WO2009144987A1 - マトリクスコンバータの制御装置及びその出力電圧発生方法 - Google Patents

マトリクスコンバータの制御装置及びその出力電圧発生方法 Download PDF

Info

Publication number
WO2009144987A1
WO2009144987A1 PCT/JP2009/054316 JP2009054316W WO2009144987A1 WO 2009144987 A1 WO2009144987 A1 WO 2009144987A1 JP 2009054316 W JP2009054316 W JP 2009054316W WO 2009144987 A1 WO2009144987 A1 WO 2009144987A1
Authority
WO
WIPO (PCT)
Prior art keywords
matrix converter
voltage
phase
input voltage
input
Prior art date
Application number
PCT/JP2009/054316
Other languages
English (en)
French (fr)
Inventor
洋三 上田
龍二 末永
英司 渡邊
Original Assignee
株式会社安川電機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社安川電機 filed Critical 株式会社安川電機
Priority to JP2010514402A priority Critical patent/JP5387859B2/ja
Priority to CN200980119275.4A priority patent/CN102047545B/zh
Publication of WO2009144987A1 publication Critical patent/WO2009144987A1/ja
Priority to US12/955,921 priority patent/US8243482B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/22Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M5/275Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/297Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal for conversion of frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0016Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters
    • H02M1/0022Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters the disturbance parameters being input voltage fluctuations

Definitions

  • the present invention relates to a control device for a power converter that performs direct conversion without converting alternating current to direct current, and an output voltage generation method thereof.
  • FIG. 8 shows the output line voltage of the matrix converter in the form of a PWM pulse.
  • 111 is a pulse of a portion determined by the potential difference between the minimum potential phase and the intermediate potential phase
  • 112 is a pulse of a portion determined by the potential difference between the minimum potential phase and the maximum potential phase
  • S is an area of the entire PWM pulse
  • T 1 is The width of the pulse 111 is 1 ⁇ 2
  • T 2 is 1 ⁇ 2 of the width of the pulse 112.
  • the two phases involved in the voltage output are the minimum potential phase and the intermediate potential phase during the period 111, and the minimum potential phase and the maximum potential phase during the period 112, and the ratio ⁇ of T 1 and T 2 is varied. To change the shape of the input current.
  • the input potential phase in the period 111 is an intermediate potential phase.
  • a pair of the intermediate potential phase and the minimum potential phase and a pair of the intermediate potential phase and the maximum potential phase are used separately.
  • a matrix converter that is a power converter that performs direct conversion without converting direct current to direct current
  • an input filter provided to prevent the oscillation of the input current due to the carrier frequency used in PWM control flows out. If a resonant frequency exists and a thyristor converter is connected to the same power supply system or the input voltage is distorted, a resonance phenomenon will occur, adversely affecting peripheral devices, or connecting to the main circuit section. There is a problem that the cost increases due to measures such as increasing the withstand voltage of the input filter and the snubber circuit. Note that the conventional matrix converter device does not disclose a method for correcting a variation caused by the input side. The present invention has been made in view of such problems.
  • An input filter using a capacitor with a low withstand voltage is provided by reducing the peak value while reducing the capacitor voltage of the input filter provided on the input side to a sine wave. It is an object of the present invention to provide a control device for a power converter that can be used and greatly reduces the influence on peripheral devices, and a method for generating an output voltage thereof.
  • the invention according to claim 1 is an input voltage detector that detects an input voltage of a matrix converter, an output current detector that detects an output current of the matrix converter, the detected input voltage, the detected output current, and A control device for a matrix converter having a pulse width modulation unit that generates a PWM pulse command signal from an output line voltage command, comprising an input voltage command calculation unit for calculating an input voltage command of the matrix converter .
  • an input voltage detector for detecting an input voltage of the matrix converter an output current detector for detecting an output current of the matrix converter, a fundamental wave, a phase, and an amplitude of the input voltage.
  • An input voltage command calculation unit that outputs a signal that has been waveform-shaped into equal sine waves, and pulse width modulation that generates a PWM pulse command signal using the input voltage, the output current, the waveform shaping signal, and an output line voltage command
  • the pulse width modulation unit outputs the PWM pulse command signal so that the input voltage and the waveform shaping signal coincide with each other.
  • a filter comprising a reactor and a capacitor on the input side of the matrix converter, and a capacitor voltage detector for detecting a terminal voltage of the capacitor
  • the pulse width modulation unit outputs the PWM pulse command signal so that the terminal voltage matches the waveform shaping signal.
  • a capacitor constituting a filter paired with an internal reactance of a power supply device connected to an input side of the matrix converter in the matrix converter control device according to the second aspect, and the capacitor
  • the pulse width modulation unit outputs the PWM pulse command signal so that the terminal voltage of the capacitor obtained from the current flowing through the capacitor matches the waveform shaping signal. It is what you do.
  • a filter comprising a reactor and a capacitor on the input side of the matrix converter, and a capacitor current detector for detecting a current flowing through the capacitor
  • the pulse width modulation unit outputs the PWM pulse command signal so that the terminal voltage of the capacitor obtained from the current flowing through the capacitor matches the waveform shaping signal.
  • a capacitor constituting a filter paired with an internal reactance of a power supply device connected to an input side of the matrix converter to the control device of the matrix converter according to the second aspect, and the matrix
  • An input current detector for detecting an input current of the converter is provided, and the pulse width modulation unit outputs the PWM pulse command signal so that an input voltage of the matrix converter obtained from the input current matches the waveform shaping signal. It is what you do.
  • a filter comprising a reactor and a capacitor on the input side of the matrix converter, and an input current detection for detecting an input current of the matrix converter
  • the pulse width modulation unit outputs the PWM pulse command signal so that the input voltage of the matrix converter obtained from the input current matches the waveform shaping signal.
  • the invention according to claim 8 is the matrix converter control device according to any one of claims 2 to 7, wherein the pulse width modulation unit converts a minimum potential phase or a maximum potential phase from the input voltage to a reference potential.
  • An input potential difference calculation unit for calculating a first potential difference between the reference potential phase and the intermediate potential phase and a second potential difference between the minimum potential phase and the maximum potential phase, and a pulse height of the two potential differences.
  • a duty ratio that outputs a ratio of a pulse width of a pulse having the same pulse height as the first potential difference and a pulse having the same pulse height as the second potential difference as a duty ratio according to the phase of the input voltage.
  • the ninth aspect of the present invention is the matrix converter control device according to the eighth aspect of the present invention, wherein the conduction rate correction unit is a pulse width T of a portion determined by a potential difference between the minimum potential phase and the intermediate potential phase.
  • the conduction rate correction unit is a pulse width T of a portion determined by a potential difference between the minimum potential phase and the intermediate potential phase. 1.
  • the correction of the conduction ratio is obtained by using the difference in the capacitor voltage vector generated by charging / discharging due to the current flowing on the output side.
  • an alternating current is input and a single-phase alternating current or a direct current is output.
  • the invention according to claim 11 is a serial multiple matrix converter, wherein the matrix converter according to claim 10 that outputs a single-phase alternating current by directly converting alternating current into direct current without being converted into direct current is connected in series. It is a thing.
  • the invention according to claim 12 is a parallel multiple matrix converter, wherein the matrix converter according to any one of claims 2 to 7 outputs the alternating current by directly converting the alternating current without converting it into direct current. Is connected to.
  • the invention according to claim 13 is a method for generating an output voltage of a matrix converter control device, the step of providing a filter including a reactor and a capacitor on the input side of the matrix converter, and detecting an input voltage from a three-phase AC power source.
  • the invention according to claim 14 is an output voltage correction method for a control device of a matrix converter, wherein a filter including a reactor and a capacitor is provided on an input side of the matrix converter, and an input voltage from a three-phase AC power source is obtained.
  • the invention according to claim 15 is a method for generating an output voltage of a control device for a matrix converter, wherein a filter including a reactor and a capacitor is provided on an input side of the matrix converter, and an input voltage from a three-phase AC power source is obtained.
  • the invention described in claim 16 is an output voltage correction method for a control device of a matrix converter, wherein a filter including a reactor and a capacitor is provided on an input side of the matrix converter, and an input voltage from a three-phase AC power source is obtained.
  • a step of detecting, a step of calculating a signal shaped into a sine wave having the same phase and amplitude as the fundamental wave of the input voltage, a step of detecting an output current of the matrix converter, and a minimum potential phase from the input voltage Alternatively, the step of calculating the first potential difference between the reference potential phase and the intermediate potential phase and the second potential difference between the minimum potential phase and the maximum potential phase with the maximum potential phase as a reference potential phase, and the two potential differences And a pulse having the same pulse height as the first potential difference and a pulse having the same pulse height as the second potential difference.
  • the PWM pulse command signal is generated from the ratio of the two potential differences and the pulse width, and the current flowing through the capacitor or the input current of the matrix converter is determined. Detecting and calculating the terminal voltage of the capacitor using the current, and correcting the pulse width ratio so that the waveform shaping signal and the capacitor terminal voltage have the same magnitude and phase. It is a thing.
  • the invention described in claim 17 is the output voltage generation method of the control device for the matrix converter that receives alternating current and outputs single-phase alternating current or direct current. Thus, an output voltage is generated.
  • the invention described in claim 18 is the output voltage generation method of the control device for the serial multiple matrix converter, in which the matrix converter that receives alternating current and outputs single phase alternating current or direct current is connected in series. The output voltage is generated using these steps.
  • an output voltage generation method for a control device of a parallel multiple matrix converter in which matrix converters that output alternating current by directly converting alternating current into direct current without being converted into direct current are connected in parallel. The output voltage is generated using any one of the steps described in Items 13 to 17.
  • any one of the first to ninth and thirteenth to sixteenth inventions it is possible to suppress the oscillation of the terminal voltage of the input filter capacitor.
  • the input can be suppressed.
  • the suppression of the terminal voltage oscillation of the filter capacitor can be applied up to a single-phase output matrix converter.
  • a serial multiple matrix converter and a parallel multiple matrix converter are provided. It can also be applied to each power cell. As a result, the withstand voltage of the input filter capacitor and the snubber circuit element of the main circuit section can be lowered, and the cost of the matrix converter can be reduced and the influence on other devices can be reduced.
  • FIG. 1 is a block diagram of a control device for a matrix converter according to a first embodiment of the present invention.
  • the block diagram which shows the modification in the 1st Example of this invention The block diagram of the control apparatus of the matrix converter which shows the 2nd Example of this invention
  • the block diagram of the control apparatus of the matrix converter which shows the 3rd Example of this invention The block diagram of the control apparatus of the matrix converter which shows the 4th Example of this invention
  • Configuration diagram of a serial multiple matrix converter device showing a fifth embodiment of the present invention The block diagram of the parallel multiple matrix converter apparatus which shows the 6th Example of this invention Output voltage waveform of matrix converter
  • FIG. 1 is a block diagram of a control device for a matrix converter embodying the present invention.
  • reference numeral 1 denotes a matrix converter, which is supplied with a three-phase power source from a three-phase power source 40 via a reactance 3, and a load 7 is connected to the output side.
  • a main circuit unit 2 is composed of a bidirectional semiconductor switching element, which is driven by a gate signal from a PWM generation unit 11 described later, and performs bidirectional power conversion.
  • An input filter 5 includes a reactance 3 and a capacitor 4, and is provided between the three-phase power supply 40 and the input side of the matrix converter 1.
  • the reactance 3 is constituted by an internal reactance of the three-phase power supply 40 or a reactor installed on the wiring between the three-phase power supply 40 and the matrix converter 1.
  • a snubber circuit 6 absorbs a surge voltage generated by switching of the main circuit unit 2.
  • 8 is the input voltage detector detects the input voltage V in of the matrix converter 1.
  • An output current detector 9 detects the output current I out of each phase from the matrix converter 1.
  • An example of the load 7 is an AC motor.
  • a PWM generator 11 generates a gate signal to the main circuit unit 2 using the PWM pulse command calculated by the pulse width modulator 10.
  • 12 is the input voltage command calculation unit, which incorporates a PLL function, computes the input voltage command V s using an input voltage V in. Commutation sequence process performed depending on the polarity of the input voltage V in is performed in the PWM generation unit 11.
  • Pulse width modulation unit 10 the operation of generating or correcting the pulse width of the PWM pulse command as input voltage command V s and the input voltage V in that is calculated by the input voltage command calculation unit 12 matches will be described in detail.
  • the input voltage command V s is the signal waveform shaping, the fundamental wave and the phase of the input voltage V in, the amplitude is equal sinusoidal signal.
  • the input voltage V in is directly a terminal voltage of the capacitor. Therefore, in order to suppress the voltage oscillation of the input capacitor, it is considered that the input voltage vector V in is matched with the command voltage vector V s .
  • the command voltage vector V s is a sine wave signal having the same phase and amplitude as the fundamental wave of the input voltage. If the input voltage V in can be matched with this, the capacitor terminal voltage also becomes a sine wave. In order to realize this, the pulse width of the PWM pulse command is controlled so that the error voltage vector ⁇ V c between them is minimized.
  • This charge / discharge voltage vector V L can be obtained as equation (1) by approximating the filter output current vector IL as a constant value.
  • the error voltage vector ⁇ V c is, (1) is controlled so as to coincide with the discharge voltage V L which is calculated by the equation, the input voltage V in That the same sinusoidal capacitor terminal voltage and the command voltage V s A signal can be made.
  • Input voltage command calculation unit 12 an input voltage V in detected by the input voltage detector 8 is input to a PLL having therein.
  • the PLL outputs a sine wave input voltage V in and phase of the input is synchronized. At this time, until the synchronization to the phase of the input voltage V in, so as not to respond to sudden voltage changes in the input voltage V in. In this manner, PLL is to shape the waveform of the input voltage V in to be inputted, the fundamental wave and the phase of the input voltage V in, the amplitude is outputted as equal sine wave.
  • the pulse width modulation unit 10 determines the pulse widths T 1 and T 2 and generates a PWM pulse command.
  • the pulse width modulation unit 10 the output current value I out from the output current detector 9, the input voltage command V s from the input voltage detector 8 detected by the input voltage value V in and input voltage command calculation unit 12 is input.
  • the deviation of the error voltage ⁇ V c and the charge-discharge voltage V L in the pulse width T 1 Hmid and deviations Hmax of the error voltage ⁇ V c and the charge-discharge voltage V L in the pulse width T 2 Calculate.
  • the error voltage ⁇ Vc subtracts the input command voltage value V s and the input voltage value V in
  • the deviations Hmid and Hmax are defined and derived from the equations (2) to (5) using the relationship of the equation (1).
  • Hmid
  • Hmax
  • Deviation Hmid an output state corresponding to the person out value Hmax is small, the difference ⁇ V c and V L from the output state corresponding to the larger value is small, a large effect of matching the V in to V s . Therefore deviations Hmax, determines the pulse width T 1 and T 2 as smaller output state of the Hmid becomes longer.
  • the ratio of T 1 and T 2 may be made equal to the ratio of Hmax and Hmid as shown in equation (6).
  • T 1 : T 2 Hmax: Hmid (6)
  • a condition (7) equation in which the area S of the PWM pulse command is equal to the product of the output line voltage command V ref and the pulse period T is applied.
  • ⁇ Emax is a potential difference between the maximum potential phase and the minimum potential phase
  • ⁇ Emid is a potential difference between the intermediate potential phase and the reference potential phase.
  • FIG. 3 is a block diagram showing the configuration of the second embodiment.
  • the first embodiment comprises an input voltage command calculation command 12 and the capacitor voltage detector 13
  • the second embodiment for detecting the capacitor terminal voltage V c directly, detecting the capacitor current vector I c, the point was to obtain the capacitor voltage vector V c on the basis of this I c it is different from the first embodiment.
  • Pulse width modulation correction unit 14 uses the capacitor current I c detected by the capacitor current detector 15, and calculates the capacitor voltage vector V c by equation (8).
  • V c (1 / C) ⁇ I c dt (8)
  • FIG. 4 is a block diagram showing the configuration of the third embodiment.
  • the same elements as those in FIG. 1 are not described, and different parts will be described below.
  • the first embodiment is characterized in that it comprises an input voltage command calculation command 12 and the capacitor voltage detector 13, a third embodiment for detecting the capacitor terminal voltage V c directly, detects an input current Iin to the matrix converter 1, it points so as to obtain a capacitor voltage vector V c on the basis of this Iin is different from the first embodiment.
  • Pulse width modulation correction unit 14 uses the input current Iin to the matrix converter 1 detected by the input current detector 16, the output current I out is considering current vector IL distributed to the input side (9) It calculates the capacitor voltage vector V c.
  • V c (1 / C) ⁇ (Iin ⁇ IL) dt (9)
  • the reactance constituting the input filter 5 is the internal reactance existing in the three-phase power source 40 or a transformer on the input side of the matrix converter 1 (not shown).
  • the embodiment has been described by way of example.
  • a modification of the first to third embodiments will be described using the first embodiment as an example.
  • FIG. 2 is a block diagram when the method of the present invention is applied to a matrix converter in which a reactor is provided inside the matrix converter in order to obtain reactance constituting the filter on the input side.
  • a capacitor voltage detector 13 is provided separately from the input voltage detector 8, and the error voltage vector ⁇ V c is set as a difference voltage between the command voltage V s and the capacitor terminal voltage V c detected by the capacitor voltage detector 13, and the input voltage value V In is configured to determine the pulse widths T 1 and T 2 of the PWM pulse command when generating the PWM pulse command as the voltage detected by the input voltage detector 8.
  • FIG. 1 in the first embodiment is modified to FIG. 2, that is, even if the reactor 3 ′ is built in the matrix converter 1 and a filter is configured on the input side using this reactor, the first embodiment will be described.
  • the invention in Embodiment 4 can be implemented. Furthermore, it is the same even if the part which complements an internal reactor is set apart.
  • the fourth embodiment is a matrix converter that controls the magnitude of the output voltage and the shape of the input current by varying the duty ratio ⁇ , which is the ratio of the pulse area S and the pulse widths T 1 and T 2 ,
  • the present invention is applied to the matrix converter that determines the conduction ratio ⁇ shown in the background art and tries to approximate the waveform of the input current to a sine wave.
  • FIG. 5 is a block diagram showing the configuration of the fourth embodiment. The same components as those in FIG. 2 will not be described, and different parts will be described below.
  • the matrix converter control device shown in FIG. 5 is 10 ′ instead of the pulse width modulation unit 10 shown in FIG. 2, and includes an input potential difference calculation unit 16, a conduction rate command unit 17, a pulse waveform command unit 18, and a conduction rate correction unit. 19 and an adder 20.
  • the input potential difference calculation unit 16 determines the magnitude relationship of the three input voltage phases from the input voltage value detected by the input voltage detector 8, and the maximum potential phase, intermediate potential phase, and minimum potential phase correspond to any of the three input phases.
  • the potential difference ⁇ Emax between the maximum potential phase and the minimum potential phase and the potential difference ⁇ Emid between the intermediate potential phase and the reference potential phase are calculated and output to the pulse waveform command unit 18.
  • the duty ratio command unit 17 corresponds to any of the three input phases from the input voltage value detected by the input voltage detector 8 to the maximum potential phase, intermediate potential phase, and minimum potential phase.
  • the conduction ratio ⁇ is determined by the equation (10) as a value equal to the ratio between the voltage value V mid of the intermediate potential phase and the voltage value V ex of the phase other than the intermediate potential phase and the reference potential phase, and an adder 20 output.
  • the flow rate correction unit 19 calculates the deviations Hmid and Hmax using the above formulas (2) and (3), and then calculates the corrected amount ⁇ of the flow rate ⁇ by the formula (11). And output to the adder 20.
  • K (Hmax ⁇ Hmid) (11)
  • K proportional constant.
  • the adder 20 adds the correction amount ⁇ of the flow rate ⁇ to the flow rate ⁇ calculated by the flow rate command unit 17 and outputs the added value to the pulse waveform command unit 18.
  • the pulse waveform command unit 18 determines the output line voltage command V ref to the load 7, the potential difference ⁇ Emax between the maximum potential phase and the minimum potential phase, the potential difference ⁇ Emid between the intermediate potential phase and the reference potential phase, and the output current value I out.
  • the PWM pulse command is obtained by the PWM pulse generation procedure described in the first embodiment, with the conduction ratio being ⁇ + ⁇ . It is output to the generator 11. In this way, the conduction ratio is modulated and corrected by changing the conduction ratio ⁇ to ⁇ + ⁇ so that the input voltage command V s and the terminal voltage V c of the capacitor coincide with each other.
  • the modulation correction for one line voltage command has been described above.
  • the above equations (2), (3), (10), and (11) are used for two line voltage commands.
  • the addition ⁇ of the conduction ratio ⁇ can be calculated for each line voltage command.
  • the capacitor voltage V c can be made to coincide with the input command voltage V s as in the first embodiment. it is possible to suppress the vibration of the V in.
  • the present invention can be implemented by the fourth embodiment even if the capacitor voltage detector 11 of FIG.
  • the present invention can be implemented by the fourth embodiment even if the capacitor voltage detector 11 of FIG. 5 is replaced with the input current detector 14.
  • FIG. 6 is a block diagram of the fifth embodiment.
  • the transformer 21 receives a three-phase AC power source from a three-phase power source 40 and converts it into an input voltage of a matrix converter, and power cells 22a-22i Takes the secondary voltage of the transformer 21 as an input and outputs a single-phase AC voltage.
  • the load 23 is connected to a matrix converter 24 configured by multiplexing power cells 22a to 22i in series.
  • the power cells 22a to 22i constituting the serial multiple matrix converter 24 are connected in series to generate a single-phase voltage of output multiphase AC. Further, since the power cells 22a to 22i are the ones to which the matrix converter 1 described in the first to fourth embodiments is applied, the power cells 22a to 22i are similarly incorporated in the power cells 22a to 22i for the input filter. The voltage oscillation of the capacitor can be suppressed.
  • FIG. 7 is a block diagram of the sixth embodiment.
  • the power cells 31a and 31b receive the three-phase AC power from the three-phase power sources 40a and 40b, respectively, and output an AC voltage.
  • the load 32 is connected to a matrix converter 33 configured by multiplexing power cells 31a and 31b in parallel. Since the power cells 31a and 31b constituting the parallel multiple matrix converter 33 are the ones to which the matrix converter 1 described in the first to fourth embodiments is applied, the power cells 31a, 31b, The voltage oscillation of the input filter capacitor incorporated in 31b can be suppressed.
  • the capacitor voltage vector V c approaches the input voltage command vector V s and the increase of the capacitor voltage peak value of the input filter is suppressed, so that the withstand voltage of the capacitor and the snubber circuit element can be lowered, and the matrix The cost of the converter can be reduced and the influence on other devices can be reduced.
  • the matrix converter control device applied is provided with a filter including a reactor 3 and a capacitor 4 on the input side, an input voltage detector 8 for detecting an input voltage from the three-phase power supply 40, and an output current of the matrix converter 1.
  • the output current detector 9 for detecting the voltage, the capacitor voltage detector 13 for detecting the terminal voltage of the capacitor 4, and the pulse width modulation unit 10 described in the first embodiment are used to generate the output voltage in the following procedure.
  • Step 001 In the procedure, first, the input voltage detector 8 detects an input voltage from the three-phase power source 40.
  • the capacitor voltage detector 13 detects the terminal voltage value of the capacitor.
  • the pulse width modulation unit 10 performs the following processing.
  • Step 003 First, an input voltage command value having the same phase and amplitude as the fundamental wave of the input voltage value detected in step 001 is calculated.
  • Step 004 Next, from the input voltage value calculated in step 003, the minimum potential phase or the maximum potential phase is set as the reference potential phase, the first potential difference between the reference potential phase and the intermediate potential phase, and the second potential between the minimum potential phase and the maximum potential phase. Is calculated.
  • Step 005 Next, using the two potential differences calculated in step 004 as the pulse height, the pulse width of the pulse having the same pulse height as the first potential difference and the pulse width of the pulse having the same pulse height as the second potential difference are input voltage commands.
  • Step 006 a PWM pulse command signal is generated from the two pulse widths determined in step 005.
  • the description is omitted here.
  • an output voltage generation method when the matrix converter control device to which the present invention is applied includes a capacitor current detector 14 for detecting the terminal current of the capacitor 4 instead of the capacitor voltage detector 13. Will be described.
  • the capacitor current detector 14 detects the value of the current flowing through the capacitor 4, calculates the terminal voltage value of the capacitor by the method described in the second embodiment, and applies the seventh embodiment, whereby the terminal voltage value of the capacitor is applied. It can be similarly implemented by using the terminal current value flowing in the capacitor instead of. Further, even if the capacitor current detector 14 is not provided, the seventh embodiment can be applied by detecting the input current of the matrix converter 1 and calculating the terminal voltage value of the capacitor by the method described in the third embodiment. Is possible.
  • the matrix converter control device applied is provided with a filter including a reactor 3 and a capacitor 4 on the input side, an input voltage detector 8 for detecting an input voltage from the three-phase power supply 40, and an output current of the matrix converter 1.
  • the continuity correction unit 19 and the adder 20 are provided to generate an output voltage according to the following procedure. (Step 001) In the procedure, first, an input voltage from the three-phase power source 40 is detected. (Step 002) Next, the terminal voltage value of the capacitor is detected.
  • Step 003 First, an input voltage command value having the same phase and amplitude as the fundamental wave of the input voltage value detected in step 001 is calculated.
  • Step 004 Next, from the input voltage value calculated in step 003, the minimum potential phase or the maximum potential phase is set as the reference potential phase, the first potential difference between the reference potential phase and the intermediate potential phase, and the second potential between the minimum potential phase and the maximum potential phase. Is calculated.
  • Step 005 Next, using the two potential differences calculated in step 004 as the pulse height, the ratio of the pulse width between the first potential difference and the pulse having the same pulse height and the second potential difference and the pulse having the same pulse height was calculated. It is determined according to the phase of the input voltage command value.
  • Step 006 a PWM pulse command signal is generated from the ratio between the two potential differences calculated in step 004 and the pulse width determined in step 005.
  • Step 007 the ratio of the pulse width determined in step 005 is corrected so that the input voltage command value and the detected terminal voltage value of the capacitor coincide with the magnitude and direction.
  • the methods shown in the seventh to ninth embodiments can be applied to any number of output phases, and can be applied to a single-phase or DC output matrix converter in exactly the same manner.
  • the matrix converter to which the method shown in the seventh to ninth embodiments is applied can be applied to a serial multiple matrix converter device configured by connecting the outputs of the matrix converter shown in the fifth embodiment in series.
  • the present invention can be applied to a parallel multiple matrix converter device configured by connecting the outputs of the matrix converter shown in the sixth embodiment in parallel.
  • the present invention can be implemented for each line voltage command. Further, the present invention can be applied to a serial multiple matrix converter in which the matrix converters are connected in series and a parallel multiple matrix converter in which the matrix converters are connected in parallel.

Abstract

 入力側に設けられたフィルタのコンデンサ電圧を正弦波に近づけるとともにピーク値を減少させ、耐圧の低いコンデンサを用いた入力用フィルタを使用することができ、周辺機器への影響を大幅に軽減したマトリクスコンバータ装置を提供する。  入力側に設けられたフィルタのコンデンサ端子電圧値と入力電圧値及びマトリクスコンバータの出力電流値を用いて、PWMパルス指令信号を生成するパルス幅変調部(10)を備える。

Description

マトリクスコンバータの制御装置及びその出力電圧発生方法
 本発明は、交流を直流に変換することなく直接変換を行う電力変換器の制御装置及びその出力電圧発生方法に関する。
 従来の交流を直流に変換することなく直接変換を行う電力変換器としてマトリクスコンバータがあるが、その制御装置は、一般的に出力線間電圧指令VrefをPWMパルスの形状で生成し、PWMパルスの面積で出力線間電圧の大きさを制御し、後述するPWMパルスの比率で入力電流を正弦波に近づけている。
 図8は、マトリクスコンバータの出力線間電圧をPWMパルスの形状で示したものである。図8において、111は最小電位相と中間電位相の電位差により決まる部分のパルス、112は最小電位相と最大電位相の電位差により決まる部分のパルス、SはこのPWMパルス全体の面積、T1はパルス111の幅の1/2、T2はパルス112の幅の1/2である。電圧出力に関与する2相は、111の期間は入力の最小電位相と中間電位相であり、112の期間は最小電位相と最大電位相であり、T1とT2の比αを可変して入力電流の形状を可変する。このように、パルスの面積S及びT1とT2の比αを可変させることで出力電圧の大きさの制御と入力電流の形状を制御し、111の期間での入力電位相は中間電位相と最小電位相をペアで使用したり、入力電流波形改善のためには、中間電位相と最小電位相のペア及び中間電位相と最大電位相のペアを使い分けたりする。
 また、主回路半導体素子の転流により生じる出力電圧及び入力電流の誤差を補正して、入力電流と出力電圧の歪を低減しているものもある(例えば、特許文献1参照)。
 このようにして、従来の交流を直流に変換することなく直接変換を行う電力変換器は、入力電流を正弦波に近づけているのである。
特開2007-166749号公報
 従来の交流を直流に変換することなく直接変換を行う電力変換器であるマトリクスコンバータでは、PWM制御で用いられるキャリア周波数による入力電流の振動が流出するのを防止するために設けられた入力フィルタに共振周波数が存在し、同じ電源系統にサイリスタ変換器が接続されていたりして入力電圧に歪があったりすると、共振現象が発生してしまい、周辺機器へ悪影響を及ぼしたり、主回路部に接続された入力フィルタやスナバ回路の耐圧を上げるといった対策でコストが増大したりするといった問題があった。なお、従来のマトリクスコンバータ装置では、入力側に原因がある変動を補正する方法については開示されていない。
 本発明はこのような問題点に鑑みてなされたものであり、入力側に設けられた入力フィルタのコンデンサ電圧を正弦波に近づけるとともにピーク値を減少させ、耐圧の低いコンデンサを用いた入力フィルタを使用することができ、周辺機器への影響を大幅に軽減した電力変換器の制御装置及びその出力電圧発生方法を提供することを目的とする。
 上記問題を解決するため、本発明は、次のように構成したのである。
 請求項1に記載の発明は、マトリクスコンバータの入力電圧を検出する入力電圧検出器と、前記マトリクスコンバータの出力電流を検出する出力電流検出器と、前記検出した入力電圧、前記検出した出力電流及び出力線間電圧指令からPWMパルス指令信号を生成するパルス幅変調部を備えたマトリクスコンバータの制御装置であって、前記マトリクスコンバータの入力電圧指令を演算する入力電圧指令演算部を備えたものである。
 また、請求項2に記載の発明は、マトリクスコンバータの入力電圧を検出する入力電圧検出器と、前記マトリクスコンバータの出力電流を検出する出力電流検出器と、前記入力電圧の基本波と位相、振幅が等しい正弦波に波形整形した信号を出力する入力電圧指令演算部と、前記入力電圧、前記出力電流、前記波形整形信号及び出力線間電圧指令を用いてPWMパルス指令信号を生成するパルス幅変調部とを備えたマトリクスコンバータの制御装置であって、前記パルス幅変調部は、前記入力電圧と前記波形整形信号が一致するように前記PWMパルス指令信号を出力するようにしたものである。
 また、請求項3に記載の発明は、請求項2に記載のマトリクスコンバータの制御装置に
前記マトリクスコンバータの入力側にリアクトルとコンデンサからなるフィルタと、前記コンデンサの端子電圧を検出するコンデンサ電圧検出器を備え、前記パルス幅変調部は、前記端子電圧が前記波形整形信号と一致するように前記PWMパルス指令信号を出力するようにしたものである。
 また、請求項4に記載の発明は、請求項2に記載のマトリクスコンバータの制御装置に
前記マトリクスコンバータの入力側に接続される電源装置の内部リアクタンスと対でフィルタを構成するコンデンサと、前記コンデンサを流れる電流を検出するコンデンサ電流検出器を備え、前記パルス幅変調部は、前記コンデンサを流れる電流から求めた前記コンデンサの端子電圧が前記波形整形信号と一致するように前記PWMパルス指令信号を出力するようにしたものである。
 また、請求項5に記載の発明は、請求項2に記載のマトリクスコンバータの制御装置に
前記マトリクスコンバータの入力側にリアクトルとコンデンサからなるフィルタと、前記コンデンサを流れる電流を検出するコンデンサ電流検出器を備え、前記パルス幅変調部は、前記コンデンサを流れる電流から求めた前記コンデンサの端子電圧が前記波形整形信号と一致するように前記PWMパルス指令信号を出力するようにしたものである。
 また、請求項6に記載の発明は、請求項2に記載のマトリクスコンバータの制御装置に前記マトリクスコンバータの入力側に接続される電源装置の内部リアクタンスと対でフィルタを構成するコンデンサと、前記マトリクスコンバータの入力電流を検出する入力電流検出器を備え、前記パルス幅変調部は、前記入力電流から求めた前記マトリクスコンバータの入力電圧が前記波形整形信号と一致するように前記PWMパルス指令信号を出力するようにしたものである。
 また、請求項7に記載の発明は、請求項2に記載のマトリクスコンバータの制御装置に前記マトリクスコンバータの入力側にリアクトルとコンデンサからなるフィルタと、前記マトリクスコンバータの入力電流を検出する入力電流検出器を備え、前記パルス幅変調部は、前記入力電流から求めた前記マトリクスコンバータの入力電圧が前記波形整形信号と一致するように前記PWMパルス指令信号を出力するようにしたものである。
 また、請求項8に記載の発明は、請求項2乃至7のいずれかに記載のマトリクスコンバータの制御装置において、前記パルス幅変調部は、前記入力電圧から最小電位相もしくは最大電位相を基準電位相とし、前記基準電位相と中間電位相との第1の電位差及び前記最小電位相と前記最大電位相との第2の電位差を演算する入力電位差演算部と、前記2つの電位差をパルス高さとし、前記第1の電位差とパルス高さの等しいパルスと前記第2の電位差とパルス高さの等しいパルスとのパルス幅の比を前記入力電圧の位相に応じて通流率として出力する通流率指令部と、前記通流率を補正する通流率補正部と、前記2つの電位差と前記補正された通流率から前記PWMパルス指令信号を生成するパルス波形指令部とを備えたものである。
 また、請求項9に記載の発明は、請求項8に記載のマトリクスコンバータの制御装置において、前記通流率補正部は、前記最小電位相と前記中間電位相の電位差により決まる部分のパルス幅T、前記最小電位相と前記最大電位相の電位差により決まる部分のパルス幅Tのそれぞれにおける入力電圧の基本波と位相、振幅が等しい正弦波信号と入力電圧Vinの誤差電圧ベクトル及び前記フィルタの出力側に流れる電流による充放電で発生するコンデンサ電圧ベクトルの差を用いて前記通流率の補正分を求めるものである。
 また、請求項10に記載の発明は、請求項2乃至7のいずれかに記載のマトリクスコンバータの制御装置において、交流を入力とし、単相交流又は直流を出力するものである。
 また、請求項11に記載の発明は、直列多重マトリクスコンバータであって、交流を直流に変換することなく直接変換することで単相交流を出力する請求項10に記載のマトリクスコンバータを直列に接続したものである。
 また、請求項12に記載の発明は、並列多重マトリクスコンバータであって、交流を直流に変換することなく直接変換することで交流出力する請求項2乃至7のいずれかに記載のマトリクスコンバータを並列に接続したものである。
 上記問題を解決するため、本発明は、次のようにしたのである。
 請求項13に記載の発明は、マトリクスコンバータ制御装置の出力電圧発生方法であって、マトリクスコンバータの入力側にリアクトルとコンデンサを備えたフィルタを設け、三相交流電源からの入力電圧を検出するステップと、前記入力電圧の基本波と位相、振幅が等しい正弦波に波形整形した信号を演算するステップと、前記マトリクスコンバータの出力電流を検出するステップと、前記入力電圧、前記出力電流及び出力線間電圧指令からPWMパルス指令信号を生成するステップと、前記コンデンサを流れる電流あるいは前記マトリクスコンバータの入力電流を検出し、この電流を用いて前記コンデンサの端子電圧を演算するステップと、前記波形整形信号と前記コンデンサの端子電圧の大きさ及び位相が一致するように前記PWMパルス指令信号を補正するステップを備えたものである。
 また、請求項14に記載の発明は、マトリクスコンバータの制御装置の出力電圧補正方法であって、マトリクスコンバータの入力側にリアクトルとコンデンサを備えたフィルタを設け、三相交流電源からの入力電圧を検出するステップと、前記入力電圧の基本波と位相、振幅が等しい正弦波に波形整形した信号を演算するステップと、前記マトリクスコンバータの出力電流を検出するステップと、前記入力電圧から最小電位相もしくは最大電位相を基準電位相とし、前記基準電位相と中間電位相との第1の電位差及び前記最小電位相と前記最大電位相との第2の電位差を演算するステップと、前記2つの電位差をパルス高さとし、前記第1の電位差とパルス高さの等しいパルスと前記第2の電位差とパルス高さの等しいパルスとのパルス幅の比を前記波形整形信号の位相に応じて決定するステップと、
前記2つの電位差と前記パルス幅の比から前記PWMパルス指令信号を生成するステップと、前記波形整形信号と前記コンデンサの端子電圧の大きさ及び位相が一致するように前記パルス幅の比を補正するステップを備えたものである。
 また、請求項15に記載の発明は、マトリクスコンバータの制御装置の出力電圧発生方法であって、マトリクスコンバータの入力側にリアクトルとコンデンサを備えたフィルタを設け、三相交流電源からの入力電圧を検出するステップと、前記入力電圧の基本波と位相、振幅が等しい正弦波に波形整形した信号を演算するステップと、前記マトリクスコンバータの出力電流を検出するステップと、前記入力電圧、前記出力電流及び出力線間電圧指令からPWMパルス指令信号を生成するステップと、前記コンデンサを流れる電流あるいは前記マトリクスコンバータの入力電流を検出し、この電流を用いて前記コンデンサの端子電圧を演算するステップと、前記波形整形信号と前記コンデンサの端子電圧の大きさ及び位相が一致するように前記PWMパルス指令信号を補正するステップを備えたものである。
 また、請求項16に記載の発明は、マトリクスコンバータの制御装置の出力電圧補正方法であって、マトリクスコンバータの入力側にリアクトルとコンデンサを備えたフィルタを設け、三相交流電源からの入力電圧を検出するするステップと、前記入力電圧の基本波と位相、振幅が等しい正弦波に波形整形した信号を演算するステップと、前記マトリクスコンバータの出力電流を検出するステップと、前記入力電圧から最小電位相もしくは最大電位相を基準電位相とし、前記基準電位相と中間電位相との第1の電位差及び前記最小電位相と前記最大電位相との第2の電位差を演算するステップと、前記2つの電位差をパルス高さとし、前記第1の電位差とパルス高さの等しいパルスと前記第2の電位差とパルス高さの等しいパルスとのパルス幅の比を前記波形整形信号の位相に応じて決定するステップと、前記2つの電位差と前記パルス幅の比から前記PWMパルス指令信号を生成し、前記コンデンサを流れる電流あるいは前記マトリクスコンバータの入力電流を検出し、この電流を用いて前記コンデンサの端子電圧を演算するステップと、前記波形整形信号と前記コンデンサの端子電圧の大きさ及び位相が一致するように前記パルス幅の比を補正するステップを備えたものである。
 また、請求項17に記載の発明は、交流を入力とし、単相交流又は直流を出力するマトリクスコンバータの制御装置の出力電圧発生方法において、請求項13乃至16に記載のいずれかのステップを用いて出力電圧を発生するようにしたのである。
 また、請求項18に記載の発明は、交流を入力とし、単相交流又は直流を出力するマトリクスコンバータを直列に接続した直列多重マトリクスコンバータの制御装置の出力電圧発生方法において、請求項17に記載のステップを用いて出力電圧を発生するようにしたのである。
 また、請求項19に記載の発明は、交流を直流に変換することなく直接変換することで交流を出力するマトリクスコンバータを並列に接続した並列多重マトリクスコンバータの制御装置の出力電圧発生方法において、請求項13乃至17に記載のいずれかのステップを用いて出力電圧を発生するようにしたのである。
 請求項1乃至9及び請求項13乃至16に記載のいずれかの発明によると、入力フィルタ用コンデンサの端子電圧の振動を抑制することができ、請求項10及び17に記載の発明によると、入力フィルタ用コンデンサの端子電圧の振動抑制を単相出力のマトリクスコンバータまでに適用可能とでき、さらに、請求項11、12、18及び19に記載の発明によると、直列多重マトリクスコンバータ及び並列多重マトリクスコンバータの各パワーセルに対しても適用可能とできる。
 これにより、入力フィルタ用コンデンサ及び主回路部のスナバ回路素子の耐圧を低くすることができ、マトリクスコンバータのコストを低減するとともに他の機器へ及ぼす影響を小さくすることができる。
本発明の第1の実施例を示すマトリクスコンバータの制御装置のブロック図 本発明の第1の実施例における変形例を示すブロック図 本発明の第2の実施例を示すマトリクスコンバータの制御装置のブロック図 本発明の第3の実施例を示すマトリクスコンバータの制御装置のブロック図 本発明の第4の実施例を示すマトリクスコンバータの制御装置のブロック図 本発明の第5の実施例を示す直列多重マトリクスコンバータ装置の構成図 本発明の第6の実施例を示す並列多重マトリクスコンバータ装置の構成図 マトリクスコンバータの出力電圧波形
符号の説明
1 マトリクスコンバータ
2 主回路部
3、3’ リアクトル
4 コンデンサ
5 入力フィルタ
6 スナバ回路
7、23、32 負荷
8 入力電圧検出器
9 出力電流検出器
10、10’ パルス幅変調部
11 PWM発生部
12 入力電圧指令演算部
13 コンデンサ電圧検出器
14 コンデンサ電流検出器
15 入力電流検出器
16 入力電位差演算部
17 通流率指令部
18 パルス波形指令部
19 通流率補正部
20 加算器
21 変圧器
22a~22i、31a、31b パワーセル
24 直列多重マトリクスコンバータ
33 並列多重マトリクスコンバータ
40、40a、40b 三相電源
111 最小電位相と中間電位相の電位差により決まる部分のパルス
112 最小電位相と最大電位相の電位差により決まる部分のパルス
 以下、本発明の実施の形態について図を参照して説明する。
 本発明の第1の実施例について図を用いて説明する。
 図1は本発明を実施したマトリクスコンバータの制御装置のブロック図である。図において、1はマトリクスコンバータで、三相電源40からリアクタンス3を介して三相電源が供給され、負荷7が出力側に接続されている。2は主回路部で、双方向の半導体スイッチング素子から成り、後述のPWM発生部11からのゲート信号により駆動され、双方向に電力変換する。5は入力フィルタでリアクタンス3及びコンデンサ4で構成され、三相電源40とマトリクスコンバータ1の入力側との間に設けられている。なお、リアクタンス3は三相電源40の内部リアクタンス又は三相電源40とマトリクスコンバータ1の間の配線上に設置されたリアクトルによって構成されるものである。6はスナバ回路で、主回路部2のスイッチングにより発生するサージ電圧を吸収する。8は入力電圧検出器で、マトリクスコンバータ1の入力電圧Vinを検出する。9は出力電流検出器で、マトリクスコンバータ1からの各相の出力電流Ioutを検出する。なお、負荷7の代表的なものとして交流電動機がある。
 10はパルス幅変調部で、負荷7への出力線間電圧指令Vref、入力電圧Vin及び出力電流Ioutから背景技術で説明した中間電位相及び基準電位相が入力各相のどれに該当するかの選択及びT1とT2の演算を行い、PWMパルス指令を生成する。11はPWM発生部で、パルス幅変調部10で演算したPWMパルス指令を用い、主回路部2へのゲート信号を生成する。12は入力電圧指令演算部で、内部にPLL機能を有し、入力電圧Vinを用いて入力電圧指令Vを演算する。入力電圧Vinの極性に応じて行われる転流シーケンス処理は、PWM発生部11で行われる。
 パルス幅変調部10が、入力電圧指令演算部12で演算した入力電圧指令Vと入力電圧Vinが一致するようにPWMパルス指令のパルス幅を生成あるいは補正する動作については詳述する。なお、入力電圧指令Vは波形整形された信号であり、入力電圧Vinの基本波と位相、振幅が等しい正弦波状の信号である。
 本発明の動作説明の前に、本発明の動作原理について説明する。
 図1に示すマトリクスコンバータでは入力電圧Vinがそのままコンデンサの端子電圧となっている。従って入力コンデンサの電圧振動を抑制するために、入力電圧ベクトルVinを指令電圧ベクトルVに一致させることを考える。指令電圧ベクトルVは、入力電圧の基本波と位相、振幅が等しい正弦波信号とし、入力電圧Vinをこれと一致させることができれば、コンデンサ端子電圧もまた正弦波となる。この実現のために、両者の誤差電圧ベクトル△Vが最小となるようにPWMパルス指令のパルス幅を制御する。
 ところが、従来技術で説明した中間電位相とペアで使用される入力相を最小電位相と最大電位相を使い分けるマトリクスコンバータ装置において、入力の基準電位相と中間電位相の間及び最小電位相と最大電位相の間に出力電流が分配されて流れる電流は、入力フィルタ5の出力側に流れ、この電流が入力フィルタ5のコンデンサを充放電することで電圧を発生する。したがって、この電圧について考慮する必要がある。入力フィルタ5の出力側を流れる電流をフィルタ出力電流ベクトルI、このIによる充放電で発生するコンデンサ電圧ベクトルを充放電電圧ベクトルVとして以下説明を続ける。
 この充放電電圧ベクトルVは、フィルタ出力電流ベクトルIを一定値として近似すると、(1)式として求めることができる。
  V=(1/C)∫Idt=(t/C)I=k・I (k=t/C) ・・・(1)
 したがって、時間tが経過すると、コンデンサ電圧はVin+Vに変化する。
 以上から、誤差電圧ベクトル△Vが、(1)式で演算した充放電電圧Vと一致するように制御すれば、入力電圧Vinすなわちコンデンサ端子電圧を指令電圧Vと同じ正弦波状の信号にできることになる。
 次に、本発明の動作説明を行う。
 入力電圧指令演算部12は、入力電圧検出器8で検出した入力電圧Vinを、内部に有するPLLに入力する。PLLは入力される入力電圧Vinと位相が同期した正弦波を出力する。この際、入力電圧Vinの位相に同期するまで、入力電圧Vinの急激な電圧変化に応答しないようにする。
 このようにして、PLLは入力される入力電圧Vinを波形整形して、入力電圧Vinの基本波と位相、振幅が等しい正弦波として出力する。
 パルス幅変調部10は、パルス幅T、Tを決定しPWMパルス指令を生成する。パルス幅変調部10には、出力電流検出器9から出力電流値Iout、入力電圧検出器8で検出された入力電圧値Vin及び入力電圧指令演算部12から入力電圧指令Vが入力される。
 以下、PWMパルス生成の手順を説明する。
 まず、パルス幅変調部10では、パルス幅Tにおける誤差電圧△Vと充放電電圧Vの偏差Hmid及び、パルス幅Tにおける誤差電圧△Vと充放電電圧Vの偏差Hmaxを演算する。
 Imidはパルス幅T時の出力電流値Iout、Imaxはパルス幅T時の出力電流値Ioutであり、誤差電圧△Vcは入力指令電圧値V及び入力電圧値Vinを減算して求められ、充放電電圧Vについては(1)式の関係を用いて、偏差Hmid、Hmaxを(2)~(5)式で定義・導出する。
  Hmid=|△V-k・Imid|=|V-Vin-k・Imid| ・・・(2)
  Hmax=|△V-k・Imax|=|V-Vin-k・Imax| ・・・(3)
 ここで、
  k=2・T/C ・・・(4)
  k=2・T/C ・・・(5)
 偏差Hmid、Hmaxのうち値が小さい方に対応した出力状態が、値の大きいほうに対応した出力状態より△VとVの差が小さいので、VinをVに一致させる効果が大きい。従って偏差Hmax、Hmidの小さいほうの出力状態が長くなるようにパルス幅T及びTを決定する。
 このことを実現するためにはT及びTの比を(6)式のとおりHmaxとHmidの比に等しくすれば良い。
  T:T=Hmax:Hmid ・・・(6)
 さらに具体的なT、Tの値を決定するために、PWMパルス指令の面積Sが、出力線間電圧指令Vref及びパルス周期Tの積に等しい条件(7)式を適用する。
  S = T’+T
  2(T・△Emid+T・△Emax)=T・Vref ・・・(7)
 ここで、△Emaxは最大電位相と最小電位相の電位差、△Emidは中間電位相と基準電位相の電位差である。
 このようにして、パルス幅変調部10は、(2)式から(7)式によりPWMパルス指令のパルス幅T及びTを決定することでPWMパルス指令を生成する。
 以上、1つの線間電圧指令に対する変調補正について説明したが、3相負荷の場合は、同一キャリア周期内では入力の最小電位相、中間電位相、最大電位相は変化しないので、2つ有る線間電圧指令に対して上記(1)~(7)式の演算を同時に実施すれば、VをVに一致させる効果が大きい出力状態を長く継続できるT及びTを決定でき、コンデンサ電圧Vを入力指令電圧Vに一致させることができる。
 このように、PWMパルス指令の面積Sを一定にした条件で、入力電圧Vinすなわちコンデンサ端子電圧を入力指令電圧Vに一致させることができるので、入力コンデンサの端子電圧の振動を抑制することができる。
 次に、本発明の第2の実施例について図を用いて説明する。
 図3は第2の実施例の構成を示すブロック図であり、図において、図1と同一であるものはその説明を省略し、異なる部分について以下説明する。第1の実施例では入力電圧指令演算指令12及びコンデンサ電圧検出器13を備えたことを特徴とするものであるが、第2の実施例は、コンデンサ端子電圧Vを直接検出する代わりに、コンデンサ電流ベクトルIを検出し、このIを基にコンデンサ電圧ベクトルVを求めるようにした点が第1の実施例と異なる。
 パルス幅変調補正部14は、コンデンサ電流検出器15によって検出されたコンデンサ電流Iを用いて、(8)式によりコンデンサ電圧ベクトルVを演算する。
  V=(1/C)∫Idt ・・・(8)
 このように、コンデンサ電圧ベクトルVを演算しているので、第1の実施例と同様に本発明を実施できる。
 次に、本発明の第3の実施例について図を用いて説明する。
 図4は第3の実施例の構成を示すブロック図であり、図において、図1と同一であるものはその説明を省略し、異なる部分について以下説明する。第1の実施例では入力電圧指令演算指令12及びコンデンサ電圧検出器13を備えたことを特徴とするものであるが、 第3の実施例は、コンデンサ端子電圧Vを直接検出する代わりに、マトリクスコンバータ1への入力電流Iinを検出し、このIinを基にコンデンサ電圧ベクトルVを求めるようにした点が第1の実施例と異なる。
 パルス幅変調補正部14は、入力電流検出器16によって検出されたマトリクスコンバータ1への入力電流Iinを用い、出力電流Ioutが入力側に分配される電流ベクトルILを考慮した(9)式によりコンデンサ電圧ベクトルVを演算する。
  V=(1/C)∫(Iin-IL)dt ・・・(9) 
 このように、コンデンサ電圧ベクトルVを演算しているので、第1の実施例と同様に本発明を実施できる。
 上記では、実施例1から実施例3の説明において、入力フィルタ5を構成するリアクタンスは、三相電源40や図示していないがマトリクスコンバータ1の入力側にある変圧器に存在する内部リアクタンスを使用する場合を例として実施例を説明してきた。
 ここで、実施例1から実施例3の変形例を、実施例1を例にして説明する。図2は、入力側のフィルタを構成するリアクタンスを得るためにマトリクスコンバータ内部にリアクトルを設けたマトリクスコンバータに、本発明の方法を適用した場合のブロック図である。入力電圧検出器8とは別にコンデンサ電圧検出器13を設け、誤差電圧ベクトル△Vを指令電圧Vとコンデンサ電圧検出器13で検出したコンデンサ端子電圧Vの差電圧とし、入力電圧値Vinは、入力電圧検出器8で検出された電圧として、PWMパルス指令を生成する際、PWMパルス指令のパルス幅T及びTを決定するように構成している。
 このように、実施例1における図1を図2に変形しても、つまり、マトリクスコンバータ1にリアクトル3’を内蔵し、このリアクトルを用いて入力側にフィルタを構成しても、実施例1から実施例4における発明を実施できる。さらに、内部リアクトルを補完する分を別置きするようにしても同様である。
 次に、本発明の第4の実施例について説明する。第4の実施例は、パルスの面積S及びパルス幅T1とT2の比である通流率αを可変させることで出力電圧の大きさの制御と入力電流の形状を制御するマトリクスコンバータ、すなわち、上記の背景技術で示した通流率αを決め入力電流の波形を正弦波に近づけようとしているマトリクスコンバータに、本発明を適用したものである。
 図5は第4の実施例の構成を示すブロック図であり、図2と同一であるものはその説明を省略し、異なる部分について以下説明する。
 図5に示すマトリクスコンバータの制御装置は、図2のパルス幅変調部10の代わりに10’とし、入力電位差演算部16、通流率指令部17、パルス波形指令部18、通流率補正部19、加算器20から構成されている。
 入力電位差演算部16は、入力電圧検出器8で検出した入力電圧値から入力電圧三相の大小関係を判定し、最大電位相、中間電位相、最小電位相が入力三相のどの相に該当するかを決定し、最大電位相と最小電位相の電位差△Emax、中間電位相と基準電位相の電位差△Emidを演算し、パルス波形指令部18へ出力する。
 通流率指令部17は、入力電位差演算部16と同様に、入力電圧検出器8で検出した入力電圧値から最大電位相、中間電位相、最小電位相が入力三相のどの相に該当するかを決定し、通流率αを中間電位相の電圧値Vmidと中間電位相及び基準電位相以外の相の電圧値Vexの比に等しい値として(10)式により決定し、加算器20へ出力する。
  α=T/T=Vmid/Vex ・・・(10)
 通流率補正部19は、実施例1と同様に、上記(2)、(3)式を使用して偏差Hmid及びHmaxを演算後、通流率αの補正分△αを(11)式で求め、加算器20へ出力する。
  △α=K(Hmax-Hmid) ・・・(11)
 なお、K:比例定数。
 加算器20は、通流率指令部17で演算された通流率αに通流率αの補正分△αを加算し、加算値をパルス波形指令部18へ出力する。
 パルス波形指令部18は、負荷7への出力線間電圧指令Vref、最大電位相と最小電位相の電位差△Emax、中間電位相と基準電位相の電位差△Emid及び出力電流値Ioutから上記で説明した中間電位相及び基準電位相が入力各相のどれに該当するか考慮し、通流率をα+△αとして実施例1で説明したPWMパルス生成の手順でPWMパルス指令を求め、PWM発生部11に出力している。
 このようにして、入力電圧指令Vとコンデンサの端子電圧Vが一致するように通流率αをα+△αに変更することで通流率を変調補正するようにしている。
 上記処理により、HmaxよりHmidが大きく、Tの状態よりTの状態のほうがVをVに一致させる効果が大きいときには通流率αが小さくなるように補正して、パルス幅Tを大きく、Tを小さくしている。また、逆にHmidよりHmaxが大きく、Tの状態よりTの状態のほうがVをVに一致させる効果が大きいときは、通流率αが大きくなるように補正して、パルス幅Tを大きく、Tを小さくしている。
 以上、1つの線間電圧指令に対する変調補正について説明したが、3相負荷の場合は、2つ有る線間電圧指令に対して上記(2)、(3)、(10)及び(11)式の演算を同時に実施すれば、通流率αの加算分△αを線間電圧指令各々について演算できる。この個別に演算した△αを共通の通流率αに加算することで、第1の実施例と同様、コンデンサ電圧Vを入力指令電圧Vに一致させることができるので、入力コンデンサの電圧Vinの振動を抑制することができる。
 また、第2の実施例で説明したように図5のコンデンサ電圧検出器11をコンデンサ電流検出器13に置き換えても本発明は実施例4により実施できる。
 また、第3の実施例で説明したように図5のコンデンサ電圧検出器11を入力電流検出器14に置き換えても本発明は実施例4により実施できる。
 さらに、上記では、出力の相数を3相の場合で説明したが、出力の相数が何相であっても、出力電圧指令として出力の相数より一つ少ない数の線間電圧指令を与え、各々の線間電圧指令に対し本発明を実施すれば、コンデンサ電圧Vを入力指令電圧Vに一致させることができることは言うまでもない。
 このように、本発明は単相出力から多相出力のマトリクスコンバータまでに適用可能である。
 次に、本発明の第5の実施例について説明する。第5の実施例は、出力が単相交流又は直流であるマトリクスコンバータの出力を直列に接続して構成した直列多重マトリクスコンバータ装置に本発明を適用するものである。
 図6は第5の実施例の構成図であり、図において、変圧器21は、三相電源40からの三相交流電源を入力とし、マトリクスコンバータの入力電圧に変換し、パワーセル22a~22iは、変圧器21の二次電圧を入力とし単相交流電圧を出力する。負荷23は、パワーセル22a~22iを直列に多重化して構成されたマトリクスコンバータ24に接続されている。
 直列多重マトリクスコンバータ24を構成するパワーセル22a~22iは、直列に接続され出力多相交流の1相電圧を作り出している。また、パワーセル22a~22iは、実施例1から実施例4で説明したマトリクスコンバータ1を適用したものであるため、直列多重マトリクスコンバータ24においても同様にパワーセル22a~22iが内蔵する入力フィルタ用コンデンサの電圧振動を抑制することができる。
 次に、本発明の第6の実施例について説明する。第6の実施例は、マトリクスコンバータの出力を並列に接続して構成した並列多重マトリクスコンバータ装置に本発明を適用するものである。
 図7は第6の実施例の構成図であり、図において、パワーセル31a、31bは、それぞれ三相電源40a、40bからの三相交流電源を入力とし、交流電圧を出力する。負荷32は、パワーセル31a、31bを並列に多重化して構成されたマトリクスコンバータ33に接続されている。
 この並列多重マトリクスコンバータ33を構成するパワーセル31a、31bは、実施例1から実施例4で説明したマトリクスコンバータ1を適用したものであるため、並列多重マトリクスコンバータ33においても同様にパワーセル31a、31bが内蔵する入力フィルタ用コンデンサの電圧振動を抑制することができる。
 このように、コンデンサ電圧ベクトルVが入力電圧指令ベクトルVに近づき、入力用フィルタのコンデンサ電圧ピーク値の増大が抑制されるので、コンデンサ及びスナバ回路素子の耐圧を低くすることができ、マトリクスコンバータのコストを低減するとともに他の機器へ及ぼす影響を小さくすることができる。
 次に、第7実施例として、本発明を適用したマトリクスコンバータの制御装置の出力電圧発生方法について説明する。
 適用されるマトリクスコンバータの制御装置は、入力側にリアクトル3とコンデンサ4を備えたフィルタが設けられ、三相電源40からの入力電圧を検出する入力電圧検出器8と、マトリクスコンバータ1の出力電流を検出する出力電流検出器9と、コンデンサ4の端子電圧を検出するコンデンサ電圧検出器13と、第1実施例で説明したパルス幅変調部10を備えていて、下記の手順で出力電圧を発生する。
(ステップ001)
 その手順は、まず、入力電圧検出器8は、三相電源40からの入力電圧を検出する。
(ステップ002)
 次に、コンデンサ電圧検出器13は、コンデンサの端子電圧値を検出する。
 次に、パルス幅変調部10は、下記の処理が行われる。
(ステップ003)
 まず、ステップ001で検出した入力電圧値の基本波と位相、振幅が等しい入力電圧指令値を演算する。
(ステップ004)
 次に、ステップ003で演算した入力電圧値から最小電位相もしくは最大電位相を基準電位相とし、基準電位相と中間電位相との第1の電位差及び最小電位相と最大電位相との第2の電位差を演算する。
(ステップ005)
 次に、ステップ004で演算した2つの電位差をパルス高さとして、第1の電位差とパルス高さの等しいパルスのパルス幅と第2の電位差とパルス高さの等しいパルスのパルス幅を入力電圧指令値と検出したコンデンサの端子電圧値の大きさ及び方向が一致するように決定する。
(ステップ006)
 次に、ステップ005で決定した二つのパルス幅からPWMパルス指令信号を生成する。
 なお、上記における具体的な処理は、第1実施例で詳細に説明しているので、ここでは説明は省略する。
 このようにして、PWMパルス指令信号は生成されるので、後は従来の手順で処理することでマトリクスコンバータの制御装置の出力電圧は発生される。
 次に、第8実施例として、本発明を適用するマトリクスコンバータの制御装置がコンデンサ電圧検出器13の代わりに、コンデンサ4の端子電流を検出するコンデンサ電流検出器14を備える場合の出力電圧発生方法について説明する。
 コンデンサ電流検出器14がコンデンサ4に流れる電流値を検出し、第2実施例に記載した方法によりコンデンサの端子電圧値を演算して、第7実施例を適用することで、コンデンサの端子電圧値の代わりコンデンサに流れる端子電流値を用いても同様に実施できる。
 さらに、コンデンサ電流検出器14を備えずとも、マトリクスコンバータ1の入力電流を検出し、第3実施例に記載した方法によりコンデンサの端子電圧値を演算して、第7実施例を適用することも可能である。
 次に、第9実施例として、本発明を適用したマトリクスコンバータの制御装置の出力電圧補正方法について説明する。
 適用されるマトリクスコンバータの制御装置は、入力側にリアクトル3とコンデンサ4を備えたフィルタが設けられ、三相電源40からの入力電圧を検出する入力電圧検出器8と、マトリクスコンバータ1の出力電流を検出する出力電流検出器9と、コンデンサ4の端子電圧を検出するコンデンサ電圧検出器13と、第4実施例で説明した入力電位差演算部16、通流率指令部17、パルス波形指令部18、通流率補正部19、加算器20を備えていて、下記の手順で出力電圧を発生する。
(ステップ001)
 その手順は、まず三相電源40からの入力電圧を検出する。
(ステップ002)
 次に、コンデンサの端子電圧値を検出する。
(ステップ003)
 まず、ステップ001で検出した入力電圧値の基本波と位相、振幅が等しい入力電圧指令値を演算する。
(ステップ004)
 次に、ステップ003で演算した入力電圧値から最小電位相もしくは最大電位相を基準電位相とし、基準電位相と中間電位相との第1の電位差及び最小電位相と最大電位相との第2の電位差を演算する。
(ステップ005)
 次に、ステップ004で演算した2つの電位差をパルス高さとして、第1の電位差とパルス高さの等しいパルスと第2の電位差とパルス高さの等しいパルスとのパルス幅の比を演算された入力電圧指令値の位相に応じて決定する。
(ステップ006)
 次に、ステップ004で演算した2つの電位差と、ステップ005で決定したパルス幅の比からPWMパルス指令信号を生成する。
(ステップ007)
 次に、入力電圧指令値と検出したコンデンサの端子電圧値の大きさ及び方向が一致するように、ステップ005で決定したパルス幅の比を補正する。
 なお、上記における具体的な処理は、第4実施例で詳細に説明しているので、ここでは説明は省略する。
 また、第7乃至第9実施例で示した方法は、出力の相数が何相であっても適用できるので、単相又は直流出力のマトリクスコンバータにも全く同様に適用できる。
 さらに、第7乃至第9実施例で示した方法を適用したマトリクスコンバータを、第5実施例で示したマトリクスコンバータの出力を直列に接続して構成した直列多重マトリクスコンバータ装置に備えて適用できるし、第6実施例で示したマトリクスコンバータの出力を並列に接続して構成した並列多重マトリクスコンバータ装置に備えて適用できる。
 出力電圧指令として出力の相数より一つ少ない数の線間電圧指令を与え、各々の線間電圧指令に対して本発明を実施することができるので、単相出力から多相出力のマトリクスコンバータに適用でき、さらに、このマトリクスコンバータを直列接続した直列多重マトリクスコンバータや、並列接続した並列多重マトリクスコンバータにも適用できる。

Claims (19)

  1.  マトリクスコンバータの入力電圧を検出する入力電圧検出器と、前記マトリクスコンバータの出力電流を検出する出力電流検出器と、前記検出した入力電圧、前記検出した出力電流及び出力線間電圧指令からPWMパルス指令信号を生成するパルス幅変調部を備えたマトリクスコンバータの制御装置であって、
     前記マトリクスコンバータの入力電圧指令を演算する入力電圧指令演算部を備えたことを特徴とするマトリクスコンバータの制御装置。
  2.  マトリクスコンバータの入力電圧を検出する入力電圧検出器と、前記マトリクスコンバータの出力電流を検出する出力電流検出器と、前記入力電圧の基本波と位相、振幅が等しい正弦波に波形整形した信号を出力する入力電圧指令演算部と、前記入力電圧、前記出力電流、前記波形整形信号及び出力線間電圧指令を用いてPWMパルス指令信号を生成するパルス幅変調部とを備えたマトリクスコンバータの制御装置であって、
     前記パルス幅変調部は、前記入力電圧と前記波形整形信号が一致するように前記PWMパルス指令信号を出力するようにしたことを特徴とするマトリクスコンバータの制御装置。
  3.  マトリクスコンバータの入力電圧を検出する入力電圧検出器と、前記マトリクスコンバータの出力電流を検出する出力電流検出器と、前記入力電圧の基本波と位相、振幅が等しい正弦波に波形整形した信号を出力する入力電圧指令演算部と、前記入力電圧、前記出力電流、前記波形整形信号及び出力線間電圧指令を用いてPWMパルス指令信号を生成するパルス幅変調部と、前記マトリクスコンバータの入力側にリアクトルとコンデンサからなるフィルタと、前記コンデンサの端子電圧を検出するコンデンサ電圧検出器を備えたマトリクスコンバータの制御装置であって、
     前記パルス幅変調部は、前記端子電圧が前記波形整形信号と一致するように前記PWMパルス指令信号を出力するようにしたことを特徴とするマトリクスコンバータの制御装置。
  4.  マトリクスコンバータの入力電圧を検出する入力電圧検出器と、前記マトリクスコンバータの出力電流を検出する出力電流検出器と、前記入力電圧の基本波と位相、振幅が等しい正弦波に波形整形した信号を出力する入力電圧指令演算部と、前記入力電圧、前記出力電流、前記波形整形信号及び出力線間電圧指令を用いてPWMパルス指令信号を生成するパルス幅変調部と、前記マトリクスコンバータの入力側に接続される電源装置の内部リアクタンスと対でフィルタを構成するコンデンサと、前記コンデンサを流れる電流を検出するコンデンサ電流検出器を備えたマトリクスコンバータの制御装置であって、
     前記パルス幅変調部は、前記コンデンサを流れる電流から求めた前記コンデンサの端子電圧が前記波形整形信号と一致するように前記PWMパルス指令信号を出力するようにしたことを特徴とするマトリクスコンバータの制御装置。
  5.  マトリクスコンバータの入力電圧を検出する入力電圧検出器と、前記マトリクスコンバータの出力電流を検出する出力電流検出器と、前記入力電圧の基本波と位相、振幅が等しい正弦波に波形整形した信号を出力する入力電圧指令演算部と、前記入力電圧、前記出力電流、前記波形整形信号及び出力線間電圧指令を用いてPWMパルス指令信号を生成するパルス幅変調部と、前記マトリクスコンバータの入力側にリアクトルとコンデンサからなるフィルタと、前記コンデンサを流れる電流を検出するコンデンサ電流検出器を備えたマトリクスコンバータの制御装置であって、
     前記パルス幅変調部は、前記コンデンサを流れる電流から求めた前記コンデンサの端子電圧が前記波形整形信号と一致するように前記PWMパルス指令信号を出力するようにしたことを特徴とするマトリクスコンバータの制御装置。
  6.  マトリクスコンバータの入力電圧を検出する入力電圧検出器と、前記マトリクスコンバータの出力電流を検出する出力電流検出器と、前記入力電圧の基本波と位相、振幅が等しい正弦波に波形整形した信号を出力する入力電圧指令演算部と、前記入力電圧、前記出力電流、前記波形整形信号及び出力線間電圧指令を用いてPWMパルス指令信号を生成するパルス幅変調部と、前記マトリクスコンバータの入力側に接続される電源装置の内部リアクタンスと対でフィルタを構成するコンデンサと、前記マトリクスコンバータの入力電流を検出する入力電流検出器を備えたマトリクスコンバータの制御装置であって、
     前記パルス幅変調部は、前記入力電流から求めた前記マトリクスコンバータの入力電圧が前記波形整形信号と一致するように前記PWMパルス指令信号を出力するようにしたことを特徴とするマトリクスコンバータの制御装置。
  7.  マトリクスコンバータの入力電圧を検出する入力電圧検出器と、前記マトリクスコンバータの出力電流を検出する出力電流検出器と、前記入力電圧の基本波と位相、振幅が等しい正弦波に波形整形した信号を出力する入力電圧指令演算部と、前記入力電圧、前記出力電流、前記波形整形信号及び出力線間電圧指令を用いてPWMパルス指令信号を生成するパルス幅変調部と、前記マトリクスコンバータの入力側にリアクトルとコンデンサからなるフィルタと、前記マトリクスコンバータの入力電流を検出する入力電流検出器を備えたマトリクスコンバータの制御装置であって、
     前記パルス幅変調部は、前記入力電流から求めた前記マトリクスコンバータの入力電圧が前記波形整形信号と一致するように前記PWMパルス指令信号を出力するようにしたことを特徴とするマトリクスコンバータの制御装置。
  8.  前記パルス幅変調部は、前記入力電圧から最小電位相もしくは最大電位相を基準電位相とし、前記基準電位相と中間電位相との第1の電位差及び前記最小電位相と前記最大電位相との第2の電位差を演算する入力電位差演算部と、
     前記2つの電位差をパルス高さとし、前記第1の電位差とパルス高さの等しいパルスと前記第2の電位差とパルス高さの等しいパルスとのパルス幅の比を前記入力電圧の位相に応じて通流率として出力する通流率指令部と、
     前記通流率を補正する通流率補正部と、
     前記2つの電位差と前記補正された通流率から前記PWMパルス指令信号を生成するパルス波形指令部とを備えたことを特徴とする請求項2乃至7のいずれかに記載のマトリクスコンバータの制御装置。
  9.  前記通流率補正部は、前記最小電位相と前記中間電位相の電位差により決まる部分のパルス幅T、前記最小電位相と前記最大電位相の電位差により決まる部分のパルス幅Tのそれぞれにおける入力電圧の基本波と位相、振幅が等しい正弦波信号と入力電圧Vinの誤差電圧ベクトル及び前記フィルタの出力側に流れる電流による充放電で発生するコンデンサ電圧ベクトルの差を用いて前記通流率の補正分を求めることを特徴とする請求項8に記載のマトリクスコンバータの制御装置。
  10.  交流を入力とし、単相交流又は直流を出力することを特徴とする請求項2乃至7のいずれかに記載のマトリクスコンバータの制御装置。
  11.  交流を直流に変換することなく直接変換することで単相交流を出力する請求項10に記載のマトリクスコンバータを直列に接続したことを特徴とする直列多重マトリクスコンバータの制御装置。
  12.  交流を直流に変換することなく直接変換することで交流出力する請求項2乃至7のいずれかに記載のマトリクスコンバータを並列に接続したことを特徴とする並列多重マトリクスコンバータの制御装置。
  13.  マトリクスコンバータの入力側にリアクトルとコンデンサを備えたフィルタを設け、
     三相交流電源からの入力電圧を検出するステップと、
     前記入力電圧の基本波と位相、振幅が等しい正弦波に波形整形した信号を演算するステップと、
     前記マトリクスコンバータの出力電流を検出するステップと、
     前記入力電圧、前記出力電流及び出力線間電圧指令からPWMパルス指令信号を生成するステップと、
     前記波形整形信号と前記コンデンサの端子電圧の大きさ及び位相が一致するように前記PWMパルス指令信号を補正するステップを備えたマトリクスコンバータ制御装置の出力電圧発生方法。
  14.  マトリクスコンバータの入力側にリアクトルとコンデンサを備えたフィルタを設け、
     三相交流電源からの入力電圧を検出するステップと、
     前記入力電圧の基本波と位相、振幅が等しい正弦波に波形整形した信号を演算するステップと、
     前記マトリクスコンバータの出力電流を検出するステップと、
     前記入力電圧から最小電位相もしくは最大電位相を基準電位相とし、前記基準電位相と中間電位相との第1の電位差及び前記最小電位相と前記最大電位相との第2の電位差を演算するステップと、
     前記2つの電位差をパルス高さとし、前記第1の電位差とパルス高さの等しいパルスと前記第2の電位差とパルス高さの等しいパルスとのパルス幅の比を前記波形整形信号の位相に応じて決定するステップと、
     前記2つの電位差と前記パルス幅の比から前記PWMパルス指令信号を生成するステップと、
     前記波形整形信号と前記コンデンサの端子電圧の大きさ及び位相が一致するように前記パルス幅の比を補正するステップを備えたことを特徴とするマトリクスコンバータの制御装置の出力電圧補正方法。
  15.  マトリクスコンバータの入力側にリアクトルとコンデンサを備えたフィルタを設け、
     三相交流電源からの入力電圧を検出するステップと、
     前記入力電圧の基本波と位相、振幅が等しい正弦波に波形整形した信号を演算するステップと、
     前記マトリクスコンバータの出力電流を検出するステップと、
     前記入力電圧、前記出力電流及び出力線間電圧指令からPWMパルス指令信号を生成するステップと、
     前記コンデンサを流れる電流あるいは前記マトリクスコンバータの入力電流を検出し、この電流を用いて前記コンデンサの端子電圧を演算するステップと、
     前記波形整形信号と前記コンデンサの端子電圧の大きさ及び位相が一致するように前記PWMパルス指令信号を補正するステップを備えたことを特徴とするマトリクスコンバータの制御装置の出力電圧発生方法。
  16.  マトリクスコンバータの入力側にリアクトルとコンデンサを備えたフィルタを設け、
     三相交流電源からの入力電圧を検出するするステップと、
     前記入力電圧の基本波と位相、振幅が等しい正弦波に波形整形した信号を演算するステップと、
     前記マトリクスコンバータの出力電流を検出するステップと、
     前記入力電圧から最小電位相もしくは最大電位相を基準電位相とし、前記基準電位相と中間電位相との第1の電位差及び前記最小電位相と前記最大電位相との第2の電位差を演算するステップと、
     前記2つの電位差をパルス高さとし、前記第1の電位差とパルス高さの等しいパルスと前記第2の電位差とパルス高さの等しいパルスとのパルス幅の比を前記波形整形信号の位相に応じて決定するステップと、
     前記2つの電位差と前記パルス幅の比から前記PWMパルス指令信号を生成し、
     前記コンデンサを流れる電流あるいは前記マトリクスコンバータの入力電流を検出し、この電流を用いて前記コンデンサの端子電圧を演算するステップと、
     前記波形整形信号と前記コンデンサの端子電圧の大きさ及び位相が一致するように前記パルス幅の比を補正するステップを備えたことを特徴とするマトリクスコンバータの制御装置の出力電圧補正方法。
  17.  交流を入力とし、単相交流又は直流を出力するマトリクスコンバータの制御装置の出力電圧発生方法において、
     請求項13乃至16のいずれかに記載のステップを備えた手順で出力電圧を発生することを特徴とするマトリクスコンバータの制御装置の出力電圧発生方法。
  18.  交流を入力とし、単相交流又は直流を出力するマトリクスコンバータを直列に接続した直列多重マトリクスコンバータの制御装置の出力電圧発生方法において、
     請求項17に記載のステップを備えた手順で出力電圧を発生することを特徴とする直列多重マトリクスコンバータの制御装置の出力電圧発生方法。
  19.  交流を直流に変換することなく直接変換することで交流を出力するマトリクスコンバータを並列に接続した並列多重マトリクスコンバータの制御装置の出力電圧発生方法において、
     請求項13乃至17のいずれかに記載のステップを備えた手順を用いて出力電圧を発生することを特徴とする並列多重マトリクスコンバータの制御装置の出力電圧発生方法。
PCT/JP2009/054316 2008-05-30 2009-03-06 マトリクスコンバータの制御装置及びその出力電圧発生方法 WO2009144987A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010514402A JP5387859B2 (ja) 2008-05-30 2009-03-06 マトリクスコンバータの制御装置及びその出力電圧発生方法
CN200980119275.4A CN102047545B (zh) 2008-05-30 2009-03-06 矩阵变换器的控制装置及其输出电压产生方法
US12/955,921 US8243482B2 (en) 2008-05-30 2010-11-30 Control device for matrix converter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-142289 2008-05-30
JP2008142289 2008-05-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/955,921 Continuation US8243482B2 (en) 2008-05-30 2010-11-30 Control device for matrix converter

Publications (1)

Publication Number Publication Date
WO2009144987A1 true WO2009144987A1 (ja) 2009-12-03

Family

ID=41376874

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/054316 WO2009144987A1 (ja) 2008-05-30 2009-03-06 マトリクスコンバータの制御装置及びその出力電圧発生方法

Country Status (5)

Country Link
US (1) US8243482B2 (ja)
JP (1) JP5387859B2 (ja)
CN (1) CN102047545B (ja)
TW (1) TWI469490B (ja)
WO (1) WO2009144987A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012111416A1 (ja) * 2011-02-16 2012-08-23 株式会社安川電機 風力発電用マトリクスコンバータ装置、風力発電装置、ウィンドファームおよび風車の製造方法
JP2012231599A (ja) * 2011-04-26 2012-11-22 Yaskawa Electric Corp 直列多重電力変換装置
CN102931850A (zh) * 2012-10-19 2013-02-13 四川九洲空管科技有限责任公司 一种基于Matrix变换器的电流型中频数字电源及控制方法
JP5333677B2 (ja) * 2011-02-16 2013-11-06 株式会社安川電機 風力発電用マトリクスコンバータ装置、風力発電装置、ウィンドファームおよび風車の製造方法
WO2014030202A1 (ja) * 2012-08-20 2014-02-27 東芝三菱電機産業システム株式会社 電力変換器

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5377574B2 (ja) * 2011-05-31 2013-12-25 日産自動車株式会社 電力変換装置
JP5500141B2 (ja) * 2011-09-01 2014-05-21 株式会社安川電機 電力変換装置
CN103999340A (zh) * 2011-11-30 2014-08-20 株式会社安川电机 矩阵变换器
FR2992116B1 (fr) * 2012-06-18 2015-11-13 Univ Lorraine Circuit convertisseur matriciel reversible
KR20150036263A (ko) * 2012-07-31 2015-04-07 가부시키가이샤 야스카와덴키 매트릭스 컨버터
US8848410B2 (en) * 2012-12-06 2014-09-30 Kabushiki Kaisha Yaskawa Denki Matrix converter
KR20140074849A (ko) * 2012-12-10 2014-06-18 가부시키가이샤 야스카와덴키 매트릭스 컨버터 및 매트릭스 컨버터의 제어 방법
JP5682644B2 (ja) * 2013-03-11 2015-03-11 株式会社安川電機 マトリクスコンバータ
JP2015201996A (ja) * 2014-04-09 2015-11-12 株式会社安川電機 電力変換装置、電力変換装置の制御装置および電力変換装置の制御方法
WO2016051500A1 (ja) * 2014-09-30 2016-04-07 株式会社安川電機 電力変換装置、発電システムおよび電流制御方法
CN113014079B (zh) * 2019-12-19 2022-02-01 东元电机股份有限公司 变频器装置以及依据输出电压值而选择性输出电流的方法
US11451156B2 (en) 2020-01-21 2022-09-20 Itt Manufacturing Enterprises Llc Overvoltage clamp for a matrix converter
CN113517803B (zh) * 2021-05-17 2022-05-31 河北工业大学 减小单相矩阵式无线电能传输系统直流侧电容的调制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006035752A1 (ja) * 2004-09-29 2006-04-06 Kabushiki Kaisha Yaskawa Denki 並列多重マトリクスコンバータ装置
WO2007094161A1 (ja) * 2006-02-15 2007-08-23 Kabushiki Kaisha Yaskawa Denki マトリクスコンバータ装置
JP2007300709A (ja) * 2006-04-28 2007-11-15 Meidensha Corp 交流−交流直接変換装置
JP2007306649A (ja) * 2006-05-09 2007-11-22 Yaskawa Electric Corp 直列多重マトリクスコンバータ
JP2008048550A (ja) * 2006-08-18 2008-02-28 Yaskawa Electric Corp マトリクスコンバータ

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5852559A (en) * 1996-09-24 1998-12-22 Allen Bradley Company, Llc Power application circuits utilizing bidirectional insulated gate bipolar transistor
DE19639773A1 (de) * 1996-09-27 1998-04-02 Abb Patent Gmbh Dreiphasiger Matrix-Stromrichter und Verfahren zum Betrieb
TW497325B (en) * 2001-06-06 2002-08-01 Matritek Inc Controller for three-phase direct-chain AC/AC converter
CN100345365C (zh) * 2004-08-20 2007-10-24 清华大学 矩阵式变换器在电网电压非正常时的补偿控制方法
JP4759968B2 (ja) * 2004-10-04 2011-08-31 ダイキン工業株式会社 Pwm整流回路の保護方法およびその装置
JP4803177B2 (ja) * 2005-04-15 2011-10-26 株式会社安川電機 マトリクスコンバータ装置
TW200713747A (en) * 2005-09-14 2007-04-01 Tian-Hua Liu A digital rotor position estimating method for interior permanent magnet synchronous motors
JP4622840B2 (ja) * 2005-12-13 2011-02-02 富士電機システムズ株式会社 交流交流直接変換器の制御装置
US7848121B2 (en) * 2007-05-14 2010-12-07 Honeywell International Inc. Advanced matrix converter and method for operation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006035752A1 (ja) * 2004-09-29 2006-04-06 Kabushiki Kaisha Yaskawa Denki 並列多重マトリクスコンバータ装置
WO2007094161A1 (ja) * 2006-02-15 2007-08-23 Kabushiki Kaisha Yaskawa Denki マトリクスコンバータ装置
JP2007300709A (ja) * 2006-04-28 2007-11-15 Meidensha Corp 交流−交流直接変換装置
JP2007306649A (ja) * 2006-05-09 2007-11-22 Yaskawa Electric Corp 直列多重マトリクスコンバータ
JP2008048550A (ja) * 2006-08-18 2008-02-28 Yaskawa Electric Corp マトリクスコンバータ

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012111416A1 (ja) * 2011-02-16 2012-08-23 株式会社安川電機 風力発電用マトリクスコンバータ装置、風力発電装置、ウィンドファームおよび風車の製造方法
WO2012111115A1 (ja) * 2011-02-16 2012-08-23 株式会社安川電機 風力発電用電力変換装置、風力発電装置、ウィンドファームおよび風車の製造方法
CN103370534A (zh) * 2011-02-16 2013-10-23 株式会社安川电机 风力发电用矩阵转换装置、风力发电装置、风场和风车的制造方法
JP5333677B2 (ja) * 2011-02-16 2013-11-06 株式会社安川電機 風力発電用マトリクスコンバータ装置、風力発電装置、ウィンドファームおよび風車の製造方法
KR101509371B1 (ko) * 2011-02-16 2015-04-07 가부시키가이샤 야스카와덴키 풍력 발전용 매트릭스 컨버터 장치, 풍력 발전 장치, 윈드 팜 및 풍차의 제조 방법
JP2012231599A (ja) * 2011-04-26 2012-11-22 Yaskawa Electric Corp 直列多重電力変換装置
WO2014030202A1 (ja) * 2012-08-20 2014-02-27 東芝三菱電機産業システム株式会社 電力変換器
JPWO2014030202A1 (ja) * 2012-08-20 2016-07-28 東芝三菱電機産業システム株式会社 電力変換器
EP2887524B1 (en) 2012-08-20 2021-08-11 Toshiba Mitsubishi-Electric Industrial Systems Corporation Power converter
CN102931850A (zh) * 2012-10-19 2013-02-13 四川九洲空管科技有限责任公司 一种基于Matrix变换器的电流型中频数字电源及控制方法

Also Published As

Publication number Publication date
US8243482B2 (en) 2012-08-14
JPWO2009144987A1 (ja) 2011-10-06
CN102047545A (zh) 2011-05-04
US20110116295A1 (en) 2011-05-19
TW201010256A (en) 2010-03-01
TWI469490B (zh) 2015-01-11
JP5387859B2 (ja) 2014-01-15
CN102047545B (zh) 2014-12-10

Similar Documents

Publication Publication Date Title
JP5387859B2 (ja) マトリクスコンバータの制御装置及びその出力電圧発生方法
US9882466B2 (en) Power conversion device including an AC/DC converter and a DC/DC converter
US7485987B2 (en) Power converting device
US9559614B2 (en) Grid-connected inverter, inverter arrangement and method for operating an inverter arrangement
US7577007B2 (en) Power converting apparatus
US7881081B1 (en) Systems and methods for reducing AC drive common-mode currents
US8154893B2 (en) Three-phase power converting apparatus
WO2007129456A1 (ja) 電力変換装置
JP5374336B2 (ja) 電力変換装置
CN112005482A (zh) 三电平电力变换装置、三电平电力变换装置的控制方法及存储介质
JP2014233126A (ja) 電力変換装置
JP6131360B1 (ja) 電力変換装置
JP2014007846A (ja) 電力変換装置
JP2004201440A (ja) パルス幅変調方法とその装置及び電力変換方法と電力変換器
Lopes et al. Space vector modulation for low switching frequency current source converters with reduced low-order noncharacteristic harmonics
WO2018179234A1 (ja) H型ブリッジ変換器およびパワーコンディショナ
JP2017153277A (ja) 自励式無効電力補償装置
JP6935359B2 (ja) 直列多重電力変換装置
JP2007097394A (ja) 電力変換器
Wu et al. D-Σ digital control for a three-phase transformerless bi-directional inverter with wide inductance variation
AU2021259198B2 (en) Method for controlling a multilevel inverter with a split DC link
JP7051600B2 (ja) 多段変換器の制御装置
WO2021170771A1 (en) Grid-tied voltage source converter
JPH06197546A (ja) 電力変換装置のpwm制御回路
Reddy et al. Parallel operation of full power converters in permanent-magnet direct-drive wind power generation system

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980119275.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09754495

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010514402

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09754495

Country of ref document: EP

Kind code of ref document: A1