WO2009150385A2 - Compositions thermoplastiques ou elastomeriques a base d'amidon et procede de preparation de telles compositions - Google Patents

Compositions thermoplastiques ou elastomeriques a base d'amidon et procede de preparation de telles compositions Download PDF

Info

Publication number
WO2009150385A2
WO2009150385A2 PCT/FR2009/051112 FR2009051112W WO2009150385A2 WO 2009150385 A2 WO2009150385 A2 WO 2009150385A2 FR 2009051112 W FR2009051112 W FR 2009051112W WO 2009150385 A2 WO2009150385 A2 WO 2009150385A2
Authority
WO
WIPO (PCT)
Prior art keywords
starch
composition
composition according
thermoplastic
weight
Prior art date
Application number
PCT/FR2009/051112
Other languages
English (en)
Other versions
WO2009150385A3 (fr
Inventor
Léon Mentink
Original Assignee
Roquette Freres
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Roquette Freres filed Critical Roquette Freres
Priority to CA2726860A priority Critical patent/CA2726860A1/fr
Priority to AU2009259118A priority patent/AU2009259118A1/en
Priority to CN2009801230915A priority patent/CN102066474A/zh
Priority to JP2011513036A priority patent/JP2011522950A/ja
Priority to BRPI0914417A priority patent/BRPI0914417A2/pt
Priority to EP09761936A priority patent/EP2294125A2/fr
Priority to US12/997,842 priority patent/US20110086949A1/en
Publication of WO2009150385A2 publication Critical patent/WO2009150385A2/fr
Publication of WO2009150385A3 publication Critical patent/WO2009150385A3/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L3/00Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/005Reinforced macromolecular compounds with nanosized materials, e.g. nanoparticles, nanofibres, nanotubes, nanowires, nanorods or nanolayered materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L3/00Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08L3/02Starch; Degradation products thereof, e.g. dextrin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2303/00Characterised by the use of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08J2303/02Starch; Degradation products thereof, e.g. dextrin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2403/00Characterised by the use of starch, amylose or amylopectin or of their derivatives or degradation products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L3/00Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08L3/04Starch derivatives, e.g. crosslinked derivatives
    • C08L3/06Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L35/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L35/06Copolymers with vinyl aromatic monomers

Definitions

  • the present invention relates to novel thermoplastic and / or elastomeric compositions and a process for the preparation thereof.
  • thermoplastic and / or elastomeric composition in the present invention means a composition which, reversibly, softens under the action of heat and hardens on cooling (thermoplastic) and / or resumes more or less quickly its original shape and its primitive dimensions after application of strain deformation (elastomeric). It has at least one so-called glass transition temperature (Tg) below which the amorphous fraction of the composition is in the brittle glassy state, and above which the composition can undergo reversible plastic deformations.
  • Tg glass transition temperature
  • the glass transition temperature or at least one of the glass transition temperatures of the starch-based thermoplastic composition of the present invention is preferably between -120 ° C. and 150 ° C.
  • This composition may be in particular thermoplastic, that is to say having an aptitude to be shaped by the processes traditionally used in plastics, such as extrusion, injection, molding, rotomolding, blowing and calendering. Its viscosity, measured at a temperature of 100 0 C to 200 0 C, is generally between 10 and 10 6 Pa.s.
  • This composition may also be elastomeric, that is to say have a high capacity of elastic extensibility and recovery as the rubbers, natural or synthetic. The elastomeric behavior of the composition can be obtained or improved by crosslinking or vulcanization more or less advanced, after shaping in the plastic state.
  • said composition is "heat fusible", that is to say that it can be shaped without the application of large shear forces, that is to say by simple flow or by simple pressing of the melt.
  • Its viscosity measured at a temperature of 100 0 C to 200 0 C, is generally between 10 and 10 3 Pa. S.
  • Starch is a raw material with the advantages of being renewable, biodegradable and available in large quantities at an economically attractive price compared to oil and gas, used as raw materials for today's plastics.
  • the first starch-based compositions were developed about thirty years ago.
  • the starches were then used in the form of mixtures with synthetic polymers such as polyethylene, as filler, in the native granular state.
  • synthetic polymers such as polyethylene, as filler
  • the native starch Prior to dispersion in the synthetic polymer constituting the matrix, or continuous phase, the native starch was then preferably dried to a moisture content of less than 1% by weight, to reduce its hydrophilicity.
  • it could also be coated with fatty substances (fatty acids, silicones, siliconates) or be modified on the surface of the grains by siloxanes or isocyanates.
  • the materials thus obtained generally contained approximately 10%, at most 20% by weight of granular starch, because beyond this value, the mechanical properties of the composite materials obtained became too imperfect and lowered compared with those of the synthetic polymers forming the matrix.
  • polyethylene-based compositions are only bio-based. fragmentable and non-biodegradable as expected, so that the expected growth of these compositions did not take place.
  • biodegradable polyesters such as polyhydroxybutyrate-co-hydroxyvalerate (PHBV) or poly ( lactic acid) (PLA).
  • the starch was used in a substantially amorphous and thermoplastic state.
  • This state is obtained by plastification of the starch by incorporation of a suitable plasticizer at a level generally between 15 and 25% relative to the granular starch, by supply of mechanical and thermal energy.
  • US Pat. Nos. 5,095,054 to Warner Lambert and EP 0,497,706 B1 of the Applicant describe, in particular, this destructured state, with reduced or absent crystallinity due to the addition of plasticizer, and means for obtaining such thermoplastic starches.
  • thermoplastic starches although they may be to some extent modulated by the choice of starch, plasticizer and the rate of use of the latter, are generally rather poor because the materials thus obtained are always very highly viscous, even at high temperatures (12O 0 C to 17O 0 C) and very fragile, too brittle and very hard at low temperatures, that is to say below the glass transition temperature or the temperature highest transition.
  • thermoplastic starches are very low, still less than about 10%, and this even with a very high plasticizer content of the order of 30%.
  • the elongation at break of low density polyethylenes is generally between 100 and 1000%.
  • the maximum breaking stress of thermoplastic starches decreases dramatically as the level of plasticizer increases. It has an acceptable value, of the order of 15 to 60 MPa, for a plasticizer content of 10 to 25%, but decreases unacceptably beyond 30%.
  • thermoplastic starches have been the subject of numerous studies aimed at developing biodegradable and / or water-soluble formulations having better mechanical properties by physical mixing of these thermoplastic starches, or with polymers of petroleum origin such as polyvinyl acetate (PVA), polyvinyl alcohol (PVOH), ethylene / vinyl alcohol copolymers (EVOH), biodegradable polyesters such as polycaprolactones (PCL), poly (butylene adipate terephthalate) (PBAT) ) such as the products marketed under the trade names 'Ecoflex' and 'Ecovio', poly (butylene succinate) (PBS), and poly (butylene succinate adipate) (PBSA), such as the products marketed under the trademark 'Bionolle', either with polyesters of renewable origin such as poly (lactic acid) (PLA) such as the products sold under the trademark "Ingeo” or microbial polyhydroxyalkanoates (PH A, PHB and PHBV)
  • PVA poly
  • thermoplastic starches are very hydrophilic and are therefore very incompatible with synthetic polymers. It follows that the mechanical properties of such mixtures, even with the addition of compatibilizing agents such as copolymers with hydrophobic units and alternately hydrophilic units such as ethylene / acrylic acid (EAA) copolymers, or else cyclodextrins or organosilanes, remain quite limited.
  • EAA ethylene / acrylic acid
  • the commercial product MATER-BI grade Y has, according to the information given by its manufacturer, an elongation at break of 27% and a maximum breaking stress of 26 MPa.
  • these composite materials today find limited use, that is to say, limited mainly to the sectors of the overpack, trash bags, crate bags and certain rigid mass objects, biodegradable.
  • thermoplastic amorphous starches can be carried out in a medium that is poorly hydrated by extrusion processes. Obtaining a melted phase from the starch granules requires not only a large supply of mechanical energy and thermal energy but also the presence of a plasticizer at the risk, otherwise, to carbonize the starch.
  • plasticizer of starch is intended to mean any organic molecule of low molecular weight, that is to say preferably having a molecular mass of less than 5000, which, when incorporated into the starch by a treatment thermomechanical at a temperature between 20 and 200 0 C, results in a decrease in the glass transition temperature and / or a reduction in the crystallinity of a granular starch to a value of less than 15%, or even a state essentially amorphous.
  • Water is the most natural plasticizer of starch and is therefore commonly used, but other molecules are also very effective, including sugars such as glucose, maltose, fructose or sucrose; polyols such as ethylene glycol, propylene glycol, polyethylene glycols (PEG), glycerol, sorbitol, xylitol, maltitol or hydrogenated glucose syrups; urea; salts of organic acids such as sodium lactate as well as mixtures of these products.
  • sugars such as glucose, maltose, fructose or sucrose
  • polyols such as ethylene glycol, propylene glycol, polyethylene glycols (PEG), glycerol, sorbitol, xylitol, maltitol or hydrogenated glucose syrups
  • PEG polyethylene glycols
  • glycerol polyethylene glycols
  • sorbitol xylitol
  • maltitol hydrogenated glucose syrups
  • urea salt
  • the amount of energy to be applied to plasticize the starch can be advantageously reduced by increasing the amount of plasticizer.
  • the use of a plasticizer at a high level relative to the starch induces various technical problems among which may be mentioned the following: o a release of the plasticizer from the plasticized matrix at the end of manufacture or over time during storage, so that it is impossible to retain as much plasticizer as desired and therefore to obtain a sufficient material flexible and film-forming, o high instability of the mechanical properties of the plasticized starch which hardens or softens as a function of the humidity of the air, respectively when its water content decreases or increases, o the blanched sow or the opacification of the surface of the composition by crystallization of the plasticizer used at high dose, as for example in the case of xylitol, o a sticky or oily surface, as in the case of glycerol for example, o very poor resistance to water, all the more problematic as the plasticizer content is high.
  • the present invention provides an effective solution to the above problems by providing novel starch-based compositions having improved properties over those of the prior art.
  • the Applicant has indeed found after many works that, surprisingly and unexpectedly, the joint use (a) of particular nanoscale products, that is to say consisting of particles of which at least one dimension is included between 0.1 and 500 nanometers, in defined proportions, and (b) non-starch polymers, advantageously allowed to obtain the maximum, if not all, of the effects below: to adjust the hot and melt viscosity of the starch-based composition according to the invention and, more generally, its rheological properties, so that this composition has a real thermoplastic or even hot-melt behavior, unlike same composition of starch without nanoscale product, o limit the hardening on cooling related to a retrogradation of the starch within the composition and therefore retain a thermoplastic character (reversible thermal softening), o reduce the browning or the degradation of the starch-based composition during the heating cycles necessary for its implementation or its shaping, o allow
  • thermoplastic and / or elastomeric composition comprising: at least 50% by weight and at most 99.95% by weight of an amylaceous composition
  • a nanometric product consisting of particles of which at least one of the dimensions is between 0.1 and 500 nanometers, chosen from: produce mixtures based on at least one lamellar clay and at least one cationic oligomer, organic, inorganic or mixed nanotubes, organic, mineral or mixed nanocrystals and nanocrystals, organic nanobeads and nanospheres, mineral or mixed, individualized , in clusters or agglomerates, and any mixtures of at least two of these nanometric products, these percentages being expressed by dry weight and relative to the sum, by dry weight, of (a) and (b), and
  • non-starchy polymer c
  • cationic oligomer is intended to mean a cationic polymer of relatively small size, of organic nature and of natural or non-natural origin, consisting of a number of monomer units such as the molecular weight of said oligomer does not exceed 200,000 Daltons, each of said monomer units being or not cationic, the oligomer being globally positively charged.
  • the nanometric product (b) selected improves the behavior in the implementation and shaping of the composition according to the invention, but also its durability or its mechanical, thermal, conductive, adhesive and / or organoleptic properties. It can be of any chemical nature and possibly deposited or fixed on a support.
  • the nanometric product (b) consists of particles at least one of whose dimensions is between 0.5 and 200 nanometers, preferably between 0.5 and 100 nanometers, and even more preferably between 1 and 50. nanometers. This dimension is in particular between 5 and 50 nanometers.
  • thermoplastic and / or elastomeric composition according to the invention advantageously comprises
  • amylaceous composition comprising at least one starch and, optionally, at least one plasticizer thereof, and
  • thermoplastic and / or elastomeric composition of the invention comprises:
  • amylaceous composition comprising at least one starch and, optionally, at least one plasticizer thereof, and
  • composition according to the invention may comprise only 0.1 to 4% by weight of a nanometric product (b) advantageously consisting of particles of which at least one of the dimensions is between 5 and 50 nanometers .
  • composition of the invention constitutes a masterbatch intended to be subsequently diluted with another polymeric composition, preferably also containing at least one non-starchy polymer
  • said composition can comprise a relatively high proportion, that is to say 5 to 40% by weight, preferably between 6 and 35% by weight, of a nanometric product (b). This proportion may especially be between 8 and 30% by weight.
  • the nanoscale product advantageously consists of particles of which at least one of the dimensions is between 5 and 50 nanometers.
  • composition according to the invention comprises:
  • an amylaceous composition comprising at least one starch and, preferably, at least one plasticizer thereof, from 1 to 50% by weight; weight of a nanometric product (b), and
  • composition according to the invention may comprise a relatively small proportion, that is to say from 1 to 20%, in particular from 2 to 10%, by weight (dry / dry) of a nanometric product (b).
  • composition in accordance with the invention constitutes a masterbatch
  • said composition may comprise a relatively high proportion, that is to say from 5 to
  • the starch contained in the starchy composition (a) preferably has a degree of crystallinity of less than 15%, preferably less than 5% and more preferably less than 1%. This degree of crystallinity can in particular be measured by X-ray diffraction as described in US Pat. No. 5,362,777 (column 9, lines 8 to 24).
  • the amylaceous composition (a) is advantageously substantially free of starch grains having, under light microscopy under polarized light, a Maltese cross, an indicator sign of the presence of crystalline granular starch.
  • the contacting of nanoparticle-based products with starch-based compositions has already been described. However, in a number of cases, this contacting: a) is only temporary, the aim being to use the starch-based composition as a means of purifying said nanoparticles in a liquid medium (solution), such as for example, described in the article by A. STAR et al, Angew. Chem. Int. Ed. 2002, 41, No.
  • thermoplastic or elastomeric starch-based compositions are in no way thermoplastic or elastomeric compositions, as described in applications EP 1 506 765, FR 2 795,081 and WO 2007/000193 or in the article by J. SUNDARAM et al, Acta Biomateriala 4 (2008), pp 932-942.
  • nanoparticle-based products for formulating thermoplastic or elastomeric starch-based compositions has, of course, already been described, but in the absence of any non-starchy polymer, or with different types of products. of those of the present invention or in conditions or proportions different from those claimed.
  • WO 01/68762, WO 2007/027114 and EP 1 626 067 and the article by X. MA et al., Composites Science and Technology 68 (2008), pp. 268-273 describe and exemplify compositions combining starch and nanofiller, compositions which however do not contain non-starchy polymer
  • the applications WO 03/035044, WO 2007/027114 and WO 2008/090195 describe, in all generalities and without exemplifying it, the possibility of to use, in indefinite proportions or included in very wide ranges, many charges, nanometric or not, of a generally inorganic nature, in thermoplastic compositions containing a starchy composition.
  • Various authors have carried out work to add phyllosilicates or stratified silicate clays, in particular of the montmorillonite type, in matrices of polymers of natural origin such as starch in order to improve the characteristics thereof.
  • NATUURWETENSCH (TNO) claiming a biodegradable thermoplastic material comprising a natural polymer, a plasticizer and a clay having a sheet structure and an ion exchange capacity of between 30 and 250 milliequivalents per 100 g.
  • the natural polymer can be a carbohydrate such as starch.
  • This application mentions the advantage of pretreating the clay in a very dilute aqueous medium at 60 ° C. for 24 h in the presence of a "modifying agent" of polymeric nature and generating onium ions (ammonium, phosphonium, sulfonium), as for example cationic starch, to make this clay compatible with the natural polymer.
  • thermoplastic or elastomeric compositions apart from clays or other lamellar minerals, no nanofillers have a priori been used to improve the processing properties, functional properties or storage stability of thermoplastic or elastomeric compositions. based on starch and non-starchy polymer.
  • the starch used for the preparation of the amylaceous composition (a) is preferably chosen from granular starches, water-soluble starches and organomodified starches.
  • the term "granular starch” means a native starch or a starch modified physically, chemically or enzymatically, having retained a semicrystalline structure similar to that found in naturally occurring starch grains. in reserve organs and tissues of higher plants, particularly in cereal grains, leguminous seeds, tubers of potato or cassava, roots, bulbs, stems and fruits.
  • This semi-crystalline state is essentially due to macromolecules of amylopectin, one of the two main constituents of starch.
  • the starch grains In the native state, the starch grains have a degree of crystallinity which varies from 15 to 45%, and which depends essentially on the botanical origin of the starch and the possible treatment that it has undergone.
  • the starch selected for the preparation of the amylaceous composition (a) is a granular starch.
  • the crystallinity of said granular starch can be reduced to less than 15% by thermomechanical treatment and / or intimate mixing with a suitable plasticizer.
  • Said granular starch can be of any botanical origin. It may be starch native to cereals such as wheat, maize, barley, triticale, sorghum or rice, tubers such as potato or cassava, or legumes such as peas and soya, starches rich in amylose or conversely, rich in amylopectin (waxy) from these plants and any mixtures of the aforementioned starches.
  • the granular starch may also be a granular starch modified by any means, physical, chemical and / or enzymatic.
  • It may be a fluidized or oxidized granular starch or a white dextrin. It may also be a granular starch modified physico-chemically but having been able to retain the structure of the native starch starch, such as esterified and / or etherified starches, in particular modified by grafting, acetylation, hydroxypropylation, anionization, cationisation, crosslinking, phosphatation, succinylation and / or silylation. It may be, finally, a starch modified by a combination of the treatments mentioned above or any mixture of such granular starches.
  • this granular starch is chosen from fluidized starches, oxidized starches, chemically modified starches, white dextrins and any mixtures of these products.
  • the granular starch is preferably a wheat or pea granular starch or a granular derivative of wheat or pea starch.
  • the granular starch used generally has a level of soluble at 20 ° C. in demineralized water, less than 5% by weight. It can be almost insoluble in cold water.
  • the starch selected for the preparation of the amylaceous composition (a) is a water-soluble starch, which may also come from all botanical origins, including a starch, which is water-soluble, rich in amylose or, conversely, rich in amylopectin ( waxy). This soluble starch can be introduced as a partial or total replacement of the granular starch.
  • the water-soluble starch is used in solid form, preferably substantially anhydrous, i.e. undissolved or non-dispersed in an aqueous or organic solvent. It is therefore important not to confuse, throughout the description that follows, the term "water-soluble” with the term "dissolved”.
  • Such water-soluble starches can be obtained by pregelatinization on a drum, by pregelatinization on an extruder, by spraying a suspension or a starch solution, by precipitation with a non-solvent, by hydrothermal cooking, by chemical functionalization or the like. It is in particular a pregelatinized starch, extruded or atomized, a highly processed dextrin
  • the pregelatinized starches can be obtained by hydrothermal treatment of gelatinization of native starches or modified starches, in particular by steam cooking, jet-cooker cooking, drum cooking, cooking in kneader / extruder systems and then drying, for example in incubator, by hot air on a fluidized bed, on a rotating drum, by atomization, by extrusion or by lyophilization.
  • Such starches generally have a solubility in demineralized water at 20 ° C. of greater than 5% and more generally of between 10 and 100% and a starch crystallinity level of less than 15%, generally less than 5% and most often less than 1%, or even none.
  • PREGEFLO ® examples of products manufactured and marketed by the Applicant under the brand name PREGEFLO ® .
  • Highly processed dextrins can be prepared from native or modified starches by dextrinification in a weakly acidic acid medium. It may be in particular soluble white dextrins or yellow dextrins. By way of example, mention may be made of the STABILYS ® A 053 or TACKIDEX ® C 072 products manufactured and marketed by the Applicant. Such dextrins present in demineralized water at 20 ° C., a solubility generally of between 10 and 95% and a starch crystallinity of less than 15% and generally less than 5%. Maltodextrins can be obtained by acid, oxidative or enzymatic hydrolysis of starches in an aqueous medium.
  • DE dextrose
  • Such maltodextrins are for example manufactured and marketed by the Applicant under the trade name GLUCIDEX ® and have a solubility in demineralized water at 2O 0 C, generally greater than 90%, or even close to 100% and a crystallinity in lower starch generally less than 5% and usually almost zero.
  • the functionalized starches can be obtained from a native or modified starch.
  • the high functionalization may for example be carried out by esterification or etherification at a sufficiently high level to confer a solubility in water.
  • Such functionalized starches have a soluble fraction as defined above, greater than 5%, preferably greater than 10%, more preferably greater than 50%.
  • the functionalization can be obtained in particular by aqueous phase acetylation of acetic anhydride, mixed anhydrides, glutamate hydroxypropylation, dry phase cationization or glue phase, anionization in the dry phase or glue phase by phosphatation or succinylation.
  • These water-soluble, highly functionalized starches may have a degree of substitution of between 0.01 and 3, and more preferably between 0.05 and 1.
  • the reagents for modification or functionalization of starch are of renewable origin.
  • the water-soluble starch is a water-soluble starch of wheat or pea or a water-soluble derivative of a wheat or pea starch.
  • the starch selected for the preparation of the amylaceous composition (a) is an organomodified starch, preferably organosoluble, which may also come from all botanical origins, including an organomodified starch, preferably organosoluble, rich in amylose or conversely, rich in amylopectin (waxy).
  • organosoluble starch may be introduced as partial or total replacement of the granular starch or of the water-soluble starch.
  • organomodified starch is intended to mean any polysaccharide material derived from starch, other than a granular starch or a water-soluble starch according to the definitions given above.
  • this organomodified starch is almost amorphous, that is to say has a starch crystallinity level of less than 5%, generally less than 1% and especially zero.
  • organo that is to say has at 2O 0 C, a soluble fraction in a solvent selected from ethanol, ethyl acetate, propyl acetate, butyl acetate, diethyl carbonate, propylene carbonate, dimethyl glutarate, triethyl citrate, dibasic esters, dimethyl sulfoxide (DMSO), dimethyl isosorbide, glycerol triacetate, isosorbide diacetate, dioleate isosorbide and methyl esters of vegetable oils, at least equal to 5% by weight.
  • This soluble fraction is preferably greater than 20% by weight and in particular greater than 50% by weight.
  • the organomodified starch may be used according to the invention in solid form, preferably substantially anhydrous.
  • its water content is less than 10%, preferably less than 5%, in particular less than 2% by weight and ideally less than 0.5%, or even less than 0.2% by weight.
  • the organomodified starch that can be used in the composition according to the invention can be prepared by high functionalization of the native or modified starches such as those presented above. This high functionalization can for example be carried out by esterification or etherification at a sufficiently high level to make it essentially amorphous and to confer on it an insolubility in water and preferably a solubility in one of the above organic solvents.
  • Such functionalized starches have a soluble fraction as defined above, greater than 5%, preferably greater than 10%, more preferably greater than 50%.
  • the high functionalization can be obtained in particular by acetylation in the solvent phase by acetic anhydride, grafting for example in the solvent phase or by reactive extrusion, of acid anhydrides, mixed anhydrides, fatty acid chlorides, oligomers of caprolactones or lactides, hydroxypropylation and crosslinking in the glue phase, cationization and crosslinking in the dry phase or in the glue phase, anionization by phosphatation or succinylation and crosslinking in the dry phase or in the glue phase, sililation, butadiene telomerization.
  • organomodified, preferably organosoluble, highly functionalized starches can be, in particular, acetates of starches, dextrins or maltodextrins or fatty esters of these starchy materials (starches, dextrins, maltodextrins) with fatty chains of 4 to 22 carbons, all of these products preferably having a degree of substitution (DS) between 0.5 and 3.0, preferably between 0.8 and 2.8 and in particular between 1.0 and 2.7.
  • DS degree of substitution
  • the organomodified starch is an organomodified starch of wheat or pea or an organomodified derivative of a wheat or pea starch.
  • the plasticizer of the starch is preferably chosen from diols, triols and polyols such as glycerol, polyglycerol, isosorbide, sorbitans, sorbitol, mannitol, and hydrogenated glucose syrups, sodium salts and the like. organic acids such as sodium lactate, urea and mixtures of these products.
  • the plasticizer advantageously has a molar mass of less than 5000, preferably less than 1000, and in particular less than 400.
  • the plasticizer preferably has a molar mass greater than 18 and at most 380, ie it does not preferably not water.
  • the plasticizer of the starch is preferably chosen from methyl, ethyl or fatty esters of organic acids such as lactic, citric, succinic, adipic and glutaric acids and acetic esters. or fatty esters of monoalcohols, diols, triols or polyols such as ethanol, diethylene glycol, glycerol and sorbitol.
  • glycerol diacetate diacetin
  • glycerol triacetate triacetin
  • isosorbide diacetate isosorbide dioctanoate
  • isosorbide dioleate isosorbide dilaurate
  • esters of dicarboxylic acids or dibasic esters DBE of English dibasic esters
  • the plasticizer preferably other than water, is generally present in starchy composition (a) in an amount of from 1 to 150 parts by dry weight, preferably in the range from 10 to 120 parts by dry weight and in particular at 25% by weight. to 120 parts by dry weight per 100 parts by dry weight of starch.
  • the present invention makes it possible to introduce, in a stable manner over time, a high amount of plasticizer, with a limited or even no salting out, and thus to obtain a plasticized starchy composition of great mechanical flexibility, stretchable under stress, very film-forming, these effects having an advantageous effect on the properties of the final composition further containing a non-starchy polymer.
  • the plasticizer preferably other than water, is contained in the starchy composition (a) at a rate of 25 to 110 parts by dry weight, preferably at a rate of 30 to 100 parts by dry weight. and in particular in the proportion of 30 to 90 parts by dry weight, per 100 parts by dry weight of starch.
  • the present invention further relates to a thermoplastic or elastomeric composition
  • a thermoplastic or elastomeric composition comprising very particular proportions of starch, starch plasticizer, nanometric product and non-starchy polymer, said composition being characterized in that it comprises: from 25 to 85% by weight of at least one starch,
  • thermoplastic or elastomeric composition from 2 to 40% by weight of a nanometric product (b), and from 5 to 60% by weight of at least one non-starchy polymer (c), these percentages being expressed by dry weight and based on the dry weight total of the thermoplastic or elastomeric composition according to the invention.
  • the starch has a degree of crystallinity of less than 5%, preferably less than 1%,
  • the nanometric product (b) consists of particles at least one of which is between 5 and 50 nanometers in size
  • the non-starchy polymer (c) is a non-biodegradable polymer, preferably chosen from polyethylenes (PE) and polypropylenes (PP), preferably functionalized, thermoplastic polyurethanes (TPU), polyamides, styrene triblock block copolymers, ethylene / butylene-styrene (SEBS) and amorphous poly (ethylene terephthalate) (PETG), and / or
  • the non-starchy polymer (c) is a polymer containing at least 50%, preferably at least 70%, in particular more than 80%, of carbon of renewable origin according to ASTM D 6852 and / or ASTM D 6866, with respect to all the carbon present in said polymer.
  • the thermoplastic and / or elastomeric composition of the present invention preferably comprises at least one linking agent chosen from compounds bearing at least two free or masked, identical or different functions, chosen from isocyanate, carbamoylcaprolactam and aldehyde functional groups. epoxide, halo, protonic acid, acid anhydride, acyl halide, oxychloride, trimetaphosphate, alkoxysilane and combinations thereof.
  • the thermoplastic and / or elastomeric composition contains at least 50%, preferably at least 70%, in particular more than 80%, carbon of renewable origin according to ASTM D 6852 and / or ASTM D 6866 , with respect to all the carbon present in said composition.
  • the thermoplastic and / or elastomeric composition is non-biodegradable or non-compostable in the sense of the standards EN 13432, ASTM D 6400 and ASTM D 6868.
  • the thermoplastic or elastomeric composition simultaneously has an insoluble content of at least 98%, an elongation at the fracture at least equal to 95% and a maximum tensile strength greater than 8 MPa.
  • the nanometric product (b) as defined above may be a mixture product, for example a mixture, extemporaneous or not, or any combination combining at least one lamellar clay and at least one cationic oligomer. It can be a natural or synthetic clay.
  • lamellar clay means any mineral structure in separable nanosheets (exfoliables), in particular by neutralization of the charges between these sheets, in the form of lamellae of nanometric thickness generally between 0.1 and 50. nanometers, especially between 0.5 and 10 nanometers, the widths and lengths of these lamellae can reach several microns.
  • clays in nanosheets also called smectic clays or silicates / phyllosilicates of calcium and / or sodium, are known in particular as montmorillonite, bentonite, saponite, hydrotalcite, hectorite, fluorohectorite, attapulgite, beidellite, nontronite, vermiculite, hallysite , stevensite, manasseite, pyroaurite, sjogrenite, stichtite, barbertonite, takovite, desaultelsite, motukoraitite, honesite, mountkeithite, wasmlandite and glimmer.
  • montmorillonite bentonite, saponite, hydrotalcite, hectorite, fluorohectorite, attapulgite, beidellite, nontronite, vermiculite, hallysite , stevensite, manasseite, pyroaurite, sjogrenite
  • BET surface area usually exceeds 50 m 2 / g and can reach 300 m 2 / g.
  • lamellar clays are already commonly marketed, for example by ROCKWOOD under the trade names NANOSIL and CLOISITE. Hydrotalcites may also be mentioned, such as SASOL's PURAL products.
  • the cationic oligomer is preferably of biological origin. It may be in particular a cationic protein or oligosaccharide. X-ray diffraction at low angles showed that these cationic oligomers were so unexpectedly excellent exfoliants lamellar clays and allowed to obtain directly, during a thermomechanical treatment, a quasi-complete exfoliation of the lamellar clay and thus significantly improve the properties of the thermoplastic and / or elastomeric composition obtained .
  • the cationic oligomer is a protein, it is preferably soluble in water and is preferably extracted from a plant or animal tissues.
  • this protein may be in particular gelatin, casein, wheat protein (gluten), corn (zein), soy protein, pea protein, lupine protein, oilcake or rapeseed protein, of cakes or sunflower protein or potato protein.
  • this protein is fluidized / hydrolysed by mechanical, chemical or enzymatic treatment so as to reduce its molecular weight relative to the native state until it becomes an oligopeptide.
  • usable protein hydrolysed wheat gluten, soluble pea protein and potato protein marketed by the Applicant in particular under the trade names NUTRALYS ®, ® and LYSAMINE TUBERMINE ®.
  • the cationic oligosaccharides which can be used as exfoliation agents are also preferably water-soluble and can come from all sources. They are preferably derived from plant tissues, algae, animals, insects or microorganisms. In particular, these may be cationically rendered oligosaccharides by a combined cationisation and acidic, enzymatic or mechanical hydrolysis treatment of cellulose, starch, guar, mannan, galactomannan, alginate or xanthan. It may also be oligosaccharides obtained from naturally cationic polymers such as for example chitin or chitosan.
  • cationic oligosaccharides preferably have a molecular weight of between 100 and 200,000 Daltons, more preferably between 180 and 50,000 Daltons and more preferably between 180 and 20,000 Daltons.
  • the liquid mixture of cationic oligosaccharides sold by the applicant under the name VECTOR ® SC 20157.
  • the nanometric product mixture comprises based on the total weight of these two components, 5 to 85%, preferably 15 to 75%, of proteins and / or cationic oligosaccharides. It can be in liquid, pulverulent or granulated form.
  • the cationic oligomer may furthermore be a polyolefin, in particular polypropylene or polyethylene, grafted or modified with groups carrying positive charges, for example quaternary ammonium and amine groups, in particular quaternary ammonium groups.
  • the present invention further relates to the use of a cationic oligomer as defined above as exfoliant agent of a lamellar clay for the preparation of a thermoplastic and / or elastomeric composition according to the invention.
  • the nanometric product (b) that can be used in accordance with the invention can also be composed of organic, inorganic or mixed nanotubes, that is to say composed of tubular structures of diameter of the order of a few tenths to several tens of nanometers.
  • Some of these products are already commercially available, such as carbon nanotubes, for example by the company ARKEMA under the brand names GRAPHISTRENGTH and NANOSTRENGTH and NANOCYL under the brand names NANOCYL, PLASTICYL, EPOCYL, AQUACYL, and THERMOCYL.
  • Such nanotubes may also be cellulose nanofibrils with a diameter of around 30 nanometers for a length of a few microns, which are constitutive of the natural fibers of wood cellulose and can be obtained by separation and purification from them. It may also be clays with a tubular or fibrillar structure such as sepiolites.
  • the nanometric product (b) that can be used according to the invention can also be a composition based on nanocrystals or nanocrystals.
  • These structures can be organic, mineral or mixed. They may be obtained by crystallization, optionally in situ, of materials in a very dilute solvent medium, said solvent being constitutive of the composition according to the invention.
  • nanometals such as iron or silver nanoparticles useful as reducing or antimicrobial agents and the oxide nanocrystals known as agents for improving the scratch resistance.
  • Mention may also be made of nanoscale synthetic talcs which can be obtained for example by crystallization from a aqueous solution.
  • amylose / lipid complexes of Vh (stearic), Vbutanol, Vglycerol, Visopropanol and Vnaphthol structures from 1 to 10 microns in width or in length, for a thickness of about ten nanometers. They may also be inclusion complexes with cyclodextrins. They may also be nucleating agents for non-starchy polymers, in particular polyolefins, agents capable of crystallizing in the form of nanometric particles, such as sorbitol derivatives such as dibenzylidene sorbitol (DBS) and alkylated derivatives of this one.
  • Vh stearic
  • Vbutanol Vglycerol
  • Visopropanol and Vnaphthol structures from 1 to 10 microns in width or in length, for a thickness of about ten nanometers. They may also be inclusion complexes with cyclodextrins. They may also be nucleating agents for non
  • the nanometric product (b) that can be used can be in elementary particles of the nanobead or nanosphere type, that is to say in the form of pseudospheres with a radius of between 1 and 500 nanometers, in individualized form, in a cluster or in agglomerates. It can be organic, mineral or mixed structures.
  • carbon blacks commonly used as a filler for elastomers and rubbers may be mentioned. These carbon blacks comprise primary particles of size ranging from about 8 nanometers (oven blacks) to about 300 nanometers (thermal blacks) and generally have oil absorption capacities of between 40 and 180 cc per 100 grams. for specific STSA surfaces between 5 and 160 m per gram. Such carbon blacks are in particular marketed by CABOT, EVONIK, SID RICHARDSON, COLUMBIAN and CONTINENTAL CARBON.
  • Hydrophilic or hydrophobic silicas, precipitation or combustion (pyrogenic), such as those used as flow agents for powders or fillers in tires called “green” may also be mentioned.
  • Such silicas have particle sizes generally between 5 and 25 nanometers and are especially sold in the form of powder or dispersions in water, in ethylene glycol or in acrylate or epoxy resins, by the companies GRACE, RHODIA, EVONIK, PPG and NANORESINS AG.
  • nanoprecipitated calcium carbonates such as that described in the international application WO 98/16471 by the company KAUTAR Oy, or the metal oxides (titanium dioxide, zinc oxide, cerium oxide, oxide silver, iron oxide, magnesium oxide, aluminum oxide) made nanometric for example by combustion (products marketed by the company EVONIK under the names AEOROXIDE or AEORODISP) or acid attack (products sold by SASOL under the DISPERAL or DISPAL names).
  • C6N100 mountain biking or nanobeads directly synthesized in the nanometer state, for example those of polystyreneemaleimides TOPCHIM company.
  • the nanometric product (b) that can be used can finally be in the form of mixtures of the nanometric products listed above.
  • Such nanometric products may have also been placed on supports such as talcs, zeolites or amorphous silicas, introduced into a polymer matrix or suspended in water or organic solvents.
  • the Applicant has found that the cationic oligomers which it had selected with a view to obtaining an almost complete exfoliation of the lamellar clays as pointed out above, could advantageously constitute excellent dispersing agents for nanofillers in general, in particular of the type nanobeads, nanocrystals or nanotubes.
  • thermoplastic or elastomeric composition according to the invention further comprises at least one polymer other than starch.
  • the non-starchy polymer can be of any chemical nature. It advantageously comprises functions with active hydrogen and / or functions which give, in particular by hydrolysis, such active hydrogen functions.
  • polymers of natural origin may be a polymer of natural origin, or a synthetic polymer obtained from monomers of fossil origin and / or monomers from renewable natural resources.
  • the polymers of natural origin can in particular be obtained directly by extraction from plants or animal tissues. They are preferably modified or functionalized, and in particular chosen from polymers of protein, cellulosic or lignocellulosic nature, chitosan and natural rubbers. It may also be polymers obtained by extraction from micro-organism cells, such as polyhydroxyalkanoates (PHAs).
  • PHAs polyhydroxyalkanoates
  • Such a polymer of natural origin may be chosen from flour, modified or unmodified proteins; celluloses unmodified or modified in particular by carboxymethylation, ethoxylation, hydroxypropylation, cationization, acetylation, alkylation; hemicelluloses; lignins; modified or unmodified guars; chitin and chitosan; gums and natural resins such as natural rubbers, rosins, shellacs and terpene resins; polysaccharides extracted from algae such as alginates and carrageenans; polysaccharides of bacterial origin such as xanthans or PHAs; lignocellulosic fibers such as flax, hemp, bamboo, sisal, miscanthus or other fibers.
  • the non-starchy polymer preferably bearing active and / or functionalized hydrogen functional groups, may be synthetic and may be chosen from synthetic polymers, in particular of polyester, polyacrylic, polyacetal, polycarbonate, polyamide, polyimide, polyurethane or polyolefin type (in particular polyethylene).
  • synthetic polymers in particular of polyester, polyacrylic, polyacetal, polycarbonate, polyamide, polyimide, polyurethane or polyolefin type (in particular polyethylene).
  • polypropylene, polyisobutylene and copolymers thereof functionalized polyolefin, styrenic, functionalized styrene, vinylic, functionalized vinylic, functionalized fluorinated, functionalized polysulfone, functionalized polyphenyl ether, functionalised polyphenylsulfide, functionalized silicone, functionalized polyether and any mixtures of the abovementioned polymers.
  • PLA polyamides such as polyamides 6, 6-6, 6-10, 6-12, 11 and 12.
  • copolyamides polyacrylates, polyvinyl alcohol, polyvinyl acetate, ethylene-vinyl acetate copolymers (EVA), ethylene-methyl acrylate (EMA) copolymers, ethylene-alcohol copolymers vinyl (EVOH), polyoxymethylenes (POM), acrylonitrile-styrene-acrylate copolymers (ASA), thermoplastic polyurethanes (TPU), polyethylenes or polypropylenes functionalized for example with silane, acrylic or maleic anhydride units and styrene-butylene-styrene (SBS) and styrene-ethylene-butylene-styrene (SEBS) copolymers functionalized for example by means of units maleic anhydride and any mixtures of these
  • the non-starchy polymer is a polymer synthesized from bio-sourced monomers, that is to say from short-term natural renewable resources such as plants, microorganisms or gases, in particular from sugars, glycerol, oils or their derivatives such as alcohols or acids, mono-, di- or polyfunctional.
  • bio-sourced monomers that is to say from short-term natural renewable resources such as plants, microorganisms or gases, in particular from sugars, glycerol, oils or their derivatives such as alcohols or acids, mono-, di- or polyfunctional.
  • bio-source monomers such as bio-ethanol, bio-ethylene glycol, bio-propanediol, 1,3-propanediol biosourced, bio-butane-diol, lactic acid, succinic acid biosourced, glycerol, isosorbide, sorbitol, sucrose, diols derived from vegetable or animal oils and resin acids extracted from pine, and their derivatives, it being understood that said bio-sourced monomers contain advantageously at least 15%, preferably at least 30%, in particular at least 50%, better still at least 70% or even more than 80%, of carbon of renewable origin within the meaning of ASTM D 6852 and / or ASTM D 6866, with respect to all the carbon present in said monomers.
  • the non-starchy polymer may be polyethylene derived from bioethanol,
  • PVC derived from bioethanol, polypropylene derived from bio-propanediol, polyesters of PLA or PBS type based on lactic acid or succinic acid biosourced, PBAT polyesters based on butanediol or succinic acid biosourced , of SORONA® type polyesters based on 1,3-propanediol biosourced, polycarbonates containing isosorbide, polyethylene glycols based on bioethylene glycol, polyamides based on castor oil or plant polyols, and polyurethanes based for example on vegetable diols or polyols such as glycerol, isosorbide, sorbitol or sucrose, and / or based on optionally hydroxyalkylated fatty acids.
  • the non-starchy polymer is chosen from ethylene-vinyl acetate copolymers (EVA), polyethylenes (PE) and non-starch polypropylenes (PP). functionalized or functionalized by silane units, acrylic units or maleic anhydride units, thermoplastic polyurethanes (TPU), PBS, PBSA and PBAT, styrene-butylene-styrene copolymers (SBS), preferably functionalized, in particular by maleic anhydride units, amorphous poly (ethylene terephthalate) (PETG), synthetic polymers obtained from bio-sourced monomers, polymers extracted from plants, animal tissues and microorganisms, optionally functionalized, and mixtures of them.
  • EVA ethylene-vinyl acetate copolymers
  • PE polyethylenes
  • PP non-starch polypropylenes
  • the non-starchy polymer has a weight average molecular weight of between 8500 and 10,000,000 daltons, in particular between 15,000 and 1,000,000 daltons.
  • the non-starchy polymer preferably consists of carbon of renewable origin according to ASTM D 6852 and is advantageously non-biodegradable or non-compostable in the sense of the standards EN 13432, ASTM D 6400 and ASTM D 6868.
  • the non-starchy polymer (c) is a polymer containing at least 15%, preferably at least 30%, in particular at least 50%, more preferably at least 70% or even more than 80%, of carbon of renewable origin within the meaning of ASTM D 6852 and / or ASTM D 6866, with respect to all the carbon present in said polymer.
  • the non-starchy polymer is a non-biodegradable polymer.
  • the non-starchy non-biodegradable polymer may especially be chosen from ethylene-vinyl acetate copolymers (EVA), polyethylenes (PE) and polypropylenes (PP), polyethylenes (PE) and polypropylenes (PP) functionalized with silane, acrylic or maleic anhydride units, thermoplastic polyurethanes (TPU), styrene-ethylene-butylene-styrene block copolymers (SEBS) functionalized with maleic anhydride units, synthetic polymers obtained from monomers bio-sourced and extraction polymers of natural resources (secretion or extracts of plants, animal tissues and microorganisms), modified or functionalized, and mixtures thereof.
  • EVA ethylene-vinyl acetate copolymers
  • PE polyethylenes
  • PP polypropylenes
  • PE polyethylenes
  • PE polypropylenes
  • SEBS styrene-ethylene-butylene-styrene block copolymers
  • non-starchable, non-biodegradable polymers that can be used in the present invention are polyethylenes (PE) and polypropylenes (PP), which are preferably functionalized, thermoplastic polyurethanes (TPUs), polyamides, styrene-ethylene / butylene-styrene triblock blocks (SEBS) and amorphous poly (ethylene terephthalate)
  • PE polyethylenes
  • PP polypropylenes
  • TPUs thermoplastic polyurethanes
  • SEBS styrene-ethylene / butylene-styrene triblock blocks
  • SEBS styrene-ethylene / butylene-styrene triblock blocks
  • amorphous poly ethylene terephthalate
  • the starchy composition (a), the nanometric product (b) and the non-starchy polymer (c) may together represent 100% by weight (dry / dry) of thermoplastic or elastomeric composition according to the invention. Fillers and other additives of all kinds, including those detailed below, may however be incorporated in the thermoplastic or elastomeric composition of the present invention. Although the proportion of these additional ingredients can be quite high, the starchy composition (a), preferably plasticized, the nanometric product (b) and the non-starchy polymer (c), preferably non-biodegradable, together represent, preferably, at least 30%, in particular at least 40% and most preferably at least 50%, by weight (dry / dry) of thermoplastic or elastomeric composition of the present invention.
  • At least one bonding agent may be added to said composition.
  • binding agent any organic molecule carrying at least two functional groups, free or masked, capable of reacting with molecules carrying active hydrogen functions such as starch or plasticizer of starch. This binding agent may be added to the composition to allow the attachment, by covalent bonds, of at least a portion of the plasticizer on the starch and / or on the non-starchy polymer optionally added.
  • This binding agent can then be chosen for example from compounds carrying at least two functions, free or masked, identical or different, chosen from isocyanate functions, carbamoylcaprolactam, aldehydes, epoxide, halogen, protonic acid, acid anhydride acyl halide, oxychloride, trimetaphosphate, alkoxysilane and combinations thereof.
  • diisocyanates and polyisocyanates preferably 4,4'-dicyclohexylmethane diisocyanate (H12MDI), methylenediphenyl diisocyanate (MDI), toluene diisocyanate (TDI), naphthalene diisocyanate (NDI), hexamethylene diisocyanate (HMDI) and lysine diisocyanate (LDI), - dicarbamoylcaprolactams, preferably 1-1 'carbonyl bis caprolactam,
  • halohydrins that is to say compounds having an epoxide function and a halogen function, preferably epichlorohydrin, organic diacids, preferably succinic acid, adipic acid, glutaric acid, oxalic acid, malonic acid, maleic acid and the corresponding anhydrides,
  • oxychlorides preferably phosphorus oxychloride
  • trimetaphosphates preferably sodium trimetaphoshate, alkoxysilanes, preferably tetraethoxysilane, and
  • the linking agent is a diisocyanate, in particular methylenediphenyl diisocyanate (MDI) or 4,4'-dicyclohexylmethane diisocyanate (H12MDI).
  • the amount of binding agent expressed in dry weight and relative to the sum, also expressed in dry weight, of the starchy composition (a) and of the nanometric product (b), is advantageously between 0.1 and 15% by weight. weight, preferably between 0.1 and 12% by weight, more preferably between 0.2 and 9% by weight and in particular between 0.5 and 5% by weight.
  • the optional but preferred incorporation of the linking agent into the mixture of the starchy composition (a) and the nanometric product (b) can be done by physical mixing at low temperature or cold, but preferably by hot kneading at a temperature of temperature above the glass transition temperature of the starchy composition.
  • This mixing temperature is advantageously between 60 and 200 ° C. and better still between 100 and 160 ° C.
  • This incorporation can be carried out by thermomechanical mixing, discontinuously or continuously, and particular online. In this case, the mixing time can be short, from a few seconds to a few minutes.
  • composition according to the invention may furthermore comprise various other additives. It may be products intended to further improve its physico-chemical properties, in particular its physical structure, its implementation behavior and its durability or its mechanical, thermal, conductive, adhesive or organoleptic properties.
  • the additive may be an improving agent or an adjustment of the mechanical or thermal properties chosen from minerals, salts and organic substances. It may be nucleating agents such as talc, compatibilizers or dispersants such as natural or synthetic surfactants, impact or scratch-resistant agents such as calcium silicate control agents such as magnesium silicate, scavengers or deactivators of water, acids, catalysts, metals, oxygen, infrared rays, UV rays, hydrophobing agents such as oils and greases, fire retardants and flame retardants such as halogenated derivatives, anti-smoke agents, reinforcing fillers, mineral or organic, such as calcium carbonate, talc, vegetable fibers, fiberglass or Kevlar.
  • nucleating agents such as talc, compatibilizers or dispersants such as natural or synthetic surfactants, impact or scratch-resistant agents such as calcium silicate control agents such as magnesium silicate, scavengers or deactivators of water, acids, catalysts, metals, oxygen, infrared ray
  • the additive may also be an improving agent or an adjustment of the conductive or insulating properties with respect to electricity or heat, for example sealing against air, water or gases. , to solvents, to fatty substances, to essences, to aromas, to perfumes, chosen in particular from minerals, salts and organic substances, in particular from heat-conduction or dissipation agents such as metal powders and graphites .
  • the additive may be an agent that improves the organoleptic properties, in particular:
  • optical properties glossing agents, whiteness agents such as titanium dioxide, dyes, pigments, dye enhancers, opacifiers, matting agents such as calcium carbonate, thermochromic agents, phosporescence and fluorescence, metallizing or marbling agents and anti-fogging agents),
  • the additive may also be an enhancing or adjusting agent for adhesive properties, including adhesion to cellulosic materials such as paper or wood, metal materials such as aluminum and steel, glass or ceramic materials, textiles and mineral materials, such as pine resins, rosins, ethylene / vinyl alcohol copolymers, fatty amines, lubricating agents, mold release agents, antistatic agents and anti-blocking agents.
  • adhesive properties including adhesion to cellulosic materials such as paper or wood, metal materials such as aluminum and steel, glass or ceramic materials, textiles and mineral materials, such as pine resins, rosins, ethylene / vinyl alcohol copolymers, fatty amines, lubricating agents, mold release agents, antistatic agents and anti-blocking agents.
  • the additive may be an agent improving the durability of the material or an agent for controlling its (bio) degradability, especially chosen from hydrophobic or pearling agents such as oils and greases, anti-corrosion agents, antimicrobial agents such as Ag , Cu and Zn, degradation catalysts such as oxo-catalysts and enzymes such as amylases.
  • hydrophobic or pearling agents such as oils and greases
  • anti-corrosion agents such as Ag , Cu and Zn
  • antimicrobial agents such as Ag , Cu and Zn
  • degradation catalysts such as oxo-catalysts and enzymes such as amylases.
  • thermoplastic or elastomeric composition With a view to the preparation of the thermoplastic or elastomeric composition according to the invention, it is possible to use numerous processes providing, in particular, extremely varied moments and orders of introduction of the components of said composition (starch, possible plasticizer of the starch, nanometric product (b), non-starchy polymer (c), optional additives).
  • the nanometric product may be introduced after all or part of it has been previously dispersed in the starchy composition, preferably plasticized and / or in the non-starchy polymer (c) or introduced lastly after introduction of the starchy composition. and non-starchy polymer.
  • said nanometric product regardless of how and when it was incorporated, may be dispersed mainly in the amylaceous phase or in the non-starch polymeric phase, or may be localized interfaces of these two phases.
  • the subject of the present invention is in particular a method of preparing a thermoplastic or elastomeric composition as previously described in all its variants, said method comprising the following steps:
  • step (iv) being able to be carried out before, during or after step (iii), (v) selecting at least one non-starchy polymer (c), and (vi) ) Preparation of the thermoplastic or elastomeric composition according to the invention by incorporation of the non-starchy polymer (c) into the intermediate nanocharged amylaceous composition.
  • the intermediate nanocharged starchy compositions thus obtained during this process contain different ingredients, namely starch, plasticizer and nanometer product (b), intimately mixed with each other.
  • a plasticizer of the starch during step (iii) can be carried out cold prior to its thermo-mechanical mixing with the starch or else directly during this mixing, that is to say hot at a temperature preferably between 60 and 200 0 C, more preferably between 80 and 185 0 C and in particular between 100 and 180 ° C, discontinuously, for example by kneading / kneading, or continuously, for example by extrusion.
  • the duration of this mixture can range from a few seconds to a few hours, depending on the mixing mode selected.
  • the incorporation of the nanometric product (b) can be done by physical mixing at low temperature or cold to the starchy composition, but preferably by hot mixing at a temperature above the transition temperature. vitreous of the amylaceous composition.
  • This mixing temperature is advantageously between 60 and 200 ° C., preferably between 80 and 180 ° C. and more preferably between 100 and 180 ° C.
  • This incorporation can be carried out by thermomechanical mixing, discontinuously or continuously. and especially online. In this case, the mixing time can be short, from a few seconds to a few minutes. This gives a thermoplastic composition, very homogeneous as can be observed by observation under a microscope.
  • the nanometric product (b) consists of a mixture product based on at least one lamellar clay and at least one cationic oligomer and the exfoliation of the clay is done during step (iii) of mixing the starch and the plasticizer.
  • the incorporation of the non-starchy polymer (c) into the nanocharged intermediate amylaceous composition during step (vi) can be carried out by hot kneading, preferably at a temperature of between 60 and 200 ° C., more preferably between 100 and 100 ° C. and 200 0 C and especially between 120 and 185 0 C.
  • This incorporation can be achieved by thermomechanical mixing, discontinuously or continuously and in particular online. In this case, the mixing time can be short, from a few seconds to a few minutes.
  • this process is characterized in that: step (iv) is carried out by hot kneading at a temperature between
  • step (vi) is carried out by hot kneading at a temperature of between 120 and 185 ° C.
  • nanometric product (b) significantly reduce the water and water vapor sensitivity of the nanocharged intermediate starchy composition. but also the final thermoplastic or elastomeric composition obtained, compared to the products prepared without adding nanoscale product. This opens the way for new applications of intermediate nanofilled amylaceous compositions but also for thermoplastic and / or elastomeric compositions of the invention.
  • nanocharged starchy composition has a lower sensitivity to thermal degradation and less coloration than the plasticized starches of the prior art.
  • said composition has a complex viscosity, measured on a rheometer of the PHYSICA MCR 501 or equivalent type, of between 10 and 10 6 Pa ⁇ s, for a temperature of between 100 and 200 ° C.
  • This viscosity is significantly lower than that measured for an identical composition not comprising a few percent of nanoscale product (b) such as a pyrogenic hydrophilic silica such as AEROSIL 200 for example.
  • nanoscale product (b) such as a pyrogenic hydrophilic silica such as AEROSIL 200 for example.
  • AEROSIL 200 a pyrogenic hydrophilic silica
  • its viscosity at these temperatures is preferably located in the lower part of the range given above and the composition is then preferentially heat fusible in the sense specified above.
  • the intermediate nanocharged amylaceous composition has the further advantage of being essentially renewable raw materials and can be presented, after adjustment of the formulation, the following properties, useful in multiple applications in plastics or in other areas:
  • thermoplasticity within the usual known range of values of the current polymers (Tg from -50 ° to 150 ° C.), allowing implementation by the installations; existing industrial processes and conventionally used for the usual synthetic polymers,
  • thermoplastic starch compositions of the prior art flexibleibility, elongation at break, maximum breaking stress
  • any intermediate nanocharged amylaceous composition may be wholly or partly exploited at the level of any thermoplastic or elastomeric composition according to the invention.
  • the subject of the present invention is also the use of a composition comprising at least one starch, preferably at least one plasticizer of said starch, and at least one nanometric product (b) as defined above, for the preparation of a thermoplastic or elastomeric composition according to the invention or obtained by the process according to the invention.
  • non-starchy polymer for example a non-biodegradable polymer
  • the composition according to the invention may advantageously have characteristic stress / strain curves of a ductile material, and not of a fragile type material.
  • the elongation at break is greater than 40%, preferably greater than 80%, more preferably greater than 90%. This elongation at break can advantageously be at least 95%, especially at least equal to 120%. It can even reach or exceed 180% or even 250%. It is generally reasonably less than 500%.
  • the maximum breaking stress of the compositions of the present invention is generally greater than 4 MPa, preferably greater than 6 MPa, more preferably greater than 8 MPa. It can even reach or exceed 10 MPa, or even 20 MPa. It is generally reasonably less than 80 MPa.
  • thermoplastic or elastomeric composition according to the invention may also have the advantage of being almost or totally insoluble in water, of hydrating with difficulty and of maintaining a good physical integrity after immersion in water.
  • Its insoluble content after 24 hours in water at 20 ° C. is preferably greater than 90%. Very advantageously, it may be greater than 92%, especially greater than 95%. Ideally, this insoluble content may be at least 98% and in particular be close to 100%.
  • the composition according to the present invention may, in particular, present simultaneously: a level of insolubles of at least 98%, an elongation at break of at least 95%, and a maximum stress; at break greater than 8 MPa.
  • thermoplastic or elastomeric composition according to the invention can be used as such or in admixture with other products or additives, including other synthetic, artificial or naturally occurring polymers. It can be biodegradable or compostable according to the standards EN 13432, ASTM D 6400 and ASTM D 6868, and then include polymers or materials meeting these standards, such as PLA, PCL, PBS, PBSA, PBAT and PHA.
  • PLA polylactic acid
  • composition according to the invention can however also be non-biodegradable or non-compostable in the sense of the above standards, and then include, for example, known synthetic polymers or starches or extraction polymers highly functionalized, crosslinked or etherified. It is possible to modulate the lifetime and stability of the composition according to the invention by adjusting in particular its affinity for water, so as to suit the expected uses as a material and the recovery methods envisaged in the end. of life.
  • composition according to the invention may in particular comprise a non-biodegradable polymer chosen from the group consisting of polyethylenes (PE) and polypropylenes (PP), preferably functionalized, thermoplastic polyurethanes (TPUs), polyamides, styrene-triblock block copolymers. ethylene / butylene-styrene (SEBS) and amorphous poly (ethylene terephthalate) (PETG).
  • PE polyethylenes
  • PP polypropylenes
  • TPUs thermoplastic polyurethanes
  • SEBS ethylene / butylene-styrene
  • PETG amorphous poly (ethylene terephthalate)
  • thermoplastic and / or elastomeric composition according to the present invention advantageously contains at least 15%, preferably at least 30%, in particular at least 50%, better still at least 70% or even more than 80%, carbon dioxide. renewable origin within the meaning of ASTM D 6852 and / or ASTM D 6866, with respect to all the carbon present in the composition.
  • This carbon of renewable origin is essentially that constitutive of the starch necessarily present in the composition according to the invention but can also be advantageously, by a judicious choice of the constituents of the composition, that present in the plasticizer of the starch as in the case for example glycerol or sorbitol, but also that of the non-starchy polymer (c) or any other constituent of the thermoplastic composition, when they come from renewable natural resources such as those defined preferentially above. It is in particular conceivable to use the compositions according to the invention, as barrier films for oxygen, carbon dioxide, flavorings and fuels. and / or to fatty substances, alone or in multi-layer structures obtained by coextrusion for the field of food packaging in particular.
  • thermoplastic or elastomeric compositions can also be used to increase the hydrophilicity, electrical conductivity, permeability to water and / or water vapor, or resistance to organic solvents and / or fuels, of synthetic polymers in the framework for example of the manufacture of membranes, films or printable electronic labels, textile fibers, containers or tanks, or to improve the adhesive properties of synthetic hot melt films on hydrophilic supports.
  • hydrophilic nature of the thermoplastic or elastomeric composition according to the invention considerably reduces the risk of bioaccumulation in the adipose tissues of living organisms and therefore also in the food chain.
  • Said composition may be in pulverulent, granulated or bead form. It can constitute as such a masterbatch or the matrix of a masterbatch, intended to be diluted in a bio-sourced matrix or not.
  • It can also constitute a plastic raw material or a compound that can be used directly by an equipment manufacturer or a manufacturer of plastic objects.
  • It can also constitute as such an adhesive or a matrix for formulating an adhesive, in particular of the hot-melt type or a hot-melt.
  • It may constitute a base gum or the matrix of a base gum, including chewing gum or a resin or co-resin for rubbers and elastomers.
  • composition according to the invention may optionally be used to prepare thermoset resins (duroplasts) by irreversibly extensive crosslinking, said resins thus definitely losing any thermoplastic or elastomeric character.
  • the invention also relates to a plastic material, an elastomeric material or an adhesive material comprising the composition of the present invention or a finished or semi-finished product obtained therefrom.
  • a plastic material an elastomeric material or an adhesive material comprising the composition of the present invention or a finished or semi-finished product obtained therefrom.
  • Amylaceous composition according to the prior art and nanocharged starch compositions usable according to the invention obtained with wheat starch, a starch plasticizer and a nanometric product.
  • fumed silica (about 15 nm) marketed under the name
  • hydrophobic silica (about 25 nm) marketed under the name
  • AEOROSIL R 974 by this same company,. the product LAB 4019, nanometric particles (about 40 nm) of polystyrene-maleimide,
  • LAB 4020 nanoscale particles (about 70 nm) of calcium carbonate
  • LAB 4021 nanoscale particles (about 200 nm) of starch acetate.
  • thermoplastic starchy composition For the purpose of comparison, a thermoplastic starchy composition according to the prior art is first prepared.
  • a TSA brand twin-screw extruder with a diameter (D) of 26 mm and a length of 5OD is fed with the starch and the plasticizer at a speed of 150 rpm, with a mixing ratio of 67 parts of plasticizer.
  • POLYSORB ® for 100 parts of wheat starch. The extrusion conditions are as follows:
  • Temperature profile (ten heating zones Zl to ZlO): 90/90/110/130/140/150/140/130/120/120, without degassing
  • the plasticized starch rods are cooled in air on a conveyor belt and then dried at 80 ° C. in a vacuum oven for 10 hours before being crushed.
  • composition AP6040 The amylaceous composition thus obtained is known according to the prior art after drying "composition AP6040".
  • nanofilled starchy compositions which can be used according to the invention are prepared in an identical manner by dry blending with wheat starch, amounts, relative to starch, by dry weight, of 6.9% (ie approximately 4% by weight). (sec / sec), nanoscale product (b) expressed on the total plasticized starch composition (a) + nanometric product (b) J of one or other of the nanometric products (b) defined above.
  • Table 1 Melt flow index (MFL me it flow index) and water uptake rate after drying of a thermoplastic composition according to the prior art and nanocharged starch compositions according to the invention:
  • the addition of one or the other of the nanometric products (b) has a very significant beneficial impact on the melt flow index (MFI) of the starchy compositions which, after addition of the nanometric products (b), become very fluids and flow without difficulty at 130 ° C under a load of 20 kg, unlike the composition of the prior art free of nanoscale product.
  • MFI melt flow index
  • the water sensitivity of the compositions prepared is evaluated.
  • AP6040 has a very clear effect in terms of reducing the sensitivity to water during immersion of the mixtures and reducing the sensitivity to the water uptake of the alloys dried at 80 ° C. for 10 hours.
  • New compositions are prepared as in Example 1 by varying the amount of nanometric product (b) AEROSIL 200. Three tests are carried out using the following quantities, relative to the amount of dry starch: 0.1%, 1 , 2% and 6.9%, respectively, 0.06%, 0.75% and 4% of nanoscale product (b) expressed by weight (dry / dry) relative to the total of plasticized starch composition (a) + nanoscale product (b). The results are as follows
  • AEROSIL 200 has beneficial effects even at 0.1% of addition relative to the dry starch, ie approximately 0.06% (dry / dry) compared to the total AP6040 (composition amylaceous (a)) + AEROSIL (nanoscale product (b)).
  • thermoplastic composition based on a maltodextrin marketed by the Applicant under the trade name GLUCIDEX ® 6 plasticized by the concentrated aqueous composition of POLYSORB ® G 84/41/00 polyols used in Example 1, and a thermoplastic polyurethane (TPU) sold under the brand ESTANE 58277.
  • a TSA-brand twin-screw extruder with a diameter (D) of 26 mm and a length of 5OD is fed with maltodextrin and plasticizer at a speed of 200 rpm, with a mixing ratio of 67 parts of plasticizer POLYSORB. ® per 100 parts of maltodextrin.
  • the extrusion conditions are as follows:
  • composition 1 The composition thus obtained is known after drying "Composition 1".
  • An nanocharged amylaceous composition which can be used according to the invention is then prepared, in an identical manner, by dry mixing with maltodextrin, an amount referred to maltodextrin by dry weight of 8.6% of nanometric product (b) AEROSIL 200, ie weight (dry / dry) of about 5.2%, expressed as a nanometric product (b) on the total plasticized starch composition (a) + nanoscale product (b).
  • composition 2 The nanocharged amylaceous composition thus obtained is known after drying "Composition 2".
  • compositions 1 and 2 mixtures are finally prepared containing, by weight, 50% of these compositions and 50% of TPU Estane 58277 (thermoplastic polyurethane).
  • composition 2 An additional test is carried out with addition to composition 2 of 4 parts of methylenediphenyldiisocyanate (MDI) per 100 parts of composition 2.
  • MDI methylenediphenyldiisocyanate
  • extrusion conditions (bi-screw extruder 026,50D) are given below: - dry mix (dried TPU, starch base) in main hopper

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

La présente invention a pour objet une composition thermoplastique et/ou élastomérique comprenant: au moins 50 % en poids et au plus 99,95 % en poids d'une composition amylacée (a) comprenant au moins un amidon, au moins 0,05 % en poids et au plus 50 % en poids d'un produit nanométrique (b) constitué de particules dont l'une au moins des dimensions est comprise entre 0,1 et 500 nanomètres, choisi parmi: les produits de mélanges à base d'au moins une argile lamellaire et d'au moins un oligomère cationique ou un polymère synthétique catinonique, les nanotubes organiques, minéraux ou mixtes, les nanocristaux et nanocristallites organiques, minéraux ou mixtes, les nanobilles et nanosphères organiques, minérales ou mixtes, individualisées en grappes ou agglomérées, et les mélanges de ces produits nanométriques, ces pourcentages étant exprimés en poids sec et rapportés à la somme, en poids sec, de (a) et (b), et au moins un polymère non amylacé (c).

Description

COMPOSITIONS THERMOPLASTIQUES OU ELASTOMERIQUES A BASE D'AMIDON ET PROCEDE DE PREPARATION DE TELLES
COMPOSITIONS.
La présente invention concerne de nouvelles compositions thermoplastiques et/ou élastomériques ainsi qu'un procédé de préparation de ces compositions.
On entend par « composition thermoplastique et/ou élastomérique » dans la présente invention une composition qui, de manière réversible, se ramollit sous l'action de la chaleur et se durcit en se refroidissant (thermoplastique) et/ou reprend plus ou moins rapidement sa forme originelle et ses dimensions primitives après application d'une déformation sous contrainte (élastomérique). Elle présente au moins une température dite de transition vitreuse (Tg) en dessous de laquelle la fraction amorphe de la composition est à l'état vitreux cassant, et au-dessus de laquelle la composition peut subir des déformations plastiques réversibles. La température de transition vitreuse ou l'une, au moins, des températures de transition vitreuse, de la composition thermoplastique à base d'amidon de la présente invention est de préférence comprise entre -120 0C et 15O0C. Cette composition peut être en particulier thermoplastique, c'est-à-dire présenter une aptitude à être mise en forme par les procédés utilisés traditionnellement en plasturgie, tels que l'extrusion, l'injection, le moulage, le rotomoulage, le soufflage et le calandrage. Sa viscosité, mesurée à une température de 100 0C à 2000C, est généralement comprise entre 10 et 106 Pa.s. Cette composition peut être également élastomérique, c'est-à-dire présenter une grande capacité d'extensibilité et de reprise élastique comme les caoutchoucs, naturels ou synthétiques. Le comportement élastomérique de la composition peut être obtenu ou amélioré par réticulation ou vulcanisation plus ou moins poussée, après mise en forme à l'état plastique.
De préférence, ladite composition est «thermo-fusible», c'est-à-dire qu'elle peut être mise en forme sans application de forces de cisaillement importantes, c'est- à-dire par simple écoulement ou par simple pressage de la matière fondue. Sa viscosité, mesurée à une température de 100 0C à 2000C, est généralement comprise entre 10 et 103 Pa. s. Dans le contexte actuel de perturbations climatiques dues à l'effet de serre et au réchauffement planétaire, de l'évolution à la hausse des coûts des matières premières fossiles, en particulier du pétrole dont sont issues les matières plastiques, de l'état de l'opinion publique en quête d'un développement durable, de produits plus naturels, plus propres, plus sains et moins dispendieux en énergie, et de l'évolution des réglementations et des fiscalités, il est nécessaire de disposer de nouvelles compositions issues de ressources renouvelables, qui conviennent en particulier au domaine des matériaux plastiques, et qui soient à la fois compétitives, conçues dès l'origine pour n'avoir que peu ou pas d'impacts négatifs sur l'environnement, et techniquement aussi performantes que les polymères préparés à partir de matières premières d'origine fossiles.
L'amidon constitue une matière première présentant les avantages d'être renouvelable, biodégradable et disponible en grandes quantités à un prix économiquement intéressant par rapport au pétrole et au gaz, utilisés comme matières premières pour les plastiques actuels.
Le caractère biodégradable de l'amidon a déjà été exploité dans la fabrication de matières plastiques, et cela selon deux solutions techniques principales.
Les premières compositions à base d'amidon ont été développées il y a une trentaine d'années environ. Les amidons ont été alors employés sous forme de mélanges avec des polymères synthétiques tels que le polyéthylène, en tant que charge, à l'état natif granulaire. Avant dispersion dans le polymère synthétique constituant la matrice, ou phase continue, l'amidon natif était alors de préférence séché jusqu'à un taux d'humidité inférieur à 1% en poids, pour réduire son caractère hydrophile. Dans ce même but, il a pu également être enrobé par des corps gras (acides gras, silicones, siliconates) ou encore être modifié à la surface des grains par des siloxanes ou des isocyanates.
Les matériaux ainsi obtenus contenaient généralement environ 10 %, tout au plus 20% en poids d'amidon granulaire, car au-delà de cette valeur, les propriétés mécaniques des matériaux composites obtenus devenaient trop imparfaites et abaissées par rapport à celles des polymères synthétiques formant la matrice. De plus, il est apparu que de telles compositions à base de polyéthylène étaient seulement bio- fragmentables et non biodégradables comme escompté, de sorte que l'essor attendu de ces compositions n'a pas eu lieu. Pour pallier le défaut de biodégradabilité, des développements ont été menés par la suite sur le même principe en remplaçant le polyéthylène classique par des polyéthylènes dégradables par oxydation ou par des polyesters biodégradables tels que le polyhydroxybutyrate-co-hydroxyvalérate (PHBV) ou le poly( acide lactique) (PLA). Là encore, les propriétés mécaniques de tels composites, obtenus par mélange avec de l'amidon granulaire, se sont avérées être insuffisantes. On pourra se référer au besoin à l'excellent livre « La Chimie Verte », Paul Colonna, Edition TEC & DOC, Janvier 2006, chapitre 6 intitulé « Matériaux à base d'amidons et de leurs dérivés » de Denis Lourdin et Paul Colonna, pages 161 à 166.
Par la suite, l'amidon a été utilisé dans un état essentiellement amorphe et thermoplastique. Cet état est obtenu par plastification de l'amidon par incorporation d'un plastifiant approprié à un taux compris généralement entre 15 et 25 % par rapport à l'amidon granulaire, par apport d'énergie mécanique et thermique. Les brevets US 5 095 054 de la société Warner Lambert et EP 0 497 706 Bl de la Demanderesse décrivent en particulier cet état déstructuré, à cristallinité réduite ou absente grâce à l'ajout de plastifiant, et des moyens pour obtenir de tels amidons thermoplastiques. Toutefois, les propriétés mécaniques des amidons thermoplastiques, bien qu'elles puissent être dans une certaine mesure modulées par le choix de l'amidon, du plastifiant et du taux d'emploi de ce dernier, sont globalement assez médiocres car les matières ainsi obtenues sont toujours très hautement visqueuses, même à haute température (12O0C à 17O0C) et très fragiles, trop cassantes et très dures à basse température, c'est-à-dire en dessous de la température de transition vitreuse ou de la température de transition la plus élevée.
Ainsi, l'allongement à la rupture de tels amidons thermoplastiques est très faible, toujours inférieur à environ 10%, et cela même avec une teneur en plastifiant très élevée de l'ordre de 30%. A titre de comparaison, l'allongement à la rupture de polyéthylènes basse densité est généralement compris entre 100 et 1000 %. De plus, la contrainte maximale à la rupture des amidons thermoplastiques diminue très fortement lorsque le taux de plastifiant augmente. Elle a une valeur acceptable, de l'ordre de 15 à 60 MPa, pour une teneur en plastifiant de 10 à 25 %, mais diminue de manière inacceptable au-delà de 30 %. De ce fait, ces amidons thermoplastiques ont fait l'objet de nombreuses recherches visant à mettre au point des formulations biodégradables et/ou hydrosolubles présentant de meilleures propriétés mécaniques par mélange physique de ces amidons thermoplastiques, soit avec des polymères d'origine pétrolière comme le poly( acétate de vinyle) (PVA), les poly( alcool vinylique) (PVOH), les copolymères éthylène/alcool vinylique (EVOH), des polyesters biodégradables tels que les polycaprolactones (PCL), les poly(butylène adipate téréphtalate) (PBAT) tels que les produits commercialisés sous les marques « Ecoflex » et « Ecovio » , les poly(butylène succinate)(PBS), et les poly(butylène succinate adipate) (PBSA) tels que les produits commercialisés sous la marque « Bionolle », soit avec des polyesters d'origine renouvelable comme les poly( acide lactique) (PLA) tels que les produits commercialisés sous la marque « Ingeo » ou des polyhydroxyalkanoates microbiens (PHA, PHB et PHBV) tels que les produits commercialisés sous les marques « Nodax » et « Mirel », soit encore avec des polymères naturels extraits de plantes ou de tissus d'animaux. On pourra se référer à nouveau au livre « La Chimie Verte », Paul Colonna, Edition TEC & DOC, pages 161 à 166, mais aussi par exemple aux brevets EP 0 579 546 Bl, EP 0 735 104 Bl et FR 2 697 259 de la Demanderesse qui décrivent des compositions contenant des amidons thermoplastiques.
Au microscope, ces résines apparaissent comme très hétérogènes et présentent des îlots d'amidon plastifié dans une phase continue de polymères synthétiques. Ceci est dû au fait que les amidons thermoplastiques sont très hydrophiles et sont en conséquence très peu compatibles avec les polymères synthétiques. Il en découle que les propriétés mécaniques de tels mélanges, même avec ajout d'agents de compatibilisation tels que des copolymères à motifs hydrophobes et motifs hydrophiles en alternance comme des copolymères éthylène/acide acrylique (EAA), ou encore des cyclodextrines ou des organosilanes, restent assez limitées . A titre d'exemple, le produit commercial MATER-BI de grade Y présente, selon les renseignements donnés par son fabricant, un allongement à la rupture de 27% et une contrainte maximale à la rupture de 26 MPa. En conséquence, ces matières composites trouvent aujourd'hui des usages restreints, c'est-à-dire limités essentiellement aux seuls secteurs du suremballage, des sacs poubelle, des sacs de caisses et de certains objets massiques rigides, biodégradables.
La déstructuration de l'état granulaire natif semi-cristallin de l'amidon pour obtenir des amidons amorphes thermoplastiques peut être réalisée en milieu peu hydraté par des procédés d'extrusion. L'obtention d'une phase fondue à partir des granules d'amidon nécessite non seulement un apport important d'énergie mécanique et d'énergie thermique mais également la présence d'un plastifiant au risque, sinon, de carboniser l'amidon.
On entend par « plastifiant de l'amidon », toute molécule organique de faible masse moléculaire, c'est-à-dire ayant de préférence une masse moléculaire inférieure à 5000, qui, lorsqu'elle est incorporée à l'amidon par un traitement thermomécanique à une température comprise entre 20 et 2000C, aboutit à une diminution de la température de transition vitreuse et/ou à une réduction de la cristallinité d'un amidon granulaire jusqu'à une valeur inférieure à 15 %, voire à un état essentiellement amorphe. L'eau est le plastifiant le plus naturel de l'amidon et il est par conséquent couramment employé, mais d'autres molécules sont également très efficaces, notamment les sucres tels que le glucose, le maltose, le fructose ou le saccharose ; les polyols tels que l'éthylèneglycol, le propylèneglycol, les polyéthylèneglycols (PEG), le glycérol, le sorbitol, le xylitol, le maltitol ou les sirops de glucose hydrogénés ; l'urée ; les sels d'acides organiques tels que le lactate de sodium ainsi que les mélanges de ces produits.
La quantité d'énergie à appliquer pour plastifier l'amidon peut être avantageusement réduite en augmentant la quantité de plastifiant. En pratique, l'usage d'un plastifiant à un taux important par rapport à l'amidon induit toutefois différents problèmes techniques parmi lesquels on peut citer les suivants : o un relargage du plastifiant de la matrice plastifiée dès la fin de la fabrication ou au cours du temps lors du stockage, de sorte qu'il est impossible de retenir une quantité de plastifiant aussi élevée que souhaité et par conséquent d'obtenir une matière suffisamment souple et filmogène, o une forte instabilité des propriétés mécaniques de l'amidon plastifié qui se durcit ou se ramollit en fonction de l'humidité de l'air, respectivement lorsque sa teneur en eau diminue ou augmente, o le blanchis sèment ou l'opacification de la surface de la composition par cristallisation du plastifiant utilisé à haute dose, comme par exemple dans le cas du xylitol, o un caractère collant ou huileux de la surface, comme dans le cas du glycérol par exemple, o une très mauvaise tenue à l'eau, d'autant plus problématique que la teneur en plastifiant est élevée. Une perte d'intégrité physique est constatée dans l'eau, de sorte que l'amidon plastifié ne peut pas, en fin de fabrication, être refroidi par immersion dans un bain d'eau comme pour les polymères traditionnels. De ce fait, ses usages sont très limités. Pour étendre ses possibilités d'usage, il est nécessaire de le mélanger avec des quantités importantes, généralement supérieures ou égales à 60 %, de polyesters ou d'autres polymères coûteux. o une hydrolyse prématurée possible des polyesters (PLA, PBAT, PCL, PET) éventuellement associés à l'amidon thermoplastique.
La présente invention apporte une solution efficace aux problèmes énoncés ci-dessus en proposant de nouvelles compositions à base d'amidon présentant des propriétés améliorées par rapport à celles de l'art antérieur. La Demanderesse a en effet constaté après de nombreux travaux que, de façon surprenante et inattendue, l'utilisation conjointe (a) de produits nanométriques particuliers, c'est-à-dire constitués de particules dont l'une au moins des dimensions est comprise entre 0,1 et 500 nanomètres, en des proportions définies, et (b) de polymères non amylacés, permettait avantageusement d'obtenir le maximum, voire la totalité, des effets ci-dessous: o ajuster la viscosité à chaud et à l'état fondu de la composition à base d'amidon selon l'invention et, plus généralement, ses propriétés rhéologiques, de sorte que cette composition présente un réel comportement thermoplastique, voire thermofusible, contrairement à une composition identique d'amidon sans produit nanométrique, o limiter le durcissement au refroidissement lié à une rétrogradation de l'amidon au sein de la composition et de conserver par conséquent un caractère thermoplastique (ramollissement thermique réversible), o réduire le brunissement ou la dégradation de la composition à base d'amidon lors des cycles de chauffage nécessaires à sa mise en œuvre ou à sa mise en forme, o permettre au besoin d'introduire dans les compositions, de façon stable dans le temps, une quantité de plastifiant élevée à très élevée, avec un relargage limité, voir nul et de ce fait, d'obtenir une composition d'une grande souplesse mécanique, étirable sous contrainte et très filmogène, o améliorer la compatibilité entre amidon et polymère non amylacé, o donner lieu à des mélanges présentant de très bonnes caractéristiques mécaniques (contrainte et/ou allongement à la rupture) et autres caractéristiques (bonne tenue à l'eau et à l'humidité, taux élevé d'insolubles), o amoindrir, par neutralisation, les risques d'hydrolyse prématurée des polyesters (PLA, PBAT, PCL, PET) éventuellement associés à l'amidon thermoplastique, o améliorer considérablement les propriétés de mise en œuvre de la composition, de sorte que les technologies en place pour les polymères plastiques usuels peuvent aisément être utilisées, et o permettre d'obtenir une composition à base d'amidon présentant des propriétés fonctionnelles améliorées comparativement à une composition d'amidon de l'art antérieur qui serait identique mais dépourvue de produit nanométrique, notamment en termes de résistance à l'eau, à l'humidité et/ou à la lumière, d'effets barrière à la migration de molécules liquides ou gazeuses, de caractéristiques organoleptiques (aspect plus lisse, toucher plus agréable, transparence optimisée, coloration moindre, absence d'odeur) et de propriétés applicatives (conduction de la chaleur, conduction électrique, aptitude à la mise en peinture, imprimabilité).
La présente invention a par conséquent pour objet une composition thermoplastique et/ou élastomérique comprenant: - au moins 50 % en poids et au plus 99,95 % en poids d'une composition amylacée
(a) comprenant au moins un amidon,
- au moins 0,05 % en poids et au plus 50 % en poids d'un produit nanométrique (b) constitué de particules dont l'une au moins des dimensions est comprise entre 0,1 et 500 nanomètres, choisi parmi: - les produis de mélanges à base d'au moins une argile lamellaire et d'au moins un oligomère cationique, les nanotubes organiques, minéraux ou mixtes, les nanocristaux et nanocristallites organiques, minéraux ou mixtes, les nanobilles et nanosphères organiques, minérales ou mixtes, individualisées, en grappes ou agglomérées, et les mélanges quelconques d'au moins deux de ces produits nanométriques, ces pourcentages étant exprimés en poids sec et rapportés à la somme, en poids sec, de (a) et (b), et
- au moins un polymère non amylacé (c). Par « oligomère cationique », on entend, au sens de la présente invention, un polymère cationique de taille relativement faible, de nature organique et d'origine naturelle ou non, constitué d'un nombre d'unités monomères tel que le poids moléculaire dudit oligomère ne dépasse pas 200 000 Daltons, chacune desdites unités monomères pouvant être, ou non, cationique, l' oligomère étant globalement chargé positivement.
Le produit nanométrique (b) sélectionné améliore le comportement à la mise en œuvre et à la mise en forme de la composition selon l'invention mais aussi sa durabilité ou bien ses propriétés mécaniques, thermiques, conductrices, adhésives et/ou organoleptiques. Il peut être de toute nature chimique et éventuellement déposé ou fixé sur un support. Avantageusement, le produit nanométrique (b) est constitué de particules dont l'une au moins des dimensions est comprise entre 0,5 et 200 nanomètres, de préférence comprise entre 0,5 et 100 nanomètres, et plus préférentiellement encore comprise entre 1 et 50 nanomètres. Cette dimension est notamment comprise entre 5 et 50 nanomètres.
La composition thermoplastique et/ou élastomérique conforme à l'invention comprend avantageusement
- au moins 55 % en poids, de préférence au moins 60 % en poids, d'une composition amylacée (a) comprenant au moins un amidon et, éventuellement, au moins un plastifiant de celui-ci, et
- au plus 45 % en poids, de préférence au plus 40% en poids, d'un produit nanométrique (b) tel que défini ci-dessus, ces pourcentages étant exprimés comme indiqué ci-dessus.
Selon une variante avantageuse, la composition thermoplastique et/ou élastomérique de l'invention comprend :
- au moins 80 % en poids, de préférence au moins 90% en poids, d'une composition amylacée (a) comprenant au moins un amidon et, éventuellement, au moins un plastifiant de celui-ci, et
- au plus 20 % en poids, de préférence au plus 10% en poids, d'un produit nanométrique(b) tel que défini ci-avant, ces pourcentages étant exprimés comme indiqué ci-dessus.
A titre d'exemple, la composition selon l'invention peut comprendre seulement 0,1 à 4% en poids d'un produit nanométrique (b) avantageusement constitué de particules dont l'une au moins des dimensions est comprise entre 5 et 50 nanomètres.
A l'inverse, selon une autre variante et en particulier quand la composition de l'invention constitue un mélange maître (masterbatch) destiné à être ensuite dilué par une autre composition polymérique, contenant de préférence également au moins un polymère non amylacé, ladite composition peut comprendre une proportion relativement élevée, c'est-à-dire de 5 à 40 % en poids, de préférence entre 6 et 35 % en poids, d'un produit nanométrique (b). Cette proportion peut notamment être comprise entre 8 et 30 % en poids.
Lors de la préparation d'un tel mélange maître, le produit nanométrique est avantageusement constitué de particules dont l'une au moins des dimensions est comprise entre 5 et 50 nanomètres.
Selon une autre variante, la composition selon l'invention comprend :
- de 10 à 98 %, de préférence de 25 à 95 %, en poids d'une composition amylacée (a) comprenant au moins un amidon et, de préférence, au moins un plastifiant de celui ci, - de 1 à 50 % en poids d'un produit nanométrique (b), et
- de 1 à 70 %, de préférence de 5 à 60 %, en poids d'au moins un polymère non amylacé (c), ces pourcentages étant exprimés en poids sec et rapportés au poids sec total de la composition thermoplastique ou élastomérique selon l'invention. A titre d'exemple, la composition selon l'invention peut comprendre une proportion relativement faible, c'est-à-dire de 1 à 20%, en particulier de 2 à 10 %, en poids (sec/sec) d'un produit nanométrique(b).
A l'inverse, selon une autre variante et en particulier quand la composition conforme à l'invention constitue un mélange maître (« masterbatch »), ladite composition peut comprendre une proportion relativement élevée, c'est à dire de 5 à
45 %, en particulier de 5 à 40 %, en poids (sec/sec), d'un produit nanométrique(b).
L'amidon contenu dans la composition amylacée (a) présente de préférence un taux de cristallinité inférieur à 15 %, de préférence inférieur à 5% et plus préférentiellement inférieur à 1%. Ce taux de cristallinité peut en particulier être mesuré par diffraction de rayons X comme décrit dans le brevet US 5 362 777 (colonne 9, lignes 8 à 24).
La composition amylacée (a) est avantageusement substantiellement dépourvue de grains d'amidon présentant, en microscopie sous lumière polarisée, une croix de Malte, signe indicateur de la présence d'amidon granulaire cristallin. La mise en contact de produits à base de nanoparticules avec des compositions à base d'amidon a déjà été décrite. Cependant, dans un certain nombre de cas, cette mise en contact : a) n'est que provisoire, le but étant d'utiliser la composition à base d'amidon comme moyen de purification desdites nanoparticules en milieu liquide (solution), comme, par exemple, décrit dans l'article de A. STAR et al, Angew. Chem. Int. Ed. 2002, 41, N°14, pp 2508 - 2512, b) se fait au sein de mélanges, intermédiaires ou finaux, qui ne sont aucunement des compositions thermoplastiques ou élastomériques, comme décrit dans les demandes EP 1 506 765, FR 2 795 081 et WO 2007/000193 ou dans l'article de J. SUNDARAM et al, Acta Biomateriala 4 (2008), pp 932-942. Par ailleurs, l'usage de produits à base de nanoparticules pour formuler des compositions à base d'amidon thermoplastiques ou élastomériques a, certes, déjà été décrit mais ce, soit en absence de tout polymère non amylacé, soit avec des types de produits différents de ceux de la présente invention ou bien dans des conditions ou en des proportions différentes de celles revendiquées. Ainsi, a) les demandes WO 01/68762, WO 2007/027114 et EP 1 626 067 et l'article de X. MA et al, Composites Science and Technology 68 (2008), pp 268-273, décrivent et exemplifient des compositions associant amidon et nanocharge, compositions qui ne contiennent cependant pas de polymère non amylacé, et b) les demandes WO 03/035044, WO 2007/027114 et WO 2008/090195, décrivent, en toutes généralités et sans l'exemplifier, la possibilité d'utiliser, dans des proportions indéfinies ou comprises dans des fourchettes très larges, de nombreuses charges, nanométriques ou non, de nature généralement inorganique, dans des compositions thermoplastiques contenant une composition amylacée. Différents auteurs ont conduit des travaux d'ajout d'argiles de type phyllosilicates ou silicate stratifié, en particulier de type montmorillonite, dans des matrices de polymères d'origine naturelle comme l'amidon en vue d'en améliorer les caractéristiques.
On peut, à ce titre, citer la demande de brevet EP 1 229 075 qui n'envisage aucun agent d' exfoliation particulier, notamment de nature cationique, pour améliorer les conditions d'exfoliation du phyllosilicate. Dans ce document, il est uniquement envisagé d'« activer » le phyllosilicate avec de l'eau et ce, lors de l'opération d'extrusion, laquelle se fait à température relativement basse (au plus égale à 150 0C, en pratique comprise entre 75 et 105 0C).
On peut également citer la demande internationale WO 01/68762 susmentionnée, déposée par NEDERLANDSE ORG TOEGEPLAST
NATUURWETENSCH (TNO) revendiquant une matière thermoplastique biodégradable comprenant un polymère naturel, un plastifiant et une argile présentant une structure en feuillets et une capacité d'échange d'ions comprise entre 30 et 250 milliéquivalents pour 100 g. Le polymère naturel peut être un hydrate de carbone comme de l'amidon. Cette demande mentionne l'intérêt de prétraiter l'argile dans un milieu aqueux très dilué à 6O0C pendant 24h, en présence d'un « agent modifiant » de nature polymérique et générateur d'ions onium (ammonium, phosphonium, sulfonium), comme par exemple de l'amidon cationique, afin de rendre cette argile compatible avec le polymère naturel. Des essais menés par la Demanderesse ont montré que de telles compositions, lorsqu'elles sont préparées à partir d'amidon plastifié comme décrit notamment dans l'exemple 3 de ce document, ne présentent pas une tenue suffisante à l'eau, ni des propriétés mécaniques ou organoleptiques suffisantes. Après analyse de la Demanderesse, ce défaut semble être lié à une mauvaise ou très imparfaite exfoliation des argiles dans les conditions préconisées dans cette demande de brevet. Sans vouloir être liée à une quelconque théorie, la Demanderesse pense que cette mauvaise exfoliation serait principalement due à un poids moléculaire beaucoup trop élevé de l'amidon cationique mis en œuvre dans cette demande de brevet; un amidon cationique présentant classiquement un poids moléculaire de 1 à plusieurs millions de Daltons tel qu'utilisé dans cette demande s' avérant alors être plutôt un agent compatibilisant qu'un agent exfoliant de l'argile.
Enfin, ce document n'enseigne pas l'intérêt d'utiliser une combinaison de nanofeuillets minéraux de type argile ou autres minéraux lamellaires, d'une part, et d' oligomères cationiques tels que notamment des protéines ou/et des oligosaccharides cationiques, d'autre part. La Demanderesse a constaté que de tels oligomères cationiques étaient des agents d' exfoliation très efficaces.
D'autres documents, comme l'article « Biopolymer nanocomposites containing native wheat starch and nanoclays » de Chiou B. S. et al., ACS National Meeting Book of Abstract 228/1 IEC-41, 2004, concernent des travaux avec des argiles sodiques ou des argiles traitées par des tensioactifs dans la fabrication de composites thermoplastiques à base d'amidon de blé, natif et non plastifié. Un certain effet bénéfique sur les propriétés mécaniques et sur l'absorption d'eau est noté seulement en cas d'utilisation d'argiles sodiques natives, c'est-à-dire des argiles non traitées par une quelconque substance, organique ou minérale, polymérique ou non.
A la meilleure connaissance de la demanderesse, en dehors des argiles ou d'autres minéraux lamellaires, aucune nanocharge n'a a priori été utilisée pour améliorer les propriétés de mise en œuvre, les propriétés fonctionnelles ou la stabilité au stockage de compositions thermoplastiques ou élastomériques à base d'amidon et de polymère non amylacé.
L'amidon utilisé pour la préparation de la composition amylacée (a) est de préférence choisi parmi les amidons granulaires, les amidons hydrosolubles et les amidons organomodifiés.
On entend au sens de l'invention par « amidon granulaire », un amidon natif ou un amidon modifié physiquement, chimiquement ou par voie enzymatique, ayant conservé une structure semi-cristalline similaire à celle mise en évidence dans les grains d'amidon présents naturellement dans les organes et tissus de réserve des végétaux supérieurs, en particulier dans les graines de céréales, les graines de légumineuses, les tubercules de pomme de terre ou de manioc, les racines, les bulbes, les tiges et les fruits. Cet état semi-cristallin est essentiellement dû aux macromolécules d'amylopectine, l'un des deux constituants principaux de l'amidon. A l'état natif, les grains d'amidon présentent un taux de cristallinité qui varie de 15 à 45 %, et qui dépend essentiellement de l'origine botanique de l'amidon et du traitement éventuel qu'il a subi. L'amidon granulaire, placé sous lumière polarisée, présente en microscopie une croix caractéristique, dite « croix de Malte », typique de l'état granulaire cristallin. Pour une description plus détaillée de l'amidon granulaire, on pourra se référer au chapitre II intitulé « Structure et morphologie du grain d'amidon » de S. Perez, dans l'ouvrage « Initiation à la chimie et à la physico-chimie macromoléculaires », Première édition 2000, Volume 13, pages 41 à 86, Groupe Français d'Etudes et d'Applications des Polymères. Selon une première variante, l'amidon sélectionné pour la préparation de la composition amylacée (a) est un amidon granulaire. La cristallinité dudit amidon granulaire peut être rendue inférieure à 15% par un traitement thermomécanique et/ou mélange intime avec un plastifiant approprié. Ledit amidon granulaire peut être de toutes origines botaniques. Il peut s'agir d'amidon natif de céréales telles que le blé, le maïs, l'orge, le triticale, le sorgo ou le riz, de tubercules tels que la pomme de terre ou le manioc, ou de légumineuses telles que le pois et le soja, les amidons riches en amylose ou, inversement, riches en amylopectine (waxy) issus de ces plantes et les mélanges quelconques des amidons précités. L'amidon granulaire peut également être un amidon granulaire modifié par tous moyens, physiques, chimiques et/ou enzymatiques. Il peut s'agir d'un amidon granulaire fluidifié ou oxydé ou d'une dextrine blanche. Il peut s'agir également d'un amidon granulaire modifié par voie physico-chimique mais ayant pu conserver la structure de l'amidon natif de départ, comme les amidons estérifiés et/ou éthérifiés, en particulier modifiés par greffage, acétylation, hydroxypropylation, anionisation, cationisation, réticulation, phosphatation, succinylation et/ou silylation. Il peut s'agir, enfin, d'un amidon modifié par une combinaison des traitements énoncés ci-dessus ou d'un mélange quelconque de tels amidons granulaires.
Dans un mode de réalisation préféré, cet amidon granulaire est choisi parmi les amidons fluidifiés, les amidons oxydés, les amidons ayant subi une modification chimique, les dextrines blanches et les mélanges quelconques de ces produits.
L'amidon granulaire est de préférence un amidon granulaire de blé ou de pois ou un dérivé granulaire d'amidon de blé ou de pois.
L'amidon granulaire utilisé présente généralement un taux de solubles à 2O0C dans l'eau déminéralisée, inférieur à 5 % en masse. Il peut être quasiment insoluble dans l'eau froide. Selon une seconde variante, l'amidon sélectionné pour la préparation de la composition amylacée (a) est un amidon hydrosoluble, pouvant provenir aussi de toutes origines botaniques, y compris un amidon, hydrosoluble, riche en amylose ou, inversement, riche en amylopectine (waxy). Cet amidon soluble peut être introduit en remplacement partiel ou total de l'amidon granulaire.
On entend au sens de l'invention par « amidon hydrosoluble», toute matière polysaccharidique dérivée d'amidon, présentant à 2O0C et sous agitation mécanique pendant 24 heures, une fraction soluble dans de l'eau déminéralisée au moins égale à 5 % en poids. Cette fraction soluble est de préférence supérieure à 20 % en poids et en particulier supérieure à 50 % en poids. Bien entendu, l'amidon soluble peut être totalement soluble dans l'eau déminéralisée (fraction soluble = 100 %).
L'amidon hydrosoluble est utilisé sous forme solide, de préférence essentiellement anhydre, c'est-à-dire non dissoute ou non dispersée dans un solvant aqueux ou organique. Il est donc important de ne pas confondre, tout au long de la description qui suit, le terme « hydrosoluble » avec le terme « dissous ».
De tels amidons hydrosolubles peuvent être obtenus par prégélatinisation sur tambour, par prégélatinisation sur extrudeuse, par atomisation d'une suspension ou d'une solution amylacée, par précipitation par un non-solvant, par cuisson hydrothermique, par fonctionnalisation chimique ou autre. Il s'agit en particulier d'un amidon prégélatinisé, extradé ou atomisé, d'une dextrine hautement transformée
(appelée aussi dextrine jaune), d'une maltodextrine, d'un amidon fonctionnalisé ou d'un mélange de ces produits.
Les amidons prégélatinisés peuvent être obtenus par traitement hydrothermique de gélatinisation d'amidons natifs ou d'amidons modifiés, en particulier par cuisson vapeur, cuisson jet-cooker, cuisson sur tambour, cuisson dans des systèmes de malaxeur/extrudeuse puis séchage, par exemple en étuve, par air chaud sur lit fluidisé, sur tambour rotatif, par atomisation, par extrusion ou par lyophilisation. De tels amidons présentent généralement une solubilité dans l'eau déminéralisée à 2O0C supérieure à 5 % et plus généralement comprise entre 10 et 100 % et un taux de cristallinité en amidon inférieur à 15%, généralement inférieur à 5% et le plus souvent inférieur à 1%, voire nul. A titre d'exemple, on peut citer les produits fabriqués et commercialisés par la Demanderesse sous le nom de marque PREGEFLO®.
Les dextrines hautement transformées peuvent être préparées à partir d'amidons natifs ou modifiés, par dextrinification en milieu acide peu hydraté. Il peut s'agir en particulier de dextrines blanches solubles ou de dextrines jaunes. A titre d'exemple, on peut citer les produits STABILYS® A 053 ou TACKIDEX® C 072 fabriqués et commercialisés par la Demanderesse. De telles dextrines présentent dans l'eau déminéralisée à 2O0C, une solubilité comprise généralement entre 10 et 95 % et une cristallinité en amidon inférieure à 15% et généralement inférieure à 5%. Les maltodextrines peuvent être obtenues par hydrolyse acide, oxydante ou enzymatique d'amidons en milieu aqueux. Elles peuvent présenter en particulier un dextrose équivalent (DE) compris entre 0,5 et 40, de préférence entre 0,5 et 20 et mieux encore entre 0,5 et 12. De telles maltodextrines sont par exemple fabriquées et commercialisées par la Demanderesse sous l'appellation commerciale GLUCIDEX® et présentent une solubilité dans l'eau déminéralisée à 2O0C, généralement supérieure à 90%, voire proche de 100% et une cristallinité en amidon inférieure généralement inférieure à 5% et d'ordinaire quasiment nulle.
Les amidons fonctionnalisés peuvent être obtenus à partir d'un amidon natif ou modifié. La haute fonctionnalisation peut par exemple être réalisée par estérification ou éthérification à un niveau suffisamment élevé pour lui conférer une solubilité dans l'eau. De tels amidons fonctionnalisés présentent une fraction soluble telle que définie ci-dessus, supérieure à 5 %, de préférence supérieure à 10 %, mieux encore supérieure à 50%.
La fonctionnalisation peut s'obtenir en particulier par acétylation en phase aqueuse d'anhydride acétique, d'anhydrides mixtes, hydroxypropylation en phase colle, cationisation en phase sèche ou phase colle, anionisation en phase sèche ou phase colle par phosphatation ou succinylation. Ces amidons hautement fonctionnalisés hydrosolubles peuvent présenter un degré de substitution compris entre 0,01 et 3, et mieux encore compris entre 0,05 et 1. De préférence, les réactifs de modification ou de fonctionnalisation de l'amidon, sont d'origine renouvelable. Selon une autre variante avantageuse, l'amidon hydrosoluble est un amidon hydrosoluble de blé ou de pois ou un dérivé hydrosoluble d'un amidon de blé ou de pois.
Il présente avantageusement une faible teneur en eau, généralement inférieure à 10 %, de préférence inférieure à 5 %, en particulier inférieure à 2 % en poids et idéalement inférieure à 0,5 %, voire inférieure à 0,2 % en poids.
Selon une troisième variante, l'amidon sélectionné pour la préparation de la composition amylacée (a) est un amidon organomodifié, de préférence organosoluble, pouvant provenir aussi de toutes origines botaniques, y compris un amidon organomodifié, de préférence organosoluble, riche en amylose ou, inversement, riche en amylopectine (waxy). Cet amidon organosoluble peut être introduit en remplacement partiel ou total de l'amidon granulaire ou de l'amidon hydrosoluble.
On entend au sens de l'invention par « amidon organomodifié», toute matière polysaccharidique dérivée d'amidon, autre qu'un amidon granulaire ou un amidon hydrosoluble selon les définitions données ci-avant. De préférence, cet amidon organomodifié est quasiment amorphe, c'est à dire présente un taux de cristallinité en amidon inférieur à 5 %, généralement inférieur à 1% et notamment nul. Il est aussi de préférence « organosoluble », c'est-à-dire présente, à 2O0C, une fraction soluble dans un solvant choisi parmi l'éthanol, l'acétate d'éthyle, l'acétate de propyle, l'acétate de butyle, le carbonate de diéthyle, le carbonate de propylène, le glutarate de diméthyle, le citrate de triéthyle, les esters dibasiques, le diméthylsulfoxide (DMSO), le diméthylisosorbide, le triacétate de glycérol, le diacétate d'isosorbide, le dioléate d'isosorbide et les esters méthyliques d'huiles végétales, au moins égale à 5 % en poids. Cette fraction soluble est de préférence supérieure à 20 % en poids et en particulier supérieure à 50 % en poids. Bien entendu, l'amidon organosoluble peut être totalement soluble dans l'un ou plusieurs des solvants indiqués ci-dessus (fraction soluble = 100 %).
L'amidon organomodifié peut être utilisé selon l'invention sous forme solide, de préférence essentiellement anhydre. De préférence, sa teneur en eau est inférieure à 10 %, de préférence inférieure à 5 %, en particulier inférieure à 2 % en poids et idéalement inférieure à 0,5 %, voire inférieure à 0,2 % en poids. L'amidon organomodifié utilisable dans la composition selon l'invention, peut être préparé par une haute fonctionnalisation des amidons natifs ou modifiés tels que ceux présentés ci-avant. Cette haute fonctionnalisation peut par exemple être réalisée par estérification ou éthérification à un niveau suffisamment élevé pour le rendre essentiellement amorphe et pour lui conférer une insolubilité dans l'eau et de préférence une solubilité dans l'un des solvants organiques ci-dessus. De tels amidons fonctionnalisés présentent une fraction soluble telle que définie ci-dessus, supérieure à 5 %, de préférence supérieure à 10 %, mieux encore supérieure à 50%.
La haute fonctionnalisation peut s'obtenir en particulier par acétylation en phase solvant par anhydride acétique, greffage par exemple en phase solvant ou par extrusion réactive, d'anhydrides d'acides, d'anhydrides mixtes, de chlorures d'acides gras, d'oligomères de caprolactones ou de lactides, hydroxypropylation et réticulation en phase colle, cationisation et réticulation en phase sèche ou en phase colle, anionisation par phosphatation ou succinylation et réticulation en phase sèche ou en phase colle, sililation, télomérisation au butadiène. Ces amidons hautement fonctionnalisés organomodifiés, de préférence organosolubles, peuvent être en particulier des acétates d'amidons, de dextrines ou de maltodextrines ou des esters gras de ces matières amylacées (amidons, dextrines, maltodextrines) avec des chaines grasses de 4 à 22 carbones, l'ensemble de ces produits présentant de préférence un degré de substitution (DS) compris entre 0,5 et 3,0, de préférence compris entre 0,8 et 2,8 et notamment compris entre 1,0 et 2,7.
Il peut s'agir, par exemple, d'hexanoates, d'octanoates, de décanoates, de laurates, de palmitates, d'oléates et de stéarates d'amidons, de dextrines ou de maltodextrines, en particulier présentant un DS compris entre 0,8 et 2,8. Selon une autre variante avantageuse, l'amidon organomodifié est un amidon organomodifié de blé ou de pois ou un dérivé organomodifié d'un amidon de blé ou de pois.
Le plastifiant de l'amidon est de préférence choisi parmi les diols, les triols et les polyols tels que le glycérol, le polyglycérol, l'isosorbide, les sorbitans, le sorbitol, le mannitol, et les sirops de glucose hydrogénés, les sels d'acides organiques comme le lactate de sodium, l'urée et les mélanges de ces produits. Le plastifiant présente de façon avantageuse une masse molaire inférieure à 5000, de préférence inférieure à 1000, et en particulier inférieure à 400. L'agent plastifiant a de préférence une masse molaire supérieure à 18 et au plus égale à 380, autrement dit il n'englobe de préférence pas l'eau. Le plastifiant de l'amidon, tout particulièrement lorsque ce dernier est organomodifié, est de préférence choisi parmi les esters méthyliques, éthyliques ou les esters gras d'acides organiques tels que les acides lactique, citrique, succinique, adipique et glutarique et les esters acétiques ou esters gras de mono-alcools, diols, triols ou polyols tels que l'éthanol, le diéthylène glycol, le glycérol et le sorbitol. A titre d'exemple, on peut citer le diacétate de glycérol (diacétine), le triacétate de glycérol (triacétine), le diacétate d'isosorbide, le dioctanoate d'isosorbide, le dioléate d'isosorbide, le dilaurate d'isosorbide, les esters d'acides dicarboxyliques ou esters dibasiques (DBE de l'anglais dibasic esters) et les mélanges de ces produits.
Le plastifiant, de préférence autre que l'eau, est généralement présent dans composition amylacée (a) à raison de 1 à 150 parts en poids sec, de préférence à raison de 10 à 120 parts en poids sec et en particulier à raison de 25 à 120 parts en poids sec pour 100 parts en poids sec d'amidon.
La Demanderesse a trouvé que la présente invention permettait d'introduire de façon stable dans le temps, une quantité de plastifiant élevée, avec un relargage limité, voire nul et d'obtenir ainsi une composition amylacée plastifiée d'une grande souplesse mécanique, étirable sous contrainte, très filmogène, ces effets se répercutant avantageusement sur les propriétés de la composition finale contenant en outre un polymère non amylacé.
Ainsi, selon une variante avantageuse, le plastifiant, de préférence autre que l'eau, est contenu dans la composition amylacée (a) à raison de 25 à 110 parts en poids sec, de préférence à raison de 30 à 100 parts en poids sec et en particulier à raison de 30 à 90 parts en poids sec, pour 100 parts en poids sec d'amidon.
La présente invention a en outre pour objet une composition thermoplastique ou élastomérique comprenant des proportions très particulières en amidon, en plastifiant d'amidon, en produit nanométrique et en polymère non amylacé, ladite composition étant caractérisée par le fait qu'elle comprend : - de 25 à 85 % en poids d'au moins un amidon,
- de 8 à 40 % en poids d'au moins un plastifiant d'amidon, de préférence autre que l'eau
- de 2 à 40 % en poids d'un produit nanométrique (b), et - de 5 à 60 % en poids d'au moins un polymère non amylacé (c), ces pourcentages étant exprimés en poids sec et rapportés au poids sec total de la composition thermoplastique ou élastomérique selon l'invention.
Toutes les variantes et gammes préférées décrites ci-dessus concernant la nature et les proportions des différents ingrédients s'appliquent également à ces compositions.
On peut notamment lister les variantes avantageuses suivantes: l'amidon présente un taux de cristallinité inférieur à 5 %, de préférence inférieur à 1%,
- le produit nanométrique (b) est constitué de particules dont l'une au moins des dimensions est comprise entre 5 et 50 nanomètres,
- le polymère non amylacé (c) est un polymère non biodégradable, de préférence choisi parmi les polyéthylènes (PE) et polypropylènes (PP), de préférence fonctionnalisés, les polyuréthanes thermoplastiques (TPU), les polyamides, les copolymères à blocs triséquencés styrène-ethylène/butylène-styrène (SEBS) et les poly(éthylène téréphtalate) amorphes (PETG), et/ou
- le polymère non amylacé (c) est un polymère contenant au moins 50 %, de préférence au moins 70 %, en particulier plus de 80 %, de carbone d'origine renouvelable au sens de la norme ASTM D 6852 et/ou de la norme ASTM D 6866, par rapport à l'ensemble du carbone présent dans ledit polymère. La composition thermoplastique et/ou élastomérique de la présente invention comprend de préférence au moins un agent de liaison choisi parmi les composés porteurs d'au moins deux fonctions, libres ou masquées, identiques ou différentes, choisies parmi les fonctions isocyanate, carbamoylcaprolactame, aldéhydes, époxyde, halogéno, acide protonique, anhydride d'acide, halogénure d'acyle, oxychlorure, trimétaphosphate, alcoxysilane et des combinaisons de celles-ci. La composition thermoplastique et/ou élastomérique contient au moins 50 %, de préférence au moins 70 %, en particulier plus de 80 %, de carbone d'origine renouvelable au sens de la norme ASTM D 6852 et/ou de la norme ASTM D 6866, par rapport à l'ensemble du carbone présent dans ladite composition. La composition thermoplastique et/ou élastomérique est non biodégradable ou non compostable au sens des normes EN 13432, ASTM D 6400 et ASTM D 6868. La composition thermoplastique ou élastomérique présente simultanément un taux d'insolubles au moins égal à 98 %, un allongement à la rupture au moins égal à 95 % et une contrainte maximale à la rupture supérieure à 8 MPa. Le produit nanométrique (b) tel que défini précédemment peut être un produit de mélange, par exemple un mélange, extemporané on non, ou toute autre combinaison associant au moins une argile lamellaire et au moins un oligomère cationique. Il peut s'agir d'une argile naturelle ou synthétique.
Sous le terme « argile lamellaire », on entend au sens de la présente invention toute structure minérale en nanofeuillets séparables (exfoliables) notamment par neutralisation des charges entre ces feuillets, sous forme de lamelles d'épaisseur nanométrique généralement comprise entre 0,1 et 50 nanomètres, en particulier entre 0,5 et 10 nanomètres, les largeurs et les longueurs de ces lamelles pouvant atteindre plusieurs microns. Ces argiles en nanofeuillets, appelées aussi argiles smectiques ou encore silicates/phyllosilicates de calcium ou/et de sodium, sont notamment connues sous les noms de montmorillonite, bentonite, saponite, hydrotalcite, hectorite, fluorohectorite, attapulgite, beidellite, nontronite, vermiculite, hallysite, stevensite, manasséite, pyroaurite, sjogrénite, stichtite, barbertonite, takovite, désaultelsite, motukoréaite, honéssite, mountkeithite, wermlandite et glimmer . Leur surface spécifique BET dépasse d'ordinaire 50 m2/g et peut atteindre 300 m2/g. De telles argiles lamellaires sont déjà couramment commercialisées, par exemple par la société ROCKWOOD sous les noms de marque NANOSIL et CLOISITE. On peut aussi citer les hydrotalcites, comme les produits PURAL de la société SASOL.
L'oligomére cationique est de préférence d'origine biologique. Il peut être en particulier une protéine ou un oligosaccharide cationique. La diffraction de rayons X aux faibles angles, a montré que ces oligomères cationiques étaient de manière inattendue d'excellents agents exfoliants des argiles lamellaires et permettaient d'obtenir directement, lors d'un traitement thermomécanique, une exfoliation quasi- complète de l'argile lamellaire et d'améliorer ainsi considérablement les propriétés de la composition thermoplastique et/ou élastomérique obtenue. Lorsque l' oligomère cationique est une protéine, celle-ci est de préférence soluble dans l'eau et est de préférence extraite d'un végétal ou de tissus animaux. Il peut s'agir en particulier de gélatines, de caséines, de protéines de blé (gluten), de maïs (zéine), de protéines de soja, de protéines de pois, de protéines de lupin, de tourteaux ou de protéines de colza, de tourteaux ou de protéines de tournesol ou des protéines de pomme de terre. De préférence, cette protéine est fluidifiée/hydrolysée par traitement mécanique, chimique ou enzymatique de façon à réduire son poids moléculaire par rapport à l'état natif jusqu'à devenir un oligopeptide. On peut citer comme protéines utilisables, le gluten de blé hydrolyse, les protéines de pois solubles et les protéines de pomme de terre commercialisées par la Demanderesse notamment sous les noms de marque NUTRALYS®, LYSAMINE® et TUBERMINE®.
Les oligosaccharides cationiques utilisables comme agents exfoliants sont également de préférence hydrosolubles et peuvent provenir de toutes origines. De préférence, ils sont issus de tissus de plantes, d'algues, d'animaux, d'insectes ou de microorganismes. Il peut s'agir en particulier d' oligosaccharides rendus cationiques par un traitement combiné de cationisation et d'hydrolyse acide, enzymatique ou mécanique de cellulose, d'amidon, de guar, de mannane, de galactomannane, d'alginate ou de xanthane. Il peut s'agir aussi d' oligosaccharides obtenus à partir de polymères naturellement cationiques tels que par exemple des chitines ou chitosans.
Ces oligosaccharides cationiques présentent de préférence un poids moléculaires compris entre 100 et 200 000 Daltons, plus préférentiellement compris entre 180 et 50 000 Daltons et mieux encore compris entre 180 et 20 000 Daltons. On peut citer par exemple comme produit avantageusement utilisable, le mélange liquide d' oligosaccharides cationiques vendu par la Demanderesse sous l'appellation VECTOR® SC 20157. De préférence, le produit nanométrique de mélange comprend relativement au poids total de ces deux constituants, 5 à 85%, de préférence 15 à 75 %, de protéines ou/et d'oligosaccharides cationiques. Il peut se présenter sous forme liquide, pulvérulente ou granulée.
L'oligomère cationique peut en outre être une polyoléfine, notamment du polypropylène ou du polyéthylène, greffée ou modifiée par des groupes porteurs de 5 charges positives, par exemple de groupes ammonium quaternaire et aminé, en particulier ammonium quaternaire.
La présente invention a en outre pour objet l'utilisation d'un oligomère cationique tel que défini précédemment comme agent exfoliant d'une argile lamellaire en vue de la préparation d'une composition thermoplastique et/ou élastomérique selon 0 l'invention.
Le produit nanométrique (b) utilisable conformément à l'invention peut être aussi composé de nanotubes organiques, minéraux ou mixtes, c'est-à-dire composé de structures tubulaires de diamètre de l'ordre de quelques dixièmes à plusieurs dizaines de nanomètres. Certains de ces produits sont déjà commercialisés, comme les 5 nanotubes de carbone, par exemple par la société ARKEMA sous les noms de marque GRAPHISTRENGTH et NANOSTRENGTH et la société NANOCYL sous les noms de marque NANOCYL, PLASTICYL, EPOCYL, AQUACYL, et THERMOCYL.
De tels nanotubes peuvent aussi être des nanofibrilles de cellulose, de diamètre voisin de 30 nanomètres pour une longueur de quelques microns, lesquelles sont O constitutives des fibres naturelles de cellulose de bois et peuvent être obtenues par séparation et purification à partir de celles-ci. Il peut s'agir également d'argiles à structure tubulaire ou fibrillaire telles que les sépiolites.
Le produit nanométrique (b) utilisable selon l'invention peut être aussi une composition à base de nanocristaux ou de nanocristallites. Ces structures peuvent être 5 organiques, minérales ou mixtes. Elles peuvent être obtenues par cristallisation, éventuellement in situ, de matières en milieu solvant très dilué, ledit solvant pouvant être constitutif de la composition conforme à l'invention. On peut citer les nanométaux tels que les nanoparticules de fer ou d'argent utiles comme agents réducteurs ou antimicrobiens et les nanocristaux d'oxydes connus comme agents O d'amélioration de la résistance à la rayure. On peut citer aussi les talcs nanométriques de synthèse qui peuvent s'obtenir par exemple par cristallisation à partir d'une solution aqueuse. On peut citer encore à ce titre les complexes amylose/lipides de structures de type Vh(stéarique), Vbutanol, Vglycérol, Visopropanol, Vnaphtol, de 1 à 10 microns de largeur ou de longueur, pour une épaisseur d'une dizaine de nanomètres. Il peut s'agir aussi de complexes d'inclusion avec des cyclodextrines. Il peut s'agir enfin d'agents de nucléation de polymères non amylacés, en particulier de polyoléfines, d'agents aptes à cristalliser sous forme de particules nanométriques comme les dérivés de sorbitol tels que le dibenzylidène sorbitol (DBS) et les dérivés alkylés de celui-ci.
Le produit nanométrique (b) utilisable peut se présenter en particules élémentaires de type nanobille ou nanosphère, c'est-à-dire sous forme de pseudosphères de rayon compris entre 1 et 500 nanomètres, sous forme individualisée, en grappe ou en agglomérats. Il peut s'agir de structures organiques, minérales ou mixtes.
On peut citer notamment les noirs de carbone utilisés couramment en tant que charge d'élastomères et de caoutchoucs. Ces noirs de carbone comprennent des particules primaires de taille pouvant être comprise entre environ 8 nanomètres (noirs au four) à environ 300 nanomètres (noirs thermiques) et présentent généralement des capacités d'absorption d'huile comprises entre 40 et 180 ce pour 100 grammes pour des surface spécifiques STSA comprises entre 5 et 160 m par gramme. De tels noirs de carbone sont notamment commercialisés par les sociétés CABOT, EVONIK, SID RICHARDSON, COLUMBIAN et CONTINENTAL CARBON.
On peut citer aussi les silices hydrophiles ou hydrophobes, de précipitation ou de combustion (pyrogénées), telles que celles utilisées comme agents d'écoulement de poudres ou de charges dans les pneus dits « verts ». De telles silices présentent des tailles de particules généralement comprises entre 5 et 25 nanomètres et sont notamment commercialisées sous forme de poudre ou de dispersions dans de l'eau, dans l'éthylène glycol ou dans des résines de type acrylate ou époxy, par les sociétés GRACE, RHODIA, EVONIK, PPG et NANORESINS AG.
On peut citer encore les carbonates de calcium nanoprécipités tels que celui décrit dans la demande internationale WO98/16471 de la société KAUTAR Oy, ou les oxydes de métaux (dioxyde de titane, oxyde de zinc, oxyde de cérium, oxyde d'argent, oxyde de fer, oxyde de magnésium, oxyde d'aluminium) rendus nanométriques par exemple par combustion (produits commercialisés par la société EVONIK sous les appellations AEOROXIDE ou AEORODISP) ou par attaque acide (produits commercialisés par la société SASOL sous les appellations DISPERAL ou DISPAL).
On peut citer encore les protéines précipitées ou coagulées à l'état de billes nanométriques. On peut citer enfin les polysaccharides comme les amidons mis sous forme nanosphérique, tels que les nanoparticules d'amidon réticulé de taille comprise entre 50 et 150 nanomètres, vendues sous l'appellation ECOSPHERE par la société ECOSYNTHETIX OU encore les nanoparticules d'acétate d'amidon COHPOL
C6N100 du VTT, ou encore des nanobilles synthétisées directement à l'état nanométrique, par exemple celles de polystyrènemaléimides de la société TOPCHIM.
Le produit nanométrique (b) utilisable peut se présenter enfin sous forme de mélanges des produits nanométriques listés plus haut. De tels produits nanométriques peuvent avoir été aussi mis sur des supports comme des talcs, des zéolithes ou des silices amorphes, introduits dans une matrice polymérique ou mis en suspensions dans l'eau ou des solvants organiques.
A ce titre, la Demanderesse a trouvé que les oligomères cationiques qu'elle avait sélectionnés en vue d'obtenir une exfoliation quasi complète des argiles lamellaires comme souligné précédemment, pouvaient constituer avantageusement d'excellents agents de dispersion des nanocharges en général, notamment de type nanobilles, nanocristaux ou nanotubes.
La composition thermoplastique ou élastomérique selon l'invention comprend en outre au moins un polymère autre que l'amidon. Le polymère non amylacé peut être de toutes natures chimiques. Il comporte avantageusement des fonctions à hydrogène actif et/ou des fonctions qui donnent, notamment par hydrolyse, de telles fonctions à hydrogène actif.
Il peut s'agir d'un polymère d'origine naturelle, ou bien d'un polymère synthétique obtenu à partir de monomères d'origine fossile et/ou de monomères issus de ressources naturelles renouvelables. Les polymères d'origine naturelle peuvent être en particulier obtenus directement par extraction à partir de plantes ou de tissus animaux. Ils sont de préférence modifiés ou fonctionnalisés, et en particulier choisi parmi les polymères de nature protéique, cellulosique ou ligno-cellulosique, les chitosanes et caoutchoucs naturels. Il peut s'agir également de polymères obtenus par extraction à partir de cellules de micro-organimes, comme les polyhydroxyalcanoates (PHA).
Un tel polymère d'origine naturelle peut être choisi parmi les farines, les protéines modifiées ou non modifiées ; les celluloses non modifiées ou modifiées en particulier par carboxyméthylation, éthoxylation, hydroxypropylation, cationisation, acétylation, alkylation ; les hémicelluloses ; les lignines ; les guars modifiés ou non modifiés ; les chitines et chitosans ; les gommes et les résines naturelles telles que les caoutchoucs naturels, les colophanes, les shellacs et les résines terpéniques ; les polysaccharides extraits d'algues tels que les alginates et les carraghénanes ; les polysaccharides d'origine bactérienne tels que les xanthanes ou les PHA ; les fibres ligno-cellulosiques telles que les fibres de lin, de chanvre, de bambou, de sisal, de miscanthus ou autres.
Le polymère non amylacé, de préférence porteur de fonctions à hydrogène actif et/ou fonctionnalisé, peut être synthétique et peut être choisi parmi les polymères synthétiques notamment de type polyester, polyacrylique, polyacétal, polycarbonate, polyamide, polyimide, polyuréthane, polyoléfine (notamment polyéthylène, polypropylène, polyisobutylène et leurs copolymères), polyoléfine fonctionnalisée, styrénique, styrénique fonctionnalisé, vinylique, vinylique fonctionnalisé, fluoré fonctionnalisé, polysulfone fonctionnalisé, polyphényléther fonctionnalisé, polyphénylsulfure fonctionnalisé, silicone fonctionnalisée, polyéther fonctionnalisé et les mélanges quelconques des polymères précités.
A titre d'exemple, on peut citer les PLA, les PHA, les PBS, les PBSA, les PBAT, les PET, les polyamides tels que les polyamides 6, 6-6, 6-10, 6-12, 11 et 12, les copolyamides, les polyacrylates, le poly(alcool de vinyle), les poly(acétate de vinyle), les copolymères éthylène- acétate de vinyle (EVA), les copolymères éthylène- acrylate de méthyle (EMA), les copolymères éthylène-alcool vinylique (EVOH), les polyoxyméthylènes (POM), les copolymères acrylonitrile-styrène-acrylates(ASA), les polyuréthanes thermoplastiques (TPU), les polyéthylènes ou polypropylènes fonctionnalisés par exemple par des motifs silane, acryliques ou anhydride maléique et les copolymères styrène-butylène-styrènes (SBS) et styrène-éthylène-butylène- styrènes (SEBS) fonctionnalisés par exemple par des motifs anhydride maléique et les mélanges quelconques de ces polymères .
De préférence, le polymère non amylacé est un polymère synthétisé à partir de monomères bio-sourcé, c'est-à-dire issus de ressources naturelles renouvelables à brève échéance comme les plantes, les microorganismes ou les gaz, notamment à partir de sucres, de glycérine, d'huiles ou de leurs dérivés tels que des alcools ou des acides, mono-, di- ou polyfonctionnels. Il peut en particulier être synthétisé à partir de monomères bio- sources tels que le bio-éthanol, le bio-éthylèneglycol, le bio- propanediol, le 1,3-propanediol biosourcé, le bio-butane-diol, l'acide lactique, l'acide succinique biosourcé, le glycérol, l'isosorbide, le sorbitol, le saccharose, les diols dérivés d'huiles végétales ou animales et les acides résiniques extraits de pin, ainsi que leurs dérivés, étant entendu que lesdits monomères bio-sourcés contiennent avantageusement au moins 15 %, de préférence au moins 30 %, en particulier au moins 50 %, mieux encore au moins 70 %, voire plus de 80 %, de carbone d'origine renouvelable au sens de la norme ASTM D 6852 et/ou la norme ASTM D 6866, par rapport à l'ensemble du carbone présent dans lesdits monomères. Le polymère non amylacé peut être du polyéthylène issu de bio-éthanol, du
PVC issu de bioéthanol, du polypropylène issu de bio-propanediol, des polyesters de type PLA ou PBS à base d'acide lactique ou d'acide succinique biosourcés, des polyesters de type PBAT à base de butane-diol ou d'acide succinique biosourcés, de polyesters de type SORONA® à base de 1,3-propanediol biosourcé, des polycarbonates contenant de l'isosorbide, de polyéthylèneglycols à base bio- éthylèneglycol, des polyamides à base d'huile de ricin ou de polyols végétaux, et des polyuréthanes à base par exemple, de diols ou de polyols végétaux comme le glycérol, l'isosorbide, le sorbitol ou le saccharose, et/ou à base d'acides gras éventuellement hydroxyalkylés. De préférence, le polymère non amylacé est choisi parmi les copolymères éthylène- acétate de vinyle (EVA), les polyéthylènes (PE) et polypropylènes (PP) non fonctionnalisés ou fonctionnalisés par des motifs silane, des motifs acryliques ou des motifs anhydride maléique, les polyuréthanes thermoplastiques (TPU), les PBS, les PBSA et les PBAT, les copolymères styrène-butylène- styrènes (SBS), de préférence fonctionnalisés, notamment par des motifs anhydride maléique, les poly(téréphtalate d'éthylène) amorphes (PETG), les polymères synthétiques obtenus à partir de monomères bio-sourcés, les polymères extraits de plantes, de tissus animaux et de microorganismes, éventuellement fonctionnalisés, et les mélanges de ceux-ci.
Avantageusement, le polymère non amylacé présente un poids moléculaire moyen en poids compris entre 8500 et 10 000 000 daltons, en particulier compris entre 15 000 et 1 000 000 daltons.
Par ailleurs, le polymère non amylacé est constitué de préférence de carbone d'origine renouvelable au sens de la norme ASTM D 6852 et est avantageusement non biodégradable ou non compostable au sens des normes EN 13432, ASTM D 6400 et ASTM D 6868. Selon une variante préférentielle, le polymère non amylacé (c) est un polymère contenant au moins 15 %, de préférence au moins 30 %, en particulier au moins 50 %, mieux encore au moins 70 %, voire plus de 80 %, de carbone d'origine renouvelable au sens de la norme ASTM D 6852 et/ou la norme ASTM D 6866, par rapport à l'ensemble du carbone présent dans ledit polymère. Selon une autre variante préférentielle, le polymère non amylacé est un polymère non biodégradable.
Parmi toutes les classes et natures de polymères précitées, le polymère non amylacé non biodégradable peut notamment être choisi parmi les copolymères éthylène- acétate de vinyle (EVA), les polyéthylènes (PE) et polypropylènes (PP), les polyéthylènes (PE) et polypropylènes (PP) fonctionnalisés par des motifs silane, acryliques ou anhydride maléique, les polyuréthanes thermoplastiques (TPU), les copolymères séquences styrène-éthylène-butylène-styrène (SEBS) fonctionnalisés par des motifs anhydride maléique, les polymères de synthèse obtenus à partir de monomères bio-sourcés et les polymères d'extraction de ressources naturelles (sécrétion ou extraits de plantes, de tissus animaux et de microorganismes), modifiés ou fonctionnalisés, ainsi que leurs mélanges. On peut citer à titre d'exemples particulièrement préférés de polymères non amylacés non biodégradables utilisables dans la présente invention, les polyéthylènes (PE) et polypropylènes (PP), de préférence fonctionnalisés, les polyuréthanes thermoplastiques (TPU), les polyamides, les copolymères à blocs triséquencés styrène-ethylène/butylène-styrène (SEBS) et les poly(éthylène téréphtalate) amorphes
(PETG).
La composition amylacée (a), le produit nanométrique (b) et le polymère non amylacé (c) peuvent représenter, ensemble, 100% en poids (sec / sec) de composition thermoplastique ou élastomérique selon l'invention. Des charges et autres additifs de toutes natures, dont ceux détaillés ci-après, peuvent cependant être incorporés dans la composition thermoplastique ou élastomérique de la présente invention. Bien que la proportion de ces ingrédients supplémentaires puisse être assez importante, la composition amylacée (a), de préférence plastifiée,le produit nanométrique (b) et le polymère non amylacé (c), de préférence non biodégradable, représentent, ensemble, de préférence au moins 30 % , en particulier au moins 40 % et idéalement au moins 50 %, en poids (sec/sec) de composition thermoplastique ou élastomérique de la présente invention.
Parmi les additifs, on peut en particulier ajouter à ladite composition, au moins un agent de liaison. On entend par « agent de liaison » dans la présente invention, toute molécule organique porteuse d'au moins deux groupements fonctionnels, libres ou masquées, aptes à réagir avec des molécules porteuses de fonctions à hydrogène actif telles que l'amidon ou le plastifiant de l'amidon. Cet agent de liaison peut être ajouté à la composition pour permettre la fixation, par liaisons covalentes, d'au moins une partie du plastifiant sur l'amidon et/ou sur le polymère non amylacé éventuellement ajouté.
Cet agent de liaison peut alors être choisi par exemple parmi les composés porteurs d'au moins deux fonctions, libres ou masquées, identiques ou différentes, choisies parmi les fonctions isocyanate, carbamoylcaprolactame, aldéhydes, époxyde, halogéno, acide protonique, anhydride d'acide, halogénure d'acyle, oxychlorure, trimétaphosphate, alcoxysilane et des combinaisons de celles-ci.
Il peut être choisi avantageusement parmi les composés suivants: - les diisocyanates et polyisocyanates, de préférence le 4,4'-dicyclohexylméthane- diisocyanate (H12MDI), le méthylènediphényl-diisocyante (MDI), le toluène- diisocyanate (TDI), le naphthalène-diisocyanate (NDI), l'hexaméthylène-diisocyanate (HMDI) et la lysine-diisocyanate (LDI), - les dicarbamoylcaprolactames, de préférence le 1-1' carbonyl bis caprolactame,
- le glyoxal, les amidons dialdhéydes et les amidons oxydés TEMPO,
- les diépoxydes,
- les halogénhydrines, c'est-à-dire les composés comportant une fonction époxyde et une fonction halogène, de préférence l'épichlorohydrine, - les diacides organiques, de préférence l'acide succinique, l'acide adipique, l'acide glutarique, l'acide oxalique, l'acide malonique, l'acide maléique et les anhydrides correspondants,
- les oxychlorures, de préférence l'oxychlorure de phosphore,
- les trimétaphosphates, de préférence le trimétaphoshate de sodium, - les alcoxysilanes, de préférence le tétraéthoxysilane, et
- les mélanges quelconques de ces composés.
Dans un mode de réalisation préféré de l'invention, l'agent de liaison est un diisocyanate, en particulier le méthylènediphényl-diisocyanate (MDI) ou le 4,4'- dicyclohexylméthane-diisocyanate (H12MDI). La quantité d'agent de liaison, exprimée en poids sec et rapportée à la somme, également exprimée en poids sec, de la composition amylacée (a) et du produit nanométrique(b), est avantageusement comprise entre 0,1 et 15 % en poids, de préférence entre 0,1 et 12 % en poids, plus préférentiellement encore entre 0,2 et 9 % en poids et en particulier entre 0,5 et 5 % en poids. L'incorporation éventuelle mais préférée de l'agent de liaison dans le mélange de la composition amylacée (a) et du produit nanométrique(b) peut se faire par mélange physique à froid ou à basse température mais de préférence par malaxage à chaud à une température supérieure à la température de transition vitreuse de la composition amylacée. Cette température de malaxage est avantageusement comprise entre 60 et 200 0C et mieux de 100 à 16O0C. Cette incorporation peut être réalisée par mélange thermomécanique, de façon discontinue ou de façon continue et en particulier en ligne. Dans ce cas, la durée de mélange peut être courte, de quelques secondes à quelques minutes.
La composition selon l'invention peut comprendre en outre différents autres additifs. Il peut s'agir de produits visant à améliorer davantage encore ses propriétés physico-chimiques, en particulier sa structure physique, son comportement de mise en œuvre et sa durabilité ou bien ses propriétés mécaniques, thermiques, conductrices, adhésives ou organoleptiques.
L'additif peut être un agent améliorateur ou d'ajustement des propriétés mécaniques ou thermiques choisi parmi les minéraux, les sels et les substances organiques. Il peut s'agir d'agents de nucléation tel que le talc, d'agents compatibilisants ou dispersants comme les agents tensio-actifs naturels ou synthétiques, d'agents améliorateurs de la résistance aux chocs ou aux rayures comme le silicate de calcium, d'agents régulateurs de retrait comme le silicate de magnésium, d'agents piégeurs ou désactivateurs d'eau, d'acides, de catalyseurs, de métaux, d'oxygène, de rayons infra-rouges, de rayons UV, d'agents hydrophobants comme les huiles et graisses, d'agents retardateurs de flamme et anti-feu comme les dérivés halogènes, d'agents anti-fumée, de charges de renforcement, minérales ou organiques, comme le carbonate de calcium , le talc, les fibres végétales, les fibres de verre ou le kevlar. L'additif peut être également un agent améliorateur ou d'ajustement des propriétés conductrices ou isolantes vis-à-vis de l'électricité ou de la chaleur, de l'étanchéité par exemple à l'air, à l'eau, aux gaz, aux solvants, aux corps gras, aux essences, aux arômes, aux parfums, choisi notamment parmi les minéraux, les sels et les substances organiques, en particulier parmi les agents de conduction ou de dissipation de la chaleur comme les poudres métalliques et les graphites.
L'additif peut être encore un agent améliorateur des propriétés organoleptiques, notamment :
- des propriétés odorantes (parfums ou agents de masquage d'odeur),
- des propriétés optiques (agents de brillance, agents de blancheur tels que le dioxyde de titane, colorants, pigments, exhausteurs de colorants, opacifiants, agents de matité tels que le carbonate de calcium, agents thermochromes, agents de phosporescence et de fluorescence, agents métallisants ou marbrants et agents antibuée),
- des propriétés sonores (sulfate de baryum et barytes), et
- des propriétés tactiles (matières grasses). L'additif peut être aussi un agent améliorateur ou d'ajustement des propriétés adhésives, notamment de l'adhésion vis-à-vis des matières cellulosiques comme le papier ou le bois, des matières métalliques comme l'aluminium et l'acier, des matériaux en verre ou céramiques, des matières textiles et des matières minérales, comme notamment les résines de pin, les colophanes, les copolymères d'éthylène/alcool vinylique, les aminés grasses, les agents lubrifiants, les agents de démoulage, les agents antistatiques et les agents anti-blocking.
Enfin, l'additif peut être un agent améliorateur de la durabilité du matériau ou un agent de contrôle de sa (bio)dégradabilité, notamment choisi parmi les agents hydrophobants ou perlants comme les huiles et graisses, les agents anticorrosion, les agents antimicrobiens comme Ag, Cu et Zn, les catalyseurs de dégradation comme les oxo-catalyseurs et les enzymes comme les amylases.
En vue de la préparation de la composition thermoplastique ou élastomérique selon l'invention, on peut utiliser de nombreux procédés prévoyant notamment des moments et ordres d'introduction extrêmement variés des composants de ladite composition (amidon, plastifiant éventuel de l'amidon, produit nanométrique (b), polymère non amylacé (c), additifs éventuels).
Ainsi, le produit nanométrique peut être introduit après avoir, en tout ou partie, été préalablement dispersé dans la composition amylacée, de préférence plastifiée et/ou dans le polymère non amylacé (c) ou être introduit en dernier lieu après introduction de la composition amylacée et du polymère non amylacé. En outre, dans la composition finale, ledit produit nanométrique, quels que soient la façon et le moment où il a été incorporé, peut se retrouver dispersé principalement soit dans la phase amylacée, soit dans la phase polymérique non amylacée, ou se retrouver localisé aux interfaces de ces deux phases. Parmi toutes ces possibilités de mise en œuvre desdits composants, la présente invention a notamment pour objet un procédé de préparation d'une composition thermoplastique ou élastomérique telle que décrite précédemment dans toutes ses variantes, ledit procédé comprenant les étapes suivantes :
(i) sélection d'au moins un amidon et d'au moins un plastifiant de cet amidon, (ii) sélection d'au moins un produit nanométrique (b) constitué de particules dont l'une au moins des dimensions est comprise entre 0,1 et 500 nanomètres, ledit produit nanométrique étant choisi parmi :
- les produits de mélanges à base d'au moins une argile lamellaire et d'au moins un oligomère cationique, - les nanotubes organiques, minéraux ou mixtes,
- les nanocristaux et nanocristallites organiques, minéraux ou mixtes,
- les nanobilles et nanosphères organiques, minérales ou mixtes, et les mélanges de ces produits nanométriques,
(iii) préparation, de préférence par mélange thermomécanique, d'une composition de cristallinité en amidon inférieure à 15 %, de préférence inférieure à 5 % et plus préférentiellement inférieure à 1 %, contenant l'amidon sélectionné et son plastifiant, (iv) incorporation dans ladite composition, du produit nanométrique (b) sélectionné et obtention d'une composition intermédiaire à base, d'au moins, un amidon, un plastifiant de celui-ci et un produit nanométrique (b) (ci-après
« composition amylacée nanochargée intermédiaire »), l'étape (iv) pouvant être mise en œuvre avant, pendant ou après l'étape (iii), (v) sélection d'au moins un polymère non amylacé (c), et (vi) préparation de la composition thermoplastique ou élastomérique selon l'invention par incorporation du polymère non amylacé (c) dans la composition amylacée nanochargée intermédiaire.
Les compositions amylacées nanochargées intermédiaires ainsi obtenues durant ce procédé contiennent différents ingrédients, à savoir l'amidon, le plastifiant et le produit nanométrique (b), mélangés intimement les uns aux autres. L'incorporation d'un plastifiant de l'amidon lors de l'étape (iii) peut être réalisée à froid préalablement à son mélange thermo mécanique avec l'amidon ou bien directement lors de ce mélange, c'est à dire à chaud à une température de préférence comprise entre 60 et 200 0C, plus préférentiellement entre 80 et 185 0C et notamment comprise entre 100 et 16O0C, de façon discontinue, par exemple par pétrissage/malaxage, ou de façon continue, par exemple par extrusion. La durée de ce mélange peut aller de quelques secondes à quelques heures, selon le mode de mélange retenu.
Par ailleurs, l'incorporation du produit nanométrique (b) (étape (iv)) peut se faire par mélange physique à froid ou à basse température à la composition amylacée mais de préférence par malaxage à chaud à une température supérieure à la température de transition vitreuse de la composition amylacée. Cette température de malaxage est avantageusement comprise entre 60 et 200 0C, de préférence comprise entre 80 et 180 0C et plus préférentiellement comprise entre 100 et 16O0C. Cette incorporation peut être réalisée par mélange thermomécanique, de façon discontinue ou de façon continue et en particulier en ligne. Dans ce cas, la durée de mélange peut être courte, de quelques secondes à quelques minutes. On obtient ainsi une composition thermoplastique, très homogène comme cela peut être constaté par observation sous microscope.
Dans un mode de réalisation du procédé selon l'invention, le produit nanométrique (b) est constitué d'un produit de mélange à base d'au moins une argile lamellaire et d'au moins un oligomère cationique et l'exfoliation de l'argile se fait pendant l'étape (iii) de mélange de l'amidon et du plastifiant.
L'incorporation du polymère non amylacé (c) dans la composition amylacée nanochargée intermédiare lors de l'étape (vi) peut se faire par malaxage à chaud, de préférence à une température comprise entre 60 et 200 0C, plus préférentiellement comprise entre 100 et 200 0C et notamment comprise entre 120 et 185 0C. Cette incorporation peut être réalisée par mélange thermomécanique, de façon discontinue ou de façon continue et en particulier en ligne. Dans ce cas, la durée de mélange peut être courte, de quelques secondes à quelques minutes.
Selon une variante avantageuse, ce procédé est caractérisé en ce que : - l'étape (iv) se fait par malaxage à chaud à une température comprise entre
80 et 180 0C, et - l'étape (vi) se fait par malaxage à chaud à une température comprise entre 120 et 185 0C.
Dans le cadre de ses recherches, la Demanderesse a constaté que, contre toute attente, de très faibles quantités de produit nanométrique (b) permettaient de réduire considérablement la sensibilité à l'eau et à la vapeur d'eau de la composition amylacée nanochargée intermédiaire mais aussi de la composition thermoplastique ou élastomérique finale obtenue, en comparaison aux produits préparés sans ajout de produit nanométrique. Ceci ouvre la voie à des applications nouvelles des compositions amylacées nanochargée intermédiaires mais aussi pour des compositions thermoplastiques et/ou élastomériques de l'invention.
La Demanderesse a également constaté que ladite composition amylacée nanochargée présentait une moindre sensibilité à la dégradation thermique et une moindre coloration que les amidons plastifiés de l'art antérieur.
De plus, ladite composition présente une viscosité complexe, mesurée sur rhéomètre de type PHYSICA MCR 501 ou équivalent, comprise entre 10 et 106 Pa. s, pour une température comprise entre 100 et 2000C. Cette viscosité est significativement plus faible que celle mesurée pour une composition identique ne comprenant pas quelques pourcents de produit nanométrique (b) tel qu'une silice hydrophile pyrogène de type AEROSIL 200 par exemple. En vue de sa mise en œuvre par injection par exemple, sa viscosité à ces températures est située de préférence dans la partie inférieure de la gamme donnée ci- dessus et la composition est alors préférentiellement thermo-fusible au sens précisé plus haut.
La composition amylacée nanochargée intermédiaire présente en outre l'avantage d'être constituée de matières premières essentiellement renouvelables et de pouvoir présenter, après ajustement de la formulation, les propriétés suivantes, utiles dans de multiples applications en plasturgie ou dans d'autres domaines :
- thermoplasticité, viscosité à l'état fondu et température de transition vitreuse appropriées, dans les gammes de valeur habituelles connues des polymères courants (Tg de -50° à 15O0C), permettant une mise en œuvre grâce aux installations industrielles existantes et utilisées classiquement pour les polymères synthétiques habituels,
- miscibilité suffisante à une grande variété de polymères d'origine fossile ou d'origine renouvelable du marché ou en développement, - stabilité physicochimique satisfaisante aux conditions de mise en œuvre,
- faible sensibilité à l'eau et à la vapeur d'eau,
- performances mécaniques très nettement améliorées par rapport aux compositions thermoplastiques d'amidon de l'art antérieur (souplesse, allongement à la rupture, contrainte maximale à la rupture) - bons effets de barrière à l'eau, à la vapeur d'eau, à l'oxygène, au gaz carbonique, aux UV, aux corps gras, aux arômes, aux essences, aux carburants,
- opacité, translucidité ou transparence modulables en fonction des usages,
- bonne imprimabilité et aptitude à être mise en peinture, notamment par des encres et peintures en phase aqueuse, - retrait dimensionnel contrôlable,
- stabilité dans le temps très satisfaisante,
- et biodégradabilité, compostabilité ou/et recyclabilité ajustables.
Les avantages précités de toute composition amylacée nanochargée intermédiaire peuvent être, en tout ou partie, mis à profit au niveau de toute composition thermoplastique ou élastomérique selon l'invention.
La présente invention a d'ailleurs également pour objet l'utilisation d'une composition comprenant au moins un amidon, de préférence au moins un plastifiant dudit amidon, et au moins un produit nanométrique (b) tel que défini ci-avant, pour la préparation d'une composition thermoplastique ou élastomérique selon l'invention ou obtenue par le procédé selon l'invention.
Elle concerne également l'utilisation d'au moins un polymère non amylacé (c), par exemple un polymère non biodégradable, pour la préparation d'une composition thermoplastique ou élastomérique selon l'invention ou obtenue par le procédé selon l'invention. La composition selon l'invention, se présentant par exemple sous la forme d'un mélange entre ladite composition intermédiaire et un polymère non amylacé, peut présenter avantageusement des courbes contrainte/déformation caractéristiques d'un matériau ductile, et non pas d'un matériau de type fragile. L'allongement à la rupture est supérieur à 40 %, de préférence supérieur à 80 %, mieux encore supérieur à 90 %. Cet allongement à la rupture peut avantageusement être au moins égal à 95 %, notamment au moins égal à 120 %. Il peut même atteindre ou dépasser 180 %, voire 250 %. Il est en général raisonnablement inférieur à 500 %.
La contrainte maximale à la rupture des compositions de la présente invention est généralement supérieure à 4 MPa, de préférence supérieure à 6 MPa, mieux encore supérieure à 8 MPa. Elle peut même atteindre ou dépasser 10 MPa, voire 20 MPa. Elle est en général raisonnablement inférieure à 80 MPa.
La composition thermoplastique ou élastomérique selon l'invention peut présenter également l'avantage d'être quasiment ou totalement insoluble dans l'eau, de s'hydrater difficilement et de conserver une bonne intégrité physique après immersion dans l'eau. Son taux d'insolubles après 24 heures dans l'eau à 20 0C, est de préférence supérieur à 90 %. De manière très avantageuse, il peut être supérieur à 92 %, notamment supérieur à 95 %. Idéalement, ce taux d'insolubles peut être au moins égal à 98 % et notamment être proche de 100%.
De manière tout à fait remarquable, la composition selon la présente invention peut, en particulier, présenter simultanément : - un taux d'insolubles au moins égal à 98 %, un allongement à la rupture au moins égal à 95 %, et une contrainte maximale à la rupture supérieure à 8 MPa.
La composition thermoplastique ou élastomérique selon l'invention peut être utilisée telle quelle ou en mélange avec d'autres produits ou additifs, y compris d'autres polymères synthétiques, artificiels ou d'origine naturelle. Elle peut être biodégradable ou compostable au sens des normes EN 13432, ASTM D 6400 et ASTM D 6868, et comprendre alors des polymères ou des matières répondant à ces normes, tels que les PLA, PCL, PBS, PBSA, PBAT et PHA.
Elle peut en particulier permettre de corriger certains défauts majeurs connus du PLA (acide polylactique), à savoir :
- l'effet barrière médiocre au CO2 et à l'oxygène, - les effets barrière à l'eau et à la vapeur d'eau insuffisants,
- la tenue à la chaleur insuffisante pour la fabrication de bouteilles et la tenue à la chaleur très insuffisante pour l'usage en tant que fibres textiles, et
- une fragilité et un manque de souplesse à l'état de films. La composition selon l'invention peut toutefois également être non biodégradable ou non compostable au sens des normes ci-dessus, et comprendre alors, par exemple, des polymères synthétiques connus ou des amidons ou des polymères d'extraction hautement fonctionnalisés, réticulés ou éthérifiés. Il est possible de moduler la durée de vie et la stabilité de la composition conforme à l'invention en ajustant en particulier son affinité pour l'eau, de manière à convenir aux usages attendus en tant que matériau et aux modes de valorisation envisagés en fin de vie.
La composition selon l'invention peut notamment comprendre un polymère non biodégradable choisi dans le groupe constitué des polyéthylènes (PE) et polypropylènes (PP), de préférence fonctionnalisés, des polyuréthanes thermoplastiques (TPU), des polyamides, des copolymères à blocs triséquencés styrène-ethylène/butylène-styrène (SEBS) et des poly(éthylène téréphtalate) amorphes (PETG).
La composition thermoplastique et/ou élastomérique conforme à la présente invention contient avantageusement au moins 15 %, de préférence au moins 30 %, en particulier au moins 50 %, mieux encore au moins 70 %, voire plus de 80 %, de carbone d'origine renouvelable au sens de la norme ASTM D 6852 et/ou de la norme ASTM D 6866, par rapport à l'ensemble du carbone présent dans la composition. Ce carbone d'origine renouvelable est essentiellement celui constitutif de l'amidon nécessairement présent dans la composition conforme à l'invention mais peut être aussi avantageusement, par un choix judicieux des constituants de la composition, celui présent dans le plastifiant éventuel de l'amidon comme dans le cas par exemple du glycérol ou du sorbitol, mais encore de celui du polymère non amylacé (c) ou de tout autre constituant de la composition thermoplastique, lorsqu'ils proviennent de ressources naturelles renouvelables comme ceux définis préférentiellement ci-dessus. II est en particulier envisageable d'utiliser les compositions selon l'invention, en tant que films barrière à l'oxygène, au gaz carbonique, aux arômes, aux carburants et/ou aux corps gras, seuls ou dans des structures multi-couches obtenues par co- extrusion pour le domaine de l'emballage alimentaire notamment.
Elles peuvent aussi être utilisées pour augmenter le caractère hydrophile, l'aptitude à la conduction électrique, la perméabilité à l'eau et/ou à la vapeur d'eau, ou la résistance aux solvants organiques et/ou carburants, de polymères synthétiques dans le cadre par exemple de la fabrication de membranes, de films ou d'étiquettes électroniques imprimables, de fibres textiles, de contenants ou réservoirs, ou encore d'améliorer les propriétés adhésives de films thermofusibles synthétiques sur supports hydrophiles. II convient de noter que le caractère hydrophile de la composition thermoplastique ou élastomérique selon l'invention réduit considérablement les risques de bio-accumulation dans les tissus adipeux des organismes vivants et donc également dans la chaîne alimentaire.
Ladite composition peut se présenter sous forme pulvérulente, granulée ou en billes. Elle peut constituer en tant que telle un mélange maître ou la matrice d'un mélange maître, destiné à être dilué dans une matrice bio-sourcée ou non.
Elle peut constituer aussi une matière première plastique ou un compound utilisable directement par un équipementier ou un façonnier d'objets plastiques.
Elle peut constituer aussi en tant que telle un adhésif ou une matrice de formulation d'un adhésif, notamment de type hot-melt ou un hot-melt.
Elle peut constituer une gomme de base ou la matrice d'une gomme base, notamment de chewing-gum ou encore une résine ou co-résine pour caoutchoucs et élastomères.
Enfin, la composition selon l'invention peut être éventuellement utilisée pour préparer des résines thermodures (duroplastes) par réticulation poussée de manière irréversible, lesdites résines perdant ainsi définitivement tout caractère thermoplastique ou élastomérique.
L'invention concerne aussi une matière plastique, une matière élastomérique ou une matière adhésive comprenant la composition de la présente invention ou un produit fini ou semi-fini obtenu à partir de celle-ci. Exemple 1
Composition amylacée selon l'art antérieur et compositions amylacées nanochargées utilisables selon l'invention obtenues avec amidon de blé, un plastifiant d'amidon et un produit nanométrique.
Préparation des compositions On choisit pour cet exemple :
- en tant qu'amidon granulaire, un amidon de blé natif commercialisé par la Demanderesse sous le nom « Amidon de blé SP» présentant une teneur en eau voisine de 12%,
- en tant que plastifiant de l'amidon granulaire, une composition aqueuse concentrée de polyols (sorbitol, glycérol), commercialisée par la Demanderesse sous l'appellation POLYSORB® G84/41/00 ayant une teneur en eau de 16% environ, - en tant que produits nanométriques (b), respectivement :
. de la silice pyrogène (15 nm environ) commercialisée sous la dénomination
AEROSIL 200 par la société EVONIK,
. de la silice hydrophobe (25 nm environ) commercialisée sous l'appellation
AEOROSIL R 974 par cette même société, . le produit LAB 4019, particules nanométriques (40 nm environ) de polystyrène- maléimide,
. le produit LAB 4020, particules nanométriques (70 nm environ) de carbonate de calcium,
. le produit LAB 4021, particules nanométriques (200 nm environ) d'acétate de fécule.
On prépare d'abord, à des fins de comparaison, une composition amylacée thermoplastique selon l'art antérieur. Pour cela on alimente avec l'amidon et le plastifiant une extrudeuse à double vis de marque TSA de diamètre (D) 26 mm et de longueur 5OD, à une vitesse de 150 tr/min, avec un rapport de mélange de 67 parts de plastifiant POLYSORB® pour 100 parts d'amidon de blé. Les conditions d'extrusion sont les suivantes :
Profil de température (dix zones de chauffe Zl à ZlO) : 90/90/110/130/140/150/140/130/120/120, sans dégazage
En sortie d'extrudeuse, les joncs d'amidon plastifié sont refroidis à l'air sur un tapis roulant pour être ensuite séchés à 8O0C en étuve sous vide pendant 10 heures avant d'être broyés.
On dénomme la composition amylacée ainsi obtenue selon l'art antérieur après séchage « Composition AP6040 ».
On prépare de manière identique différentes compositions amylacées nanochargées utilisables selon l'invention en mélangeant à sec à l'amidon de blé, des quantités, rapportées à l'amidon en poids sec, de 6,9% (soit 4 % environ, en poids (sec/sec), de produit nanométrique (b) exprimé sur le total composition amylacée plastifiée (a) + produit nanométrique (b)J de l'un ou l'autre des 5 produits nanométriques (b) définis ci-dessus.
Tableau 1 : Indice de fluidité à chaud (MFL me It flow index) et taux de reprise en eau après séchage d'une composition thermoplastique selon l'art antérieur et de compositions amylacées nanochargées selon l'invention :
Figure imgf000042_0001
L'ajout de l'un ou l'autre des produits nanométriques (b) a une très nette incidence bénéfique sur l'indice de fluidité à chaud (MFI) des compositions amylacées qui, après addition des produits nanométriques (b), deviennent très fluides et s'écoulent sans difficulté à 13O0C sous une charge de 20 Kg, contrairement à la composition de l'art antérieur exempte de produit nanométrique.
La reprise en eau après 30 jours en atmosphère ambiante apparait aussi nettement améliorée par la présence des produits nanométriques (b).
A partir de ces bases AP6040, des mélanges contenant 50% au total, en poids, de polypropylène du commerce et de polypropylène greffé anhydride maléique ont été préparés.
Les conditions d'extrusion sont données ci-dessous.
- Mélange à sec des polypropylènes et des bases AP6040 en trémie principale
- Vitesse de vis, 400 tr/min
- Profil Température (0C) : 200/200/200/180/180/180/180/180/180/180
Test de mesure du taux d'insolubles après 24 heures d'immersion:
On évalue la sensibilité à l'eau des compositions préparées.
On détermine le taux d'insolubles dans l'eau des compositions obtenues selon le protocole suivant : (i) Sécher l'échantillon à caractériser (12 heures à 8O0C sous vide)
(ii) Mesurer la masse de l'échantillon (= MsI) avec une balance de précision.
(iii) Immerger l'échantillon dans l'eau, à 2O0C (volume d'eau en ml égal à 100 fois la masse en g d'échantillon).
(iv) Prélever l'échantillon après un temps défini de plusieurs heures. (v) Eliminer l'excès d'eau en surface avec un papier absorbant, le plus rapidement possible.
(vi) Poser l'échantillon sur une balance de précision et suivre la perte de masse pendant 2 minutes (mesure de la masse toute les 20 secondes) (vii) Sécher l'échantillon (pendant 24 heures à 8O0C sous vide). Mesurer la masse de l'échantillon sec (= Ms2)
(ix) Calculer le taux d'insoluble, exprimé en pour-cents, suivant la formule Ms2/Msl. Tableau 2 : Résultats sur les mélanges
Figure imgf000044_0001
On observe que la présence de produits nanométriques (b) dans les bases
AP6040 a un effet très net en termes de réduction de la sensibilité à l'eau lors d'une immersion des mélanges et de réduction de la sensibilité à la reprise d'eau des alliages séchés à 8O0C pendant 10 heures.
Exemple 2
Effet de la quantité de produit nanométrique (AEROSIL 200).
On prépare de nouvelles compositions comme à l'exemple 1 en faisant varier la quantité de produit nanométrique (b) AEROSIL 200. Trois essais sont réalisés en utilisant les quantités suivantes, rapportées à la quantité d'amidon sec : 0,1 %, 1,2 % et 6,9 % soit, respectivement, 0,06 %, 0,75 % et 4 % environ de produit nanométrique (b) exprimé en poids (sec/sec) par rapport au total de composition amylacée plastifiée (a) + produit nanométrique (b). Les résultats sont les suivants
Tableau 3 : MFI et taux de reprise en eau
Figure imgf000045_0001
On peut constater que l'ajout d'AEROSIL 200 a des effets bénéfiques même à 0,1% d'ajout par rapport à l'amidon sec, soit 0,06 % environ (sec/sec) par rapport au total AP6040 (composition amylacée (a)) + AEROSIL (produit nanométrique (b)).
Exemple 3
Effet sur des mélanges avec GLUCIDEX® 6.
On prépare d'abord, à des fins de comparaison, une composition thermoplastique à base d'une maltodextrine commercialisée par la demanderesse sous le nom de marque GLUCIDEX® 6 plastifiée par la composition aqueuse concentrée de polyols POLYSORB® G 84/41/00 utilisée à l'exemple 1, et d'un polyuréthane thermoplastique (TPU) commercialisé sous la marque ESTANE 58277.
Pour cela on alimente avec la maltodextrine et le plastifiant une extrudeuse à double vis de marque TSA de diamètre (D) 26 mm et de longueur 5OD, à une vitesse de 200 tr/min, avec un rapport de mélange de 67 parts de plastifiant POLYSORB® pour 100 parts de maltodextrine.
Les conditions d'extrusion sont les suivantes :
Profil de température (dix zones de chauffe Zl à ZlO) : 90/90/110/140/140/110/90/90/90/90 En sortie d'extrudeuse, les joncs de maltodextrine sont refroidis à l'air sur un tapis roulant pour être ensuite séchés à 8O0C en étuve sous vide pendant 12 heures avant d'être broyés.
On dénomme la composition ainsi obtenue après séchage « Composition 1 ». On prépare ensuite, de manière identique, une composition amylacée nanochargée utilisable selon l'invention en mélangeant à sec à la maltodextrine, une quantité rapportée à la maltodextrine en poids sec de 8,6 % de produit nanométrique (b) AEROSIL 200, soit un poids (sec/sec) de 5,2 % environ, exprimé en produit nanométrique (b) sur le total composition amylacée plastifiée (a) + produit nanométrique (b).
On dénomme la composition amylacée nanochargée ainsi obtenue après séchage « Composition 2 ».
A partir de ces compositions 1 et 2, on prépare enfin des mélanges contenant, en poids, 50% de ces compositions et 50% de TPU Estane 58277 (polyuréthanne thermoplastique).
Un essai supplémentaire est réalisé avec ajout à la composition 2 de 4 parts de méthylènediphényldiisocyanate (MDI) pour 100 parts de composition 2.
Les conditions d'extrusion (extrudeuse bi-vis 026,50D) sont données ci- dessous : - mélange à sec (TPU séché, base amylacée) en trémie principale
- Vitesse de vis, 300 tr/min
- Profil Température (0C) : 130/180/180/150/150/150/130/130/130/130
Mesure des propriétés mécaniques :
On détermine les caractéristiques mécaniques en traction des différents échantillons selon la norme NF T51-034 (Détermination des propriétés en traction) en utilisant un banc d'essai Lloyd Instrument LR5K, une vitesse de traction : 300 mm/min et des éprouvettes normalisées de type H2. A partir des courbes de traction (contrainte = f (allongement), obtenues à une vitesse d'étirement de 50 mm/min, on relève, pour chacun des alliages, l'allongement à la rupture et la contrainte maximale à la rupture correspondante.
Tableau 4 : Caractéristiques mécaniques (contrainte et allongement à la rupture à 300 mm/min) des alliages
Figure imgf000047_0001
Les propriétés mécaniques sans ajout de produit nanométrique (b) sont mauvaises alors qu'avec introduction de 8,3% d' AEROSIL 200, les caractéristiques mécaniques se rapprochent de celles d'un TPU pur.
L'incorporation additionnelle de MDI dans l'alliage permet également d'obtenir d'excellentes propriétés mécaniques mais aussi, comme la demanderesse a pu le constater par ailleurs, d'améliorer le taux d'insolubles et la tenue à l'eau et à l'humidité.
D'autres essais ont été également menés par la demanderesse en substituant totalement dans l'alliage Composition 2/TPU, le TPU par différents polymères non amylacés, en retenant un PLA, un PHA, un PBAT, un polyamide, un copolymère éthylène- acétate de vinyle (EVA), un copolymère éthylène-alcool vinylique (EVOH), un polyoxyméthylène (POM), un copolymère acrylonitrile-styrène-acrylate(ASA), une polyoléfine fonctionnalisée par un motif anhydride maléique, un copolymère styrène- butylène- styrène (SBS) ou un styrène-éthylène-butylène-styrènes (SEBS).
Des améliorations de propriétés ont été notées comparativement aux mêmes alliages dépourvus de produit nanométrique (b) AEROSIL 200.

Claims

REVENDICATIONS
1. Composition thermoplastique ou élastomérique comprenant: - au moins 50 % en poids et au plus 99,95 % en poids d'une composition amylacée (a) comprenant au moins un amidon,
- au moins 0,05 % en poids et au plus 50 % en poids d'un produit nanométrique (b) constitué de particules dont l'une au moins des dimensions est comprise entre 0,1 et 500 nanomètres, choisi parmi: - les produits de mélanges à base d'au moins une argile lamellaire et d'au moins un oligomère cationique, les nanotubes organiques, minéraux ou mixtes, les nanocristaux et nanocristallites organiques, minéraux ou mixtes, les nanobilles et nanosphères organiques, minérales ou mixtes, individualisées, en grappes ou agglomérées, et les mélanges quelconques d'au moins deux de ces produits nanométriques, ces pourcentages étant exprimés en poids sec et rapportés à la somme, en poids sec, de (a) et (b), et - au moins un polymère non amylacé (c).
2. Composition selon la revendication 1, caractérisée en ce que la composition amylacée (a) comprend en outre au moins un plastifiant de l'amidon, ledit plastifiant étant de préférence choisi parmi les diols, les triols, les polyols, les sirops de glucose hydrogénés, les sels d'acides organiques, l'urée, les esters méthyliques, éthyliques ou gras d'acides organiques, les esters acétiques ou gras de mono-alcools, diols, triols ou polyols et les mélanges quelconques de ces produits.
3. Composition selon l'une quelconque des revendications précédentes, caractérisée en ce que le plastifiant est contenu dans la composition amylacée (a) à raison de 25 à 110 parts en poids sec, de préférence à raison de 30 à 100 parts en poids sec et en particulier à raison de 30 à 90 parts en poids sec, pour 100 parts en poids sec d'amidon.
4. Composition selon l'une quelconque des revendications précédentes, caractérisée en ce que l'amidon utilisé pour la préparation de la composition amylacée (a) est choisi parmi les amidons granulaires, les amidons hydrosolubles et les amidons organomodifiés.
5. Composition selon l'une quelconque des revendications précédentes, caractérisée en ce que l'amidon utilisé pour la préparation de la composition amylacée (a) est un amidon granulaire choisi parmi les amidons fluidifiés, les amidons oxydés, les amidons ayant subi une modification chimique, les dextrines blanches et les mélanges de ces produits.
6. Composition selon l'une quelconque des revendications précédentes, caractérisée en ce que l'amidon utilisé pour la préparation de la composition amylacée (a) est un amidon hydrosoluble choisi parmi les amidons prégélatinisés, les amidons extradés, les amidons atomisés, les dextrines hautement transformées, les maltodextrines, les amidons fonctionnalisés et les mélanges de ces produits.
7. Composition selon l'une quelconque des revendications précédentes, caractérisée en ce que l'amidon utilisé pour la préparation de la composition amylacée (a) est un amidon organomodifié, de préférence organosoluble, choisi parmi les acétates d'amidons, les acétates de dextrines et les acétates de maltodextrines, les esters gras d'amidons, de dextrines et de maltodextrines avec des chaines grasses de 4 à 22 carbones, lesdits acétates et esters gras présentant de préférence un degré de substitution (DS) compris entre 0,5 et 3,0, plus préférentiellement compris entre 0,8 et 2,8 et notamment compris entre 1,0 et 2,7.
8. Composition selon l'une quelconque des revendications précédentes, caractérisée en ce qu'elle comprend de 0,1 à 4% d'un produit nanométrique (b).
9. Composition selon l'une quelconque des revendications 1 à 7, caractérisée en ce qu'elle comprend de 5 à 40 % en poids, de préférence de 6 à 35 % en poids, d'un produit nanométrique (b).
10. Composition thermoplastique ou élastomérique, caractérisée par le fait qu'elle comprend :
- de 25 à 85 % en poids d'au moins un amidon, - de 8 à 40 % en poids d'au moins un plastifiant d'amidon, de préférence autre que l'eau,
- de 2 à 40 % en poids d'un produit nanométrique (b) constitué de particules dont l'une au moins des dimensions est comprise entre 0,1 et 500 nanomètres, choisi parmi: les produits de mélanges à base d'au moins une argile lamellaire et d'au moins un oligomère cationique, les nanotubes organiques, minéraux ou mixtes, les nanocristaux et nanocristallites organiques, minéraux ou mixtes, - les nanobilles et nanosphères organiques, minérales ou mixtes, individualisées, en grappes ou agglomérées, et les mélanges d'au moins deux de ces produits nanométriques, et
- de 5 à 60 % en poids d'au moins un polymère non amylacé (c), ces pourcentages étant exprimés en poids sec et rapportés au poids sec total de la composition thermoplastique ou élastomérique selon l'invention.
11. Composition selon l'une quelconque des revendications précédentes, caractérisée en ce que le produit nanométrique (b) est constitué de particules dont l'une au moins des dimensions est comprise entre 5 et 50 nanomètres.
12. Composition selon l'une quelconque des revendications précédentes, caractérisée en ce que l'amidon contenu dans la composition présente un taux de cristallinité inférieur à 15 %, de préférence inférieur à 5% et plus préférentiellement inférieur à 1%.
13. Composition selon l'une quelconque des revendications précédentes, caractérisée en ce que le polymère non amylacé (c) est choisi parmi les copolymères éthylène- acétate de vinyle (EVA), les polyéthylènes (PE) et polypropylènes (PP) non fonctionnalisés ou fonctionnalisés par des motifs silane, des motifs acryliques ou des motifs anhydride maléique, les polyuréthanes thermoplastiques (TPU), les poly(butylène succinate) (PBS), les poly(butylène succinate adipate) (PBSA) et les poly(butylène adipate téréphtalate) (PBAT), les copolymères styrène-butylène- styrènes (SBS), de préférence fonctionnalisés, notamment par des motifs anhydride maléique, les poly( téréphtalate d' éthylène) amorphes (PETG), les polymères synthétiques obtenus à partir de monomères bio-sourcés, les polymères extraits de plantes, de tissus animaux et de microorganismes, éventuellement fonctionnalisés, et les mélanges de ceux-ci.
14. Composition selon la revendication 13, caractérisée en ce que le polymère non amylacé (c) est un polymère non biodégradable, de préférence choisi parmi les polyéthylènes (PE) et polypropylènes (PP), de préférence fonctionnalisés, les polyuréthanes thermoplastiques (TPU), les polyamides, les copolymères à blocs triséquencés styrène-ethylène/butylène-styrène (SEBS) et les poly(éthylène téréphtalate) amorphes (PETG).
15. Composition selon l'une quelconque des revendications précédentes, caractérisée en ce qu'elle comprend en outre un agent de liaison choisi parmi les composés porteurs d'au moins deux fonctions, libres ou masquées, identiques ou différentes, choisies parmi les fonctions isocyanate, carbamoylcaprolactame, époxyde, aldhéhyde, halogéno, acide protonique, anhydride d'acide, halogénure d'acyle, oxychlorure, trimétaphosphate, alcoxysilane et les mélanges de ceux-ci, de préférence choisi parmi :
- les diisocyanates, de préférence le méthylènediphényl-diisocyante (MDI), le toluène- diisocyanate (TDI), le naphthalène-diisocyanate (NDI), l'hexaméthylène-diisocyanate (HMDI) et la lysine-diisocyanate (LDI), - les dicarbamoylcaprolactames, de préférence le l,l'-carbonyl-biscaprolactame,
- les diépoxydes,
- les composés comportant une fonction époxyde et une fonction halogène, de préférence l'épichlorhydrine,
- les diacides organiques, de préférence l'acide succinique, l'acide adipique, l'acide glutarique, l'acide oxalique, l'acide malonique, l'acide maléique et les anhydrides correspondants,
- les oxychlorures, de préférence l' oxychlorure de phosphore,
- les trimétaphosphates, de préférence le trimétaphoshate de sodium,
- les alcoxysilanes, de préférence le tétraéthoxysilane, - et les mélanges de ces composés.
16. Composition thermoplastique ou élastomérique selon l'une quelconque des revendications précédentes, caractérisée en ce qu'elle est non biodégradable ou non compostable au sens des normes EN 13432, ASTM D 6400 et ASTM D 6868.
17. Composition thermoplastique ou élastomérique selon l'une quelconque des revendications précédentes, caractérisée en ce qu'elle contient au moins 15 %, de préférence au moins 30%, de carbone d'origine renouvelable (ASTM D 6852 et/ou ASTM D 6866), exprimé par rapport à l'ensemble du carbone présent dans ladite composition.
18. Composition thermoplastique ou élastomérique selon l'une quelconque des revendications précédentes, caractérisée en ce qu'elle présente simultanément :
- un taux d'insolubles au moins égal à 98 %,
- un allongement à la rupture au moins égal à 95 %,
- et une contrainte maximale à la rupture supérieure à 8 MPa.
19. Procédé de préparation d'une composition thermoplastique ou élastomérique selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend les étapes suivantes :
(i) sélection d'au moins un amidon et d'au moins un plastifiant de cet amidon,
(ii) sélection d'au moins un produit nanométrique (b) constitué de particules dont l'une au moins des dimensions est comprise entre 0,1 et 500 nanomètres, ledit produit nanométrique étant choisi parmi :
- les produits de mélanges à base d'au moins une argile lamellaire et d'au moins un oligomère cationique,
- les nanotubes organiques, minéraux ou mixtes, - les nanocristaux et nanocristallites organiques, minéraux ou mixtes,
- les nanobilles et nanosphères organiques, minérales ou mixtes,
- et les mélanges quelconques de ces produits nanométriques,
(iii) mélange, de préférence mélange thermomécanique, de l'amidon et du plastifiant jusqu'à obtention d'une composition présentant une cristallinité en amidon inférieure à 15 %, de préférence inférieure à 5% et plus préférentiellement inférieure à
1%, (iv) incorporation dans ladite composition obtenue à l'étape (iii), du produit nanométrique (b) sélectionné à l'étape (ii) de manière à obtenir une composition amylacée nanochargée intermédiaire, l'étape (iv) pouvant être mise en œuvre avant, pendant ou après l'étape (iii), (v) sélection d'au moins un polymère non amylacé (c), et
(vi) incorporation du polymère non amylacé (c) dans la composition amylacée nanochargée intermédiaire.
20. Procédé selon la revendication 19, caractérisé en ce que le produit nanométrique (b) est constitué d'un produit de mélange à base d'au moins une argile lamellaire et d'au moins un oligomère cationique et en ce que l'étape (iii) est mise en œuvre de manière à provoquer l' exfoliation de l'argile.
21. Procédé selon les revendications 19 et 20, caractérisé en ce que :
- l'étape (iv) se fait par malaxage à chaud à une température comprise entre 80 et 180 0C, et - l'étape (vi) se fait par malaxage à chaud à une température comprise entre 120 et
185 0C.
22. Utilisation d'une composition thermoplastique ou élastomérique selon l'une quelconque des revendications 1 à 18 comme mélange maître, matrice de mélange maître, matière première plastique, compound pour objets plastiques, adhésif, notamment de type hot-melt, matrice de formulation d'un adhésif, notamment de type hot-melt, gomme de base ou matrice de gomme base, notamment de chewing-gum, résine élastomère, résine ou co-résine pour caoutchoucs et élastomères, ou pour la préparation de résines thermodures.
23. Utilisation, pour la préparation d'une composition thermoplastique ou élastomérique selon l'une quelconque des revendications 1 à 18, d'une composition comprenant au moins un amidon, de préférence au moins un plastifiant dudit amidon, et au moins d'un produit nanométrique (b) choisi parmi: les produits de mélanges à base d'au moins une argile lamellaire et d'au moins un oligomère cationique, - les nanotubes organiques, minéraux ou mixtes, les nanocristaux et nanocristallites organiques, minéraux ou mixtes, les nanobilles et nanosphères organiques, minérales ou mixtes, individualisées, en grappes ou agglomérées, et les mélanges quelconques d'au moins deux de ces produits nanométriques.
24. Utilisation, pour la préparation d'une composition thermoplastique ou élastomérique selon l'une quelconque des revendications 1 à 18, d'une composition comprenant au moins un polymère non amylacé (c).
25. Utilisation, pour la préparation d'une composition thermoplastique ou élastomérique selon l'une quelconque des revendications 1 à 18, d'un oligomère cationique en tant qu'agent exfoliant d'une argile lamellaire.
PCT/FR2009/051112 2008-06-13 2009-06-12 Compositions thermoplastiques ou elastomeriques a base d'amidon et procede de preparation de telles compositions WO2009150385A2 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CA2726860A CA2726860A1 (fr) 2008-06-13 2009-06-12 Compositions thermoplastiques ou elastomeriques a base d'amidon et procede de preparation de telles compositions
AU2009259118A AU2009259118A1 (en) 2008-06-13 2009-06-12 Starch-containing thermoplastic or elastomer compositions, and method for preparing such compositions
CN2009801230915A CN102066474A (zh) 2008-06-13 2009-06-12 含淀粉的热塑性或弹性体组合物以及用于制备此类组合物的方法
JP2011513036A JP2011522950A (ja) 2008-06-13 2009-06-12 デンプン含有熱可塑性またはエラストマー組成物、およびこのような組成物を調製する方法
BRPI0914417A BRPI0914417A2 (pt) 2008-06-13 2009-06-12 composições termoplásticas ou elastoméricas à base de amido e processo para a preparação das referidas composições
EP09761936A EP2294125A2 (fr) 2008-06-13 2009-06-12 Compositions thermoplastiques ou elastomeriques a base d'amidon et procede de preparation de telles compositions
US12/997,842 US20110086949A1 (en) 2008-06-13 2009-06-12 Starch-containing thermoplastic or elastomer compositions, and method for preparing such compositions

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0853952A FR2932488B1 (fr) 2008-06-13 2008-06-13 Compositions thermoplastiques ou elastomeriques a base d'amidon et procede de preparation de telles compositions.
FR0853952 2008-06-13

Publications (2)

Publication Number Publication Date
WO2009150385A2 true WO2009150385A2 (fr) 2009-12-17
WO2009150385A3 WO2009150385A3 (fr) 2010-02-25

Family

ID=40149645

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2009/051112 WO2009150385A2 (fr) 2008-06-13 2009-06-12 Compositions thermoplastiques ou elastomeriques a base d'amidon et procede de preparation de telles compositions

Country Status (9)

Country Link
US (1) US20110086949A1 (fr)
EP (1) EP2294125A2 (fr)
JP (1) JP2011522950A (fr)
CN (1) CN102066474A (fr)
AU (1) AU2009259118A1 (fr)
BR (1) BRPI0914417A2 (fr)
CA (1) CA2726860A1 (fr)
FR (1) FR2932488B1 (fr)
WO (1) WO2009150385A2 (fr)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012096913A1 (fr) * 2011-01-10 2012-07-19 The Procter & Gamble Company Amidon plastifié par de l'isosorbide et ses utilisations
CN103237862A (zh) * 2010-12-10 2013-08-07 阿克佐诺贝尔国际涂料股份有限公司 包含合成聚合物和羽扇豆蛋白质的含水粘合剂组合物
JP2013538929A (ja) * 2010-10-08 2013-10-17 ロケット・フルーレ ジアンヒドロヘキシトールのアルキルエステルによる脂肪族ポリエステルの可塑化
US8795536B2 (en) 2008-01-31 2014-08-05 Solvay (Societe Anonyme) Process for degrading organic substances in an aqueous composition
US9309209B2 (en) 2010-09-30 2016-04-12 Solvay Sa Derivative of epichlorohydrin of natural origin
US9380801B2 (en) 2008-12-18 2016-07-05 Wm. Wrigley Jr. Company Chewing gum and gum bases containing highly substituted starch short chain carboxylates
WO2016119555A1 (fr) * 2015-01-30 2016-08-04 成都新柯力化工科技有限公司 Élastomère d'amidon thermoplastique et son procédé de préparation
US9663427B2 (en) 2003-11-20 2017-05-30 Solvay (Société Anonyme) Process for producing epichlorohydrin
US10125255B2 (en) 2012-10-08 2018-11-13 Teknor Apex Company Thermoplastic elastomer compositions having biorenewable content
CN112266728A (zh) * 2020-10-28 2021-01-26 连山万林树脂有限公司 一种淀粉改性松香树脂及其制备方法

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8300581A (nl) * 1983-02-16 1984-09-17 Hazemeijer Bv Samenstel voor een stroombegrenzende hoogspannings-smeltveiligheid.
KR20080037618A (ko) 2005-05-20 2008-04-30 솔베이(소시에떼아노님) 폴리히드록실화 지방족 탄화수소 및 염소화제 간의 반응에의한 클로로히드린 제조 방법
US20100032617A1 (en) * 2007-02-20 2010-02-11 Solvay (Societe Anonyme) Process for manufacturing epichlorohydrin
FR2918058A1 (fr) * 2007-06-28 2009-01-02 Solvay Produit a base de glycerol, procede pour sa purification et son utilisation dans la fabrication de dichloropropanol
EP2207617A1 (fr) * 2007-10-02 2010-07-21 SOLVAY (Société Anonyme) Utilisation de compositions contenant du silicium pour améliorer la résistance à la corrosion de récipients
FR2927084B1 (fr) * 2008-02-01 2011-02-25 Roquette Freres Procede de preparation de compositions thermoplastiques a base d'amidon plastifie et compositions ainsi obtenues.
FR2927088B1 (fr) * 2008-02-01 2011-02-25 Roquette Freres Compositions thermoplastiques a base d'amidon plastifie et procede de preparation de telles compositions.
FR2934272B1 (fr) * 2008-07-24 2013-08-16 Roquette Freres Procede de preparation de compositions a base de matiere amylacee et de polymere synthetique.
FR2935968B1 (fr) * 2008-09-12 2010-09-10 Solvay Procede pour la purification de chlorure d'hydrogene
FR2939434B1 (fr) * 2008-12-08 2012-05-18 Solvay Procede de traitement de glycerol.
KR101886880B1 (ko) * 2010-03-25 2018-08-08 도판 인사츠 가부시키가이샤 가스 배리어성 적층체 및 포장 재료
RU2013125088A (ru) 2010-11-23 2014-12-27 Дзе Проктер Энд Гэмбл Компани Термопластические композиции, содержащие крахмал
BR112013028402A2 (pt) * 2011-05-04 2020-08-04 Kth Holding Ab barreira de oxigênio para aplicações em embalagens
US20120309246A1 (en) 2011-06-03 2012-12-06 Alexander Tseitlin Curable biopolymer nanoparticle latex binder for mineral, natural organic, or synthetic fiber products and non-woven mats
WO2013029018A1 (fr) 2011-08-24 2013-02-28 Algix, Llc Bioplastique à base de macrophyte
KR101305441B1 (ko) * 2011-09-23 2013-09-09 한국기술교육대학교 산학협력단 커플링제를 이용한 전분/고무 라텍스 화합물 제조 방법
KR20140137350A (ko) * 2012-02-24 2014-12-02 반도 카가쿠 가부시키가이샤 마찰 전동 벨트
CN102964636A (zh) * 2012-12-07 2013-03-13 北京邦明生物技术研究院 一种热塑性淀粉-海泡石复合材料及其制备方法
CN103044719B (zh) * 2012-12-19 2015-09-16 华南理工大学 一种具有高疏水性能的热塑性淀粉塑料及其制备方法
US9464188B2 (en) 2013-08-30 2016-10-11 Kimberly-Clark Worldwide, Inc. Simultaneous plasticization and compatibilization process and compositions
AU2014324820B2 (en) * 2013-09-30 2018-02-01 Kimberly-Clark Worldwide, Inc. Thermoplastic article with thermal active agent
US20160263272A1 (en) * 2013-09-30 2016-09-15 Kimberly-Clark Worldwide, Inc. Thermoplastic article with active agent
JP2016539235A (ja) 2013-12-05 2016-12-15 エコシンセティックス リミテッド ホルムアルデヒド非含有バインダーおよび多成分ナノ粒子
US20170362343A1 (en) * 2014-12-19 2017-12-21 Novamont S P A. Use of destructured starch derivatives as hysteresis reduction additives for elastomer compositions
GB2535217B (en) * 2015-02-13 2019-10-09 Delta Of Sweden Ab Modelling compound
CN105273210B (zh) * 2015-03-02 2021-07-06 北京工商大学 一种高阻隔复合膜及其制备方法
DE102015107174B4 (de) * 2015-05-07 2022-07-07 Lisa Dräxlmaier GmbH Cyclodextrinhaltige Heißschmelzklebemassen und Verfahren zur Herstellung
CN104945682A (zh) * 2015-06-26 2015-09-30 苏州云舒新材料科技有限公司 一种热塑性淀粉基地膜复合材料及其制备方法
WO2018208663A1 (fr) * 2017-05-08 2018-11-15 Case Western Reserve University Adhésifs nanocomposites polymère nanocristallins de cellulose réticulés, dynamiques, résistants, à rebondissement
CN107163379B (zh) * 2017-05-22 2019-12-17 浙江苏达山新材料有限公司 生物基复合材料及其制备方法、应用
JP6942323B2 (ja) * 2017-07-13 2021-09-29 山東農業大学 増強増靭増透マスターバッチの製造方法と応用
CN111065501A (zh) * 2017-08-23 2020-04-24 巴斯夫欧洲公司 在己内酰胺和己内酰胺低聚物存在下生产木质纤维素材料的方法
CN109929229A (zh) * 2019-04-19 2019-06-25 浙江中科应化科技有限公司 聚对苯二甲酸-己二酸丁二酯/淀粉全生物降解薄膜以及其制备方法
CN110183157B (zh) * 2019-06-03 2021-08-27 长春松彬麒蕴建材有限公司 凝胶玻珠外墙外保温抗裂抹面砂浆及其制备方法
US11149131B2 (en) * 2020-01-30 2021-10-19 Edward Showalter Earth plant compostable biodegradable substrate and method of producing the same
EP4149756A1 (fr) * 2020-05-11 2023-03-22 Cryovac, LLC Film multicouche pourvu d'une couche de liaison soluble et procédé de dissipation associé
CN112500600B (zh) * 2020-11-23 2023-01-24 威骏(上海)环保包装有限公司 一种自清洁抗菌可降解日化瓶及其制备方法
WO2022109723A1 (fr) * 2020-11-30 2022-06-02 Evoco Limited Compositions d'élastomère de polyuréthane, articles de fabrication les comprenant, et procédés
US11433381B1 (en) 2021-09-10 2022-09-06 King Abdulaziz University Efficient catalysts for hydrogen production
CN113896973B (zh) * 2021-11-01 2023-06-16 北京汽车集团越野车有限公司 汽车风管材料、汽车风管和汽车
EP4198095A1 (fr) * 2021-12-15 2023-06-21 Cid Ricardo Marques Ribeiro Polymère biodégradable pour le revêtements de substrats
WO2023111952A1 (fr) * 2021-12-15 2023-06-22 Cid Ricardo Marques Ribeiro Polymère biodégradable our revêtement de substrats, ses procédés et ses utilisations
JP2024060282A (ja) * 2022-10-19 2024-05-02 国立大学法人高知大学 フィラー、環境適合性プラスチック、環境適合性プラスチック繊維、およびpgaイオンコンプレックスの使用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2795081A1 (fr) * 1999-06-18 2000-12-22 Oreal Gel aqueux solide comprenant un gelifiant hydrophile et de l'amidon, composition le comprenant, utilisations
EP1229075A1 (fr) * 2001-02-01 2002-08-07 Biop Biopolymer GmbH Composite de polymère thermoplastique à base d'amidon contenant des particules integrées nanoscopiques et leur procédé de préparation
WO2003035044A2 (fr) * 2001-10-23 2003-05-01 Innogel Ag Fabrication de corps moules a base de gel d'amidon
EP1506765A1 (fr) * 2003-08-11 2005-02-16 L'oreal Composition cosmétique comprenant des particules metalliques stabilisées, eventuellement enrobées
EP1626067A1 (fr) * 2004-08-10 2006-02-15 Nederlandse Organisatie voor toegepast-natuurwetenschappelijk Onderzoek TNO Matériau composite céramique-polymère biodegradable
WO2007000193A1 (fr) * 2005-06-29 2007-01-04 Dsm Ip Assets B.V. Nanoparticules d’isoflavone et utilisation correspondante
WO2007027114A1 (fr) * 2005-09-01 2007-03-08 Instytut Wlokien Naturalnych (Institute Of Natural Fibres) Produit ignifuge intumescent et son procédé de fabrication
WO2007101253A2 (fr) * 2006-02-28 2007-09-07 Auburn Universtity Immobilisation in situ de métaux dans des sites contaminés mettant en oeuvre des nanoparticules immobilisées
WO2008090195A2 (fr) * 2007-01-26 2008-07-31 Obtusa Investimentos E Gestao Limidada Compositions à base d'amidon et utilisation relative et procédé d'obtention

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5095054A (en) * 1988-02-03 1992-03-10 Warner-Lambert Company Polymer compositions containing destructurized starch
US5362777A (en) * 1988-11-03 1994-11-08 Ivan Tomka Thermoplastically processable starch and a method of making it
FR2672295B1 (fr) * 1991-01-31 1994-06-03 Roquette Freres Compositions thermoformables, leur procede de preparation et leur utilisation pour l'obtention d'articles thermoformes.
FR2732026B1 (fr) * 1995-03-21 1997-06-06 Roquette Freres Procede pour ameliorer la compatibilite reciproque de polymeres
US6231970B1 (en) * 2000-01-11 2001-05-15 E. Khashoggi Industries, Llc Thermoplastic starch compositions incorporating a particulate filler component
EP1392770A4 (fr) * 2001-04-18 2004-07-14 Plantic Technologies Ltd Polymere biodegradable
JP2004182877A (ja) * 2002-12-04 2004-07-02 Koji Takamura 生分解性樹脂組成物、生分解性樹脂製品及びその製造法
JP2006028308A (ja) * 2004-07-14 2006-02-02 Daicel Chem Ind Ltd 新規な構造を有する樹脂組成物、その製造方法及びこれを用いた成形品
CN100338132C (zh) * 2005-02-28 2007-09-19 成都新柯力化工科技有限公司 全生物分解组合物及其制备方法和用途
CN1900148B (zh) * 2005-07-18 2010-04-21 华中农业大学 一种纳米二氧化硅改性淀粉基全生物降解薄膜及制备方法
CN101165087B (zh) * 2006-10-17 2010-12-01 路德石油化工(北京)有限公司 纳米复合生物降解塑料及其制备方法
EP2188332B1 (fr) * 2007-06-01 2018-01-17 Plantic Technologies LTD Matériaux nanocomposites à base d'amidon

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2795081A1 (fr) * 1999-06-18 2000-12-22 Oreal Gel aqueux solide comprenant un gelifiant hydrophile et de l'amidon, composition le comprenant, utilisations
EP1229075A1 (fr) * 2001-02-01 2002-08-07 Biop Biopolymer GmbH Composite de polymère thermoplastique à base d'amidon contenant des particules integrées nanoscopiques et leur procédé de préparation
WO2003035044A2 (fr) * 2001-10-23 2003-05-01 Innogel Ag Fabrication de corps moules a base de gel d'amidon
EP1506765A1 (fr) * 2003-08-11 2005-02-16 L'oreal Composition cosmétique comprenant des particules metalliques stabilisées, eventuellement enrobées
EP1626067A1 (fr) * 2004-08-10 2006-02-15 Nederlandse Organisatie voor toegepast-natuurwetenschappelijk Onderzoek TNO Matériau composite céramique-polymère biodegradable
WO2007000193A1 (fr) * 2005-06-29 2007-01-04 Dsm Ip Assets B.V. Nanoparticules d’isoflavone et utilisation correspondante
WO2007027114A1 (fr) * 2005-09-01 2007-03-08 Instytut Wlokien Naturalnych (Institute Of Natural Fibres) Produit ignifuge intumescent et son procédé de fabrication
WO2007101253A2 (fr) * 2006-02-28 2007-09-07 Auburn Universtity Immobilisation in situ de métaux dans des sites contaminés mettant en oeuvre des nanoparticules immobilisées
WO2008090195A2 (fr) * 2007-01-26 2008-07-31 Obtusa Investimentos E Gestao Limidada Compositions à base d'amidon et utilisation relative et procédé d'obtention

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MA ET AL: "Glycerol plasticized-starch/multiwall carbon nanotube composites for electroactive polymers" COMPOSITES SCIENCE AND TECHNOLOGY, ELSEVIER, vol. 68, no. 1, 27 octobre 2007 (2007-10-27), pages 268-273, XP022318162 ISSN: 0266-3538 *
SUNDARAM J ET AL: "Porous scaffold of gelatin-starch with nanohydroxyapatite composite processed via novel microwave vacuum drying" ACTA BIOMATERIALIA, ELSEVIER, AMSTERDAM, NL, vol. 4, no. 4, 14 février 2008 (2008-02-14), pages 932-942, XP022700550 ISSN: 1742-7061 [extrait le 2008-02-14] *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9663427B2 (en) 2003-11-20 2017-05-30 Solvay (Société Anonyme) Process for producing epichlorohydrin
US8795536B2 (en) 2008-01-31 2014-08-05 Solvay (Societe Anonyme) Process for degrading organic substances in an aqueous composition
US9380801B2 (en) 2008-12-18 2016-07-05 Wm. Wrigley Jr. Company Chewing gum and gum bases containing highly substituted starch short chain carboxylates
US9309209B2 (en) 2010-09-30 2016-04-12 Solvay Sa Derivative of epichlorohydrin of natural origin
JP2013538929A (ja) * 2010-10-08 2013-10-17 ロケット・フルーレ ジアンヒドロヘキシトールのアルキルエステルによる脂肪族ポリエステルの可塑化
CN103237862A (zh) * 2010-12-10 2013-08-07 阿克佐诺贝尔国际涂料股份有限公司 包含合成聚合物和羽扇豆蛋白质的含水粘合剂组合物
WO2012096913A1 (fr) * 2011-01-10 2012-07-19 The Procter & Gamble Company Amidon plastifié par de l'isosorbide et ses utilisations
US10125255B2 (en) 2012-10-08 2018-11-13 Teknor Apex Company Thermoplastic elastomer compositions having biorenewable content
WO2016119555A1 (fr) * 2015-01-30 2016-08-04 成都新柯力化工科技有限公司 Élastomère d'amidon thermoplastique et son procédé de préparation
CN112266728A (zh) * 2020-10-28 2021-01-26 连山万林树脂有限公司 一种淀粉改性松香树脂及其制备方法

Also Published As

Publication number Publication date
FR2932488A1 (fr) 2009-12-18
EP2294125A2 (fr) 2011-03-16
FR2932488B1 (fr) 2012-10-26
CA2726860A1 (fr) 2009-12-17
BRPI0914417A2 (pt) 2019-09-24
WO2009150385A3 (fr) 2010-02-25
US20110086949A1 (en) 2011-04-14
JP2011522950A (ja) 2011-08-04
CN102066474A (zh) 2011-05-18
AU2009259118A1 (en) 2009-12-17

Similar Documents

Publication Publication Date Title
WO2009150385A2 (fr) Compositions thermoplastiques ou elastomeriques a base d'amidon et procede de preparation de telles compositions
EP2337815B1 (fr) Compositions thermoplastiques ou elastomeriques a base d'esters d'une matiere amylacee et procede de preparation de telles compositions
EP2344580A1 (fr) Compositions elastomeriques a base d'esters d'une matiere amylacee et procede de preparation de telles compositions
JP5544302B2 (ja) 可塑化デンプンベース熱可塑性組成物を調製する方法および結果として生じる組成物
JP5544303B2 (ja) 可塑化デンプンベース熱可塑性組成物を調製する方法および結果として生じる組成物
JP5544301B2 (ja) 可溶性デンプンベース熱可塑性組成物およびこのような組成物を調製する方法
FR2927083A1 (fr) Procede de preparation de compositions thermoplastiques a base de matiere amylacee soluble.

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980123091.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09761936

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2009259118

Country of ref document: AU

Ref document number: 2726860

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2009761936

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009761936

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011513036

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12997842

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2009259118

Country of ref document: AU

Date of ref document: 20090612

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: PI0914417

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20101213