WO2009146659A1 - 异海松酸的制备方法 - Google Patents

异海松酸的制备方法 Download PDF

Info

Publication number
WO2009146659A1
WO2009146659A1 PCT/CN2009/072160 CN2009072160W WO2009146659A1 WO 2009146659 A1 WO2009146659 A1 WO 2009146659A1 CN 2009072160 W CN2009072160 W CN 2009072160W WO 2009146659 A1 WO2009146659 A1 WO 2009146659A1
Authority
WO
WIPO (PCT)
Prior art keywords
rosin
isopimaric acid
acid
ammonium salt
acetone
Prior art date
Application number
PCT/CN2009/072160
Other languages
English (en)
French (fr)
Inventor
赵振东
李兴迪
Original Assignee
中国林业科学研究院林产化学工业研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国林业科学研究院林产化学工业研究所 filed Critical 中国林业科学研究院林产化学工业研究所
Priority to DE112009001236.1T priority Critical patent/DE112009001236B4/de
Priority to CH02028/10A priority patent/CH701601B1/de
Priority to JP2011511964A priority patent/JP5478796B2/ja
Publication of WO2009146659A1 publication Critical patent/WO2009146659A1/zh
Priority to US12/927,097 priority patent/US8946469B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C61/00Compounds having carboxyl groups bound to carbon atoms of rings other than six-membered aromatic rings
    • C07C61/16Unsaturated compounds
    • C07C61/28Unsaturated compounds polycyclic
    • C07C61/29Unsaturated compounds polycyclic having a carboxyl group bound to a condensed ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/43Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/22Ortho- or ortho- and peri-condensed systems containing three rings containing only six-membered rings

Definitions

  • the invention relates to a preparation method of rosin or an important component of rosin which is rosin.
  • Isopimaric acid is an important component of turpentine or rosin, which is found in the rosin of slash pine.
  • the present invention provides a preparation method of isopimaric acid, which has low production cost, high yield, and high purity of product isopimaric acid. Can reach 95%.
  • the main technical routes adopted by the present invention are as follows:
  • the first obtained purified ammonium salt of isopimaric acid is dissolved in 1 to 20 times by mass of diethyl ether, and the hydrochloric acid having a mass fraction of 1 to 20% is added to the ammonium salt of isopimaric acid to disappear.
  • the effluent layer is washed with water to neutrality.
  • the ether is distilled off at 30 to 50 ° C under an atmospheric pressure, and the residue is dissolved in 0.5 to 5 times by mass of acetone. Water is slowly added to the solution until the precipitated crystals are formed. Until it is no longer added, it is filtered and dried to obtain purified isopimaric acid.
  • the hot isomerized rosin is obtained by evaporating a small amount of water contained in turpentine from turpentine containing isopimaric acid at a pressure of 90 to 114 ° C at a temperature of 10 to 50 kPa and 140 to 170 ° C.
  • the turpentine is steamed off, and then heated to 150 to 180 ° C for isomerization reaction for 1 to 3 h, filtered, and cooled to room temperature.
  • the rosin containing isopimaric acid is any one of slash pine rosin, caribbean pine rosin, cilia pine rosin, and masson pine rosin, and the best choice is slash pine rosin.
  • the rosin may be gum rosin, tall oil rosin or wood rosin.
  • the rosin rosin, the Caribbean pine rosin, the rosin rosin, and the masson pine rosin in the gum rosin are preferred, and the best choice is the rosin pine rosin.
  • the technical effects of the present invention are as follows:
  • the ammonium salt of isopimaric acid is used as a solvent in a volume fraction of 95% ethanol. According to the double recrystallization method, each group of crystals is recrystallized five times. This operation can effectively remove other resin acids entrained in the ammonium salt of isopimaric acid. In particular, tannic acid, which minimizes the interference of other resin acids and the loss of ammonium isopinate, and improves the purity of isopimaric acid, the purity can reach more than 95%.
  • isobutanol has a faster crystallization rate of isopimaric acid than piperidine to isopimaric acid, which greatly saves separation time and saves organic amine; and maleic anhydride addition -
  • the method directly separates the isopimaric acid from the rosin, reduces the loss of the intermediate step, improves the yield of the isopimaric acid, and simplifies the operation steps; the operating conditions are simple compared with the distillation method, The yield is also higher.
  • Figure 1 is a flow chart showing the operation of the double recrystallization method of the present invention.
  • C represents crystallization
  • A represents the "useful mother liquor” remaining after filtration crystallization and will be combined for the next crystallization process
  • the mother liquor means that the portion to be discarded is no longer used.
  • Figure 2 is a mass spectrometric spectrum of the product methyl isopinate.
  • Figure 3 is an infrared spectrum analysis spectrum of the product isopimaric acid.
  • Figure 4 is a proton nuclear magnetic resonance spectrum of the product isocyanic acid. detailed description
  • a method for preparing isopimaric acid comprising the steps of:
  • the amount of acetone may be one, three or ten times the mass of the thermoisomeric rosin.
  • the purified isoammonium salt ammonium salt obtained in the first step is dissolved in 1 to 20 times by mass of diethyl ether, and the hydrochloric acid having a mass fraction of 1 to 20% is added to the ammonium salt of the isoammonium salt to disappear.
  • the aqueous layer is separated, the ether layer is washed with water to neutrality, and diethyl ether is distilled off at 30 to 50 ° C under an atmospheric pressure, and the residue is dissolved in 0.5 to 5 times by mass of acetone, and water is slowly dropped into the solution until precipitation.
  • the crystals are no longer added, and are filtered and dried to obtain purified isopimaric acid.
  • the amount of diethyl ether may be 1 time, 11 times or 20 times the mass of the ammonium salt of isopimaric acid.
  • the concentration of hydrochloric acid may be 1%, 10% or 20% by mass.
  • Example 4 The wet pine rosin of Example 2 was replaced with the Caribbean pine rosin and the remainder was unchanged.
  • Example 4
  • Example 5 The wet pine rosin in Example 2 was changed to the same as the other.
  • Example 5 The wet pine rosin in Example 2 was changed to the same as the other.
  • gum rosin which may be any one of wetland pine rosin, caribbean rosin, citron pine rosin, and masson pine rosin, isomerized at 150 ⁇ 180 ° C for 1 ⁇ 3h, filtered, and cooled to room temperature. A thermoisomeric rosin is obtained.
  • the above purified isopimaric acid ammonium salt is all dissolved in 1 times of diethyl ether, and a 1% by mass aqueous solution of hydrochloric acid is added to the disappearance of the ammonium salt of the isoammonium salt, the aqueous layer is separated, and the ether layer is washed to neutral.
  • Ether was distilled off at 30 ° C at 1 ° C, and the residue was dissolved in 0.5 times by mass of acetone. Water was slowly added dropwise to the solution until the precipitated crystals no longer increased. Filtration and drying were carried out to obtain purified isoponia.
  • the yield of acid 20.1 g was 10.1% relative to the thermoisomerized rosin.
  • Fig. 1 The operation of the double recrystallization method is shown in Fig. 1.
  • C represents crystallization
  • A represents the "useful mother liquor” remaining after filtration crystallization and will be combined for the next crystallization process, and the mother liquor means that the portion to be discarded is no longer used. .
  • the obtained crude ammonium isopinate salt is dissolved in an organic solvent, the crystal which is first crystallized is Cl, the mother liquid is Al, and the crystal obtained by concentrating A1 to 1/2 volume is D1, the mother liquid is discarded, and C1 redissolves and recrystallizes to obtain crystal C2, mother liquor is A2, crystal D1 is dissolved in A2, concentrated to 1/2 volume, crystallized to obtain crystal D2, mother liquid is discarded, crystal C2 is dissolved and crystallized to obtain C3.
  • the mother liquid is A3, the crystal D2 is dissolved in A3, the solution is concentrated to 1/2 volume, crystallized to obtain crystal D3, the mother liquid is discarded, crystal C3 is dissolved and recrystallized to obtain crystal C4, mother liquid A5, and crystal D3 is dissolved in A4 and concentrated to The volume of 1/2 crystals gives crystal D4, the mother liquid is discarded, crystal C4 is dissolved and recrystallized to obtain crystal C5, mother liquid A5, and the solution of crystal D4 solution A5 is concentrated to a volume of 1/2 crystal to obtain crystal D5, and the mother liquid is discarded. The combined extraction of C5 and D5 gave the purified ammonium isochelonate.
  • the crude ammonium isoprene acid salt is ensured to complete 5 recrystallizations of each group of ammonium isocyanate. Each time the ammonium isocyanate is dissolved, 1 to 3 times of 95% ethanol is added. The crystals were washed with 50% by volume of ethanol and dried to obtain purified isoammonium salt ammonium salt crystals.
  • the above purified isopimaric acid ammonium salt is all dissolved in 1 times of diethyl ether, and a 1% by mass aqueous solution of hydrochloric acid is added to the disappearance of the ammonium salt of the isoammonium salt, the aqueous layer is separated, and the ether layer is washed to neutral. Ether was distilled off at 30 ° C at 1 ° C, and the residue was dissolved in 0.5 times by mass of acetone. Water was slowly added dropwise to the solution until the precipitated crystals no longer increased. Filtration and drying were purified. The isopimaric acid 19.8 g had a yield of 9.9% relative to the thermoisomerized rosin.
  • Example 7 The product isomerized as described in Example 7 and Example 10, having a melting point of 162 to 164 ° C, a specific optical rotation: ⁇ is ⁇ (solvent is 95% ethanol, mass fraction is 2%), determined by gas chromatography analysis The mass fraction of isopimaric acid in the product was 95.4%.
  • the chemical structure of the isopimaric acid was confirmed by the physical properties of the product and the analysis results of mass spectrometry, infrared spectroscopy and proton nuclear magnetic resonance spectroscopy.
  • the ammonium salt was dissolved in 100 mL of diethyl ether, and hydrochloric acid having a mass fraction of 1 to 20% was added until the crystal of ammonium isocyanate disappeared.
  • the aqueous layer is separated, the ether layer is washed with water to neutrality, and steamed at 30 to 50 ° C under one atmosphere pressure. Diethyl ether was obtained, and the residue was dissolved in 0.5 to 5 times by mass of acetone. Distilled water was slowly added dropwise to the solution until the precipitated crystals no longer increased.
  • the mixture was filtered and dried to obtain 8.2 g of pure isopironic acid, and the yield was 4.1%.
  • Gas chromatographic analysis showed that the purity of isopimaric acid was 87%.
  • Example 2 The procedure of Example 2 was followed in which isobutanolamine was replaced with piperidine. A theoretical amount of isobutanolamine and piperidine were added to an equal amount of rosin, acetone was used as a recrystallization solvent when isobutanolamine was used, and n-heptane was used as a recrystallization solvent when piperidine was used. The results are shown in Table 1.
  • the 95% ethanol double recrystallization method of the crude ammonium isopimaric acid salt was replaced by 95% ethanol, methyl acetate, methyl acetate and absolute ethanol (2:3, V/, respectively).
  • V) 95% ethanol, methyl acetate, methyl acetate and absolute ethanol (2:3, V/, respectively).
  • anhydrous ethanol, and a solvent such as methanol were recrystallized three times, and treated in the same manner as in Example 1 to obtain purified isopimaric acid. See Table 2 for a comparison of the recrystallization effects when using different recrystallization solvents.
  • the yield of isopimaric acid is the mass fraction calculated relative to the thermoisomerized rosin.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Description

异海松酸的制备方法 技术领域
本发明涉及一种松香或是松脂的重要组分异海松酸的制备方法。
背景技术
异海松酸是松脂或者松香的一种重要组分, 其中在湿地松松香中含量达
20%左右。异海松酸稳定的菲环骨架结构和独特的环外双键使其具有多种化学 反应特性, 因此从典型松脂或者松香中分离和提纯异海松酸对海松酸型树脂 酸的开发利用具有重要的意义。
目前已知的异海松酸分离和提纯方法有三类, gp : "哌啶沉淀法"、 "马来 酸酐加成 -异丁醇胺沉淀法"和 "蒸馏法"。 Loeblich等报道利用哌啶直接沉淀 法分离异海松酸, 异海松酸的收率为 4.7 % (LOEBLICH V M, LAWRENCE R V. A new method for isolating isodextropimaric acid from pine oleoresin and rosin [J]. J Org Chem, 1958, 23(1): 25-26. ) 。 该方法直接从松香原料中分离异海松酸 的铵盐, 操作简单, 缺点是哌啶虽然对异海松酸有选择性, 但生成的异海松 酸的铵盐结晶速率很慢, 生产周期长且收率较低。 Harris 等通过马来酸酐的 Diels-Alder加成反应除去枞酸型树脂酸,再由异丁醇胺选择性沉淀得到异海松 酸, 异海松酸的收率为 8 % ( HARRIS G C, SANDERSON T F. Rosin acids(III)The isolation of dextropimaric acid a new pimaric-type acid, isodextropimaric acid [J]. J Am Chem Soc, 1948, 70(1): 2079-2085. ) 。 该方法中 马来海松酸和未反应的树脂酸 (包括海松酸型树脂酸、 去氢枞酸及未反应完 的少量枞酸型树脂酸) 的分离比较困难, 分离出的未反应树脂酸中容易夹杂 马来海松酸。 Harris等还采用了蒸馏的方法直接蒸出海松酸和异海松酸, 再以 异丁醇胺分离异海松酸, 其相对于松香的得率为 4 % ( HARRIS G C, SANDERSON T F. Rosin acids(III)The isolation of dextropimaric acid a new pimaric-type acid, isodextropimaric acid [J]. J Am Chem Soc, 1948, 70(1): 2079-2085. ) 。 该方法分馏条件要求较高, 不利于操作, 并且异海松酸的得率 较低。
目前, 国内有关异海松酸分离和提纯方面的研究报道很少, 更没有工业 级别的高纯度异海松酸产品。 因此, 探索高效、 高得率、 经济可行的分离异 海松酸的方法, 将会加快异海松酸在医药、 生物和材料等领域的应用。 发明内容
为了解决现有技术方法中制备异海松酸成本高、 得率低的缺点, 本发明 提供了一种异海松酸的制备方法, 生产成本低、 得率高, 且产品异海松酸纯 度也高, 可以达到 95 %。
本发明采用的主要技术路线如下:
松香 松月^ ^热异构松香 ^ ^异海松酸铵盐复式重结晶 >纯化铵盐^^异海松酸 本发明的技术方案为: 一种异海松酸的制备方法, 包括以下步骤: 第一步: 将热异构松香溶解于 1〜10 倍质量的丙酮中, 滴加相当于热异 构松香质量 1〜40%的异丁醇胺的丙酮溶液, 丙酮 /异丁醇胺 = 1: l mL/g, 形 成沉淀, 静置, 过滤, 用体积分数为 50%的乙醇洗涤, 干燥, 得到异海松酸 铵盐粗品; 异海松酸铵盐粗品按照复式重结晶法, 每组异海松酸铵盐完成 5 次重结晶、 干燥, 得到纯化的异海松酸铵盐晶体; 复式重结晶法中使用的溶 剂为体积分数 95%的乙醇、 乙酸甲酯、 乙酸甲酯一无水乙醇、 无水乙醇、 甲 醇中的任一种。
第二步, 将第一得到的纯化的异海松酸铵盐晶体溶于 1〜20 倍质量的乙 醚中, 分次加入质量分数为 1〜20%的盐酸至异海松酸铵盐晶体消失, 分出水 层,水洗乙醚层至中性,一个大气压下于 30〜50°C蒸出乙醚,剩余物溶于 0.5〜 5倍质量的丙酮中, 向此溶液中慢慢滴入水, 直至析出的晶体不再增加为止, 过滤、 干燥得到纯化的异海松酸。
其中所述的热异构松香是由含有异海松酸的松脂在 1个大气压、 90〜114 °C条件下先蒸出松脂中含有的少量水后, 在 10〜50kPa、 140〜170°C条件下蒸 出松节油, 然后升温至 150〜180°C下异构化反应 l〜3h, 过滤, 冷却至室温 制备得到的。 所述的含有异海松酸的松脂为湿地松松脂、 加勒比松松脂、 思 茅松松脂、 马尾松松脂任一种, 最佳的选择是湿地松松脂。 所述的松香可以 是脂松香、 浮油松香或者木松香。 其中优选脂松香中的湿地松松香、 加勒比 松松香、 思茅松松香、 马尾松松香任一种, 最佳的选择是湿地松松香。 本发明的技术效果如下:
1. 松脂经松节油蒸馏和松香热异构后, 使大部分左旋海松酸异构为枞酸 型树脂酸, 由于左旋海松酸和异海松酸都可以与异丁醇胺或哌啶反应, 而通 过热异构后则只保留了异海松酸。 提高了反应的得率, 本发明方法相对于热 异构松香的得率可以达到 10.1 %。
2. 异海松酸铵盐采用体积分数 95%的乙醇作溶剂, 按照复式重结晶法每 组结晶进行 5 次重结晶, 此操作过程能有效地去除了异海松酸铵盐中夹杂的 其他树脂酸尤其是枞酸, 这样就最大程度的减少了其他树脂酸的干扰和异海 松酸铵盐的损失, 并提高了异海松酸的纯度, 纯度可以达到 95 %以上。
3. 本方法与哌啶法相比, 异丁醇胺对异海松酸的结晶速度比哌啶对异海 松酸的结晶速度快, 大大节省了分离时间, 节约了有机胺; 与马来酸酐加成- 异丁醇胺沉淀法相比, 该方法直接从松香中分离异海松酸, 减少了中间步骤 的损失, 提高了异海松酸的得率, 也简化了操作步骤; 与蒸馏法相比操作条 件简单, 得率也较高。 附图说明
图 1是本发明中复式重结晶法操作流程图。
复式重结晶法操作流程图 1中, C表示结晶, A表示过滤结晶后剩余的且 将要合并用于下一步结晶过程的 "有用母液", 母液则表示不再使用将要被舍 弃的部分。
图 2是产品异海松酸甲酯的质谱分析谱图。
图 3是产品异海松酸的红外光谱分析谱图。
图 4是产品异海松酸的质子核磁共振分析谱图。 具体实施方式
以下通过实施例进一步说明本发明。
实施例 1
一种异海松酸的制备方法, 包括以下步骤:
第一步: 将热异构松香溶解于 ι〜ιο 倍质量的丙酮中, 滴加相当于热异 构松香质量 1〜40%的异丁醇胺的丙酮溶液, 丙酮 /异丁醇胺 = 1: l mL/g, 形 成沉淀, 静置, 过滤, 用体积分数为 50%的乙醇洗涤, 干燥, 得到异海松酸 铵盐粗品; 异海松酸铵盐粗品采用复式重结晶法, 每组异海松酸铵盐完成 5 次重结晶、 干燥, 得到纯化的异海松酸铵盐晶体; 复式重结晶法中使用的溶 剂为体积分数 95%的乙醇、 乙酸甲酯、 乙酸甲酯一无水乙醇、 无水乙醇、 甲 醇中的任一种。 丙酮的用量可以是热异构松香质量的 1倍、 3倍或者 10倍。 滴加的异丁醇胺的量可以是热异构松香的质量的 1 %、 22%或者 40%。
第二步, 将第一步得到的纯化的异海松酸铵盐晶体溶于 1〜20 倍质量的 乙醚中, 分次加入质量分数为 1〜20%的盐酸至异海松酸铵盐晶体消失, 分出 水层, 水洗乙醚层至中性, 一个大气压下于 30〜50°C蒸出乙醚, 剩余物溶于 0.5〜5 倍质量的丙酮中, 向此溶液中慢慢滴入水, 直至析出的晶体不再增加 为止, 过滤、 干燥得到纯化的异海松酸。 乙醚的量可以是异海松酸铵盐的质 量的 1倍、 11倍或者 20倍。 盐酸的浓度可以是质量分数为 1 %、 10%或 20% 的。 实施例 2
将 600g湿地松松脂装入 1 L四口烧瓶中, 安装温度计、 蒸馏头、 三叉接 尾管、 接收瓶, 通氮气, 湿地松松脂在 1个大气压、 90〜114°C条件下蒸出所 含少量水,在 10〜50 kPa、 140〜170°C条件下蒸出松节油,再升温至 150〜180 °C异构化反应 l〜3h, 过滤, 冷却至室温, 得到热异构松香 478g。 取样经过 甲酯化处理后进行 GC分析,该热异构松香中异海松酸的质量分数为 23.75 %。 实施例 3
将实施例 2中的湿地松松脂换为加勒比松松脂其余不变。 实施例 4
将实施例 2中的湿地松松脂换为思茅松松脂其余不变。 实施例 5
将实施例 2中的湿地松松脂换为马尾松松脂其余不变。 实施例 6
分别将 200g脂松香, 可以是湿地松松香、 加勒比松香、 思茅松松香、 马 尾松松香中的任一种, 在 150〜180°C条件下异构化反应 l〜3h, 过滤, 冷却 至室温, 得到热异构松香。 实施例 7
取上述实施例 2得到的热异构松香 200g溶解于 1倍质量的丙酮中, 滴加 相当于热异构松香质量 15 %异丁醇胺的丙酮溶液,异丁醇胺 /丙酮 =1: 1, g/mL, 形成沉淀物, 静置 2h, 过滤, 用体积分数 50%的乙醇洗涤三次, 干燥, 得到 异海松酸铵盐粗品。 异海松酸铵盐粗品按照复式重结晶法, 保证每组异海松 酸铵盐完成 5次重结晶, 每次溶解异海松酸铵盐时加入 1〜3倍的体积分数为 95%的乙醇, 过滤结晶时用体积分数为 50%的乙醇洗涤, 干燥, 得到纯化的异 海松酸铵盐晶体 25.7g。
将上述纯化的异海松酸铵盐全部溶于 1 倍质量的乙醚中, 分次加入质量 分数为 1 %的盐酸水溶液至异海松酸铵盐晶体消失, 分出水层, 水洗乙醚层至 中性, 1个大气压下于 30°C蒸出乙醚, 剩余物溶于 0.5倍质量的丙酮中, 向此 溶液中慢慢滴入水, 直至析出的晶体不再增加为止, 过滤、 干燥得到纯化的 异海松酸 20.1 g, 相对于热异构松香的得率为 10.1%。
复式重结晶法的操作过程如图 1所示, C表示结晶, A表示过滤结晶后剩 余的且将要合并用于下一步结晶过程的 "有用母液", 母液则表示不再使用将 要被舍弃的部分。 将制得的异海松酸铵盐粗品溶于有机溶剂中, 第一次结晶 出来的晶体为 Cl、 母液为 Al, 将 A1浓缩至 1/2体积后得到的晶体为 Dl、 母 液弃去, 将 C1再溶解重结晶得到晶体为 C2、 母液为 A2, 将晶体 D1溶于 A2 后浓缩至体积的 1/2后结晶得到晶体 D2、母液弃去, 晶体 C2溶解后再结晶得 到的晶体为 C3、 母液为 A3, 将晶体 D2溶于 A3中溶液浓缩至体积的 1/2后 结晶得到晶体 D3、 母液弃去, 晶体 C3溶解重结晶得到晶体 C4、 母液 A5, 晶体 D3溶于 A4中溶液浓缩至体积的 1/2结晶得到晶体 D4、 母液弃去, 晶体 C4溶解重结晶得到晶体 C5、 母液 A5, 晶体 D4溶液 A5中溶液浓缩至体积的 1/2结晶得到晶体 D5、 母液弃去。 合并收集 C5和 D5, 得到纯化的异海松酸 铵盐。 实施例 8
取上述实施例 2得到的热异构松香 200g溶解于 11倍质量的丙酮中,滴加 相当于热异构松香质量 21 %异丁醇胺的丙酮溶液,异丁醇胺 /丙酮 =1: 1, g/mL, 形成沉淀物, 静置 2h, 过滤, 用体积分数 50%的乙醇洗涤三次, 干燥, 得到 异海松酸铵盐粗品。 异海松酸铵盐粗品按照复式重结晶法, 保证每组异海松 酸铵盐完成 5次重结晶,每次溶解异海松酸铵盐时加入 2倍的体积分数为 95% 的乙醇, 过滤结晶时用体积分数为 50%的乙醇洗涤, 干燥, 得到纯化的异海 松酸铵盐晶体。 将上述纯化的异海松酸铵盐全部溶于 11倍质量的乙醚中,分次加入质量分 数为 11 %的盐酸水溶液至异海松酸铵盐晶体消失, 分出水层, 水洗乙醚层至 中性, 1个大气压下于 40°C蒸出乙醚, 剩余物溶于 3.5倍质量的丙酮中, 向此 溶液中慢慢滴入水, 直至析出的晶体不再增加为止, 过滤、 干燥得到纯化的 异海松酸。 实施例 9
取上述实施例 2得到的热异构松香 200 g溶解于 10倍质量的丙酮中, 滴 加相当于热异构松香质量 40 %异丁醇胺的丙酮溶液, 异丁醇胺 /丙酮 =1: 1, g/mL, 形成沉淀物, 静置 2h, 过滤, 用体积分数 50%的乙醇洗涤三次, 干燥, 得到异海松酸铵盐粗品。 异海松酸铵盐粗品按照复式重结晶法, 保证每组异 海松酸铵盐完成 5次重结晶, 每次溶解异海松酸铵盐时加入 1〜3倍的体积分 数为 95%的乙醇, 过滤结晶时用体积分数为 50%的乙醇洗涤, 干燥, 得到纯 化的异海松酸铵盐晶体。
将上述纯化的异海松酸铵盐全部溶于 20倍质量的乙醚中, 分次加入质量 分数为 20%的盐酸水溶液至异海松酸铵盐晶体消失, 分出水层, 水洗乙醚层 至中性, 1个大气压下于 50°C蒸出乙醚, 剩余物溶于 5倍质量的丙酮中, 向 此溶液中慢慢滴入水, 直至析出的晶体不再增加为止, 过滤、 干燥得到纯化 的异海松酸。 实施例 10
取上述实施例 6得到的热异构松香 200g溶解于 1倍质量的丙酮中, 滴加 相当于热异构松香质量 12%异丁醇胺的丙酮溶液,异丁醇胺 /丙酮 =1: 1, g/mL, 形成沉淀物, 静置 2h, 过滤, 用体积分数 50%的乙醇洗涤三次, 干燥, 得到 异海松酸铵盐粗品。 异海松酸铵盐粗品按照复式重结晶法, 保证每组异海松 酸铵盐完成 5次重结晶, 每次溶解异海松酸铵盐时加入 1〜3倍的体积分数为 95%的乙醇, 过滤结晶时用体积分数为 50%的乙醇洗涤, 干燥, 得到纯化的异 海松酸铵盐晶体 24.8g。
将上述纯化的异海松酸铵盐全部溶于 1 倍质量的乙醚中, 分次加入质量 分数为 1 %的盐酸水溶液至异海松酸铵盐晶体消失, 分出水层, 水洗乙醚层至 中性, 1个大气压下于 30°C蒸出乙醚, 剩余物溶于 0.5倍质量的丙酮中, 向此 溶液中慢慢滴入水, 直至析出的晶体不再增加为止, 过滤、 干燥得到纯化的 异海松酸 19.8g, 相对于热异构松香的得率为 9.9%。 实施例 11
实施例 7及实施例 10所得到的产物异海松酸, 其熔点为 162〜164°C, 比 旋光度 :^为 ^ (溶剂为 95%乙醇, 质量分数为 2%), 气相色谱分析测得产 品中异海松酸的质量分数为 95.4 %。
HR-MS: [M-H]离子峰质量实测值为 301.2174, [C2QH29O2]_ 计算值为 301.2168, A=0.66ppm。 分子质量实测值 302.2248, 给定分子式 C2QH30O2 ( DBE=6 ) , 计算值 302.2246。
MS (图谱见附图 2), m/z (峰强度,%): 3 16(Μ+· , 异海松酸甲酯的分子 离子峰, C21H32O2, 35.5), 301(M-Me, 21), 287(M-(CH2=CH2+H) , 20), 257(M-Me-CO2, 59.7), 256(M-CO2Me, 50.7), 242(25.3), 241(100, M-Me-HCO2CH3), 227(20), 187(30.2), 119(26.3), 121(25.8), 105(30.3), 91(25.7)。 质谱数据库检测结果与异海松酸标准图谱一致。
IR(KBr压片法, 图谱见附图 3), (cm"1) : 3432(中强, 宽峰, OH), 3079 ( C=C-H), 2940(C-H), 2656, 2528 , 1694(强, C=O), 1463, 1387(CH3), 1277(C-O), 1190, 906(C=C-H), 658。
iHNMR (图谱见附图 4, CDC13), δ (ppm) : 0.8620(s, 3H, do-CHs) , 0.9068(s, 3H, C13- CH3) , 1.2673 (s, 3H, C4-CH3) , 1.085〜1. 146(m, 1H), 1.3216〜1.4138(m, 2H), 1.4716〜1.4891(m, 1H), 1.5250〜 1.5800(m, 3H), 4.865 l(dd, 1H, J^IO.70 Hz, J3=1.25 Hz, CH), 4.925 l(dd, 1H, J2=17.50 Hz, J3=1.25 Hz, CH), 5.322(dd, J=7.45 Hz, 1H, C=CH) , 5.801(dd, 1H, J^IO.70 Hz, J2=17.50 Hz, CH), 11.6— 12.2(broad s , 1H, COOH)。
通过该产品的物理性质及质谱、 红外光谱、 质子核磁共振波谱的分析结 果, 异海松酸的化学结构得到了确切鉴定。
对比例 1
将 200g湿地松松香溶于 400mL正庚烷中, 加入 15g哌啶, 搅拌, 将溶液 冷却到室温, 放入冰箱冷冻 2h, 溶液恢复到室温时不断搅拌, 再将混合物放 到冰箱里冷冻过夜析出铵盐, 以 95%的乙醇作溶剂, 按照复式重结晶法重结 晶 5次异海松酸铵盐, 得到 25g铵盐。
将铵盐溶于 lOOmL乙醚中, 加入质量分数为 1〜20 %的盐酸至异海松酸 铵盐晶体消失。 分出水层, 水洗乙醚层至中性, 一个大气压下于 30〜50°C蒸 出乙醚, 剩余物溶于 0.5〜5倍质量丙酮中, 向此溶液中慢慢滴入蒸馏水, 直 至析出的晶体不再增加为止, 过滤, 干燥得到纯异海松酸 8.2g, 得率为 4.1%, 气相色谱分析测得异海松酸纯度为 87%。 实施例 12
按实施例 2 的方法, 其中异丁醇胺替换为哌啶。 在等量的松香中分别加 入理论量的异丁醇胺和哌啶, 使用异丁醇胺时以丙酮作重结晶溶剂, 而是用 哌啶时则以正庚烷作为重结晶溶剂。 结果见表 1。
表 1 异丁醇胺法和哌啶法分离提纯效果比较
Figure imgf000010_0001
实施例 13
按实施例 2的方法, 其中异海松酸铵盐粗品的 95%乙醇复式重结晶法, 分别替换为体积分数 95%乙醇、乙酸甲酯、乙酸甲酯一无水乙醇(2: 3, V/V)、 无水乙醇、 以及甲醇等溶剂三次重结晶, 按实施例 1 的方法同样处理得到纯 化的异海松酸。 使用不同重结晶溶剂时的重结晶效果对比见表 2。
表 2不同重结晶溶剂的效果对比
Figure imgf000010_0002
注: 异海松酸的得率是相对于热异构松香计算得到的质量分数。

Claims

权 利 要 求 书
1. 一种异海松酸的制备方法, 其特征在于包括以下步骤:
第一步: 将热异构松香溶解于 ι〜ιο 倍质量的丙酮中, 滴加相当于热异 构松香质量 1〜40%的异丁醇胺的丙酮溶液, 丙酮 /异丁醇胺 = 1: l mL/g, 形 成沉淀, 静置, 过滤, 用体积分数 50%的乙醇洗涤, 干燥, 得到异海松酸铵 盐粗品; 异海松酸铵盐粗品按照复式重结晶法, 每组异海松酸铵盐完成 5 次 重结晶、 干燥, 得到纯化的异海松酸铵盐晶体;
第二步, 将纯化的异海松酸铵盐晶体溶于 1〜20 倍质量的乙醚中, 分次 加入质量分数为 1〜20%的盐酸至异海松酸铵盐晶体消失, 分出水层, 水洗乙 醚至中性,常压下于 30〜50°C蒸出乙醚,剩余物溶于 0.5〜5倍质量的丙酮中, 向此溶液中慢慢滴入水, 直至析出的晶体不再增加, 过滤、 干燥得到纯化的 异海松酸。
2. 根据权利要求 1所述的异海松酸的制备方法, 其特征是所述的热异构 松香是由含有异海松酸的松脂在一个大气压、 90〜114°C条件下蒸出松脂中所 含少量水后, 在 10〜50kPa、 140〜170°C条件下蒸出松节油, 再升温至 150〜 180°C进行异构化反应 l〜3h, 过滤, 并冷却至室温制备得到的。
3. 根据权利要求 2所述的异海松酸的制备方法, 其特征是所述的含有异 海松酸的松脂为湿地松松脂、 加勒比松松脂、 思茅松松脂、 马尾松松脂任一 种。
4. 根据权利要求 1所述的异海松酸的制备方法, 其特征是所述的热异构 松香是由松香在 150〜180°C下异构化反应 l〜3h, 过滤、 冷却至室温得到的。
5. 根据权利要求 4所述的异海松酸的制备方法, 其特征是所述的松香是 湿地松松香、 加勒比松松香、 思茅松松香、 马尾松松香任一种。
6. 根据权利要求 1所述的异海松酸的制备方法, 其特征是第一步中的复 式重结晶法中使用的溶剂为体积分数为 95%乙醇、 乙酸甲酯、 乙酸甲酯一无 水乙醇、 无水乙醇、 甲醇中的任一种。
PCT/CN2009/072160 2008-06-06 2009-06-05 异海松酸的制备方法 WO2009146659A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112009001236.1T DE112009001236B4 (de) 2008-06-06 2009-06-05 Verfahren zur Gewinnung von Isopimarsäure
CH02028/10A CH701601B1 (de) 2008-06-06 2009-06-05 Verfahren zur Gewinnung von Isopimarsäure.
JP2011511964A JP5478796B2 (ja) 2008-06-06 2009-06-05 イソピマル酸製造プロセス
US12/927,097 US8946469B2 (en) 2008-06-06 2010-11-04 Process for preparing isopimaric acid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2008101238312A CN101302151B (zh) 2008-06-06 2008-06-06 异海松酸的制备方法
CN200810123831.2 2008-06-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/927,097 Continuation US8946469B2 (en) 2008-06-06 2010-11-04 Process for preparing isopimaric acid

Publications (1)

Publication Number Publication Date
WO2009146659A1 true WO2009146659A1 (zh) 2009-12-10

Family

ID=40112276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/072160 WO2009146659A1 (zh) 2008-06-06 2009-06-05 异海松酸的制备方法

Country Status (6)

Country Link
US (1) US8946469B2 (zh)
JP (1) JP5478796B2 (zh)
CN (1) CN101302151B (zh)
CH (1) CH701601B1 (zh)
DE (1) DE112009001236B4 (zh)
WO (1) WO2009146659A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8946469B2 (en) 2008-06-06 2015-02-03 Institute Of Chemical Industry Of Forest Products, Chinese Academy Of Forestry Process for preparing isopimaric acid

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101508871B (zh) * 2009-03-20 2011-11-09 中国林业科学研究院林产化学工业研究所 海松酸型树脂酸的制备方法
CN102659573B (zh) * 2012-05-15 2013-12-25 中国林业科学研究院林产化学工业研究所 7-羰基-8,15-异海松酸的制备方法
JP6160861B2 (ja) * 2012-06-13 2017-07-12 荒川化学工業株式会社 ハンダ付フラックス用ベース樹脂、ハンダ付フラックスおよびソルダペースト
CN104774146B (zh) * 2015-04-23 2016-10-26 中国林业科学研究院林产化学工业研究所 一种7-羰基-8,15-异海松酸甲酯的制备方法
CN106431998B (zh) * 2016-09-27 2017-12-19 中国林业科学研究院林产化学工业研究所 N‑[4‑(异海松酰胺基)苯基]芳磺酰胺类化合物及其制备方法与抗癌活性应用
CN108715577B (zh) * 2018-05-09 2020-12-01 珀莱雅化妆品股份有限公司 一种从松籽油中提取高纯度异海松酸的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1509992A (fr) * 1966-11-25 1968-01-19 Fonds De Compensation Et De Re Nouveau procédé de préparation des acides dextropimarique et isodextropimarique
CN101302151A (zh) * 2008-06-06 2008-11-12 中国林业科学研究院林产化学工业研究所 异海松酸的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5268164A (en) * 1975-11-29 1977-06-06 Nippon Shinyaku Co Ltd Preparation of 8(14)-dihydropimaric acid
JPH09169953A (ja) * 1995-12-18 1997-06-30 Harima Chem Inc 印刷インキ用樹脂ワニス及びその製造方法並びに原料ロジンの処理方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1509992A (fr) * 1966-11-25 1968-01-19 Fonds De Compensation Et De Re Nouveau procédé de préparation des acides dextropimarique et isodextropimarique
CN101302151A (zh) * 2008-06-06 2008-11-12 中国林业科学研究院林产化学工业研究所 异海松酸的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GEORGE, C. HARRIS ET AL.: "Resin Acids. III. The Isolation of Dextropimaric Acid and a New Pimaric-type Acid, Isodextropimaric Acid", J. AM. CHEM. SOC., vol. 70, no. 1, June 1948 (1948-06-01), pages 2079 - 2081 *
LI, X. ET AL., NEW PROCESS FOR ISOLATION AND PREPARATION OF ISOPIMARIC ACID, vol. 28, no. 5, August 2008 (2008-08-01), pages 21 - 25 *
SUN, SHUGUANG: "Improved Process for separating Levopimaric acid", COMMUNICATION OF CHEMICAL INDUSTRY OF FOREST PRODUCTS, 1992, pages 20 - 21 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8946469B2 (en) 2008-06-06 2015-02-03 Institute Of Chemical Industry Of Forest Products, Chinese Academy Of Forestry Process for preparing isopimaric acid

Also Published As

Publication number Publication date
US20110060160A1 (en) 2011-03-10
CN101302151A (zh) 2008-11-12
DE112009001236B4 (de) 2020-11-26
DE112009001236T5 (de) 2011-05-05
US8946469B2 (en) 2015-02-03
JP2011521980A (ja) 2011-07-28
CN101302151B (zh) 2010-09-01
CH701601B1 (de) 2013-05-31
JP5478796B2 (ja) 2014-04-23

Similar Documents

Publication Publication Date Title
WO2009146659A1 (zh) 异海松酸的制备方法
Pan et al. Ligand‐Free Pd‐Catalyzed Highly Selective Arylation of Allylic Esters with Retention of the Traditional Leaving Group
WO2010105574A1 (zh) 海松酸型树脂酸的制备方法
CN112094231A (zh) 一种n-羟基萘酰亚胺三氟甲磺酸酯的合成方法
KR20110127082A (ko) 알킬락테이트의 제조방법 및 이를 이용한 락타미드의 제조방법
CN107522614B (zh) 一种低碳卤代烷烃用于分离与提纯混合二元酸中戊二酸的方法
US8252922B2 (en) Method for crystallizing sucralose
CN108623455B (zh) 一种抗心衰药物的中间体
CN108947800B (zh) 一种(1s)-4,5-二甲氧基-1-(羰基氨基甲基)苯并环丁烷的合成方法
CN110563676A (zh) 2,5-二甲基-4-羟基-3(2h)-呋喃酮的制备方法
JP2004137201A (ja) フルオレニリデンジアリルフェノールの精製方法
CN113698341B (zh) 一种吡啶的纯化方法
KR20190135475A (ko) cis,cis-1,2,4-시클로헥산트리카르본산결정의 제조방법
CN109096047B (zh) 一种(1r)-1,3-二苯基-1-丙醇的制备方法
CN109400489B (zh) 一种盐酸甲氯芬酯的制备方法
CN116606238A (zh) 一种N-Boc-3-硝基吲哚及其制备方法
CN108129357B (zh) 阿拉莫林中间体的制备方法
US4017501A (en) Process for preparing pyridinium chloride salts of alkyl esters of 2-chloro-N-2-hydroxyethylacetamide
CN113880724A (zh) 一种3-(2-氨基苯基)-2-丙烯酸酯的制备方法
CN116102569A (zh) 一种展青霉素半抗原的合成方法
JP2560014B2 (ja) ステロイド化合物の製造法
CN115286510A (zh) 一种l-酒石酸二叔丁酯晶型及其制备方法
CN114685410A (zh) 一种丁苯酞的制备方法
CN111072565A (zh) 一种3-烷基吡唑及其制备方法
CN116969857A (zh) 一种环戊酮肟粗液精制提纯及气相重排制备戊内酰胺的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09757093

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10201000002028

Country of ref document: CH

WWE Wipo information: entry into national phase

Ref document number: 2011511964

Country of ref document: JP

RET De translation (de og part 6b)

Ref document number: 112009001236

Country of ref document: DE

Date of ref document: 20110505

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 09757093

Country of ref document: EP

Kind code of ref document: A1