WO2011132676A1 - 直接型燃料電池のカソード用炭素触媒並びにこれを用いた直接型燃料電池用カソード及び直接型燃料電池 - Google Patents

直接型燃料電池のカソード用炭素触媒並びにこれを用いた直接型燃料電池用カソード及び直接型燃料電池 Download PDF

Info

Publication number
WO2011132676A1
WO2011132676A1 PCT/JP2011/059631 JP2011059631W WO2011132676A1 WO 2011132676 A1 WO2011132676 A1 WO 2011132676A1 JP 2011059631 W JP2011059631 W JP 2011059631W WO 2011132676 A1 WO2011132676 A1 WO 2011132676A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
fuel cell
carbon catalyst
carbon
cathode
Prior art date
Application number
PCT/JP2011/059631
Other languages
English (en)
French (fr)
Inventor
武亮 岸本
里江子 小林
純一 尾崎
Original Assignee
日清紡ホールディングス株式会社
国立大学法人群馬大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日清紡ホールディングス株式会社, 国立大学法人群馬大学 filed Critical 日清紡ホールディングス株式会社
Priority to CN201180020148.6A priority Critical patent/CN102859766B/zh
Priority to CA2796644A priority patent/CA2796644C/en
Priority to JP2012511668A priority patent/JP5863645B2/ja
Priority to US13/641,551 priority patent/US8617768B2/en
Priority to EP11772011.0A priority patent/EP2562860B1/en
Publication of WO2011132676A1 publication Critical patent/WO2011132676A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • H01M8/1011Direct alcohol fuel cells [DAFC], e.g. direct methanol fuel cells [DMFC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • H01M8/1011Direct alcohol fuel cells [DAFC], e.g. direct methanol fuel cells [DMFC]
    • H01M8/1013Other direct alcohol fuel cells [DAFC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a carbon catalyst for a cathode of a direct fuel cell, a cathode for a direct fuel cell and a direct fuel cell using the same, and in particular, an oxygen reduction reaction is selectively performed even when a fuel compound crossover occurs.
  • the present invention relates to a carbon catalyst that promotes the process.
  • DFC direct fuel cell
  • DMFC direct methanol fuel cell
  • DMFC direct methanol fuel cell
  • the chemical reaction in DMFC is as follows; anode reaction: CH 3 OH + H 2 O ⁇ 6H + 6e ⁇ + CO 2 , cathode reaction: 1.5O 2 + 6H + 6e ⁇ ⁇ 3H 2 O, total reaction: CH 3 OH + 1.5O 2 ⁇ 2H 2 O + CO 2 .
  • MCO methanol crossover
  • a platinum catalyst is used as a DMFC cathode catalyst, but the platinum catalyst promotes not only an oxygen reduction reaction but also an oxidation reaction of methanol. For this reason, the methanol oxidation reaction occurs even in the cathode due to the crossover methanol, and the power generation performance of the DMFC is significantly reduced.
  • the present invention has been made in view of the above-described problems.
  • a carbon catalyst for a cathode of a direct fuel cell that selectively promotes an oxygen reduction reaction even when a crossover of a fuel compound such as methanol occurs. It is an object of the present invention to provide a cathode for a direct fuel cell and a direct fuel cell using the same.
  • a carbon catalyst for a cathode of a direct fuel cell for solving the above problems is a carbon catalyst used for a cathode of a direct fuel cell, and the fuel compound of the direct fuel cell is used as a carbon catalyst.
  • the electrolyte solution contains oxygen reduction catalytic activity and substantially does not exhibit catalytic activity for oxidizing the fuel compound.
  • ADVANTAGE OF THE INVENTION According to this invention, the carbon catalyst for cathodes of a direct type fuel cell which selectively accelerates
  • the carbon catalyst is an oxygen-saturated electrolyte containing the fuel compound at a concentration of 0.25 mol / L in linear sweep voltammetry using the carbon catalyst as a three-electrode working electrode, and 25 ° C.
  • the reduction current at a potential of 0.7 V (vs. NHE) when swept at a sweep rate of 1 mV / sec may be ⁇ 0.6 mA / cm 2 or less.
  • the carbon catalyst has a potential of 0 when a nitrogen-saturated electrolytic solution containing the fuel compound is used in cyclic voltammetry performed at 25 ° C. using the carbon catalyst as a tripolar working electrode.
  • the oxidation catalytic activity of the fuel compound that affects the oxygen reduction catalytic activity of the carbon catalyst may not be exhibited in the range of .6 V (vs. NHE) to 1.0 V (vs. NHE).
  • the carbon catalyst is a linear sweep voltammetry using the carbon catalyst as a tripolar working electrode, and an oxygen-saturated electrolyte containing the fuel compound is used at 25 ° C. with a sweep rate of 1 mV / sec.
  • the reduction current at the potential of 0.7 V (vs. NHE) when swept may be substantially independent of the concentration of the fuel compound contained in the electrolyte.
  • the fuel compound may be alcohol.
  • a carbon catalyst for a cathode of a direct fuel cell for solving the above problems is a carbon catalyst having an oxygen reduction catalytic activity used for a cathode of a direct fuel cell, the carbon catalyst In a linear sweep voltammetry using as a tripolar working electrode, an oxygen-saturated electrolyte containing the fuel compound of the direct fuel cell at a concentration of 0.25 mol / L is used, and the sweep rate is 1 mV at 25 ° C.
  • the reduction current at a potential of 0.7 V (vs. NHE) when swept at / sec is ⁇ 0.6 mA / cm 2 or less.
  • the carbon catalyst for cathodes of a direct type fuel cell which selectively accelerates
  • a carbon catalyst for a cathode of a direct fuel cell for solving the above problems is a carbon catalyst having an oxygen reduction catalytic activity used for a cathode of a direct fuel cell, the carbon catalyst In a cyclic voltammetry performed at 25 ° C. using a triode working electrode at 25 ° C., when a nitrogen-saturated electrolyte containing a fuel compound of the direct fuel cell is used, the potential is 0.6 V (vs. In the range of NHE) to 1.0 V (vs. NHE), the fuel catalyst does not exhibit an oxidation catalytic activity of the fuel compound that affects the oxygen reduction catalytic activity of the carbon catalyst.
  • ADVANTAGE OF THE INVENTION According to this invention, the carbon catalyst for cathodes of a direct type fuel cell which selectively accelerates
  • the carbon catalyst may be a carbon catalyst obtained by carbonizing a raw material containing a nitrogen-containing organic substance and a metal.
  • the raw material may further include a conductive carbon material.
  • the carbon catalyst may be a carbon catalyst obtained by subjecting a carbonized material obtained by carbonizing the raw material to metal removal treatment and further heat treatment.
  • the carbon catalyst may be a carbon catalyst obtained by subjecting a carbonized material obtained by carbonizing the raw material to metal impregnation treatment and further heat treatment.
  • a cathode for a direct fuel cell according to an embodiment of the present invention for solving the above-described problems is characterized by including the carbon catalyst. According to the present invention, it is possible to provide a cathode for a direct fuel cell that selectively promotes an oxygen reduction reaction even when a crossover of a fuel compound occurs.
  • a direct fuel cell according to an embodiment of the present invention for solving the above-described problems is characterized by including a cathode including any one of the above carbon catalysts. According to the present invention, it is possible to provide a direct fuel cell in which an oxygen reduction reaction is selectively performed at the cathode even when a fuel compound crossover occurs.
  • a carbon catalyst for a cathode of a direct fuel cell that selectively promotes an oxygen reduction reaction even when a crossover of a fuel compound occurs, and a cathode and a direct fuel cell for a direct fuel cell using the same.
  • a fuel cell can be provided.
  • the cathode carbon catalyst (hereinafter referred to as “the present catalyst”) of the direct fuel cell according to the present embodiment is a carbon catalyst having oxygen reduction catalytic activity. That is, the present catalyst itself is a carbon material having catalytic activity that promotes the oxygen reduction reaction at the cathode of the direct fuel cell. That is, the present catalyst is a carbon catalyst that exhibits oxygen reduction catalytic activity without supporting a metal catalyst (for example, a noble metal catalyst such as platinum).
  • a metal catalyst for example, a noble metal catalyst such as platinum
  • the fuel compound of the direct fuel cell is not particularly limited as long as it is a compound used as a fuel in the direct fuel cell, and any organic compound and / or inorganic compound can be used.
  • This fuel compound is, for example, a compound that is oxidized on the anode side of the fuel cell to generate protons and electrons.
  • the fuel compound may be, for example, a compound having a hydroxyl group, and is preferably a water-soluble compound having a hydroxyl group. That is, the fuel compound may be, for example, an alcohol, and is preferably an alcohol having 1 to 6 carbon atoms.
  • the fuel compound may be, for example, a primary alcohol and / or a secondary alcohol, and is preferably a primary alcohol and / or a secondary alcohol having 1 to 6 carbon atoms.
  • the fuel compound may be, for example, a monohydric alcohol and / or a polyhydric alcohol, and is preferably a monohydric alcohol and / or a polyhydric alcohol having 1 to 6 carbon atoms. More specifically, the fuel compound may be, for example, a primary or secondary monohydric or polyhydric alcohol, and is a primary or secondary monohydric or polyhydric alcohol having 1 to 6 carbon atoms. It is good.
  • the fuel compound may be, for example, one or more selected from the group consisting of methanol, ethanol, normal propyl alcohol, isopropyl alcohol, ethylene glycol, glycerol, glucose, and sucrose.
  • the catalyst is a carbon catalyst used for a cathode of a direct fuel cell, exhibits oxygen reduction catalytic activity in an electrolyte containing the fuel compound of the direct fuel cell, and oxidizes the fuel compound. Substantially exhibit no catalytic activity.
  • the present catalyst is, for example, a carbon catalyst having oxygen reduction catalytic activity, and contains a fuel compound at a concentration of 0.25 mol / L in linear sweep voltammetry using the carbon catalyst as a triode working electrode.
  • the reduction current may be ⁇ 0.7 mA / cm 2 or less.
  • Linear sweep voltammetry can be performed, for example, by a rotating ring disk electrode method using a working electrode carrying the present catalyst, a reference electrode and a counter electrode.
  • the electrolytic solution for example, a 0.5M sulfuric acid aqueous solution can be used.
  • this catalyst has an oxygen reduction catalytic activity equal to or higher than that in the case of using an electrolyte solution containing a fuel compound in the linear sweep voltammetry even when an oxygen-saturated electrolyte solution containing no fuel compound is used. Indicates.
  • the present catalyst can be a carbon catalyst exhibiting higher oxygen reduction catalytic activity in an electrolyte solution containing a fuel compound. That is, the reduction current in the linear sweep voltammetry can be, for example, ⁇ 0.8 mA / cm 2 or less, and can be ⁇ 0.9 mA / cm 2 or less. Furthermore, the reduction current can be, for example, ⁇ 1.0 mA / cm 2 or less, and can be ⁇ 1.1 mA / cm 2 or less.
  • the lower limit value of the reduction current is not particularly limited.
  • the reduction current can be set to ⁇ 4.0 mA / cm 2 or more.
  • the catalyst is, for example, a carbon catalyst having oxygen reduction catalytic activity, and saturated with nitrogen containing a fuel compound in cyclic voltammetry performed at 25 ° C. using the carbon catalyst as a triode working electrode.
  • the present catalyst is used both in the case of using a nitrogen-saturated electrolyte containing no fuel compound and in the case of using a nitrogen-saturated electrolyte containing the fuel compound.
  • the potential is in the range of 0.6 V (vs. NHE) to 1.0 V (vs. NHE)
  • the catalytic activity for promoting the oxidation reaction of the fuel compound is not exhibited.
  • a current-potential curve obtained by sweeping the potential in the positive direction and the potential is substantially symmetric.
  • cyclic voltammetry can be performed by, for example, a rotating ring disk electrode method using a working electrode carrying the present catalyst, a reference electrode and a counter electrode.
  • the potential can be swept at a sweep rate of 50 mV / sec.
  • the concentration of the fuel compound contained in the electrolytic solution used for cyclic voltammetry is not particularly limited, and can be, for example, in the range of 0.01 mol / L to 5.00 mol / L. Further, the concentration of the fuel compound can be, for example, in the range of 0.01 mol / L to 0.50 mol / L, and more specifically, for example, 0.01 mol / L, 0.05 mol / L, 0 .10 mol / L, 0.25 mol / L or 0.50 mol / L.
  • the electrolytic solution for example, a 0.5M sulfuric acid aqueous solution can be used.
  • the present catalyst is a carbon catalyst that does not substantially exhibit the oxidation catalytic activity of the fuel compound in the electrolyte solution containing the fuel compound.
  • the present catalyst has a potential of 0 when an oxygen-saturated electrolyte containing no fuel compound is used and when an oxygen-saturated electrolyte containing the fuel compound is used.
  • a carbon catalyst having a reduction current (mA / cm 2 ) difference of 0.15 mA / cm 2 or less at 0.7 V (vs. NHE) can be obtained.
  • the reduction current when using an oxygen-saturated electrolyte containing no fuel compound is A 0 (mA / cm 2 )
  • the oxygen-saturated electrolyte containing the fuel compound is used.
  • the reduction current is A 0 ⁇ 0.15 (mA / cm 2 ).
  • the concentration of the fuel compound contained in the electrolytic solution used for linear sweep voltammetry is not particularly limited, and can be, for example, in the range of 0.01 mol / L to 5.00 mol / L, and 0.05 mol / L to 5 The range may be 0.000 mol / L, or may be in the range of 0.10 mol / L to 5.00 mol / L. Further, the concentration of the fuel compound can be, for example, in the range of 0.01 mol / L to 0.50 mol / L, and more specifically, for example, 0.01 mol / L, 0.05 mol / L, 0 .10 mol / L, 0.25 mol / L or 0.50 mol / L.
  • the electrolytic solution for example, a 0.5M sulfuric acid aqueous solution can be used.
  • the present catalyst is a fuel in which a reduction current at a potential of 0.7 V (vs. NHE) when swept at 25 ° C. with a sweep rate of 1 mV / second is contained in the electrolyte.
  • the carbon catalyst can be substantially independent of the concentration of the compound.
  • the concentration of the fuel compound contained in the electrolytic solution is 0.01 mol / L, 0.05 mol / L, 0.10 mol / L, 0.25 mol / L, or 0.50 mol / L.
  • the difference in reduction current at a potential of 0.7 V (vs. NHE) is 0.15 mA / cm 2 or less.
  • the catalyst when the concentration of the fuel compound is in the range of 0.05 mol / L to 0.50 mol / L, the catalyst is saturated with oxygen containing 0.05 mol / L of the fuel compound in the linear sweep voltammetry. Reduction at a potential of 0.7 V (vs. NHE) between the case where the electrolyte is used and the case where the oxygen-saturated electrolyte containing 0.10 mol / L to 0.50 mol / L of the fuel compound is used. difference in current (mA / cm 2) can be a carbon catalyst is 0.01 mA / cm 2 or less. Similarly, the difference in reduction current between the case where the concentration of the fuel compound is 0.10 mol / L and the case where it is 0.25 mol / L to 0.50 mol / L is 0.01 mA / cm 2 or less. You can also
  • the present catalyst can be, for example, a carbon catalyst obtained by carbonizing a raw material containing a nitrogen-containing organic substance and a metal.
  • the nitrogen-containing organic substance (hereinafter simply referred to as “organic substance”) contained in the raw material contains 0.1% by weight or more of nitrogen with respect to the organic substance and can be carbonized (can be used as a carbon source). It will not specifically limit, Arbitrary 1 type can be used individually or in combination of 2 or more types. This organic substance is contained in the raw material as a carbon material precursor of the active catalyst.
  • the organic substance for example, one or both of a high molecular weight organic compound (for example, a resin such as a thermoplastic resin or a thermosetting resin) and a low molecular weight organic compound containing a nitrogen atom in the molecule may be used. It can. Further, for example, biomass such as plant waste material can be used.
  • a high molecular weight organic compound for example, a resin such as a thermoplastic resin or a thermosetting resin
  • a low molecular weight organic compound containing a nitrogen atom in the molecule may be used.
  • biomass such as plant waste material can be used.
  • a ligand capable of coordinating with a metal can be preferably used. That is, in this case, an organic compound containing one or more coordination atoms in the molecule is used. More specifically, for example, as a coordination atom, an organic compound containing one or more selected from the group consisting of a nitrogen atom, a phosphorus atom, an oxygen atom, and a sulfur atom in the molecule can be used. . Further, for example, an organic compound containing one or more selected from the group consisting of an amino group, a phosphino group, a carboxyl group, and a thiol group in the molecule can also be used as a coordination group.
  • examples of the organic compound include pyrrole, polypyrrole, polyvinylpyrrole, 3-methylpolypyrrole, furan, thiophene, oxazole, thiazole, pyrazole, vinylpyridine, polyvinylpyridine, pyridazine, pyrimidine, piperazine, pyran, morpholine, imidazole.
  • biomass such as waste wood include liquor, wood, coffee grounds, tea grounds, beer squeezed rice, rice industry, food industry waste such as rice bran, woody waste such as forest residue, building waste, and sewage sludge.
  • 1 type (s) or 2 or more types selected from the group which consists of a system waste material can be used.
  • the organic substance may further contain a component that improves the activity of the catalyst. That is, the organic substance can further contain, for example, one or more selected from the group consisting of boron, phosphorus, oxygen, and sulfur as a component that improves the activity of the present catalyst. Moreover, the organic substance can also contain a metal salt and a metal complex.
  • the metal contained in the raw material is not particularly limited as long as it does not inhibit the catalytic activity of the present catalyst, and can be appropriately selected according to the purpose. Any one kind can be used alone or in combination of two or more kinds. be able to.
  • metal for example, Group 3 element, Group 4 element, Group 5 element, Group 6 element, Group 7 element, Group 8 element, Group 9 element, Group 10 element, Group 11 element, Group 12 of the periodic table
  • metals selected from the group consisting of elements, group 13 elements and group 16 elements can be used, and transition metals can be preferably used.
  • the metal a simple substance of the metal or a compound of the metal can be used.
  • the metal compound for example, metal salts, metal oxides, metal hydroxides, metal nitrides, metal sulfides, metal carbonides, metal complexes can be used, and metal salts, metal oxides, metal sulfides can be used.
  • a metal complex can be preferably used.
  • a metal complex is formed in the raw material.
  • the above-mentioned organic substance contains a metal salt or a metal complex
  • the raw material can further contain a metal in addition to the organic substance.
  • the raw material can further include a conductive carbon material.
  • the conductive carbon material is not particularly limited as long as it imparts conductivity to the catalyst or improves the conductivity of the catalyst, and any one type may be used alone or in combination of two or more types. Can do.
  • As the conductive carbon material for example, a carbon material having conductivity and having no catalytic activity by itself can be used.
  • one or more selected from the group consisting of carbon black, carbon nanotube, carbon nanohorn, carbon fiber, carbon fibril, and graphite powder can be used, and those having high conductivity are preferable. Can be used.
  • the active point of the catalyst can be increased by fully dispersing and supporting the carbonized material produced by carbonization of organic matter in the conductive carbon material. And high catalytic activity can be realized.
  • the conductive carbon material for example, a material on which a metal is previously supported can be used. That is, in this case, for example, a conductive carbon material carrying a transition metal that improves the activity and oxidation resistance of the present catalyst can be used.
  • the transition metal include one selected from the group consisting of titanium, chromium, manganese, iron, cobalt, nickel, copper, zinc, gallium, zirconium, niobium, molybdenum, lanthanum, cerium, neodymium, tantalum, and tungsten, or Two or more kinds can be preferably used.
  • this catalyst In the production of this catalyst, first, prior to carbonization, raw materials containing the above-mentioned organic matter and metal, and further containing a conductive carbon material as necessary, are mixed.
  • the method for mixing the raw materials is not particularly limited, and for example, a mortar or a stirring device can be used.
  • powder mixing in which organic substances and metals (and conductive carbon material if necessary) are mixed in powder form, and solvent mixing in which a solvent is added and mixed can be used. These two or more mixing methods Can also be used.
  • the raw material prepared as described above is carbonized. That is, the raw material is heated and held at a predetermined temperature (carbonization temperature) at which the raw material can be carbonized.
  • the carbonization temperature is not particularly limited as long as the raw material can be carbonized, and can be, for example, 300 ° C. or higher. More specifically, the carbonization temperature can be, for example, 300 ° C. or more and 1500 ° C. or less, preferably 400 ° C. or more and 1200 ° C. or less.
  • the heating rate at the time of heating the raw material to the carbonization temperature is not particularly limited, and can be, for example, 0.5 ° C./min or more and 300 ° C./min or less.
  • the time for holding the raw material at the carbonization temperature is not particularly limited as long as the raw material can be carbonized, and can be, for example, 5 minutes or longer. More specifically, the carbonization time can be, for example, 5 minutes or more and 180 minutes or less, preferably 20 minutes or more and 120 minutes or less.
  • Carbonization is preferably performed under an inert gas such as nitrogen (for example, under the flow of an inert gas) or in a vacuum. In this way, a carbonized material generated by carbonization of the raw material can be obtained. For example, this carbonized material can be used as the present catalyst.
  • the present catalyst can be, for example, one obtained by introducing (doping) nitrogen atoms into a carbonized material obtained by carbonizing a raw material.
  • a method for introducing nitrogen atoms for example, a gas phase doping method, a liquid phase doping method, or a gas phase-liquid phase doping method can be used.
  • a nitrogen source such as ammonia, melamine, or acetonitrile is mixed with a carbonized material, and the resulting mixture is heated to a temperature of 550 ° C. or higher and 1200 ° C. or lower in an inert gas atmosphere such as nitrogen, argon, or helium.
  • nitrogen atoms can be introduced into the surface of the carbonized material by heat treatment that is held for 5 minutes or more and 180 minutes or less.
  • the obtained carbonized material can be subjected to ammoxidation, carbon dioxide activation, phosphoric acid activation, alkali activation, and water vapor activation.
  • the present catalyst can be obtained, for example, by pulverizing a carbonized material obtained by carbonizing a raw material.
  • the method for pulverizing the carbonized material is not particularly limited, and for example, a pulverizing apparatus such as a ball mill or a bead mill can be used.
  • the average particle size of the carbonized material after pulverization is preferably 150 ⁇ m or less, for example.
  • this catalyst can be obtained by, for example, subjecting a carbonized material obtained by carbonizing a raw material to metal removal treatment. That is, for example, when a metal becomes unnecessary after carbonization, a metal removal treatment is performed on the carbonized material as necessary.
  • the metal removal treatment is not particularly limited as long as it can remove the metal contained in the carbonized material or reduce the amount of the metal, and for example, an acid cleaning treatment or an electrolytic treatment can be performed.
  • the acid used for the acid cleaning is not particularly limited as long as the effect of the metal removal treatment can be obtained, and any one kind or two or more kinds can be used. That is, for example, one or more selected from the group consisting of hydrochloric acid (for example, concentrated hydrochloric acid), nitric acid (for example, concentrated nitric acid), and sulfuric acid (for example, concentrated sulfuric acid) can be used.
  • hydrochloric acid for example, concentrated hydrochloric acid
  • nitric acid for example, concentrated nitric acid
  • sulfuric acid for example, concentrated sulfuric acid
  • a mixed acid prepared by mixing concentrated hydrochloric acid and concentrated nitric acid at a predetermined volume ratio for example, aqua regia
  • concentrated nitric acid and concentrated sulfuric acid A mixed acid prepared by mixing at a volume ratio can be used.
  • the acid cleaning method is not particularly limited as long as the effect of the metal removal treatment can be obtained.
  • a method of immersing and holding the carbonized material in an acid-containing solution can be used.
  • the carbonized material can be held in a boiled acid solution.
  • the present catalyst can be a carbon catalyst obtained by, for example, subjecting a carbonized material obtained by carbonizing a raw material to metal removal treatment and further heat treatment. That is, in this case, in the production of the present catalyst, the carbonized material that has been subjected to the above-described metal removal treatment (for example, acid cleaning) is subjected to heat treatment.
  • the heat treatment can be performed, for example, in the same manner as the carbonization described above. Specifically, the carbonized material after the metal removal treatment is heated at a temperature of 300 ° C. or higher and 1500 ° C. or lower. By these treatments, it is possible to remove inactive metal components and the like that remain slightly in the carbonized material, and to obtain a carbon catalyst with exposed active sites.
  • the present catalyst can be a carbon catalyst obtained by, for example, subjecting a carbonized material obtained by carbonizing a raw material to metal impregnation treatment and further heat treatment.
  • the present catalyst may be, for example, a carbon catalyst obtained by subjecting a carbonized material obtained by carbonizing a raw material to a metal impregnation treatment without performing a metal removal treatment, and further subjecting to a heat treatment. it can.
  • the present catalyst can be a carbon catalyst obtained by subjecting a carbonized material obtained by carbonizing a raw material to a metal removal treatment, followed by a metal impregnation treatment and further a heat treatment. .
  • the carbonized material is impregnated with a metal.
  • the metal impregnated in the carbonized material is not particularly limited as long as it does not inhibit the activity of the catalyst, and any one kind can be used alone or in combination of two or more kinds. Specifically, for example, one or more selected from the group consisting of titanium, iron, cobalt, nickel, zirconium, niobium, molybdenum, lanthanum, and cerium can be used.
  • the metal impregnated in the carbonized material by the metal impregnation treatment may be a different type of metal from the metal contained in the carbonization raw material.
  • the metal can be used as a simple substance of the metal or a compound of the metal.
  • metal compound for example, metal salts, metal oxides, metal hydroxides, metal nitrides, metal sulfides, metal carbonides, metal complexes can be used, and metal salts, metal oxides, metal sulfides can be used.
  • a metal complex can be preferably used.
  • the method of impregnating the metal is not particularly limited as long as at least the surface of the carbonized material can be impregnated with the metal.
  • a method of bringing the carbonized material into contact with a solution containing the metal. can be used. That is, for example, the carbonized material can be impregnated with the metal by immersing and holding the carbonized material in the metal-containing solution. In this case, the carbonized material can be retained in the boiled metal-containing solution.
  • an acidic solution can also be used as a metal containing solution. In this case, the pH of the metal-containing solution can be set to 1 or more and 6 or less, for example.
  • the heat treatment subsequent to the metal impregnation treatment can be performed, for example, in the same manner as the carbonization described above. Specifically, the carbonized material after the metal impregnation treatment is heated at a temperature of 300 ° C. or higher and 1500 ° C. or lower.
  • the present catalyst may be a carbon catalyst obtained by, for example, subjecting a carbonized material obtained by carbonizing a raw material to a metal impregnation treatment, followed by a heat treatment, and further a metal removal treatment.
  • the present catalyst is obtained, for example, by subjecting the carbonized material obtained by carbonizing the raw material to a metal impregnation treatment without performing a metal removal treatment, followed by a heat treatment, and further performing a metal removal treatment.
  • Carbon catalyst can also be used.
  • the catalyst was obtained, for example, by subjecting a carbonized material obtained by carbonizing a raw material to a metal removal treatment, a metal impregnation treatment, a heat treatment, and a metal removal treatment. It can also be a carbon catalyst.
  • the catalyst may be a carbon catalyst obtained by subjecting the metal removal treatment after the metal impregnation treatment to a heat treatment again.
  • the catalyst can be obtained by subjecting a carbonized material obtained by carbonizing a raw material to a surface treatment.
  • a surface treatment for example, acid treatment can be used.
  • This acid treatment can be performed, for example, in the same manner as the above-described acid cleaning for the purpose of metal removal.
  • the above-mentioned metal impregnation process can also be used as a surface treatment.
  • the cathode for a direct fuel cell is a cathode (oxygen electrode) including the above-described carbon catalyst (the present catalyst).
  • the cathode can be free of, for example, a metal catalyst (for example, a noble metal catalyst such as platinum).
  • a metal catalyst for example, a noble metal catalyst such as platinum
  • the present catalyst and a metal catalyst for example, a noble metal catalyst such as platinum
  • the direct fuel cell according to this embodiment includes a cathode including the above-described carbon catalyst (the present catalyst). That is, this direct fuel cell includes, for example, a membrane / electrode assembly (MEA) including a cathode on which the above-described carbon catalyst (the present catalyst) is supported.
  • MEA membrane / electrode assembly
  • the direct fuel cell is a direct alcohol fuel cell including a cathode including the catalyst. More specifically, for example, when methanol is used as the fuel compound, the direct fuel cell becomes a direct methanol fuel cell.
  • a carbon catalyst for a cathode of a direct fuel cell that selectively promotes an oxygen reduction reaction even when a crossover of a fuel compound occurs, and a cathode and a direct fuel cell for a direct fuel cell using the same.
  • a fuel cell can be realized.
  • a fuel compound is produced at the cathode of a direct fuel cell by the present catalyst manufactured at a relatively low cost without using an expensive noble metal catalyst such as platinum with limited reserves. Even when this crossover occurs, only the oxygen reduction reaction can be selectively promoted.
  • the oxygen reduction catalytic activity of the present catalyst is not restricted by the fuel compound concentration, a direct fuel cell that achieves a stable output even when a crossover of the fuel compound occurs is realized. be able to.
  • the present catalyst can sufficiently maintain the oxygen reduction catalytic activity even when the fuel compound concentration is relatively high, a fuel containing a relatively high concentration fuel compound (for example, 90% by weight or more). It is possible to realize a direct fuel cell in which a fuel containing an alcohol such as methanol having a concentration is supplied to the anode.
  • Example 1-1 Production of carbon catalyst 1
  • PAN / PMA 92.5 mol% / 7.5 mol%
  • 2-methylimidazole 1.5 g
  • cobalt chloride CoCl 2
  • Ketjen Black ECP600JD, manufactured by Lion Co., Ltd.
  • carbon fiber Carveel, manufactured by GSI Creos Co., Ltd.
  • ECP600JD manufactured by Lion Co., Ltd.
  • Carbon fiber Carveel, manufactured by GSI Creos Co., Ltd.
  • this fibrous water-repellent carbon was added to the above-mentioned mixture so that it might become 30 weight% of solid content contained in a carbonization raw material, and it mixed using the mortar.
  • the resulting mixture was vacuum dried at 60 ° C. for 12 hours.
  • this mixture was heated in the air, and the temperature was raised from room temperature to 150 ° C. over 30 minutes, and then the temperature was raised from 150 ° C. to 220 ° C. over 2 hours. Thereafter, the mixture was held at 220 ° C. for 3 hours to infusibilize the mixture.
  • the raw material for the carbonized material was prepared.
  • the material was carbonized. Specifically, the infusibilized raw material as described above was placed in a quartz tube, purged with nitrogen for 20 minutes in an image furnace, and heated from room temperature to 900 ° C. over 18 minutes. Thereafter, this raw material was held at 900 ° C. for 1 hour to perform carbonization. Thus, a carbonized material was obtained.
  • this carbonized material was pulverized. That is, a silicon nitride ball having a diameter of 10 mm was set in a planetary ball mill (P-7, manufactured by Fritsch Japan Co., Ltd.), and the carbonized material was pulverized for 5 minutes at a rotational speed of 650 rpm by the planetary ball mill for 10 cycles. . Thereafter, the pulverized carbonized material was taken out, and a carbonized material that passed through a sieve having an aperture of 106 ⁇ m was obtained as a pulverized fine particle carbonized material.
  • P-7 planetary ball mill
  • Example 1-2 Production of carbon catalyst 2
  • the carbon catalyst 1 obtained in the above Example 1-1 was subjected to heat treatment. That is, the above-mentioned carbon catalyst 1 was put in a quartz tube, purged with nitrogen for 20 minutes in an image furnace, and heated from room temperature to 700 ° C. over 14 minutes. Then, the carbon catalyst 1 was hold
  • Example 1-3 Production of carbon catalyst 3
  • a pulverized particulate carbonized material was obtained in the same manner as in Example 1 except that the steps after the metal removal treatment by acid cleaning were not performed. Then, the carbonized material was subjected to metal impregnation treatment. That is, a solution prepared by adding 2 g of iron (III) chloride hexahydrate (FeCl 3 .6H 2 O) to 300 mL of distilled water was boiled, and 2 g of a carbonized material was added to the iron-containing solution. Then, the carbonized material was impregnated with iron for 3 hours while stirring in the boiling iron-containing solution.
  • iron (III) chloride hexahydrate FeCl 3 .6H 2 O
  • the solution containing the carbonized material was filtered using a filtration membrane (pore size: 1.0 ⁇ m, manufactured by Millipore), and washed with distilled water until the filtrate became neutral.
  • the collected carbonized material was vacuum-dried at 60 ° C. for 12 hours. Furthermore, the dried carbonized material was pulverized in a mortar.
  • this carbonized material was subjected to heat treatment and pulverization in the same manner as in Example 1-2 described above. Further, the carbonization material was subjected to metal removal treatment by acid cleaning in the same manner as in Example 1 described above. Finally, the carbonized material was subjected to heat treatment and pulverization in the same manner as in Example 1-2 above, and a pulverized particulate carbon catalyst 3 was obtained.
  • a catalyst slurry was prepared. That is, 5 mg of any one of the above-mentioned carbon catalysts 1 to 3 and platinum-supporting carbon, 2 cups of spatula (about 15 grains) glass beads (diameter 1 mm), and 5 wt% Nafion (registered trademark) solution (manufactured by Aldrich) 50 ⁇ L, 150 ⁇ L of ethanol, and 150 ⁇ L of distilled water were mixed and subjected to ultrasonic treatment for 10 minutes to prepare a catalyst slurry in which the catalyst was uniformly dispersed.
  • methanol is mixed with a 0.5 M sulfuric acid aqueous solution to have a methanol concentration of 0.01 mol / L, 0.05 mol / L, 0.10 mol / L, 0.25 mol / L, or 0.50 mol / L.
  • a 0.5 M aqueous sulfuric acid solution containing a concentration was prepared.
  • a 0.5 M sulfuric acid aqueous solution not containing methanol was also prepared.
  • the voltage value was calculated by converting a value measured using a silver-silver chloride electrode (Ag / AgCl / saturated KCl) into a standard hydrogen electrode (NHE) reference value.
  • NHE standard hydrogen electrode
  • measurement was started after nitrogen was saturated with nitrogen by bubbling nitrogen at 25 ° C. for 20 minutes. That is, using this nitrogen-saturated electrolyte solution, without rotating the electrode, at 25 ° C., at a sweep rate of 50 mV / sec, from 0.8 V (vs. Ag / AgCl) to ⁇ 0.2 V (vs. Ag)
  • a cycle of sweeping the potential to / AgCl) was performed, and the value of the current flowing through the working electrode was measured. That is, when converted into the standard hydrogen electrode (NHE) reference value, the potential was swept from 1.0 V (vs. NHE) to 0 V (vs. NHE).
  • the voltage value was calculated by converting a value measured using a silver-silver chloride electrode (Ag / AgCl / saturated KCl) to a standard hydrogen electrode (NHE) reference value. First, oxygen was saturated with oxygen by bubbling oxygen at 25 ° C. for 20 minutes, and then the natural potential was measured.
  • a silver-silver chloride electrode Ag / AgCl / saturated KCl
  • NHE standard hydrogen electrode
  • the electrode was rotated at a rotational speed of 1500 rpm, and at 25 ° C., the sweep speed was 1 mV / second.
  • the potential was swept from 0.8 V (vs. Ag / AgCl) to -0.2 V (vs. Ag / AgCl), and the value of the current flowing through the working electrode was measured. That is, when converted into the standard hydrogen electrode (NHE) reference value, the potential was swept from 1.0 V (vs. NHE) to 0 V (vs. NHE). Then, the reduction current at the time when the potential was 0.7 V (vs. NHE) was measured.
  • NHE standard hydrogen electrode
  • FIG. 1A and FIG. 1B show an example of a voltammogram obtained by cyclic voltammetry.
  • the horizontal axis indicates the applied potential (V vs. NHE), and the vertical axis indicates the current density (mA / cm 2 ).
  • FIG. 1A shows the results when a nitrogen-saturated electrolyte containing methanol at a concentration of 0.25 mol / L was used and carbon catalysts 1 to 3 (Examples 1-1 to 1-3) were used as working electrodes. Indicates.
  • FIG. 1A shows the results when a nitrogen-saturated electrolyte containing methanol at a concentration of 0.25 mol / L was used and carbon catalysts 1 to 3 (Examples 1-1 to 1-3) were used as working electrodes. Indicates.
  • FIG. 1A shows the results when a nitrogen-saturated electrolyte containing methanol at a concentration of 0.25 mol / L was used and carbon catalysts 1 to 3
  • FIG. 1B shows an example in which a nitrogen-saturated electrolytic solution containing methanol at a concentration of 0.01 mol / L, 0.05 mol / L, or 0.25 mol / L is used, and platinum-supported carbon (Comparative Example 1) is used as a working electrode. The result is shown.
  • FIG. 1A shows the results when the methanol concentration is 0.25 mol / L, similar results were obtained for other methanol concentrations (including the case where the methanol concentration is zero).
  • FIG. 2A and 2B show an example of a voltammogram obtained by linear sweep voltammetry.
  • the horizontal axis indicates the applied potential (V vs. NHE), and the vertical axis indicates the current density (mA / cm 2 ).
  • FIG. 2A shows a case where an electrolytic solution containing methanol at a concentration of 0.25 mol / L is used and carbon catalyst 3 (Example 1-3) is used as a working electrode, and methanol is 0.01 mol / L, 0.10 mol.
  • concentration of / L or 0.50 mol / L is shown.
  • FIG. 2B shows an enlarged portion of the result shown in FIG. 2A where the current density is zero (mA / cm 2 ) or less.
  • FIG. 3 shows the reduction current measured at a potential of 0.7 V (vs. NHE) in linear sweep voltammetry.
  • the reduction current shown in FIG. 3 is a value read as a current density corresponding to a potential of 0.7 V (vs. NHE) in the voltammogram as shown in FIGS. 2A and 2B.
  • support carbon comparative example 1
  • the carbon catalyst 1 when the carbon catalyst 1 is used in all cases where the electrolytic solution does not contain methanol and when the electrolytic solution contains methanol at a concentration of at least 0.50 mol / L (Example 1-1) ) Is constant at ⁇ 0.73 mA / cm 2 , and when the carbon catalyst 2 is used (Example 1-2), the reduction current is constant at a lower ⁇ 0.92 mA / cm 2 , When the carbon catalyst 3 was used (Example 1-3), the reduction current was constant at an even lower value of ⁇ 1.12 mA / cm 2 .
  • the carbon catalyst 1-3 could be achieved -0.6mA / cm 2 or less, or -0.7mA / cm 2 or less of the reduction current. Further, by using the carbon catalyst 2 and carbon catalyst 3 was able to achieve -0.8mA / cm 2 or less, or -0.9mA / cm 2 or less of the reduction current. Further, by using the carbon catalyst 3, it was possible to achieve a -1.0 mA / cm 2 or less, or -1.1mA / cm 2 or less of the reduction current.
  • these carbon catalysts can be used as oxygen reduction catalysts for cathodes of direct methanol fuel cells, so that even if methanol crossover occurs, oxygen reduction is not promoted at the cathode without promoting methanol oxidation reaction. It has been shown that only the reaction can be promoted selectively and effectively. Further, it was considered that by using these carbon catalysts for the cathode, a direct methanol fuel cell capable of using methanol at a high concentration can be realized.
  • the catalytic activity in oxygen reduction reaction and ethanol oxidation reaction was evaluated by electrochemical measurement. That is, as described above, except that 0.5 M sulfuric acid aqueous solution containing ethanol at a concentration of 0.10 mol / L, 0.25 mol / L, 0.50 mol / L, or 4.2 mol / L was used as the electrolytic solution. Under the same conditions as in Example 1, cyclic voltammetry and linear sweep voltammetry using either the carbon catalyst 3 or platinum-supported carbon as a triode working electrode were performed.
  • FIG. 4A, FIG. 4B, and FIG. 4C show an example of a voltammogram obtained in cyclic voltammetry.
  • the horizontal axis indicates the applied potential (V vs. NHE), and the vertical axis indicates the current density (mA / cm 2 ).
  • FIG. 4A and FIG. 4B show an example in which an electrolytic solution containing ethanol at a concentration of 0.10 mol / L, 0.25 mol / L, or 0.50 mol / L was used, and carbon catalyst 3 (Example 2) and platinum-supported carbon (comparative). The result when Example 2) is used for each working electrode is shown.
  • FIG. 4C shows the results when an electrolytic solution containing ethanol at a concentration of 4.2 mol / L is used and carbon catalyst 3 (Example 2) or platinum-supported carbon (Comparative Example 2) is used as a working electrode.
  • the shape of the current-potential curve was symmetric in the cyclic voltammetry oxidation-reduction cycle using an electrolyte containing ethanol. That is, it was confirmed that the carbon catalyst 3 does not catalyze the ethanol oxidation reaction in an electrolytic solution containing ethanol.
  • FIG. 5A, FIG. 5B, and FIG. 5C show an example of a voltammogram obtained in linear sweep voltammetry.
  • the horizontal axis indicates the applied potential (V vs. NHE), and the vertical axis indicates the current density (mA / cm 2 ).
  • FIG. 5A shows a case where an electrolytic solution containing ethanol at a concentration of 0.25 mol / L is used and the carbon catalyst 3 is used as a working electrode (Example 2), and ethanol is 0.10 mol / L, 0.25 mol / L. Or the result at the time of using platinum carrying
  • FIG. 5B shows an enlarged portion of the result shown in FIG. 5A where the current density is zero (mA / cm 2 ) or less.
  • FIG. 5C shows the results when an electrolytic solution containing ethanol at a concentration of 4.2 mol / L is used and carbon catalyst 3 (Example 2) or platinum-supported carbon (Comparative Example 2) is used as a working electrode. Among these, the portion where the current density is zero (mA / cm 2 ) or less is shown enlarged.
  • FIG. 6 shows a reduction current measured at a potential of 0.7 V (vs. NHE) in linear sweep voltammetry.
  • the reduction current shown in FIG. 6 is a value read as a current density corresponding to a potential of 0.7 V (vs. NHE) in the voltammograms as shown in FIGS. 5A, 5B, and 5C.
  • Example 2 when the electrolytic solution does not contain ethanol (when the methanol concentration in FIG. 3 shown in Example 1 is 0 mol / L), when the carbon catalyst 3 is used (Example 1 shown in FIG. 3). -3) has a reduction current of ⁇ 1.12 mA / cm 2 , and the case where the carbon catalyst 3 is used when the electrolyte contains ethanol at a concentration of at least 4.2 mol / L (FIG. 6) (FIG. 6).
  • the reduction current of Example 2) shown in FIG. 6 was a lower 1.73 mA / cm 2 .
  • the use of the carbon catalyst 3 causes a reduction current lower than that in the case of using platinum-supported carbon (Comparative Example 2). Obtained.
  • this catalyst as an oxygen reduction catalyst for a cathode of a direct alcohol fuel cell using ethanol as a fuel compound, the ethanol oxidation reaction is promoted at the cathode even when a crossover occurs. It has been shown that only the oxygen reduction reaction can be promoted selectively and effectively. In addition, by using this catalyst for the cathode, a direct ethanol fuel cell using a high concentration of ethanol as a fuel compound can be realized.
  • the catalytic activity in the oxygen reduction reaction and alcohol oxidation reaction was evaluated using three types of alcohol as fuel compounds. That is, as an electrolytic solution, 0.5M sulfuric acid aqueous solution containing ethanol at a relatively high concentration of 4.2 mol / L, 0.5M containing ethylene glycol, which is a divalent primary alcohol, at a concentration of 0.25 mol / L.
  • FIG. 7A, FIG. 8A, and FIG. 9A show examples of the results of cyclic voltammetry using methanol, ethylene glycol, and isopropyl alcohol, respectively.
  • FIG. 7B, FIG. 8B, and FIG. 9B show examples of the results of linear sweep voltammetry using methanol, ethylene glycol, and isopropyl alcohol, respectively.
  • the horizontal axis indicates the applied potential (V vs. NHE), and the vertical axis indicates the current density (mA / cm 2 ).
  • FIG. 10 shows a reduction current measured at a potential of 0.7 V (vs. NHE) in linear sweep voltammetry.
  • the reduction current shown in FIG. 10 is a value read as a current density corresponding to a potential of 0.7 V (vs. NHE) in the voltammograms as shown in FIGS. 7B, 8B, and 9B.
  • the carbon catalyst 3 is not only used in the case of using methanol or ethanol as the fuel compound, but also in the case of using other alcohols such as ethylene glycol and isopropyl alcohol. It was shown that only the oxygen reduction reaction was promoted selectively and effectively without promoting the oxidation reaction of the alcohol on the cathode electrode side without being affected by the over phenomenon. Further, similarly to the case where ethanol is used in FIG. 6, even when high concentration methanol is used, the carbon catalyst 3 is not affected by the crossover phenomenon and is not affected by the cathode electrode side. It was shown that only the oxygen reduction reaction was selectively and effectively promoted without promoting the methanol oxidation reaction.
  • a direct alcohol fuel cell using a fuel compound other than methanol such as ethanol, ethylene glycol or isopropyl alcohol
  • a direct methanol fuel cell using a high concentration of methanol as a fuel compound can be realized.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)

Abstract

 燃料化合物のクロスオーバーが発生した場合においても酸素還元反応を選択的に促進する、直接型燃料電池のカソード用炭素触媒を提供する。 本発明に係る直接型燃料電池のカソード用炭素触媒は、前記直接型燃料電池の燃料化合物を含有する電解液中において、酸素還元触媒活性を示し、且つ前記燃料化合物を酸化する触媒活性を実質的に示さない。

Description

直接型燃料電池のカソード用炭素触媒並びにこれを用いた直接型燃料電池用カソード及び直接型燃料電池
 本発明は、直接型燃料電池のカソード用炭素触媒並びにこれを用いた直接型燃料電池用カソード及び直接型燃料電池に関し、特に、燃料化合物のクロスオーバーが発生した場合においても酸素還元反応を選択的に促進する炭素触媒に関する。
 燃料電池の一つに直接型燃料電池(DFC)がある。例えば、燃料化合物としてメタノールを用いる直接メタノール型燃料電池(DMFC)は、そのエネルギー密度が高く、次世代の小型電源として期待されている。DMFCにおける化学反応は、次のとおりである;アノード反応:CHOH+HO→6H+6e+CO、カソード反応:1.5O+6H+6e→3HO、全反応:CHOH+1.5O→2HO+CO
 しかしながら、アノード反応においてアノードに供給されたメタノールの全ては反応できず、未反応のメタノールがプロトン伝導性電解質膜を透過しカソードに移動するメタノールクロスオーバー(MCO)という現象が問題となっている。
 一般的に、DMFCのカソード触媒には白金触媒が使われるが、当該白金触媒は、酸素還元反応だけではなく、メタノールの酸化反応も促進する。このため、クロスオーバーしたメタノールによって、カソ-ドにおいてもメタノール酸化反応が起きてしまい、DMFCの発電性能が著しく低下してしまう。
 そこで、従来、カソード用触媒として、白金に加えて、酸素還元反応のみを促進するパラジウム(Pd)やルテニウム(Ru)といった他の貴金属を併用することが行われている(例えば、特許文献1,2参照)。
特開2008-135380号公報 特開2004-253385号公報
 しかしながら、貴金属触媒を使用する上記従来技術においては、例えば、電解反応に伴う電極表面における酸化被膜の生成や金属溶出によって、得られる電流値が徐々に低下するといった問題があった。また、貴金属を使用することによるコストの増大や、貴金属の埋蔵量による制限等の問題もあった。
 また、貴金属を使用せず合金触媒を使用する例もあったが、金属溶出の問題を十分に回避し、且つ十分な酸素還元活性を得ることは難しかった。
 本発明は、上記課題に鑑みて為されたものであり、メタノール等の燃料化合物のクロスオーバーが発生した場合においても酸素還元反応を選択的に促進する、直接型燃料電池のカソード用炭素触媒並びにこれを用いた直接型燃料電池用カソード及び直接型燃料電池を提供することをその目的の一つとする。
 上記課題を解決するための本発明の一実施形態に係る直接型燃料電池のカソード用炭素触媒は、直接型燃料電池のカソードに用いられる炭素触媒であって、前記直接型燃料電池の燃料化合物を含有する電解液中において、酸素還元触媒活性を示し、且つ前記燃料化合物を酸化する触媒活性を実質的に示さないことを特徴とする。本発明によれば、燃料化合物のクロスオーバーが発生した場合においても酸素還元反応を選択的に促進する、直接型燃料電池のカソード用炭素触媒を提供することができる。
 また、前記炭素触媒は、前記炭素触媒を三極式の作用電極に用いたリニアスイープボルタンメトリーにおいて、前記燃料化合物を0.25mol/Lの濃度で含有する酸素飽和させた電解液を用い、25℃にて掃引速度1mV/秒で掃引したときの電位0.7V(vs.NHE)での還元電流が、-0.6mA/cm以下であることとしてもよい。
 また、前記炭素触媒は、前記炭素触媒を三極式の作用電極に用いて25℃で行うサイクリックボルタンメトリーにおいて、前記燃料化合物を含有する窒素飽和させた電解液を用いた場合に、電位が0.6V(vs.NHE)から1.0V(vs.NHE)の範囲で、前記炭素触媒の酸素還元触媒活性に影響を与える前記燃料化合物の酸化触媒活性を示さないこととしてもよい。
 また、前記炭素触媒は、前記炭素触媒を三極式の作用電極に用いたリニアスイープボルタンメトリーにおいて、前記燃料化合物を含有する酸素飽和させた電解液を用い、25℃にて掃引速度1mV/秒で掃引したときの電位0.7V(vs.NHE)での還元電流が、前記電解液に含有される前記燃料化合物の濃度に実質的に依存しないこととしてもよい。
 また、前記燃料化合物は、アルコールであることとしてもよい。
 上記課題を解決するための本発明の一実施形態に係る直接型燃料電池のカソード用炭素触媒は、直接型燃料電池のカソードに用いられる酸素還元触媒活性を有する炭素触媒であって、前記炭素触媒を三極式の作用電極に用いたリニアスイープボルタンメトリーにおいて、前記直接型燃料電池の燃料化合物を0.25mol/Lの濃度で含有する酸素飽和させた電解液を用い、25℃にて掃引速度1mV/秒で掃引したときの電位0.7V(vs.NHE)での還元電流が、-0.6mA/cm以下であることを特徴とする。本発明によれば、燃料化合物のクロスオーバーが発生した場合においても酸素還元反応を選択的に促進する、直接型燃料電池のカソード用炭素触媒を提供することができる。
 上記課題を解決するための本発明の一実施形態に係る直接型燃料電池のカソード用炭素触媒は、直接型燃料電池のカソードに用いられる酸素還元触媒活性を有する炭素触媒であって、前記炭素触媒を三極式の作用電極に用いて25℃で行うサイクリックボルタンメトリーにおいて、前記直接型燃料電池の燃料化合物を含有する窒素飽和させた電解液を用いた場合に、電位が0.6V(vs.NHE)から1.0V(vs.NHE)の範囲で、前記炭素触媒の酸素還元触媒活性に影響を与える前記燃料化合物の酸化触媒活性を示さないことを特徴とする。本発明によれば、燃料化合物のクロスオーバーが発生した場合においても酸素還元反応を選択的に促進する、直接型燃料電池のカソード用炭素触媒を提供することができる。
 また、前記炭素触媒は、窒素含有有機物と金属とを含む原料を炭素化して得られた炭素触媒であることとしてもよい。この場合、前記原料は、導電性炭素材料をさらに含むこととしてもよい。また、前記炭素触媒は、前記原料を炭素化して得られた炭素化材料に、金属除去処理を施し、さらに熱処理を施して得られた炭素触媒であることとしてもよい。また、前記炭素触媒は、前記原料を炭素化して得られた炭素化材料に、金属含浸処理を施し、さらに熱処理を施して得られた炭素触媒であることとしてもよい。
 上記課題を解決するための本発明の一実施形態に係る直接型燃料電池用カソードは、前記炭素触媒を含むことを特徴とする。本発明によれば、燃料化合物のクロスオーバーが発生した場合においても酸素還元反応を選択的に促進する、直接型燃料電池用カソードを提供することができる。
 上記課題を解決するための本発明の一実施形態に係る直接型燃料電池は、前記いずれかの炭素触媒を含むカソードを備えたことを特徴とする。本発明によれば、燃料化合物のクロスオーバーが発生した場合においてもカソードにて酸素還元反応が選択的に行われる直接型燃料電池を提供することができる。
 本発明によれば、燃料化合物のクロスオーバーが発生した場合においても酸素還元反応を選択的に促進する、直接型燃料電池のカソード用炭素触媒並びにこれを用いた直接型燃料電池用カソード及び直接型燃料電池を提供することができる。
本発明の一実施形態に係る炭素触媒を使用し燃料化合物としてメタノールを使用したサイクリックボルタンメトリーにおいて得られたボルタモグラムの一例を示す説明図である。 白金触媒を使用し燃料化合物としてメタノールを使用したサイクリックボルタンメトリーにおいて得られたボルタモグラムの一例を示す説明図である。 本発明の一実施形態に係る炭素触媒及び白金触媒を使用し燃料化合物としてメタノールを使用したリニアスイープボルタンメトリーにおいて得られたボルタモグラムの一例を示す説明図である。 図2Aの一部を拡大して示す説明図である。 本発明の一実施形態に係る炭素触媒及び白金触媒を使用し燃料化合物としてメタノールを使用したリニアスイープボルタンメトリーにおいて還元電流を測定した結果の一例を示す説明図である。 本発明の一実施形態に係る炭素触媒を使用し燃料化合物としてエタノールを使用したサイクリックボルタンメトリーにおいて得られたボルタモグラムの一例を示す説明図である。 白金触媒を使用し燃料化合物としてエタノールを使用したサイクリックボルタンメトリーにおいて得られたボルタモグラムの一例を示す説明図である。 本発明の一実施形態に係る炭素触媒及び白金触媒を使用し燃料化合物としてエタノールを使用したサイクリックボルタンメトリーにおいて得られたボルタモグラムの他の例を示す説明図である。 本発明の一実施形態に係る炭素触媒及び白金触媒を使用し燃料化合物としてエタノールを使用したリニアスイープボルタンメトリーにおいて得られたボルタモグラムの一例を示す説明図である。 図5Aの一部を拡大して示す説明図である。 本発明の一実施形態に係る炭素触媒及び白金触媒を使用し燃料化合物としてエタノールを使用したリニアスイープボルタンメトリーにおいて得られたボルタモグラムの他の例を示す説明図である。 本発明の一実施形態に係る炭素触媒及び白金触媒を使用し燃料化合物としてエタノールを使用したリニアスイープボルタンメトリーにおいて還元電流を測定した結果の一例を示す説明図である。 本発明の一実施形態に係る炭素触媒を使用し燃料化合物としてメタノールを使用したサイクリックボルタンメトリーにおいて得られたボルタモグラムの他の例を示す説明図である。 本発明の一実施形態に係る炭素触媒及び白金触媒を使用し燃料化合物としてメタノールを使用したリニアスイープボルタンメトリーにおいて得られたボルタモグラムの他の例を示す説明図である。 本発明の一実施形態に係る炭素触媒及び白金触媒を使用し燃料化合物としてエチレングリコールを使用したサイクリックボルタンメトリーにおいて得られたボルタモグラムの一例を示す説明図である。 本発明の一実施形態に係る炭素触媒及び白金触媒を使用し燃料化合物としてエチレングリコールを使用したリニアスイープボルタンメトリーにおいて得られたボルタモグラムの一例を示す説明図である。 本発明の一実施形態に係る炭素触媒及び白金触媒を使用し燃料化合物としてイソプロピルアルコールを使用したサイクリックボルタンメトリーにおいて得られたボルタモグラムの一例を示す説明図である。 本発明の一実施形態に係る炭素触媒及び白金触媒を使用し燃料化合物としてイソプロピルアルコールを使用したリニアスイープボルタンメトリーにおいて得られたボルタモグラムの一例を示す説明図である。 本発明の一実施形態に係る炭素触媒及び白金触媒を使用し燃料化合物としてメタノール、エチレングリコール及びイソプロピルアルコールを使用したリニアスイープボルタンメトリーにおいて還元電流を測定した結果の一例を示す説明図である。
 以下に、本発明の一実施形態について説明する。なお、本発明は本実施形態で示す例に限られない。
 本実施形態に係る直接型燃料電池のカソード用炭素触媒(以下、「本触媒」という。)は、酸素還元触媒活性を有する炭素触媒である。すなわち、本触媒は、それ自身が、直接型燃料電池のカソードにおける酸素の還元反応を促進する触媒活性を有する炭素材料である。すなわち、本触媒は、例えば、金属触媒(例えば、白金等の貴金属触媒)を担持することなく、酸素還元触媒活性を示す炭素触媒である。
 なお、直接型燃料電池の燃料化合物は、当該直接型燃料電池において燃料として用いられる化合物であれば特に限られず、任意の有機化合物及び/又は無機化合物を用いることができる。この燃料化合物は、例えば、燃料電池のアノード側で酸化されて、プロトンと電子とを発生する化合物である。
 また、燃料化合物は、例えば、水酸基を有する化合物であることとしてもよく、水酸基を有する水溶性の化合物であることが好ましい。すなわち、燃料化合物は、例えば、アルコールであることとしてもよく、炭素数が1~6のアルコールであることが好ましい。
 さらに、燃料化合物は、例えば、一級アルコール及び/又は二級アルコールであることとしてもよく、炭素数が1~6の一級アルコール及び/又は二級アルコールであることが好ましい。また、燃料化合物は、例えば、一価アルコール及び/又は多価アルコールであることとしてもよく、炭素数が1~6の一価アルコール及び/又は多価アルコールであることが好ましい。より具体的に、燃料化合物は、例えば、一級又は二級の一価又は多価アルコールであることとしてもよく、炭素数が1~6の一級又は二級の一価又は多価アルコールであることとしてもよい。
 具体的に、燃料化合物は、例えば、メタノール、エタノール、ノルマルプロピルアルコール、イソプロピルアルコール、エチレングリコール、グリセロール、グルコース及びスクロースからなる群より選択される1種又は2種以上であることとしてもよい。
 そして、本触媒は、直接型燃料電池のカソードに用いられる炭素触媒であって、当該直接型燃料電池の燃料化合物を含有する電解液中において、酸素還元触媒活性を示し、且つ当該燃料化合物を酸化する触媒活性を実質的に示さない。
 すなわち、本触媒は、例えば、酸素還元触媒活性を有する炭素触媒であって、当該炭素触媒を三極式の作用電極に用いたリニアスイープボルタンメトリーにおいて、燃料化合物を0.25mol/Lの濃度で含有する酸素飽和させた電解液を用い、25℃にて掃引速度1mV/秒で掃引したときの電位0.7V(vs.NHE)での還元電流が、-0.6mA/cm以下である炭素触媒である。この場合、上記還元電流は、-0.7mA/cm以下とすることもできる。
 リニアスイープボルタンメトリーは、例えば、本触媒を担持した作用電極と、参照電極及び対電極と、を用いた回転リングディスク電極法により行うことができる。電解液としては、例えば、0.5M硫酸水溶液を用いることができる。
 なお、本触媒は、上記リニアスイープボルタンメトリーにおいて、燃料化合物を含有しない酸素飽和させた電解液を用いた場合でも、燃料化合物を含有する電解液を用いた場合と同等又はそれより高い酸素還元触媒活性を示す。
 また、本触媒は、燃料化合物を含有する電解液において、より高い酸素還元触媒活性を示す炭素触媒とすることができる。すなわち、上記リニアスイープボルタンメトリーにおける上記還元電流は、例えば、-0.8mA/cm以下とすることができ、-0.9mA/cm以下とすることもできる。さらに、上記還元電流は、例えば、-1.0mA/cm以下とすることができ、-1.1mA/cm以下とすることもできる。
 なお、上記還元電流の下限値は特に限られないが、例えば、上記還元電流は、-4.0mA/cm以上とすることができる。
 また、本触媒は、例えば、酸素還元触媒活性を有する炭素触媒であって、当該炭素触媒を三極式の作用電極に用いて25℃で行うサイクリックボルタンメトリーにおいて、燃料化合物を含有する窒素飽和させた電解液を用いた場合に、電位が0.6V(vs.NHE)から1.0V(vs.NHE)の範囲で、当該炭素触媒の酸素還元触媒活性に影響を与える当該燃料化合物の酸化触媒活性を示さない炭素触媒である。
 すなわち、本触媒は、上記サイクリックボルタンメトリーにおいて、燃料化合物を含有しない窒素飽和させた電解液を用いた場合、及び当該燃料化合物を含有する窒素飽和させた電解液を用いた場合のいずれにおいても、電位が0.6V(vs.NHE)から1.0V(vs.NHE)の範囲で、当該燃料化合物の酸化反応を促進する触媒活性は示さない。
 具体的に、例えば、上記サイクリックボルタンメトリーにおいて、燃料化合物を含有する窒素飽和させた電解液を用いた場合であっても、電位を正方向に掃引して得られる電流-電位曲線と、電位を負方向に掃引して得られる電流-電位曲線と、が実質的に対称となる。
 なお、サイクリックボルタンメトリーは、例えば、本触媒を担持した作用電極と、参照電極及び対電極と、を用いた回転リングディスク電極法により行うことができる。また、サイクリックボルタンメトリーにおいては、例えば、掃引速度50mV/秒で電位を掃引することができる。
 サイクリックボルタンメトリーに用いられる電解液に含有される燃料化合物の濃度は、特に限られず、例えば、0.01mol/L~5.00mol/Lの範囲とすることができる。また、燃料化合物の濃度は、例えば、0.01mol/L~0.50mol/Lの範囲とすることもでき、より具体的には、例えば、0.01mol/L、0.05mol/L、0.10mol/L、0.25mol/L又は0.50mol/Lとすることができる。電解液としては、例えば、0.5M硫酸水溶液を用いることができる。
 本触媒は、上述のとおり、燃料化合物を含有する電解液中において、当該燃料化合物の酸化触媒活性を実質的に示さない炭素触媒である。例えば、本触媒は、上記リニアスイープボルタンメトリーにおいて、燃料化合物を含有しない酸素飽和させた電解液を用いた場合と、当該燃料化合物を含有する酸素飽和させた電解液を用いた場合と、で電位0.7V(vs.NHE)における還元電流(mA/cm)の差が0.15mA/cm以下である炭素触媒とすることができる。すなわち、燃料化合物を含有しない酸素飽和させた電解液を用いた場合の還元電流をA(mA/cm)とした場合、当該燃料化合物を含有する酸素飽和させた電解液を用いた場合の還元電流は、A±0.15(mA/cm)である。
 リニアスイープボルタンメトリーに用いられる電解液に含有される燃料化合物の濃度は、特に限られず、例えば、0.01mol/L~5.00mol/Lの範囲とすることができ、0.05mol/L~5.00mol/Lの範囲とすることもでき、0.10mol/L~5.00mol/Lの範囲とすることもできる。また、燃料化合物の濃度は、例えば、0.01mol/L~0.50mol/Lの範囲とすることができ、より具体的には、例えば、0.01mol/L、0.05mol/L、0.10mol/L、0.25mol/L又は0.50mol/Lとすることができる。電解液としては、例えば、0.5M硫酸水溶液を用いることができる。
 また、本触媒は、例えば、上記リニアスイープボルタンメトリーにおいて、25℃にて掃引速度1mV/秒で掃引したときの電位0.7V(vs.NHE)での還元電流が、電解液に含有される燃料化合物の濃度に実質的に依存しない炭素触媒とすることができる。
 すなわち、この場合、例えば、電解液に含有される燃料化合物の濃度が0.01mol/Lの場合と、0.05mol/L、0.10mol/L、0.25mol/L又は0.50mol/Lの場合と、で電位0.7V(vs.NHE)での還元電流の差が0.15mA/cm以下となる。
 また、例えば、燃料化合物の濃度が0.05mol/L~0.50mol/Lの範囲である場合、本触媒は、上記リニアスイープボルタンメトリーにおいて、当該燃料化合物を0.05mol/L含有する酸素飽和させた電解液を用いた場合と、当該燃料化合物を0.10mol/L~0.50mol/L含有する酸素飽和させた電解液を用いた場合と、で電位0.7V(vs.NHE)における還元電流(mA/cm)の差が0.01mA/cm以下である炭素触媒とすることができる。また、同様に、燃料化合物の濃度が0.10mol/Lである場合と、0.25mol/L~0.50mol/Lである場合と、の還元電流の差が0.01mA/cm以下とすることもできる。
 本触媒は、例えば、窒素含有有機物と金属とを含む原料を炭素化して得られた炭素触媒とすることができる。原料に含まれる窒素含有有機物(以下、単に「有機物」という。)は、当該有機物に対して0.1重量%以上の窒素を含有し、炭素化できるもの(炭素源として使用できるもの)であれば特に限られず、任意の1種を単独で又は2種以上を組み合わせて使用することができる。この有機物は、活性触媒の炭素材料前駆体として原料に含まれる。
 有機物としては、例えば、その分子内に窒素原子を含む、高分子量の有機化合物(例えば、熱可塑性樹脂や熱硬化性樹脂等の樹脂)及び低分子量の有機化合物の一方又は両方を使用することができる。また、例えば、植物廃材等のバイオマスを使用することもできる。
 有機物としては、例えば、金属に配位可能な配位子を好ましく使用することができる。すなわち、この場合、その分子内に1又は複数個の配位原子を含む有機化合物を使用する。より具体的に、例えば、配位原子として、その分子内に窒素原子、リン原子、酸素原子、硫黄原子からなる群より選択される1種又は2種以上を含む有機化合物を使用することができる。また、例えば、配位基として、その分子内にアミノ基、フォスフィノ基、カルボキシル基、チオール基からなる群より選択される1種又は2種以上を含む有機化合物を使用することもできる。
 具体的に、有機化合物としては、例えば、ピロール、ポリピロール、ポリビニルピロール、3-メチルポリピロール、フラン、チオフェン、オキサゾール、チアゾール、ピラゾール、ビニルピリジン、ポリビニルピリジン、ピリダジン、ピリミジン、ピペラジン、ピラン、モルホリン、イミダゾール、1-メチルイミダゾール、2-メチルイミダゾ-ル、キノキサリン、アニリン、ポリアニリン、コハク酸ジヒドラジド、アジピン酸ジヒドラジド、ポリスルフォン、ポリアミノビスマレイミド、ポリイミド、ポリビニルアルコール、ポリビニルブチラール、ベンゾイミダゾ-ル、ポリベンゾイミダゾ-ル、ポリアミド、ポリエステル、ポリ乳酸、アクリロニトリル、ポリアクリロニトリル、ポリエ-テル、ポリエ-テルエ-テルケトン、セルロ-ス、リグニン、キチン、キトサン、絹、毛、ポリアミノ酸、核酸、DNA、RNA、ヒドラジン、ヒドラジド、尿素、サレン、ポリカルバゾール、ポリビスマレイミド、トリアジン、アイオノマー、ポリアクリル酸、ポリアクリル酸エステル、ポリメタクリル酸エステル、ポリメタクリル酸、ポリウレタン、ポリアミドアミン、ポリカルボジイミド、ポリアクリロニトリル-ポリメタクリル酸共重合体、フェノール樹脂、メラミン、メラミン樹脂、エポキシ樹脂、フラン樹脂、ポリアミドイミド樹脂からなる群より選択される1種又は2種以上を使用することができる。
 廃材等のバイオマスとしては、例えば、酒粕、麹、コーヒー出し殻、お茶出し殻、ビール絞り粕、米ぬか等の食品産業廃棄物、林地残材、建築廃材等の木質系廃材、下水汚泥等の生活系廃材からなる群より選択される1種又は2種以上を使用することができる。
 有機物は、本触媒の活性を向上させる成分をさらに含むこともできる。すなわち、有機物は、例えば、本触媒の活性を向上させる成分として、ホウ素、リン、酸素、硫黄からなる群より選択される1種又は2種以上をさらに含有することができる。また、有機物は、金属塩や金属錯体を含むこともできる。
 原料に含まれる金属は、本触媒の触媒活性を阻害しないものであれば特に限られず、目的に応じて適宜選択することができ、任意の1種を単独で又は2種以上を組み合わせて使用することができる。
 すなわち、金属としては、例えば、周期律表の3族元素、4族元素、5族元素、6族元素、7族元素、8族元素、9族元素、10族元素、11族元素、12族元素、13族元素及び16族元素からなる群より選択される1種又は2種以上の金属を使用することができ、遷移金属を好ましく使用することができる。
 具体的に、例えば、スカンジウム(Sc)、チタン(Ti)、バナジウム(V)、クロム(Cr)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、亜鉛(Zn)、イットリウム(Y)、ジルコニウム(Zr)、ニオブ(Nb)、ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、ランタノイド系列の元素(セリウム(Ce)等)、及びアクチノイド系列の元素からなる群より選択される1種又は2種以上の金属を使用することができ、鉄、コバルト、ニッケルを特に好ましく使用することができる。本触媒の製造に使用される金属の種類の数は、特に限られないが、例えば、30種以下とすることができ、1種~10種を好ましく使用することができる。
 金属としては、当該金属の単体又は当該金属の化合物を使用することができる。金属化合物としては、例えば、金属塩、金属酸化物、金属水酸化物、金属窒化物、金属硫化物、金属炭素化物、金属錯体を使用することができ、金属塩、金属酸化物、金属硫化物、金属錯体を好ましく使用することができる。なお、上述の有機化合物として配位子を使用する場合には、原料中において金属錯体が形成されることとなる。また、上述の有機物が金属塩や金属錯体を含む場合において、原料は、当該有機物に加えて、さらに金属を含むこともできる。
 原料は、導電性炭素材料をさらに含むこともできる。この導電性炭素材料は、本触媒に導電性を付与し又は当該本触媒の導電性を向上させるものであれば特に限られず、任意の1種を単独で又は2種以上を組み合わせて使用することができる。導電性炭素材料としては、例えば、導電性を有し、それ自身では触媒活性を有しない炭素材料を使用することができる。
 具体的に、例えば、カーボンブラック、カーボンナノチューブ、カーボンナノホーン、カーボンファイバー、カーボンフィブリル、黒鉛粉末からなる群より選択される1種又は2種以上を使用することができ、導電性の高いものを好ましく使用することができる。
 原料に導電性炭素材料が含まれる場合には、例えば、有機物の炭素化により生成される炭素化材料を当該導電性炭素材料に十分に分散して担持することにより、本触媒の活性点を増加させ、高い触媒活性を実現することができる。
 また、導電性炭素材料は、例えば、金属が予め担持されたものを使用することもできる。すなわち、この場合、例えば、本触媒の活性や耐酸化性能を向上させる遷移金属を担持した導電性炭素材料を使用することができる。遷移金属としては、例えば、チタン、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、ガリウム、ジルコニウム、ニオブ、モリブデン、ランタン、セリウム、ネオジム、タンタル、タングステンからなる群より選択される1種又は2種以上を好ましく使用することができる。
 本触媒の製造においては、まず、炭素化に先立って、上述の有機物及び金属を含み、必要に応じて導電性炭素材料をさらに含む、原料を混合する。原料を混合する方法は特に限られず、例えば、乳鉢や攪拌装置を使用することができる。また、有機物、金属(及び必要に応じて導電性炭素材料)を粉末状で混合する粉体混合や、溶媒を添加して混合する溶媒混合を使用することができ、これら2種以上の混合方法を使用することもできる。
 そして、上述のように調製した原料を炭素化する。すなわち、原料を加熱して、当該原料を炭素化できる所定温度(炭素化温度)で保持する。炭素化温度は、原料を炭素化できる温度であれば特に限られず、例えば、300℃以上とすることができる。より具体的に、炭素化温度は、例えば、300℃以上、1500℃以下とすることができ、好ましくは400℃以上、1200℃以下とすることができる。
 原料を炭素化温度まで加熱する際の昇温速度は、特に限られず、例えば、0.5℃/分以上、300℃/分以下とすることができる。原料を炭素化温度で保持する時間(炭素化時間)は、原料を炭素化できる時間であれば特に限られず、例えば、5分以上とすることができる。より具体的に、炭素化時間は、例えば、5分以上、180分以下とすることができ、好ましくは20分以上、120分以下とすることができる。また、炭素化は、窒素等の不活性ガス下(例えば、不活性ガスの流通下)又は真空中で行うことが好ましい。こうして、原料の炭素化により生成された炭素化材料を得ることができる。そして、例えば、この炭素化材料を本触媒として使用することができる。
 また、本触媒は、例えば、原料を炭素化して得られた炭素化材料に窒素原子を導入(ドープ)したものとすることもできる。窒素原子を導入する方法としては、例えば、気相ドープ法、液相ドープ法又は気相-液相ドープ法を使用することができる。具体的に、例えば、アンモニア、メラミン、アセトニトリル等の窒素源を炭素化材料と混合し、得られた混合物を窒素、アルゴン、ヘリウム等の不活性ガス雰囲気下で550℃以上、1200℃以下の温度で、5分以上、180分以下の時間保持する熱処理により、当該炭素化材料の表面に窒素原子を導入することができる。また、得られた炭素化材料に、アンモオキシデーション、二酸化炭素賦活、リン酸賦活、アルカリ賦活、水蒸気賦活を施すこともできる。
 また、本触媒は、例えば、原料を炭素化して得られた炭素化材料を、粉砕したものとすることもできる。炭素化材料を粉砕する方法は、特に限られず、例えば、ボールミルやビーズミル等の粉砕装置を使用することができる。粉砕後の炭素化材料の平均粒径は、例えば、150μm以下とすることが好ましい。
 また、本触媒は、例えば、原料を炭素化して得られた炭素化材料に、金属除去処理を施したものとすることができる。すなわち、例えば、炭素化後に金属が不要となる場合には、必要に応じて炭素化材料に金属除去処理を施す。金属除去処理は、炭素化材料に含まれる金属を除去し、又は当該金属の量を低減できる処理であれば特に限られず、例えば、酸による洗浄処理や電解処理を実施することができる。
 酸洗浄に使用する酸は、金属除去処理の効果が得られるものであれば特に限られず、任意の1種又は2種以上を使用することができる。すなわち、例えば、塩酸(例えば、濃塩酸)、硝酸(例えば、濃硝酸)及び硫酸(例えば、濃硫酸)からなる群より選択される1種又は2種以上を使用することができる。2種以上の酸を使用する場合には、例えば、濃塩酸と濃硝酸とを所定の体積比で混合して調製された混酸(例えば、王水)や、濃硝酸と濃硫酸とを所定の体積比で混合して調製された混酸を使用することができる。
 酸洗浄の方法は、金属除去処理の効果が得られるものであれば特に限られず、例えば、酸を含有する溶液中に炭素化材料を浸漬して保持する方法を使用することができる。この場合、煮沸した酸溶液中で炭素化材料を保持することもできる。
 また、本触媒は、例えば、原料を炭素化して得られた炭素化材料に、金属除去処理を施し、さらに熱処理を施して得られた炭素触媒とすることができる。すなわち、この場合、本触媒の製造においては、上述のような金属除去処理(例えば、酸洗浄)が施された炭素化材料に熱処理を施す。熱処理は、例えば、上述の炭素化と同様に行うことができる。具体的に、金属除去処理後の炭素化材料を、300℃以上、1500℃以下の温度で加熱する。これらの処理によって、炭素化材料に僅かに残存する不活性な金属成分等を除去することができ、活性点が露出した炭素触媒を得ることができる。
 また、本触媒は、例えば、原料を炭素化して得られた炭素化材料に、金属含浸処理を施し、さらに熱処理を施して得られた炭素触媒とすることができる。この場合、本触媒は、例えば、原料を炭素化して得られた炭素化材料に、金属除去処理を施すことなく、金属含浸処理を施し、さらに熱処理を施して得られた炭素触媒とすることもできる。また、本触媒は、例えば、原料を炭素化して得られた炭素化材料に、金属除去処理を施した後、金属含浸処理を施し、さらに熱処理を施して得られた炭素触媒とすることもできる。
 すなわち、これらの場合、本触媒の製造においては、まず、炭素化材料に金属を含浸させる。炭素化材料に含浸させる金属は、本触媒の活性を阻害しないものであれば特に限られず、任意の1種を単独で又は2種以上を組み合わせて使用することができる。具体的に、例えば、チタン、鉄、コバルト、ニッケル、ジルコニウム、ニオブ、モリブデン、ランタン、セリウムからなる群より選択される1種又は2種以上を使用することができる。また、金属含浸処理で炭素化材料に含浸させる金属は、炭素化の原料に含まれる金属とは異なる種類の金属とすることもできる。また、金属は、当該金属の単体又は当該金属の化合物として使用することができる。金属化合物としては、例えば、金属塩、金属酸化物、金属水酸化物、金属窒化物、金属硫化物、金属炭素化物、金属錯体を使用することができ、金属塩、金属酸化物、金属硫化物、金属錯体を好ましく使用することができる。
 金属を含浸させる方法は、当該炭素化材料の少なくとも表面に当該金属を含浸させることのできるものであれば特に限られず、例えば、当該炭素化材料を、当該金属を含有する溶液に接触させる方法を使用することができる。すなわち、例えば、金属含有溶液中に炭素化材料を浸漬して保持することにより、当該炭素化材料に金属を含浸させることができる。この場合、煮沸した金属含有溶液中で炭素化材料を保持することもできる。また、金属含有溶液としては、酸性の溶液を使用することもできる。この場合、金属含有溶液のpHは、例えば、1以上、6以下とすることができる。
 金属含浸処理に続く熱処理は、例えば、上述の炭素化と同様に行うことができる。具体的に、金属含浸処理後の炭素化材料を、300℃以上、1500℃以下の温度で加熱する。
 また、本触媒は、例えば、原料を炭素化して得られた炭素化材料に、金属含浸処理を施し、次いで熱処理を施し、さらに金属除去処理を施して得られた炭素触媒とすることもできる。この場合、本触媒は、例えば、原料を炭素化して得られた炭素化材料に、金属除去処理を施すことなく、金属含浸処理を施し、次いで熱処理を施し、さらに金属除去処理を施して得られた炭素触媒とすることもできる。また、本触媒は、例えば、原料を炭素化して得られた炭素化材料に、金属除去処理を施した後、金属含浸処理を施し、次いで熱処理を施し、さらに金属除去処理を施して得られた炭素触媒とすることもできる。これらの場合、本触媒は、例えば、金属含浸処理後の金属除去処理に続いて、再び熱処理を施して得られた炭素触媒とすることもできる。
 また、本触媒は、例えば、原料を炭素化して得られた炭素化材料に、表面処理を施したものとすることができる。この表面処理としては、例えば、酸処理を使用することができる。この酸処理は、例えば、上述の金属除去を目的とした酸洗浄と同様に実施することができる。また、表面処理として、上述の金属含浸処理を使用することもできる。
 本実施形態に係る直接型燃料電池用カソードは、上述の炭素触媒(本触媒)を含むカソード(酸素電極)である。このカソードは、例えば、金属触媒(例えば、白金等の貴金属触媒)を含まないものとすることができる。また、カソードにおける酸素還元反応が著しく損なわれない範囲で、本触媒と金属触媒(例えば、白金等の貴金属触媒)とを併用することもできる。
 本実施形態に係る直接型燃料電池は、上述の炭素触媒(本触媒)を含むカソードを備えている。すなわち、この直接型燃料電池は、例えば、上述の炭素触媒(本触媒)が担持されたカソードを含む膜/電極接合体(MEA)を備えたものとなる。また、例えば、直接型燃料電池の燃料化合物としてアルコールを用いる場合には、当該直接型燃料電池は、本触媒を含むカソードを備えた直接アルコール型燃料電池となる。より具体的に、例えば、燃料化合物としてメタノールを用いる場合には、直接型燃料電池は、直接メタノール型燃料電池となる。
 本発明によれば、燃料化合物のクロスオーバーが発生した場合においても酸素還元反応を選択的に促進する、直接型燃料電池のカソード用炭素触媒並びにこれを用いた直接型燃料電池用カソード及び直接型燃料電池を実現することができる。
 すなわち、本発明によれば、例えば、埋蔵量に限りのある白金等の高価な貴金属系触媒を用いることなく、比較的安価に製造される本触媒によって、直接型燃料電池のカソードにおいて、燃料化合物のクロスオーバーが発生した場合であっても、酸素還元反応のみを選択的に促進することができる。
 また、本触媒による酸素還元触媒活性は、上述のとおり、燃料化合物濃度による制約を受けないため、当該燃料化合物のクロスオーバーが発生した場合においても安定した出力を達成する直接型燃料電池を実現することができる。
 また、本触媒は、燃料化合物濃度が比較的高い場合であっても酸素還元触媒活性を十分に維持することができるため、比較的高い濃度の燃料化合物を含む燃料(例えば、90重量%以上の濃度のメタノール等のアルコールを含む燃料)がアノードに供給される直接型燃料電池を実現することができる。
 次に、本実施形態に係る具体的な実施例について説明する。
[実施例1-1:炭素触媒1の製造]
 まず、炭素化の対象となる原料を調製した。すなわち、1.5gのポリアクリロニトリル-ポリメタクリル酸共重合体(PAN/PMA=92.5mol%/7.5mol%)を30mLのジメチルホルムアミドに溶解させた後、1.5gの2-メチルイミダゾールと、1.5gの塩化コバルト(CoCl)六水和物と、を加え、室温で2時間攪拌することにより、これらの混合物を得た。
 一方、ケッチェンブラック(ECP600JD、ライオン株式会社製)と炭素繊維(カルベ-ル、株式会社GSIクレオス製)とを重量混合比率6:4で混合し、得られた混合物に過酸化水素処理を施した後(当該混合物を、10%の過酸化水素水に25℃、120分浸漬して処理した後)、窒素雰囲気中500℃で再熱処理して表面の官能基を除去することにより繊維状撥水性カーボンを得た。
 そして、上述の混合物に対して、この繊維状撥水性カーボンを、炭素化原料に含有される固形分の30重量%となるように加え、乳鉢を用いて混合した。得られた混合物を、60℃で12時間、真空乾燥した。
 さらに、この混合物を大気中で加熱して、30分間で室温から150℃まで昇温し、続いて2時間かけて150℃から220℃まで昇温した。その後、混合物を220℃で3時間保持し、当該混合物の不融化を行った。こうして、炭素化材料の原料を調製した。
 次に、原料の炭素化を行った。すなわち、上述のように不融化処理した原料を石英管に入れ、イメージ炉にて、20分間窒素パージし、加熱により18分かけて室温から900℃まで昇温した。その後、この原料を900℃で1時間保持し、炭素化を行った。こうして、炭素化材料を得た。
 さらに、この炭素化材料を粉砕した。すなわち、遊星ボールミル(P-7、フリッチュジャパン株式会社製)内に直径が10mmの窒化ケイ素ボールをセットし、当該遊星ボールミルによって炭素化材料を回転速度650rpmで5分間粉砕する処理を10サイクル行った。その後、粉砕した炭素化材料を取り出し、目開き106μmの篩いを通過した炭素化材料を、粉砕された微粒子状の炭素化材料として得た。
 次に、酸洗浄による金属除去処理を行った。すなわち、上述の炭素化材料1gに100mLの濃塩酸を加え、1時間攪拌した。炭素化材料を沈殿させ、溶液を除去した後、濃塩酸と蒸留水とを1:1(体積比)で混合した溶液を100mL加え、1時間攪拌した。炭素化材料を沈殿させ、溶液を除去した後、蒸留水を100mL加え、1時間攪拌した。この炭素化材料を含有する溶液を、ろ過膜(孔径1.0μm、Millipore製)を使用してろ過し、ろ液が中性になるまで蒸留水で洗浄した。回収された炭素化材料を60℃で12時間、真空乾燥させた。さらに、乾燥した炭素化材料を乳鉢で粉砕し、粉砕された微粒子状の炭素触媒1を得た。
[実施例1-2:炭素触媒2の製造]
 上述の実施例1-1で得られた炭素触媒1に、熱処理を施した。すなわち、上述の炭素触媒1を石英管に入れ、イメージ炉にて20分間窒素パージし、加熱により14分かけて室温から700℃まで昇温した。その後、炭素触媒1を700℃で1時間保持した。そして、上述の実施例1と同様にして粉砕処理を行い、粉砕された微粒子状の炭素触媒2を得た。
[実施例1-3:炭素触媒3の製造]
 酸洗浄による金属除去処理以降の工程を行わない以外は、上述の実施例1と同様にして、粉砕された微粒子状の炭素化材料を得た。そして、この炭素化材料に金属含浸処理を施した。すなわち、300mLの蒸留水に2gの塩化鉄(III)六水和物(FeCl・6HO)を加えて調製した溶液を沸騰させ、当該鉄含有溶液に炭素化材料を2g加えた。そして、沸騰中の鉄含有溶液中で攪拌しながら3時間、炭素化材料に鉄を含浸させた。その後、ろ過膜(孔径1.0μm、Millipore製)を使用して、炭素化材料を含む溶液をろ過し、ろ液が中性になるまで蒸留水で洗浄した。回収された炭素化材料を60℃で12時間、真空乾燥させた。さらに、乾燥した炭素化材料を乳鉢で粉砕した。
 次に、この炭素化材料に、上述の実施例1-2と同様にして熱処理及び粉砕処理を施した。さらに、炭素化材料に対して、上述の実施例1と同様にして酸洗浄による金属除去処理を行った。最後に、炭素化材料に対して、上述の実施例1-2と同様にして熱処理及び粉砕処理を行い、粉砕された微粒子状の炭素触媒3を得た。
[比較例1:白金担持触媒の準備]
 白金を担持した酸素還元触媒として、白金担持カーボン(UNPC40-II(Pt 38.0wt%/C)、石福金属興業株式会社製)を準備した。
[電気化学測定]
 次に、電気化学測定により、酸素還元反応及びメタノール酸化反応における触媒活性を評価した。まず、触媒スラリーを調製した。すなわち、上述の炭素触媒1~3及び白金担持カーボンのいずれか5mgと、スパチュラで2杯(約15粒)のガラスビーズ(直径1mm)と、5重量%Nafion(登録商標)溶液(Aldrich社製)50μLと、エタノール150μLと、蒸留水150μLと、を混合し、10分間、超音波処理することにより、触媒が均一に分散された触媒スラリーを調製した。
 次に、この触媒スラリー4μLをピペットで吸い取り、回転リングディスク電極装置(RRDE-1 SC-5、有限会社 日厚計測製)のディスク電極(直径6mm)に塗布し、飽和水蒸気雰囲気下で乾燥させることにより、作用電極を作製した。また、銀-塩化銀電極(Ag/AgCl/飽和KCl)を参照電極として用い、白金線を対電極として用いた。
 電解液としては、0.5M硫酸水溶液にメタノールを混合することにより、メタノールを0.01mol/L、0.05mol/L、0.10mol/L、0.25mol/L又は0.50mol/Lの濃度で含有する0.5M硫酸水溶液を調製した。また、比較のために、メタノールを含有しない0.5M硫酸水溶液も準備した。
 そして、炭素触媒1~3及び白金担持カーボンのいずれかを三極式の作用電極に用いたサイクリックボルタンメトリー及びリニアスイープボルタンメトリーを実施した。
 サイクリックボルタンメトリーにおいては、電圧値は、銀-塩化銀電極(Ag/AgCl/飽和KCl)を用いて測定した値を標準水素電極(NHE)基準値に換算することにより算出した。まず、25℃で窒素を20分間バブリングすることにより電解液を窒素飽和させた後に、測定を開始した。すなわち、この窒素飽和させた電解液を用い、電極を回転させることなく、25℃にて、掃引速度50mV/秒で、0.8V(vs.Ag/AgCl)から-0.2V(vs.Ag/AgCl)まで電位を掃引するサイクルを実施し、作用電極に流れる電流値を測定した。すなわち、標準水素電極(NHE)基準値に換算すると、1.0V(vs.NHE)から0V(vs.NHE)まで電位を掃引した。
 リニアスイープボルタンメトリーにおいては、電圧値は、銀-塩化銀電極(Ag/AgCl/飽和KCl)を用いて測定した値を標準水素電極(NHE)基準値に換算することにより算出した。まず、25℃で酸素を20分間バブリングすることにより電解液を酸素飽和させた後、自然電位を測定した。
 次いで、初期電位0.8V(vs.Ag/AgCl)を600秒印加した後に、酸素飽和させた電解液を用い、電極を回転速度1500rpmで回転させ、25℃にて、掃引速度1mV/秒にて、0.8V(vs.Ag/AgCl)から-0.2V(vs.Ag/AgCl)まで電位を掃引し、作用電極に流れる電流値を測定した。すなわち、標準水素電極(NHE)基準値に換算すると、1.0V(vs.NHE)から0V(vs.NHE)まで電位を掃引した。そして、電位が0.7V(vs.NHE)の時点での還元電流を測定した。
 図1A及び図1Bに、サイクリックボルタンメトリーにおいて得られたボルタモグラムの一例を示す。図1A及び図1Bにおいて、横軸は印加された電位(V vs.NHE)を示し、縦軸は電流密度(mA/cm)を示す。図1Aは、メタノールを0.25mol/Lの濃度で含有する窒素飽和させた電解液を用い、炭素触媒1~3(実施例1-1~1-3)を作用電極に用いた場合の結果を示す。図1Bは、メタノールを0.01mol/L、0.05mol/L又は0.25mol/Lの濃度で含有する窒素飽和させた電解液を用い、白金担持カーボン(比較例1)を作用電極に用いた場合の結果を示す。
 図1Bに示すように、白金担持カーボンを作用電極に用いた場合(比較例1)には、低い電位(0.35V以下)におけるメタノールの脱水素酸化反応を示すピークと、高電位(0.7V付近)における一酸化炭素(CO)の酸化反応を示すピークと、が明確に現れた。すなわち、メタノール酸化反応の電流が示された。また、メタノール濃度が増加するとCO酸化ピークが増大したことから、白金担持カーボンは、一定の濃度以上でメタノールが存在する電解液中ではカソード触媒として機能しないと考えられた。
 これに対し、図1Aに示すように、炭素触媒1、炭素触媒2又は炭素触媒3を作用電極に用いた場合(実施例1-1~1-3)には、電位が0.6V(vs.NHE)から1.0V(vs.NHE)の範囲で、酸素還元反応に影響を与えるメタノール酸化反応は確認されなかった。
 また、これらの炭素触媒を用いた場合には、サイクリックボルタンメトリーの酸化還元サイクルで電流-電位曲線の形状が対称的であった。すなわち、これらの炭素触媒は、メタノールを含有する電解液中でメタノール酸化反応を触媒しないことが確認された。なお、図1Aにはメタノール濃度が0.25mol/Lの場合の結果を示しているが、他のメタノール濃度(メタノール濃度がゼロの場合も含む)についても同様の結果が得られた。
 図2A及び図2Bに、リニアスイープボルタンメトリーにおいて得られたボルタモグラムの一例を示す。図2A及び図2Bにおいて、横軸は印加された電位(V vs.NHE)を示し、縦軸は電流密度(mA/cm)を示す。図2Aは、メタノールを0.25mol/Lの濃度で含有する電解液を用い炭素触媒3(実施例1-3)を作用電極に用いた場合、及びメタノールを0.01mol/L、0.10mol/L又は0.50mol/Lの濃度で含有する電解液を用い白金担持カーボン(比較例1)を作用電極に用いた場合の結果を示す。図2Bには、図2Aに示す結果のうち、電流密度がゼロ(mA/cm)以下の部分を拡大して示す。
 また、図3に、リニアスイープボルタンメトリーにおいて、電位0.7V(vs.NHE)で測定された還元電流を示す。図3に示す還元電流は、図2A及び図2Bに示すようなボルタモグラムにおいて、電位0.7V(vs.NHE)に対応する電流密度として読み取られた値である。なお、白金担持カーボン(比較例1)については、メタノールを含有しない電解液を用いた測定は行わなかった。
 図2A、図2B及び図3に示されるように、白金担持カーボンを作用電極に用いた場合(比較例1)には、電解液中のメタノール濃度の変化に応じて、0.7V(vs.NHE)の電圧を印加したときの還元電流が大きく変化した。すなわち、白金担持カーボンは、酸素還元触媒活性のみならず、メタノール酸化触媒活性をも示し、メタノール濃度が増加するにつれて、メタノール酸化触媒活性をより優位に示してしまうことが確認された。したがって、白金担持カーボンは、電解液中のメタノール濃度が一定値以上の場合には、カソード触媒として機能しないと考えられた。
 これに対し、炭素触媒1、炭素触媒2又は炭素触媒3を作用電極に用いた場合(実施例1-1~1-3)には、電解液中のメタノール濃度にかかわらず、0.7V(vs.NHE)の電圧を印加したときの還元電流はほぼ一定であった。すなわち、炭素触媒1、炭素触媒2及び炭素触媒3は、メタノール酸化触媒活性を示さず、酸素還元触媒活性のみを選択的に示した。
 具体的に、電解液がメタノールを含有しない場合及び電解液がメタノールを少なくとも0.50mol/Lまでの濃度で含有する場合の全ての場合において、炭素触媒1を用いた場合(実施例1-1)の還元電流は-0.73mA/cmで一定であり、炭素触媒2を用いた場合(実施例1-2)の還元電流は、より低い-0.92mA/cmで一定であり、炭素触媒3を用いた場合(実施例1-3)の還元電流は、さらに低い-1.12mA/cmで一定であった。
 すなわち、炭素触媒1~3を用いることにより、-0.6mA/cm以下、あるいは-0.7mA/cm以下の還元電流を達成することができた。また、炭素触媒2及び炭素触媒3を用いることにより、-0.8mA/cm以下、あるいは-0.9mA/cm以下の還元電流を達成することができた。さらに、炭素触媒3を用いることにより、-1.0mA/cm以下、あるいは-1.1mA/cm以下の還元電流を達成することができた。
 また、電解液中のメタノール濃度が0.1mol/Lに達すると、炭素触媒3(実施例1-3)を用いることによって、白金担持カーボン(比較例1)を用いる場合より高い還元電流が得られた。さらに、電解液中のメタノール濃度が0.10mol/Lより大きい場合(少なくとも0.25mol/L以上の場合)には、炭素触媒1~3(実施例1-1~1-3)のいずれを用いても、白金担持カーボン(比較例1)を用いる場合より高い還元電流が得られた。
 以上の結果から、これら炭素触媒を、直接メタノール型燃料電池のカソード用酸素還元触媒として用いることにより、メタノールクロスオーバーが生じた場合であっても、カソードにおいてメタノール酸化反応を促進することなく酸素還元反応のみを選択的且つ効果的に促進することができることが示された。また、これらの炭素触媒をカソードに用いることにより、高い濃度でのメタノールの使用を可能とする直接メタノール型燃料電池を実現することができると考えられた。
 電気化学測定により、酸素還元反応及びエタノール酸化反応における触媒活性を評価した。すなわち、電解液として、エタノールを0.10mol/L、0.25mol/L、0.50mol/L又は4.2mol/Lの濃度で含有する0.5M硫酸水溶液を使用したこと以外は、上述の実施例1と同一の条件で、炭素触媒3及び白金担持カーボンのいずれかを三極式の作用電極に用いたサイクリックボルタンメトリー及びリニアスイープボルタンメトリーを実施した。
 図4A、図4B及び図4Cに、サイクリックボルタンメトリーにおいて得られたボルタモグラムの一例を示す。図4A、図4B及び図4Cにおいて、横軸は印加された電位(V vs.NHE)を示し、縦軸は電流密度(mA/cm)を示す。図4A及び図4Bは、エタノールを0.10mol/L、0.25mol/L又は0.50mol/Lの濃度で含有する電解液を用い、炭素触媒3(実施例2)及び白金担持カーボン(比較例2)をそれぞれ作用電極に用いた場合の結果を示す。図4Cは、エタノールを4.2mol/Lの濃度で含有する電解液を用い、炭素触媒3(実施例2)又は白金担持カーボン(比較例2)を作用電極に用いた場合の結果を示す。
 図4B及び図4Cに示すように、白金担持カーボンを作用電極に用いた場合(比較例2)には、エタノール酸化反応の電流が示された。この結果から、白金担持カーボンは、一定の濃度以上でエタノールが存在する電解液中ではカソード触媒として機能しないと考えられた。
 これに対し、図4A及び図4Cに示すように、炭素触媒3を作用電極に用いた場合(実施例2)には、電位が0.6V(vs.NHE)から1.0V(vs.NHE)の範囲で、酸素還元反応に影響を与えるエタノール酸化反応は確認されなかった。
 特に、図4Cから、エタノールの濃度が4.2mol/Lと比較的高い場合であっても、炭素触媒3はカソード触媒として十分に機能することが確認された。一方、白金担持カーボンは、このような高いエタノール濃度においてはカソード触媒として機能しないことが確認された。
 また、炭素触媒3を用いた場合には、エタノールを含有する電解液を用いたサイクリックボルタンメトリーの酸化還元サイクルで電流-電位曲線の形状が対称的であった。すなわち、炭素触媒3は、エタノールを含有する電解液中でエタノール酸化反応を触媒しないことが確認された。
 図5A、図5B及び図5Cに、リニアスイープボルタンメトリーにおいて得られたボルタモグラムの一例を示す。図5A、図5B及び図5Cにおいて、横軸は印加された電位(V vs.NHE)を示し、縦軸は電流密度(mA/cm)を示す。
 図5Aは、エタノールを0.25mol/Lの濃度で含有する電解液を用い炭素触媒3を作用電極に用いた場合(実施例2)、及びエタノールを0.10mol/L、0.25mol/L又は0.50mol/Lの濃度で含有する電解液を用い白金担持カーボンを作用電極に用いた場合(比較例2)の結果を示す。図5Bには、図5Aに示す結果のうち、電流密度がゼロ(mA/cm)以下の部分を拡大して示す。
 また、図5Cには、エタノールを4.2mol/Lの濃度で含有する電解液を用い、炭素触媒3(実施例2)又は白金担持カーボン(比較例2)を作用電極に用いた場合の結果のうち、電流密度がゼロ(mA/cm)以下の部分を拡大して示す。
 また、図6に、リニアスイープボルタンメトリーにおいて、電位0.7V(vs.NHE)で測定された還元電流を示す。図6に示す還元電流は、図5A、図5B及び図5Cに示すようなボルタモグラムにおいて、電位0.7V(vs.NHE)に対応する電流密度として読み取られた値である。
 図5A、図5B、図5C及び図6に示されるように、白金担持カーボンを作用電極に用いた場合(比較例2)には、電解液中のエタノール濃度の変化に応じて、0.7V(vs.NHE)の電圧を印加したときの還元電流が大きく変化した。すなわち、白金担持カーボンは、酸素還元触媒活性のみならず、エタノール酸化触媒活性をも示し、エタノール濃度が増加するにつれて、エタノール酸化触媒活性をより優位に示してしまうことが確認された。したがって、白金担持カーボンは、電解液中のエタノール濃度が一定値以上の場合には、カソード触媒として機能しないと考えられた。
 これに対し、炭素触媒3を作用電極に用いた場合(実施例2)には、電解液中のエタノール濃度にかかわらず、0.7V(vs.NHE)の電圧を印加したときの還元電流はほぼ一定であった。すなわち、炭素触媒3は、エタノール酸化触媒活性を示さず、酸素還元触媒活性のみを選択的に示した。
 具体的に、電解液がエタノールを含有しない場合(上述の実施例1で示した図3におけるメタノール濃度が0mol/Lの場合)において、炭素触媒3を用いた場合(図3に示す実施例1-3)の還元電流は-1.12mA/cmであり、電解液がエタノールを少なくとも4.2mol/Lまでの濃度で含有する場合(図6)において、炭素触媒3を用いた場合(図6に示す実施例2)の還元電流は、さらに低い-1.73mA/cmであった。
 また、電解液中のエタノール濃度が少なくとも0.10mol/L以上の場合には、炭素触媒3(実施例2)を用いることによって、白金担持カーボン(比較例2)を用いる場合より低い還元電流が得られた。
 以上の結果から、燃料化合物としてエタノールを用いる直接アルコール型燃料電池のカソード用酸素還元触媒として、本触媒を用いることにより、クロスオーバーが生じた場合であっても、カソードにおいてエタノール酸化反応を促進することなく酸素還元反応のみを選択的且つ効果的に促進することができることが示された。また、本触媒をカソードに用いることにより、高濃度のエタノールを燃料化合物として用いる直接エタノール型燃料電池を実現できる。
 燃料化合物として3種類のアルコールを使用して、酸素還元反応及びアルコール酸化反応における触媒活性を評価した。すなわち、電解液として、エタノールを比較的高い4.2mol/Lの濃度で含有する0.5M硫酸水溶液、二価の一級アルコールであるエチレングリコールを0.25mol/Lの濃度で含有する0.5M硫酸水溶液、及び一価の二級アルコールであるイソプロピルアルコールを0.25mol/Lの濃度で含有する0.5M硫酸水溶液をそれぞれ用い、上述の実施例1と同一の条件で、炭素触媒3及び白金担持カーボンのいずれかを三極式の作用電極に用いたサイクリックボルタンメトリー及びリニアスイープボルタンメトリーを実施した。
 図7A、図8A及び図9Aに、メタノール、エチレングリコール及びイソプロピルアルコールをそれぞれ用いたサイクリックボルタンメトリーの結果の一例を示す。また、図7B、図8B及び図9Bに、メタノール、エチレングリコール及びイソプロピルアルコールをそれぞれ用いたリニアスイープボルタンメトリーの結果の一例を示す。図7~図9において、横軸は印加された電位(V vs.NHE)を示し、縦軸は電流密度(mA/cm)を示す。
 まず、図7A及び図7Bに示すように、炭素触媒3を用いた場合(実施例3)には、メタノールの酸化反応は生じておらず、酸素還元反応は、4.2mol/Lという比較的高い濃度で存在するメタノールによって影響を受けないことが確認された。すなわち、メタノールを比較的高い濃度で含有する電解液中においても、炭素触媒3はカソード触媒として十分に機能することが確認された。
 一方、白金担持カーボンを用いた場合(比較例3)には、メタノールの酸化反応が生じた。すなわち、白金担持カーボンは、カソード触媒として機能しないことが確認された。
 次に、図8A及び図8Bに示すように、炭素触媒3を用いた場合(実施例3)には、エチレングリコールの酸化反応は生じておらず、酸素還元反応は、0.25mol/Lの濃度で存在するエチレングリコールによって影響を受けないことが確認された。すなわち、エチレングリコールを含有する電解液中においても、炭素触媒3はカソード触媒として十分に機能することが確認された。
 一方、白金担持カーボンを用いた場合(比較例3)には、エチレングリコールの酸化反応が生じた。すなわち、白金担持カーボンは、カソード触媒として機能しないことが確認された。
 さらに、図9A及び図9Bに示すように、炭素触媒3を用いた場合(実施例3)には、イソプロピルアルコールの酸化反応は生じておらず、酸素還元反応は、0.25mol/Lの濃度で存在するイソプロピルアルコールによって影響を受けないことが確認された。すなわち、イソプロピルアルコールを含有する電解液中においても、炭素触媒3はカソード触媒として十分に機能することが確認された。
 一方、白金担持カーボンを用いた場合(比較例3)には、イソプロピルアルコールの酸化反応が生じた。すなわち、白金担持カーボンは、カソード触媒として機能しないことが確認された。
 また、図10に、リニアスイープボルタンメトリーにおいて、電位0.7V(vs.NHE)で測定された還元電流を示す。図10に示す還元電流は、図7B、図8B及び図9Bに示すようなボルタモグラムにおいて、電位0.7V(vs.NHE)に対応する電流密度として読み取られた値である。
 この図10からも明らかなように、炭素触媒3は、燃料化合物として、メタノールやエタノールを用いる場合だけでなく、エチレングリコールやイソプロピルアルコール等の他のアルコールを用いた場合であっても、いわゆるクロスオーバー現象の影響を受けずに、カソード電極側で当該アルコールの酸化反応を促進することなく酸素還元反応のみを選択的且つ効果的に促進することが示された。さらに、図6においてエタノールを用いる場合について示されたのと同様に、高濃度のメタノールを用いた場合であっても、炭素触媒3は、クロスオーバー現象の影響を受けずに、カソード電極側でメタノール酸化反応を促進することなく酸素還元反応のみを選択的且つ効果的に促進することが示された。
 このように、本触媒をカソードに用いることにより、エタノール、エチレングリコール又はイソプロピルアルコールなどのメタノール以外の燃料化合物を用いた直接アルコール型燃料電池を実現できる。また、本触媒をカソードに用いることにより、高濃度のメタノールを燃料化合物として用いる直接メタノール型燃料電池を実現できる。

Claims (13)

  1.  直接型燃料電池のカソードに用いられる炭素触媒であって、
     前記直接型燃料電池の燃料化合物を含有する電解液中において、酸素還元触媒活性を示し、且つ前記燃料化合物を酸化する触媒活性を実質的に示さない
     ことを特徴とする直接型燃料電池のカソード用炭素触媒。
  2.  前記炭素触媒を三極式の作用電極に用いたリニアスイープボルタンメトリーにおいて、前記燃料化合物を0.25mol/Lの濃度で含有する酸素飽和させた電解液を用い、25℃にて掃引速度1mV/秒で掃引したときの電位0.7V(vs.NHE)での還元電流が、-0.6mA/cm以下である
     ことを特徴とする請求項1に記載された直接型燃料電池のカソード用炭素触媒。
  3.  前記炭素触媒を三極式の作用電極に用いて25℃で行うサイクリックボルタンメトリーにおいて、前記燃料化合物を含有する窒素飽和させた電解液を用いた場合に、電位が0.6V(vs.NHE)から1.0V(vs.NHE)の範囲で、前記炭素触媒の酸素還元触媒活性に影響を与える前記燃料化合物の酸化触媒活性を示さない
     ことを特徴とする請求項1又は2に記載された直接型燃料電池のカソード用炭素触媒。
  4.  前記炭素触媒を三極式の作用電極に用いたリニアスイープボルタンメトリーにおいて、前記燃料化合物を含有する酸素飽和させた電解液を用い、25℃にて掃引速度1mV/秒で掃引したときの電位0.7V(vs.NHE)での還元電流が、前記電解液に含有される前記燃料化合物の濃度に実質的に依存しない
     ことを特徴とする請求項1乃至3のいずれかに記載された直接型燃料電池のカソード用炭素触媒。
  5.  前記燃料化合物は、アルコールである
     ことを特徴とする請求項1乃至4のいずれかに記載された直接型燃料電池のカソード用炭素触媒。
  6.  直接型燃料電池のカソードに用いられる酸素還元触媒活性を有する炭素触媒であって、
     前記炭素触媒を三極式の作用電極に用いたリニアスイープボルタンメトリーにおいて、前記直接型燃料電池の燃料化合物を0.25mol/Lの濃度で含有する酸素飽和させた電解液を用い、25℃にて掃引速度1mV/秒で掃引したときの電位0.7V(vs.NHE)での還元電流が、-0.6mA/cm以下である
     ことを特徴とする直接型燃料電池のカソード用炭素触媒。
  7.  直接型燃料電池のカソードに用いられる酸素還元触媒活性を有する炭素触媒であって、
     前記炭素触媒を三極式の作用電極に用いて25℃で行うサイクリックボルタンメトリーにおいて、前記直接型燃料電池の燃料化合物を含有する窒素飽和させた電解液を用いた場合に、電位が0.6V(vs.NHE)から1.0V(vs.NHE)の範囲で、前記炭素触媒の酸素還元触媒活性に影響を与える前記燃料化合物の酸化触媒活性を示さない
     ことを特徴とする直接型燃料電池のカソード用炭素触媒。
  8.  窒素含有有機物と金属とを含む原料を炭素化して得られた
     ことを特徴とする請求項1乃至7のいずれかに記載された直接型燃料電池のカソード用炭素触媒。
  9.  前記原料は、導電性炭素材料をさらに含む
     ことを特徴とする請求項8に記載された直接型燃料電池のカソード用炭素触媒。
  10.  前記原料を炭素化して得られた炭素化材料に、金属除去処理を施し、さらに熱処理を施して得られた
     ことを特徴とする請求項8又は9に記載された直接型燃料電池のカソード用炭素触媒。
  11.  前記原料を炭素化して得られた炭素化材料に、金属含浸処理を施し、さらに熱処理を施して得られた
     ことを特徴とする請求項8乃至10のいずれかに記載された直接型燃料電池のカソード用炭素触媒。
  12.  請求項1乃至11のいずれかに記載された炭素触媒を含む
     ことを特徴とする直接型燃料電池用カソード。
  13.  請求項1乃至11のいずれかに記載された炭素触媒を含むカソードを備えた
     ことを特徴とする直接型燃料電池。
PCT/JP2011/059631 2010-04-20 2011-04-19 直接型燃料電池のカソード用炭素触媒並びにこれを用いた直接型燃料電池用カソード及び直接型燃料電池 WO2011132676A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201180020148.6A CN102859766B (zh) 2010-04-20 2011-04-19 用于直接型燃料电池的阴极的碳催化剂和使用所述催化剂的直接型燃料电池的阴极和直接型燃料电池
CA2796644A CA2796644C (en) 2010-04-20 2011-04-19 Carbon catalyst for direct fuel cell cathode, and direct fuel cell cathode and direct fuel cell using same
JP2012511668A JP5863645B2 (ja) 2010-04-20 2011-04-19 直接型燃料電池のカソード用炭素触媒並びにこれを用いた直接型燃料電池用カソード及び直接型燃料電池
US13/641,551 US8617768B2 (en) 2010-04-20 2011-04-19 Carbon catalyst for direct fuel cell cathode, and direct fuel cell cathode and direct fuel cell using same
EP11772011.0A EP2562860B1 (en) 2010-04-20 2011-04-19 Carbon catalyst for direct fuel cell cathode, and direct fuel cell cathode and direct fuel cell using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010097184 2010-04-20
JP2010-097184 2010-04-20

Publications (1)

Publication Number Publication Date
WO2011132676A1 true WO2011132676A1 (ja) 2011-10-27

Family

ID=44834195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/059631 WO2011132676A1 (ja) 2010-04-20 2011-04-19 直接型燃料電池のカソード用炭素触媒並びにこれを用いた直接型燃料電池用カソード及び直接型燃料電池

Country Status (6)

Country Link
US (1) US8617768B2 (ja)
EP (1) EP2562860B1 (ja)
JP (1) JP5863645B2 (ja)
CN (1) CN102859766B (ja)
CA (1) CA2796644C (ja)
WO (1) WO2011132676A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013134981A (ja) * 2011-12-27 2013-07-08 Daihatsu Motor Co Ltd 燃料電池システム
JP2013208597A (ja) * 2012-03-30 2013-10-10 Toshiba Corp 酸素還元触媒と酸素還元触媒を用いた電気化学セル
WO2015147131A1 (ja) * 2014-03-28 2015-10-01 国立大学法人群馬大学 カーボンアロイ触媒の製造方法、カーボンアロイ触媒
JP2016015283A (ja) * 2014-07-03 2016-01-28 帝人株式会社 カソード電極構造体及び膜・電極接合体
WO2022163752A1 (ja) * 2021-01-29 2022-08-04 国立大学法人東海国立大学機構 炭素材料の製造方法、炭素材料、電極の製造方法、電極、及び燃料電池

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150219583A1 (en) * 2014-02-06 2015-08-06 Honeywell International Inc. Lead-free galvanic oxygen sensor
WO2016027123A1 (en) * 2014-08-17 2016-02-25 University Of The Western Cape A method for producing non-precious metal catalysts from nitrogen-rich biomass
CA3025138C (en) * 2016-06-02 2023-09-26 Nisshinbo Holdings Inc. Carbon catalyst, battery electrode, and battery
CN111644189B (zh) * 2020-05-07 2022-10-18 广东邦普循环科技有限公司 利用废旧电池负极石墨的氧还原催化剂及其制备方法
CN114976070B (zh) * 2022-06-29 2024-01-30 华南理工大学 一种制备非贵金属-氮共掺杂多孔碳材料的方法及其应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007026746A (ja) * 2005-07-13 2007-02-01 Gunma Univ 燃料電池用電極触媒の製造方法及びその方法で製造された電極触媒並びにその電極触媒を用いた燃料電池
JP2008021638A (ja) * 2006-06-16 2008-01-31 Osaka City 鉄含有炭素材料の製造方法
WO2008127828A1 (en) * 2007-04-12 2008-10-23 3M Innovative Properties Company High performance, high durability non-precious metal fuel cell catalysts
JP2008282725A (ja) * 2007-05-11 2008-11-20 Gunma Univ 炭素系燃料電池用電極触媒の製造方法
JP2009291706A (ja) * 2008-06-04 2009-12-17 Seizo Miyata 炭素触媒及び炭素触媒の製造方法、燃料電池、蓄電装置、炭素触媒の使用方法
JP2009291714A (ja) * 2008-06-05 2009-12-17 Seizo Miyata 触媒及びその製造方法、膜電極接合体及びその製造方法、燃料電池部材及びその製造方法、燃料電池及び蓄電装置
WO2011055739A1 (ja) * 2009-11-05 2011-05-12 国立大学法人群馬大学 炭素触媒並びにその製造方法及びこれを用いた電極並びに電池

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2108417C3 (de) * 1971-02-22 1978-05-11 Siemens Ag, 1000 Berlin Und 8000 Muenchen Verfahren zur Herstellung stickstoffhaltiger, pulverförmiger Kohle als Elektrodenmaterial für elektrochemische Zellen
KR100506091B1 (ko) 2003-02-19 2005-08-04 삼성에스디아이 주식회사 연료전지의 캐소드용 촉매
WO2004112174A1 (ja) * 2003-06-11 2004-12-23 Matsushita Electric Industrial Co., Ltd. 酸素還元用電極の製造方法ならびに酸素還元用電極及びそれを用いた電気化学素子
US7629071B2 (en) * 2004-09-29 2009-12-08 Giner Electrochemical Systems, Llc Gas diffusion electrode and method of making the same
JP5068029B2 (ja) * 2006-03-31 2012-11-07 株式会社日鉄技術情報センター 酸素還元複合触媒及びその製造方法並びにこれを用いた燃料電池
JP5292764B2 (ja) 2006-10-26 2013-09-18 学校法人早稲田大学 燃料電池用カソード触媒、その製造方法及び固定化方法、並びに燃料電池
JP5059378B2 (ja) * 2006-11-10 2012-10-24 株式会社日立製作所 燃料電池用電極触媒とその製造方法および燃料電池
JP4925793B2 (ja) * 2006-11-20 2012-05-09 旭化成株式会社 燃料電池用電極触媒
JP5217236B2 (ja) * 2007-05-15 2013-06-19 三菱化学株式会社 RuTe2及びN元素を含む燃料電池用触媒と、この燃料電池用触媒を用いた燃料電池用電極材料及び燃料電池
JP4925926B2 (ja) * 2007-06-05 2012-05-09 旭化成株式会社 燃料電池用電極触媒
JP4979817B2 (ja) * 2008-12-02 2012-07-18 日清紡ホールディングス株式会社 炭素触媒及びその製造方法、これを用いた電極及び電池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007026746A (ja) * 2005-07-13 2007-02-01 Gunma Univ 燃料電池用電極触媒の製造方法及びその方法で製造された電極触媒並びにその電極触媒を用いた燃料電池
JP2008021638A (ja) * 2006-06-16 2008-01-31 Osaka City 鉄含有炭素材料の製造方法
WO2008127828A1 (en) * 2007-04-12 2008-10-23 3M Innovative Properties Company High performance, high durability non-precious metal fuel cell catalysts
JP2008282725A (ja) * 2007-05-11 2008-11-20 Gunma Univ 炭素系燃料電池用電極触媒の製造方法
JP2009291706A (ja) * 2008-06-04 2009-12-17 Seizo Miyata 炭素触媒及び炭素触媒の製造方法、燃料電池、蓄電装置、炭素触媒の使用方法
JP2009291714A (ja) * 2008-06-05 2009-12-17 Seizo Miyata 触媒及びその製造方法、膜電極接合体及びその製造方法、燃料電池部材及びその製造方法、燃料電池及び蓄電装置
WO2011055739A1 (ja) * 2009-11-05 2011-05-12 国立大学法人群馬大学 炭素触媒並びにその製造方法及びこれを用いた電極並びに電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2562860A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013134981A (ja) * 2011-12-27 2013-07-08 Daihatsu Motor Co Ltd 燃料電池システム
JP2013208597A (ja) * 2012-03-30 2013-10-10 Toshiba Corp 酸素還元触媒と酸素還元触媒を用いた電気化学セル
WO2015147131A1 (ja) * 2014-03-28 2015-10-01 国立大学法人群馬大学 カーボンアロイ触媒の製造方法、カーボンアロイ触媒
JP2016015283A (ja) * 2014-07-03 2016-01-28 帝人株式会社 カソード電極構造体及び膜・電極接合体
WO2022163752A1 (ja) * 2021-01-29 2022-08-04 国立大学法人東海国立大学機構 炭素材料の製造方法、炭素材料、電極の製造方法、電極、及び燃料電池

Also Published As

Publication number Publication date
EP2562860B1 (en) 2018-04-18
US8617768B2 (en) 2013-12-31
JPWO2011132676A1 (ja) 2013-07-18
CN102859766B (zh) 2015-09-30
CN102859766A (zh) 2013-01-02
US20130040224A1 (en) 2013-02-14
EP2562860A1 (en) 2013-02-27
CA2796644C (en) 2018-10-02
EP2562860A4 (en) 2014-07-16
JP5863645B2 (ja) 2016-02-16
CA2796644A1 (en) 2011-10-27

Similar Documents

Publication Publication Date Title
JP5863645B2 (ja) 直接型燃料電池のカソード用炭素触媒並びにこれを用いた直接型燃料電池用カソード及び直接型燃料電池
JP5149364B2 (ja) 炭素触媒及びその製造方法並びにこれを用いた電極及び電池
Shin et al. On the origin of electrocatalytic oxygen reduction reaction on electrospun nitrogen–carbon species
US9385377B2 (en) Method for producing a catalyst for fuel cells
US9040452B2 (en) Carbon catalyst, method of producing same, and electrode and battery each utilizing same
US8993164B2 (en) Support for catalyst supporting, carrier with supported catalyst, electrode, and battery
Alvi et al. An effective and low cost PdCe bimetallic decorated carbon nanofibers as electro-catalyst for direct methanol fuel cells applications
Yan et al. Glycerol-stabilized NaBH4 reduction at room-temperature for the synthesis of a carbon-supported PtxFe alloy with superior oxygen reduction activity for a microbial fuel cell
KR102688815B1 (ko) 탄소 촉매, 전지 전극 및 전지
Zhong et al. A Novel Carbon‐Encapsulated Cobalt‐Tungsten Carbide as Electrocatalyst for Oxygen Reduction Reaction in Alkaline Media
JP2013058436A (ja) 固体高分子形燃料電池用電極触媒およびその製造方法
US11764366B2 (en) Cathode, membrane electrode assembly, and battery
JP7175890B2 (ja) 炭素触媒、電池電極及び電池
KR20150036350A (ko) 카르벤다짐계 촉매 물질
WO2012160957A1 (ja) 電極触媒及びその製造方法
JP2013116458A (ja) 触媒担体の製造方法、複合触媒の製造方法、複合触媒、およびこれを用いた直接酸化型燃料電池
Cao et al. N-doped ZrO2 nanoparticles embedded in a N-doped carbon matrix as a highly active and durable electrocatalyst for oxygen reduction
KR101111486B1 (ko) 직접메탄올 연료전지용 전극촉매물질 제조방법
JP6630457B2 (ja) カソード、膜電極接合体及び電池
Zhou et al. N, N′-Bis (salicylidene) ethylenediamine as a nitrogen-rich precursor to synthesize electrocatalysts with high methanol-tolerance for polymer electrolyte membrane fuel cell oxygen reduction reaction
JP7552634B2 (ja) 二酸化炭素還元装置および人工光合成装置
KR102721417B1 (ko) 탄소 촉매, 전지 전극 및 전지
Mehak et al. Development of Suitable Cathode Catalyst for Biofuel Cells
Fahimah et al. Study on the non-precious metal catalyst for cathode in a direct formic acid fuel cell
Halim et al. Study on the non-precious metal catalyst for cathode in a direct formic acid fuel cell

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180020148.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11772011

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012511668

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2796644

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 13641551

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011772011

Country of ref document: EP