693A1 (ja) 2004-12-27 2005-12-22 スイッチング素子、スイッチング素子の駆動方法および製造方法、書き換え可能な論理集積回路、メモリ素子

Country Status (3)

Country Link
US (1) US7960712B2 (ja)
JP (1) JP5135798B2 (ja)
WO (1) WO2006070693A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008023437A1 (fr) * 2006-08-25 2008-02-28 Hitachi, Ltd. Dispositif semi-conducteur
JP2008053433A (ja) * 2006-08-24 2008-03-06 Nec Corp スイッチング素子の駆動方法
JP2008159760A (ja) * 2006-12-22 2008-07-10 Sharp Corp 抵抗変化型不揮発性メモリ素子とその作製方法及び不揮発性半導体記憶装置
WO2009051105A1 (ja) * 2007-10-19 2009-04-23 Nec Corporation スイッチング素子、およびスイッチング素子の製造方法
JP2010503195A (ja) * 2006-08-31 2010-01-28 アイメック 抵抗スイッチング装置の抵抗スイッチング材料の制御された形成方法および該方法によって得られる装置
JP2010141249A (ja) * 2008-12-15 2010-06-24 Nec Corp 抵抗変化素子及びその動作方法
WO2010079829A1 (ja) * 2009-01-09 2010-07-15 日本電気株式会社 スイッチング素子及びその製造方法
WO2012039284A1 (ja) * 2010-09-22 2012-03-29 独立行政法人物質・材料研究機構 電気化学トランジスタ

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7768812B2 (en) 2008-01-15 2010-08-03 Micron Technology, Inc. Memory cells, memory cell programming methods, memory cell reading methods, memory cell operating methods, and memory devices
US8211743B2 (en) 2008-05-02 2012-07-03 Micron Technology, Inc. Methods of forming non-volatile memory cells having multi-resistive state material between conductive electrodes
US8134137B2 (en) 2008-06-18 2012-03-13 Micron Technology, Inc. Memory device constructions, memory cell forming methods, and semiconductor construction forming methods
US9343665B2 (en) 2008-07-02 2016-05-17 Micron Technology, Inc. Methods of forming a non-volatile resistive oxide memory cell and methods of forming a non-volatile resistive oxide memory array
US8907455B2 (en) 2009-01-28 2014-12-09 Hewlett-Packard Development Company, L.P. Voltage-controlled switches
US9059028B2 (en) * 2009-06-25 2015-06-16 Nec Corporation Semiconductor device and method for manufacturing same
WO2011071009A1 (ja) * 2009-12-08 2011-06-16 日本電気株式会社 電気化学反応を利用した抵抗変化素子及びその製造方法
JPWO2011090152A1 (ja) * 2010-01-21 2013-05-23 日本電気株式会社 半導体装置及びその製造方法
US8289763B2 (en) 2010-06-07 2012-10-16 Micron Technology, Inc. Memory arrays
US8759809B2 (en) 2010-10-21 2014-06-24 Micron Technology, Inc. Integrated circuitry comprising nonvolatile memory cells having platelike electrode and ion conductive material layer
US8796661B2 (en) 2010-11-01 2014-08-05 Micron Technology, Inc. Nonvolatile memory cells and methods of forming nonvolatile memory cell
US8526213B2 (en) 2010-11-01 2013-09-03 Micron Technology, Inc. Memory cells, methods of programming memory cells, and methods of forming memory cells
US9454997B2 (en) 2010-12-02 2016-09-27 Micron Technology, Inc. Array of nonvolatile memory cells having at least five memory cells per unit cell, having a plurality of the unit cells which individually comprise three elevational regions of programmable material, and/or having a continuous volume having a combination of a plurality of vertically oriented memory cells and a plurality of horizontally oriented memory cells; array of vertically stacked tiers of nonvolatile memory cells
US8552333B2 (en) 2010-12-30 2013-10-08 General Electric Company Systems, methods, and apparatus for preventing electromigration between plasma gun electrodes
US8791447B2 (en) 2011-01-20 2014-07-29 Micron Technology, Inc. Arrays of nonvolatile memory cells and methods of forming arrays of nonvolatile memory cells
US8488365B2 (en) 2011-02-24 2013-07-16 Micron Technology, Inc. Memory cells
US8524599B2 (en) 2011-03-17 2013-09-03 Micron Technology, Inc. Methods of forming at least one conductive element and methods of forming a semiconductor structure
US8537592B2 (en) 2011-04-15 2013-09-17 Micron Technology, Inc. Arrays of nonvolatile memory cells and methods of forming arrays of nonvolatile memory cells
JP6860871B2 (ja) * 2015-12-07 2021-04-21 ナノブリッジ・セミコンダクター株式会社 抵抗変化素子、半導体装置、及び半導体装置の製造方法
EP3803872A4 (en) 2018-05-29 2022-03-09 Micron Technology, Inc. APPARATUS AND METHODS FOR ADJUSTING A DUTY CYCLE ADJUSTER TO IMPROVE CLOCK DUTY CYCLE
US11056648B1 (en) * 2019-12-12 2021-07-06 SK Hynix Inc. Semiconductor device including variable resistance element
CN114421943B (zh) * 2022-01-25 2023-03-24 中国电子科技集团公司第五十八研究所 一种高可靠抗辐射原子开关型配置单元结构

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000512058A (ja) * 1996-05-30 2000-09-12 アクソン テクノロジーズ コーポレイション プログラマブルメタライゼーションセル構造およびその作製方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1044452B1 (en) * 1997-12-04 2003-03-19 Axon Technologies Corporation Programmable sub-surface aggregating metallization structure and method of making same
US6635914B2 (en) * 2000-09-08 2003-10-21 Axon Technologies Corp. Microelectronic programmable device and methods of forming and programming the same
EP1159743B1 (en) 1999-02-11 2007-05-02 Arizona Board of Regents Programmable microelectronic devices and methods of forming and programming same
JP2002335048A (ja) * 2001-03-06 2002-11-22 Sony Corp 窒化物系半導体レーザ素子及びその製造方法
JP3593582B2 (ja) 2001-09-19 2004-11-24 彰 土井 銀イオン含有イオン伝導体の電界誘導黒化現象を利用した記憶素子
CN100407440C (zh) * 2003-07-18 2008-07-30 日本电气株式会社 开关元件、驱动开关元件的方法、可重写的逻辑集成电路以及存储元件

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000512058A (ja) * 1996-05-30 2000-09-12 アクソン テクノロジーズ コーポレイション プログラマブルメタライゼーションセル構造およびその作製方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008053433A (ja) * 2006-08-24 2008-03-06 Nec Corp スイッチング素子の駆動方法
JPWO2008023437A1 (ja) * 2006-08-25 2010-01-07 株式会社日立製作所 半導体装置
WO2008023437A1 (fr) * 2006-08-25 2008-02-28 Hitachi, Ltd. Dispositif semi-conducteur
JP2010503195A (ja) * 2006-08-31 2010-01-28 アイメック 抵抗スイッチング装置の抵抗スイッチング材料の制御された形成方法および該方法によって得られる装置
JP2008159760A (ja) * 2006-12-22 2008-07-10 Sharp Corp 抵抗変化型不揮発性メモリ素子とその作製方法及び不揮発性半導体記憶装置
US8237147B2 (en) 2007-10-19 2012-08-07 Nec Corporation Switching element and manufacturing method thereof
WO2009051105A1 (ja) * 2007-10-19 2009-04-23 Nec Corporation スイッチング素子、およびスイッチング素子の製造方法
JP5446869B2 (ja) * 2007-10-19 2014-03-19 日本電気株式会社 スイッチング素子、およびスイッチング素子の製造方法
JP2010141249A (ja) * 2008-12-15 2010-06-24 Nec Corp 抵抗変化素子及びその動作方法
US8586958B2 (en) 2009-01-09 2013-11-19 Nec Corporation Switching element and manufacturing method thereof
WO2010079829A1 (ja) * 2009-01-09 2010-07-15 日本電気株式会社 スイッチング素子及びその製造方法
JP5454478B2 (ja) * 2009-01-09 2014-03-26 日本電気株式会社 スイッチング素子及びその製造方法
JP2012069612A (ja) * 2010-09-22 2012-04-05 National Institute For Materials Science 電気化学トランジスタ
WO2012039284A1 (ja) * 2010-09-22 2012-03-29 独立行政法人物質・材料研究機構 電気化学トランジスタ
KR20140012025A (ko) * 2010-09-22 2014-01-29 도쿠리츠교세이호징 붓시쯔 자이료 겐큐키코 전기 화학 트랜지스터

Also Published As

Publication number Publication date
JP5135798B2 (ja) 2013-02-06
US7960712B2 (en) 2011-06-14
JPWO2006070693A1 (ja) 2008-06-12
US20080036508A1 (en) 2008-02-14

Similar Documents

Publication Publication Date Title
WO2006070693A1 (ja) スイッチング素子、スイッチング素子の駆動方法および製造方法、書き換え可能な論理集積回路、メモリ素子
JP5066918B2 (ja) スイッチング素子、書き換え可能な論理集積回路、およびメモリ素子
TWI688046B (zh) 具有屏蔽層的三維記憶體裝置及其形成方法
JP5218053B2 (ja) スイッチング素子、半導体装置、書き換え可能な論理集積回路、およびメモリ素子
WO2014112365A1 (ja) スイッチング素子、および半導体スイッチング装置の製造方法
JP2006319028A (ja) スイッチング素子、書き換え可能な論理集積回路、およびメモリ素子
US9548115B2 (en) Variable resistance element, semiconductor device having variable resistance element, semiconductor device manufacturing method, and programming method using variable resistance element
US10312288B2 (en) Switching element, semiconductor device, and semiconductor device manufacturing method
JP5135797B2 (ja) スイッチング素子、スイッチング素子の製造方法、書き換え可能な論理集積回路、およびメモリ素子
US8421049B2 (en) Metal atom migration switching device, drive and manufacturing methods for the same, integrated circuit device and memory device using same
JP5477687B2 (ja) スイッチング素子、スイッチング素子の動作方法、スイッチング素子の製造方法、書き換え可能な論理集積回路およびメモリ素子
JP5849577B2 (ja) 抵抗変化素子及びそのプログラミング方法
US7772035B2 (en) Manufacturing method of semiconductor device
JP2012216724A (ja) 抵抗記憶装置およびその書き込み方法
JP2009267204A (ja) 回路装置および制御方法
JP5135796B2 (ja) スイッチング素子、および書き換え可能な論理集積回路
US8237147B2 (en) Switching element and manufacturing method thereof
JP7165976B2 (ja) 抵抗変化素子、および抵抗変化素子の製造方法
WO2018123678A1 (ja) 抵抗変化素子と半導体装置および製造方法
WO2013018842A1 (ja) 半導体装置及びその製造方法
WO2014050198A1 (ja) スイッチング素子およびスイッチング素子の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006550728

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11722982

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05819508

Country of ref document: EP

Kind code of ref document: A1

WWP Wipo information: published in national office

Ref document number: 11722982

Country of ref document: US