CN102047545A - 矩阵变换器的控制装置及其输出电压产生方法 - Google Patents
矩阵变换器的控制装置及其输出电压产生方法 Download PDFInfo
- Publication number
- CN102047545A CN102047545A CN2009801192754A CN200980119275A CN102047545A CN 102047545 A CN102047545 A CN 102047545A CN 2009801192754 A CN2009801192754 A CN 2009801192754A CN 200980119275 A CN200980119275 A CN 200980119275A CN 102047545 A CN102047545 A CN 102047545A
- Authority
- CN
- China
- Prior art keywords
- matrix converter
- voltage
- input voltage
- output
- current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M5/00—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
- H02M5/02—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
- H02M5/04—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
- H02M5/22—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M5/275—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M5/297—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal for conversion of frequency
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/53—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/537—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
- H02M7/5387—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
- H02M7/53871—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0003—Details of control, feedback or regulation circuits
- H02M1/0016—Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters
- H02M1/0022—Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters the disturbance parameters being input voltage fluctuations
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Ac-Ac Conversion (AREA)
- Inverter Devices (AREA)
- Rectifiers (AREA)
Abstract
本发明提供一种矩阵变换器装置,能够使设置在输入侧的滤波器的电容器电压接近于正弦波并使峰值减少,可利用使用了耐压低的电容器的输入用滤波器,大幅度减轻了对外围设备的影响。具体为,具备脉宽调制部(10),利用设置在输入侧的滤波器的电容器端子电压值、输入电压值以及矩阵变换器的输出电流值生成PWM脉冲指令信号。
Description
技术领域
本发明涉及一种不将交流变换为直流而进行直接变换的电力变换器的控制装置及其输出电压产生方法。
背景技术
作为现有的不将交流变换为直流而进行直接变换的电力变换器有矩阵变换器,其控制装置通常以PWM脉冲的形状生成输出线间电压指令Vref,通过PWM脉冲的面积控制输出线间电压的大小,通过后述的PWM脉冲的比率使输入电流接近于正弦波。
图8以PWM脉冲的形状表示矩阵变换器的输出线间电压。在图8中,111是由最小电位相和中间电位相的电位差决定的部分的脉冲,112是由最小电位相和最大电位相的电位差决定的部分的脉冲,S是该PWM脉冲整体的面积,T1是脉冲111的宽度的1/2,T2是脉冲112的宽度的1/2。与电压输出相关的2相在111期间为输入的最小电位相和中间电位相,在112期间为最小电位相和最大电位相,使T1与T2的比α可变而使输入电流的形状可变。如此,通过使脉冲面积S及T1与T2的比α可变而控制输出电压的大小及控制输入电流的形状,111期间的输入电位相成对使用中间电位相和最小电位相,或者为了改善输入电流波形,分别成对使用中间电位相和最小电位相以及中间电位相和最大电位相。
而且存在如下技术,修正由主电路半导体元件的换流所产生的输出电压及输入电流的误差,降低输入电流和输出电压的畸变(例如参照专利文献1)。
如此,现有的不将交流变换为直流而进行直接变换的电力变换器使输入电流接近于正弦波。
专利文献1:日本国特开2007-166749号公报
在现有的不将交流变换为直流而进行直接变换的电力变换器即矩阵变换器中存在如下问题,为了防止PWM控制中所使用的载波频率所引起的输入电流的波动流出而设置的输入滤波器存在共振频率,在相同的电源系统中连接晶闸管变换器或输入电压存在畸变时,发生共振现象,对外围设备产生不良影响,或者因提高连接于主电路部的输入滤波器、缓冲电路的耐压这样的措施而使成本增加。另外,在现有的矩阵变换器装置中,未公开对起因于输入侧的变化进行修正的方法。
发明内容
本发明是鉴于上述问题而进行的,目的在于提供一种电力变换器的控制装置及其输出电压产生方法,能够使设置在输入侧的输入滤波器的电容器电压接近于正弦波并使峰值减少,可利用使用了耐压低的电容器的输入滤波器,大幅度减轻了对外围设备的影响。
为解决上述问题,本发明是如下构成的。
方案1所述的发明是一种矩阵变换器的控制装置,其具备:输入电压检测器,检测矩阵变换器的输入电压;输出电流检测器,检测所述矩阵变换器的输出电流;及脉宽调制部,根据所述检测出的输入电压、所述检测出的输出电流及输出线间电压指令生成PWM脉冲指令信号,其为,具备运算所述矩阵变换器的输入电压指令的输入电压指令运算部。
方案2所述的发明是一种矩阵变换器的控制装置,其具备:输入电压检测器,检测矩阵变换器的输入电压;输出电流检测器,检测所述矩阵变换器的输出电流;输入电压指令运算部,输出整形为相位、振幅与所述输入电压的基波相等的正弦波的信号;及脉宽调制部,利用所述输入电压、所述输出电流、所述整形信号及输出线间电压指令生成PWM脉冲指令信号,其为,所述脉宽调制部输出所述PWM脉冲指令信号,使所述输入电压与所述整形信号一致。
方案3所述的发明是一种矩阵变换器的控制装置,其在方案2所述的矩阵变换器的控制装置中具备:滤波器,在所述矩阵变换器的输入侧由电抗器和电容器组成;及电容器电压检测器,检测所述电容器的端子电压,其为,所述脉宽调制部输出所述PWM脉冲指令信号,使所述端子电压与所述整形信号一致。
方案4所述的发明是一种矩阵变换器的控制装置,其在方案2所述的矩阵变换器的控制装置中具备:电容器,与连接在所述矩阵变换器输入侧的电源装置的内部电抗成对地构成滤波器;及电容器电流检测器,检测流向所述电容器的电流,其为,所述脉宽调制部输出所述PWM脉冲指令信号,使根据流向所述电容器的电流求出的所述电容器的端子电压与所述整形信号一致。
方案5所述的发明是一种矩阵变换器的控制装置,其在方案2所述的矩阵变换器的控制装置中具备:滤波器,在所述矩阵变换器的输入侧由电抗器和电容器组成;及电容器电流检测器,检测流向所述电容器的电流,其为,所述脉宽调制部输出所述PWM脉冲指令信号,使根据流向所述电容器的电流求出的所述电容器的端子电压与所述整形信号一致。
方案6所述的发明是一种矩阵变换器的控制装置,其在方案2所述的矩阵变换器的控制装置中具备:电容器,与连接在所述矩阵变换器输入侧的电源装置的内部电抗成对地构成滤波器;及输入电流检测器,检测所述矩阵变换器的输入电流,其为,所述脉宽调制部输出所述PWM脉冲指令信号,使根据所述输入电流求出的所述矩阵变换器的输入电压与所述整形信号一致。
方案7所述的发明是一种矩阵变换器的控制装置,其在方案2所述的矩阵变换器的控制装置中具备:滤波器,在所述矩阵变换器的输入侧由电抗器和电容器组成;及输入电流检测器,检测所述矩阵变换器的输入电流,其为,所述脉宽调制部输出所述PWM脉冲指令信号,使根据所述输入电流求出的所述矩阵变换器的输入电压与所述整形信号一致。
方案8所述的发明为,在方案2至7中任意一项所述的矩阵变换器的控制装置中,所述脉宽调制部具备:输入电位差运算部,根据所述输入电压使最小电位相或最大电位相作为基准电位相,运算所述基准电位相和中间电位相的第1电位差以及所述最小电位相和所述最大电位相的第2电位差;流通率指令部,使所述2个电位差作为脉冲高度,根据所述输入电压的相位使脉冲高度与所述第1电位差相等的脉冲和脉冲高度与所述第2电位差相等的脉冲的脉宽比作为流通率输出;流通率修正部,修正所述流通率;及脉冲波形指令部,根据所述2个电位差和所述修正后的流通率生成所述PWM脉冲指令信号。
方案9所述的发明为,在方案8所述的矩阵变换器的控制装置中,所述流通率修正部利用由所述最小电位相和所述中间电位相的电位差决定的部分的脉宽T1、由所述最小电位相和所述最大电位相的电位差决定的部分的脉宽T2各自中的相位、振幅与输入电压的基波相等的正弦波信号和输入电压Vin的误差电压矢量与流向所述滤波器输出侧的电流所引起的充放电所产生的电容器电压矢量的差求出所述流通率的修正量。
方案10所述的发明为,在方案2至7中任意一项所述的矩阵变换器的控制装置中,使交流为输入,使单相交流或直流为输出。
方案11所述的发明是一种串联多重矩阵变换器,其为,串联连接不将交流变换为直流而通过直接变换输出单相交流的方案10所述的矩阵变换器。
方案12所述的发明是一种并联多重矩阵变换器,其为,并联连接不将交流变换为直流而通过直接变换进行交流输出的方案2至7中任意一项所述的矩阵变换器。
为了解决上述问题,本发明是如下构成的。
方案13所述的发明是一种矩阵变换器控制装置的输出电压产生方法,其为,在矩阵变换器的输入侧设置具备电抗器和电容器的滤波器,包括:检测来自三相交流电源的输入电压的步骤;运算整形为相位、振幅与所述输入电压的基波相等的正弦波的信号的步骤;检测所述矩阵变换器的输出电流的步骤;根据所述输入电压、所述输出电流及输出线间电压指令生成PWM脉冲指令信号的步骤;检测出流向所述电容器的电流或所述矩阵变换器的输入电流,利用该电流运算所述电容器端子电压的步骤;及修正所述PWM脉冲指令信号使所述整形信号与所述电容器端子电压的大小及相位一致的步骤。
方案14所述的发明是一种矩阵变换器控制装置的输出电压修正方法,其为,在矩阵变换器的输入侧设置具备电抗器和电容器的滤波器,包括:检测来自三相交流电源的输入电压的步骤;运算整形为相位、振幅与所述输入电压的基波相等的正弦波的信号的步骤;检测所述矩阵变换器的输出电流的步骤;根据所述输入电压使最小电位相或最大电位相作为基准电位相,运算所述基准电位相和中间电位相的第1电位差以及所述最小电位相和所述最大电位相的第2电位差的步骤;使所述2个电位差作为脉冲高度,根据所述整形信号的相位确定脉冲高度与所述第1电位差相等的脉冲和脉冲高度与所述第2电位差相等的脉冲的脉宽比的步骤;根据所述2个电位差和所述脉宽比生成所述PWM脉冲指令信号的步骤;及修正所述脉宽比使所述整形信号与所述电容器端子电压的大小及相位一致的步骤。
方案15所述的发明是一种矩阵变换器控制装置的输出电压产生方法,其为,在矩阵变换器的输入侧设置具备电抗器和电容器的滤波器,包括:检测来自三相交流电源的输入电压的步骤;运算整形为相位、振幅与所述输入电压的基波相等的正弦波的信号的步骤;检测所述矩阵变换器的输出电流的步骤;根据所述输入电压、所述输出电流及输出线间电压指令生成PWM脉冲指令信号的步骤;检测出流向所述电容器的电流或所述矩阵变换器的输入电流,利用该电流运算所述电容器端子电压的步骤;及修正所述PWM脉冲指令信号使所述整形信号与所述电容器端子电压的大小及相位一致的步骤。
方案16所述的发明是一种矩阵变换器控制装置的输出电压修正方法,其为,在矩阵变换器的输入侧设置具备电抗器和电容器的滤波器,包括:检测来自三相交流电源的输入电压的步骤;运算整形为相位、振幅与所述输入电压的基波相等的正弦波的信号的步骤;检测所述矩阵变换器的输出电流的步骤;根据所述输入电压使最小电位相或最大电位相作为基准电位相,运算所述基准电位相和中间电位相的第1电位差以及所述最小电位相和所述最大电位相的第2电位差的步骤;使所述2个电位差作为脉冲高度,根据所述整形信号的相位确定脉冲高度与所述第1电位差相等的脉冲和脉冲高度与所述第2电位差相等的脉冲的脉宽比的步骤;根据所述2个电位差和所述脉宽比生成所述PWM脉冲指令信号,检测出流向所述电容器的电流或所述矩阵变换器的输入电流,利用该电流运算所述电容器端子电压的步骤;及修正所述脉宽比使所述整形信号与所述电容器端子电压的大小及相位一致的步骤。
方案17所述的发明是一种矩阵变换器控制装置的输出电压产生方法,是使交流为输入并使单相交流或直流为输出的矩阵变换器控制装置的输出电压产生方法,其为,利用方案13至16所述的任意一项的步骤产生输出电压。
方案18所述的发明是一种串联多重矩阵变换器控制装置的输出电压产生方法,是串联连接使交流为输入并使单相交流或直流为输出的矩阵变换器的串联多重矩阵变换器控制装置的输出电压产生方法,其为,利用方案17所述的步骤产生输出电压。
方案19所述的发明是一种并联多重矩阵变换器控制装置的输出电压产生方法,是并联连接不将交流变换为直流而通过直接变换输出交流的矩阵变换器的并联多重矩阵变换器控制装置的输出电压产生方法,其为,利用方案13至17所述的任意一项的步骤产生输出电压。
根据方案1至9以及方案13至16所述的任意一项发明,能够抑制输入滤波器用电容器端子电压的波动,根据方案10及17所述的发明,能够将输入滤波器用电容器端子电压的波动抑制应用于单相输出的矩阵变换器,而且,根据方案11、12、18及19所述的发明,还能够应用于串联多重矩阵变换器及并联多重矩阵变换器的各功率单元。
由此,能够使输入滤波器用电容器及主电路部的缓冲电路元件的耐压较低,可降低矩阵变换器的成本并减小对其它设备的影响。
附图说明
图1是表示本发明第1实施例的矩阵变换器的控制装置的框图。
图2是表示本发明第1实施例的变形例的框图。
图3是表示本发明第2实施例的矩阵变换器的控制装置的框图。
图4是表示本发明第3实施例的矩阵变换器的控制装置的框图。
图5是表示本发明第4实施例的矩阵变换器的控制装置的框图。
图6是表示本发明第5实施例的串联多重矩阵变换器装置的结构图。
图7是表示本发明第6实施例的并联多重矩阵变换器装置的结构图。
图8示出矩阵变换器的输出电压波形。
符号说明
1-矩阵变换器;2-主电路部3、3’-电抗器;4-电容器5-输入滤波器;6-缓冲电路;7、23、32-负载;8-输入电压检测器;9-输出电流检测器;10、10’-脉宽调制部;11-PWM产生部;12-输入电压指令运算部;13-电容器电压检测器;14-电容器电流检测器;15-输入电流检测器;16-输入电位差运算部;17-流通率指令部;18-脉冲波形指令部;19-流通率修正部;20-加法器;21-变压器;22a~22i、31a、31b-功率单元;24-串联多重矩阵变换器;33-并联多重矩阵变换器;40、40a、40b-三相电源;111-由最小电位相和中间电位相的电位差决定的部分的脉冲;112-由最小电位相和最大电位相的电位差决定的部分的脉冲。
具体实施方式
下面,参照附图对本发明的实施方式进行说明。
实施例1
利用附图对本发明的第1实施例进行说明。
图1是实施了本发明的矩阵变换器的控制装置的框图。图中,1是矩阵变换器,经由电抗3从三相电源40供给三相电源,在输出侧连接有负载7。2是主电路部,由双向半导体开关元件组成,通过来自后述的PWM产生部11的选通信号而被驱动,在双向上进行电力变换。5是输入滤波器,由电抗3及电容器4构成,设置在三相电源40和矩阵变换器1的输入侧之间。另外,电抗3由三相电源40的内部电抗或设置在三相电源40和矩阵变换器1之间的配线上的电抗器构成。6是缓冲电路,吸收因主电路部2的开关动作而产生的电涌电压。8是输入电压检测器,检测出矩阵变换器1的输入电压Vin。9是输出电流检测器,检测来自矩阵变换器1的各相输出电流Iout。另外,作为负载7的典型例有交流电动机。
10是脉宽调制部,根据针对负载7的输出线间电压指令Vref、输入电压Vin及输出电流Iout选择在背景技术中说明的中间电位相及基准电位相相当于输入各相的哪一相以及运算T1和T2,生成PWM脉冲指令。11是PWM产生部,利用由脉宽调制部10运算的PWM脉冲指令,生成针对主电路部2的选通信号。12是输入电压指令运算部,在内部具有PLL功能,利用输入电压Vin运算输入电压指令Vs。在PWM产生部11中进行根据输入电压Vin的极性进行的换流顺序处理。
对脉宽调制部10以使由输入电压指令运算部12运算的输入电压指令Vs与输入电压Vin一致的方式生成或修正PWM脉冲指令的脉宽的动作进行详细说明。另外,输入电压指令Vs是整形后的信号,是相位、振幅与输入电压Vin的基波相等的正弦波状信号。
在本发明的动作说明之前,对本发明的动作原理进行说明。
在图1所示的矩阵变换器中输入电压Vin直接成为电容器的端子电压。因而,为了抑制输入电容器的电压波动,可以考虑使输入电压矢量Vin与指令电压矢量Vs一致。指令电压矢量Vs是相位、振幅与输入电压的基波相等的正弦波信号,如果能够使输入电压Vin与其一致,则电容器端子电压也成为正弦波。为了实现该目标,控制PWM脉冲指令的脉宽,以使两者的误差电压矢量ΔVc变为最小。
可是,在使与现有技术中说明的中间电位相成对使用的输入相分别使用最小电位相和最大电位相的矩阵变换器装置中,向输入的基准电位相和中间电位相之间以及最小电位相和最大电位相之间分配输出电流而流动的电流流向输入滤波器5的输出侧,通过该电流对输入滤波器5的电容器进行充放电而产生电压。因而,需要考虑到该电压。使流过输入滤波器5输出侧的电流作为滤波器输出电流矢量IL,使通过该IL进行的充放电而产生的电容器电压矢量作为充放电电压矢量VL继续以下说明。
滤波器输出电流矢量IL近似为固定值时,可通过公式(1)求出该充放电电压矢量VL。
VL=(1/C)∫ILdt=(t/C)IL=k·IL(k=t/C)…(1)
因而,经过时间t后,电容器电压变为Vin+VL。
由此,如果以使误差电压矢量ΔVc与通过公式(1)运算的充放电电压VL一致的方式进行控制,则能够使输入电压Vin即电容器端子电压成为与指令电压Vs相同的正弦波状信号。
下面,进行本发明的动作说明。
输入电压指令运算部12向内部所具有的PLL输入由输入电压检测器8检测出的输入电压Vin。PLL输出相位与所输入的输入电压Vin同步的正弦波。此时,在与输入电压Vin的相位同步之前,不响应输入电压Vin的急剧的电压变化。
如此,PLL对所输入的输入电压Vin进行整形,从而作为相位、振幅与输入电压Vin的基波相等的正弦波输出。
脉宽调制部10确定脉宽T1、T2生成PWM脉冲指令。脉宽调制部10中输入来自输出电流检测器9的输出电流值Iout、由输入电压检测器8检测出的输入电压Vin及来自输入电压指令运算部12的输入电压指令Vs。
下面,说明生成PWM脉冲的顺序。
首先,在脉宽调制部10中,运算脉宽T1中的误差电压ΔVc和充放电电压VL的偏差Hmid以及脉宽T2中的误差电压ΔVc和充放电电压VL的偏差Hmax。
Imid是脉宽T1时的输出电流值Iout,Imax是脉宽T2时的输出电流值Iout,通过对输入指令电压值Vs及输入电压值Vin进行减法运算而求出误差电压ΔVc,对于充放电电压VL利用公式(1)的关系,通过公式(2)~(5)定义、导出偏差Hmid、Hmax。
Hmid=|ΔVc-k1·Imid|=|Vs-Vin-k1·Imid|…(2)
Hmax=|ΔVc-k2·Imax|=|Vs-Vin-k2·Imax|…(3)
在此,
k1=2·T1/C…(4)
k2=2·T2/C…(5)
对应于偏差Hmid、Hmax中值较小一方的输出状态与对应于值较大一方的输出状态相比ΔVc和VL的差较小,因此,使Vin与Vs一致的效果较大。因而,以使偏差Hmax、Hmid较小一方的输出状态变长的方式确定脉宽T1及T2。
为了实现该目标,只要如公式(6)所示,使T1及T2的比等于Hmax和Hmid的比即可。
T1∶T2=Hmax∶Hmid…(6)
而且,为了确定具体的T1、T2的值,应用如下条件公式(7),PWM脉冲指令的面积S等于输出线间电压指令Vref及脉冲周期T的乘积。
S=T1’+T2’
2(T1·ΔEmid+T2·ΔEmax)=T·Vref…(7)
在此,ΔEmax是最大电位相和最小电位相的电位差,ΔEmid是中间电位相和基准电位相的电位差。
如此,脉宽调制部10通过根据公式(2)至公式(7)确定PWM脉冲指令的脉宽T1及T2而生成PWM脉冲指令。
以上,虽然说明了针对1个线间电压指令的调制修正,但是在3相负载的情况下,由于在同一载波周期内输入的最小电位相、中间电位相、最大电位相不发生变化,因此只要对所具有的2个线间电压指令同时实施上述公式(1)~(7)的运算,就能够确定如下T1及T2,可较长地持续使Vc与Vs一致的效果较大的输出状态,能够使电容器电压Vc与输入指令电压Vs一致。
如此,由于能够在使PWM脉冲指令的面积S一定的条件下,使输入电压Vin即电容器端子电压与输入指令电压Vs一致,因此能够抑制输入电容器端子电压的波动。
实施例2
下面,利用附图对本发明的第2实施例进行说明。
图3是表示第2实施例的结构的框图,省略图中与图1相同结构的说明,以下对不同部分进行说明。第1实施例的特征在于具备输入电压指令运算指令12及电容器电压检测器13,但是第2实施例与第1实施例的不同之处在于,代替直接检测出电容器端子电压Vc,检测出电容器电流矢量Ic,根据该Ic求出电容器电压矢量Vc。
脉宽调制修正部14利用由电容器电流检测器15检测出的电容器电流Ic通过公式(8)运算电容器电压矢量Vc。
Vc=(1/C)∫Icdt…(8)
如此,由于运算了电容器电压矢量Vc,因此能够与第1实施例同样地实施本发明。
实施例3
下面,利用附图对本发明的第3实施例进行说明。
图4是表示第3实施例的结构的框图,省略图中与图1相同结构的说明,以下对不同部分进行说明。第1实施例的特征在于具备输入电压指令运算指令12及电容器电压检测器13,但是第3实施例与第1实施例的不同之处在于,代替直接检测出电容器端子电压Vc,检测出流向矩阵变换器1的输入电流Iin,根据该Iin求出电容器电压矢量Vc。
脉宽调制修正部14利用由输入电流检测器16检测出的流向矩阵变换器1的输入电流Iin,通过考虑了输出电流Iout分配至输入侧的电流矢量IL的公式(9)运算电容器电压矢量Vc。
Vc=(1/C)∫(Iin-IL)dt…(9)
如此,由于运算了电容器电压矢量Vc,因此能够与第1实施例同样地实施本发明。
如上所述,在实施例1至实施例3的说明中,以构成输入滤波器5的电抗使用三相电源40或虽未图示但位于矩阵变换器1输入侧的变压器中存在的内部电抗的情况为例说明了实施例。
在此,以实施例1为例说明实施例1至实施例3的变形例。图2是在为了得到构成输入侧滤波器的电抗而在矩阵变换器内部设有电抗器的矩阵变换器中应用了本发明方法的情况的框图。其如下构成,除输入电压检测器8以外还设有电容器电压检测器13,使误差电压矢量ΔVc作为指令电压Vs与由电容器电压检测器13检测出的电容器端子电压Vc的差电压,输入电压值Vin作为由输入电压检测器8检测出的电压,在生成PWM脉冲指令时,确定PWM脉冲指令的脉宽T1及T2。
如此,即使将实施例1的图1变形为图2,也就是说,即使在矩阵变换器1中内置电抗器3’,用该电抗器在输入侧构成滤波器,也能够实施实施例1至实施例4中的发明。另外,即使另外设置补充内部电抗器的部分也是一样的。
实施例4
下面,对本发明的第4实施例进行说明。第4实施例在通过使脉冲面积S以及脉宽T1与T2的比即流通率α可变来控制输出电压大小以及控制输入电流形状的矩阵变换器中,即,在上述背景技术中所示的确定流通率α使输入电流波形接近于正弦波的矩阵变换器中应用了本发明。
图5是表示第4实施例的结构的框图,省略与图2相同结构的说明,以下对不同部分进行说明。
图5所示的矩阵变换器的控制装置将图2的脉宽调制部10替换为10’,由输入电位差运算部16、流通率指令部17、脉冲波形指令部18、流通率修正部19、加法器20构成。
输入电位差运算部16根据由输入电压检测器8检测出的输入电压值判断输入电压三相的大小关系,确定最大电位相、中间电位相、最小电位相相当于输入三相的哪一相,运算最大电位相和最小电位相的电位差ΔEmax、中间电位相和基准电位相的电位差ΔEmid,并向脉冲波形指令部18输出。
流通率指令部17与输入电位差运算部16一样,根据由输入电压检测器8检测出的输入电压值确定最大电位相、中间电位相、最小电位相相当于输入三相的哪一相,作为与中间电位相的电压值Vmid与中间电位相及基准电位相以外的相的电压值Vex的比相等的值,通过公式(10)确定流通率α,并向加法器20输出。
α=T1/T2=Vmid/Vex…(10)
流通率修正部19与实施例1一样,使用上述公式(2)、(3)运算偏差Hmid及Hmax后,通过公式(11)求出流通率α的修正量Δα,并向加法器20输出。
Δα=K(Hmax-Hmid)…(11)
另外,K:比例常数。
加法器20在由流通率指令部17运算的流通率α上加上流通率α的修正量Δα,将加法值输出至脉冲波形指令部18。
脉冲波形指令部18根据针对负载7的输出线间电压指令Vref、最大电位相和最小电位相的电位差ΔEmax、中间电位相和基准电位相的电位差ΔEmid及输出电流值Iout考虑上述说明的中间电位相及基准电位相相当于输入各相的哪一相,使流通率为α+Δα通过实施例1中说明的PWM脉冲生成顺序求出PWM脉冲指令,向PWM产生部11输出。
如此,通过将流通率α变更为α+Δα来调制修正流通率,使输入电压指令Vs与电容器的端子电压Vc一致。
通过上述处理,在Hmid大于Hmax,与T1的状态相比T2的状态使Vc与Vs一致的效果较大时,修正为使流通率α变小,增大脉宽T2,减小T1。而且,相反在Hmax大于Hmid,与T2的状态相比T1的状态使Vc与Vs一致的效果较大时,修正为使流通率α变大,增大脉宽T1,减小T2。
以上,虽然说明了针对1个线间电压指令的调制修正,但是在3相负载的情况下,只要对所具有的2个线间电压指令同时实施上述公式(2)、(3)、(10)及(11)的运算,就能够针对各个线间电压指令运算流通率α的加法量Δα。通过在共通的流通率α上加上该分别运算的Δα,与第1实施例一样,能够使电容器电压Vc与输入指令电压Vs一致,因此,能够抑制输入电容器的电压Vin的波动。
而且,如第2实施例中说明的那样,即使将图5的电容器电压检测器11替换为电容器电流检测器13,也能够通过实施例4实施本发明。
而且,如第3实施例中说明的那样,即使将图5的电容器电压检测器11替换为输入电流检测器14,也能够通过实施例4实施本发明。
而且,如上所述,虽然以输出相数为3相的情况进行了说明,但是不用说无论输出相数为几相,只要作为输出电压指令给予比输出相数少一个数量的线间电压指令,针对各个线间电压指令实施本发明,就能够使电容器电压Vc与输入指令电压Vs一致。
如此,本发明可应用于单相输出至多相输出的矩阵变换器。
实施例5
下面,对本发明的第5实施例进行说明。第5实施例在串联连接输出为单相交流或直流的矩阵变换器的输出而构成的串联多重矩阵变换器装置中应用了本发明。
图6是第5实施例的结构图,图中,变压器21将来自三相电源40的三相交流电源作为输入,变换为矩阵变换器的输入电压,功率单元22a~22i将变压器21的二次电压作为输入并输出单相交流电压。负载23连接于使功率单元22a~22i串联多重化而构成的矩阵变换器24。
构成串联多重矩阵变换器24的功率单元22a~22i串联连接,生成输出多相交流的1相电压。而且,由于功率单元22a~22i应用了实施例1至实施例4中说明的矩阵变换器1,因此在串联多重矩阵变换器24中也同样能够抑制功率单元22a~22i所内置的输入滤波器用电容器的电压波动。
实施例6
下面,对本发明的第6实施例进行说明。第6实施例在并联连接矩阵变换器的输出而构成的并联多重矩阵变换器装置中应用了本发明。
图7是第6实施例的结构图,图中,功率单元31a、31b分别将来自三相电源40a、40b的三相交流电源作为输入,输出交流电压。负载32连接于使功率单元31a、31b并联多重化而构成的矩阵变换器33。
由于构成该并联多重矩阵变换器33的功率单元31a、31b应用了实施例1至实施例4中说明的矩阵变换器1,因此在并联多重矩阵变换器33中也同样能够抑制功率单元31a、31b所内置的输入滤波器用电容器的电压波动。
如此,电容器电压矢量Vc接近输入电压指令矢量Vs,抑制了输入用滤波器的电容器电压峰值增大,因此,能够使电容器及缓冲电路元件的耐压较低,能够降低矩阵变换器成本并减小对其它设备的影响。
实施例7
下面,作为第7实施例,对应用了本发明的矩阵变换器控制装置的输出电压产生方法进行说明。
所应用的矩阵变换器控制装置在输入侧设置有具备电抗器3和电容器4的滤波器,具备:输入电压检测器8,检测来自三相电源40的输入电压;输出电流检测器9,检测矩阵变换器1的输出电流;电容器电压检测器13,检测电容器4的端子电压;及第1实施例中说明的脉宽调制部10,以下述顺序产生输出电压。
(步骤001)
该顺序为,首先,输入电压检测器8检测出来自三相电源40的输入电压。
(步骤002)
之后,电容器电压检测器13检测出电容器的端子电压值。
之后,脉宽调制部10进行下述处理。
(步骤003)
首先,运算相位、振幅与步骤001中检测出的输入电压值的基波相等的输入电压指令值。
(步骤004)
之后,根据步骤003中运算的输入电压值使最小电位相或最大电位相作为基准电位相,运算基准电位相和中间电位相的第1电位差以及最小电位相和最大电位相的第2电位差。
(步骤005)
之后,将步骤004中运算的2个电位差作为脉冲高度,确定脉冲高度与第1电位差相等的脉冲的脉宽以及脉冲高度与第2电位差相等的脉冲的脉宽,以使输入电压指令值与所检测出的电容器的端子电压值的大小及方向一致。
(步骤006)
之后,根据步骤005中确定的两个脉宽生成PWM脉冲指令信号。
另外,由于上述的具体处理已在第1实施例中详细说明,因此此处省略说明。
如此,由于生成了PWM脉冲指令信号,因此后面通过按照以往的顺序进行处理而产生矩阵变换器控制装置的输出电压。
实施例8
下面,作为第8实施例,对应用了本发明的矩阵变换器控制装置具备检测电容器4端子电流的电容器电流检测器14来代替电容器电压检测器13时的输出电压产生方法进行说明。
电容器电流检测器14检测出流向电容器4的电流值,通过第2实施例中记载的方法运算电容器的端子电压值,通过应用第7实施例,即使代替电容器的端子电压值而利用流向电容器的端子电流值也能够同样地实施。
而且,即使不具备电容器电流检测器14,也可检测出矩阵变换器1的输入电流,通过第3实施例所记载的方法运算电容器的端子电压值,从而应用第7实施例。
实施例9
下面,作为第9实施例,对应用了本发明的矩阵变换器控制装置的输出电压修正方法进行说明。
所应用的矩阵变换器控制装置在输入侧设置有具备电抗器3和电容器4的滤波器,具备:输入电压检测器8,检测来自三相电源40的输入电压;输出电流检测器9,检测矩阵变换器1的输出电流;电容器电压检测器13,检测电容器4的端子电压;及第4实施例中说明的输入电位差运算部16、流通率指令部17、脉冲波形指令部18、流通率修正部19、加法器20,以下述顺序产生输出电压。
(步骤001)
该顺序为,首先,检测出来自三相电源40的输入电压。
(步骤002)
之后,检测出电容器的端子电压值。
(步骤003)
首先,运算相位、振幅与在步骤001中检测出的输入电压值的基波相等的输入电压指令值。
(步骤004)
之后,根据步骤003中运算的输入电压值使最小电位相或最大电位相作为基准电位相,运算基准电位相和中间电位相的第1电位差以及最小电位相和最大电位相的第2电位差。
(步骤005)
之后,将步骤004中运算的2个电位差作为脉冲高度,根据所运算的输入电压指令值的相位确定脉冲高度与第1电位差相等的脉冲和脉冲高度与第2电位差相等的脉冲的脉宽比。
(步骤006)
之后,根据步骤004中运算的2个电位差和步骤005中确定的脉宽比生成PWM脉冲指令信号。
(步骤007)
之后,修正步骤005中确定的脉宽比,以使输入电压指令值与所检测出的电容器的端子电压值的大小及方向一致。
另外,由于上述的具体处理已在第4实施例中详细说明,因此此处省略说明。
而且,由于第7至第9实施例中所示的方法无论输出相数是几相都能够进行应用,因此也能够完全同样地应用于单相或直流输出的矩阵变换器。
而且,能够在第5实施例中所示的串联连接矩阵变换器的输出而构成的串联多重矩阵变换器装置中,还能够在第6实施例中所示的并联连接矩阵变换器的输出而构成的并联多重矩阵变换器装置中,具备并应用适用了第7至第9实施例中所示的方法的矩阵变换器。
由于能够作为输出电压指令给予比输出相数少一个数量的线间电压指令,针对各个线间电压指令实施本发明,因此能够应用于单相输出至多相输出的矩阵变换器,另外,还能够应用于串联连接该矩阵变换器的串联多重矩阵变换器、并联连接该矩阵变换器的并联多重矩阵变换器。
Claims (19)
1.一种矩阵变换器的控制装置,其具备:输入电压检测器,检测矩阵变换器的输入电压;输出电流检测器,检测所述矩阵变换器的输出电流;及脉宽调制部,根据所述检测出的输入电压、所述检测出的输出电流及输出线间电压指令生成PWM脉冲指令信号,其特征在于,
具备运算所述矩阵变换器的输入电压指令的输入电压指令运算部。
2.一种矩阵变换器的控制装置,其具备:输入电压检测器,检测矩阵变换器的输入电压;输出电流检测器,检测所述矩阵变换器的输出电流;输入电压指令运算部,输出整形为相位、振幅与所述输入电压的基波相等的正弦波的信号;及脉宽调制部,利用所述输入电压、所述输出电流、所述整形信号及输出线间电压指令生成PWM脉冲指令信号,其特征在于,
所述脉宽调制部输出所述PWM脉冲指令信号,使所述输入电压与所述整形信号一致。
3.一种矩阵变换器的控制装置,其具备:输入电压检测器,检测矩阵变换器的输入电压;输出电流检测器,检测所述矩阵变换器的输出电流;输入电压指令运算部,输出整形为相位、振幅与所述输入电压的基波相等的正弦波的信号;脉宽调制部,利用所述输入电压、所述输出电流、所述整形信号及输出线间电压指令生成PWM脉冲指令信号;滤波器,在所述矩阵变换器的输入侧由电抗器和电容器组成;及电容器电压检测器,检测所述电容器的端子电压,其特征在于,
所述脉宽调制部输出所述PWM脉冲指令信号,使所述端子电压与所述整形信号一致。
4.一种矩阵变换器的控制装置,其具备:输入电压检测器,检测矩阵变换器的输入电压;输出电流检测器,检测所述矩阵变换器的输出电流;输入电压指令运算部,输出整形为相位、振幅与所述输入电压的基波相等的正弦波的信号;脉宽调制部,利用所述输入电压、所述输出电流、所述整形信号及输出线间电压指令生成PWM脉冲指令信号;电容器,与连接在所述矩阵变换器输入侧的电源装置的内部电抗成对地构成滤波器;及电容器电流检测器,检测流向所述电容器的电流,其特征在于,
所述脉宽调制部输出所述PWM脉冲指令信号,使根据流向所述电容器的电流求出的所述电容器的端子电压与所述整形信号一致。
5.一种矩阵变换器的控制装置,其具备:输入电压检测器,检测矩阵变换器的输入电压;输出电流检测器,检测所述矩阵变换器的输出电流;输入电压指令运算部,输出整形为相位、振幅与所述输入电压的基波相等的正弦波的信号;脉宽调制部,利用所述输入电压、所述输出电流、所述整形信号及输出线间电压指令生成PWM脉冲指令信号;滤波器,在所述矩阵变换器的输入侧由电抗器和电容器组成;及电容器电流检测器,检测流向所述电容器的电流,其特征在于,
所述脉宽调制部输出所述PWM脉冲指令信号,使根据流向所述电容器的电流求出的所述电容器的端子电压与所述整形信号一致。
6.一种矩阵变换器的控制装置,其具备:输入电压检测器,检测矩阵变换器的输入电压;输出电流检测器,检测所述矩阵变换器的输出电流;输入电压指令运算部,输出整形为相位、振幅与所述输入电压的基波相等的正弦波的信号;脉宽调制部,利用所述输入电压、所述输出电流、所述整形信号及输出线间电压指令生成PWM脉冲指令信号;电容器,与连接在所述矩阵变换器输入侧的电源装置的内部电抗成对地构成滤波器;及输入电流检测器,检测所述矩阵变换器的输入电流,其特征在于,
所述脉宽调制部输出所述PWM脉冲指令信号,使根据所述输入电流求出的所述矩阵变换器的输入电压与所述整形信号一致。
7.一种矩阵变换器的控制装置,其具备:输入电压检测器,检测矩阵变换器的输入电压;输出电流检测器,检测所述矩阵变换器的输出电流;输入电压指令运算部,输出整形为相位、振幅与所述输入电压的基波相等的正弦波的信号;脉宽调制部,利用所述输入电压、所述输出电流、所述整形信号及输出线间电压指令生成PWM脉冲指令信号;滤波器,在所述矩阵变换器的输入侧由电抗器和电容器组成;及输入电流检测器,检测所述矩阵变换器的输入电流,其特征在于,
所述脉宽调制部输出所述PWM脉冲指令信号,使根据所述输入电流求出的所述矩阵变换器的输入电压与所述整形信号一致。
8.根据权利要求2至7中任意一项所述的矩阵变换器的控制装置,其特征在于,所述脉宽调制部具备:
输入电位差运算部,根据所述输入电压使最小电位相或最大电位相作为基准电位相,运算所述基准电位相和中间电位相的第1电位差以及所述最小电位相和所述最大电位相的第2电位差;
流通率指令部,使所述2个电位差作为脉冲高度,根据所述输入电压的相位使脉冲高度与所述第1电位差相等的脉冲和脉冲高度与所述第2电位差相等的脉冲的脉宽比作为流通率输出;
流通率修正部,修正所述流通率;
及脉冲波形指令部,根据所述2个电位差和所述修正后的流通率生成所述PWM脉冲指令信号。
9.根据权利要求8所述的矩阵变换器的控制装置,其特征在于,所述流通率修正部利用由所述最小电位相和所述中间电位相的电位差决定的部分的脉宽T1、由所述最小电位相和所述最大电位相的电位差决定的部分的脉宽T2各自中的相位、振幅与输入电压的基波相等的正弦波信号和输入电压Vin的误差电压矢量与流向所述滤波器输出侧的电流所引起的充放电所产生的电容器电压矢量的差求出所述流通率的修正量。
10.根据权利要求2至7中任意一项所述的矩阵变换器的控制装置,其特征在于,使交流为输入,使单相交流或直流为输出。
11.一种串联多重矩阵变换器的控制装置,其特征在于,串联连接不将交流变换为直流而通过直接变换输出单相交流的权利要求10所述的矩阵变换器。
12.一种并联多重矩阵变换器的控制装置,其特征在于,并联连接不将交流变换为直流而通过直接变换进行交流输出的权利要求2至7中任意一项所述的矩阵变换器。
13.一种矩阵变换器控制装置的输出电压产生方法,其特征在于,
在矩阵变换器的输入侧设置具备电抗器和电容器的滤波器,包括:
检测来自三相交流电源的输入电压的步骤;
运算整形为相位、振幅与所述输入电压的基波相等的正弦波的信号的步骤;
检测所述矩阵变换器的输出电流的步骤;
根据所述输入电压、所述输出电流及输出线间电压指令生成PWM脉冲指令信号的步骤;
及修正所述PWM脉冲指令信号使所述整形信号与所述电容器端子电压的大小及相位一致的步骤。
14.一种矩阵变换器控制装置的输出电压修正方法,其特征在于,
在矩阵变换器的输入侧设置具备电抗器和电容器的滤波器,包括:
检测来自三相交流电源的输入电压的步骤;
运算整形为相位、振幅与所述输入电压的基波相等的正弦波的信号的步骤;
检测所述矩阵变换器的输出电流的步骤;
根据所述输入电压使最小电位相或最大电位相作为基准电位相,运算所述基准电位相和中间电位相的第1电位差以及所述最小电位相和所述最大电位相的第2电位差的步骤;
使所述2个电位差作为脉冲高度,根据所述整形信号的相位确定脉冲高度与所述第1电位差相等的脉冲和脉冲高度与所述第2电位差相等的脉冲的脉宽比的步骤;
根据所述2个电位差和所述脉宽比生成所述PWM脉冲指令信号的步骤;
及修正所述脉宽比使所述整形信号与所述电容器端子电压的大小及相位一致的步骤。
15.一种矩阵变换器控制装置的输出电压产生方法,其特征在于,
在矩阵变换器的输入侧设置具备电抗器和电容器的滤波器,包括:
检测来自三相交流电源的输入电压的步骤;
运算整形为相位、振幅与所述输入电压的基波相等的正弦波的信号的步骤;
检测所述矩阵变换器的输出电流的步骤;
根据所述输入电压、所述输出电流及输出线间电压指令生成PWM脉冲指令信号的步骤;
检测出流向所述电容器的电流或所述矩阵变换器的输入电流,利用该电流运算所述电容器端子电压的步骤;
及修正所述PWM脉冲指令信号使所述整形信号与所述电容器端子电压的大小及相位一致的步骤。
16.一种矩阵变换器控制装置的输出电压修正方法,其特征在于,
在矩阵变换器的输入侧设置具备电抗器和电容器的滤波器,包括:
检测来自三相交流电源的输入电压的步骤;
运算整形为相位、振幅与所述输入电压的基波相等的正弦波的信号的步骤;
检测所述矩阵变换器的输出电流的步骤;
根据所述输入电压使最小电位相或最大电位相作为基准电位相,运算所述基准电位相和中间电位相的第1电位差以及所述最小电位相和所述最大电位相的第2电位差的步骤;
使所述2个电位差作为脉冲高度,根据所述整形信号的相位确定脉冲高度与所述第1电位差相等的脉冲和脉冲高度与所述第2电位差相等的脉冲的脉宽比的步骤;
根据所述2个电位差和所述脉宽比生成所述PWM脉冲指令信号,
检测出流向所述电容器的电流或所述矩阵变换器的输入电流,利用该电流运算所述电容器端子电压的步骤;
及修正所述脉宽比使所述整形信号与所述电容器端子电压的大小及相位一致的步骤。
17.一种矩阵变换器控制装置的输出电压产生方法,是使交流为输入并使单相交流或直流为输出的矩阵变换器控制装置的输出电压产生方法,其特征在于,
以包括权利要求13至16中任意一项所述的步骤的顺序产生输出电压。
18.一种串联多重矩阵变换器控制装置的输出电压产生方法,是串联连接使交流为输入并使单相交流或直流为输出的矩阵变换器的串联多重矩阵变换器控制装置的输出电压产生方法,其特征在于,
以包括权利要求17所述的步骤的顺序产生输出电压。
19.一种并联多重矩阵变换器控制装置的输出电压产生方法,是并联连接不将交流变换为直流而通过直接变换输出交流的矩阵变换器的并联多重矩阵变换器控制装置的输出电压产生方法,其特征在于,
利用包括权利要求13至17中任意一项所述的步骤的顺序产生输出电压。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-142289 | 2008-05-30 | ||
JP2008142289 | 2008-05-30 | ||
PCT/JP2009/054316 WO2009144987A1 (ja) | 2008-05-30 | 2009-03-06 | マトリクスコンバータの制御装置及びその出力電圧発生方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102047545A true CN102047545A (zh) | 2011-05-04 |
CN102047545B CN102047545B (zh) | 2014-12-10 |
Family
ID=41376874
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200980119275.4A Expired - Fee Related CN102047545B (zh) | 2008-05-30 | 2009-03-06 | 矩阵变换器的控制装置及其输出电压产生方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US8243482B2 (zh) |
JP (1) | JP5387859B2 (zh) |
CN (1) | CN102047545B (zh) |
TW (1) | TWI469490B (zh) |
WO (1) | WO2009144987A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104428986A (zh) * | 2012-07-31 | 2015-03-18 | 株式会社安川电机 | 矩阵变换器 |
CN113014079A (zh) * | 2019-12-19 | 2021-06-22 | 东元电机股份有限公司 | 变频器装置以及依据输出电压值而选择性输出电流的方法 |
CN113517803A (zh) * | 2021-05-17 | 2021-10-19 | 河北工业大学 | 减小单相矩阵式无线电能传输系统直流侧电容的调制方法 |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN203670098U (zh) * | 2011-02-16 | 2014-06-25 | 株式会社安川电机 | 风力发电用电力转换装置、风力发电装置以及风场 |
JP5333677B2 (ja) * | 2011-02-16 | 2013-11-06 | 株式会社安川電機 | 風力発電用マトリクスコンバータ装置、風力発電装置、ウィンドファームおよび風車の製造方法 |
JP5360125B2 (ja) * | 2011-04-26 | 2013-12-04 | 株式会社安川電機 | 直列多重電力変換装置 |
JP5377574B2 (ja) * | 2011-05-31 | 2013-12-25 | 日産自動車株式会社 | 電力変換装置 |
JP5500141B2 (ja) * | 2011-09-01 | 2014-05-21 | 株式会社安川電機 | 電力変換装置 |
KR20140084328A (ko) * | 2011-11-30 | 2014-07-04 | 가부시키가이샤 야스카와덴키 | 매트릭스 컨버터 |
FR2992116B1 (fr) * | 2012-06-18 | 2015-11-13 | Univ Lorraine | Circuit convertisseur matriciel reversible |
JP5984916B2 (ja) * | 2012-08-20 | 2016-09-06 | 東芝三菱電機産業システム株式会社 | 電力変換器 |
CN102931850A (zh) * | 2012-10-19 | 2013-02-13 | 四川九洲空管科技有限责任公司 | 一种基于Matrix变换器的电流型中频数字电源及控制方法 |
US8848410B2 (en) * | 2012-12-06 | 2014-09-30 | Kabushiki Kaisha Yaskawa Denki | Matrix converter |
KR20140074849A (ko) * | 2012-12-10 | 2014-06-18 | 가부시키가이샤 야스카와덴키 | 매트릭스 컨버터 및 매트릭스 컨버터의 제어 방법 |
JP5682644B2 (ja) * | 2013-03-11 | 2015-03-11 | 株式会社安川電機 | マトリクスコンバータ |
JP2015201996A (ja) * | 2014-04-09 | 2015-11-12 | 株式会社安川電機 | 電力変換装置、電力変換装置の制御装置および電力変換装置の制御方法 |
JP6103155B2 (ja) * | 2014-09-30 | 2017-03-29 | 株式会社安川電機 | 電力変換装置、発電システムおよび電流制御方法 |
US11451156B2 (en) | 2020-01-21 | 2022-09-20 | Itt Manufacturing Enterprises Llc | Overvoltage clamp for a matrix converter |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5852559A (en) * | 1996-09-24 | 1998-12-22 | Allen Bradley Company, Llc | Power application circuits utilizing bidirectional insulated gate bipolar transistor |
DE19639773A1 (de) * | 1996-09-27 | 1998-04-02 | Abb Patent Gmbh | Dreiphasiger Matrix-Stromrichter und Verfahren zum Betrieb |
TW497325B (en) * | 2001-06-06 | 2002-08-01 | Matritek Inc | Controller for three-phase direct-chain AC/AC converter |
CN100345365C (zh) * | 2004-08-20 | 2007-10-24 | 清华大学 | 矩阵式变换器在电网电压非正常时的补偿控制方法 |
KR101119323B1 (ko) * | 2004-09-29 | 2012-03-06 | 가부시키가이샤 야스카와덴키 | 병렬 다중 매트릭스 컨버터 장치 |
JP4759968B2 (ja) * | 2004-10-04 | 2011-08-31 | ダイキン工業株式会社 | Pwm整流回路の保護方法およびその装置 |
WO2006112275A1 (ja) * | 2005-04-15 | 2006-10-26 | Kabushiki Kaisha Yaskawa Denki | マトリクスコンバータ装置 |
TW200713747A (en) * | 2005-09-14 | 2007-04-01 | Tian-Hua Liu | A digital rotor position estimating method for interior permanent magnet synchronous motors |
JP4622840B2 (ja) * | 2005-12-13 | 2011-02-02 | 富士電機システムズ株式会社 | 交流交流直接変換器の制御装置 |
WO2007094161A1 (ja) * | 2006-02-15 | 2007-08-23 | Kabushiki Kaisha Yaskawa Denki | マトリクスコンバータ装置 |
JP4816226B2 (ja) * | 2006-04-28 | 2011-11-16 | 株式会社明電舎 | 交流−交流直接変換装置 |
JP2007306649A (ja) * | 2006-05-09 | 2007-11-22 | Yaskawa Electric Corp | 直列多重マトリクスコンバータ |
JP2008048550A (ja) * | 2006-08-18 | 2008-02-28 | Yaskawa Electric Corp | マトリクスコンバータ |
US7848121B2 (en) * | 2007-05-14 | 2010-12-07 | Honeywell International Inc. | Advanced matrix converter and method for operation |
-
2009
- 2009-03-06 WO PCT/JP2009/054316 patent/WO2009144987A1/ja active Application Filing
- 2009-03-06 JP JP2010514402A patent/JP5387859B2/ja active Active
- 2009-03-06 CN CN200980119275.4A patent/CN102047545B/zh not_active Expired - Fee Related
- 2009-05-11 TW TW98115547A patent/TWI469490B/zh not_active IP Right Cessation
-
2010
- 2010-11-30 US US12/955,921 patent/US8243482B2/en not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104428986A (zh) * | 2012-07-31 | 2015-03-18 | 株式会社安川电机 | 矩阵变换器 |
CN113014079A (zh) * | 2019-12-19 | 2021-06-22 | 东元电机股份有限公司 | 变频器装置以及依据输出电压值而选择性输出电流的方法 |
CN113014079B (zh) * | 2019-12-19 | 2022-02-01 | 东元电机股份有限公司 | 变频器装置以及依据输出电压值而选择性输出电流的方法 |
CN113517803A (zh) * | 2021-05-17 | 2021-10-19 | 河北工业大学 | 减小单相矩阵式无线电能传输系统直流侧电容的调制方法 |
CN113517803B (zh) * | 2021-05-17 | 2022-05-31 | 河北工业大学 | 减小单相矩阵式无线电能传输系统直流侧电容的调制方法 |
Also Published As
Publication number | Publication date |
---|---|
TWI469490B (zh) | 2015-01-11 |
TW201010256A (en) | 2010-03-01 |
JP5387859B2 (ja) | 2014-01-15 |
CN102047545B (zh) | 2014-12-10 |
WO2009144987A1 (ja) | 2009-12-03 |
US20110116295A1 (en) | 2011-05-19 |
US8243482B2 (en) | 2012-08-14 |
JPWO2009144987A1 (ja) | 2011-10-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102047545B (zh) | 矩阵变换器的控制装置及其输出电压产生方法 | |
JP6191830B2 (ja) | 電力変換システム | |
US9531300B2 (en) | Single phase cycloconverter with integrated line-cycle energy storage | |
US9722508B2 (en) | Power conversion device and three-phase alternating current power supply device | |
CN101636896B (zh) | 三相电力变换装置 | |
US8817505B2 (en) | Three-phase rectifier with bidirectional switches | |
CA2807059C (en) | Solar power conversion system | |
CN106253718A (zh) | Ac-dc整流器系统 | |
CN102217182A (zh) | 电力变换装置 | |
US20190044428A1 (en) | Power conversion device and control method for same | |
CN108323224B (zh) | 电力变换装置及其控制方法 | |
CN106664034A (zh) | 功率转换装置和三相ac电源装置 | |
JP5411000B2 (ja) | 電力変換装置 | |
CN103503297B (zh) | 逆变器电路 | |
CN108207118B (zh) | 电力变换装置及其控制方法 | |
Podnebenna et al. | Three-phase power supply for resistance welding machine with corrected power factor | |
Komrska et al. | Main traction converter with medium-frequency transformer: Control of converters around MF transformer | |
JP2019213366A (ja) | 電力変換装置、太陽光発電システム、及び、電力変換装置の制御方法 | |
JP2005080414A (ja) | 電力変換装置及びそれを用いたパワーコンディショナ | |
CN103915858B (zh) | 基于多绕组高频磁耦合系统的光伏微逆发电系统 | |
KR101592227B1 (ko) | 에너지저장시스템의 dc 버스 불균형 제어 회로 | |
Kim et al. | Selective control algorithm for N-phase switching power pole of 4-leg interlinking converter in AC/DC hybrid microgrid | |
KR101606679B1 (ko) | 다축 구동 장치 | |
CN100564098C (zh) | 电力变换设备和方法及汽车 | |
Kosesoy et al. | Optimal trajectory control for a fully soft switching single-stage isolated three phase AC to DC series resonant converter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20141210 Termination date: 20170306 |