EP2344580A1 - Compositions elastomeriques a base d'esters d'une matiere amylacee et procede de preparation de telles compositions - Google Patents

Compositions elastomeriques a base d'esters d'une matiere amylacee et procede de preparation de telles compositions

Info

Publication number
EP2344580A1
EP2344580A1 EP09756018A EP09756018A EP2344580A1 EP 2344580 A1 EP2344580 A1 EP 2344580A1 EP 09756018 A EP09756018 A EP 09756018A EP 09756018 A EP09756018 A EP 09756018A EP 2344580 A1 EP2344580 A1 EP 2344580A1
Authority
EP
European Patent Office
Prior art keywords
weight
ester
composition according
elastomeric
starchy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09756018A
Other languages
German (de)
English (en)
Inventor
Léon Mentink
Jacques Tripier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Roquette Freres SA
Original Assignee
Roquette Freres SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Roquette Freres SA filed Critical Roquette Freres SA
Publication of EP2344580A1 publication Critical patent/EP2344580A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L3/00Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08L3/04Starch derivatives, e.g. crosslinked derivatives
    • C08L3/06Esters
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G4/00Chewing gum
    • A23G4/06Chewing gum characterised by the composition containing organic or inorganic compounds
    • A23G4/08Chewing gum characterised by the composition containing organic or inorganic compounds of the chewing gum base
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/003Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/08Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/08Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds
    • C08L51/085Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds on to polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • C08K5/053Polyhydroxylic alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/101Esters; Ether-esters of monocarboxylic acids
    • C08K5/103Esters; Ether-esters of monocarboxylic acids with polyalcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones

Definitions

  • the present invention relates to novel elastomeric compositions, based on esters of a starchy material having a high degree of substitution (DS) in esters, plasticizers of these esters and polymers other than starch, of elastomeric nature.
  • DS degree of substitution
  • the term "elastomeric composition” in the present invention is understood to mean a composition which softens under the action of heat, hardens on cooling and, at low temperature and especially at ambient temperature, exhibits an ability to recover more or less rapidly an original shape. and primitive dimensions after applying strain strain. It has at least one so-called glass transition temperature (Tg) below which all or part of the amorphous fraction of the composition is in the brittle glassy state, and above which the composition can undergo reversible plastic deformations.
  • Tg glass transition temperature
  • the glass transition temperature or at least one of the glass transition temperatures of the elastomeric composition according to the present invention is preferably between -12O 0 C and + 20 ° C.
  • the elastomeric composition according to the invention also has a great capacity of extensibility and elastic recovery like natural or synthetic rubbers.
  • the elastomeric behavior of the composition can be obtained or adjusted by crosslinking or vulcanization more or less advanced, after shaping in the plastic state.
  • the term "elastomeric composition” also means any "thermoplastic elastomer” type composition having both elastomeric and thermoplastic properties thanks to a structure of the polymer-block type with "soft" segments and "hard” segments.
  • the composition contains, in combination with at least one ester of starchy material and a plasticizer of said ester, at least one non-starchy polymer chosen from the group of elastomeric polymers such as, for example, natural or modified rubbers, polystyrene elastomers, polyester elastomers, polypropylene elastomers, silicone elastomers or rubbers and polyurethane elastomers.
  • elastomeric polymers such as, for example, natural or modified rubbers, polystyrene elastomers, polyester elastomers, polypropylene elastomers, silicone elastomers or rubbers and polyurethane elastomers.
  • the elastomeric composition according to the invention is "heat fusible", that is to say that it can be shaped without the application of large shear forces, that is to say by simple flow or by simply pressing the melted or softened material. Its viscosity, measured at a temperature of 100 ° C. to
  • 200 0 C is generally between 10 and 10 3 Pa.s.
  • esters at least 5% and at most 70% by weight of an ester of a starchy material with a degree of substitution of esters (DS) of between 1.0 and 3.0, preferably of between 1.2 and 3; , 0.
  • DS degree of substitution of esters
  • plasticizer of this ester of starchy material, said plasticizer being preferably other than water and,
  • composition according to the invention is further characterized in that:
  • the ester of starchy material has a degree of biodegradability according to ISO 14851, less than 50%, preferably less than 30%, and / or
  • the polymer other than starch has, as such, a degree of biodegradability according to ISO 14851, less than 50%, preferably less than
  • the composition according to the invention is characterized in that the ester of starchy material and the polymer other than starch each have a degree of biodegradability according to ISO 14851, less than 50%, preferably less than 30%.
  • the composition according to the invention has a biodegradability according to the ISO 14851 standard which is extremely low, less than 20%, in particular less than 15%, or even less than 10% or even more than 5%.
  • the composition according to the invention has a degree of biodegradability that can be in higher ranges of values. than those mentioned above, namely a degree of biodegradability according to ISO 14851, at least equal to 50% and less than 100%, in particular between 60 and 100%.
  • biodegradability rate means the level of aerobic biodegradation by determining the oxygen demand in a closed respirometer according to the international standard ISO 14851: 1999.
  • the biodegradation rate being determined by comparing the biological oxygen demand (BOD) with the theoretical quantity (theoretical oxygen demand, DThO) and expressing it in percentage,
  • Starch is already exploited in the manufacture of plastics, in particular because of its property of being also a biodegradable product.
  • the first starch-based compositions were developed about thirty years ago.
  • the starches were then employed in the form of mechanical blends with synthetic polymers such as polyethylene, as filler, in the native, granular and unmodified state, i.e., in its present state in nature.
  • the starch was used in the manufacture of biodegradable objects, but in a state rendered essentially amorphous and thermoplastic. This state, destructured, with reduced crystallinity or absent, is obtained by plastification of the native granular starch by incorporation of a suitable plasticizer at a level generally between 15 and 25% relative to the granular starch, by contribution of mechanical and thermal energy.
  • thermoplastic starches although they may be to some extent modulated by the choice of starch, plasticizer and the rate of use of the latter, are generally rather poor because the materials thus obtained are always very highly viscous, even at high temperatures (12O 0 C to 17O 0 C) and very fragile, too brittle, very hard and little forming low temperature, that is to say below the glass transition temperature.
  • thermoplastic starches having better mechanical properties by physical mixing of these thermoplastic starches, or with biodegradable petroleum-based polymers (polycaprolactones (PCL), co-polyesters aromatics (PBAT), aliphatic polyesters (PBS) or water-soluble polymers (polyvinyl alcohol) (PVOH), or with polyesters of renewable origin such as polylactates (PLA), microbial polyhydroxyalkanoates
  • PCL polycaprolactones
  • PBAT co-polyesters aromatics
  • PBS aliphatic polyesters
  • PVOH water-soluble polymers
  • polyesters of renewable origin such as polylactates (PLA), microbial polyhydroxyalkanoates
  • the present invention provides an effective solution to the problems stated above by proposing novel compositions based on starch-containing ester, which furthermore have improved properties compared with those of the prior art.
  • the elastomeric composition according to the invention advantageously comprises an ester of starchy material having a high or very high DS.
  • the DS may especially be between 1.6 and 3.0, preferably between 1.8 and 2.9 and even more preferably between 2.0 and 2.9.
  • the ideal may be to retain a DS between 2.2 and 2.8, for example when the composition containing said ester of starch material is intended for the preparation of a gum base chewing gum.
  • the elastomeric composition according to the invention may advantageously comprise:
  • the elastomeric composition according to the invention may, in particular, advantageously comprise, for example if it is intended for the preparation of a gum base chewing gum:
  • the ester of a starchy material is the main or predominant component of the composition according to the invention, which can then be characterized in particular that it comprises from 45 to 70%, preferably from
  • the polymer other than starch (or "non-starch polymer”) elastomeric, can then be neither the main component nor the major component of the composition according to the invention, which can then be characterized in particular that it comprises from 25 to 49% by weight, preferably from 25 to 40% by weight and even more preferably from 25 to 35% by weight, of said polymer.
  • the ester of a starchy material is not the majority component and generally not the main component of the composition according to the invention, which can then be characterized in particular that it comprises from 5 to 49 %, preferably from 7 to 49% by weight and more preferably from 10 to 49% by weight, of said ester.
  • non-starchy elastomeric polymer can then be the main component, indeed the major component of the composition according to the invention, which can then be characterized in particular by comprising
  • the ester of the starchy material of DS between 1.0 and 3 can be present in the composition according to the invention, in any form, in particular in the dispersed state. in the form of fibers, or other particles, micrometric or nanometric, in the elastomeric non-starch polymer or in the phase state, thermoplastic or elastomeric, continuous, discontinuous or co-continuous, more or less well compatibilized with the non-starch elastomeric polymer .
  • non-starchy elastomeric polymer may also be present in the composition according to the invention, in any form, in particular in the form of fibers dispersed in the ester of the starchy material or in the phase state, thermoplastic or elastomeric, continuous, discontinuous or co-continuous, more or less well compatibilized with the ester of the starchy material.
  • esters of starchy material in particular DS high or very high, has been recommended only for: - the manufacture of so-called biodegradable thermoplastic compositions otherwise containing at least a non-starchy polymer of a generally non-elastomeric nature and known to be biodegradable or water-soluble, such as for example a) modified celluloses b) proteins c) biodegradable polyesters, in particular of the hydroxycarboxylic type as described in US Pat. Nos. 5,462 and 983 , WO 95/04108, EP 1054 599 or EP 1 142 911 or of polyalkylene carbonate type as described in US Pat. Nos. 5,936,014 or WO 98/07782 and d) water-soluble polymers such as those described in the patents and applications EP 638,609, US 5,936,014, US 2002/0032254 or WO 00/73380, or
  • elastomeric compositions that can be used as base gums for chewing gums that do not contain a) any non-starchy polymer, in particular elastomeric polymer, and b) any plasticizer for the ester of starchy material, as described, for example, in US Pat. No. 3,666,492 , US 4,035,572 or US 4,041,179,
  • starchy material is intended to mean any oligomer or polymer of D-glucose units linked to each other by alpha-linkages.
  • This starchy material can come from all types of starch and in particular be chosen from cereal starches such as wheat, corn, barley, triticale, sorghum or rice; starchy tubers such as potato or cassava; leguminous starches such as peas, soybeans or beans; starches rich in amylose, or conversely, rich in amylopectin (“waxy”) from these plants or any mixtures of these starches.
  • cereal starches such as wheat, corn, barley, triticale, sorghum or rice
  • starchy tubers such as potato or cassava
  • leguminous starches such as peas, soybeans or beans
  • starches rich in amylose, or conversely, rich in amylopectin (“waxy” from these plants or any mixtures of these starches.
  • this starchy material may preferably have a molecular weight of between 10 3 and 10 8 g / mol, better still between 5.10 3 and 10 7 g / mol, and more preferably between 10 4 and 10 6 g / mol.
  • this starchy material can result from the esterification to a high degree of a granular starch, optionally hydrolyzed or / and modified.
  • granular starch is used herein to mean a starch which is native or physically modified, chemically or enzymatically, and which has retained, within the starch granules, a semicrystalline structure similar to that evidenced in starch grains. naturally occurring in the reserve organs and tissues of higher plants, particularly in cereal or legume seeds, tubers, roots, bulbs, stems and fruits.
  • This semi-crystalline state is essentially due to macromolecules of amylopectin, one of the two main constituents of starch.
  • the starch grains In the native state, the starch grains have a degree of crystallinity which varies from 15 to 45%, and which depends essentially on the botanical origin of the starch and the possible treatment that it has undergone.
  • Starch in the granular state, placed under polarized light, has a characteristic black cross, called Maltese cross, typical of this state.
  • the ester of the starchy material is derived from granular starch hydrolyzed by the acidic, oxidizing or enzymatic route.
  • Such starches are commonly referred to as fluidized starches, oxidized starches or white dextrins.
  • it can come from the esterification of a starch having essentially preserved the granular structure of the native starch but modified physico-chemically, such as in particular the weakly esterified and / or etherified starches, in particular modified by acetylation, hydroxypropylation, cationization, crosslinking, phosphatation, or succinylation, or starches treated in aqueous medium at low temperature (in English "annealing").
  • the ester of the starchy material may in particular result from the esterification of a hydrolyzed, oxidized or modified granular starch, in particular corn, wheat, potato or pea.
  • the starchy material selected for the preparation of the composition according to the invention comes from the high level esterification of a non-granular starch, that is to say without starch grains having microscopy. under polarized light, a Maltese cross. It can then be a water-soluble starch or an organomodified starch, which can also come from all botanical origins, including a starch, rich in amylose or conversely, rich in amylopectin (waxy).
  • the ester of the DS starch material of from 1 to 3 is a water-soluble non-granular starch ester.
  • water-soluble starch means any starchy material having at 20 ° C. and with mechanical stirring for 24 hours, a fraction soluble in deionized water at least equal to 5% by weight.
  • the water-soluble starch may advantageously be chosen from pregelatinized starches, extruded starches, atomized starches, dextrins, maltodextrins, functionalized starches or any mixtures of these products, optionally plasticized.
  • the pregelatinized, extruded or atomized starches can be obtained by hydrothermal treatment of gelatinization of native starches or modified starches, in particular by steam cooking, jet-cooker cooking, drum cooking, cooking in mixer / extruder systems. then drying, for example in an oven, by hot air on a fluidized bed, on a rotating drum, by spraying, by extrasion, by precipitation by a non-solvent, or by lyophilization, of a suspension or of a starchy solution. Examples include products manufactured and marketed by the Applicant under the brand name PREGEFLO ®.
  • Dextrins can be prepared from native or modified starches by dextrinification in acid medium with little hydration. It may be in particular soluble white dextrins or yellow dextrins. By way of example, mention may be made STABILYS ® A 053 or TACKIDEX ® C 072 products manufactured and marketed by the Applicant.
  • Maltodextrins can be obtained by acid, oxidative or enzymatic hydrolysis of starches in an aqueous medium. They may in particular have an equivalent dextrose (DE) of between 0.5 and 40, preferably between 0.5 and 20 and better still between 0.5 and 12. Such maltodextrins are for example manufactured and marketed by the Applicant under the trade name GLUCIDEX ®
  • the functionalized starches can be obtained in particular by acetylation in aqueous phase of acetic anhydride, mixed anhydrides, hydroxypropylation, cationization, anionization, phosphatation or succinylation. These functionalized starches may have a degree of substitution of between 0.01 and 2.7, and more preferably between 0.05 and 1.
  • the water-soluble starch is preferably a water-soluble starch of corn, wheat, potato or pea or a water-soluble derivative thereof.
  • the starchy material esterified with a DS of from 1 to 3 is an ester of an organomodified starch, preferably organosoluble, which may also come from all botanical origins.
  • organomodified starch means any starchy component other than a granular starch or a water-soluble starch according to the definitions given above.
  • this organomodified starch is almost amorphous, that is to say has a starch crystallinity level of less than 5%, generally less than 1% and especially zero.
  • organo that is to say to present 2O 0 C, a soluble fraction in a solvent selected from ethanol, ethyl acetate, propyl acetate, of butyl, diethyl carbonate, propylene carbonate, dimethyl glutarate, triethyl citrate, dibasic esters, dimethyl sulfoxide (DMSO), dimethyl isosorbide, glycerol triacetate, isosorbide diacetate, dioleate isosorbide and methyl esters of vegetable oils, at least equal to 5% by weight.
  • a solvent selected from ethanol, ethyl acetate, propyl acetate, of butyl, diethyl carbonate, propylene carbonate, dimethyl glutarate, triethyl citrate, dibasic esters, dimethyl sulfoxide (DMSO), dimethyl isosorbide, glycerol triacetate, isosorbide diacetate, dioleate isosorbide and methyl est
  • the organomodified starch can be prepared from native or modified starches such as those presented above, by esterification or etherification at a sufficiently high level to confer on it an insolubility in water and preferably a solubility in one. organic solvents above.
  • the organomodified starch can be obtained in particular by grafting oligomers of caprolactones or lactides, by hydroxypropylation and crosslinking, by cationization and crosslinking, by anionization, phosphatation or succinylation and crosslinking, by silylation, by butadiene telomerization.
  • These organomodified starches, which are preferably organosoluble can have a degree of substitution (DS) of between 0.01 and 2.7, preferably of between 0.05 and 2.0 and in particular of between 0.1 and 1.5.
  • the organomodified starch is preferably an organomodified starch of corn, wheat, potato or pea or an organomodified derivative thereof.
  • the esterifying agent used for the preparation of the ester of the starchy material may be an organic acid anhydride, an organic acid, a mixed anhydride, an organic acid chloride or any mixture of these products.
  • This esterification agent may be chosen from acids having from 2 to 24 carbons, saturated or unsaturated, and more specifically from acetic acid, propionic acid, butyric acid, valeric acid and hexanoic acid.
  • heptanoic acid pelargonic acid
  • octanoic acid decanoic acid, undecanoic acid, lauric acid, myristic acid, palmitic acid, oleic acid, stearic acid the anhydrides of these acids, the mixed anhydrides of these acids, and any mixtures of these products.
  • the ester of the starchy material having a degree of substitution (DS) of between 1.0 and 3.0, preferably between 1.2 and 3.0, in particular between 1.6 and 3.0, and especially between 1 and , 8 and 2.9 is preferably an ester of a water-soluble starch or an organomodified starch, preferably an ester of a pregelatinized starch, an extruded starch, an atomized starch, a dextrin, a maltodextrin, a functionalized starch, an organosoluble starch, or any mixture of these optionally plasticized products.
  • said ester of the starchy material carries chains of 2 to 22 carbons and is an acetate, a propionate, a butyrate, a valerate, a hexanoate, an octanoate, a decanoate, a laurate, a palmitate, an oleate or starch, dextrin or maltodextrin stearate, pure or in admixture.
  • it is an acetate of starchy material.
  • composition according to the invention comprises, in particular, as ester of starchy material, an ester of DS included in any one of the abovementioned ranges, preferably of acetate type, of water-soluble or organomodified starch, in particular of pregelatinized starch extruded, atomized, dextrin, maltodextrin, functionalized starch or organosoluble starch.
  • the ester of the starchy material is a water-soluble or organomodified starch acetate, a dextrin acetate or a maltodextrin acetate.
  • the ester of the starch material may be mixed in all proportions with a granular starch, optionally hydrolyzed or modified, with a water-soluble starch or an organomodified starch, as defined above.
  • esterification conditions a person skilled in the art will easily be able to refer, with regard to the esterifying agent employed, to the techniques and conditions described in the literature, in particular in the applications and patents
  • the esterification can be obtained in particular by acetylation in solvent phase in organic acid medium, in the presence of the anhydride or a mixed anhydride of this organic acid and an acid catalyst.
  • the esterified starchy material may carry other groups, introduced by grafting, for example, oligomers of caprolactones or lactides, or introduced by hydroxypropylation, crosslinking, cationization, anionization, succinylation, silylation or telomerization.
  • the elastomeric composition according to the invention comprises, from 5 to 40% by weight, a plasticizer of the ester of the starchy material.
  • plasticizer of the ester of the starchy material or “plasticizer of the ester of the amylaceous material” is meant any molecule of low mass which, when it is incorporated in the ester of the starchy material or in the composition according to the invention, in particular by a thermomechanical treatment with a molecular weight, that is to say preferably having a molecular weight of less than 5000.
  • a thermomechanical treatment with a molecular weight that is to say preferably having a molecular weight of less than 5000.
  • the ester of the starchy material when used in the present invention in relation to "the ester of the starchy material”, this necessarily implies the presence of a plasticizer.
  • the esterified starchy material may contain an amount of one or more compounds on the list of plasticizers below.
  • the plasticizer may be chosen from water, esters and ethers of the diols, triols and polyols glycerol, polyglycerols, isosorbide, sorbitans, sorbitol, mannitol, and hydrogenated glucose syrups. organic acid esters, urea and any mixtures of these products.
  • the plasticizing agent may in particular be chosen from methyl, ethyl or fatty esters of organic or inorganic acids such as lactic, citric, succinic, adipic, sebacic, phthalic, glutaric or phosphoric acids or the acetic or fatty esters of mono alcohols, diols, triols or polyols such as ethanol, diethylene glycol, glycerol or sorbitol.
  • glycerol diacetate diacetin
  • glycerol triacetate triacetin
  • isosorbide diacetate isosorbide dioctanoate
  • isosorbide dioleate isosorbide dilaurate
  • esters of dicarboxylic acids or dibasic esters dibasic esters
  • the plasticizer may also be an epoxidized vegetable oil, a glycol or derivative such as an ethylene glycol polyester.
  • the plasticizer may also be chosen from the abovementioned products coupled together by coupling agents such as epichlorohydrin or an isocyanate.
  • the plasticizing agent is characterized by its solubility parameter (known as HILDEBRAND), which in fact translates the force of attraction existing between the molecules of said plasticizer and of any polymer (of amylaceous nature or not) present in the composition according to the invention, and more particularly the cohesion energy density variation of the plasticizer, ie the energy necessary to vaporize it.
  • the plasticizer optionally used may in particular have a solubility parameter of between 15 and 28 (J.cm 3 ) 0 ' 5 , preferably between
  • the HILDEBRAND parameter calculated from its latent heat of vaporization (85.74 kJ / mol) or its boiling point (259 ° C. ), is 21 (J.cm "3 ) 0 ' 5 .
  • the plasticizer of the ester of the starchy material used advantageously has a molar mass of less than 1500, and in particular less than 500.
  • the plasticizer preferably has a molar mass greater than 18, in other words it preferably does not include water.
  • the plasticizer has a molecular weight of between 150 and 450.
  • the plasticizer may in particular present simultaneously, for example, triacetin (molar mass of 218):
  • Said plasticizer is preferably 5 to 30%, more preferably 5 to 20%
  • composition according to the invention % of the composition according to the invention. This, for example, when said composition is intended for the preparation of a gum base chewing gum.
  • this plasticizer is present in a proportion of from 1 to 150 parts by dry weight, preferably from 10 to 120 parts by dry weight and in particular from 25 to 120 parts by dry weight, for 100 parts by weight. by dry weight of ester of the starchy material.
  • the incorporation of the plasticizer can be carried out cold, for example by mixing at room temperature with the ester of the starchy material or directly during the preparation of the elastomeric composition according to the invention, that is to say at a temperature preferably between 60 and 200 0 C, more preferably between 100 and 180 0 C, discontinuously, for example by kneading / kneading, or continuously, for example by extrusion.
  • the duration of this mixture can range from a few seconds to a few hours, depending on the mixing mode selected.
  • the composition according to the invention is characterized in that the ester of the starchy material contained in the composition has a degree of crystallinity of less than 15%, preferably less than 5% and more preferably less than 1%. .
  • This degree of crystallinity can in particular be measured by X-ray diffraction technique as described in US Pat. No. 5,362,777 (column 9, lines 8 to 24).
  • the elastomeric composition according to the invention further comprises at least one polymer other than starch (also called “non-starchy polymer”) chosen from elastomeric polymers (also called “elastomers").
  • elastomeric polymer (or “elastomer”) is understood to mean any polymer that softens under the action of heat, hardens on cooling and, at a low temperature and especially at ambient temperature, exhibits an ability to take up a more or less rapid reaction. original shape and primitive dimensions after applying strain strain. It has a so-called vitreous transition temperature (Tg) below which all or part of its amorphous fraction is in the brittle glassy state, and above which it can undergo reversible plastic deformations.
  • Tg vitreous transition temperature
  • elastomeric polymer is also meant any polymer of the “thermoplastic elastomer” type, having both elastomeric and thermoplastic properties through a structure of polymer type sequence with "soft" segments and "hard” segments.
  • the non-starchy elastomeric polymer may be of any chemical nature other than starchy. It may advantageously be a thermoplastic elastomer.
  • It may be a polymer of natural origin, or a synthetic polymer obtained from monomers of fossil origin and / or monomers from renewable natural resources.
  • NR natural rubbers
  • SR synthetic rubbers
  • ACM ethylene-vinyl acetate elastomers
  • EVA ethylene-vinyl acetate elastomers
  • NBR nitrile rubbers
  • BR polybutadienes
  • CR polychloroprenes
  • IR Neoprene ® and polyisoprenes
  • the non-starchy elastomeric polymer has a glass transition temperature (Tg) of between -5 and -1200 ° C., preferably between -10 and -105 ° C. and more preferably between -20 and -80 ° C. vs.
  • non-starch elastomeric polymer in particular natural rubbers and their derivatives, polyisobutylenes (PIB or IRR), polyisoprenes, butadiene-styrene copolymers
  • SBR butadiene-acrylonitrile copolymers, optionally hydrogenated
  • NBR and H-NBR acrylonitrile-styrene-acrylate copolymers
  • ASA acrylonitrile-styrene-acrylate copolymers
  • TPU thermoplastic polyurethanes of the ether or ester-ether type, polyethylenes or polypropylenes functionalized for example with silane, halogen, acrylic or maleic anhydride units, elastomers based on ethylene (ethylene acrylates or EAM) or polypropylene (ethylene-propylene-diene monomer or EPDM) or ethylene and propylene (EPM), thermoplastic elastomers derived from polyolefins (TPO), styrene-based copolymers butylene-styrenes (SBS) and styrene-ethylene-butylene-styrene (SEBS) functionalized for example with maleic anhydride units and any mixtures
  • all or part of the non-starchy elastomeric polymer is synthesized from monomers derived from renewable natural resources in the short term, such as plants, microorganisms or gases, in particular from sugars, glycerine, oils or of their derivatives such as alcohols or acids, mono-, di- or polyfunctional.
  • the elastomeric polymer may in particular be synthesized from bio-sourced monomers such as bioethanol, bio-ethylene glycol, bio-propanediol, 1,3-propanediol biosourced, bio-butanediol, lactic acid, succinic acid biosourced, glycerol, isosorbide, sorbitol, sucrose, diols derived from vegetable or animal oils and resin acids extracted from pine, as well as their derivatives.
  • the non-starchy elastomeric polymer is a synthetic polymer obtained from monomers of fossil origin and / or monomers derived from renewable natural resources and which has, as such, a degree of biodegradability of less than 50%. preferably less than 30%.
  • the non-starchy polymer has a low solubility in water, namely less than 10% (less than 10% of matter soluble in water at 20 ° C.) and in particular less than 5%. It is preferably insoluble in water (less than 0.1% of matter soluble in water at 20 ° C.).
  • the non-starchy polymer has a weight average molecular weight of between 8500 and 10,000,000 daltons, in particular between 15,000 and 1,000,000 daltons.
  • the non-starchy polymer preferably consists of carbon of renewable origin according to ASTM D6852 and is advantageously non-biodegradable or non-compostable in the sense of the standards EN 13432, ASTM D6400 and ASTM 6868.
  • the incorporation of the polymer non-starchy, elastomeric, to the ester of the starchy material in the composition according to the invention may be preferably by hot kneading at a temperature between 35 and 300 0 C, especially between 60 and 200 0 C, and better still from 100 to 180 ° C.
  • This incorporation can be carried out by thermomechanical mixing, discontinuously or continuously and in particular in line. In this case, the mixing time can be short, from a few seconds to a few minutes.
  • the elastomeric composition according to the invention may consist exclusively or almost exclusively of the three components that are the ester of starchy material, the plasticizer of said ester and the non-starchy, elastomeric polymer.
  • the elastomeric composition according to the invention can be characterized in that it comprises, in total, from 35 to 100% by weight of ester of starch material, plasticizer of said ester and elastomeric non-starchy polymer.
  • this total percentage of these three components is between 50 and 100%.
  • composition may especially be between 70 and 100%, for example when said composition is intended for the preparation of a gum base chewing gum.
  • composition according to the invention may however comprise other components than the aforementioned three and in particular comprise a binding agent.
  • binding agent in the present invention, any organic molecule carrying at least two functional groups, free or masked, capable of reacting with molecules carrying active hydrogen functions such as for example those of the ester starchy material or plasticizer.
  • This binding agent may be added to the composition to allow the attachment, by covalent bonds, of at least a portion of the plasticizer to the ester of the starchy material and / or on the added non-starchy polymer. It may optionally also be added as a crosslinking or vulcanizing agent
  • This binding agent can then be chosen for example from compounds carrying at least two functions, free or masked, identical or different, chosen from isocyanate functions, carbamoylcaprolactam, aldehydes, epoxide, halogen, protonic acid, acid anhydride acyl halide, oxychloride, trimetaphosphate, alkoxysilane and combinations thereof.
  • diisocyanates preferably methylenediphenyl diisocyanate (MDI), toluene diisocyanate (TDI), naphthalene diisocyanate (NDI), hexamethylene diisocyanate
  • MDI methylenediphenyl diisocyanate
  • TDI toluene diisocyanate
  • NDI naphthalene diisocyanate
  • HMDI lysine diisocyanate
  • dicarbamoylcaprolactams preferably 1-1'-carbonyl-caprolactam
  • diepoxides compounds comprising an epoxide function and a halogen function, preferably epichlorohydrin,
  • organic diacids preferably succinic acid, adipic acid, glutaric acid, oxalic acid, malonic acid, maleic acid and the corresponding anhydrides; oxychlorides, preferably oxychloride; phosphorus,
  • trimetaphosphates preferably sodium trimetaphoshate
  • alkoxysilanes preferably tetraethoxysilane
  • the linking agent is a diisocyanate, in particular methylenediphenyl diisocyanate (MDI).
  • MDI methylenediphenyl diisocyanate
  • composition contains a binding agent
  • said binding agent is preferably present in an amount of from 0.1 to 15 parts by dry weight, preferably from 0.2 to 9 parts by dry weight and in particular at from 0.5 to 5 parts by dry weight, per 100 parts by dry weight of ester of the starchy material.
  • the composition according to the invention may also comprise a compatibilizing agent between the ester of the starchy material and the non-starchy polymer. he This may be for example other polymers or even low molecular or polymeric surfactants, having within them at least a relatively hydrophilic portion and at least a relatively hydrophobic portion.
  • composition according to the invention may comprise in particular one or more polymers other than the ester of starchy material and the non-starchy, elastomeric polymer.
  • This or these polymers represent (s), in total, at most 65% of the total weight of the composition according to the invention.
  • This total percentage of additional polymer (s) is, preferably at most 55%, and more preferably still, at most 40%, expressed with respect to the total weight of the composition according to the invention. This is the case, for example, when said composition is intended for the preparation of a gum base chewing gum.
  • this percentage is advantageously between 2 and 40%, in particular between 5 and 35%, expressed relative to the total weight of the composition according to the invention.
  • Any additional polymer may be a polymer of natural origin, or a synthetic polymer obtained from monomers of fossil origin and / or monomers from renewable natural resources.
  • the additional polymers of natural origin can in particular be obtained directly by extraction from plants or animal tissues. They are preferably modified or functionalized, and in particular chosen from polymers of protein, cellulosic or lignocellulosic nature and chitosan. It may also be polymers obtained by extraction from microorganism cells, such as polyhydroxyalkanoates (PHA).
  • PHA polyhydroxyalkanoates
  • Such additional polymer of natural origin may also be chosen from flour, proteins, preferably modified; celluloses unmodified or modified in particular by carboxymethylation, ethoxylation, hydroxypropylation, cationization, acetylation, alkylation; hemicelluloses; lignins; modified or unmodified guars; chitin and chitosan; gums and natural resins such as rosins, shellacs, terpene resins and bitumens; polysaccharides extracted from algae such as alginates and carrageenans; polysaccharides of bacterial origin such as xanthans or gellans; lignocellulosic fibers such as flax, hemp, coconut or other natural fibers; any mixtures of the aforementioned polymers.
  • the additional polymer may be synthetic and obtained in particular by polymerization, polycondensation or polyaddition.
  • the additional polymer has, as such, a degree of biodegradability of at least 50% and is preferably chosen from biodegradable polyesters such as polyhydroxy acids (such as PLA, PGA, PHA, PHB, PHV, PHBV). or PCL), polyesteramides (such as BAKs) or aromatic or aliphatic copolyesters (such as PBS and PBAT), among polyalkylene carbonates (such as PEC and PPC) and from water-soluble polymers such as polyvinylalcohols, ethylenevinylalcohols proteins, celluloses and their derivatives; any mixtures of the aforementioned polymers. .
  • biodegradable polyesters such as polyhydroxy acids (such as PLA, PGA, PHA, PHB, PHV, PHBV). or PCL), polyesteramides (such as BAKs) or aromatic or aliphatic copolyesters (such as PBS and PBAT), among polyalkylene carbonates (such as PEC and PPC) and from water-soluble
  • the additional polymer has, as such, a degree of biodegradability of less than 50%, preferably less than 30% and preferably be chosen from non-starch and non-elastomeric polymers such as polyolefins, especially polyethylene, polypropylene and their non-elastomeric copolymers, non-elastomeric vinyl polymers or copolymers, non-elastomeric styrenic polymers or copolymers, non-elastomeric acrylic or methacrylic polymers and copolymers, polyoxyphenylenes, polyacetals, non-elastomeric polyamides, biodegradability rate polycarbonates less than 50%, biodegradability polyesters lower than 50% such as poly (ethylene terephthalate) (PET), including amorphous (PETG), non-elastomeric fluoropolymers, polysulfones, phenylene polysulfides ( or polyphenylsulfides), non-elastomeric polyurethanes,
  • Additional polymers which may be used especially according to the invention include poly (ethylene terephthalates) (PET), including amorphous poly (ethylene terephthalate) (PETG), polyethylenes (PE) and polypropylenes (PP). functionalized or non-functionalized, polyacrylonitriles (PAN), polyethersulfones, polymethylmethacrylates (PMMA), polyamides, in particular polyamides 6, 6-6, 6-10 and 6-12, polyacrylates, polyvinyl acetate , non-elastomeric polyurethanes, polyoxymethylenes (POMs) and any mixtures of these polymers.
  • PET poly (ethylene terephthalates)
  • PET amorphous poly (ethylene terephthalate)
  • PE polyethylenes
  • PP polypropylenes
  • PAN polyacrylonitriles
  • PMMA polymethylmethacrylates
  • polyamides in particular polyamides 6, 6-6, 6-10 and 6-12, polyacrylates, polyvinyl acetate ,
  • composition according to the invention may also comprise other additional products.
  • fillers, fibers or additives which can be incorporated in the elastomeric composition of the present invention. It may be products intended to further improve its physico-chemical properties, in particular its implementation behavior and its durability or its mechanical, thermal, conductive, adhesive or organoleptic properties.
  • the additional product may be an improving or adjusting agent for the mechanical or thermal properties chosen from minerals, salts and organic substances. It may be nucleating agents such as talc, impact or scratch-resistant agents such as calcium silicate, withdrawal control agents such as magnesium silicate, scavengers or deactivators of water, acids, catalysts, metals, oxygen, infrared rays, UV rays, hydrophobing agents such as oils and greases, flame retardants and fire retardants such as halogenated derivatives, anti-smoke agents, reinforcing fillers, mineral or organic, such as calcium carbonate, talc, plant fibers including coconut, sisal, cotton, hemp and flax, fibers glass or Kevlar.
  • nucleating agents such as talc, impact or scratch-resistant agents such as calcium silicate
  • withdrawal control agents such as magnesium silicate, scavengers or deactivators of water, acids, catalysts, metals, oxygen, infrared rays, UV rays
  • the additional product may also be an improving agent or an adjustment of the conductive or insulating properties with respect to electricity or heat, for example sealing against air, water or gases. , to solvents, to fatty substances, to essences, to aromas, to perfumes, chosen in particular from minerals, salts and organic substances, in particular from heat-conduction or dissipation agents such as metal powders and graphites .
  • the additional product may be an agent that improves the organoleptic properties, in particular:
  • optical properties whiteners such as titanium dioxide, dyes, pigments, dye enhancers, opacifiers, matting agents such as calcium carbonate, thermochromic agents, phosporescence and fluorescence agents, agents metallizers or marbles and anti-fogging agents
  • whiteners such as titanium dioxide, dyes, pigments, dye enhancers, opacifiers, matting agents such as calcium carbonate, thermochromic agents, phosporescence and fluorescence agents, agents metallizers or marbles and anti-fogging agents
  • the additional product may also be an enhancing or adjusting agent for adhesive properties, including adhesion to cellulosic materials such as paper or wood, metal materials such as aluminum and steel, glass or ceramic materials, textiles and mineral materials, such as pine resins, rosins, ethylene / vinyl alcohol copolymers, fatty amines, lubricating agents, mold release agents, antistatic agents and anti-blocking agents.
  • cellulosic materials such as paper or wood, metal materials such as aluminum and steel, glass or ceramic materials, textiles and mineral materials, such as pine resins, rosins, ethylene / vinyl alcohol copolymers, fatty amines, lubricating agents, mold release agents, antistatic agents and anti-blocking agents.
  • the additional product may be an agent improving the durability of the material or an agent for controlling its (bio) degradability, in particular chosen from hydrophobic or pearling agents such as oils and greases, anticorrosive agents, preservatives as in particular organic acids, in particular acetic acid or lactic acid, antimicrobial agents such as Ag, Cu and Zn, degradation catalysts such as oxo-catalysts and enzymes such as amylases.
  • the additional product can be a nanometric product that significantly reduces the water and water vapor sensitivity of the final elastomeric composition obtained, compared with the prior art comprising starch.
  • the nanometric product may also be added to improve the behavior in the implementation and the shaping of the composition according to the invention but also its mechanical, thermal, conductive, adhesive or organoleptic properties.
  • the product The nanoscale particle consists of particles of which at least one dimension is between 0.5 and 200 nanometers, preferably between 0.5 and 100 nanometers, and more preferably between 1 and 50 nanometers. This dimension can in particular be between 5 and 50 nanometers.
  • the nanometric product can be of any chemical nature and possibly be deposited or fixed on a support.
  • It can be chosen from natural or synthetic lamellar clays, organic, mineral or mixed nanotubes, organic, mineral or mixed nanocrystals and nanocrystallites, organic, mineral or mixed nanospheres and nanospheres, individualized, in clusters or agglomerates, and blends. any of these nanoscale products.
  • lamellar clays also called silicates / phyllosilicates of calcium and / or sodium
  • montmorillonite bentonite, saponite, sepiolite, hydrotalcite, hectorite, fluorohectorite, attapulgite, beidellite, nontronite, vermiculite, hallysite, stevensite, manasseite, pyr
  • Such lamellar clays are already commonly marketed, for example by ROCKWOOD under the trade names NANOSIL and CLOISITE. Hydrotalcites may also be mentioned, such as SASOL's PURAL products.
  • the nanotubes that can be used in the context of the invention have a tubular structure with a diameter of the order of a few tenths to several tens of nanometers. Some of these products are already commercially available, such as carbon nanotubes, for example by the company Arkema under the brand names GRAPHISTRENGTH and NANOSTRENGTH and NANOCYL under the brand names NANOCYL, PLASTICYL, EPOCYL, AQUACYL, and THERMOCYL.
  • Such nanotubes may also be cellulose nanofibrils, with a diameter of around 30 nanometers for a length of a few microns, which are constitutive of the natural fibers of wood cellulose and can be obtained by separation and purification from them.
  • the nanocrystals or nanocrystals can in particular be obtained by crystallization, within or without the elastomeric composition, of very diluted solvent medium, said solvent being constitutive of the composition according to the invention.
  • nanometals such as iron or silver nanoparticles useful as reducing or antimicrobial agents and the nanocrystals of oxides known as agents for improving the resistance to scratching.
  • nanoscale synthetic talcs which can be obtained for example by crystallization from an aqueous solution.
  • amylose / lipid complexes of structures of Vh (stearic), Vbutanol, Vglycerol, Visopropanol, Vnaphthol type from 1 to 10 microns in width or in length, for a thickness of about ten nanometers. It may also be complexes with cyclodextrins, similar characteristics.
  • it may be polyolefin nucleating agents able to crystallize in the form of nanometric particles such as sorbitol derivatives such as dibenzylidene sorbitol (DBS) and its own alkyl derivatives.
  • sorbitol derivatives such as dibenzylidene sorbitol (DBS) and its own alkyl derivatives.
  • the usable nanometric product may be in elementary nanobead or nanosphere type particles, that is to say in the form of pseudospheres with a radius of 1 to 500 nanometers, in individualized form, in a cluster or in agglomerates.
  • carbon blacks commonly used as a filler for elastomers and rubbers may be mentioned. These carbon blacks comprise primary particles ranging in size from about 8 nanometers (oven blacks) to about 300 nanometers (thermal blacks) and generally have oil absorption capacities of typically between 40 and 180 cc. per 100 grams for STSA specific surfaces of between 5 and 160 m2 per gram.
  • Such carbon blacks are in particular marketed by CABOT, EVONIK, SID RICHARDSON, COLUMBIAN and CONTINENTAL CARBON.
  • Hydrophilic or hydrophobic silicas, precipitation or combustion (pyrogenic), such as those used as flow agents for powders or fillers in tires called “green” may also be mentioned.
  • Such silicas are sold especially in the form of powder or dispersions in water, in ethylene glycol or in acrylate or epoxy resins, by the companies GRACE, RHODIA, EVONIK, PPG and NANORESINS AG.
  • nanoprecipitated calcium carbonates or metal oxides (titanium dioxide, zinc oxide, cerium oxide, silver oxide, iron oxide, magnesium oxide, aluminum oxide, etc.) rendered nanometric for example by combustion such as the products marketed by the company EVONIK under the names AEOROXIDE or AEORODISP, or by acid attack such as the products sold by SASOL under the names DISPERAL or DISPAL.
  • proteins precipitated or coagulated in the form of nanoscale beads may be mentioned.
  • polysaccharides can be mentioned, such as starches in nanospheric form, such as, for example, crosslinked starch nanoparticles with a size of between 50 and 150 nanometers, sold under the name ECOSPHERE by the company ECOS YNTHETIX or else acetate nanoparticles.
  • any additional product can be done by physical mixing cold or low temperature but preferably by hot mixing at a temperature above the glass transition temperature of the composition.
  • This mixing temperature is advantageously between 60 and 20O 0 C and better still 100 to 18O 0 C.
  • This incorporation can be carried out by thermomechanical mixing, discontinuously or continuously and in particular online. In this case, the mixing time can be short, from a few seconds to a few minutes.
  • the composition according to the invention preferably has a complex viscosity, measured on a rheometer of the PHYSICA MCR 501 or equivalent type, of between 10 and 10 6 Pa ⁇ s, for a temperature of between 100 and 200 ° C.
  • a complex viscosity measured on a rheometer of the PHYSICA MCR 501 or equivalent type, of between 10 and 10 6 Pa ⁇ s, for a temperature of between 100 and 200 ° C.
  • its viscosity at these temperatures is preferably located in the lower part of the range given above and the composition is then preferentially heat fusible in the sense specified above.
  • the elastomeric compositions according to the invention also have the advantage of being able to be practically or completely insoluble in water, to hydrate with difficulty and to maintain a good physical integrity after immersion in water, saline, oxidizing and acidic solutions. or alkaline or the media More complex aqueous media such as biological media such as saliva, sweat and digestive juices.
  • the composition according to the invention advantageously has characteristic stress / strain curves of a ductile material, and not of a fragile type material.
  • the tensile mechanical characteristics of the various compositions are determined according to Standard NF T51-034 (Determination of tensile properties) using a Lloyd Instrument LR5K test bench, a tensile speed: 50 mm or 300 mm / min and specimens. normalized type H2.
  • the elongation at break measured for the compositions of the present invention for a stretch rate of 50 mm / min, is generally between
  • this elongation at break is at least 70% and less than 500% and in particular between 80% and. 480%.
  • the maximum tensile strength of the compositions of the present invention, also measured at a stretching speed of 50 mm / min, is generally between 4 and 50 MPa. It is generally greater than 4 MPa, preferably greater than 5 MPa, more preferably greater than 6 MPa. Remarkably, it can even reach or exceed 7 MPa, or even 10 MPa, or even much more (15 to 50 MPa). According to an advantageous variant, this constraint maximum at break is at least 7 MPa and less than 50 MPa, especially between 10 MPa and 45 MPa ..
  • composition according to the present invention may furthermore have the advantage of being essentially renewable raw materials and of being able to present, after adjustment of the formulation, the following properties, useful in multiple applications in the plastics industry, in the elastomer industry and rubbers, in the adhesive industry, in pharmacy, in cosmetics, in confectionery or in many other fields:
  • thermoplasticity suitable thermoplasticity, melt viscosity and glass transition temperature, within the usual known ranges of current polymers, which can be implemented using existing industrial installations and conventionally used for the usual natural, artificial or synthetic polymers,
  • thermoplastic starch compositions of the prior art Flexibility, elongation at break, maximum breaking stress
  • the present invention also relates to a method for preparing an elastomeric composition as described above in all its variants, said method comprising the following steps:
  • the elastomeric composition according to the invention can be used as such or in admixture with synthetic, artificial or naturally occurring polymers. It may also include polymers known to be biodegradable or compostable within the meaning of EN 13432, ASTM D6400 and ASTM 6868, or materials meeting these standards, such as PLA, PCL, PBS, PBAT and PHA.
  • composition according to the invention may in particular be non-biodegradable (degree of biodegradability less than 5%, and better close to 0%) and / or preferably non-compostable within the meaning of the EN or ASTM standards mentioned above. It is possible to modulate the lifetime and the stability of the composition according to the invention by adjusting in particular its affinity for water, so as to suit the expected uses as a material and the recovery methods envisaged in the end. of life.
  • the elastomeric composition according to the present invention advantageously contains at least 15%, preferably at least 30%, in particular at least 50%, more preferably at least 70% or even more than 80% of carbon of renewable origin in the sense of ASTM D6852, relative to all the carbon present in the composition.
  • This carbon of renewable origin is essentially that constitutive of the ester of the starch material necessarily present in the composition according to the invention but can also be advantageously, by a judicious choice of the constituents of the composition, that present in the plasticizer possible or any other constituent of the composition, when they come from renewable natural resources such as those defined preferentially above.
  • compositions according to the invention as gaskets or barrier products to oxygen, carbon dioxide, flavorings, fuels and / or fats, alone or in multi structures. coextruded layers for the field of food packaging in particular.
  • They can also be used to increase the hydrophilicity, electrical conductivity, permeability to water and / or water vapor, or resistance to organic solvents and / or fuels, of synthetic polymers in the framework for example of the manufacture of membranes, films or printable electronic labels, textile materials, containers or tanks, or to improve the adhesive properties of heat-sealing films or sticky films on hydrophilic supports such as the wood, glass or skin.
  • thermoplastic or elastomeric composition according to the invention considerably reduces the risk of bioaccumulation in the adipose tissue of living organisms and therefore also in the food chain.
  • Said composition may be in pulverulent, granulated or bead form. It can constitute as such a masterbatch or the matrix of a masterbatch, intended to be diluted in a bio-sourced matrix or not. It can also constitute a plastic raw material or a compound that can be used directly by an equipment manufacturer or a fabricator for the preparation of plastic or elastomeric objects.
  • an adhesive in particular of the hot-melt type, or a matrix for the formulation of an adhesive, in particular of the hot-melt type. It may constitute part or all of a base gum or the matrix of a base gum, in particular chewing gum or a resin, co-resin or nano-filler, in particular biosourced, which can be used in industry, including rubber and elastomers including tires, road bitumen or other, inks, varnishes, paints, paper and paperboard, woven and non-woven products. It may be for example treads or carcasses of tires, belts, cables, pipes, seals and molded parts, pacifiers, gloves, soles of shoes, coated fabrics.
  • the present invention particularly relates to the use of an elastomeric composition according to the invention, for the preparation of a gum base chewing gum.
  • a gum base for chewing gum containing a composition according to the invention, preferably in an amount of between 5 and 50%, preferably between 10 to 45% and in particular between 10 and 40%.
  • the present invention also relates to the use of an elastomeric composition according to the invention, for the preparation of a workpiece, tire or equipment for the transport industry, in particular for the industry. automotive, aeronautical, railway or naval, for the electrical, electronic or household appliance industry, for the sports and leisure industry or for the pharmacy or cosmetics industries.
  • composition according to the invention may optionally be used to prepare thermoset resins (duroplasts) by irreversibly extensive crosslinking, said resins thus definitely losing any elastomeric character.
  • thermoset resins duroplasts
  • the invention also relates to a plastic material, an elastomeric material or an adhesive material comprising the composition of the present invention or a finished or semi-finished product obtained therefrom.
  • ester of starchy material a potato starch acetate having an ester DS of 2.7 and hereinafter referred to as "ACET 1", as a plasticizer of this starch ester, a liquid composition of glycerol triacetate (triacetin), - as non-starchy polymer elastomer, a polyether TPU polymer type marketed under the name Estane ® 58887 by Noveon,
  • MDI methylene diphenyl diisocyanate
  • control composition containing, by weight:
  • ACET 1 ester 60 parts of ACET 1 ester and 40 parts of triacetin are mixed in a Hobart mixer for 5 minutes. After crumbling the resulting mixture, it is introduced, through the main feed chute, into a single-screw extruder type HAAKE, diameter (D) of 19 mm and length 25 D according to the following temperature profile, respectively for the 4 sleeves: 40 0 C,
  • the plasticized ACET 1 starch ester rod is then granulated.
  • the plastic ACET 1 ester granules (“ACET 1 ⁇ l") are then mixed with the PLA in a 50/50 weight ratio in a Hobart mixer for 5 minutes.
  • the resulting extruded composition (hereinafter "COMP 1") is in the form of a cream-colored ring which is continuous, stretchable under its weight and which appears visually homogeneous. To the touch, it has good flexibility but a rather slow elastic response of non-crosslinked rubber type. It has the following tensile mechanical characteristics, measured in accordance with the protocol described previously in the section "Measurement of mechanical properties” and for a stretching speed of 50 mm / min: elongation at break: 23%, - maximum stress at rupture: 16 MPa.
  • COMP 1 composition described above was then implemented within extruded compositions ("COMP 2" and "COMP 4"), also not in accordance with the present invention, and in a extruded composition ("COMP 3"), according to the invention, these compositions respectively containing, by weight:
  • COMP 3 50 parts of COMP 1 + 50 parts of ESTANE ® 58887 polyether TPU + 2% of MDI,
  • COMP 4 50 parts of COMP 1 + 45 parts of low density polyethylene (LDPE) + 5% of PE grafted maleic anhydride BONDYRAM ® 4001.
  • LDPE low density polyethylene
  • composition COMP has, under the same measurement conditions as those used for the composition COMP 1, the mechanical characteristics listed in the table below, with, for other control compositions, a composition consisting solely of low density polyethylene (“LDPE”) or only acrylonitrile butadiene styrene copolymer (“ABS").
  • LDPE low density polyethylene
  • ABS acrylonitrile butadiene styrene copolymer
  • composition COMP 3 according to the invention which nevertheless contains a very high proportion of COMP 1, possesses thermal and mechanical characteristics which could be comparable to those of thermoplastic elastomers.
  • so-called "technical” market such as TPU or ABS and in any case, this COMP 3 had an excellent compromise between elongation at break (value exceeding 200%) and maximum stress at break (significantly higher value at 10 MPa).
  • biodegradability rate values generally greater than 50%.
  • compositions according to the invention to replace at least partially a gum base based on synthetic polymer used for the preparation of chewing gums.
  • esters of starchy material respectively: an acetate of a maltodextrin obtained from waxy corn starch (maltodextrin)
  • Potato starch acetate having an ester DS of about 2.6, said acetate being further hydroxypropylated with a MS (Molecular Substitution Degree) of about 0.4 (hereinafter referred to as "ACET"); 5 ").
  • PLAST 1 triacetin
  • an elastomeric composition comprising, in total, about 52% by weight of a mixture of non-starch polymers consisting of polyvinyl acetate (PVAc), rosin esters, copolymers butadiene / styrene and polyisobutylene, the 100% complement consisting mainly of calcium carbonate, paraffin wax and emulsifier.
  • PVAc polyvinyl acetate
  • rosin esters polyvinyl acetate
  • copolymers butadiene / styrene and polyisobutylene the 100% complement consisting mainly of calcium carbonate, paraffin wax and emulsifier.
  • the butadiene / styrene and polyisobutylene elastomers represent about one third of the polymers of this composition, ie 14% of the 52% of polymers.
  • each of the ACET 2 starch ester esters is mixed with ACET 5 with the PLAST plasticizer.
  • Chewing gum compositions are prepared according to the formula below. 2.4.1: formula
  • GUM 2 70% by weight of gum base + 30% by weight of ACET plasticized starchy acetate 2 ',
  • the hardness expressed in Newtons of the prepared sticks is measured. This, either after their preparation (OJ) and at different temperatures (45, 35 or 200 ° C.) or after, respectively, 1, 8 and 15 days of storage inside an aluminum packaging itself placed in an air-conditioned chamber (temperature: 20 ° C, relative humidity RH): 50%).
  • Those with the INSTRON texture closest to the control are those prepared with GUM 2 gum base containing 30% of ACET plasticized starch material, namely 30% of a plasticized GLUCIDEX® 2 acetate. triacetin.
  • ester of plasticized starchy material maltodextrin acetate ACET 2 as described in Example 2, as a plasticizer, benzyl alkyl in weight per 100 parts by weight said ester, - as non-starchy polymer elastomer, TPU type polymeric ester sold under the name Estane ® 58447 by Noveon,
  • Example 1 a composition according to the invention (hereinafter "COMP 5") containing:
  • composition COMP 5 has the following tensile mechanical characteristics, measured according to the protocol described above in the section "Measurement of mechanical properties" and for a stretching speed of 50 mm / min: elongation at break: 80%, - maximum stress at break: 14 MPa.
  • the COMP 5 composition although containing a high proportion of ester of starchy material, has a behavior close to certain performances of "shock polystyrene” type polymer or "EVA for agricultural film” type.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Medicinal Preparation (AREA)
  • Cosmetics (AREA)

Abstract

La présente invention a pour objet une composition élastomérique, caractérisée en ce qu'elle contient : - au moins 5 % et au plus 70 % en poids d'un ester d'une matière amylacée, de degré de substitution en esters (DS) compris entre 1,0 et 3,0, de préférence compris entre 1,2 et 3,0, - au moins 5 % et au plus 40 % en poids d'un plastifiant de cet ester de matière amylacée, ledit plastifiant étant, de préférence, autre que l'eau et, - au moins 25 % en poids et au plus 90 % en poids d'un polymère non amylacé élastomérique.

Description

COMPOSITIONS ELASTOMERIQUES A BASE D'ESTERS D'UNE MATIERE AMYLACEE ET PROCEDE DE PREPARATION DE TELLES
COMPOSITIONS.
La présente invention concerne de nouvelles compositions élastomériques, à base d'esters d'une matière amylacée présentant un haut degré de substitution (DS) en esters, de plastifiants de ces esters et de polymères autres que l'amidon, de nature élastomérique.
On entend par « composition élastomérique » dans la présente invention une composition qui se ramollit sous l'action de la chaleur, se durcit en se refroidissant et présente à basse température et notamment à température ambiante une aptitude à reprendre plus ou moins rapidement une forme originelle et des dimensions primitives après application d'une déformation sous contrainte. Elle présente au moins une température dite de transition vitreuse (Tg) en dessous de laquelle tout ou partie de la fraction amorphe de la composition est à l'état vitreux cassant, et au-dessus de laquelle la composition peut subir des déformations plastiques réversibles. La température de transition vitreuse ou l'une, au moins, des températures de transition vitreuse de la composition élastomérique selon la présente invention est de préférence comprise entre -12O0C et + 2O0C. La composition élastomérique selon l'invention présente également une grande capacité d'extensibilité et de reprise élastique comme les caoutchoucs, naturels ou synthétiques. Le comportement élastomérique de la composition peut être obtenu ou ajusté par réticulation ou vulcanisation plus ou moins poussée, après mise en forme à l'état plastique. Par « composition élastomérique » on entend également, au sens de l'invention, toute composition de type « élastomère thermoplastique », possédant à la fois des propriétés élastomériques et thermoplastiques grâce à une structure de type polymère séquence avec des segments « souples » et des segments « durs ».
La composition contient en particulier, en association avec au moins un ester de matière amylacée et un plastifiant dudit ester, au moins un polymère non amylacé choisi dans le groupe des polymères élastomériques tels que, par exemple, des caoutchoucs, naturels ou modifiés, des élastomères à base de polystyrène, des élastomères de polyesters, des élastomères à base de polypropylène, des élastomères ou caoutchoucs de silicone et des élastomères polyuréthannes.
De préférence, la composition élastomérique selon l'invention est «thermo- fusible», c'est-à-dire qu'elle peut être mise en forme sans application de forces de cisaillement importantes, c'est-à-dire par simple écoulement ou par simple pressage de la matière fondue ou ramollie. Sa viscosité, mesurée à une température de 1000C à
2000C, est généralement comprise entre 10 et 103 Pa.s.
La composition élastomérique selon l'invention présente comme caractéristique de contenir :
- au moins 5 % et au plus 70 % en poids d'un ester d'une matière amylacée, de degré de substitution en esters (DS) compris entre 1,0 et 3,0, de préférence compris entre 1,2 et 3,0.
- au moins 5 % et au plus 40% en poids d'un plastifiant de cet ester de matière amylacée, ledit plastifiant étant, de préférence, autre que l'eau et,
- au moins 25 % et au plus 90 % en poids d'un polymère autre que l'amidon choisi parmi les polymères élastomériques, ces pourcentages étant rapportés au poids total de la composition.
Selon une première variante, intéressante de façon générale, la composition selon l'invention est en outre caractérisée en ce que :
- l'ester de matière amylacée présente, en tant que tel, un taux de biodégradabilité selon la norme ISO 14851, inférieur à 50%, de préférence inférieur à 30%, et/ou
- le polymère autre que l'amidon présente, en tant que tel, un taux de biodégradabilité selon la norme ISO 14851, inférieur à 50%, de préférence inférieur à
30%.
Selon une variante particulièrement avantageuse, la composition selon l'invention est caractérisée en ce que l'ester de matière amylacée et le polymère autre que l'amidon présentent, chacun, un taux de biodégradabilité selon la norme ISO 14851, inférieur à 50%, de préférence inférieur à 30%. Selon une seconde variante, pour des applications telles que, par exemple, l'industrie des transports, les loisirs, le bâtiment et les travaux publics, la composition selon l'invention présente une biodégradabilité selon la norme ISO 14851 qui est extrêmement faible, à savoir inférieur à 20%, notamment inférieur à 15%, voire inférieur à 10% ou même plutôt 5%.
Selon une troisième variante enfin, pour des applications telles que par exemple la confiserie dont les chewing-gums en particulier, la pharmacie ou la cosmétique, la composition selon l'invention présente un taux de biodégradabilité pouvant se situer dans des gammes de valeurs plus élevées que celles précitées, à savoir un taux de biodégradabilité selon la norme ISO 14851, au moins égal à 50 % et inférieur à 100 %, notamment compris entre 60 et 100 %.
Par « taux de biodégradabilité » ou « biodégradabilité » au sens de la présente invention on entend le taux de biodégradation aérobie par la détermination de la demande en oxygène dans un respiromètre fermé selon la norme internationale ISO 14851 :1999.
Le protocole précis de la détermination de ce taux de biodégradabilité est décrit ci-après.
Mesure du taux de biodégradation selon ISO 14851
Celle-ci se fait conformément à la norme internationale ISO 14851 (première édition 1999-05-15) intitulée « Evaluation de la biodégradabilité aérobie ultime des matériaux plastiques en milieu aqueux - Méthode par détermination de la demande en oxygène dans un respiromètre fermé » et ce :
- selon le principe énoncé au paragraphe 4 de ladite norme, le taux (ou niveau) de biodégradation étant déterminé en comparant la demande biologique en oxygène (DBO) avec la quantité théorique (demande théorique en oxygène, DThO) et en l'exprimant en pourcentage,
- en calculant la DThO selon l'Annexe A de ladite norme,
- en mettant en œuvre, respectivement, un environnement d'essai, des réactifs, un appareillage et un mode opératoire conformes, respectivement, aux paragraphes 5, 6, 7 et 8 de ladite norme , - en calculant, exprimant et validant les résultats conformément aux paragraphes 9 et 10 de ladite norme.
Dans le cas présent, on a notamment utilisé : un inoculum sous forme de boue activée, - un milieu d'essai normal, un environnement d'essai dans l'obscurité à 250C ± I0C, de la poudre de cellulose microcristalline comme matériau de référence.
Dans le contexte actuel de perturbations climatiques dues à l'effet de serre et au réchauffement planétaire, de l'évolution à la hausse des coûts des matières premières fossiles, en particulier du pétrole dont sont issues les matières plastiques, de l'état de l'opinion publique en quête d'un développement durable, de produits plus naturels, plus propres, plus sains et moins dispendieux en énergie, et de l'évolution des réglementations et des fiscalités, il est nécessaire de disposer de nouvelles compositions issues de ressources renouvelables, qui conviennent en particulier aux domaines des matériaux plastiques et des élastomères, et qui soient à la fois compétitives, conçues dès l'origine pour n'avoir que peu ou pas d'impacts négatifs sur l'environnement, et techniquement aussi performantes que les polymères préparés à partir de matières premières d'origine fossiles. L'amidon constitue une matière première présentant les avantages d'être renouvelable et disponible en grandes quantités à un prix économiquement intéressant par rapport au pétrole et au gaz, utilisés comme matières premières pour les plastiques actuels.
L'amidon est déjà exploité dans la fabrication de matières plastiques, notamment en raison de sa propriété d'être aussi un produit biodégradable.
Les premières compositions à base d'amidon ont été développées il y a une trentaine d'années environ. Les amidons ont été alors employés sous forme de mélanges mécaniques avec des polymères synthétiques tels que le polyéthylène, en tant que charge, à l'état natif granulaire et non modifié, c'est-à-dire dans son état présent dans la nature. Par la suite, l'amidon a été utilisé dans la fabrication d'objets biodégradables, mais dans un état rendu essentiellement amorphe et thermoplastique. Cet état, déstructuré, à cristallinité réduite ou absente, est obtenu par plastification de l'amidon natif granulaire par incorporation d'un plastifiant approprié à un taux compris généralement entre 15 et 25% par rapport à l'amidon granulaire, par apport d'énergie mécanique et thermique.
Toutefois, les propriétés mécaniques des amidons thermoplastiques, bien qu'elles puissent être dans une certaine mesure modulées par le choix de l'amidon, du plastifiant et du taux d'emploi de ce dernier, sont globalement assez médiocres car les matières ainsi obtenues sont toujours très hautement visqueuses, même à haute température (12O0C à 17O0C) et très fragiles, trop cassantes, très dures et peu filmogènes à basse température, c'est-à-dire en dessous de la température de transition vitreuse.
De ce fait, de nombreuses recherches ont été menées pour mettre au point des formulations biodégradables ou hydrosolubles présentant de meilleures propriétés mécaniques par mélange physique de ces amidons thermoplastiques, soit avec des polymères d'origine pétrolière biodégradables (polycaprolactones (PCL), co- polyesters aromatiques (PBAT), polyesters aliphatiques (PBS) ou polymères hydrosolubles (poly(alcool vinylique) (PVOH), soit avec des polyesters d'origine renouvelable comme les polylactates (PLA), les polyhydroxyalkanoates microbiens
(PHA) ou soit encore des dérivés de cellulose.
La tenue à l'eau de ces compositions biodégradables ou qui plus est, des compositions hydrosolubles est généralement mauvaise et insuffisante pour entrevoir la possibilité de fabriquer des objets et produits finis de durées de vie longues ou moyennes telles que des pièces automobiles par exemple. De plus, la stabilité physico-chimique de ces compositions est dans ce cas aussi un facteur très limitant des possibilités d'usage.
Après avoir étudié en détail le problème, la Demanderesse a constaté de façon surprenante qu'il était possible de préparer des compositions élastomériques de biodégradabilité ajustable mais aussi de grande stabilité à l'eau et dans le temps, pouvant être utiles à la production d'objets de longues durée de vie ou nécessitant d'être stables en milieux aqueux ou biologiques, en utilisant des esters d'une matière amylacée présentant un haut à un très haut degré de substitution en esters (DS), et cela même en les combinant à des polymères connus pour être hautement biodégradables, et en choisissant un plastifiant approprié à ces esters, en une quantité déterminée.
La présente invention apporte une solution efficace aux problèmes énoncés ci-dessus en proposant de nouvelles compositions à base d'ester de matière amylacée, présentant en outre des propriétés améliorées par rapport à celles de l'art antérieur.
Quelle que soit la variante envisagée ci-avant, la composition élastomérique selon l'invention comprend avantageusement un ester de matière amylacée présentant un DS élevé ou très élevé. Le DS peut être notamment compris entre 1,6 et 3,0, de préférence compris entre 1,8 et 2,9 et plus préférentiellement encore compris entre 2,0 et 2,9. L'idéal peut être de retenir un DS compris entre 2,2 et 2,8, par exemple lorsque la composition contenant ledit ester de matière amylacée est destinée à la préparation d'une gomme base de chewing-gum.
Quelle que soit la variante envisagée, la composition élastomérique selon l'invention peut comprendre avantageusement :
- de 10 à 60 % en poids d'un ester d'une matière amylacée tel que décrit ci- avant, - de 5 à 30 % d'un plastifiant de l'ester de la matière amylacée et,
- de 40 à 85 % en poids d'un polymère non amylacé élastomérique, ces pourcentages étant rapportés au poids total de la composition.
La composition élastomérique selon l'invention peut, en particulier, comprendre avantageusement, par exemple si elle est destinée à la préparation d'une gomme base de chewing-gum :
- de 15 à 40 % en poids d'un ester d'une matière amylacée tel que décrit ci- avant,
- de 5 à 20 % d'un plastifiant de l'ester de la matière amylacée et,
- de 40 à 80 % en poids d'un polymère non amylacé élastomérique, ces pourcentages étant rapportés au poids total de la composition. Selon une autre variante, l'ester d'une matière amylacée est le composant principal, voire majoritaire, de la composition selon l'invention, laquelle peut être alors notamment caractérisée en ce qu'elle comprend de 45 à 70 %, de préférence de
50 à 70 % en poids et plus préférentiellement encore de 51 à 65 % en poids, dudit ester.
Parallèlement, le polymère autre que l'amidon (ou « polymère non amylacé ») élastomérique, peut alors être ni le composant principal ni le composant majoritaire de la composition selon l'invention, laquelle peut être alors notamment caractérisée en ce qu'elle comprend de 25 à 49 % en poids, de préférence de 25 à 40 % en poids et plus préférentiellement encore de 25 à 35% en poids, dudit polymère.
Selon une autre variante, l'ester d'une matière amylacée n'est pas le composant majoritaire et généralement pas le composant principal de la composition selon l'invention, laquelle peut être alors notamment caractérisée en ce qu'elle comprend de 5 à 49 %, de préférence de 7 à 49 % en poids et plus préférentiellement encore de 10 à 49 % en poids, dudit ester.
Parallèlement, le polymère non amylacé élastomérique, peut alors être le composant principal, voire le composant majoritaire de la composition selon l'invention, laquelle peut être alors notamment caractérisée en ce qu'elle comprend de
45 à 90 %, de préférence de 51 à 85 % en poids et plus préférentiellement encore de 51 à 80 % dudit polymère.
Quelle que soit la variante envisagée ci-avant, l'ester de la matière amylacée de DS compris entre 1,0 et 3 peut se présenter dans la composition conforme à l'invention, sous une forme quelconque, en particulier à l'état dispersé sous forme de fibres, ou autres particules, micrométriques ou nanométriques, dans le polymère non amylacé élastomérique ou à l'état de phase, thermoplastique ou élastomérique, continue, discontinue ou co-continue, plus ou moins bien compatibilisée avec le polymère non amylacé élastomérique.
En outre, le polymère non amylacé élastomérique peut également se présenter dans la composition conforme à l'invention, sous une forme quelconque, en particulier à l'état dispersé sous forme de fibres dans l'ester de la matière amylacée ou à l'état de phase, thermoplastique ou élastomérique, continue, discontinue ou co- continue, plus ou moins bien compatibilisée avec l'ester de la matière amylacée.
A la meilleure connaissance de la demanderesse, l'usage d'esters de matière amylacée, en particulier de DS élevés ou très élevés, n'a été préconisé que pour : - la fabrication de compositions thermoplastiques dites biodégradables contenant ou non par ailleurs au moins un polymère non amylacé, de nature généralement non élastomérique et connu pour être biodégradable ou hydrosoluble comme par exemple a) les celluloses modifiées b) les protéines c) les polyesters biodégradables, notamment de type hydroxycarboxyliques comme décrit dans les demandes et brevets US 5,462, 983, WO 95/04108, EP 1054 599 ou EP 1 142 911 ou de type polyalkylène carbonates comme décrit dans les brevets US 5, 936, 014 ou WO 98/07782 et d) les polymères hydrosolubles tels que ceux décrits dans les brevets et demandes EP 638 609, US 5,936,014 , US 2002/0032254 ou WO 00/73380, ou
- la fabrication de compositions élastomériques utilisables comme gommes de base pour chewing-gums dépourvues a) de tout polymère non amylacé, notamment élastomérique, et b) de tout plastifiant de l'ester de matière amylacée, comme décrit par exemple dans les brevets US 3,666,492, US 4,035,572 ou US 4,041,179,
- la préparation de mélanges polymériques très particuliers à base, très majoritairement, d'amidon déstructuré non modifié chimiquement, mélanges pouvant contenir, de manière uniquement optionnelle et toujours en faibles proportions, un ester de matière amylacée, un polymère thermoplastique insoluble dans l'eau et un agent plastifiant, généralement de l'eau, comme décrit dans le brevet EP 409 781.
On entend dans le cadre de la présente invention par « matière amylacée », tout oligomère ou polymère de motifs D-glucose liés entre eux par des liaisons alpha-
1,4 et éventuellement d'autres liaisons, de type alpha- 1,6, alpha- 1,2, alpha- 1,3 ou autres.
Cette matière amylacée peut provenir de tous types d'amidon et en particulier être choisie parmi les amidons de céréales telles que le blé, le maïs, l'orge, le triticale, le sorgo ou le riz ; les fécules de tubercules tels que la pomme de terre ou le manioc ; les amidons de légumineuses telles le pois, le soja ou le haricot, les amidons riches en amylose, ou inversement, riches en amylopectine (« waxy ») issus de ces plantes ou les mélanges quelconques de ces amidons.
Selon l'invention, cette matière amylacée peut présenter de préférence un poids moléculaire compris entre 103 et 108 g/mol, mieux entre 5.103 et 107 g/mol, et mieux encore entre 104 et 106 g/mol.
Selon un premier mode, cette matière amylacée peut résulter de l'estérification à un degré élevé d'un amidon granulaire, éventuellement hydrolyse ou/et modifié.
On entend ici par « amidon granulaire », un amidon natif ou modifié physiquement, chimiquement ou par voie enzymatique, ayant conservé, au sein des granules d'amidon, une structure semi-cristalline similaire à celle mise en évidence dans les grains d'amidon présents naturellement dans les organes et tissus de réserve des végétaux supérieurs, en particulier dans les graines de céréales ou de légumineuses, les tubercules, les racines, les bulbes, les tiges et les fruits. Cet état semi-cristallin est essentiellement dû aux macromolécules d' amylopectine, l'un des deux constituants principaux de l'amidon. A l'état natif, les grains d'amidon présentent un taux de cristallinité qui varie de 15 à 45 %, et qui dépend essentiellement de l'origine botanique de l'amidon et du traitement éventuel qu'il a subi. L'amidon à l'état granulaire, placé sous lumière polarisée, présente une croix noire caractéristique, dite croix de Malte, typique de cet état.
Selon une variante, l'ester de la matière amylacée provient d'amidon granulaire hydrolyse par voie acide, oxydante ou enzymatique. De tels amidons sont communément appelés amidons fluidifiés, amidons oxydés ou dextrines blanches. Selon une autre variante, il peut provenir de l'estérification d'un amidon ayant essentiellement conservé la structure granulaire de l'amidon natif mais modifié par voie physico-chimique , comme notamment les amidons faiblement estérifiés et/ou éthérifiés, en particulier modifiés par acétylation, hydroxypropylation, cationisation, réticulation, phosphatation, ou succinylation, ou les amidons traités en milieu aqueux à basse température (en anglais « annealing »). L'ester de la matière amylacée peut notamment résulter de l'estérification d'un amidon granulaire hydrolyse, oxydé ou modifié, en particulier de maïs, de blé, de pomme de terre ou de pois.
Selon un second mode, la matière amylacée sélectionnée pour la préparation de composition selon l'invention, provient de l'estérification à haut niveau d'un amidon non granulaire, c'est-à-dire dépourvu de grains d'amidons présentant en microscopie sous lumière polarisée, une croix de Malte. Il peut s'agir alors d'un amidon hydrosoluble ou d'un amidon organomodifié, pouvant provenir aussi de toutes origines botaniques, y compris un amidon, riche en amylose ou, inversement, riche en amylopectine (waxy).
Selon une première variante, l'ester de la matière amylacée de DS compris de 1 à 3 est un ester d'amidon non granulaire hydrosoluble. On entend au sens de l'invention par « amidon hydrosoluble», toute matière amylacée présentant à 2O0C et sous agitation mécanique pendant 24 heures, une fraction soluble dans de l'eau déminéralisée au moins égale à 5% en poids.
L'amidon hydrosoluble peut avantageusement être choisi parmi les amidons prégélatinisés, les amidons extradés, les amidons atomisés, les dextrines, les maltodextrines, les amidons fonctionnalisés ou les mélanges quelconques de ces produits, éventuellement plastifiés. Les amidons prégélatinisés, extradés ou atomisés peuvent être obtenus par traitement hydro-thermique de gélatinisation d'amidons natifs ou d'amidons modifiés, en particulier par cuisson vapeur, cuisson jet-cooker, cuisson sur tambour, cuisson dans des systèmes de malaxeur/extradeur puis séchage par exemple en étuve, par air chaud sur lit fluidisé, sur tambour rotatif, par atomisation, par extrasion, par précipitation par un non-solvant, ou par lyophilisation, d'une suspension ou d'une solution amylacée. A titre d'exemple, on peut citer les produits fabriqués et commercialisés par la Demanderesse sous le nom de marque PREGEFLO®.
Les dextrines peuvent être préparées à partir d'amidons natifs ou modifiés, par dextrinification en milieu acide peu hydraté. Il peut s'agir en particulier de dextrines blanches solubles ou de dextrines jaunes. A titre d'exemple, on peut citer les produits STABILYS® A 053 ou TACKIDEX® C 072 fabriqués et commercialisés par la Demanderesse.
Les maltodextrines peuvent être obtenues par hydrolyse acide, oxydante ou enzymatique d'amidons en milieu aqueux. Elles peuvent présenter en particulier un dextrose équivalent (DE) compris entre 0,5 et 40, de préférence entre 0,5 et 20 et mieux encore entre 0,5 et 12. De telles maltodextrines sont par exemple fabriquées et commercialisées par la Demanderesse sous l'appellation commerciale GLUCIDEX®
Les amidons fonctionnalisés peuvent s'obtenir en particulier par acétylation en phase aqueuse d'anhydride acétique, d'anhydrides mixtes, hydroxypropylation, cationisation, anionisation, phosphatation ou succinylation. Ces amidons fonctionnalisés peuvent présenter un degré de substitution compris entre 0,01 et 2,7, et mieux encore compris entre 0,05 et 1.
L'amidon hydrosoluble est de préférence un amidon hydrosoluble de maïs, de blé, de pomme de terre ou de pois ou un dérivé, hydrosoluble, de ceux ci. Selon une seconde variante, la matière amylacée estérifiée à un DS compris de 1 à 3 est un ester d'un amidon organomodifié, de préférence organosoluble, pouvant provenir aussi de toutes origines botaniques. On entend au sens de l'invention par « amidon organomodifié», tout composant amylacé autre qu'un amidon granulaire ou un amidon hydrosoluble selon les définitions données ci-avant. De préférence, cet amidon organomodifié est quasiment amorphe, c'est-à-dire présente un taux de cristallinité en amidon inférieur à 5 %, généralement inférieur à 1 % et notamment nul. Il est aussi de préférence « organosoluble » , c'est-à-dire présente à 2O0C, une fraction soluble dans un solvant choisi parmi l'éthanol, l'acétate d'éthyle, l'acétate de propyle, l'acétate de butyle, le carbonate de diéthyle, le carbonate de propylène, le glutarate de diméthyle, le citrate de triéthyle, les esters dibasiques, le diméthylsulfoxide (DMSO), le diméthylisosorbide, le triacétate de glycérol, le diacétate d'isosorbide, le dioléate d'isosorbide et les esters méthyliques d'huiles végétales, au moins égale à 5 % en poids. Bien entendu, l'amidon organosoluble peut être totalement soluble dans l'un ou plusieurs des solvants indiqués ci-dessus. L'amidon organomodifié peut être préparé à partir d'amidons natifs ou modifiés tels que ceux présentés ci-avant, par estérification ou éthérification à un niveau suffisamment élevé pour lui conférer une insolubilité dans l'eau et de préférence une solubilité dans l'un des solvants organiques ci-dessus. L'amidon organomodifié peut s'obtenir en particulier par greffage d' oligomères de caprolactones ou de lactides, par hydroxypropylation et réticulation, par cationisation et réticulation, par anionisation, phosphatation ou succinylation et réticulation, par silylation, par télomérisation au butadiène. Ces amidons organomodifiés, de préférence organosolubles, peuvent présenter un degré de substitution (DS) compris entre 0,01 et 2,7, de préférence compris entre 0,05 et 2,0 et notamment compris entre 0,1 et 1,5.
L'amidon organomodifié est de préférence un amidon organomodifié de maïs, de blé, de pomme de terre ou de pois ou un dérivé, organomodifié, de ceux ci.
L'agent estérifiant utilisé pour la préparation de l'ester de la matière amylacée peut être un anhydride d'acide organique, un acide organique, un anhydride mixte, un chlorure d'acide organique ou un mélange quelconque de ces produits. Cet agent d' estérification peut être choisi parmi les acides présentant de 2 à 24 carbones , saturés ou insaturés, et plus spécifiquement parmi l'acide acétique, l'acide propionique, l'acide butyrique, l'acide valérique, l'acide hexanoïque, l'acide heptanoïque, l'acide pelargonique, l'acide octanoïque, l'acide décanoïque, l'acide undécanoïque, l'acide laurique, l'acide myristique, l'acide palmitique, l'acide oléïque, l'acide stéarique, les anhydrides de ces acides , les anhydrides mixtes de ces acides , et les mélanges quelconques de ces produits.
L'ester de la matière amylacée de degré de substitution (DS) compris entre 1,0 et 3,0, de préférence compris entre 1,2 et 3,0, notamment compris entre 1,6 et 3,0 et notamment entre 1,8 et 2,9 est de préférence un ester d'un amidon hydrosoluble ou d'un amidon organomodifié, de préférence un ester d'un amidon prégélatinisé, d'un amidon extradé, d'un amidon atomisé, d'une dextrine, d'une maltodextrine, d'un amidon fonctionnalisé, d'un amidon organosoluble, ou d'un mélange quelconque de ces produits éventuellement plastifiés. De préférence, ledit ester de la matière amylacée est porteur de chaines de 2 à 22 carbones et est un acétate, un propionate, un butyrate, un valérate, un hexanoate, un octanoate, un décanoate, un laurate, un palmitate, un oléate ou un stéarate d'amidon, de dextrine ou de maltodextrine, pur ou en mélange. De préférence, il s'agit d'un acétate de matière amylacée. La composition selon l'invention comprend en particulier en tant qu'ester de matière amylacée, un ester de DS compris dans l'une quelconque des gammes précitées, de préférence de type acétate, d'amidon hydrosoluble ou orgamodifié, notamment d'amidon prégélatinisé, extradé, atomisé, de dextrine, de maltodextrine, d'amidon fonctionnalisé ou d'amidon organosoluble. De manière très avantageuse, l'ester de la matière amylacée est un acétate d'amidon hydrosoluble ou organomodifié, un acétate de dextrine ou un acétate de maltodextrine.
L'ester de la matière la matière amylacée peut être mélangé en toutes proportions à un amidon granulaire, éventuellement hydrolyse ou/et modifié, à un amidon hydrosoluble ou à un amidon organomodifié, tels que définis ci-dessus.
En ce qui concerne les conditions de l'estérification, l'homme du métier pourra facilement se référer, au regard de l'agent estérifiant employé, aux techniques et conditions décrites dans la littérature, notamment dans les demandes et brevets
US 3 795 670, EP 603 837, US 5 667 803, WO 97/03120, WO 98/29455, WO 98/98/29456 et US 2008/0146792.
L'estérification peut s'obtenir en particulier par acétylation en phase solvant en milieu acide organique, en présence de l'anhydride ou d'un anhydride mixte de cet acide organique et d'un catalyseur acide.
La matière amylacée estérifiée peut porter d'autres groupements, introduits par greffage par exemple d' oligomères de caprolactones ou de lactides, ou introduits par hydroxypropylation, réticulation, cationisation, anionisation, succinylation, silylation ou télomérisation.
La composition élastomérique selon l'invention comprend, à raison de 5 à 40 % en poids, un plastifiant de l'ester de la matière amylacée. On entend par « plastifiant de l'ester de la matière amylacée » ou « agent plastifiant de l'ester de la matière amylacée » toute molécule de faible masse moléculaire, c'est-à-dire ayant de préférence une masse moléculaire inférieure à 5000, qui, lorsqu'elle est incorporée à l'ester de la matière amylacée ou à la composition selon l'invention, notamment par un traitement thermomécanique à une température généralement au moins égale à 350C, de préférence comprise entre 6O0C et 26O0C et mieux encore entre 650C et 2000C, aboutit à une diminution de la température de transition vitreuse de l'ester de la matière amylacée ou de la composition selon l'invention et/ou à une réduction de leur cristallinité.
Lorsqu'on utilise dans la présente invention le terme « plastifié » en relation avec « l'ester de la matière amylacée », cela implique forcément la présence d'un agent plastifiant. La matière amylacée estérifiée peut contenir une quantité d'un ou plusieurs composés figurant dans la liste des agents plastifiants ci-dessous.
L'agent plastifiant peut être choisi parmi l'eau, les esters et les éthers des diols, triols et polyols que sont le glycérol, les polyglycérols, l'isosorbide, les sorbitans, le sorbitol, le mannitol, et les sirops de glucose hydrogénés, les esters d'acides organiques, l'urée et les mélanges quelconques de ces produits. L'agent plastifiant peut être en particulier choisi parmi les esters méthyliques, éthyliques ou gras d'acides organiques ou minéraux tels que les acides lactique, citrique, succinique, adipique, sébacique, phtalique, glutarique ou phosphorique ou les esters acétiques ou gras de mono-alcools, diols, triols ou polyols tels que l'éthanol, le diéthylène glycol, le glycérol ou le sorbitol. A titre d'exemple, on peut citer spécifiquement le diacétate de glycérol (diacétine), le triacétate de glycérol (triacétine), le diacétate d'isosorbide, le dioctanoate d'isosorbide, le dioléate d'isosorbide, le dilaurate d'isosorbide, les esters d'acides dicarboxyliques ou esters dibasiques (« Dibasic esters »ou « DBE ») et les mélanges quelconques de ces produits. L'agent plastifiant peut également être une huile végétale époxydée, un glycol ou dérivé comme un polyester d'éthylène glycol.
Le plastifiant peut également être choisi parmi les produits précités couplés entre eux par des agents de couplage tels que l'épichlorhydrine ou un isocyanate.
Selon une autre variante, l'agent plastifiant est caractérisé par son paramètre de solubilité (dit de HILDEBRAND), lequel traduit en fait la force d'attraction existante entre les molécules dudit plastifiant et de tout polymère (de nature amylacée ou non) présent dans la composition selon l'invention, et plus particulièrement la variation de densité d'énergie de cohésion du plastifiant, i.e. l'énergie nécessaire pour le vaporiser. Les unités du paramètre de solubilité sont alors exprimées à 250C et en (J.cm"3)0'5 ou en (MPa)172 (où 1 (J.cm"3)0'5 = 1 (MPa)172). L'agent plastifiant éventuellement utilisé peut notamment présenter un paramètre de solubilité compris entre 15 et 28 (J.cm 3)0'5, de préférence compris entre
17 et 25 (J.cm" ) ' , plus préférentiellement encore compris entre 18 et 22 (J.cm )
II peut s'agir, par exemple, de triacétate de glycérol (triacétine) dont le paramètre de HILDEBRAND, calculé à partir de sa chaleur latente de vaporisation (85,74 kJ/mol) ou de sa température d'ébullition (2590C), est de 21 (J.cm"3)0'5.
Selon une autre variante, le plastifiant de l'ester de la matière amylacée utilisé présente de façon avantageuse une masse molaire inférieure à 1500, et en particulier inférieure à 500. L'agent plastifiant a de préférence une masse molaire supérieure à 18, autrement dit il n'englobe de préférence pas l'eau. Idéalement, l'agent plastifiant présente une masse moléculaire comprise entre 150 et 450.
L'agent plastifiant peut notamment présenter simultanément comme, par exemple, la triacétine (masse molaire de 218) :
- une masse moléculaire comprise entre 150 et 450, et
- un paramètre de HILDEBRAND compris entre 18 et 22 (J.cm 3)0'5. Ledit agent plastifiant représente de préférence de 5 à 30 %, mieux de 5 à 20
% de la composition conforme à l'invention. Ceci, par exemple, lorsque ladite composition est destinée à la préparation d'une gomme base de chewing-gum.
Selon une autre variante., ce plastifiant est présent à raison de 1 à 150 parts en poids sec, de préférence à raison de 10 à 120 parts en poids sec et en particulier à raison de 25 à 120 parts en poids sec, pour 100 parts en poids sec d'ester de la matière amylacée.
L'incorporation du plastifiant peut être réalisée à froid, par exemple par mélange à température ambiante à l'ester de la matière amylacée ou bien directement lors de la préparation de la composition élastomérique conforme à l'invention, c'est- à-dire à chaud à une température de préférence comprise entre 60 et 200 0C, plus préférentiellement entre 100 et 18O0C, de façon discontinue, par exemple par pétrissage/malaxage, ou de façon continue, par exemple par extrusion. La durée de ce mélange peut aller de quelques secondes à quelques heures, selon le mode de mélange retenu.
Selon une autre variante, la composition selon l'invention est caractérisée en ce que l'ester de la matière amylacée contenu dans la composition présente un taux de cristallinité inférieur à 15 %, de préférence inférieur à 5% et plus préférentiellement inférieur à 1%. Ce taux de cristallinité peut en particulier être mesuré par technique de diffraction rayons X comme décrit dans le brevet US 5,362,777 (colonne 9, lignes 8 à 24). La composition élastomérique selon l'invention comprend en outre au moins un polymère autre que l'amidon (appelé aussi « polymère non amylacé ») choisi parmi les polymères élastomériques (appelés aussi « élastomères »).
On entend par « polymère élastomérique » (ou « élastomère ») tout polymère qui se ramollit sous l'action de la chaleur, se durcit en se refroidissant et présente à basse température et notamment à température ambiante une aptitude à reprendre plus ou moins rapidement une forme originelle et des dimensions primitives après application d'une déformation sous contrainte. Il présente une température dite de transition vitreuse (Tg) en dessous de laquelle tout ou partie de sa fraction amorphe est à l'état vitreux cassant, et au-dessus de laquelle il peut subir des déformations plastiques réversibles. Par « polymère élastomérique » on entend également tout polymère de type « élastomère thermoplastique », possédant à la fois des propriétés élastomériques et thermoplastiques grâce à une structure de type polymère séquence avec des segments « souples » et des segments « durs ».
Le polymère non amylacé élastomérique peut être de toute nature chimique autre que amylacé. Il peut s'agir avantageusement d'un élastomères thermoplastique.
Il peut s'agir d'un polymère d'origine naturelle, ou bien d'un polymère synthétique obtenu à partir de monomères d'origine fossile et/ou de monomères issus de ressources naturelles renouvelables.
Il peut être obtenu notamment par polymérisation, polycondensation ou polyaddition. II peut être choisi, outre parmi les caoutchoucs naturels (NR) et dérivés, en particulier parmi les caoutchoucs synthétiques (SR) comme les caoutchoucs butyl ou polyisobutylènes (PIB ou DR) ; les caoutchoucs polyacrylates (ACM) ou élastomères polyacrylique ; les élastomères éthylène-acétate de vinyle (EVA), les caoutchoucs nitrile (NBR) ; les polybutadiènes (BR), les polychloroprènes (CR) tels que le Néoprène ® et les polyisoprènes (IR) ; les élastomères mixtes à base de butadiène, d'isoprène et/ou de styrène, notamment à base de styrène et de butadiène (SBS ou SBR), de styrène et d'isoprène (SIS), de styrène et de polyoléfine; les fluoroélastomères tels que le Viton ® les élastomères silicone, les élastomères thermoplastiques (TPE) sous forme de copolymères multi- séquences constitués de zones rigides notamment de types styrèniques, uréthanes , polyamides et de zones souples notamment de types polyéthers, polyesters, polybutadiènes, polyéthylènes, polyisoprènes, polybutylènes (par exemple TPS, TPU ou polyuréthanes thermoplastiques, PEBA ou polyéthers bloc amide ); les élastomères à base d'éthylène (éthylène acrylates ou EAM) ou de polypropylène (éthylène-propylène-diène monomère ou EPDM) ou d' éthylène et de propylène (EPM); les élastomères semi- cristallins à base de polyoléfines ; les élastomères silicone comme les méthylsilicones (en particulier phényl, vinyle et fluoré) et les polysiloxanes (polydiméthylsiloxanes) ; les mélanges physiques ou alliages entre polymères thermoplastiques et élastomères tels que les polypropylènes (PP) ou polychlorure de vinyle (PVC) dans lesquelles sont dispersés des élastomères non, partiellement ou totalement vulcanisés, comme des caoutchoucs (PP/NR, PP/NBR-VD,PVC/NBR et TPO) ou de l'EPDM (PP/EPDM- VD, Santoprène ™).
De façon particulièrement avantageuse le polymère non amylacé élastomérique présente une température de transition vitreuse (Tg) comprise entre - 5 et - 12O0C, de préférence comprise entre - 10 et - 1050C et plus préférentiellement comprise entre - 20 et - 8O0C.
On peut préconiser tout particulièrement comme polymère non amylacé élastomérique en particulier les caoutchoucs naturels et leurs dérivés, les polyisobutylènes (PIB ou IRR), les polyisoprènes, les copolymères butadiène-styrène
(SBR), les copolymères butadiène-acrylonitrile, éventuellement hydrogénés (NBR et H-NBR), les copolymères acrylonitrile-styrène-acrylates (ASA), les polyuréthanes thermoplastiques (TPU) de type éthers ou esters-éthers, les polyéthylènes ou polypropylènes fonctionnalisés par exemple par des motifs silane, halogènes, acryliques ou anhydride maléique, les élastomères à base d'éthylène (éthylène acrylates ou EAM) ou de polypropylène (éthylène-propylène-diène monomère ou EPDM) ou d' éthylène et de propylène (EPM), les élastomères thermoplastiques dérivés de polyoléfines (TPO), les copolymères styrène-butylène- styrènes (SBS) et styrène-éthylène-butylène-styrène (SEBS) fonctionnalisés par exemple par des motifs anhydride maléique et les mélanges quelconques de ces polymères. Selon une variante, tout ou partie du polymère non amylacé élastomérique, est synthétisé à partir de monomères issus de ressources naturelles renouvelables à brève échéance comme les plantes, les microorganismes ou les gaz, notamment à partir de sucres, de glycérine, d'huiles ou de leurs dérivés tels que des alcools ou des acides, mono-, di-ou polyfonctionnels. Tout ou partie du polymère élastomérique peut en particulier être synthétisé à partir de monomères bio-sourcés tels que le bio- éthanol, le bio-éthylèneglycol, le bio-propanediol, le 1,3-propanediol biosourcé, le bio-butane-diol, l'acide lactique, l'acide succinique biosourcé, le glycérol, l'isosorbide, le sorbitol, le saccharose, les diols dérivés d'huiles végétales ou animales et les acides résiniques extraits de pin, ainsi que leurs dérivés. Selon une autre variante, le polymère non amylacé élastomérique est un polymère synthétique obtenu à partir de monomères d'origine fossile et/ou de monomères issus de ressources naturelles renouvelables et qui présente, en tant que tel, un taux de biodégradabilité inférieur à 50%, de préférence inférieur à 30%.
Selon une autre variante avantageuse, le polymère non amylacé présente une faible solubilité dans l'eau, à savoir inférieure à 10 % (moins de 10 % de matière soluble dans l'eau à 2O0C) et notamment inférieure à 5 %. Il est de préférence insoluble dans l'eau (moins de 0,1 % de matière soluble dans l'eau à 2O0C). Selon une autre variante, le polymère non amylacé présente un poids moléculaire moyen en poids compris entre 8500 et 10 000 000 daltons, en particulier compris entre 15 000 et 1 000 000 daltons. Par ailleurs, le polymère non amylacé est constitué de préférence de carbone d'origine renouvelable au sens de la norme ASTM D6852 et est avantageusement non biodégradable ou non compostable au sens des normes EN 13432, ASTM D6400 et ASTM 6868. L'incorporation du polymère non amylacé, élastomérique, à l'ester de la matière amylacée dans la composition conforme à l'invention peut se faire de préférence par malaxage à chaud à une température comprise entre 35 et 300 0C, notamment comprise entre 60 et 200 0C, et mieux de 100 à 18O0C. Cette incorporation peut être réalisée par mélange thermomécanique, de façon discontinue ou de façon continue et en particulier en ligne. Dans ce cas, la durée de mélange peut être courte, de quelques secondes à quelques minutes.
La composition élastomérique selon l'invention peut être constituée exclusivement ou quasi exclusivement des trois composants que sont l'ester de matière amylacée, le plastifiant dudit ester et le polymère non amylacé, élastomérique. En suite de quoi, la composition élastomérique selon l'invention peut être caractérisée en ce qu'elle comprend, au total, de 35 à 100 % en poids d'ester de matière amylacée, de plastifiant dudit ester et de polymère non amylacé élastomérique.
De préférence, ce pourcentage total de ces trois composants, exprimé par rapport au poids total de la composition selon l'invention, est compris entre 50 et 100%.
Il peut notamment être compris entre 70 et 100 %, par exemple quand ladite composition est destinée à la préparation d'une gomme base de chewing- gum.
La composition selon l'invention peut cependant comprendre d'autres composants que les trois précités et notamment comprendre un agent de liaison.
On entend par « agent de liaison » dans la présente invention, toute molécule organique porteuse d'au moins deux groupements fonctionnels, libres ou masqués, aptes à réagir avec des molécules porteuses de fonctions à hydrogène actif telles que par exemple celles de l'ester de la matière amylacée ou le plastifiant. Cet agent de liaison peut être ajouté à la composition pour permettre la fixation, par liaisons covalentes, d'au moins une partie du plastifiant sur l'ester de la matière amylacée et/ou sur le polymère non amylacé ajouté. Il peut être ajouté éventuellement aussi comme agent de réticulation ou de vulcanisation
Cet agent de liaison peut alors être choisi par exemple parmi les composés porteurs d'au moins deux fonctions, libres ou masquées, identiques ou différentes, choisies parmi les fonctions isocyanate, carbamoylcaprolactame, aldéhydes, époxyde, halogéno, acide protonique, anhydride d'acide, halogénure d'acyle, oxychlorure, trimétaphosphate, alcoxysilane et des combinaisons de celles-ci.
Il peut être choisi avantageusement parmi les composés suivants:
- les diisocyanates, de préférence le méthylènediphényl-diisocyante (MDI), le toluène- diisocyanate (TDI), le naphthalène-diisocyanate (NDI), l'hexaméthylène-diisocyanate
(HMDI) et la lysine-diisocyanate (LDI),
- les dicarbamoylcaprolactames, de préférence le 1-1' carbonyl bis caprolactame,
- le glyoxal, les amidons dialdhéydes et les amidons oxydés TEMPO,
- les diépoxydes, - les composés comportant une fonction époxyde et une fonction halogène, de préférence l'épichlorohydrine,
- les diacides organiques, de préférence l'acide succinique, l'acide adipique, l'acide glutarique, l'acide oxalique, l'acide malonique, l'acide maléique et les anhydrides correspondants, - les oxychlorures, de préférence l' oxychlorure de phosphore,
- les trimétaphosphates, de préférence le trimétaphoshate de sodium,
- les alcoxysilanes, de préférence le tétraéthoxysilane, et
- les mélanges quelconques de ces composés.
Dans un mode préféré de l'invention, l'agent de liaison est un diisocyanate, en particulier le méthylènediphényl-diisocyanate (MDI).
Lorsque la composition contient un agent de liaison, ledit agent de liaison est, de préférence, présent à raison de 0,1 à 15 parts en poids sec, de préférence à raison de 0,2 à 9 parts en poids sec et en particulier à raison de 0,5 à 5 parts en poids sec, pour 100 parts en poids sec d'ester de la matière amylacée. La composition selon l'invention peut comprendre aussi un agent de compatibilisation entre l'ester de la matière amylacée et le polymère non amylacé. Il pourra s'agir par exemple d'autres polymères ou encore de tensio-actifs de faible taille moléculaire ou polymériques, présentant en leur sein au moins une partie relativement hydrophile et au moins une partie relativement hydrophobe.
La composition selon l'invention peut comprendre notamment un ou plusieurs polymères autres que l'ester de matière amylacée et que le polymère non amylacé, élastomérique. Ce ou ces polymères (« polymère(s) additionnel(s) ») représente(nt), au total, au plus 65% du poids total de la composition selon l'invention. Ce pourcentage total en polymère(s) additionnel(s) est, de préférence d'au plus 55%, et plus préférentiellement encore, d'au plus 40 %, exprimé par rapport au poids total de la composition selon l'invention. C'est le cas, par exemple, quand ladite composition est destinée à la préparation d'une gomme base de chewing-gum.
Lorsque ladite composition contient un ou plusieurs polymère(s) additionnel(s), ce pourcentage est avantageusement compris entre 2 et 40 %, en particulier entre 5 et 35%, exprimé par rapport au poids total de la composition selon l'invention.
Tout polymère additionnel peut être un polymère d'origine naturelle, ou bien un polymère synthétique obtenu à partir de monomères d'origine fossile et/ou de monomères issus de ressources naturelles renouvelables.
Les polymères additionnels d'origine naturelle peuvent être en particulier obtenus directement par extraction à partir de plantes ou de tissus animaux. Ils sont de préférence modifiés ou fonctionnalisés, et en particulier choisis parmi les polymères de nature protéique, cellulosique ou ligno-cellulosique et les chitosanes. Il peut s'agir également de polymères obtenus par extraction à partir de cellules de micro- organimes, comme les polyhydroxyalcanoates (PHA). Un tel polymère additionnel d'origine naturelle peut être choisi aussi parmi les farines, les protéines, de préférence modifiées; les celluloses non modifiées ou modifiées en particulier par carboxyméthylation, éthoxylation, hydroxypropylation, cationisation, acétylation, alkylation ; les hémicelluloses ; les lignines ; les guars modifiés ou non modifiés ; les chitines et chitosans ; les gommes et les résines naturelles telles que les colophanes, les shellacs, les résines terpéniques et les bitumes ; les polysaccharides extraits d'algues tels que les alginates et les carraghénanes ; les polysaccharides d'origine bactérienne tels que les xanthanes ou les gellanes; les fibres ligno-cellulosiques telles que les fibres de lin, de chanvre, de coco ou d'autre origine naturelle; les mélanges quelconques des polymères précités.
Le polymère additionnel peut être synthétique et obtenu notamment par polymérisation, polycondensation ou polyaddition.
Selon une variante, le polymère additionnel présente, en tant que tel, un taux de biodégradabilité au moins égal à 50 % et être préférentiellement choisi parmi les polyesters biodégradables tels que les polyhydroxyacides (comme les PLA, PGA, PHA, PHB, PHV, PHBV ou PCL), que les polyesteramides (comme les BAK) ou que les copolyesters aromatiques ou aliphatiques (comme les PBS et PBAT), parmi les polyalkylènes carbonates (comme les PEC et PPC) et parmi les polymères hydrosolubles tels que les polyvinylalcools, les éthylènevinylalcools, les protéines, les celluloses et leurs dérivés ; les mélanges quelconques des polymères précités. .
Selon une autre variante, le polymère additionnel présente, en tant que tel, un taux de biodégradabilité inférieur à 50%, de préférence inférieur à 30% et être préférentiellement choisi parmi les polymères non amylacés et non élastomériques comme les polyoléfines, notamment polyéthylène, polypropylène, et leurs copolymères non élastomériques, les polymères ou copolymères vinyliques non élastomériques, les polymères ou copolymères styréniques non élastomériques, les polymères acryliques ou méthacryliques et copolymères non élastomériques, les polyoxyphénylènes, les polyacétals, les polyamides non élastomériques, les polycarbonates de taux de biodégradabilité inférieur à 50%, les polyesters de taux de biodégradabilité inférieur à 50% tels que les poly(téréphtalate d'éthylène) (PET), y compris amorphes (PETG), les polymères fluorés non élastomériques, les polysulfones, les polysulfures de phénylène (ou polyphénylsulfures), les polyuréthannes non élastomériques, les polyépoxydes, les silicones non élastomériques, les alkydes et les polyimides, leurs variantes fonctionnalisées et les mélanges quelconques des polymères précités.
On peut citer comme polymères additionnels tout particulièrement utilisables selon l'invention, les poly(éthylène téréphtalates) (PET), y compris les poly(éthylène téréphtalate) amorphes (PETG), les polyéthylènes (PE) et polypropylènes (PP) fonctionnalisés ou non fonctionnalisés, les polyacrylonitriles (PAN), les polyéthersulfones, les polyméthylméthacrylates (PMMA), les polyamides, notamment les polyamides 6, 6-6, 6-10 et 6-12, les polyacrylates, les poly( acétate de vinyle), les polyuréthannes non élastomériques, les polyoxyméthylènes (POM) et les mélanges quelconques de ces polymères.
La composition selon l'invention peut comprendre également d'autres produits additionnels.
On peut citer en particulier, l'addition possible de charges, de fibres ou d'additifs, détaillés en particulier ci-après, qui peuvent être incorporés dans la composition élastomérique de la présente invention. Il peut s'agir de produits visant à améliorer davantage encore ses propriétés physico-chimiques, en particulier son comportement de mise en œuvre et sa durabilité ou bien ses propriétés mécaniques, thermiques, conductrices, adhésives ou organoleptiques.
Le produit additionnel peut être un agent améliorateur ou d'ajustement des propriétés mécaniques ou thermiques choisi parmi les minéraux, les sels et les substances organiques. Il peut s'agir d'agents de nucléation tel que le talc, d'agents améliorateurs de la résistance aux chocs ou aux rayures comme le silicate de calcium, d'agents régulateurs de retrait comme le silicate de magnésium, d'agents piégeurs ou désactivateurs d'eau, d'acides, de catalyseurs, de métaux, d'oxygène, de rayons infra- rouges, de rayons UV, d'agents hydrophobants comme les huiles et graisses, d'agents retardateurs de flamme et anti-feu comme les dérivés halogènes, d'agents anti-fumée, de charges de renforcement, minérales ou organiques, comme le carbonate de calcium , le talc, les fibres végétales notamment de coco, de sisal, de coton, de chanvre et de lin, les fibres de verre ou de kevlar. Le produit additionnel peut être également un agent améliorateur ou d'ajustement des propriétés conductrices ou isolantes vis-à-vis de l'électricité ou de la chaleur, de l'étanchéité par exemple à l'air, à l'eau, aux gaz, aux solvants, aux corps gras, aux essences, aux arômes, aux parfums, choisi notamment parmi les minéraux, les sels et les substances organiques, en particulier parmi les agents de conduction ou de dissipation de la chaleur comme les poudres métalliques et les graphites. Le produit additionnel peut être encore un agent améliorateur des propriétés organoleptiques, notamment :
- des propriétés odorantes (parfums ou agents de masquage d'odeur),
- des propriétés optiques (agents de brillance, agents de blancheur tels que le dioxyde de titane, colorants, pigments, exhausteurs de colorants, opacifiants, agents de matité tels que le carbonate de calcium, agents thermochromes, agents de phosporescence et de fluorescence, agents métallisants ou marbrants et agents antibuée),
- des propriétés sonores (sulfate de baryum et barytes), et - des propriétés tactiles (matières grasses).
Le produit additionnel peut être aussi un agent améliorateur ou d'ajustement des propriétés adhésives, notamment de l'adhésion vis-à-vis des matières cellulosiques comme le papier ou le bois, des matières métalliques comme l'aluminium et l'acier, des matériaux en verre ou céramiques, des matières textiles et des matières minérales, comme notamment les résines de pin, les colophanes, les copolymères d'éthylène/alcool vinylique, les aminés grasses, les agents lubrifiants, les agents de démoulage, les agents antistatiques et les agents anti-blocking.
Le produit additionnel peut être un agent améliorateur de la durabilité du matériau ou un agent de contrôle de sa (bio)dégradabilité, notamment choisi parmi les agents hydrophobants ou perlants comme les huiles et graisses, les agents anticorrosion, les agents de conservation comme en particulier les acides organiques, en particulier l'acide acétique ou l'acide lactique, les agents antimicrobiens comme Ag, Cu et Zn, les catalyseurs de dégradation comme les oxo-catalyseurs et les enzymes comme les amylases. Le produit additionnel peut être un produit nanométrique permettant de réduire considérablement la sensibilité à l'eau et à la vapeur d'eau de la composition élastomérique finale obtenue, en comparaison celles de l'état de la technique comprenant de l'amidon. Le produit nanométrique peut être ajouté aussi pour améliorer le comportement à la mise en œuvre et à la mise en forme de la composition selon l'invention mais également ses propriétés mécaniques, thermiques, conductrices, adhésives ou organoleptiques. Avantageusement, le produit nanométrique est constitué de particules dont l'une au moins des dimensions est comprise entre 0,5 et 200 nanomètres, de préférence comprise entre 0,5 et 100 nanomètres, et plus préférentiellement encore comprise entre 1 et 50 nanomètres. Cette dimension peut notamment être comprise entre 5 et 50 nanomètres. Le produit nanométrique peut être de toute nature chimique et éventuellement être déposé ou fixé sur un support. Il peut être choisi parmi les argiles lamellaires naturelles ou synthétiques, les nanotubes organiques, minéraux ou mixtes, les nanocristaux et nanocristallites organiques, minéraux ou mixtes, les nanobilles et nanosphères organiques, minérales ou mixtes, individualisées, en grappes ou agglomérées, et les mélanges quelconques de ces produits nanométriques. En tant qu'argiles lamellaires appelées aussi silicates/phyllosilicates de calcium ou/et de sodium, on peut citer notamment les produits connus sous les noms de montmorillonite, bentonite, saponite, sépiolite, hydrotalcite, hectorite, fluorohectorite, attapulgite, beidellite, nontronite, vermiculite, hallysite, stevensite, manasséite, pyroaurite, sjogrénite, stichtite, barbertonite, takovite, désaultelsite, motukoréaite, honéssite, mountkeithite, wermlandite et glimmer . De telles argiles lamellaires sont déjà couramment commercialisées, par exemple par la société ROCKWOOD sous les noms de marque NANOSIL et CLOISITE. On peut aussi citer les hydrotalcites, comme les produits PURAL de la société SASOL. Les nanotubes pouvant être utilisés dans le cadre de l'invention, présentent une structure tubulaire de diamètre de l'ordre de quelques dixièmes à plusieurs dizaines de nanomètres. Certains de ces produits sont déjà commercialisés, comme les nanotubes de carbone, par exemple par la société ARKEMA sous les noms de marque GRAPHISTRENGTH et NANOSTRENGTH et la société NANOCYL sous les noms de marque NANOCYL, PLASTICYL, EPOCYL, AQUACYL, et THERMOCYL. De tels nanotubes peuvent aussi être des nanofibrilles de cellulose, de diamètre voisin de 30 nanomètres pour une longueur de quelques microns, lesquelles sont constitutives des fibres naturelles de cellulose de bois et peuvent être obtenues par séparation et purification à partir de celles-ci. Les nanocristaux ou nanocristallites peuvent notamment s'obtenir par cristallisation, au sein même ou non de la composition élastomérique, de matières en milieu solvant très dilué, ledit solvant pouvant être constitutif de la composition conforme à l'invention. On peut citer les nanométaux tels que les nanoparticules de fer ou d'argent utiles comme agents réducteur ou antimicrobien et les nanocristaux d'oxydes connus comme agents d'amélioration de la résistance à la rayure. On peut citer aussi les talcs nanométriques de synthèse qui peuvent s'obtenir par exemple par cristallisation à partir d'une solution aqueuse. On peut citer encore à ce titre les complexes amylose/lipides de structures de type Vh(stéarique), Vbutanol, Vglycérol, Visopropanol, Vnaphtol , de 1 à 10 microns de largeur ou de longueur, pour une épaisseur d' une dizaine de nanomètres. Il peut s'agir aussi de complexes avec cyclodextrines, de caractéristiques semblables. Il peut s'agir enfin d'agents nucléants de polyoléfines aptes à cristalliser sous forme de particules nanométriques comme les dérivés de sorbitol tels que le dibenzylidène sorbitol (DBS) et ses propres dérivés alkylés.
Le produit nanométrique utilisable peut se présenter en particules élémentaires de type nanobille ou nanosphère, c'est-à-dire sous forme de pseudosphères de rayon compris de 1 à 500 nanomètres, sous forme individualisée, en grappe ou en agglomérats. On peut citer notamment les noirs de carbone utilisés couramment en tant que charge d'élastomères et de caoutchoucs. Ces noirs de carbone comprennent des particules primaires de taille pouvant être comprise entre environ 8 nanomètres (noirs au four) à environ 300 nanomètres (noirs thermiques) et présentent généralement des capacités d'absorption d'huile d'ordinaire comprises entre 40 et 180 ce pour 100 grammes pour des surface spécifiques STSA comprises entre 5 et 160 m2 par gramme. De tels noirs de carbone sont notamment commercialisés par les sociétés CABOT, EVONIK, SID RICHARDSON, COLUMBIAN et CONTINENTAL CARBON.
On peut citer aussi les silices hydrophiles ou hydrophobes, de précipitation ou de combustion (pyrogénées), telles que celles utilisées comme agents d'écoulement de poudres ou de charges dans les pneus dits « verts ». De telles silices sont notamment commercialisées sous forme de poudre ou de dispersions dans de l'eau, dans l'éthylène glycol ou dans des résines de type acrylate ou époxy, par les sociétés GRACE, RHODIA, EVONIK, PPG et NANORESINS AG. On peut citer encore les carbonates de calcium nanoprécipités ou les oxydes de métaux ( dioxyde de titane, oxyde de zinc, oxyde de cérium, oxyde d'argent, oxyde de fer, oxyde de magnésium, oxyde d'aluminium...) rendus nanométriques par exemple par combustion tels les produits commercialisés par la société EVONIK sous les appellations AEOROXIDE ou AEORODISP, ou par attaque acide tels que les produits commercialisés par SASOL sous les appellations DISPERAL ou DISPAL.
On peut citer enfin les protéines précipitées ou coagulées à l'état de billes nanométriques. On peut citer enfin les polysaccharides comme les amidons mis sous forme nanosphérique tels que par exemple les nanoparticules d'amidon réticulé de taille comprise entre 50 et 150 nanomètres, vendues sous l'appellation ECOSPHERE par la société ECOS YNTHETIX ou encore les nanoparticules d'acétate d'amidon COHPOL C6N100 du VTT, ou encore des nanobilles synthétisées directement à l'état nanométrique, par exemple celles de polystyrènemaléimides de la société TOPCHIM.
L'incorporation éventuelle de tout produit additionnel peut se faire par mélange physique à froid ou à basse température mais de préférence par malaxage à chaud à une température supérieure à la température de transition vitreuse de la composition. Cette température de malaxage est avantageusement comprise entre 60 et 20O0C et mieux de 100 à 18O0C. Cette incorporation peut être réalisée par mélange thermomécanique, de façon discontinue ou de façon continue et en particulier en ligne. Dans ce cas, la durée de mélange peut être courte, de quelques secondes à quelques minutes.
La composition selon l'invention présente de préférence une viscosité complexe, mesurée sur rhéomètre de type PHYSICA MCR 501 ou équivalent, comprise entre 10 et 106 Pa. s, pour une température comprise entre 100 et 2000C. En vue de sa mise en œuvre par injection par exemple, sa viscosité à ces températures est située de préférence dans la partie inférieure de la gamme donnée ci-dessus et la composition est alors préférentiellement thermo-fusible au sens précisé plus haut.
Les compositions élastomériques selon l'invention présentent également l'avantage de pouvoir être quasiment ou totalement insolubles dans l'eau, de s'hydrater difficilement et de conserver une bonne intégrité physique après immersion dans l'eau, les solutions salines, oxydantes, acides ou alcalines ou encore les milieux aqueux plus complexes comme les milieux biologiques tels que la salive, la sueur et les sucs digestifs. Contrairement aux compositions à hautes teneurs en amidon thermoplastique de l'art antérieur, la composition selon l'invention présente avantageusement des courbes contrainte/déformation caractéristiques d'un matériau ductile, et non pas d'un matériau de type fragile.
Ses propriétés mécaniques en traction peuvent notamment être évaluées selon le protocole suivant :
Mesure des propriétés mécaniques :
On détermine les caractéristiques mécaniques en traction des différents compositions selon la norme NF T51-034 (Détermination des propriétés en traction) en utilisant un banc d'essai Lloyd Instrument LR5K, une vitesse de traction : 50 mm ou 300 mm/min et des éprouvettes normalisées de type H2.
A partir des courbes de traction (contrainte = f (allongement), obtenues à une vitesse d'étirement de 50 ou 300 mm/min, on relève, pour chacun des alliages, l'allongement à la rupture et la contrainte maximale à la rupture correspondante.
L'allongement à la rupture, mesuré pour les compositions de la présente invention pour une vitesse d'étirement de 50 mm/min, est généralement compris entre
10 et 1 000 %. Il est généralement supérieur à 20 %, de préférence supérieur à 40 %, mieux encore supérieur à 60 %. Cet allongement à la rupture peut avantageusement être au moins égal à 70%, notamment au moins égal à 80 %. De manière remarquable,
11 peut même atteindre ou dépasser 100%, voire 200%, voire beaucoup plus (300 à 900 %, voire 1 000 %). Selon une variante avantageuse, cet allongement à la rupture est au moins égal à 70% et inférieur à 500 % et notamment compris entre 80 % et. 480 %. La contrainte maximale à la rupture des compositions de la présente invention, également mesuré à une vitesse d'étirement de 50 mm/min, est généralement comprise entre 4 et 50 Mpa. Elle est généralement supérieure à 4 MPa, de préférence supérieure à 5 MPa, mieux encore supérieure à 6 MPa .De manière remarquable, elle peut même atteindre ou dépasser 7 MPa, voire 10 MPa, voire beaucoup plus (15 à 50 Mpa). Selon une variante avantageuse, cette contrainte maximale à la rupture est au moins égale à 7 MPa et inférieure à 50 MPa, notamment comprise entre 10 MPa et 45 MPa..
La composition selon la présente invention peut présenter en outre l'avantage d'être constituée de matières premières essentiellement renouvelables et de pouvoir présenter, après ajustement de la formulation, les propriétés suivantes, utiles dans de multiples applications en plasturgie, en industrie des élastomères et des caoutchoucs, en industrie des adhésifs, en pharmacie , en cosmétique, en confiserie ou dans bien d'autres domaines encore:
- thermoplasticité, viscosité à l'état fondu et température de transition vitreuse appropriées, dans les gammes de valeur habituelles connues des polymères courants, permettant une mise en œuvre grâce aux installations industrielles existantes et utilisées classiquement pour les polymères naturels, artificiels ou synthétiques habituels,
- miscibilité suffisante à une grande variété de polymères d'origine fossile ou d'origine renouvelable du marché ou en développement,
- stabilité physicochimique satisfaisante aux conditions de mise en œuvre,
- faible sensibilité à l'eau et à la vapeur d'eau,
- performances mécaniques très nettement améliorées par rapport aux compositions thermoplastiques d'amidon de l'art antérieur (souplesse, allongement à la rupture, contrainte maximale à la rupture)
- bons effets de barrière à l'eau, à la vapeur d'eau, à l'oxygène, au gaz carbonique, aux UV, aux corps gras, aux arômes, aux essences, aux carburants,
- opacité, translucidité ou transparence modulables en fonction des usages,
- bonne imprimabilité et aptitude à être mise en peinture, notamment par des encres et peintures en phase aqueuse,
- retrait dimensionnel contrôlable,
- stabilité dans le temps très satisfaisante,
- biodégradabilité et compostabilité ajustables
- ou/et bonne recyclabilité . La présente invention a également pour objet un procédé de préparation d'une composition élastomérique telle que décrite précédemment dans toutes ses variantes, ledit procédé comprenant les étapes suivantes :
(i) sélection d'au moins un ester d'une matière amylacée de DS compris entre 1 et 3, de préférence compris entre 1,2 et 3 et plus préférentiellement compris entre 1,6 et3,0;
(ii) sélection d'un plastifiant de l'ester de la matière amylacée retenue,
(iii) sélection d'au moins un polymère non amylacé élastomérique et
(iv) préparation, de préférence par mélange thermomécanique à chaud, d'une composition élastomérique.
La composition élastomérique selon l'invention peut être utilisée telle quelle ou en mélange avec des polymères synthétiques, artificiels ou d'origine naturelle. Elle peut comprendre aussi des polymères connus pour être biodégradables ou compostables au sens des normes EN 13432, ASTM D6400 et ASTM 6868, ou des matières répondant à ces normes, tels que les PLA, PCL, PBS, PBAT et PHA.
La composition selon l'invention peut notamment être non biodégradable (taux de biodégradabilité inférieur à 5%, et mieux proche de 0%) ou/et de préférence non compostable au sens des normes EN ou ASTM citées ci-dessus. Il est possible de moduler la durée de vie et la stabilité de la composition conforme à l'invention en ajustant en particulier son affinité pour l'eau, de manière à convenir aux usages attendus en tant que matériau et aux modes de valorisation envisagés en fin de vie.
La composition élastomérique conforme à la présente invention contient avantageusement au moins 15%, de préférence au moins 30%, en particulier au moins 50%, mieux encore au moins 70%, voire plus de 80%, de carbone d'origine renouvelable au sens de la norme ASTM D6852, par rapport à l'ensemble du carbone présent dans la composition. Ce carbone d'origine renouvelable est essentiellement celui constitutif de l'ester de la matière amylacée nécessairement présent dans la composition conforme à l'invention mais peut être aussi avantageusement, par un choix judicieux des constituants de la composition, celui présent dans le plastifiant éventuel ou de tout autre constituant de la composition, lorsqu'ils proviennent de ressources naturelles renouvelables comme ceux définis préférentiellement ci-dessus. II est en particulier envisageable d'utiliser les compositions selon l'invention, en tant que joints ou de produits barrières à l'oxygène, au gaz carbonique, aux arômes, aux carburants et/ou aux corps gras, seuls ou dans des structures multi- couches obtenues par co-extrusion pour le domaine de l'emballage alimentaire notamment.
Elles peuvent aussi être utilisées pour augmenter le caractère hydrophile, l'aptitude à la conduction électrique, la perméabilité à l'eau et/ou à la vapeur d'eau, ou la résistance aux solvants organiques et/ou carburants, de polymères synthétiques dans le cadre par exemple de la fabrication de membranes, de films ou d'étiquettes électroniques imprimables, de matériaux textiles, de contenants ou réservoirs, ou encore d'améliorer les propriétés adhésives de films thermocollants ou de films collants sur des supports hydrophiles tels que le bois, le verre ou la peau.
Il convient de noter que le caractère relativement hydrophile de la composition thermoplastique ou élastomérique selon l'invention réduit considérablement les risques de bio-accumulation dans les tissus adipeux des organismes vivants et donc également dans la chaîne alimentaire.
Ladite composition peut se présenter sous forme pulvérulente, granulée ou en billes. Elle peut constituer en tant que telle un mélange maître ou la matrice d'un mélange maître, destiné à être dilué dans une matrice bio-sourcée ou non. Elle peut constituer aussi une matière première plastique ou un compound utilisable directement par un équipementier ou un façonnier pour la préparation d'objets plastiques ou élastomériques.
Elle peut constituer aussi en tant que telle un adhésif, notamment de type hot-melt, ou une matrice de formulation d'un adhésif, notamment de type hot-melt. Elle peut constituer une partie ou la totalité d'une gomme de base ou de la matrice d'une gomme base, notamment de chewing-gum ou encore d'une résine, co- résine ou nano-charge, en particulier biosourcées, utilisables dans l'industrie, notamment des caoutchoucs et élastomères dont les pneumatiques, des bitumes routiers ou autres, des encres, des vernis, des peintures, du papier et du carton, des produits tissés et non tissés. II peut s'agir par exemple de bandes de roulement ou carcasses de pneus, de courroies, de câbles, de tuyaux, de joints et pièces moulés, de tétines, de gants, de semelles de chaussures, de tissus enduits.
La présente invention a en particulier pour objet l'utilisation d'une composition élastomérique selon l'invention, pour la préparation d'une gomme base de chewing-gum.
Elle a en outre pour objet une gomme de base pour chewing-gum contenant une composition selon l'invention, avantageusement en une quantité comprise entre 5 et 50 %, de préférence entre 10 à 45 % et en particulier entre 10 et 40 %. La présente invention a également pour objet l'utilisation d'une composition élastomérique selon l'invention, pour la préparation d'une pièce, d'un pneumatique ou d'un équipement pour l'industrie des transports, en particulier pour l'industrie automobile, aéronautique, ferroviaire ou navale, pour l'industrie des appareils électriques, électroniques ou électro-ménagers, pour l'industrie du sport et des loisirs ou pour les industries de la pharmacie ou de la cosmétique.
Enfin, la composition selon l'invention peut être éventuellement utilisée pour préparer des résines thermodures (duroplastes) par réticulation poussée de manière irréversible, lesdites résines perdant ainsi définitivement tout caractère élastomérique. L'invention concerne aussi une matière plastique, une matière élastomérique ou une matière adhésive comprenant la composition de la présente invention ou un produit fini ou semi-fini obtenu à partir de celle-ci.
Exemple 1 : Préparation d'une composition élastomérique selon l'invention
Préparation des compositions On retient pour cet exemple :
- en tant qu'ester de matière amylacée, un acétate de fécule de pomme de terre présentant un DS en ester de 2,7 et ci-après désigné «ACET 1», - en tant que plastifiant de cet ester de matière amylacée, une composition liquide de triacétate de glycérol (triacétine), - en tant que polymère non amylacé élastomérique, un polymère de type TPU polyéther commercialisé sous la dénomination ESTANE® 58887 par la société Noveon,
- en tant qu'agent de liaison, du méthylène-diphényl-diisocyante (MDI) commercialisé sous la dénomination Suprasec 1400 par la société Hunstman.
Dans un premier temps, on réalise, en plusieurs étapes, une composition témoin contenant, en poids :
- 30% d'ester de matière amylacée ACET 1,
- 20% de triacétine, et - 50% de PLA (acide polylactique).
Lors de la première étape, on mélange 60 parts d'ester ACET 1 et 40 parts de triacétine dans un mélangeur type Hobart pendant 5 minutes. Après émiettage du mélange résultant, on l'introduit, par la goulotte d'alimentation principale, dans une extrudeuse monovis de type HAAKE, de diamètre (D) de 19 mm et de longueur 25 D selon le profil de température suivant, pour respectivement les 4 fourreaux : 40 0C,
14O 0C, 130 0C et 110 0C et ce, à une vitesse de rotation de 80 tours /min.
Le jonc d'ester de matière amylacée ACET 1 plastifié est ensuite granulé.
On mélange ensuite, toujours dans un mélangeur type Hobart et pendant 5 minutes, ces granules d'ester ACET 1 plastifié (« ACET 1 pi ») avec le PLA et ce, dans un ratio pondéral de 50/50.
On introduit ensuite, toujours par la goulotte d'alimentation principale, le mélange ACET 1 pi / PLA résultant, dans l'extrudeuse monovis HAAKE décrite ci- avant selon le profil de température suivant, pour respectivement les 4 fourreaux : 40 0C, 140 0C, 130 0C et 110 0C et ce, à une vitesse de rotation de 40 tours /min. II apparait que ce mélange est conforme à ce que l'on peut attendre d'une matière thermoplastique traditionnelle apte à être introduite, dosée et transformée dans un équipement de transformation classique telle qu'une extrudeuse.
La composition extradée résultante (ci-après « COMP 1 »), se présente sous la forme d'un jonc de couleur crème qui est continu, étirable sous son poids et qui apparaît visuellement homogène. Au toucher, elle présente une bonne souplesse mais une réponse élastique plutôt lente de type caoutchouc non réticulé. Elle présente les caractéristiques mécaniques en traction suivantes, mesurées conformément au protocole décrit précédemment au niveau du paragraphe « Mesure des propriétés mécaniques » et pour une vitesse d'étirement de 50 mm/min : allongement à la rupture : 23 %, - contrainte maximale à la rupture : 16 MPa.
La composition COMP 1 décrite ci-dessus, non conforme à la présente invention, a ensuite été mise en œuvre au sein de composition extradées (« COMP 2 » et « COMP 4 »), également non conformes à la présente invention, et dans une composition extradée (« COMP 3 »), conforme à l'invention, ces compositions contenant respectivement, en poids :
- COMP 2 : 100 parts de COMP 1 + 2 parts d'agent de liaison (MDI),
- COMP 3 : 50 parts de COMP 1 + 50 parts de TPU polyéther ESTANE® 58887 + 2 % de MDI,
- COMP 4 : 50 parts de COMP 1 + 45 parts de polyéthylène basse densité (PEbd) + 5 % de PE greffé anhydride maléique BONDYRAM® 4001.
Elles présentent, dans les mêmes conditions de mesure que celles utilisées pour la composition COMP 1, les caractéristiques mécaniques reprises dans le tableau ci-dessous, avec, pour autres compositions témoin, une composition consistant uniquement en polyéthylène basse densité (« PEbd ») ou uniquement en copolymère acrylonitrile butadiène styrène (« ABS »).
Ces résultats montrent globalement que les caractéristiques mécaniques en traction de la composition COMP 1 non conforme à l'invention, déjà significativement améliorées par adjonction d'une faible quantité d'agent de liaison (« COMP 2 »), peuvent encore être significativement augmentées, notamment en termes d'allongement à la rupture, par mise en œuvre d'un polymère élastomérique de type TPU polyéther (« COMP 3 »).
La Demanderesse a, de manière plus générale, observé que, de façon remarquable, la composition COMP 3 selon l'invention contenant pourtant une très forte proportion de COMP 1, possédait des caractéristiques thermiques et mécaniques qui pouvaient être comparables à celles d'élastomères thermoplastiques dits « techniques » du marché tels que ceux de type TPU ou ABS et qu'en tous cas, cette COMP 3 présentait un excellent compromis entre allongement à la rupture (valeur dépassant les 200 %) et contrainte maximale à la rupture (valeur significativement supérieure à 10 MPa). Elle présente par ailleurs, malgré une forte proportion en PLA (25% environ), un taux de biodégradabilité, mesuré conformément au protocole décrit précédemment au niveau du paragraphe « Mesure du taux de biodégradation selon ISO 14851 », dont la valeur moyenne est très faible, à savoir inférieure à 10 % alors que dans les mêmes conditions : - la cellulose microcristalline présente un taux de biodégradabilité proche de
90%, et
- les PLAs, PHAs ou autres polymères labélisés comme biodégradables, présentent quant à eux des valeurs de taux de biodégradabilité généralement supérieures à 50%.
Exemple ;nnn2 j ^^ Utilisation de co l'invention dans i la ^préparation
Dans le cadre de cet exemple, on évalue la possibilité d'utiliser des compositions selon l'invention pour remplacer au moins partiellement une gomme base à base de polymère synthétique employée pour la préparation de chewing-gums. 2.1 matières premières
On retient pour cet exemple comme principales matières premières :
- en tant qu'esters de matière amylacée, respectivement : °un acétate d'une maltodextrine issue d'amidon de maïs waxy (maltodextrine
GLUCIDEX® 2 commercialisée par la Demanderesse), ledit acétate présentant un DS en ester de 2,7 environ (ci-après désigné « ACET 2 »),
°un acétate d'un amidon de maïs fluidifié, en l'occurrence de l'amidon CLEARGUM® MB80 commercialisé par la Demanderesse, ledit acétate présentant un DS en ester de 2,5 environ (ci-après désigné « ACET 3 »),
°un acétate de fécule de pomme de terre (DS de 0,45), greffé ensuite avec de la epsilon-caprolactone, l'ester de matière amylacée résultant présentant un DS total en esters de 2,6 environ (ci-après désigné « ACET 4 », et
°un acétate de fécule de pomme de terre présentant un DS en ester de 2,6 environ, ledit acétate étant en outre hydroxypropylé et ce, avec un MS (Degré de Substitution Molaire) de 0,4 environ (ci-après désigné « ACET 5 »).
- en tant que plastifiant de ces esters de matière amylacée, de la triacétine (désignée ci-aprés « PLAST 1 »).
- en tant que polymère synthétique, une composition élastomérique (gomme base) comprenant, au total, environ 52 % en poids d'un mélange de polymères non amylacés constitué d'acétate de polyvinyle (PVAc), d'esters de collophane, de copolymères butadiène/styrène et de polyisobutylène, le complément à 100% étant constitué principalement de carbonate de calcium, de cire de paraffine et d'émulsifiant. Les élastomères butadiène/styrène et polyisobutylène représentent environ un tiers des polymères de cette composition, c'est-à-dire 14 % des 52 % de polymères.
2.-.2.:plastifiçation . des ...esters !.de.matière..amylacée
Dans un pétrin à bras en Z de marque Kustner chauffé à HO0C, on mélange chacun des esters de matière amylacée ACET 2 à ACET 5 avec le plastifiant PLAST
1 et ce, dans les proportions pondérales respectives suivantes : • 70% de ACET 2 + 30% de PLAST 1 ,
• 60% de ACET 3 + 40% de PLAST 1 ,
• 60% de ACET 4 + 40% de PLAST 1 ,
• 60% de ACET 5 + 40% de PLAST 1.
Après 50 minutes de pétrissage, on observe :
• une très bonne homogénéité des mélanges à base des esters ACET 2 et ACET 5,
• une homogénéité moindre des mélanges à base de l'ester ACET 3 (présence de quelques points blancs après pétrissage) et de l'ester ACET 4 (présence de particules gélifiées après pétrissage),
• une bonne élasticité des mélanges, notamment celui à base de l'ester ACET 4.
2.3: incorporation des esters de matière amylacée plastifiés dans la gomme base
Dans le même pétrin que celui décrit ci-avant, on mélange, toujours à HO0C et pendant 30 minutes, 70% en poids de composition élastomérique (gomme base) telle que décrite précédemment avec 30% en poids, respectivement, de chacun des esters de matière amylacée plastifiés résultant du point 2.2. ci-après désignés respectivement ACET 2 pi, ACET 3 pi, ACET 4 pi et ACET 5 pi.
On observe que l'ensemble des quatre mélanges ester de matière amylacée plastifié / gomme base sont homogènes ce qui illustre une bonne compatibilité entre la matière polymérique synthétique que constitue la gomme base et chacun des acétates de matière amylacée ACET 2 pi à ACET 5 pi préalablement plastifiés. un ester de matière amylacée plastifié
On prépare des compositions de chewing-gum selon la formule ci-après. 2.4.1 : formule
Z.A-2..M.Q.dÇ ..opératoire
• introduire la gomme de base, associée ou non à un ester de matière amylacée plastifié, dans un pétrin à bras en Z de marque IKA (IKAVISC MKD 0,6 - MESSKNETER H60) préchauffé à 5O0C. Ajouter la moitié du sorbitol poudre. Malaxer pendant 2 minutes.
• ajouter le sirop de maltitol, malaxer 2 minutes.
• ajouter le mannitol et le xylitol poudre, malaxer 2 minutes.
• ajouter l'autre moitié du sorbitol poudre et le glycérol, malaxer 2 minutes, ajouter l'arôme en poudre, le menthol et l' aspartame, malaxer 1 minute. ajouter l'arôme liquide, malaxer 1 minute. • décharger le pétrin, laminer le mélange résultant en une bande de 5 mm d'épaisseur et la découper en « sticks » de 30 mm de longueur et 18 mm de largeur. 2.4.3 composants « gomme base » testés.
Différents composants « gomme base » GUM 1 à GUM 5 sont testés (taux d'introduction dans la formule de chewing-gum : 35% - cf supra), constitués respectivement : 0 GUM 1 : 100 % en poids de gomme base = TEMOIN
• GUM 2 : 70% en poids de gomme base + 30% en poids d'acétate de matière amylacée plastifié ACET 2 pi,
• GUM 3 :70% gomme base / 30% ACET 3 pi,
• GUM 4 :70% gomme base / 30% ACET 4 pi, et
• GUM 5 :70% gomme base / 30% ACET 5 pi.
2Λ4^4...s]^e.deJ.a4ureté.des..stiçks
On mesure au moyen de l'appareil INSTRON 4500 (cellule de mesure : 100 Newtons ; poinçon cylindrique de 3,9 mm de diamètre ; vitesse de déplacement : 50 mm/min.), la dureté exprimée en Newtons des sticks préparés. Ceci, soit dés après leur préparation (JO) et à différentes températures (45, 35 ou 2O0C) soit après, respectivement, 1, 8 et 15 jours de stockage à l'intérieur d'un emballage en aluminium lui même placé dans une enceinte climatisée (température:20°C ; humidité relative HR): 50%).
Les résultats, exprimés en Newtons, sont donnés dans le tableau ci- apres :
D'une manière générale, les chewing-gums dans lesquels 30% de la gomme base est substituée par un ester de matière amylacée plastifié :
- sont parfaitement homogènes mis à part ceux obtenus avec la gomme base GUM 4 pour lesquels on observe la présence résiduelle de quelques particules éparses d'ester de matière amylacée plastifié ACET 4 pi,
- sont et restent moins durs que le témoin. Ceux dont la texture INSTRON est la plus proche du témoin sont ceux préparés avec la gomme base GUM 2 contenant 30% d'ester de matière amylacée plastifié ACET 2 pi, à savoir 30% d'un acétate de GLUCIDEX® 2 plastifié par de la triacétine.
Des tests organoleptiques ont montré que, globalement, la texture et le goût de ces chewings-gums sont tout à fait acceptables, ceux préparés à partir de la gomme base GUM 2 se révélant également, lors de tels tests, comme les plus proches des chewings-gums témoins dont la gomme base n'est pas associée à un ester de matière amylacée.
Les résultats de cet Exemple 2 montrent globalement que des esters de matière amylacée tels que les produits ACET 2, ACET 3, ACET 4 et ACET 5, plastifiés, peuvent tout à fait être utilisés dans la préparation de chewing-gums en substitution au moins partielle mais significative (de quelques % à au moins 30% en poids) d'une gomme base classique de nature synthétique.
Exemple 3 : Préparation d'une composition selon l'invention à base d'ester de matière amylacée plastifiée et de polymère élastomérique type TPU ester
Préparation de la composition
On retient pour cet exemple :
- en tant qu'ester de matière amylacée plastifié, l'acétate de maltodextrine ACET 2 telle que décrit dans l'Exemple 2, - en tant que plastifiant, de l'alkyl benzylique à raison de 15 part en poids pour 100 parts en poids dudit ester, - en tant que polymère non amylacé élastomérique, un polymère de type TPU ester commercialisé sous la dénomination ESTANE® 58447 par la société Noveon,
- en tant qu'agent de liaison, du méthylène-diphényl-diisocyante (MDI) commercialisé sous la dénomination Suprasec 1400 par la société Hunstman. On réalise, dans les conditions générales de l'Exemple 1, une composition conforme à l'invention (ci-après « COMP 5 ») contenant :
50 parts de polymère ESTANE® 58447, 50 parts en poids d'ester ACET 2, plastifié, et 1 part en poids de MDI. Cette composition COMP 5 présente les caractéristiques mécaniques en traction suivantes, mesurées conformément au protocole décrit précédemment au niveau du paragraphe « Mesure des propriétés mécaniques » et pour une vitesse d'étirement de 50 mm/min : allongement à la rupture : 80%, - contrainte maximale à la rupture : 14 MPa.
La composition COMP 5, bien que contenant une forte proportion d'ester de matière amylacée, présente un comportement proche de certaines performances de polymère de type « polystyrène choc » ou de type « EVA pour films agricoles ».

Claims

REVENDICATIONS
1. Composition élastomérique, caractérisée en ce qu'elle contient :
- au moins 5 % et au plus 70 % en poids d'un ester d'une matière amylacée, de degré de substitution en esters (DS) compris entre 1,0 et 3,0, de préférence compris entre 1,2 et 3,0,
- au moins 5 % et au plus 40 % en poids d'un plastifiant de cet ester de matière amylacée, ledit plastifiant étant, de préférence, autre que l'eau et,
- au moins 25 % en poids et au plus 90 % en poids d'un polymère non amylacé élastomérique, ces pourcentages étant rapportés au poids total de la composition.
2. Composition selon la revendication 1, caractérisée en ce que :
- l'ester de matière amylacée présente, en tant que tel, un taux de biodégradabilité selon la norme ISO 14851, inférieur à 50%, de préférence inférieur à 30% et/ou
- le polymère non amylacé présente, en tant que tel, un taux de biodégradabilité selon la norme ISO 14851, inférieur à 50%, de préférence inférieur à 30%.
3. Composition selon l'une des revendications 1 ou 2, caractérisée en ce que le DS de l'ester de matière amylacée est compris entre 1,6 et 3,0, de préférence compris entre 1,8 et 2,9 et plus préférentiellement encore compris entre 2,0 et 2,9.
4. Composition selon la revendication 3, caractérisée en ce que le DS de l'ester de la matière amylacée est compris entre 2,2 et 2,8.
5. Composition selon l'une quelconque des revendications 1 à 4, caractérisée en ce qu'elle comprend :
- de 10 à 60 % en poids d'un ester de matière amylacée,
- de 5 à 30 % en poids d'un plastifiant de l'ester de matière amylacée et,
- de 40 à 85 % en poids d'un polymère non amylacé élastomérique, ces pourcentages étant rapportés au poids total de la composition.
6. Composition selon la revendication 5, caractérisée en ce qu'elle comprend : - de 15 à 40 % en poids d'un ester de matière amylacée
- de 5 à 20 % en poids d'un plastifiant de l'ester de matière amylacée, et
- de 40 à 80 % en poids d'un polymère non amylacé élastomérique, ces pourcentages étant rapportés au poids total de la composition.
7. Composition selon la revendication 1, caractérisée en ce qu'elle comprend de 45 à 70 % en poids, de préférence de 50 à 70 % en poids et encore plus préférentiellement encore de 51 à 65 % en poids d'ester de matière amylacée.
8. Composition selon la revendication 1, caractérisée en ce qu'elle comprend de 25 à 49 % en poids, de préférence de 25 à 40 % en poids et encore plus préférentiellement encore de 25 à 35 % en poids de polymère non amylacé élastomérique.
9. Composition selon la revendication 1, caractérisée en ce qu'elle comprend de 5 à 49 % en poids, de préférence de 7 à 49 % en poids et plus préférentiellement encore de 10 à 49 % en poids d'ester de matière amylacée.
10. Composition selon la revendication 1, caractérisée en ce qu'elle comprend de 45 à 90 % en poids, de préférence de 51 à 85 % en poids et encore plus préférentiellement de 51 à 80 % en poids de polymère non amylacé élastomérique .
11. Composition selon l'une quelconque des revendications 1 à 10, caractérisée en ce que l'ester de matière amylacée est un acétate, un propionate, un butyrate, un valérate, un hexanoate, un octanoate, un décanoate, un laurate, un palmitate, un oléate ou un stéarate d'amidon, de dextrine ou de maltodextrine.
12. Composition selon la revendication 11, caractérisée en ce que l'ester de matière amylacée est un acétate d'amidon hydrosoluble ou organomodifié, un acétate de dextrine ou un acétate de maltodextrine.
13. Composition selon l'une quelconque des revendications 1 à 12, caractérisée en ce que l'agent plastifiant de l'ester de matière amylacée présente :
- une masse moléculaire comprise entre 150 et 450, et
- un paramètre de HILDEBRAND compris entre 18 et 22 (J.cm ~3)0'5.
14. Composition selon l'une quelconque des revendications 1 à 13, caractérisée en ce que polymère non amylacé élastomérique présente une température de transition vitreuse (Tg) comprise entre -5 0C et -12O0C, de préférence comprise entre -30 0C et -1050C.
15. Composition selon l'une quelconque des revendications 1 à 14, caractérisée en ce que le polymère non amylacé élastomérique est choisi parmi les caoutchoucs naturels et leurs dérivés, les polyisobutylènes, les polyisoprènes, les copolymères butadiène- styrène, les copolymères butadiène-acrylonitrile éventuellement hydrogénés, les copolymères acrylonitrile-styrène-acrylate, les polyuréthanes thermoplastiques de type éthers ou esters-éthers, les polyéthylènes ou polypropylènes fonctionnalisés, par exemple par des motifs silane, halogènes, acryliques ou anhydride maléique, les élastomères à base d'éthylène ou de polypropylène ou d'éthylène et de propylène , les élastomères thermoplastiques dérivés de polyoléfines, les copolymères styrène-butylène- styrènes et styrène- éthylène-butylène- styrènes fonctionnalisés, par exemple par des motifs anhydride maléique, et les mélanges quelconques de ces polymères.
16. Composition selon l'une quelconque des revendications 1 à 15, caractérisée en ce que le polymère non amylacé élastomérique présente une solubilité dans l'eau, à 20 0C, inférieure à 10 % et notamment inférieure à 5 %.
17. Composition selon l'une des revendications 1 à 17, caractérisée en ce qu'elle comprend, au total, de 35 à 100 % en poids, de préférence de 50 à 100 % en poids et plus préférentiellement encore de 70 à 100 % en poids, d'ester de matière amylacée, de plastifiant dudit ester et de polymère non amylacé élastomérique.
18. Composition selon l'une quelconque des revendications 1 à 17, caractérisée en ce qu'elle contient en outre un polymère autre que l'ester de matière amylacée et que le polymère non amylacé élastomérique, ledit polymère étant, de préférence, choisi parmi les poly(éthylène téréphtalates), y compris les poly(éthylène téréphtalate) amorphes, les polyéthylènes et polypropylènes fonctionnalisés ou non fonctionnalisés, les polyacrylonitriles, les polyéthersulfones, les polyméthylméthacrylates , les polyamides, les polyacrylates, les poly(acétate de vinyle), les polyuréthannes non élastomériques, les polyoxyméthylènes et les mélanges quelconques de ces polymères.
19. Composition selon la revendication 18, caractérisée en ce qu'elle contient au plus 55 % en poids, de préférence de 2 à 40 % en poids et plus préférentiellement encore de 5 à 35 % en poids, de polymère autre que l'ester de matière amylacée et que le polymère non amylacé élastomérique.
20. Composition selon l'une quelconque des revendications 1 à 19, caractérisée en ce qu'elle présente :
- un allongement à la rupture au moins égal à 70% et inférieur à 500 %, et
- une contrainte maximale à la rupture au moins égale à 7 MPa et inférieure à 50 MPa.
21. Gomme de base pour chewing-gum contenant une composition selon l'une quelconque des revendications précédentes.
22. Gomme de base selon la revendication 21, caractérisée par le fait qu'elle contient de 5 à 50 %, de préférence de 10 à 45 % et en particulier de 10 à 40 % d'une composition selon l'une quelconque des revendications précédentes.
23. Utilisation d'une composition élastomérique selon l'une quelconque des revendications 1 à 20 comme mélange maître, matrice de mélange maître, matière première plastique, compound pour objets plastiques ou élastomériques, joint , film collant ou thermocollant, adhésif, matrice de formulation d'un adhésif, constituant de gomme de base , de matrice de gomme base, de chewing-gum, de résine, de co-résine ou nano-charge pour caoutchoucs, élastomères, bitumes, encres, vernis, papier, carton, produits pharmaceutiques, produits cosmétiques, produits tissés et non tissés, ou pour la préparation de résines thermodures.
24. Utilisation d'une composition élastomérique selon l'une quelconque des revendications 1 à 20 pour la préparation d'une gomme base de chewing-gum.
25. Utilisation d'une composition thermoplastique ou élastomérique selon l'une quelconque des revendications 1 à 20 pour la préparation d'une pièce, d'un pneumatique ou d'un équipement pour l'industrie des transports, en particulier l'industrie automobile, aéronautique, ferroviaire ou navale, pour l'industrie des appareils électriques, électroniques ou électro-ménagers, pour l'industrie du sport et des loisirs ou pour les industries de la pharmacie ou de la cosmétique.
EP09756018A 2008-10-13 2009-10-13 Compositions elastomeriques a base d'esters d'une matiere amylacee et procede de preparation de telles compositions Withdrawn EP2344580A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0856936A FR2937039B1 (fr) 2008-10-13 2008-10-13 Compositions elastomeriques a base d'esters d'une matiere amylacee et procede de preparation de telles compositions
PCT/FR2009/051952 WO2010043814A1 (fr) 2008-10-13 2009-10-13 Compositions elastomeriques a base d'esters d'une matiere amylacee et procede de preparation de telles compositions

Publications (1)

Publication Number Publication Date
EP2344580A1 true EP2344580A1 (fr) 2011-07-20

Family

ID=40506426

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09756018A Withdrawn EP2344580A1 (fr) 2008-10-13 2009-10-13 Compositions elastomeriques a base d'esters d'une matiere amylacee et procede de preparation de telles compositions

Country Status (12)

Country Link
US (1) US20110196071A1 (fr)
EP (1) EP2344580A1 (fr)
JP (1) JP2012505281A (fr)
KR (1) KR20110090894A (fr)
CN (1) CN102186916A (fr)
AU (1) AU2009305223A1 (fr)
BR (1) BRPI0920365A2 (fr)
CA (1) CA2739051A1 (fr)
FR (1) FR2937039B1 (fr)
MX (1) MX2011003901A (fr)
RU (1) RU2011119079A (fr)
WO (1) WO2010043814A1 (fr)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5097982B2 (ja) * 2008-07-25 2012-12-12 株式会社シード 研磨材入り字消し
US8466337B2 (en) * 2009-12-22 2013-06-18 Kimberly-Clark Worldwide, Inc. Biodegradable and breathable film
FR2959744B1 (fr) * 2010-05-04 2012-08-03 Michelin Soc Tech Composition de caoutchouc, utilisable pour la fabrication d'un pneumatique dont la composition comporte un amidon et un plastifiant aqueux ou hydrosoluble
US20120309246A1 (en) 2011-06-03 2012-12-06 Alexander Tseitlin Curable biopolymer nanoparticle latex binder for mineral, natural organic, or synthetic fiber products and non-woven mats
KR101305441B1 (ko) * 2011-09-23 2013-09-09 한국기술교육대학교 산학협력단 커플링제를 이용한 전분/고무 라텍스 화합물 제조 방법
US9023918B1 (en) 2011-09-28 2015-05-05 Green Dot Holdings LLC Biodegradable plastic resin
JP5801162B2 (ja) * 2011-10-27 2015-10-28 日澱化學株式会社 生分解性プラスチックおよびその製造方法
BR112014010667A2 (pt) * 2011-11-01 2017-06-13 Henry Co Llc plastificantes para composições adesivas, de revestimento e de vedação aplicadas ao asfalto
US9974320B2 (en) 2011-11-07 2018-05-22 Wm. Wrigley Jr. Company Chewing gum base containing substituted polysaccharides and chewing gum products made there from
KR20140137350A (ko) * 2012-02-24 2014-12-02 반도 카가쿠 가부시키가이샤 마찰 전동 벨트
AR093710A1 (es) * 2012-12-04 2015-06-17 Lanxess Deutschland Gmbh Mezclas de caucho que contienen alquilesteres de cadena corta de glicerina
ITTO20130570A1 (it) * 2013-07-08 2015-01-09 Fond Istituto Italiano Di Tecnologia Procedimento per la produzione di un bioelastomero composito, idrofobico, comprendente amido
US9464188B2 (en) 2013-08-30 2016-10-11 Kimberly-Clark Worldwide, Inc. Simultaneous plasticization and compatibilization process and compositions
EP3044277A4 (fr) * 2013-09-10 2017-08-23 Arkema, Inc. Alliages d'amidon thermoplastique antistatiques
JP2016539235A (ja) 2013-12-05 2016-12-15 エコシンセティックス リミテッド ホルムアルデヒド非含有バインダーおよび多成分ナノ粒子
EP2952538A1 (fr) 2014-06-03 2015-12-09 LANXESS Deutschland GmbH Compositions caouchouteuses exemptes de diphenylguanidine renfermant des glycérides à courte chaine
JP6335753B2 (ja) * 2014-10-24 2018-05-30 東洋ゴム工業株式会社 ゴム組成物及び空気入りタイヤ
US20160165919A1 (en) * 2014-12-11 2016-06-16 The Goodyear Tire & Rubber Company Chewing gum base
CN107846924A (zh) 2015-07-02 2018-03-27 Wm.雷格利Jr.公司 来自可再生资源的胶基
DE102016201498B4 (de) 2016-02-01 2017-08-17 Norbert Kuhl Sauerstoffdichter lebensmittelbehälter
JP2018053192A (ja) 2016-09-30 2018-04-05 日本コーンスターチ株式会社 エステル化澱粉及び澱粉系プラスチック組成物
CA3057727A1 (fr) * 2017-04-07 2018-10-11 Donald R. Allen Composites de polystyrene biodegradables et leur utilisation
CN107163331B (zh) * 2017-05-17 2019-03-08 安徽绿环泵业有限公司 一种环氧树脂材质的磁力泵加强套的制造方法
JP6785193B2 (ja) * 2017-06-16 2020-11-18 株式会社ブリヂストン タイヤ用樹脂金属複合部材、及びタイヤ
ES2962254T3 (es) * 2017-10-24 2024-03-18 Youngil Co Ltd Composición elastomérica de poli(tereftalato de butileno) con excelente resistencia al calor
CN108783674A (zh) * 2018-06-27 2018-11-13 苏州市贝克生物科技有限公司 可降解手套及其制备方法
CN108794692B (zh) * 2018-07-05 2020-11-17 南京林业大学 一种制备高断裂伸长率丙烯酸酯弹性体的方法
DE102018214839B4 (de) * 2018-08-31 2021-05-12 Kufner Holding Gmbh Heißsiegelbares, textiles Flächengebilde mit nachhaltiger Klebstoffbeschichtung und seine Verwendung
FR3089803B1 (fr) * 2018-12-17 2020-12-04 Roquette Freres Composition filmogène à base d’amidon de légumineuse à usage cosmétique
EP3674059A1 (fr) * 2018-12-28 2020-07-01 Agrana Stärke GmbH Composé ou feuille comportant de l'amidon thermoplastique ainsi qu'un polymère thermoplastique
CN112172219B (zh) * 2020-08-27 2023-08-04 茂泰(福建)鞋材有限公司 一种双硬度模压发泡鞋底的制备方法
KR20230175280A (ko) * 2021-04-27 2023-12-29 덴카 주식회사 수성 도료로 도장되는 성형품용 수지 조성물 및 그 성형품
CN114456556B (zh) * 2022-01-13 2023-09-12 珠海麦得发生物科技股份有限公司 一种聚羟基脂肪酸酯片剂及其制备方法和应用

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3666492A (en) * 1970-04-06 1972-05-30 Anheuser Busch Chewing gum
US3883666A (en) * 1974-03-11 1975-05-13 Anheuser Busch Chewing gum base and chewing gum made therefrom
US4035572A (en) * 1975-05-09 1977-07-12 Anheuser-Busch, Incorporated Method of making chewing gum base
US4041179A (en) * 1976-06-25 1977-08-09 Anheuser-Busch, Incorporated Water dispersible chewing gum base
FI102480B (fi) * 1989-07-18 1998-12-15 Warner Lambert Co Rakenteeltaan muunnettua tärkkelystä sisältävät polymeeriperustaiset s eoskoostumukset
WO1994007953A1 (fr) * 1992-10-07 1994-04-14 Parke, Davis & Company Melanges d'ester d'amidon et de polyesters lineaires
US5462983A (en) * 1993-07-27 1995-10-31 Evercorn, Inc. Biodegradable moldable products and films comprising blends of starch esters and polyesters
DE59506856D1 (de) * 1994-12-07 1999-10-21 Reynolds Tobacco Gmbh Bioabbaubare thermoplastisch verformbare materialien und verpackungen daraus
FI108038B (fi) * 1996-06-25 2001-11-15 Polymer Corex Kuopio Ltd Oy Hydrofobinen polymeeridispersio ja menetelmä sen valmistamiseksi
US6605657B1 (en) * 1999-12-27 2003-08-12 Polyvalor Societe En Commandite Polymer compositions containing thermoplastic starch
JP2003041054A (ja) * 2001-08-01 2003-02-13 Hideko Saegusa 生物崩壊性樹脂組成物
US20030092801A1 (en) * 2001-11-15 2003-05-15 Giorgio Agostini Rubber composition comprised of functionalized elastomer and starch composite with coupling agent and tire having at least one component thereof
FR2850244A1 (fr) * 2003-01-24 2004-07-30 Roquette Freres Chewing-gum respectant l'environnement et son procede de fabrication

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2010043814A1 *

Also Published As

Publication number Publication date
CN102186916A (zh) 2011-09-14
AU2009305223A1 (en) 2010-04-22
US20110196071A1 (en) 2011-08-11
WO2010043814A1 (fr) 2010-04-22
FR2937039A1 (fr) 2010-04-16
MX2011003901A (es) 2011-04-28
BRPI0920365A2 (pt) 2016-03-15
FR2937039B1 (fr) 2011-11-18
CA2739051A1 (fr) 2010-04-22
RU2011119079A (ru) 2012-11-20
JP2012505281A (ja) 2012-03-01
KR20110090894A (ko) 2011-08-10

Similar Documents

Publication Publication Date Title
EP2337815B1 (fr) Compositions thermoplastiques ou elastomeriques a base d'esters d'une matiere amylacee et procede de preparation de telles compositions
EP2344580A1 (fr) Compositions elastomeriques a base d'esters d'une matiere amylacee et procede de preparation de telles compositions
FR2932488A1 (fr) Compositions thermoplastiques ou elastomeriques a base d'amidon et procede de preparation de telles compositions.
JP5544302B2 (ja) 可塑化デンプンベース熱可塑性組成物を調製する方法および結果として生じる組成物
WO2009095622A2 (fr) Procede de preparation de compositions thermoplastiques a base d'amidon plastifie et compositions ainsi obtenues
WO2009095617A2 (fr) Compositions thermoplastiques a base d'amidon soluble et procede de preparation de telles compositions
WO2010010282A1 (fr) Procede de preparation de compositions a base de composant amylace et de polymere synthetique
FR2927083A1 (fr) Procede de preparation de compositions thermoplastiques a base de matiere amylacee soluble.
WO2011117549A1 (fr) Compositions à base de matière végétale et procédé de préparation de telles compositions

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110330

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20120626

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20131026