WO2009148115A1 - 炭素触媒及び炭素触媒の製造方法、燃料電池、蓄電装置、炭素触媒の使用方法 - Google Patents

炭素触媒及び炭素触媒の製造方法、燃料電池、蓄電装置、炭素触媒の使用方法 Download PDF

Info

Publication number
WO2009148115A1
WO2009148115A1 PCT/JP2009/060245 JP2009060245W WO2009148115A1 WO 2009148115 A1 WO2009148115 A1 WO 2009148115A1 JP 2009060245 W JP2009060245 W JP 2009060245W WO 2009148115 A1 WO2009148115 A1 WO 2009148115A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
carbon catalyst
precursor polymer
nitrogen
metal
Prior art date
Application number
PCT/JP2009/060245
Other languages
English (en)
French (fr)
Inventor
清藏 宮田
尾嶋 正治
純一 尾崎
斉藤 一夫
守屋 彰悟
恭介 飯田
武亮 岸本
Original Assignee
国立大学法人群馬大学
日清紡ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人群馬大学, 日清紡ホールディングス株式会社 filed Critical 国立大学法人群馬大学
Priority to CA2725738A priority Critical patent/CA2725738C/en
Priority to US12/996,245 priority patent/US20110136036A1/en
Priority to EP09758382.7A priority patent/EP2298443B1/en
Publication of WO2009148115A1 publication Critical patent/WO2009148115A1/ja
Priority to US13/931,073 priority patent/US9373849B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8652Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites as mixture
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/34Carbon-based characterised by carbonisation or activation of carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to carbon catalysts and methods of making carbon catalysts.
  • the present invention also relates to a fuel cell using a carbon catalyst, an electricity storage device, and a method of using the carbon catalyst.
  • Patent Documents 1 to 4 disclose that carbon materials containing nitrogen have oxygen reduction activity, for practical use of the materials, it is necessary to have high catalytic activity. . Therefore, although the nitrogen content is also studied, it has not reached a place having sufficiently high catalytic activity.
  • Patent Document 2 in the presence of a nitrogen atom whose electron binding energy in the 1s orbital is 398.5 ⁇ 0.5 eV and a nitrogen atom whose electron binding energy in the 1s orbital is 401 ⁇ 0.5 eV Although it mentions, since the abundance ratio is not specified, a high performance catalyst can not be obtained.
  • the present invention provides a carbon catalyst and a method for producing a carbon catalyst, which have a sufficiently high catalytic activity and realize a high-performance catalyst. Further, the present invention provides a fuel cell, an electricity storage device, and a method of using the carbon catalyst, which use the carbon catalyst.
  • the carbon catalyst of the present invention is a carbon catalyst in which nitrogen is introduced, and the introduced nitrogen is a first nitrogen atom whose electron binding energy in 1s orbital is 398.5 ⁇ 1.0 eV,
  • the ratio of the area of the peak at each energy to the second nitrogen atom whose bond energy of electrons in the 1s orbital is 401 ⁇ 1.0 eV, the value of the first nitrogen atom / the second nitrogen atom is 1.2 or less It is.
  • the first nitrogen atom may be a pyridine type
  • the second nitrogen atom may be a pyrrole type, a pyridone type, or a graphene substitution type.
  • the content of nitrogen atoms on the surface can also be configured to be 0.01 or more and 0.3 or less in atomic ratio with respect to carbon atoms on the surface. It is also possible to have a configuration in which a metal or a compound of a metal is included, or a configuration in which a transition metal or a compound of a transition metal is included.
  • One method for producing a carbon catalyst of the present invention includes the steps of preparing a nitrogen-containing carbon precursor polymer and carbonizing the carbon precursor polymer.
  • Another method for producing a carbon catalyst of the present invention comprises the steps of preparing a carbon precursor polymer, carbonizing the carbon precursor polymer, and adding nitrogen to the carbonized carbon precursor polymer.
  • a carbon precursor polymer containing a metal atom is further prepared in the step of preparing a carbon precursor polymer It is also possible. Also, after the step of preparing the carbon precursor polymer, the step of mixing the metal or metal compound with the carbon precursor polymer may be carried out to carbonize the mixture of the metal or metal compound and the carbon precursor polymer. It is. Also, after the step of preparing the carbon precursor polymer, the step of mixing the transition metal or transition metal compound with the carbon precursor polymer is performed to carbonize the mixture of the transition metal or transition metal compound and the carbon precursor polymer. It is also possible. Furthermore, it is also possible to carry out carbonization at 300 ° C. or more and 1500 ° C. or less.
  • the fuel cell of the present invention includes a solid electrolyte and an electrode oppositely disposed with the solid electrolyte interposed, and at least one of the electrodes has the above-described carbon catalyst of the present invention.
  • the electricity storage device of the present invention includes an electrode material and an electrolyte, and the electrode material includes the above-described carbon catalyst of the present invention.
  • the method of using the carbon catalyst of the present invention uses the above-described carbon catalyst of the present invention to promote a chemical reaction by catalysis of the carbon catalyst.
  • the ratio of the area of the peak at each energy of the first nitrogen atom and the second nitrogen atom whose bond energy of electrons in the 1s orbital is 401 ⁇ 1.0 eV,
  • the value of the first nitrogen atom / the second nitrogen atom is 1.2 or less, a carbon catalyst having high activity can be realized.
  • a nitrogen-containing carbon precursor polymer is prepared, and the carbon precursor polymer is carbonized, so nitrogen-introduced carbon with high activity Catalysts can be produced.
  • the process for adding nitrogen to a carbonized carbon precursor polymer is provided, it is possible to produce a carbon catalyst having high activity in which nitrogen is introduced. it can.
  • the carbon catalyst of the present invention a carbon catalyst having high activity can be realized, so a rich amount of resources can be reduced without using an expensive precious metal catalyst such as platinum having a limited amount of resources.
  • the cost carbon catalyst makes it possible to promote chemical reactions such as redox reactions.
  • the carbon catalyst of the present invention is used as a catalyst or electrode material for an electrode, so a fuel cell or electricity storage device having high performance can be realized at relatively low cost. It will be possible to
  • FIG. 1 It is a figure which shows the spectrum of the binding energy of the 1s orbital electron of the nitrogen atom introduce
  • the carbon catalyst of the present invention is a carbon catalyst in which nitrogen is introduced. Furthermore, the introduced nitrogen has a first nitrogen atom whose binding energy of electrons in the 1s orbital is 398.5 ⁇ 1.0 eV and a binding energy of electrons in the 1s orbital is 401 ⁇ 1.0 eV.
  • the ratio of the area of the peak at each energy to the nitrogen atom of, the value of the first nitrogen atom / the second nitrogen atom is 1.2 or less.
  • graphene which is an assembly of carbon atoms having a hexagonal network surface structure in which carbon is chemically bonded by a sp 2 hybrid orbital and has a two-dimensional spread. And, when a nitrogen atom is introduced into this hexagonal network surface structure, it takes a structure of pyrrole type, graphene substitution type, pyridine type, and pyridone type, thereby exhibiting catalytic activity.
  • the pyrrole type changes from a hexagonal shape of graphene to a pentagon containing nitrogen atoms.
  • the graphene substitution type one carbon atom at an adjacent hexagonal boundary of a graphene network is directly substituted by a nitrogen atom, and the nitrogen atom is bonded to three carbon atoms.
  • the pyridine type is one in which one carbon atom (mainly at the periphery of the molecule) which is not at the hexagonal boundary of the graphene network is replaced by a nitrogen atom, and the nitrogen atom is bonded to two carbon atoms, It constitutes a hexagon.
  • a nitrogen atom is bonded to two carbon atoms to form a hexagon, and an OH group or O is bonded to one carbon atom bonded to the nitrogen atom.
  • the first nitrogen atom having an electron binding energy of 398.5 ⁇ 1.0 eV in the 1s orbital includes a pyridine type.
  • a second nitrogen atom whose bond energy of 1 s orbital electrons is 401 ⁇ 1.0 eV a pyrrole type, a graphene substitution type, and a pyridone type are included.
  • the peak area ratio at each energy can be calculated.
  • the carbon catalyst exhibits high activity. More preferably, it is 1.1 or less. When it exceeds 1.2, the activity is significantly reduced.
  • FIGS. 1A and 1B show a spectrum of electron binding energy of 1s orbital of nitrogen atom obtained by measurement of XPS of a nitrogen-introduced carbon catalyst.
  • FIG. 1A shows the case of a low activity type carbon catalyst (conventional carbon catalyst introduced nitrogen atom) and
  • FIG. 1B shows the case of a high activity type carbon catalyst (carbon catalyst of the present invention) It shows.
  • the range in which the binding energy is 398.5 ⁇ 1.0 eV is defined as the first nitrogen atom
  • the range in which the binding energy is 401.0 ⁇ 1.0 eV is defined as the second nitrogen atom.
  • the first nitrogen atom is mainly indicated by thick broken lines in FIGS. 1A and 1B. Also, the second nitrogen atom is mainly shown by thick solid lines in FIGS. 1A and 1B. As another peak, there is a peak around 402.7 eV shown by a thin solid line.
  • the first nitrogen atoms are present to a certain extent, but in the case of the high activity type carbon catalyst, The number of nitrogen atoms is reduced and the ratio of first nitrogen atoms / second nitrogen atoms is reduced.
  • FIG. 2 The vertical axis of FIG. 2 indicates the current density, and the horizontal axis of FIG. 2 indicates the voltage V with respect to the standard hydrogen electrode (NHE). It can be seen from FIG. 2 that in the high activity type, the change in current density due to the change in voltage is large and the oxygen reduction activity is large as compared with the low activity type.
  • NHE standard hydrogen electrode
  • the ratio of the first nitrogen atom / the second nitrogen atom is close to 0, but in that case It is considered that high activity can be obtained.
  • the carbon catalyst of the present invention also includes the case where most of such second nitrogen atoms are present.
  • the content of surface nitrogen atoms in the carbon catalyst is more preferably 0.01 or more and 0.3 or less in atomic ratio to carbon on the surface. If the content of nitrogen atoms is 0.01 or less, the catalyst activity is low, and if it is 0.3 or more, the catalyst activity is low.
  • the carbon catalyst of the present invention may contain a metal or a compound of a metal.
  • the type of metal is not limited as long as it does not inhibit the activity of the carbon catalyst, but is more preferably a transition metal, more preferably an element belonging to Group 4 to Group 4 of the periodic table.
  • Such transition metals such as cobalt (Co), iron (Fe), manganese (Mn), nickel (Ni), copper (Cu), titanium (Ti), chromium (Cr), zinc (Zn), zirconium (Zr) , Tantalum (Ta) and the like.
  • an element other than a transition metal for example, boron B etc.
  • boron B etc. may be included.
  • the carbon catalyst of the present invention can be produced by introducing nitrogen and carbonizing a carbon precursor polymer.
  • a method for introducing nitrogen a carbon precursor polymer containing a nitrogen atom as a constituent element may be used, or a carbon precursor compound containing a nitrogen atom as a constituent element may be added to a carbon precursor compound not containing nitrogen. You may introduce a nitrogen atom after carbonization. Moreover, you may carry out combining two or more types of the method of introduce
  • the content of surface nitrogen atoms in the formed carbon catalyst is preferably 0.01 or more and 0.3 or less in atomic ratio with respect to carbon on the surface. If the content of nitrogen atoms is 0.01 or less, the catalyst activity is low, and if it is 0.3 or more, the catalyst activity is low.
  • XPS X-ray photoelectron spectroscopy observation
  • the carbon precursor polymer for producing a carbon catalyst is not particularly limited as long as it is a polymer material which can be carbonized by heat curing.
  • the carbon precursor polymer may contain a metal atom as long as it is a polymer material that can be carbonized by heat curing.
  • a nitrogen-containing ligand polymer, a metal coordination compound and the like can be mentioned.
  • a carbon precursor polymer suitable for producing the carbon catalyst of the present invention can be prepared by mixing or copolymerizing a polymer material that promotes crosslinking. .
  • the carbon precursor compound which contains a nitrogen atom as a constitutent element, and such a carbon precursor compound will not be limited if it is a compound which can be carbonized.
  • acrylonitrile, acrylamide, methacrylamide, melamine, pyridine, urea, amino acid, imidazole, pyrrole, indole, quinoline, quinoxaline, acridine, pyridazine, cinnoline, oxazole, morpholine, carbodiimide and the like can be used.
  • a metal or metal compound may be mixed with the carbon precursor polymer.
  • the metal is not limited as long as it does not inhibit the activity of the carbon catalyst, but is more preferably a transition metal, and more preferably an element belonging to the fourth period of Groups 3 to 12 of the periodic table.
  • Such transition metals such as cobalt (Co), iron (Fe), manganese (Mn), nickel (Ni), copper (Cu), titanium (Ti), chromium (Cr), zinc (Zn), zirconium (Zr) , Tantalum (Ta) and the like.
  • metal compound metal salts, hydroxides, oxides, nitrides, sulfides, carbonized products, complexes and the like can be used, and chlorides, oxides and complexes are more preferable.
  • the form of the carbon precursor polymer or the carbon precursor polymer-intermetallic compound is not particularly limited as long as it has a carbon catalyst activity.
  • a sheet, a fiber, a block, a particle and the like can be mentioned.
  • infusibilization can be performed.
  • the structure of the resin can be maintained even at a temperature above the melting point or softening point of the carbon precursor.
  • the treatment of infusibilization can be carried out by a known method.
  • the carbon precursor is carbonized by being held at 300 ° C. to 1500 ° C., preferably 400 ° C. to 1200 ° C., for 5 minutes to 180 minutes, preferably for 20 minutes to 120 minutes. At this time, carbonization may be performed under a flow of inert gas such as nitrogen. If the carbonization temperature is less than 300 ° C., carbonization of the carbon precursor polymer is insufficient, and if it exceeds 1500 ° C., the carbonization proceeds and the catalyst activity is significantly reduced. In addition, if the holding time is less than 5 minutes, the carbon precursor can not be heat treated uniformly. In addition, when the retention time exceeds 180 minutes, the catalyst activity is significantly reduced.
  • a nitrogen atom can also be introduced after carbonization.
  • a method of introducing a nitrogen atom it can be performed using an ammoxidation method, a liquid phase doping method, a gas phase doping method, or a gas phase-liquid phase doping method.
  • ammonia which is a nitrogen source, melamine, acetonitrile and the like
  • the heat treatment can introduce nitrogen atoms to the surface of the carbon catalyst.
  • the carbon catalyst When the carbon catalyst contains a metal, it can be removed by acid or electrolytic treatment as required. After carbonization, metals may not be needed. In such a case, the carbon catalyst is removed by acid or electrolytic treatment or the like as necessary. In particular, when used as a cathode catalyst for a fuel cell, it is necessary to remove the metal prior to use in order to elute the metal and to lower the oxygen reduction activity and to deteriorate the solid polymer membrane.
  • the carbon catalyst thus produced has a 0.65 Vvs. It has a catalytic activity of NHE (when current density is -10 ⁇ A / cm 2 ) or more.
  • the carbon catalyst of the present invention can be used in various applications. For example, it is possible to construct a fuel cell or a storage battery (battery, electric double layer capacitor, etc.) or to use as a catalyst for general chemical reaction.
  • the fuel cell is constituted of a solid electrolyte and two (a pair of) electrode catalysts disposed opposite to each other with the solid electrolyte interposed,
  • the carbon catalyst of the present invention is used in at least one of two (pair) electrode catalysts.
  • the power storage device is configured to include an electrode material and an electrolyte, and the carbon catalyst of the present invention is used as the electrode material.
  • FIG. 10 a schematic block diagram of an embodiment of a fuel cell using the carbon catalyst of the present invention is shown in FIG.
  • the fuel cell 10 has a pair of electrode catalyst layers 2 and 3 disposed opposite to each other so as to sandwich the solid polymer electrolyte 1, and the electrode catalyst layers 2 and 2 are provided outside the electrode catalyst layers 2 and 3 respectively. 3 have supports 4 and 5 for supporting them. It is a configuration called a so-called polymer electrolyte fuel cell (PFEC).
  • the electrode catalyst layer 2 on the left side in the drawing is an anode electrode catalyst layer (fuel electrode).
  • the electrode catalyst layer 3 on the right side in the figure is a cathode electrode catalyst layer (oxidant electrode).
  • the fuel cell 10 can be configured using the carbon catalyst of the present invention in any one or both of the pair of electrode catalyst layers 2 and 3.
  • a fluorine-based cation exchange resin membrane represented by a perfluorosulfonic acid resin membrane can be used.
  • the supports 4 and 5 support the anode electrode catalyst layer 2 and the cathode electrode catalyst layer 3 and supply and discharge reaction gases such as the fuel gas H 2 and the oxidant gas O 2 .
  • the supports 4 and 5 are usually composed of the outer separator and the inner (electrolyte side) gas diffusion layer, but depending on the nature of the carbon catalyst, the gas diffusion layer is unnecessary and the support is composed of only the separator. It will be possible to For example, by using a carbon catalyst having a large specific surface area and high gas diffusivity for the electrode catalyst layer, the catalyst layer also functions as a gas diffusion layer, so the gas diffusion layer can be omitted. Become.
  • the separator can be made of, for example, a resin in which a groove for passing a reaction gas is formed.
  • the gas diffusion layer can be made of, for example, a porous sheet (eg, carbon paper).
  • the gas diffusion layer also has a function as a current collector.
  • the fuel cell 10 of the present embodiment Since the fuel cell 10 of the present embodiment is configured as described above, it operates as described below.
  • reactive gases fuel gas H 2 and oxidant gas O 2
  • the carbon catalyst and the solid polymer provided on the both electrode catalyst layers 2 and 3 At the boundary with the electrolyte 1, a three-phase interface of a gas phase (reaction gas), a liquid phase (solid polymer electrolyte membrane), and a solid phase (catalyst possessed by both electrodes) is formed.
  • reaction gas reaction gas
  • liquid phase solid polymer electrolyte membrane
  • a solid phase catalyst possessed by both electrodes
  • the fuel cell 10 of the present embodiment can be manufactured in the same manner as a conventionally known polymer electrolyte fuel cell (PFEC).
  • PFEC polymer electrolyte fuel cell
  • the carbon catalyst of the present invention is formed on both main surfaces of the solid polymer electrolyte 1 as the anode electrode catalyst layer 2 and the cathode electrode catalyst layer 3 and brought into close contact with both main surfaces of the solid polymer electrolyte 1 It is possible to integrate as MEA (Membrane Electrode Assembly).
  • the carbon catalyst of the present invention having high activity is used in at least one of the anode electrode catalyst layer 2 and the cathode electrode catalyst layer 3, a fuel having high performance is provided. It is possible to realize the battery 10 at a cost sufficiently lower than the case of using a platinum catalyst.
  • the fuel cell 10 of the above-described embodiment is the case where the fuel cell of the present invention is applied to a polymer electrolyte fuel cell (PFEC).
  • PFEC polymer electrolyte fuel cell
  • the fuel cell of the present invention can be applied not only to the polymer electrolyte fuel cell (PFEC) but also to other types of fuel cells, as long as the fuel cell can use a carbon catalyst. .
  • FIG. 4 shows a schematic configuration diagram of an electric double layer capacitor as an embodiment of a power storage device using the carbon catalyst of the present invention.
  • the electric double layer capacitor 20 is configured such that the first electrode 21 and the second electrode 22 which are polarizable electrodes face each other through the separator 23 and are accommodated in the exterior cover 24a and the exterior case 24b.
  • the first electrode 21 and the second electrode 22 are connected to the exterior cover 24 a and the exterior case 24 b via the current collectors 25 respectively.
  • the separator 23 is impregnated with an electrolytic solution.
  • the inside is sealed by caulking the outer cover 24 a and the outer case 24 b in a state of being electrically insulated via the gasket 26.
  • the carbon catalyst of the present invention can be applied to the first electrode 21 and / or the second electrode 22.
  • an electric double layer capacitor in which a carbon catalyst is applied to an electrode material can be constituted.
  • the carbon catalyst of the present invention is electrochemically inactive with respect to the electrolytic solution and has appropriate electrical conductivity. For this reason, the electrostatic capacitance per unit volume of an electrode can be improved by applying as an electrode of a capacitor.
  • the carbon catalyst of the present invention is used as an electrode material composed of a carbon material, for example, as a negative electrode material of a lithium ion secondary battery. be able to.
  • the carbon catalyst of the present invention is used as a substitute for an environmental catalyst containing a noble metal such as platinum.
  • a catalyst material composed of a noble metal based material such as platinum alone or in combination as a catalyst for exhaust gas purification for removing pollutants (mainly gaseous substances) contained in polluted air by decomposition treatment Environmental catalysts are used.
  • the carbon catalyst of the present invention can be used as a substitute for an exhaust gas purification catalyst containing a noble metal such as platinum.
  • the large specific surface area makes it possible to increase the processing area for decomposing the substance to be treated per unit volume, and to constitute an environmental catalyst excellent in the decomposition function per unit volume.
  • an environmental catalyst having an excellent catalytic function such as decomposition function by supporting the carbon catalyst of the present invention as a carrier and supporting a noble metal based material such as platinum used in conventional environmental catalysts singly or in combination. can be configured.
  • the environmental catalyst provided with the carbon catalyst of this invention can also be used not only as the above-mentioned exhaust gas purification catalyst but also as a purification catalyst for water treatment.
  • the carbon catalyst of the present invention can also be used as a catalyst for a wide range of general chemical reactions. In particular, it can also be used as a substitute for general process catalysts for the chemical industry, including noble metals such as platinum.
  • Example 1 [Preparation of nitrogen compound and cobalt compound-added polyacrylonitrile-polymethacrylic acid copolymer (PAN-co-PMA)] 1.5 g of polyacrylonitrile-polymethacrylic acid copolymer (hereinafter referred to as PAN-co-PMA) was dissolved in 20 g of dimethylformamide. Thereafter, 1.5 g of cobalt chloride hexahydrate and 1.5 g of 2-methylimidazole were added, and the mixture was stirred for 2 hours to obtain a blue solution. Next, this blue solution was vacuum dried at 60 ° C. to obtain PAN-co-PMA with nitrogen compound and cobalt compound added.
  • PAN-co-PMA polyacrylonitrile-polymethacrylic acid copolymer
  • Carbonization treatment Next, carbonization treatment was performed. First, the infusibilized nitrogen compound and cobalt compound added PAN-co-PMA are put in a quartz tube, nitrogen purged in an ellipsoidal reflection infrared gold image furnace for 20 minutes, and taken over 1.5 hours from room temperature to 900 ° C. The temperature rose to the end. Then, it hold
  • Example 2 1.5 g of PAN-co-PMA was dissolved in 20 g of dimethylformamide. Thereafter, 0.75 g of cobalt chloride hexahydrate and 0.75 g of 2-methylimidazole were added, and the mixture was stirred for 2 hours to obtain a blue solution. Next, this blue solution was vacuum dried at 60 ° C. to obtain PAN-co-PMA with nitrogen compound and cobalt compound added. With respect to the obtained nitrogen compound and cobalt compound-added PAN-co-PMA, the steps after the infusibilization treatment were performed in the same manner as in Example 1 to obtain a carbon catalyst, and the sample of Example 2 was obtained.
  • Example 3 1.5 g of PAN-co-PMA was dissolved in 20 g of dimethylformamide. Thereafter, 1.5 g of cobalt chloride hexahydrate and 0.75 g of 2-methylimidazole were added, and the mixture was stirred for 2 hours to obtain a blue solution. Next, this blue solution was vacuum dried at 60 ° C. to obtain PAN-co-PMA with nitrogen compound and cobalt compound added. With respect to the obtained nitrogen compound and cobalt compound-added PAN-co-PMA, the steps after the infusibilization treatment were performed in the same manner as in Example 1 to obtain a carbon catalyst, which was used as a sample of Example 3.
  • Example 4 [Preparation of cobalt compound-added polybenzimidazole] 1.5 g of polybenzimidazole was dissolved in 20 g of dimethylacetamide. Thereafter, 1.5 g of cobalt chloride hexahydrate was added, and the mixture was stirred for 2 hours to obtain a blue solution. Next, this blue solution was vacuum dried at 60 ° C. to obtain a cobalt compound-added polybenzimidazole.
  • Carbonization treatment Next, carbonization treatment was performed. First, the infusibilized cobalt compound-added polybenzimidazole was placed in a quartz tube, purged with nitrogen for 20 minutes in an ellipsoidal reflection infrared gold image furnace, and heated from room temperature to 900 ° C. over 1.5 hours. Then, it hold
  • the mixture is transferred to a petri dish and kept in a nitrogen gas atmosphere at a pressure of 0.1 MPa and a temperature of 80 ° C. for 24 hours for polymerization reaction to synthesize polyfurfuryl alcohol (carbon precursor polymer) containing cobalt phthalocyanine complex and melamine. did.
  • the carbon precursor treatment was carried out on the obtained carbon precursor polymer in the same manner as in Example 1 to obtain a carbon catalyst, which was used as a sample of Comparative Example 1.
  • Comparative example 2 Using the carbon catalyst of Comparative Example 1, nitrogen was further introduced by an ammoxidation method.
  • the carbon catalyst of Comparative Example 1 is put in a quartz tube, purged with nitrogen gas for 20 minutes in an ellipsoidal reflection infrared gold image furnace, and heated from room temperature to 600 ° C. over 20 minutes.
  • the carbon catalyst thus obtained was used as a sample of Comparative Example 2.
  • Comparative example 3 This is a sample of Comparative Example 3 using Ketchen Black EC600JD (manufactured by Lion Corporation), which is a highly conductive carbon material.
  • Comparative example 5 This was used as a sample of Comparative Example 5 using Vulcan XC-72R (manufactured by Electrochem), which is a carbon material with high conductivity.
  • XPS X-ray photoelectron spectroscopy
  • the surface element concentration of nitrogen, carbon and oxygen is determined from the area of each peak of the spectrum obtained by XPS measurement and the detection sensitivity coefficient, whereby the ratio of nitrogen atoms to carbon atoms (nitrogen / carbon) of the surface is determined.
  • the ratio of nitrogen atoms to carbon atoms (nitrogen / carbon) of the surface is determined.
  • Electrode activity test for oxygen reduction The electrode activity for oxygen reduction was measured using a tripolar rotating electrode cell. Furthermore, a voltammogram (the relationship between voltage and current density as shown in FIG. 2) was created from the electrode activity obtained by measurement. Then, from the voltammogram, a voltage with a current density of ⁇ 10 ⁇ 2 mA / cm 2 is obtained, and this voltage is set to Eo 2 and a voltage of 0.7 Vvs. The reduction current density at the time of NHE was determined, and this reduction current density was taken as the oxygen reduction activity value.
  • Table 1 shows Eo2, the oxygen reduction activity value, the ratio of nitrogen atoms to carbon atoms on the surface, and the ratio of the first nitrogen atom to the second nitrogen atom as the measurement results of each sample.
  • the high activity type carbon catalyst has a large Eo 2 and a large oxygen reduction activity value (absolute value of current density at a certain voltage) as compared with the low activity type carbon catalyst.
  • Example 1 to Example 4 have higher Eo 2 and oxygen reduction activity values and higher activity than the samples of the respective comparative examples.
  • the sample of Example 1 not only has a large ratio of nitrogen atoms to carbon atoms on the surface but also has a ratio of the first nitrogen atom to the second nitrogen atom of 0.65, and each comparison It is sufficiently smaller than the sample of the example.
  • the samples of Example 2, Example 3 and Example 4 not only have a large ratio of nitrogen atoms to carbon atoms on the surface, but also the ratio of the first nitrogen atom to the second nitrogen atom is 1.11. , 0.82 and 1.16, which are smaller than the samples of the respective comparative examples.
  • Examples 1 to 3 use only the starting material nitrogen as a catalyst, and Example 4 introduces nitrogen further after carbonization, but both have high nitrogen content and activity.

Abstract

 充分に高い触媒活性を有し、性能の高い触媒を実現する炭素触媒を提供する。  窒素が導入されている炭素触媒であって、導入されている窒素は、1s軌道の電子の結合エネルギーが398.5±1.0eVである第1の窒素原子と、1s軌道の電子の結合エネルギーが401±1.0eVである第2の窒素原子との、各エネルギーにおけるピークの面積の比、第1の窒素原子/第2の窒素原子の値が1.2以下である炭素触媒を構成する。

Description

炭素触媒及び炭素触媒の製造方法、燃料電池、蓄電装置、炭素触媒の使用方法
 本発明は、炭素触媒及び炭素触媒の製造方法に係わる。
 また、本発明は、炭素触媒を使用した燃料電池、蓄電装置、並びに、炭素触媒の使用方法に係わる。
 白金等の貴金属系触媒は、現在、産業活動に大量に使用されている。
 特に、燃料電池においては、多量の白金触媒を必要とするが、その白金触媒が高コストとなり、その普及の足かせとなっている。
 そのため、白金を使用せずに触媒を形成する技術の開発が進められている。
 燃料電池に使用する触媒のうち、酸素還元活性に関しては、古くより窒素を含む炭素素材が研究されている(例えば、特許文献1~特許文献4を参照)。
特開昭47-21388号公報 特開2004-330181号公報 特開2006-331846号公報 特開2007-207662号公報
 前記特許文献1~特許文献4においては、窒素を含む炭素素材が酸素還元活性を有することが開示されているが、その素材の実用化のためには、高い触媒活性を有することが必要となる。
 そのため、窒素含有量についても検討されているが、充分に高い触媒活性を有する所までには至っていない。
 また、前記特許文献2においては、1s軌道の電子の結合エネルギーが398.5±0.5eVである窒素原子と、1s軌道の電子の結合エネルギーが401±0.5eVである窒素原子の存在に言及しているものの、その存在比を特定していないため、性能の高い触媒を得ることができない。
 従って、炭素素材を用いて、高い触媒性能を実現する構成が要望されている。
 上述した問題の解決のために、本発明においては、充分に高い触媒活性を有し、性能の高い触媒を実現する、炭素触媒及び炭素触媒の製造方法を提供するものである。
 また、この炭素触媒を使用した燃料電池、蓄電装置、並びに、炭素触媒の使用方法を提供するものである。
 本発明の炭素触媒は、窒素が導入されている炭素触媒であって、導入されている窒素は、1s軌道の電子の結合エネルギーが398.5±1.0eVである第1の窒素原子と、1s軌道の電子の結合エネルギーが401±1.0eVである第2の窒素原子との、各エネルギーにおけるピークの面積の比、第1の窒素原子/第2の窒素原子の値が1.2以下であるものである。
 上述の本発明の炭素触媒において、第1の窒素原子がピリジン型であり、第2の窒素原子がピロール型、ピリドン型、又は、グラフェン置換型である構成とすることも可能である。
 また、さらに、表面の窒素原子の含有量が、表面の炭素原子に対して、原子比で0.01以上0.3以下である構成とすることも可能である。
 また、金属又は金属の化合物が含まれている構成とすることや、遷移金属又は遷移金属の化合物が含まれている構成とすることも可能である。
 本発明の一の炭素触媒の製造方法は、窒素を含有する炭素前駆体高分子を調製する工程と、炭素前駆体高分子を炭素化する工程とを有する。
 本発明の他の炭素触媒の製造方法は、炭素前駆体高分子を調製する工程と、炭素前駆体高分子を炭素化する工程と、炭素化した炭素前駆体高分子に窒素を付加する工程とを有する。
 なお、本発明の一の炭素触媒の製造方法と、本発明の他の炭素触媒の製造方法とを組み合わせて、窒素を含有する炭素前駆体高分子を調製すると共に、炭素化後に窒素を付加する工程を行うことも可能である。
 上述した、本発明の一の炭素触媒の製造方法、及び、本発明の他の炭素触媒の製造方法において、さらに、炭素前駆体高分子を調製する工程で、金属原子を含む炭素前駆体高分子を調製することも可能である。
 また、炭素前駆体高分子を調製する工程の後に、炭素前駆体高分子に金属又は金属の化合物を混合する工程を行い、金属又は金属の化合物と炭素前駆体高分子との混合物を炭素化することも可能である。
 また、炭素前駆体高分子を調製する工程の後に、炭素前駆体高分子に遷移金属又は遷移金属の化合物を混合する工程を行い、遷移金属又は遷移金属の化合物と炭素前駆体高分子との混合物を炭素化することも可能である。
 さらにまた、炭素化を300℃以上1500℃以下で行うことも可能である。
 本発明の燃料電池は、固体電解質と、この固体電解質を挟んで対向配置された電極とを含み、この電極の少なくとも一方に、上述した本発明の炭素触媒を有するものである。
 本発明の蓄電装置は、電極材と、電解質とを含み、電極材が、上述した本発明の炭素触媒を備えているものである。
 本発明の炭素触媒の使用方法は、上述した本発明の炭素触媒を使用して、炭素触媒の触媒作用によって化学反応を促進させる。
 上述の本発明の炭素触媒によれば、第1の窒素原子と、1s軌道の電子の結合エネルギーが401±1.0eVである第2の窒素原子との、各エネルギーにおけるピークの面積の比、第1の窒素原子/第2の窒素原子の値が1.2以下であることにより、高い活性を有する炭素触媒を実現することができる。
 上述の本発明の一の炭素触媒の製造方法によれば、窒素を含有する炭素前駆体高分子を調製し、この炭素前駆体高分子を炭素化するので、窒素が導入された、高い活性を有する炭素触媒を製造することができる。
 上述の本発明の他の炭素触媒の製造方法によれば、炭素化した炭素前駆体高分子に窒素を付加する工程を有するので、窒素が導入された、高い活性を有する炭素触媒を製造することができる。
 そして、本発明の炭素触媒によれば、高い活性を有する炭素触媒を実現することができるため、資源量に限界のある白金等の高価な貴金属系触媒を用いることなく、資源量の豊富な低コストの炭素触媒によって、酸化還元反応等の化学反応を促進することが可能になる。
 また、劣質石化資源を利用・活用することが可能になる。例えば、産出した石炭のうち、価値の低いものでも、本発明を適用して窒素を導入することにより、炭素触媒として活用することが可能になる。
 本発明の燃料電池又は本発明の蓄電装置によれば、電極用の触媒や電極材料として本発明の炭素触媒を使用するので、高性能を有する燃料電池や蓄電装置を、比較的低いコストで実現することが可能になる。
A、B 炭素触媒に導入された窒素原子の1s軌道の電子の結合エネルギーのスペクトルを示す図である。 図1にスペクトルを示した各炭素触媒の酸素還元活性を比較して示す図である。 本発明の燃料電池の一実施の形態の概略構成図である。 本発明の蓄電装置の一実施の形態の電気二重層キャパシタの概略構成図である。
 本発明の炭素触媒は、窒素が導入されている炭素触媒である。
 さらに、導入されている窒素は、1s軌道の電子の結合エネルギーが398.5±1.0eVである第1の窒素原子と、1s軌道の電子の結合エネルギーが401±1.0eVである第2の窒素原子との、各エネルギーにおけるピークの面積の比、第1の窒素原子/第2の窒素原子の値が1.2以下であるものである。
 本発明の炭素触媒は、炭素がsp混成軌道により化学結合し、二次元に広がった六角網面構造を持つ炭素原子の集合体であるグラフェンが存在する。
 そして、この六角網面構造に窒素原子が導入されると、ピロール型、グラフェン置換型、ピリジン型、ピリドン型の構造をとり、これによって触媒活性を示す、とされている。
 ピロール型は、グラフェンの六角形から、窒素原子を含む五角形に変化したものである。
 グラフェン置換型は、グラフェンの網目の隣接する六角形の境界部にある1つの炭素原子がそのまま窒素原子に置換されたものであり、窒素原子が3つの炭素原子と結合している。
 ピリジン型は、グラフェンの網目の六角形の境界部でない1つの炭素原子(主として分子の外周部にある)が窒素原子に置換されたものであり、窒素原子が2つの炭素原子と結合して、六角形を構成している。
 ピリドン型は、窒素原子が2つの炭素原子と結合して、六角形を構成すると共に、窒素原子と結合している1つの炭素原子に、OH基又はOが結合している。
 1s軌道の電子の結合エネルギーが398.5±1.0eVである第1の窒素原子としては、ピリジン型が含まれる。
 また、1s軌道の電子の結合エネルギーが401±1.0eVである第2の窒素原子としては、ピロール型、グラフェン置換型、ピリドン型が含まれる。
 各結合エネルギーの量比をXPS(X線光電子分光観察)によって測定することにより、各エネルギーにおけるピークの面積比を計算することができる。
 そして、第1の窒素原子/第2の窒素原子の比の値が1.2以下のときに、炭素触媒は高い活性を示す。より好ましくは、1.1以下である。1.2超のときは、活性が著しく低くなる。
 このことについて、図1~図2を参照して、以下に補足説明する。
 図1A及び図1Bは、窒素を導入した炭素触媒の、XPSの測定により得られる、窒素原子の1s軌道の電子の結合エネルギーのスペクトルを示すものである。
 図1Aは、低活性型炭素触媒の場合(従来提案されている、窒素原子を導入した炭素触媒)を示しており、図1Bは、高活性型炭素触媒の場合(本発明の炭素触媒)を示している。
 本発明では、結合エネルギーが398.5±1.0eVである範囲を第1の窒素原子とし、結合エネルギーが401.0±1.0eVである範囲を第2の窒素原子と定義している。
 第1の窒素原子は、主に図1A及び図1Bに太い破線で示す。
 また、第2の窒素原子は、主に図1A及び図1Bに太い実線で示す。
 なお、その他のピークとして、細い実線で示す402.7eV付近のピークがある。
 図1Aと図1Bとを比較してわかるように、低活性型炭素触媒の場合には、第1の窒素原子がある程度多く存在しているが、高活性型炭素触媒の場合には、第1の窒素原子が少なくなり、第1の窒素原子/第2の窒素原子の比が小さくなっている。
 次に、これら、図1A及び図1Bに示す、各炭素触媒について、それぞれ酸素還元活性を測定した結果を、図2に示す。図2の縦軸は電流密度を示し、図2の横軸は標準水素電極(NHE)に対する電圧Vを示している。
 図2より、高活性型は、低活性型と比較して、電圧の変化による電流密度の変化が大きく、酸素還元活性が大きいことがわかる。
 なお、第1の窒素原子がほとんど存在せず、第2の窒素原子がほとんどである場合には、第1の窒素原子/第2の窒素原子の比の値が0に近くなるが、その場合も高い活性が得られると考えられる。
 本発明の炭素触媒は、そのような第2の窒素原子がほとんどである場合も含むものである。
 さらに、本発明の炭素触媒において、炭素触媒中の表面窒素原子の含有量は表面の炭素に対して原子比で0.01以上0.3以下であることがより好ましい。窒素原子の含有量が0.01以下だと触媒活性が低く、また、0.3以上でも触媒活性が低い。
 本発明の炭素触媒には、金属又は金属の化合物が含まれていても良い。金属は炭素触媒の活性を阻害しない限り種類が限定されるものではないが、より好ましくは遷移金属であり、更に好ましくは、周期律表の3族から12族の第4周期に属する元素が挙げられる。このような遷移金属としてコバルト(Co)、鉄(Fe)、マンガン(Mn)、ニッケル(Ni)、銅(Cu)、チタン(Ti)、クロム(Cr)、亜鉛(Zn)、ジルコニウム(Zr)、タンタル(Ta)等が挙げられる。
 なお、本発明においては、前記範囲内であれば、遷移金属以外の元素(例えば、ホウ素B等)が含まれていても良い。
 本発明の炭素触媒は、窒素を導入すること、並びに、炭素前駆体高分子を炭素化することにより、製造することができる。
 窒素を導入する方法としては、窒素原子を構成元素として含む炭素前駆体高分子を用いても良いし、窒素原子を構成元素として含む炭素前駆体化合物を窒素を含まない炭素前駆体化合物に加えても良いし、炭素化後に窒素原子を導入しても良い。
 また、これらの窒素を導入する方法の複数種類を組み合わせて行っても良い。
 上述のようにして炭素触媒を製造することにより、高い濃度で窒素原子を含有する炭素触媒が得られる。
 形成された炭素触媒中の表面窒素原子の含有量は、前述したように、表面の炭素に対して原子比で0.01以上0.3以下が好ましい。窒素原子の含有量が0.01以下だと触媒活性が低く、また、0.3以上でも触媒活性が低い。
 ここで、表面の原子含有率を測定する方法として、XPS(X線光電子分光観察)等が挙げられる。
 次に、本発明の炭素触媒の製造方法について、以下に詳細に説明する。
 まず、炭素触媒を製造するための炭素前駆体高分子については、熱硬化によって炭素化が可能な高分子材料であれば、特に限定されるものではない。
 例えば、ポリアクリロニトリル、キレート樹脂、セルロース、カルボキシメチルセルロース、ポリビニルアルコール、ポリアクリル酸、ポリフルフリルアルコール、フラン樹脂、フェノール樹脂、フェノールホルムアルデヒド樹脂、ポリイミダゾール、メラミン樹脂、ピッチ、褐炭、ポリ塩化ビニリデン、ポリカルボジイミド、リグニン、石炭、バイオマス、タンパク質、フミン酸、ポリイミド、ポリアニリン、ポリピロール、ポリベンゾイミダゾール、ポリアミド、ポリアミドイミド等を用いることができる。
 なお、炭素前駆体高分子には、熱硬化によって炭素化可能な高分子材料であれば、金属原子を含んでいても良い。
 例えば、含窒素配位子重合物や、金属配位化合物等が挙げられる。
 また、炭素化に不適な高分子材料であっても、架橋を促す高分子材料を混合又は共重合させることにより、本発明の炭素触媒の製造に適した炭素前駆体高分子を調製することができる。
 また、窒素原子を構成元素として含む炭素前駆体化合物を加えても良く、このような炭素前駆体化合物は、炭素化可能な化合物であれば、限定されるものではない。
 例えば、アクリロニトリル、アクリルアミド、メタクリルアミド、メラミン、ピリジン、尿素、アミノ酸、イミダゾール、ピロール、インドール、キノリン、キノキサリン、アクリジン、ピリダジン、シンノリン、オキサゾール、モルホリン、カルボジイミド等を用いることができる。
 さらにまた、炭素前駆体高分子に金属又は金属の化合物を混合してもよい。金属は、炭素触媒の活性を阻害しない限り限定するものではないが、より好ましくは遷移金属であり、更に好ましくは周期律表の3族~12族の第4周期に属する元素が挙げられる。このような遷移金属としてコバルト(Co)、鉄(Fe)、マンガン(Mn)、ニッケル(Ni)、銅(Cu)、チタン(Ti)、クロム(Cr)、亜鉛(Zn)、ジルコニウム(Zr)、タンタル(Ta)等が挙げられる。
 また、金属の化合物としては、金属塩、水酸化物、酸化物、窒化物、硫化物、炭素化物、錯体等を用いることができ、より好ましくは塩化物、酸化物、錯体である。
 炭素前駆体高分子、又は炭素前駆体高分子-金属間化合物の形状は、炭素触媒の活性を有する限り特に限定はされない。
 例えば、シート状、繊維状、ブロック状、粒子状等が挙げられる。
 次に、炭素前駆体として、熱硬化性に乏しい高分子材料を用いる場合、不融化を行うことができる。
 この不融化の操作により、炭素前駆体の融点又は軟化点以上の温度であっても、樹脂の構造を維持することができる。不融化の処理は、公知の方法により行うことができる。
 炭素前駆体は、300℃以上1500℃以下、好ましくは400℃以上1200℃以下において、5分から180分、好ましくは20分から120分間保持して炭素化する。
 このとき、窒素等の不活性ガス流通下で炭素化しても良い。炭素化温度が300℃未満であると炭素前駆体高分子の炭素化が不充分であり、また、1500℃を超えると炭素化が進み触媒活性が著しく低下する。
 また、保持時間が5分未満では、炭素前駆体を均一に熱処理することができない。また、保持時間が180分を超えると、触媒活性が著しく低下する。
 また、炭素化後に窒素原子を導入することもできる。
 このとき、窒素原子を導入する方法としては、アンモオキシデーション法、液相ドープ法、気相ドープ法、又は、気相-液相ドープ法を用いて行うことができる。例えば、炭素触媒に窒素源であるアンモニア、メラミン、アセトニトリル等を混合し、窒素、アルゴン、ヘリウム等の不活性ガス雰囲気下で550℃以上1200℃以下、5分以上180分以下保持することにより、熱処理して、炭素触媒の表面に窒素原子を導入することができる。
 炭素触媒に金属が含まれている場合、必要に応じて酸又は電解処理等によって除去することもできる。
 炭素化後、金属は不要となる場合がある。そのような場合、必要に応じて炭素触媒を酸又は電解処理等によって除去する。特に、燃料電池用カソード触媒として用いる場合、金属が溶出し、酸素還元活性の低下と固体高分子膜を劣化させるため、使用前に除去する必要がある。
 このようにして作られた炭素触媒は、0.65Vvs.NHE(電流密度-10μA/cmのとき)以上の触媒活性を有する。
 本発明の炭素触媒は、様々な用途に使用することが可能である。
 例えば、燃料電池や蓄電装置(電池、電気二重層キャパシタ等)を構成したり、化学反応一般用の触媒として使用したりすることが可能である。
 本発明の炭素触媒を使用して、燃料電池を構成する場合には、固体電解質と、その固体電解質を挟んで対向配置された2つ(一対)の電極触媒とから燃料電池を構成して、2つ(一対)の電極触媒のうち少なくとも一方に本発明の炭素触媒を使用する。
 本発明の炭素触媒を使用して、蓄電装置を構成する場合には、電極材と電解質とを含んで蓄電装置を構成して、電極材に本発明の炭素触媒を使用する。
 ここで、本発明の炭素触媒を使用した燃料電池の一実施の形態の概略構成図を、図3に示す。
 この燃料電池10は、固体高分子電解質1を挟むように、対向配置された一対の電極触媒層2,3を有し、これら電極触媒層2,3のさらに外側に、それぞれ電極触媒層2,3を支持するための支持体4,5を有している。所謂、固体高分子形燃料電池(PFEC)と呼ばれている構成である。
 図中左側の電極触媒層2は、アノード電極触媒層(燃料極)である。
 図中右側の電極触媒層3は、カソード電極触媒層(酸化剤極)である。
 これら一対の電極触媒層2,3のうち、いずれか一方又は両方に、本発明の炭素触媒を使用して、燃料電池10を構成することができる。
 固体高分子電解質1としては、パーフルオロスルホン酸樹脂膜を代表とするフッ素系陽イオン交換樹脂膜を用いることができる。
 支持体4,5は、アノード電極触媒層2及びカソード電極触媒層3を支持すると共に、燃料ガスHや酸化剤ガスO等の反応ガスの供給・排出を行うものである。
 なお、支持体4,5は、通常、外側のセパレータ及び内側(電解質側)のガス拡散層により構成されるが、炭素触媒の性状によっては、ガス拡散層を不要としてセパレータのみにより支持体を構成することが可能になる。例えば、比表面積が大きく、さらに、気体の拡散性が高い炭素触媒を電極触媒層に使用することにより、触媒層がガス拡散層の機能をも兼ねるため、ガス拡散層を省略することが可能になる。
 セパレータは、例えば、反応ガスを通すための溝を形成した樹脂により、構成することができる。
 ガス拡散層は、例えば、多孔質のシート(例えば、カーボンペーパー)により、構成することができる。このガス拡散層は、集電体としての機能も有している。
 本実施の形態の燃料電池10は、上述のように構成されているので、以下に説明するように動作する。
 アノード電極触媒層2及びカソード電極触媒層3にそれぞれ反応ガス(燃料ガスH、酸化剤ガスO)が供給されると、両電極触媒層2,3に備えられた炭素触媒と固体高分子電解質1との境界において、気相(反応ガス)、液相(固体高分子電解質膜)、固相(両電極が持つ触媒)の三相界面が形成される。
 このとき、電気化学反応を生じさせることによって、直流電力が発生する。
 上記電気化学反応において、
 アノード側:H→2H++2e
 カソード側:O+4H++4e→2H2
の反応が起こり、アノード側で生成されたH+イオンは固体高分子電解質1中をカソード側に向かって移動し、e(電子)は外部の負荷を通ってカソード側に移動する。
 一方、カソード側では酸化剤ガス中に含まれる酸素と、アノード側から移動してきたH+イオン及びeとが反応して水が生成される。
 この結果、燃料電池10は、水素と酸素とから直流電力を発生し、水を生成することになる。
 本実施の形態の燃料電池10は、従来公知の固体高分子形燃料電池(PFEC)と同様にして、製造することができる。
 例えば、本発明の炭素触媒を、アノード電極触媒層2及びカソード電極触媒層3として固体高分子電解質1の両主面に形成して、固体高分子電解質1の両主面にホットプレスにより密着させることにより、MEA(Membrane Electrode Assembly)として一体化させることが可能である。
 上述の実施の形態の燃料電池10の構成によれば、アノード電極触媒層2及びカソード電極触媒層3の少なくとも一方に、高い活性を有する本発明の炭素触媒を使用するので、高い性能を有する燃料電池10を、白金触媒を使用した場合よりも充分に安いコストで実現することが可能になる。
 上述の実施の形態の燃料電池10は、本発明の燃料電池を固体高分子形燃料電池(PFEC)に適用した場合であった。
 本発明の燃料電池は、炭素触媒を使用することが可能な燃料電池であれば、固体高分子形燃料電池(PFEC)に限らず、その他の種類の燃料電池にも適用することが可能である。
 次に、本発明の炭素触媒を使用した蓄電装置の一実施の形態として、電気二重層キャパシタの概略構成図を、図4に示す。
 この電気二重層キャパシタ20は、セパレータ23を介して、分極性電極である第1の電極21及び第2の電極22が対向し、外装蓋24aと外装ケース24bの中に収容されて成る。
 第1の電極21及び第2の電極22は、それぞれ集電体25を介して、外装蓋24aと外装ケース24bに接続されている。
 また、セパレータ23には、電解液が含浸されている。
 そして、ガスケット26を介して電気的に絶縁させた状態で、外装蓋24aと外装ケース24bとがかしめられることによって、内部が密封されている。
 本実施の形態の電気二重層キャパシタ20において、本発明の炭素触媒を、第1の電極21及び/又は第2の電極22に適用することができる。そして、電極材に炭素触媒が適用された電気二重層キャパシタを構成することができる。
 本発明の炭素触媒は、電解液に対して電気化学的に不活性であり、適度な電気導電性を有する。
 このため、キャパシタの電極として適用することにより、電極の単位体積当たりの静電容量を向上させることができる。
 また、上述の実施の形態の電気二重層キャパシタ20と同様に、例えば、リチウムイオン二次電池の負極材等のように、炭素材料から構成される電極材として、本発明の炭素触媒を使用することができる。
 次に、本発明の炭素触媒を、白金等の貴金属を含む環境触媒の代替品として使用する場合について、説明する。
 汚染空気に含まれる汚染物質を(主にガス状物質)等を分解処理により除去するための排ガス浄化用触媒として、白金等の貴金属系の材料が単独又は複合化物とされて構成された触媒材料による環境触媒が用いられている。
 これらの白金等の貴金属を含む排ガス浄化用触媒の代替品として、本発明の炭素触媒を使用することができる。
 これにより、白金等の高価な貴金属類を使用する必要がないため、低コストの環境触媒を提供することができる。また、比表面積が大きいことにより、単位体積あたりの被処理物質を分解する処理面積を大きくすることができ、単位体積当たりの分解機能が優れた環境触媒を構成できる。
 なお、本発明の炭素触媒を担体として、従来の環境触媒に使用されている白金等の貴金属系の材料が単独又は複合化物を担持させることにより、より分解機能等の触媒作用に優れた環境触媒を構成することができる。
 なお、本発明の炭素触媒を備える環境触媒は、上述の排ガス浄化用触媒だけでなく、水処理用の浄化触媒として用いることもできる。
 本発明の炭素触媒は、広く一般の化学反応用の触媒としても使用することができる。
 特に、白金等の貴金属を含む、化学工業用の一般的なプロセス触媒の代替品としても使用することができる。
 本発明は、上述の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲でその他様々な構成が取り得る。
<実施例>
 窒素が導入された炭素触媒を、実際に作製して、その特性を調べた。
(実施例1)
〔窒素化合物及びコバルト化合物添加ポリアクリロニトリル-ポリメタクリル酸共重合体(PAN-co-PMA)の調製〕
 ポリアクリロニトリル-ポリメタクリル酸共重合体(以下、PAN-co-PMAとする)1.5gを、ジメチルホルムアミド20gに溶解させた。その後、塩化コバルト六水和物1.5gと、2-メチルイミダゾール1.5gとを加え、2時間攪拌して青色溶液を得た。
 次に、この青色溶液を60℃で真空乾燥して、窒素化合物及びコバルト化合物添加PAN-co-PMAを得た。
〔不融化処理〕
 次に、不融化処理を行った。
 まず、得られた窒素化合物及びコバルト化合物添加PAN-co-PMAを、強制循環式乾燥機内にセットした。
 そして、空気雰囲気下で、30分間で室温から150℃まで昇温し、続いて2時間かけて150℃から220℃まで昇温した。その後、220℃でそのまま3時間保持した。
 このようにして、不融化処理を行った。
〔炭素化処理〕
 次に、炭素化処理を行った。
 まず、不融化処理した窒素化合物及びコバルト化合物添加PAN-co-PMAを石英管に入れ、楕円面反射型赤外線ゴールドイメージ炉にて、20分間窒素パージし、1.5時間かけて室温から900℃まで昇温した。
 その後、900℃で1時間保持した。
 このようにして、窒素化合物及びコバルト化合物添加PAN-co-PMAの炭素化処理を行った。
〔粉砕処理〕
 炭素化処理を行った後に、粉砕処理を行った。
 まず、炭素化処理を行った窒素化合物及びコバルト化合物添加PAN-co-PMAを、遊星ボールミル(フリッチュ製;P-7)内に1.5mmΦのジルコニアボールと共にセットした。
 そして、回転速度800rpmで、5分間粉砕処理を行った。
 その後、遊星ボールミルから取り出して、目開き105μmの篩にかけた。この篩を通過したものを、実施例1の試料とした。
(実施例2)
 PAN-co-PMA1.5gを、ジメチルホルムアミド20gに溶解させた。その後、塩化コバルト六水和物0.75gと、2-メチルイミダゾール0.75gとを加え、2時間攪拌して青色溶液を得た。
 次に、この青色溶液を60℃で真空乾燥して、窒素化合物及びコバルト化合物添加PAN-co-PMAを得た。
 得られた窒素化合物及びコバルト化合物添加PAN-co-PMAに対して、不融化処理以降の工程を実施例1と同様に行い、炭素触媒を得て、実施例2の試料とした。
(実施例3)
 PAN-co-PMA1.5gを、ジメチルホルムアミド20gに溶解させた。その後、塩化コバルト六水和物1.5gと、2-メチルイミダゾール0.75gとを加え、2時間攪拌して青色溶液を得た。
 次に、この青色溶液を60℃で真空乾燥して、窒素化合物及びコバルト化合物添加PAN-co-PMAを得た。
 得られた窒素化合物及びコバルト化合物添加PAN-co-PMAに対して、不融化処理以降の工程を実施例1と同様に行い、炭素触媒を得て、実施例3の試料とした。
(実施例4)
〔コバルト化合物添加ポリベンゾイミダゾールの調製〕
 ポリベンゾイミダゾール1.5gを、ジメチルアセトアミド20gに溶解させた。その後、塩化コバルト六水和物1.5gを加え、2時間攪拌して青色溶液を得た。
 次に、この青色溶液を60℃で真空乾燥して、コバルト化合物添加ポリベンゾイミダゾールを得た。
〔不融化処理〕
 次に、不融化処理を行った。
 まず、得られたコバルト化合物添加ポリベンゾイミダゾールを、強制循環式乾燥機内にセットした。
 そして、空気雰囲気下で、30分間で室温から150℃まで昇温し、続いて2時間かけて150℃から220℃まで昇温した。その後、220℃でそのまま3時間保持した。
〔炭素化処理〕
 次に、炭素化処理を行った。
 まず、不融化処理したコバルト化合物添加ポリベンゾイミダゾールを石英管に入れ、楕円面反射型赤外線ゴールドイメージ炉にて、20分間窒素パージし、1.5時間かけて室温から900℃まで昇温した。
 その後、900℃で1時間保持した。
 このようにして、コバルト化合物添加ポリベンゾイミダゾールの炭素化処理を行って、炭素触媒を得た。
〔窒素導入処理〕
 炭素化処理して得られた炭素触媒を石英管に入れ、楕円面反射型赤外線ゴールドイメージ炉にて、20分間窒素ガスをパージし、20分間かけて室温から600℃まで昇温した後、アンモニアガス:Airガス=7:3の混合ガスに置換し600℃でそのまま2時間保持し、窒素を導入した。
〔粉砕処理〕
 窒素導入処理を行った後に、粉砕処理を行った。
 まず、炭素化処理を行ったコバルト化合物添加ポリベンゾイミダゾールを、遊星ボールミル(フリッチュ製;P-7)内に1.5mmΦのジルコニアボールと共にセットした。
 そして、回転速度800rpmで、5分間粉砕処理を行った。
 その後、遊星ボールミルから取り出して、目開き105μmの篩にかけた。この篩を通過したものを、実施例4の試料とした。
(比較例1)
 フルフリルアルコール(和光純薬工業(株)製)10gにメタノール(和光純薬工業(株)製)100mlを混合して混合溶液を調製し、この混合溶液に、コバルトフタロシアニン錯体(和光純薬工業(株)製)2.090gと、メラミン(和光純薬工業(株)製)7.499gを加え、常温下でマグネチックスターラを用いて1時間撹拌した。
 この混合物に、超音波を照射しながらロータリエバポレータを用いて60℃で溶媒を除去した。
 その後、シャーレに移して、圧力0.1MPa及び温度80℃の窒素ガス雰囲気中に24時間保持して重合反応させて、コバルトフタロシアニン錯体及びメラミンを含有するポリフルフリルアルコール(炭素前駆体高分子)を合成した。
 得られた炭素前駆体高分子に対して、炭素化処理以降の工程を実施例1と同様に行い、炭素触媒を得て、比較例1の試料とした。
(比較例2)
 比較例1の炭素触媒を用いて、さらに、アンモオキシデーション法により窒素を導入した。
 比較例1の炭素触媒を石英管に入れ、楕円面反射型赤外線ゴールドイメージ炉にて、20分間窒素ガスをパージし、20分間かけて室温から600℃まで昇温した後、アンモニアガス:Airガス=7:3の混合ガスに置換し600℃でそのまま2時間保持した。
 このようにして、得られた炭素触媒を、比較例2の試料とした。
(比較例3)
 導電性の高い炭素材料である、ケッチェンブラックEC600JD(ライオン社製)を用いて、これを比較例3の試料とした。
(比較例4)
 ケッチェンブラックEC600JD(ライオン社製)を用いて、アンモオキシデーション法により窒素を導入した。
 即ち、ケッチェンブラックEC600JDを石英管に入れ、楕円面反射型赤外線ゴールドイメージ炉にて、20分間窒素ガスをパージし、20分間かけて室温から600℃まで昇温した後、アンモニアガス:Airガス=7:3の混合ガスに置換し600℃でそのまま2時間保持した。
 このようにして、比較例4の試料を作製した。
(比較例5)
 導電性の高い炭素材料である、バルカンXC-72R(エレクトロケム社製)を用いて、これを比較例5の試料とした。
(比較例6)
 バルカンXC-72R(エレクトロケム社製)を用いて、アンモオキシデーション法により窒素を導入した。
 即ち、バルカンXC-72Rを石英管に入れ、楕円面反射型赤外線ゴールドイメージ炉にて、20分間窒素ガスをパージし、20分間かけて室温から600℃まで昇温した後、アンモニアガス:Airガス=7:3の混合ガスに置換し600℃でそのまま2時間保持した。
 このようにして、比較例6の試料を作製した。
<特性の評価>
 作製した各実施例及び各比較例の試料について、以下に説明するようにして、特性の測定を行った。
(X線光電子分光観察(XPS))
 Perkin Elmer社製ESCA5600を用いて、各試料についてXPS測定を行った。
(表面の窒素原子の炭素原子に対する比)
 XPS測定により得られたスペクトルの各ピークの面積と検出感度係数から、窒素、炭素、酸素の表面元素濃度を求めて、これにより、表面の窒素原子の炭素原子に対する比(窒素/炭素)の値を算出した。
(第1の窒素原子/第2の窒素原子)
 XPS測定により得られたスペクトルの各ピークの面積から、ピークの面積比(第1の窒素原子/第2の窒素原子)を算出した。
(酸素還元に関する電極活性試験)
 酸素還元に関する電極活性を、3極回転電極セルを用いて測定した。
 さらに、測定して得られた電極活性から、ボルタモグラム(図2に示したような、電圧と電流密度の関係)を作成した。
 そして、このボルタモグラムから、電流密度が-10-2mA/cmの電圧を求めて、この電圧をEo2とし、電圧が0.7Vvs.NHEのときの還元電流密度を求めて、この還元電流密度を酸素還元活性値とした。
 各試料の測定結果として、Eo2、酸素還元活性値、表面の窒素原子と炭素原子との比、第1の窒素原子の第2の窒素原子に対する比を、それぞれ表1に示す。
Figure JPOXMLDOC01-appb-T000001
 図2からもわかるように、高活性型炭素触媒は、低活性型炭素触媒と比較して、Eo2が大きく、また、酸素還元活性値(ある電圧における電流密度の絶対値)も大きくなる。
 表1より、実施例1~実施例4の試料は、各比較例の試料よりも、Eo2及び酸素還元活性値が大きくなっており、活性が高いことがわかる。
 そして、表1より、実施例1の試料は、表面の窒素原子と炭素原子との比が大きいだけでなく、第1の窒素原子の第2の窒素原子に対する比が0.65と、各比較例の試料よりも充分に小さくなっている。
 また、実施例2、実施例3及び実施例4の試料は、表面の窒素原子と炭素原子との比が大きいだけでなく、第1の窒素原子の第2の窒素原子に対する比が1.11、0.82及び1.16と、各比較例の試料よりも小さくなっている。
 さらに、実施例1~実施例3は出発材料の窒素のみで触媒としており、実施例4は炭素化後にさらに窒素を導入しているが、共に高い窒素含有量と活性が得られている。
 一方、比較例3及び比較例5の結果から、窒素を導入していないと活性が低いことがわかる。
 また、比較例2、比較例4、比較例6の結果から、窒素を導入すると、導入していないものと比較して活性が向上するが、単に導入しただけでは、実施例1のような高い活性は得られていないことがわかる。
 比較例6の試料は、表面の窒素原子と炭素原子との比が大きいが、第1の窒素原子の第2の窒素原子に対する比が1.42と大きくなっており、Eo2及び酸素還元活性値が、実施例1の試料と比較して遥かに小さくなっている。
 即ち、単に導入する窒素原子を多くするだけでは、活性の向上につながるとは限らない、ということである。
 従って、各実施例の試料のように、表面の窒素原子と炭素原子との比が大きいだけでなく、第1の窒素原子の第2の窒素原子に対する比が小さい構成とすることにより、高い活性が得られることがわかる。
 1 固体高分子電解質、2 アノード電極触媒層(燃料極)、3 カソード電極触媒層(酸化剤極)、4,5 支持体、10 燃料電池、20 電気二重層キャパシタ、21 第1の電極、22 第2の電極、23 セパレータ、24a 外装蓋、24b 外装ケース、25 集電体、26 ガスケット

Claims (18)

  1.  窒素が導入されている炭素触媒であって、
     導入されている前記窒素は、1s軌道の電子の結合エネルギーが398.5±1.0eVである第1の窒素原子と、1s軌道の電子の結合エネルギーが401±1.0eVである第2の窒素原子との、各エネルギーにおけるピークの面積の比、前記第1の窒素原子/前記第2の窒素原子の値が1.2以下である
     炭素触媒。
  2.  前記第1の窒素原子がピリジン型であり、前記第2の窒素原子がピロール型、ピリドン型、又は、グラフェン置換型である、請求項1に記載の炭素触媒。
  3.  表面の窒素原子の含有量が、表面の炭素原子に対して、原子比で0.01以上0.3以下である、請求項1又は請求項2に記載の炭素触媒。
  4.  金属又は金属の化合物が含まれている、請求項1乃至請求項3のいずれか1項に記載の炭素触媒。
  5.  遷移金属又は遷移金属の化合物が含まれている、請求項4に記載の炭素触媒。
  6.  窒素を含有する炭素前駆体高分子を調製する工程と、
     前記炭素前駆体高分子を炭素化する工程とを有する
     炭素触媒の製造方法。
  7.  前記炭素前駆体高分子を調製する工程において、金属原子を含む炭素前駆体高分子を調製する、請求項6に記載の炭素触媒の製造方法。
  8.  前記炭素前駆体高分子を調製する工程の後に、前記炭素前駆体高分子に金属又は金属の化合物を混合する工程を行い、前記金属又は前記金属の化合物と前記炭素前駆体高分子との混合物を炭素化する、請求項6又は請求項7に記載の炭素触媒の製造方法。
  9.  前記炭素前駆体高分子を調製する工程の後に、前記炭素前駆体高分子に遷移金属又は遷移金属の化合物を混合する工程を行い、前記遷移金属又は前記遷移金属の化合物と前記炭素前駆体高分子との混合物を炭素化する、請求項6又は請求項7に記載の炭素触媒の製造方法。
  10.  前記炭素化を300℃以上1500℃以下で行う、請求項6乃至請求項9のいずれか1項に記載の炭素触媒の製造方法。
  11.  炭素前駆体高分子を調製する工程と、
     前記炭素前駆体高分子を炭素化する工程と、
     炭素化した前記炭素前駆体高分子に、窒素を付加する工程とを有する
     炭素触媒の製造方法。
  12.  前記炭素前駆体高分子を調製する工程において、金属原子を含む炭素前駆体高分子を調製する、請求項11に記載の炭素触媒の製造方法。
  13.  前記炭素前駆体高分子を調製する工程の後に、前記炭素前駆体高分子に金属又は金属の化合物を混合する工程を行い、前記金属又は前記金属の化合物と前記炭素前駆体高分子との混合物を炭素化する、請求項11又は請求項12に記載の炭素触媒の製造方法。
  14.  前記炭素前駆体高分子を調製する工程の後に、前記炭素前駆体高分子に遷移金属又は遷移金属の化合物を混合する工程を行い、前記遷移金属又は前記遷移金属の化合物と前記炭素前駆体高分子との混合物を炭素化する、請求項11又は請求項12に記載の炭素触媒の製造方法。
  15.  前記炭素化を300℃以上1500℃以下で行う、請求項11乃至請求項14のいずれか1項に記載の炭素触媒の製造方法。
  16.  固体電解質と、
     前記固体電解質を挟んで対向配置された電極とを含み、
     前記電極の少なくとも一方に、請求項1乃至請求項5のいずれか1項に記載の炭素触媒を有する
     燃料電池。
  17.  電極材と、
     電解質とを含み、
     前記電極材が、請求項1乃至請求項5のいずれか1項に記載の炭素触媒を備えている
     蓄電装置。
  18.  請求項1乃至請求項5のいずれか1項に記載の炭素触媒を使用して、
     前記炭素触媒の触媒作用によって化学反応を促進させる、
     炭素触媒の使用方法。
PCT/JP2009/060245 2008-06-04 2009-06-04 炭素触媒及び炭素触媒の製造方法、燃料電池、蓄電装置、炭素触媒の使用方法 WO2009148115A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA2725738A CA2725738C (en) 2008-06-04 2009-06-04 Carbon catalyst, method for producing carbon catalyst, fuel cell, electricity storage device, and use of carbon catalyst
US12/996,245 US20110136036A1 (en) 2008-06-04 2009-06-04 Carbon catalyst, method for producing carbon catalyst, fuel cell, electricity storage device, and use of carbon catalyst
EP09758382.7A EP2298443B1 (en) 2008-06-04 2009-06-04 Carbon catalyst, method for producing carbon catalyst, fuel cell, electricity storage device, and use of carbon catalyst
US13/931,073 US9373849B2 (en) 2008-06-04 2013-06-28 Carbon catalyst, method for producing carbon catalyst, fuel cell, electricity storage device, and use of carbon catalyst

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008147399A JP5481646B2 (ja) 2008-06-04 2008-06-04 炭素触媒、燃料電池、蓄電装置
JP2008-147399 2008-06-04

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US12/996,245 A-371-Of-International US20110136036A1 (en) 2008-06-04 2009-06-04 Carbon catalyst, method for producing carbon catalyst, fuel cell, electricity storage device, and use of carbon catalyst
US13/931,073 Division US9373849B2 (en) 2008-06-04 2013-06-28 Carbon catalyst, method for producing carbon catalyst, fuel cell, electricity storage device, and use of carbon catalyst
US13/931,073 Continuation US9373849B2 (en) 2008-06-04 2013-06-28 Carbon catalyst, method for producing carbon catalyst, fuel cell, electricity storage device, and use of carbon catalyst

Publications (1)

Publication Number Publication Date
WO2009148115A1 true WO2009148115A1 (ja) 2009-12-10

Family

ID=41398188

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/060245 WO2009148115A1 (ja) 2008-06-04 2009-06-04 炭素触媒及び炭素触媒の製造方法、燃料電池、蓄電装置、炭素触媒の使用方法

Country Status (5)

Country Link
US (2) US20110136036A1 (ja)
EP (1) EP2298443B1 (ja)
JP (1) JP5481646B2 (ja)
CA (1) CA2725738C (ja)
WO (1) WO2009148115A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013089026A1 (ja) * 2011-12-12 2013-06-20 パナソニック株式会社 炭素系材料、電極触媒、酸素還元電極触媒、ガス拡散電極、水溶液電解装置、並びに炭素系材料の製造方法
WO2014006908A1 (ja) * 2012-07-06 2014-01-09 パナソニック株式会社 炭素系材料、電極触媒、電極、ガス拡散電極、電気化学装置、燃料電池、並びに炭素系材料の製造方法
JP2014019607A (ja) * 2012-07-18 2014-02-03 Kawamura Institute Of Chemical Research 炭素と金属スズ及び/又は酸化スズ複合ナノシート及びその製造方法
JP5655161B2 (ja) * 2011-12-09 2015-01-14 パナソニック株式会社 硝酸還元方法、硝酸還元触媒、硝酸還元電極、燃料電池、及び水処理装置
JP7442133B2 (ja) 2020-04-03 2024-03-04 国立大学法人千葉大学 ベーサル窒素を選択的に導入した含窒素炭素材料およびその製造方法

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8791043B2 (en) * 2008-12-31 2014-07-29 Samsung Electronics Co., Ltd. Ordered mesoporous carbon composite catalyst, method of manufacturing the same, and fuel cell using the same
JP5403799B2 (ja) * 2009-06-26 2014-01-29 帝人株式会社 炭素材料及びその製造方法
EP2497573A4 (en) * 2009-11-05 2014-12-31 Univ Gunma Nat Univ Corp CARBON CATALYST, PROCESS FOR THE PRODUCTION THEREOF AND ELECTRODE AND BATTERY THEREWITH
JP2013517274A (ja) * 2010-01-12 2013-05-16 ナショナル ナノマテリアルズ インコーポレイテッド グラフェンおよびグラフェンオールを製造するための方法および系
WO2011132676A1 (ja) * 2010-04-20 2011-10-27 日清紡ホールディングス株式会社 直接型燃料電池のカソード用炭素触媒並びにこれを用いた直接型燃料電池用カソード及び直接型燃料電池
JP5586337B2 (ja) * 2010-06-11 2014-09-10 旭化成ケミカルズ株式会社 窒素含有炭素材料
JP5837364B2 (ja) * 2010-08-30 2015-12-24 住友化学株式会社 ポリマーコンポジット変性物の製造方法
JP2012072052A (ja) * 2010-09-02 2012-04-12 Sumitomo Chemical Co Ltd 変性物および窒素含有導電性カーボン
JP5149364B2 (ja) 2010-11-08 2013-02-20 国立大学法人群馬大学 炭素触媒及びその製造方法並びにこれを用いた電極及び電池
JP5193274B2 (ja) * 2010-11-29 2013-05-08 国立大学法人群馬大学 水素生成用炭素触媒及びその製造方法並びにこれを用いて水素を生成する方法
EP2665119B1 (en) * 2011-01-14 2018-10-24 Showa Denko K.K. Method for producing fuel cell electrode catalyst, fuel cell electrode catalyst, and uses thereof
JP5957793B2 (ja) * 2011-01-19 2016-07-27 マツダ株式会社 炭素材の製造方法
JP2012221735A (ja) * 2011-04-08 2012-11-12 Kumamoto Univ 燃料電池用電極触媒
KR101970027B1 (ko) 2011-05-23 2019-04-17 데이진 가부시키가이샤 입자상 탄소 촉매 및 그 제조 방법
JP5817286B2 (ja) * 2011-07-22 2015-11-18 国立大学法人群馬大学 電気二重層キャパシタ用炭素材料の製造方法
CN103747872B (zh) * 2011-08-08 2016-06-08 昭和电工株式会社 氧还原催化剂的制造方法以及其用途
JP5777449B2 (ja) * 2011-08-26 2015-09-09 旭化成ケミカルズ株式会社 窒素含有炭素材料、その製造方法及び燃料電池用電極
JP5743945B2 (ja) * 2012-03-30 2015-07-01 株式会社東芝 酸素還元触媒と酸素還元触媒を用いた電気化学セル
CA2877053A1 (en) * 2012-06-28 2014-01-03 The Royal Institution For The Advancement Of Learning/Mcgill University Fabrication and functionalization of a pure non-noble metal catalyst structure showing time stability for large scale applications
JP6266203B2 (ja) * 2012-11-14 2018-01-24 旭化成株式会社 窒素含有炭素材料、その製造方法及び燃料電池用電極
JP6244936B2 (ja) * 2013-01-30 2017-12-13 東洋インキScホールディングス株式会社 炭素触媒及びその製造方法、及び該炭素触媒を用いた触媒インキ並びに燃料電池
JP6159585B2 (ja) 2013-06-14 2017-07-05 日清紡ホールディングス株式会社 多孔質炭素触媒及びその製造方法並びに電極及び電池
WO2015029076A1 (en) * 2013-09-02 2015-03-05 Council Of Scientific And Industrial Research Process for the synthesis of nitrogen-doped carbon electro-catalyst
US20160285135A1 (en) * 2013-12-03 2016-09-29 Ulvac, Inc. Lithium-sulfur secondary battery
JP6153485B2 (ja) * 2014-02-26 2017-06-28 帝人株式会社 カソード電極構造体及び膜・電極接合体
EP3132845B1 (en) * 2014-03-11 2018-11-21 Asahi Kasei Kabushiki Kaisha Nitrogen-containing carbon material and method for manufacturing same, and slurry, ink, and electrode for fuel cell
JP5779267B2 (ja) * 2014-04-02 2015-09-16 旭化成ケミカルズ株式会社 窒素含有炭素材料
JP6543531B2 (ja) * 2015-08-24 2019-07-10 旭化成株式会社 窒素含有炭素材料及びその製造方法、含窒素炭素材料用前駆体組成物、並びに燃料電池用電極
JP6800608B2 (ja) * 2016-05-17 2020-12-16 日清紡ホールディングス株式会社 電池電極、電池電極触媒層用組成物及び電池
JP6921485B2 (ja) * 2016-05-27 2021-08-18 日清紡ホールディングス株式会社 電池カソード、電池カソード触媒層用組成物及び電池
CN109792055B (zh) * 2016-08-22 2023-02-03 纳米技术仪器公司 结合腐殖酸的金属箔膜集流体以及含有其的电池和超级电容器
JP7175890B2 (ja) * 2017-07-13 2022-11-21 日清紡ホールディングス株式会社 炭素触媒、電池電極及び電池
US10953386B2 (en) 2017-12-29 2021-03-23 Mannon Water (Singapore) PTE. LTD. Filtration media for removing chloramine, chlorine, and ammonia, and method of making the same
JP7205209B2 (ja) * 2018-12-18 2023-01-17 東洋インキScホールディングス株式会社 バイオ燃料電池アノード用触媒インキ材料、バイオ燃料電池アノード用触媒インキ組成物、バイオ燃料電池アノード、バイオ燃料電池デバイス
KR20210019679A (ko) * 2019-08-13 2021-02-23 현대자동차주식회사 촉매 전극을 위한 전이금속 지지체 및 이의 제조방법
CN112023945B (zh) * 2020-09-01 2022-07-05 广州大学 一种介孔碳基电催化剂的制备方法
CN114574897A (zh) * 2022-03-23 2022-06-03 中国科学院宁波材料技术与工程研究所 锌氧比可调的碳基催化剂、其制备方法及应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4721388U (ja) * 1971-02-25 1972-11-10
JP2004330181A (ja) 2003-04-17 2004-11-25 Sony Corp 触媒及びその製造方法、並びに電気化学デバイス
JP2006331846A (ja) 2005-05-26 2006-12-07 Asahi Kasei Corp 燃料電池用電極触媒
JP2007207662A (ja) 2006-02-03 2007-08-16 Gunma Univ 燃料電池用電極触媒及びその製造方法並びに該触媒を用いた燃料電池

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2108417C3 (de) * 1971-02-22 1978-05-11 Siemens Ag, 1000 Berlin Und 8000 Muenchen Verfahren zur Herstellung stickstoffhaltiger, pulverförmiger Kohle als Elektrodenmaterial für elektrochemische Zellen
US4816289A (en) * 1984-04-25 1989-03-28 Asahi Kasei Kogyo Kabushiki Kaisha Process for production of a carbon filament
JPH0721388A (ja) 1993-06-23 1995-01-24 Toshiba Corp 画像認識装置
US6689711B2 (en) * 2001-10-09 2004-02-10 Metallic Power, Inc. Methods of producing oxygen reduction catalyst
WO2004091781A1 (ja) * 2003-04-17 2004-10-28 Sony Corporation 触媒及びその製造方法、触媒電極及びその製造方法、膜-電極接合体、並びに電気化学デバイス
JP4041429B2 (ja) * 2003-06-02 2008-01-30 独立行政法人科学技術振興機構 燃料電池用電極およびその製造方法
WO2004112174A1 (ja) 2003-06-11 2004-12-23 Matsushita Electric Industrial Co., Ltd. 酸素還元用電極の製造方法ならびに酸素還元用電極及びそれを用いた電気化学素子
KR100805104B1 (ko) * 2005-08-31 2008-02-21 삼성에스디아이 주식회사 높은 비표면적과 전도성을 갖는 탄소 재료 및 이의 제조방법
TWI314169B (en) * 2007-05-16 2009-09-01 Ind Tech Res Inst Activated carbon fibers and precursor material thereof
JP2009208061A (ja) * 2008-02-06 2009-09-17 Gunma Univ 炭素触媒及びこの炭素触媒を含むスラリー、炭素触媒の製造方法、ならびに、炭素触媒を用いた燃料電池、蓄電装置及び環境触媒

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4721388U (ja) * 1971-02-25 1972-11-10
JP2004330181A (ja) 2003-04-17 2004-11-25 Sony Corp 触媒及びその製造方法、並びに電気化学デバイス
JP2006331846A (ja) 2005-05-26 2006-12-07 Asahi Kasei Corp 燃料電池用電極触媒
JP2007207662A (ja) 2006-02-03 2007-08-16 Gunma Univ 燃料電池用電極触媒及びその製造方法並びに該触媒を用いた燃料電池

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHOI BAECK ET AL.: "Highly dispersed Pt nanoparticles on nitrogen-doped magnetic carbon nanoparticles and their enhanced activity for methanol oxidation", CARBON, vol. 45, no. 13, 2007, pages 2496 - 2501, XP022308231 *
ERIKO KOBAYASHI ET AL.: "Kobunshi Kinzoku Sakutai o Mochiita Nenryo Denchi Cathode Shokubai no Chosei", THE ELECTROCHEMICAL SOCIETY OF JAPAN DAI 75 KAI TAIKAI KOEN YOSHISHU, 29 March 2008 (2008-03-29), pages 455, XP008139091 *
See also references of EP2298443A4
WU GANG ET AL.: "Well-Dispersed High-Loading Pt Nanoparticles Supported by Shell-Core Nanostructured Carbon for Methanol Electrooxidation", LANGMUIR, vol. 24, no. 7, 1 April 2008 (2008-04-01), pages 3566 - 3575, XP008139009 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5655161B2 (ja) * 2011-12-09 2015-01-14 パナソニック株式会社 硝酸還元方法、硝酸還元触媒、硝酸還元電極、燃料電池、及び水処理装置
WO2013089026A1 (ja) * 2011-12-12 2013-06-20 パナソニック株式会社 炭素系材料、電極触媒、酸素還元電極触媒、ガス拡散電極、水溶液電解装置、並びに炭素系材料の製造方法
JP5677589B2 (ja) * 2011-12-12 2015-02-25 パナソニック株式会社 炭素系材料、電極触媒、酸素還元電極触媒、ガス拡散電極、水溶液電解装置、並びに炭素系材料の製造方法
WO2014006908A1 (ja) * 2012-07-06 2014-01-09 パナソニック株式会社 炭素系材料、電極触媒、電極、ガス拡散電極、電気化学装置、燃料電池、並びに炭素系材料の製造方法
JPWO2014006908A1 (ja) * 2012-07-06 2016-06-02 パナソニックIpマネジメント株式会社 炭素系材料、電極触媒、電極、ガス拡散電極、電気化学装置、燃料電池、並びに炭素系材料の製造方法
US9929411B2 (en) 2012-07-06 2018-03-27 Panasonic Intellectual Property Management Co., Ltd. Carbon-based material, electrode catalyst, electrode, gas diffusion electrode, electrochemical device, fuel battery, and process for producing carbon-based material
JP2014019607A (ja) * 2012-07-18 2014-02-03 Kawamura Institute Of Chemical Research 炭素と金属スズ及び/又は酸化スズ複合ナノシート及びその製造方法
JP7442133B2 (ja) 2020-04-03 2024-03-04 国立大学法人千葉大学 ベーサル窒素を選択的に導入した含窒素炭素材料およびその製造方法

Also Published As

Publication number Publication date
US20110136036A1 (en) 2011-06-09
EP2298443B1 (en) 2018-09-12
JP5481646B2 (ja) 2014-04-23
CA2725738A1 (en) 2009-12-10
JP2009291706A (ja) 2009-12-17
US9373849B2 (en) 2016-06-21
EP2298443A1 (en) 2011-03-23
US20130288888A1 (en) 2013-10-31
EP2298443A4 (en) 2014-05-07
CA2725738C (en) 2016-11-08

Similar Documents

Publication Publication Date Title
JP5481646B2 (ja) 炭素触媒、燃料電池、蓄電装置
Tran et al. Iron–polypyrrole electrocatalyst with remarkable activity and stability for ORR in both alkaline and acidic conditions: a comprehensive assessment of catalyst preparation sequence
Liu et al. Nitrogen-rich carbon coupled multifunctional metal oxide/graphene nanohybrids for long-life lithium storage and efficient oxygen reduction
US8993164B2 (en) Support for catalyst supporting, carrier with supported catalyst, electrode, and battery
JP5557564B2 (ja) 含窒素カーボンアロイ及びそれを用いた炭素触媒
Lin et al. Coral-like Co3O4 decorated N-doped carbon particles as active materials for oxygen reduction reaction and supercapacitor
Choi et al. Doped porous carbon nanostructures as non-precious metal catalysts prepared by amino acid glycine for oxygen reduction reaction
WO2012063681A1 (ja) 炭素触媒及びその製造方法並びにこれを用いた電極及び電池
US11014074B2 (en) Cell electrode, composition for cell electrode catalyst layer, and cell
Xu et al. Antimony doped tin oxide modified carbon nanotubes as catalyst supports for methanol oxidation and oxygen reduction reactions
Zou et al. Macroporous hollow nanocarbon shell-supported Fe-N catalysts for oxygen reduction reaction in microbial fuel cellss
Busacca et al. High performance electrospun nickel manganite on carbon nanofibers electrode for vanadium redox flow battery
JP7175890B2 (ja) 炭素触媒、電池電極及び電池
US20220302469A1 (en) Carbon catalyst, battery electrode, and battery
Huang et al. Sewage sludge-derived carbon-doped manganese as efficient cathode catalysts in microbial fuel cells
Zhang et al. One-step preparation of N-doped graphitic layer-encased cobalt/iron carbide nanoparticles derived from cross-linked polyphthalocyanines as highly active electrocatalysts towards the oxygen reduction reaction
JP5732667B2 (ja) 炭素触媒の製造方法
Byambasuren et al. Doping effect of boron and phosphorus on nitrogen-based mesoporous carbons as electrocatalysts for oxygen reduction reaction in acid media
Jia et al. Controlled synthesis of mesoporous carbon with ultra-high N‐doping structure from polymer precursor for efficient electrocatalysis of oxygen reduction
Xu et al. Promoting oxygen reduction via crafting bridge-bonded oxygen ligands on a single-atom iron catalyst
JP6757933B2 (ja) 白金担持体とそれを用いた酸素還元触媒およびその製造方法ならびに燃料電池、金属空気電池
Chatenet et al. Fluorination and its Effects on Electrocatalysts for Low‐Temperature Fuel Cells
CN110891679B (zh) 碳催化剂、电池电极和电池
WO2009148116A1 (ja) 炭素触媒及び炭素触媒の製造方法、燃料電池、蓄電装置、炭素触媒の使用方法
Chen et al. Modification of carbon felt electrode by MnO@ C from metal-organic framework for vanadium flow battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09758382

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2725738

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 12996245

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009758382

Country of ref document: EP