KR20140074849A - 매트릭스 컨버터 및 매트릭스 컨버터의 제어 방법 - Google Patents

매트릭스 컨버터 및 매트릭스 컨버터의 제어 방법 Download PDF

Info

Publication number
KR20140074849A
KR20140074849A KR1020130152242A KR20130152242A KR20140074849A KR 20140074849 A KR20140074849 A KR 20140074849A KR 1020130152242 A KR1020130152242 A KR 1020130152242A KR 20130152242 A KR20130152242 A KR 20130152242A KR 20140074849 A KR20140074849 A KR 20140074849A
Authority
KR
South Korea
Prior art keywords
phase
signal
generator
current
control
Prior art date
Application number
KR1020130152242A
Other languages
English (en)
Inventor
겐타로 이노마타
가츠토시 야마나카
히데노리 하라
신야 모리모토
고타로 다케다
다카시 다나카
다쿠야 나카
와타루 요시나가
Original Assignee
가부시키가이샤 야스카와덴키
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2012269528A external-priority patent/JP5590106B2/ja
Priority claimed from JP2013010505A external-priority patent/JP5534052B1/ja
Application filed by 가부시키가이샤 야스카와덴키 filed Critical 가부시키가이샤 야스카와덴키
Publication of KR20140074849A publication Critical patent/KR20140074849A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/22Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M5/275Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/297Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal for conversion of frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/22Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M5/275Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/22Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M5/275Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/293Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Ac-Ac Conversion (AREA)
  • Inverter Devices (AREA)

Abstract

실시 형태의 한 종류에 따른 매트릭스 컨버터는, 복수의 쌍방향 스위치와, 제어부를 구비한다. 복수의 쌍방향 스위치는, 교류 전원의 각 상과 회전 전기 기기의 각 상을 접속한다. 제어부는, 복수의 쌍방향 스위치를 제어하여 교류 전원과 회전 전기 기기의 사이의 전력 변환 제어를 행한다. 또한, 제어부는, 쌍방향 스위치를 구성하는 복수의 단방향 스위칭 소자의 각각을 개별적으로 120도 통전 제어 및 PWM 제어를 병용하여 온/오프 제어한다.

Description

매트릭스 컨버터 및 매트릭스 컨버터의 제어 방법{MATRIX CONVERTER AND METHOD FOR CONTROLLING MATRIX CONVERTER}
개시된 실시 형태는 매트릭스 컨버터 및 매트릭스 컨버터의 제어 방법에 관한 것이다.
매트릭스 컨버터는, 고조파 전류의 억제나 회생 전력의 유효 이용이 가능하므로, 새로운 전력 변환 장치로서 주목받고 있다. 이러한 매트릭스 컨버터에는, 교류 전원의 각 상과 회전 전기 기기의 각 상을 접속하는 복수의 쌍방향 스위치를 구비하며, 이러한 쌍방향 스위치를 제어하여 전력 변환을 행하는 것이 있다.
이런 종류의 매트릭스 컨버터에 있어서, 교류 전원이 어떠한 이유에 의해 저전압으로 되었을 경우에, 전력 변환 동작을 정지하는 기술이 알려져 있다. 예를 들면, 쌍방향 스위치에 의해 교류 전원의 각 상 전압을 제어하여 발동기를 구동하고 있는 상태에서, 교류 전원이 저전압으로 되었을 경우에, 발동기에의 전력 공급을 정지시키는 기술이 있다. 상기 종래 기술에 관한 문헌으로서는, 예를 들면, 일본 특개 제2005-287200호 공보가 있다.
그러나, 회전 전기 기기를 부하로 하는 매트릭스 컨버터에 있어서는, 교류 전원이 저전압으로 되었을 경우에도, 전력 변환 동작을 정지시키지 않고 계속시키는 것이 바람직하다.
실시 형태의 한 종류는, 상기를 감안하여 이루어진 것으로, 교류 전원이 저전압으로 되었을 경우에도, 전력 변환 동작을 계속할 수 있는 매트릭스 컨버터 및 매트릭스 컨버터의 제어 방법을 제공하는 것을 목적으로 한다.
실시 형태의 한 종류에 따른 매트릭스 컨버터는, 복수의 쌍방향 스위치와 제어부를 구비한다. 복수의 쌍방향 스위치는, 교류 전원의 각 상과 회전 전기 기기의 각 상을 접속한다. 제어부는, 상기 복수의 쌍방향 스위치를 제어하여 상기 교류 전원과 상기 회전 전기 기기의 사이의 전력 변환 제어를 행한다. 또한, 상기 제어부는, 상기 쌍방향 스위치를 구성하는 복수의 단방향 스위칭 소자의 각각을 개별적으로 120도 통전 제어 및 PWM 제어를 병용하여 온/오프 제어한다.
실시 형태의 한 종류에 의하면, 교류 전원이 저전압으로 되었을 경우에도, 전력 변환 동작을 계속할 수 있는 매트릭스 컨버터 및 매트릭스 컨버터의 제어 방법을 제공할 수 있다.
본 발명의 보다 완전한 인식이나 그에 따른 이점은, 이하의 발명의 상세한 설명을 첨부 도면과 참조하여 읽으면, 용이하게 이해할 수 있을 것이다.
도 1은 제 1 실시 형태에 따른 매트릭스 컨버터의 구성예를 나타내는 도면이다.
도 2는 도 1에 나타내는 쌍방향 스위치의 구성예를 나타내는 도면이다.
도 3은 도 1에 나타내는 제 2 구동 제어부의 구성의 일례를 나타내는 도면이다.
도 4는 계통 무효 전류 지령과 계통 전압치의 관계의 일례를 나타내는 도면이다.
도 5는 전류형 인버터 모델을 나타내는 도면이다.
도 6은 계통 위상과 컨버터의 스위치 구동 신호의 관계를 나타내는 도면이다.
도 7은 제 1 실시 형태에 따른 계통 펄스 패턴 생성기의 구성의 일례를 나타내는 도면이다.
도 8은 제 1 실시 형태에 따른 계통 펄스 패턴 생성기의 동작의 일례를 나타내는 도면이다.
도 9는 제 1 실시 형태의 변형예 1에 따른 변조파 신호 생성기의 구성을 나타내는 도면이다.
도 10은 제 1 실시 형태의 변형예 2에 따른 R상용 구동 신호 생성기의 구성을 나타내는 도면이다.
도 11은 발전기 위상과 인버터의 스위치 구동 신호의 관계를 나타내는 도면이다.
도 12는 도 1에 나타내는 전력 변환부의 구성예를 나타내는 도면이다.
도 13은 제 2 실시 형태에 따른 계통 펄스 패턴 생성기의 구성의 일례를 나타내는 도면이다.
도 14는 제 2 실시 형태에 따른 계통 펄스 패턴 생성기의 합성 신호 생성부가 출력하는 합성 신호의 생성 순서의 일례를 나타내는 도면이다.
도 15는 제 2 실시 형태에 따른 계통 펄스 패턴 생성기에 있어서의 Srp 패턴 생성부의 구성의 일례를 나타내는 도면이다.
도 16은 제 2 실시 형태에 따른 스위치 구동 신호의 생성 순서의 일례를 나타내는 도면이다.
도 17은 제 2 실시 형태에 따른 계통 펄스 패턴 생성기의 선택 제어부가 유지하는 테이블의 일례를 나타내는 도면이다.
도 18은 제 2 실시 형태의 변형예에 따른 계통 펄스 패턴 생성기의 구성의 일례를 나타내는 도면이다.
도 19는 제 2 실시 형태의 변형예에 따른 계통 펄스 패턴 생성기에 있어서의 Srp 패턴 생성부의 구성의 일례를 나타내는 도면이다.
도 20은 제 3 실시 형태에 따른 직렬 다중 매트릭스 컨버터의 구성예를 나타내는 도면이다.
도 21은 도 20에 나타내는 전력 변환 셀의 구성의 일례를 나타내는 도면이다.
도 22는 직렬 다중 매트릭스 컨버터에 있어서의 계통 펄스 패턴 생성기, GeGr 스위치 구동 신호 생성기 및 GrGe 스위치 구동 신호 생성기의 구성을 나타내는 도면이다.
도 23은 실시 형태에 따른 제어부가 실행하는 처리를 나타내는 플로우차트이다.
이하, 첨부 도면을 참조하여, 본원이 개시하는 매트릭스 컨버터 및 매트릭스 컨버터의 제어 방법의 실시 형태를 상세하게 설명한다. 또한, 이하에 나타내는 실시 형태에 의해 본 발명이 한정되는 것은 아니다. 또한, 이하의 실시 형태에서는, 교류 발전기(ACG)인 회전 전기 기기의 발전 전력을 변환하여 교류 전원에 공급하는 매트릭스 컨버터를 예로 들어 설명하지만, 회전 전기 기기는 교류 발전기에 한정하지 않고, 예를 들면, 교류 전동기로 해도 좋다. 또한, 교류 전원으로서 전력 계통(Grid)을 예로 들어 설명하지만, 교류 전원은 이에 한정되지 않는다.
(제 1 실시 형태)
도 1은, 제 1 실시 형태에 따른 매트릭스 컨버터의 구성예를 나타내는 도면이다. 도 1에 나타낸 바와 같이, 매트릭스 컨버터(1)는, 3상 교류의 전력 계통(2)과 회전 전기 기기(3)의 사이에 설치되고, 전력 계통(2)과 회전 전기 기기(3)의 사이의 전력 변환을 행한다. 또한, 이하에 있어서는, 회전 전기 기기(3)의 일례로서, 동기 발전기를 이용했을 경우의 예를 설명한다.
회전 전기 기기(3)의 회전축에는, 회전 전기 기기(3)의 회전 위치를 검출하는 위치 검출기(4)가 설치되어 있고, 이러한 위치 검출기(4)에 의해 검출된 회전 전기 기기(3)의 회전 위치 θG는 매트릭스 컨버터(1)에 입력된다.
매트릭스 컨버터(1)는, 전력 변환부(10)와, LC 필터(11)와, 전류 검출부(12)와, 전압 검출부(13)와, 정전 검출부(14)와, 제어부(15)를 구비한다. 또한, 매트릭스 컨버터(1)는, 계통측 단자 Tr, Ts, Tt 및 발전기측 단자 Tu, Tv, Tw를 구비하며, 계통측 단자 Tr, Ts, Tt에 전력 계통(2)이 접속되고, 발전기측 단자 Tu, Tv, Tw에 회전 전기 기기(3)가 접속된다.
전력 변환부(10)는, 전력 계통(2)의 R상, S상 및 T상의 각 상과 회전 전기 기기(3)의 U상, V상 및 W상의 각 상을 접속하는 복수의 쌍방향 스위치 Sw1∼Sw9를 구비한다. 쌍방향 스위치 Sw1∼Sw3은 전력 계통(2)의 R상, S상, T상과 회전 전기 기기(3)의 U상을 각각 접속하는 쌍방향 스위치이다. 쌍방향 스위치 Sw4∼Sw6은 전력 계통(2)의 R상, S상 및 T상과 회전 전기 기기(3)의 V상을 각각 접속하는 쌍방향 스위치이다. 쌍방향 스위치 Sw7∼Sw9는 전력 계통(2)의 R상, S상 및 T상과 회전 전기 기기(3)의 W상을 각각 접속하는 쌍방향 스위치이다.
쌍방향 스위치 Sw1∼Sw9는, 예를 들면, 도 2에 나타내는 바와 같은 구성을 갖는다. 도 2는 각 쌍방향 스위치 Sw1∼Sw9의 구성예를 나타내는 도면이다. 도 2에 나타낸 바와 같이, 각 쌍방향 스위치 Sw1∼Sw9는 단방향 스위칭 소자(31)와 다이오드(33)에 의한 직렬 접속체와, 단방향 스위칭 소자(32)와 다이오드(34)에 의한 직렬 접속체가, 역방향으로 병렬로 접속되어 구성된다.
단방향 스위칭 소자(31, 32)는, 예를 들면, IGBT(Insulated Gate Bipolar Transistor) 등의 반도체 소자가 이용된다. 쌍방향 스위치 Sw1∼Sw9를 구성하는 단방향 스위칭 소자(31, 32)를 개별적으로 온/오프함으로써, 통전 방향을 제어할 수 있다.
또한, 쌍방향 스위치 Sw1∼Sw9는, 도 2에 나타내는 구성에 한정되지 않는다. 예를 들면, 쌍방향 스위치 Sw1∼Sw9는, 단방향 스위칭 소자(31, 32)를 각각 역저지형의 스위칭 소자로 하고, 이러한 스위칭 소자를 서로 역방향으로 병렬 접속한 구성이어도 좋고, 또한, 후술하는 도 12에 나타내는 구성이어도 좋다.
LC 필터(11)는, 전력 계통(2)의 R상, S상 및 T상과 전력 변환부(10)의 사이에 설치되고, 전력 변환부(10)로부터 전력 계통(2)에의 노이즈의 영향을 억제한다. 구체적으로는, LC 필터(11)는, 3개의 리액터와 3개의 콘덴서에 의해 구성되고, 전력 변환부(10)를 구성하는 쌍방향 스위치 Sw1∼Sw9의 스위칭에 기인하는 고주파 성분 노이즈(PWM 성분 노이즈)를 제거한다. 이에 의해, 전력 변환부(10)에 의해 발생하는 고주파 성분 노이즈의 전력 계통(2)에의 출력을 억제할 수 있다. 또한, LC 필터(11)는, 도 1에 나타내는 구성에 한정되지 않고, 예를 들면, 리액터를 마련하지 않는 구성이어도 좋다.
또한, 3개의 리액터의 일단은, 전력 계통(2)의 R상, S상 및 T상측과 전력 변환부(10)의 사이의 전력 계통(2)측에 접속되고, 3개의 리액터의 타단은, 전력 변환부(10)측에 접속된다. 또한, 3개 콘덴서는 상이한 2개의 리액터의 타단 간에 접속된다.
전류 검출부(12)는, 전력 계통(2)과 LC 필터(11)의 사이에 설치되고, 전력 계통(2)의 R상, S상, T상의 각 상과 LC 필터(11)의 사이에 흐르는 전류의 전류치 Ir, Is, It(이하, 「계통 상전류치 Ir, Is, It」라고 기재함)를 검출한다. 또한, 전류 검출부(12)는, 예를 들면, 자전(磁電) 변환 소자인 홀 소자를 이용하여 전류를 검출하는 전류 센서이다.
전압 검출부(13)는, 전력 계통(2)로 전력 변환부(10)의 사이에 설치되고, 전력 계통(2)의 R상, S상, T상의 각 상의 전압치 Vr, Vs, Vt(이하, 「계통 상 전압치 Vr, Vs, Vt」라고 기재함)를 검출한다.
정전 검출부(14)는, 계통 전압의 전압치 Va(이하, 계통 전압치 Va라고 기재함)가 전압치 V1 이하인지 여부를 검출한다. 정전 검출부(14)는 계통 전압치 Va가 전압치 V1 이하인 경우에는, 전력 계통(2)이 정전한 것으로 판정하여 High 레벨의 정전 검출 신호 Sd를 출력한다. 한편, 정전 검출부(14)는, 계통 전압치 Va가 전압치 V1을 넘는 경우에는, 전력 계통(2)이 정전하고 있지 않은 것으로 판정하여 Low 레벨의 정전 검출 신호 Sd를 출력한다.
정전 검출부(14)는, 계통 상 전압치 Vr, Vs, Vt를 고정 좌표상의 직교한 2축의 αβ 성분으로 변환하여, α축 방향의 계통 전압치 Vα와 β축 방향의 계통 전압치 Vβ를 구한다. 그리고, 정전 검출부(14)는 계통 전압치 Vα, Vβ의 자승 평방근(=√(Vα 2+Vβ 2))를 연산하여, 연산 결과를 계통 전압치 Va로 한다.
제어부(15)는 제 1 구동 제어부(20)와, 제 2 구동 제어부(21)와, 전환부(22)를 구비한다. 제 1 구동 제어부(20)는, 회전 전기 기기(3)의 발생하는 토크량을 지시하는 토크 지령에 근거하여 전압 지령을 생성하고, 공지의 매트릭스 컨버터의 PWM 제어 방법에 따라 전압 지령에 따른 전압을 회전 전기 기기(3)에 출력하기 위한 스위치 구동 신호 S1∼S18을 생성하여 전력 변환부(10)에 출력한다.
또한, 전압 지령은, 토크 지령에 근거하여 공지의 동기 발전기의 벡터 제어칙에 의해 생성된다. 또한, 스위치 구동 신호 S1∼S18에 의해, 전력 변환부(10)는, 복수의 쌍방향 스위치 Sw1∼Sw9를 각각 구성하는 복수의 단방향 스위칭 소자(31, 32)를 모두 온으로 하면서, 전압 지령에 따른 전압을 PWM 제어에 의해 출력하여, 흐르는 전류의 크기나 통전 방향이 출력 전압과 발전 전압의 관계로 정해지는 전력 변환을 행한다.
제 2 구동 제어부(21)는, 계통 상 전압치 Vr, Vs, Vt 및 계통 상전류치 Ir, Is, It에 근거하여, 복수의 쌍방향 스위치 Sw1∼Sw9를 각각 구성하는 복수의 단방향 스위칭 소자(31, 32)의 일부를 온으로 하여 전력 변환 제어를 행한다.
복수의 쌍방향 스위치 Sw1∼Sw9를 각각 구성하는 복수의 단방향 스위칭 소자(31, 32)의 일부를 온으로 함으로써, 통전 방향을 제어할 수 있다. 이에 의해, 전력 계통(2)의 전압이 회전 전기 기기(3)의 전압보다 극단적으로 낮은 정전과 같은 경우에도, 회전 전기 기기(3)와 전력 계통(2)의 사이에 대전류가 계속 흐르는 것을 방지하여, 전류 제어를 행하면서 전력 변환 동작을 행할 수 있다.
예를 들면, 제 2 구동 제어부(21)는, 복수의 쌍방향 스위치 Sw1∼Sw9를 구성하는 단방향 스위칭 소자(31, 32) 중, 전력 계통(2)측의 어느 2개의 상(相)의 사이에 전류를 흘리는 단방향 스위칭 소자를 항상 온으로 한다. 또한, 제 2 구동 제어부(21)는, 복수의 쌍방향 스위치 Sw1∼Sw9를 구성하는 단방향 스위칭 소자(31, 32) 중, 회전 전기 기기(3)측의 어느 2개의 상의 사이에 전류를 흘리는 단방향 스위칭 소자를 항상 온으로 한다. 이러한 제어에 의해, 전력 계통(2)의 어느 2개의 상의 사이 및 회전 전기 기기(3)의 어느 2개의 상의 사이에 전류를 계속 흘릴 수 있다.
이러한 제어에 있어서, 제 2 구동 제어부(21)는, 쌍방향 스위치 Sw1∼Sw9를 구성하는 복수의 단방향 스위칭 소자(31, 32)의 각각을 개별적으로 120도 통전 제어 및 PWM 제어를 병용하여 온/오프 제어함으로써 공진 현상의 발생을 억제한다. 또한, 이러한 점의 상세한 것에 대해서는 도 6∼도 10을 참조하여 후술한다.
전환부(22)는 정전 검출부(14)로부터 출력되는 정전 검출 신호 Sd에 근거하여, 전력 변환부(10)에 출력하는 스위치 구동 신호 S1∼S18을 선택하여 출력한다. 구체적으로는, 전환부(22)는 정전 검출부(14)로부터 출력되는 정전 검출 신호 Sd가 Low 레벨인 경우, 제 1 구동 제어부(20)에 의해 생성되는 스위치 구동 신호 Sa1∼Sa18을 스위치 구동 신호 S1∼S18로서 출력한다.
한편, 전환부(22)는 정전 검출부(14)로부터 출력되는 정전 검출 신호 Sd가 High 레벨인 경우, 제 2 구동 제어부(21)에 의해 생성되는 스위치 구동 신호 Sb1∼Sb18을 스위치 구동 신호 S1∼S18로서 출력한다.
따라서, 전력 계통(2)이 저전압으로 되었을 경우에, 제 2 구동 제어부(21)에 의해 생성되는 스위치 구동 신호 Sb1∼Sb18에 의해, 쌍방향 스위치 Sw1∼Sw9를 각각 구성하는 복수의 단방향 스위칭 소자(31, 32)의 일부를 온으로 하는 전력 변환 제어를 행한다. 이에 의해, 전력 계통(2)이 저전압으로 되었을 경우에도, 전력 변환 동작을 계속할 수 있다.
이와 같이, 제어부(15)는 쌍방향 스위치 Sw1∼Sw9를 구성하는 복수의 단방향 스위칭 소자(31, 32)를 모두 제어하여 전력 변환 제어를 행하는 제 1 제어 모드와, 쌍방향 스위치 Sw1∼Sw9를 구성하는 복수의 단방향 스위칭 소자(31, 32)의 일부를 개별적으로 제어하여 전력 변환 제어를 행하는 제 2 제어 모드를 전환하여 실행한다.
구체적으로는, 제어부(15)에서는 교류 전원의 전압인 계통 전압치 Va가 소정치인 전압치 V1을 넘는 경우에, 제 1 구동 제어부(20)가 제 1 제어 모드를 실행한다. 한편, 계통 전압치 Va가 전압치 V1 이하인 경우에, 제 2 구동 제어부(21)가 제 2 제어 모드를 실행한다.
이하, 제 2 구동 제어부(21)의 구체적 구성의 일례에 대해 구체적으로 설명한다. 도 3은, 제 2 구동 제어부(21)의 구성의 일례를 나타내는 도면이다. 도 3에 나타낸 바와 같이, 제 2 구동 제어부(21)는, 유효 전류 보상부(41)와, 무효 전류 보상부(42)와, 펄스 패턴 생성부(43)를 구비한다.
우선, 유효 전류 보상부(41)에 대해 설명한다. 유효 전류 보상부(41)는, PQ 변환기(51)와, 로우 패스 필터(LPF)(52)와, 계통 유효 전류 지령기(53)와, 감산기(54)와, 계통 유효 전류 제어기(55)를 구비한다. 이러한 유효 전류 보상부(41)는, 계통 유효 전류치가 계통 유효 전류 지령 IPref와 일치하도록, 계통 위상 보상치 dθrst를 생성하고, 생성한 계통 위상 보상치 dθrst를 펄스 패턴 생성부(43)에 출력한다.
PQ 변환기(51)는, 계통 상전류치 Ir, Is, It를 고정 좌표상의 직교한 2축의αβ 성분으로 변환하여, α축 방향의 계통 전류치 Iα와 β축 방향의 계통 전류치 Iβ를 구한다. 또한, PQ 변환기(51)는, αβ축 좌표계의 성분을, 전력 계통(2)의 전압 위상 θrst(이하, 「계통 위상 θrst」라고 기재함)에 따라 회전하는 회전 좌표계의 성분으로 변환하는 것에 의해, 계통 유효 전류 IP와 계통 무효 전류 IQ를 구한다.
PQ 변환기(51)는, 예를 들면, 하기 식(1)의 연산을 행함으로써, 계통 유효 전류 IP와 계통 무효 전류 IQ를 구한다.
[수 1]
Figure pat00001
LPF(52)는, 계통 유효 전류 IP로부터 고주파 성분 노이즈를 제거하여 감산기(54)에 출력한다. 이에 의해, 계통 유효 전류 IP로부터 고주파 성분 노이즈에 의한 영향을 제거하도록 하고 있다.
감산기(54)는, 계통 유효 전류 지령기(53)로부터 출력되는 계통 유효 전류 지령 IPref로부터 LPF(52)의 출력을 감산하는 것에 의해, 계통 유효 전류 지령 IPref와 계통 유효 전류 IP의 편차인 계통 유효 전류 편차를 연산하여, 계통 유효 전류 제어기(55)에 출력한다.
계통 유효 전류 제어기(55)는, 예를 들면, PI(비례 적분) 제어기로 구성되고, 계통 유효 전류 편차가 제로로 되도록 비례 적분 연산을 행하는 것에 의해, 계통 위상 보상치 dθrst를 생성한다. 여기에서는, 계통 유효 전류 지령 IPref는 제로(zero)로 설정되어 있고, 계통 유효 전류 제어기(55)는 계통 유효 전류 IP가 제로로 되도록 계통 위상 보상치 dθrst를 생성한다.
다음에, 무효 전류 보상부(42)에 대해 설명한다. 무효 전류 보상부(42)는 로우 패스 필터(LPF)(61)와, 계통 무효 전류 지령기(62)와, 감산기(63)와, 계통 무효 전류 제어기(64)를 구비한다. 이러한 무효 전류 보상부(42)는, 계통 무효 전류치가 계통 무효 전류 지령 IQref와 일치하도록, 발전기 위상 보정치 dθuvw를 생성하고, 생성한 발전기 위상 보정치 dθuvw를 펄스 패턴 생성부(43)에 출력한다.
감산기(63)는, 계통 무효 전류 지령기(62)로부터 출력되는 계통 무효 전류 지령 IQref로부터 LPF(61)의 출력을 감산하는 것에 의해, 계통 무효 전류 지령 IQref와 계통 무효 전류 IQ의 편차인 계통 무효 전류 편차를 연산하여, 계통 무효 전류 제어기(64)에 출력한다.
계통 무효 전류 제어기(64)는, 예를 들면, PI 제어기로 구성되고, 계통 무효 전류 편차가 제로로 되도록 비례 적분 연산을 행하는 것에 의해, 발전기 위상 보정치 dθuvw를 생성한다. 계통 무효 전류 지령 IQref는, 예를 들면, 계통 전압치 Va에 따른 값으로 할 수 있다.
도 4는 계통 무효 전류 지령 IQref와 계통 전압치 Va의 관계의 일례를 나타내는 도면이다. 도 4에 나타낸 바와 같이, 계통 무효 전류 지령기(62)는 계통 전압치 Va가 제 2 임계치인 전압치 V2를 넘고, 또한 제 1 임계치인 전압치 V1 이하의 영역에서는 계통 전압치 Va의 증가에 따라 직선적으로 감소하는 계통 무효 전류 지령 IQref를 생성한다.
또한, 계통 무효 전류 지령기(62)는, 계통 전압치 Va가 제 2 임계치인 전압치 V2 이하인 경우에, 최대치가 되고, 제 1 임계치인 전압치 V1을 넘는 영역에서는, 제로치가 되는 계통 무효 전류 지령 IQref를 생성한다. 또한, 계통 무효 전류 지령 IQref와 계통 전압치 Va의 관계는, 도 4에 나타내는 예로 한정하는 것은 아니며, 다른 관계이어도 좋다.
다음에, 도 3에 나타내는 펄스 패턴 생성부(43)에 대해 설명한다. 펄스 패턴 생성부(43)는, 계통 상 전압치 Vr, Vs, Vt, 회전 위치 θG, 계통 위상 보상치 dθrst, 발전기 위상 보정치 dθuvw, 정전 검출 신호 Sd에 근거하여, 쌍방향 스위치 Sw1∼Sw9를 구동하는 스위치 구동 신호 S1∼S18을 생성한다.
펄스 패턴 생성부(43)는, 계통 주파수 검출기(70)와, 유지기(71)와, 적분기(72)와, 가산기(73)와, 발전기 위상 생성기(74)와, 가산기(75)를 구비한다. 또한, 펄스 패턴 생성부(43)는, 계통 펄스 패턴 생성기(76)와, 발전기 펄스 패턴 생성기(77)와, GeGr 스위치 구동 신호 생성기(78)와, GrGe 스위치 구동 신호 생성기(79)를 구비한다.
계통 주파수 검출기(70)는, 예를 들면, PLL(Phase Locked Loop)이며, 계통 상 전압치 Vr, Vs, Vt에 근거하여, 전력 계통(2)의 전압 주파수로 동기한 계통 주파수 frst를 출력한다.
유지기(71)는, 정전 검출 신호 Sd가 Low 레벨로부터 High 레벨로 변화한 타이밍에서, 계통 주파수 검출기(70)로부터 출력되는 계통 주파수 frst를 유지하고, High 레벨로부터 Low 레벨로 변화한 타이밍에서, 계통 주파수 frst의 유지를 해제한다.
적분기(72)는, 유지기(71)로부터 출력되는 계통 주파수 frst를 적분하고, 계통 위상 θrst를 생성하여, 유효 전류 보상부(41) 및 가산기(73)에 출력한다. 가산기(73)는, 계통 위상 θrst에 계통 위상 보상치 dθrst를 가산하여 계통 보정 위상 θrst'를 생성하고, 생성한 계통 보정 위상 θrst'를 계통 펄스 패턴 생성기(76)에 출력한다.
발전기 위상 생성기(74)는, 회전 위치 θG에 회전 전기 기기(3)의 극대수를 승산함으로써, 발전기 위상 θuvw를 생성하여, 가산기(75)에 출력한다. 가산기(75)는, 발전기 위상 θuvw에 발전기 위상 보정치 dθuvw를 가산하여 발전기 보정 위상 θuvw'를 생성하고, 생성한 발전기 보정 위상 θuvw'를 발전기 펄스 패턴 생성기(77)에 출력한다.
펄스 패턴 생성부(43)는, 도 5에 나타내는 전류형 인버터 모델을 이용하여 스위치 구동 신호 S1∼S18을 생성한다. 도 5는 전류형 인버터 모델을 나타내는 도면이다.
도 5에 나타내는 전류형 인버터 모델(80)은, 컨버터(81)와 인버터(82)를 구비하는 모델이다. 컨버터(81)는, 전력 계통(2)의 R상, S상, T상에 풀 브리지(full bridge) 접속된 복수의 스위칭 소자로 구성된다. 이러한 컨버터(81)의 각 스위칭 소자는, 스위치 구동 신호 Srp, Ssp, Stp, Srn, Ssn, Stn(이하, 「스위치 구동 신호 Srp∼Stn」라고 기재함)에 의해 구동된다.
인버터(82)는 회전 전기 기기(3)의 U상, V상, W상에 풀 브리지 접속된 복수의 스위칭 소자로 구성된다. 이러한 인버터(82)의 각 스위칭 소자는, 스위치 구동 신호 Sup, Svp, Swp, Sun, Svn, Swn(이하, 「스위치 구동 신호 Sup∼Swn」라고 기재함)에 의해 구동된다.
계통 펄스 패턴 생성기(76)는, 계통 위상 θrst에 대해서 120도 통전 제어의 전류를 흘리는 컨버터(81)의 스위치 구동 신호 Srp∼Stn의 패턴을 갖고 있고, 계통 보정 위상 θrst'에 따라 스위치 구동 신호 Srp∼Stn를 생성한다. 도 6은, 계통 위상 θrst와 스위치 구동 신호 Srp∼Stn의 관계를 나타내는 도면이며, 계통 위상 θrst에 대해서 90도 진전된 120도 통전 제어의 전류를 흘리기 위한 양자의 관계를 나타내는 것이다.
계통 보정 위상 θrst'는 계통 유효 전류 IP가 제로로 되도록 구해진 계통 위상 보상치 dθrst가 계통 위상 θrst에 가산되어 생성된다. 그 때문에, 계통 펄스 패턴 생성기(76)는, 계통 보정 위상 θrst'에 근거하여, 도 6에 나타낸 바와 같이 스위치 구동 신호 Srp∼Stn를 생성함으로써, 전력 계통(2)측으로 90도 진전되고 또한 계통 유효 전류 IP가 제로인 무효 전류를 흘릴 수 있다.
계통 펄스 패턴 생성기(76)는, 전력 계통(2)측의 어느 2개의 상의 사이에 전류를 흘리는 스위칭 소자를 항상 온으로 하도록 스위치 구동 신호 Srp∼Stn를 생성한다. 예를 들면, 0°≤θrst<30°, 330°≤θrst<360°의 범위에 있는 경우, 스위치 구동 신호 Stn, Ssp가 High 레벨이며, 그 외에는 Low 레벨이다. 이에 의해, T상과 S상의 사이에 전류가 흐른다.
마찬가지로, 30°≤θrst<90°의 범위에 있는 경우, 스위치 구동 신호 Srn, Ssp가 High 레벨이며, R상과 S상의 사이에 전류가 흐른다. 90°≤θrst<150°의 범위에 있는 경우, 스위치 구동 신호 Srn, Stp가 High 레벨이며, R상과 T상의 사이에 전류가 흐른다. 150°≤θrst<210°의 범위에 있는 경우, 스위치 구동 신호 Ssn, Stp가 High 레벨이며, S상과 T상의 사이에 전류가 흐른다.
210°≤θrst<270°의 범위에 있는 경우, 스위치 구동 신호 Ssn, Srp가 High 레벨이며, S상과 R상의 사이에 전류가 흐른다. 270°≤θrst<330°의 범위에 있는 경우, 스위치 구동 신호 Stn, Srp가 High 레벨이며, T상과 R상의 사이에 전류가 흐른다. 이와 같이, 계통 펄스 패턴 생성기(76)는, 계통 위상 θrst에 대해서 90도 진전된 위상의 전류가 흐르도록 펄스 패턴을 생성한다.
전력 계통(2)측의 어느 2개의 상의 사이에 전압 파형으로부터 위상이 90도 진전된 전류를 흘리도록, 컨버터(81)에 대해서 120도 통전 제어를 행했을 경우, 흐르는 전류에 LC 필터(11)의 공진 주파수와 일치하는 주파수 성분이 포함되는 경우가 있고, 이에 의해 공진 현상이 발생한다. 이러한 공진 현상이 발생했을 경우, 전력 계통(2)측의 어느 2개의 상의 사이에 흐르는 전류나 전압의 파형에 왜곡이 생긴다.
펄스 패턴 생성부(43)는, 스위치 구동 신호 Srp∼Stn에 의해 구동되는 각 스위칭 소자에 대해서, 120도 통전 제어 및 PWM 제어를 병용하여 온/오프 제어를 행하는 것에 의해 공진 현상의 발생을 억제한다.
예를 들면, 도 6에 나타낸 바와 같이, 펄스 패턴 생성부(43)의 계통 펄스 패턴 생성기(76)는, 30°≤θrst<150°의 범위에서 스위치 구동 신호 Srn이 High 레벨이 되는 120도 통전 제어용의 펄스 패턴을 생성한다.
이러한 경우, 계통 펄스 패턴 생성기(76)는, 예를 들면, 0°≤θrst<30°의 범위에서, θrst가 30도에 가깝게 될수록, 스위치 구동 신호 Srn이 High 레벨이 되는 펄스폭이 단계적으로 커지는 PWM 제어용의 펄스 패턴을 생성한다. 또한, 계통 펄스 패턴 생성기(76)는, 150°≤θrst<180°의 범위에서, θrst가 180도에 가깝게 될수록, 스위치 구동 신호 Srn이 High 레벨이 되는 펄스의 폭이 단계적으로 작아지는 PWM 제어용의 펄스 패턴을 생성한다.
그리고, 계통 펄스 패턴 생성기(76)는, 다른 스위치 구동 신호 Ssn, Stn, Srp, Ssp, Stp에 대해서도, 도 6에 나타낸 바와 같이, 120도 통전 제어용의 펄스 패턴과 PWM 제어용의 펄스 패턴을 마찬가지로 생성한다.
그리고, 펄스 패턴 생성부(43)는, 이러한 스위치 구동 신호 Srp∼Stn, 및 이후에 상술하는 발전기 펄스 패턴 생성기(77)에 의해 생성되는 스위치 구동 신호 Sup∼Swn에 근거하여 스위치 구동 신호 S1∼S18을 생성한다. 이에 의해, 전력 계통(2)측의 어느 2개의 상의 사이에 흘리는 전류의 파형을 정현파형에 근접하게 할 수 있으므로, 공진 현상의 발생을 억제할 수 있다.
여기서, 도 7 및 도 8을 참조하여, 스위치 구동 신호 Srp∼Stn를 생성하는 계통 펄스 패턴 생성기(76)의 구체적 구성의 일례에 대해 설명한다. 도 7은, 제 1 실시 형태에 따른 계통 펄스 패턴 생성기(76)의 구성의 일례를 나타내는 도면이며, 도 8은, 제 1 실시 형태에 따른 계통 펄스 패턴 생성기(76)의 동작의 일례를 나타내는 도면이다.
도 7에 나타낸 바와 같이, 계통 펄스 패턴 생성기(76)는, 타이머(91)와, 위상 쉬프트기(761, 762)와, R상용 구동 신호 생성기(90a)와, S상용 구동 신호 생성기(90b)와, T상용 구동 신호 생성기(90c)를 구비한다.
타이머(91)는, 정전 검출 신호 Sd가 High 레벨이 된 시점으로부터의 시간을 계측한다. 이러한 타이머(91)는, 도시하지 않는 프로세서의 동작 클록에 근거하여 시간의 계측을 행하고, 계측한 시간을 R상용 구동 신호 생성기(90a)와, S상용 구동 신호 생성기(90b)와, T상용 구동 신호 생성기(90c)에 출력한다.
위상 쉬프트기(761)는, 가산기(73)(도 3 참조)로부터 입력되는 계통 보정 위상 θrst'에 120도의 위상을 가산하여 S상용 구동 신호 생성기(90b)에 출력한다. 또한, 위상 쉬프트기(762)는, 가산기(73)(도 3 참조)로부터 입력되는 계통 보정 위상 θrst'에 240도의 위상을 가산하여 T상용 구동 신호 생성기(90c)에 출력한다. 또한, R상용 구동 신호 생성기(90a)에는 가산기(73)(도 3 참조)로부터 계통 보정 위상 θrst'가 입력된다.
R상용 구동 신호 생성기(90a)는, 전력 계통(2)의 R상에 흘리는 전류를 제어하기 위한 스위치 구동 신호 Srp, Srn를 생성하여 GeGr 스위치 구동 신호 생성기(78) 및 GrGe 스위치 구동 신호 생성기(79)(도 3 참조)에 출력한다.
S상용 구동 신호 생성기(90b)는, 전력 계통(2)의 S상에 흘리는 전류를 제어하기 위한 스위치 구동 신호 Ssp, Ssn를 생성하여 GeGr 스위치 구동 신호 생성기(78) 및 GrGe 스위치 구동 신호 생성기(79)(도 3 참조)에 출력한다.
T상용 구동 신호 생성기(90c)는, 전력 계통(2)의 T상에 흘리는 전류를 제어하기 위한 스위치 구동 신호 Stp, Stn를 생성하여 GeGr 스위치 구동 신호 생성기(78) 및 GrGe 스위치 구동 신호 생성기(79)(도 3 참조)에 출력한다.
여기서, S상용 구동 신호 생성기(90b)는, 스위치 구동 신호 Srn보다 120도 위상이 지연된 스위치 구동 신호 Ssn, 스위치 구동 신호 Srp보다 120도 위상이 지연된 스위치 구동 신호 Ssp를 출력하지만, R상용 구동 신호 생성기(90a)와 동일 구성이다.
또한, T상용 구동 신호 생성기(90c)는, 스위치 구동 신호 Srn보다 240도 위상이 지연된 스위치 구동 신호 Stn, 스위치 구동 신호 Srp보다 240도 위상이 지연된 스위치 구동 신호 Stp를 출력하지만, R상용 구동 신호 생성기(90a)와 동일 구성이다.
이 때문에, 여기에서는, R상용 구동 신호 생성기(90a)의 구성 및 동작에 대해 설명하고, S상용 구동 신호 생성기(90b), T상용 구동 신호 생성기(90c)가 구비하는 구성요소에 대해서는, R상용 구동 신호 생성기(90a)와 동일한 부호를 부여함으로써, 그 설명을 생략한다.
R상용 구동 신호 생성기(90a)는 변조파 신호 생성기(92)와, 캐리어 신호 생성기(93)와, 비교기(94)를 구비한다. 또한, 변조파 신호 생성기(92)는 정현파 생성기(95)와 증폭기(96)를 구비한다. 정현파 생성기(95)는 가산기(73)(도 3 참조)로부터 입력되는 계통 보정 위상 θrst'와 180도 위상이 상이한 정현파 신호를 생성하여, 증폭기(96)에 출력한다. 이 때, 정현파 생성기(95)는 진폭이 「­1」과 「1」의 사이에서 변동하는 정현파 신호를 생성하여 증폭기(96)에 출력한다.
증폭기(96)는, 정현파 생성기(95)로부터 입력되는 변조파 신호의 진폭을 2배로 증폭하는 것에 의해 변조파 신호(도 8 참조)를 생성하여, 비교기(94)에 출력한다.
캐리어 신호 생성기(93)는, 삼각파 생성기(97)와 증폭기(98)를 구비한다. 삼각파 생성기(97)는, 타이머(91)로부터 입력되는 시간과 소정의 캐리어 주파수에 근거하여, 도 8에 나타낸 바와 같이, 진폭이 「0」과 「1」의 사이에서 변동하는 삼각파인 제 1 캐리어 신호를 생성하여, 비교기(94)와 증폭기(98)에 출력한다. 증폭기(98)는, 도 8에 나타낸 바와 같이, 제 1 캐리어 신호를 -1배로 증폭하는 것에 의해 진폭이 「0」과 「-1」의 사이에서 변동하는 삼각파인 제 2 캐리어 신호를 생성하여, 비교기(94)에 출력한다.
비교기(94)는 제 1 비교기(99)와 제 2 비교기(100)를 구비한다. 제 1 비교기(99)의 비반전 입력에는, 변조파 신호 생성기(92)로부터 변조파 신호가 입력되고, 반전 입력에는, 캐리어 신호 생성기(93)로부터 제 1 캐리어 신호가 입력된다. 이러한 제 1 비교기(99)는 변조파 신호와 제 1 캐리어 신호를 순서대로 비교하여, 변조파 신호의 신호 레벨이 제 1 캐리어 신호의 신호 레벨보다 큰 위상의 범위에서 High 레벨이 되는 스위치 구동 신호 Srp를 생성한다.
그리고, 제 1 비교기(99)는 생성한 스위치 구동 신호 Srp를 GeGr 스위치 구동 신호 생성기(78) 및 GrGe 스위치 구동 신호 생성기(79)(도 3 참조)에 출력한다. 여기서, 진폭이 「0」과 「1」의 사이에서 변동하는 제 1 캐리어 신호와 비교되는 변조파 신호의 파형은, 진폭이 「-1」과 「1」의 사이에서 변동하는 정현파 신호의 진폭을 2배로 증폭한 정현파의 파형이다. 따라서, 스위치 구동 신호 Srp는 210°≤θrst<330°의 범위에서는, 항상 High 레벨이 되어, 120도 통전 제어용의 펄스 패턴이 된다.
또한, 180°≤θrst<210°의 범위, 및 330°≤θrst<360°의 범위에서, 스위치 구동 신호 Srp는 변조파 신호가 제 1 캐리어 신호보다 큰 위상의 범위에서 단속적으로 High 레벨이 되어, PWM 제어용의 펄스 패턴이 된다.
한편, 제 2 비교기(100)의 비반전 입력에는, 캐리어 신호 생성기(93)로부터 제 2 캐리어 신호가 입력되고, 반전 입력에는, 변조파 신호 생성기(92)로부터 변조파 신호가 입력된다. 이러한 제 2 비교기(100)는, 제 2 캐리어 신호와 변조파 신호를 순서대로 비교하여, 제 2 캐리어 신호의 신호 레벨이 변조파 신호의 신호 레벨보다 큰 위상의 범위에서 High 레벨이 되는 스위치 구동 신호 Srn를 생성한다.
그리고, 제 2 비교기(100)는, 생성한 스위치 구동 신호 Srn를 GeGr 스위치 구동 신호 생성기(78) 및 GrGe 스위치 구동 신호 생성기(79)(도 3 참조)에 출력한다. 이에 의해, 스위치 구동 신호 Srn는 30°≤θrst<150°의 범위에서는, 항상 High 레벨이 되고, 120도 통전 제어용의 펄스 패턴이 된다.
또한, 0°≤θrst<30°의 범위, 및 150°≤θrst<180°의 범위에서, 스위치 구동 신호 Srn는, 제 2 캐리어 신호가 변조파 신호보다 큰 위상의 범위에서 단속적으로 High 레벨이 되어, PWM 제어용의 펄스 패턴이 된다.
이와 같이, R상용 구동 신호 생성기(90a)는 120도 통전 제어를 행하기 위한 스위치 구동 신호 Srp, Srn와, 120도 통전 제어를 행하는 전후에서 PWM 제어를 행하기 위한 스위치 구동 신호 Srp, Srn를 생성한다.
또한, 도 7에 나타내는 캐리어 신호 생성기(93)는, R상용 구동 신호 생성기(90a), S상용 구동 신호 생성기(90b), T상용 구동 신호 생성기(90c) 중 어느 하나에 설치되어도 좋다. 예를 들면, R상용 구동 신호 생성기(90a)에 선택적으로 캐리어 신호 생성기(93)를 설치해도 좋다. 이러한 경우, R상용 구동 신호 생성기(90a)에 설치되는 캐리어 신호 생성기(93)에 의해, S상용 구동 신호 생성기(90b) 및 T상용 구동 신호 생성기(90c)의 비교기(94)에 제 1 캐리어 신호와 제 2 캐리어 신호를 공급한다.
또한, R상용 구동 신호 생성기(90a)의 변조파 신호 생성기(92)로부터 출력되는 변조파 신호의 위상을 120도 쉬프트시킨 신호와, 240도 쉬프트시킨 신호를 S상용 구동 신호 생성기(90b) 및 T상용 구동 신호 생성기(90c)의 비교기(94)에 각각 공급해도 좋다. 이러한 구성으로 하면, 위상 쉬프트기(761, 762)를 생략할 수 있음과 아울러, S상용 구동 신호 생성기(90b) 및 T상용 구동 신호 생성기(90c)로부터 변조파 신호 생성기(92)를 생략할 수 있다.
또한, 도 7에 나타내는 계통 펄스 패턴 생성기(76)의 구성은, 일례이며, 변조파 신호 생성기(92)의 구성이나, R상용 구동 신호 생성기(90a), S상용 구동 신호 생성기(90b), T상용 구동 신호 생성기(90c)의 구성은, 또한 여러 가지의 변형이 가능하다. 도 9는 제 1 실시 형태의 변형예 1에 따른 변조파 신호 생성기(92a)의 구성을 나타내는 도면이며, 도 10은, 제 1 실시 형태의 변형예 2에 따른 R상용 구동 신호 생성기(90d)의 구성을 나타내는 도면이다.
도 9에 나타낸 바와 같이, 변형예 1에 따른 변조파 신호 생성기(92a)는 정현파 생성기(95)(도 7 참조) 대신에, 사다리꼴형파 테이블(95a)을 구비한다. 사다리꼴형파 테이블(95a)은 120도 통전 제어를 행하는 위상 범위에서 진폭이 「1」 또는 「-1」로 고정되고, 120도 통전 제어를 행하는 전후의 위상 범위에서 직선이 되는 사다리꼴형파가 기억된 테이블이다. 그리고, 사다리꼴형파 테이블(95a)은 가산기(73)(도 3 참조)로부터 입력되는 계통 보정 위상 θrst'에 따른 위상으로 사다리꼴형파를 비교기(94)에 출력한다.
이러한 R상용 구동 신호 생성기(90a)에 의해서도, 도 7에 나타내는 R상용 구동 신호 생성기(90a)와 마찬가지로, 120도 통전 제어를 행하기 위한 스위치 구동 신호 Srp, Srn와, 120도 통전 제어를 행하는 전후에서 PWM 제어를 행하기 위한 스위치 구동 신호 Srp, Srn를 생성할 수 있다.
이에 의해, R상에 흘리는 전류의 파형을 보다 정현파형에 근접하게 할 수 있으므로, 공진 현상의 발생을 억제할 수 있다. 따라서, 전류 및 전압의 파형에 생기는 공진 현상에 기인한 왜곡을 저감할 수 있다.
또한, 사다리꼴형파 테이블(95a)에 의해 기억되는 사다리꼴형파는, 120도 통전 제어를 행하는 위상 범위에서 진폭이 「1」 또는 「-1」로 고정되고, 120도 통전 제어를 행하는 전후의 위상 범위에서, 도 8에 나타내는 변조파 신호에 있어서의 대응 부분의 기울기를 근사한 곡선이어도 좋다.
또한, 도 10에 나타낸 바와 같이, 변형예 2에 따른 R상용 구동 신호 생성기(90d)는, Srp용 펄스 테이블(101)과, Srn용 펄스 테이블(102)을 구비한다. Srp용 펄스 테이블(101)은, 도 7에 나타내는 제 1 비교기(99)가 출력하는 스위치 구동 신호 Srp를 기억한 테이블이다. 또한, Srn용 펄스 테이블(102)은 도 7에 나타내는 제 2 비교기(100)가 출력하는 스위치 구동 신호 Srn를 기억한 테이블이다.
Srp용 펄스 테이블(101)은, 입력되는 계통 보정 위상 θrst'에 따른 위상에서 스위치 구동 신호 Srp를 출력한다. 또한, Srn용 펄스 테이블(102)은, 입력되는 계통 보정 위상 θrst'에 따른 위상에서 스위치 구동 신호 Srn를 출력한다.
상술한 바와 같이, 계통 펄스 패턴 생성기(76)는, 전력 계통(2)의 각 상에 흘리는 전류를 제어하는 스위칭 소자에 대해서, 120도 통전 제어와 PWM 제어를 병용하여 온/오프 제어를 행하는 스위치 구동 신호 Srp∼Stn의 펄스 패턴을 생성한다. 이에 의해, 전력 계통(2)의 각 상에 흘리는 전류의 파형을 정현파의 파형에 근접하게 할 수 있으므로, 공진 현상의 발생을 억제할 수 있고, 전류 및 전압의 파형에 생기는 공진 현상에 기인한 왜곡을 저감할 수 있다.
또한, 계통 펄스 패턴 생성기(76)는, 전력 계통(2)의 각 상에 흘리는 전류를 제어하는 스위칭 소자를 120도 통전 제어에 의해 온으로 하는 전후에서 PWM 제어를 행하는 스위치 구동 신호 Srp∼Stn의 펄스 패턴을 생성한다. 이에 의해, 전력 계통(2)의 각 상에 흘리는 전류의 파형을 정현파의 파형에 보다 정확하게 근접하게 할 수 있다.
또한, 계통 펄스 패턴 생성기(76)는, 도 8에 나타내는 제 1 및 제 2 캐리어 신호와 변조파 신호를 비교함으로써, 120도 통전 제어용과 PWM 제어용의 스위치 구동 신호 Srp∼Stn의 펄스 패턴을 생성한다.
이 때문에, 계통 펄스 패턴 생성기(76)는, 120도 통전 제어용의 스위치 구동 신호 Srp∼Stn를 생성하는 처리부와, PWM 제어용의 스위치 구동 신호 Srp∼Stn를 생성하는 처리부를 개별적으로 마련할 필요가 없다. 따라서, 계통 펄스 패턴 생성기(76)에 의하면, 회로 규모의 증대를 억제하면서, 전류 및 전압의 파형에 생기는 공진 현상에 기인한 왜곡을 저감할 수 있다.
또한, 여기에서는, 120도 통전 제어를 행하는 전후에서 PWM 제어를 행하는 경우에 대해 설명했지만, 120도 통전 제어를 행하기 전 또는 후의 어느 한쪽에서 PWM 제어를 행해도 좋다. 이러한 제어를 행하는 것에 의해서도, PWM 제어를 행하지 않는 경우에 비해, 공진 현상의 발생을 억제하여, 전류 및 전압의 파형에 생기는 공진 현상에 기인한 왜곡을 저감할 수 있다.
도 3으로 복귀하여, 발전기 펄스 패턴 생성기(77)는, 발전기 보정 위상 θuvw'에 따른 스위치 구동 신호 Sup∼Swn를 생성한다. 여기서, 도 1을 참조하여, 발전기 위상 θuvw와 스위치 구동 신호 Sup∼Swn의 관계에 대해 설명한다. 도 11은, 발전기 위상 θuvw와 스위치 구동 신호 Sup∼Swn의 관계를 나타내는 도면이다.
발전기 펄스 패턴 생성기(77)는, 발전기 위상 θuvw에 대해서 120도 통전 제어의 전류를 흘리는 인버터(82)의 스위치 구동 신호 Sup∼Swn의 패턴을 갖고, 발전기 보정 위상 θuvw'에 따라 스위치 구동 신호 Sup∼Swn를 출력한다.
발전기 보정 위상 θuvw'는 편차인 계통 무효 전류 편차가 제로로 되도록 구해진 발전기 위상 보정치 dθuvw가 발전기 위상 θuvw에 가산되어 구해진다. 그 때문에, 발전기 펄스 패턴 생성기(77)는, 발전기 보정 위상 θuvw'를 기준으로 함으로써, 도 11에 나타낸 바와 같이, 발전기 위상 θuvw에 대해서, 90°-dθuvw 지연된 전류가 흐르도록, 스위치 구동 신호 Sup∼Swn를 출력한다. 이에 의해, 계통 무효 전류 지령 IQref와 동일한 크기의 무효 전류를 전력 계통(2)측으로 흘릴 수 있다.
발전기 펄스 패턴 생성기(77)는, 회전 전기 기기(3)측의 어느 2개의 상의 사이에 전류를 흘리는 스위칭 소자를 항상 온으로 하도록 스위치 구동 신호 Sup∼Swn를 출력한다. 예를 들면, 0°≤θuvw-dθuvw<30°, 330°≤θuvw-dθuvw<360°의 범위에 있는 경우, 스위치 구동 신호 Swp, Svn이 High 레벨이며, 그 외에는 Low 레벨이다. 이에 의해, W상과 V상의 사이에 전류가 흐른다.
마찬가지로, 30°≤θuvw-dθuvw<90°의 범위에 있는 경우, 스위치 구동 신호 Sup, Svn이 High 레벨이며, U상과 V상의 사이에 전류가 흐른다. 90°≤θuvw-dθuvw<150°의 범위에 있는 경우, 스위치 구동 신호 Sup, Swn이 High 레벨이며, U상과 W상의 사이에 전류가 흐른다. 150°≤θuvw-dθuvw<210°의 범위에 있는 경우, 스위치 구동 신호 Svp, Swn이 High 레벨이며, V상과 W상의 사이에 전류가 흐른다.
210°≤θuvw-dθuvw<270°의 범위에 있는 경우, 스위치 구동 신호 Svp, Sun이 High 레벨이며, V상과 U상의 사이에 전류가 흐른다. 270°≤θuvw-dθuvw<330°의 범위에 있는 경우, 스위치 구동 신호 Swp, Sum이 High 레벨이며, W상과 U상의 사이에 전류가 흐른다. 이와 같이, 발전기 펄스 패턴 생성기(77)는, 발전기 위상 θuvw에 대해서, 90°-dθuvw 지연된 전류가 흐르도록 펄스 패턴을 생성한다.
GeGr 스위치 구동 신호 생성기(78)는, 스위치 구동 신호 Srn, Ssn, Stn, Sup, Svp, Swp에 근거하여, 하기 식(2)을 이용하여, 스위치 구동 신호 Sur, Sus, Sut, Svr, Svs, Svt, Swr, Sws, Swt를 생성한다.
[수 2]
Figure pat00002
상기 식(2)에 있어서, 스위치 구동 신호 Sur, Sus, Sut, Svr, Svs, Svt, Swr, Sws, Swt는 도 12에 나타낸 바와 같이, 쌍방향 스위치 Sw1∼Sw9 중, 회전 전기 기기(3)측으로부터 전력 계통(2)에 전류를 흘리는 단방향 스위칭 소자(31, 32)를 구동하는 신호이다. 도 12는 전력 변환부(10)의 구성예를 나타내는 도면이다. 또한, 도 12에 나타내는 전력 변환부(10)의 구성예에서는, 쌍방향 스위치 Sw1∼Sw9의 구성이 도 2에 나타내는 예와는 상이하다. 즉, 도 12에 나타내는 쌍방향 스위치 Sw1∼Sw9는, 도 2에 나타내는 쌍방향 스위치 Sw1∼Sw9에 있어서의 단방향 스위칭 소자(31, 32)의 컬렉터와, 다이오드(33, 34)를 공통으로 접속한 구성이다. 이러한 접속 구성이어도, 도 12에 나타내는 쌍방향 스위치 Sw1∼Sw9의 동작은 도 2에 나타내는 쌍방향 스위치 Sw1∼Sw9의 동작과 동등하다.
GrGe 스위치 구동 신호 생성기(79)는 스위치 구동 신호 Sun, Svn, Swn, Srp, Ssp, Stp에 근거하여, 하기 식(3)을 이용하여, 스위치 구동 신호 Sru, Ssu, Stu, Srv, Ssv, Stv, Srw, Ssw, Stw를 생성한다.
[수 3]
Figure pat00003
상기 식(3)에 있어서, 스위치 구동 신호 Sru, Ssu, Stu, Srv, Ssv, Stv, Srw, Ssw, Stw는 도 12에 나타낸 바와 같이, 쌍방향 스위치 Sw1∼Sw9 중 전력 계통(2)측으로부터 회전 전기 기기(3)측으로 전류를 흘리는 단방향 스위칭 소자(31, 32)를 구동하는 신호이다.
이와 같이 생성된 스위치 구동 신호 Sur, Sru, Sus, Ssu, Sut, Stu, Svr, Srv, Svs, Ssv, Svt, Stv, Swr, Srw, Sws, Ssw, Swt, Stw는, 스위치 구동 신호 S1∼S18로서, 도 12에 나타내는 대응 관계에서, 펄스 패턴 생성부(43)로부터 전력 변환부(10)에 출력된다.
이에 의해, 복수의 쌍방향 스위치 Sw1∼Sw9를 구성하는 단방향 스위칭 소자(31, 32) 중, 전력 계통(2)측의 어느 2개의 상의 사이에 전류를 흘리고, 또한, 회전 전기 기기(3)측의 어느 2개의 상의 사이에 전류를 흘리는 단방향 스위칭 소자가 항상 온으로 된다.
또한, 스위치 구동 신호 S1∼S18에 의해, 복수의 쌍방향 스위치 Sw1∼Sw9를 구성하는 단방향 스위칭 소자(31, 32)의 각각에 대해서, 개별적으로 120도 통전 제어 및 PWM 제어가 병용되어 온/오프 제어가 행해진다. 이에 의해, 전력 계통(2)측으로 흐르는 전류의 파형이 정현파형에 근접하게 할 수 있으므로, 공진 현상의 발생이 억제되어, 전력 계통(2)측의 전류 파형 및 전압 파형에 왜곡이 생기는 것을 억제할 수 있다.
또한, 스위치 구동 신호 Srn, Ssn, Stn 중 어느 하나가 항상 High 레벨이 되고, 스위치 구동 신호 Sup, Svp, Swp 중 어느 하나가 항상 High 레벨이 된다. 그 때문에, 복수의 쌍방향 스위치 Sw1∼Sw9를 구성하는 단방향 스위칭 소자(31, 32) 중, 전력 계통(2)측으로부터 회전 전기 기기(3)측으로 전류를 흘리는 단방향 스위칭 소자 중 어느 1개가 항상 온으로 된다.
또한, 스위치 구동 신호 Sun, Svn, Swn 중 어느 하나가 항상 High 레벨이 되고, 스위치 구동 신호 Srp, Ssp, Stp 중 어느 하나가 항상 High 레벨이 된다. 그 때문에, 복수의 쌍방향 스위치 Sw1∼Sw9를 구성하는 단방향 스위칭 소자(31, 32) 중, 회전 전기 기기(3)측으로부터 전력 계통(2)측으로 전류를 흘리는 단방향 스위칭 소자 중 어느 1개가 항상 온으로 된다.
이상과 같이, 제 1 실시 형태에 따른 매트릭스 컨버터(1)의 제어부(15)는, 제 1 구동 제어부(20)와, 제 2 구동 제어부(21)를 구비한다. 제 1 구동 제어부(20)는, 복수의 쌍방향 스위치 Sw1∼Sw9를 각각 구성하는 복수의 단방향 스위칭 소자(31, 32)를 모두 온으로 하여 행하는 전압 제어에 의해 전력 변환을 행한다. 한편, 제 2 구동 제어부(21)는, 복수의 쌍방향 스위치 Sw1∼Sw9를 각각 구성하는 복수의 단방향 스위칭 소자(31, 32)의 일부를 온으로 하여 행하는 전류 제어에 의해 전력 변환을 행한다.
그리고, 매트릭스 컨버터(1)는, 전력 계통(2)의 전압이 소정치를 넘는 경우에, 제 1 구동 제어부(20)에 의해 전력 변환 제어를 행하고, 전력 계통(2)의 전압이 소정치 이하인 경우에, 제 2 구동 제어부(21)에 의해 전력 변환 제어를 행한다. 이에 의해, 매트릭스 컨버터(1)는, 전력 계통(2)이 저전압으로 되었을 경우에도, 전력 계통(2)측에 무효 전류를 흘리면서 전력 변환 동작을 계속할 수 있다.
또한, 제 2 구동 제어부(21)는, 쌍방향 스위치 Sw1∼Sw9를 구성하는 복수의 단방향 스위칭 소자(31, 32)의 각각을 개별적으로 120도 통전 제어 및 PWM 제어를 병용하여 온/오프 제어한다. 이에 의해, 매트릭스 컨버터(1)는, 전력 계통(2)측에 흘리는 전류의 전류 파형을 정현파형에 근접하게 함으로써, 전력 계통(2)측에 흘리는 전류에 기인한 LC 필터(11)와의 공진 현상에 의해 전압 파형 및 전류 파형에 왜곡이 생기는 것을 방지할 수 있다.
발전 시스템에서는, 전력 계통(2)이 정전 등에 의해 저전압으로 되었을 경우에, 전력 계통(2)에 무효 전력을 공급하는 것이 요구되는 경우가 있고, 본 실시 형태에 따른 매트릭스 컨버터(1)는, 이러한 요구에 적절히 대응하는 것이 가능해진다.
또한, 전력 계통(2)의 관리자측으로부터 무효 전력의 크기를 규정하는 계통 무효 전류 지령 IQref가 송신되는 경우, 이러한 계통 무효 전류 지령 IQref를 계통 무효 전류 지령기(62)로부터 감산기에 출력하도록 해도 좋다. 이와 같이 함으로써, 외부로부터 전력 계통(2)측의 무효 전류의 크기를 설정할 수 있다.
또한, 제 2 구동 제어부(21)는, 전류형 인버터 모델(80)을 스위칭 모델로서 채용하고 있다. 컨버터(81)에는 전압 파형으로부터 90도 진전된 전류를 흘리는 120도 통전 제어의 스위칭 패턴이 인가되고, 인버터(82)에는 계통 무효 전류 지령 IQref에 따른 크기의 무효 전류를 흘리기 위한 위상을 갖는 120도 통전 제어의 스위칭 패턴이 인가된다. 컨버터(81)에 인가되는 스위칭 패턴과 인버터(82)에 인가되는 스위칭 패턴은 합성되어 쌍방향 스위치 Sw1∼Sw9를 구성하는 단방향 스위칭 소자(31, 32)에 대한 스위치 구동 신호로서 출력된다.
이러한 처리에 의해, 쌍방향 스위치 Sw1∼Sw9를 구성하는 단방향 스위칭 소자(31, 32)에 대한 스위치 구동 신호로서 출력되므로, 계통 무효 전류 지령 IQref에 따른 크기의 무효 전류를 전력 계통(2)에 용이하고 또한 정밀도 좋게 흘릴 수 있다.
또한, 상술한 실시 형태에서는, 120도 통전 제어의 스위칭 패턴을 이용하여 전력 변환부(10)를 구동하도록 했지만, 제어 방법은 120도 통전 제어의 스위칭 패턴에 한정되는 것은 아니다. 즉, 단방향 스위칭 소자(31, 32)를 개별적으로 제어하는 전류 제어를 행하는 것에 의해 전력 계통(2)측에 무효 전류를 흘리면서 전력 변환 동작을 계속하는 것이면 좋고, 여러 가지의 변경이 가능하다.
또한, 상술한 실시 형태에서는, 회전 전기 기기(3)를 동기 발전기로서 설명했지만, 회전 전기 기기(3)를 유도 발전기로 해도 좋다. 회전 전기 기기(3)를 유도 발전기로 하는 경우, 매트릭스 컨버터(1)는, 예를 들면, 이하와 같이 구성된다.
정전 발생 후에 있어서 유도 발전기는 잔류 자속에 의한 발전 전압이 발생하고 있고, 위치 검출기(4)는 유도 발전기의 회전 속도를 검출한다. 제어부(15)는 공지의 유도기의 벡터 제어 규칙에 따라, 유도 발전기에 대한 토크 지령을 대략 제로로 한 후에, 이러한 토크 지령에 근거하여 슬립(slip) 주파수 지령을 생성하고, 위치 검출기(4)의 검출한 회전 속도에 가산하여, 출력 주파수 지령을 생성한다.
그리고, 제어부(15)는 출력 주파수 지령을 적분함으로써 발전기 위상 θuvw를 생성하고, 생성한 발전기 위상 θuvw를 발전기 위상 보정치 dθuvw에 가산함으로써, 발전기 보정 위상 θuvw'를 생성한다. 이와 같이 함으로써, 전력 계통(2)이 저전압으로 되었을 경우에도, 전력 계통(2)측에 무효 전류를 흘리면서 전력 변환 동작을 계속할 수 있다.
또한, 상술한 실시 형태에서는, 회전 전기 기기(3)로서 발전기를 적용한 예를 설명했지만 회전 전기 기기(3)로서 전동기를 적용할 수도 있고, 전력 계통(2)의 전압이 저전압으로 되었을 경우에도, 전동기의 속도 기전력에 의해 운전을 계속할 수 있다.
즉, 전력 계통(2)의 전압이 저전압으로 되었을 경우, 전력 계통(2)으로부터 전동기에의 전력 공급이 곤란하게 되지만, 전동기의 회전자는 감속하면서도 회전 상태에 있다. 그 때문에, 이러한 회전에 의해 발생하는 기전력을, 예를 들면, 무효 전력으로서 전력 계통(2)에 공급함으로써 운전을 계속할 수 있다.
또한, 상술한 실시 형태에서는, 유효 전류 보상부(41)의 일례로서, 도 3에 나타내는 구성을 설명했지만, 유효 전류 보상부(41)는, 테이블을 이용한 구성이어도 좋다. 즉, 유효 전류 보상부(41)에 있어서, 계통 유효 전류 IP 및 계통 무효 전류 IQ와 계통 위상 보상치 dθrst의 관계를 나타내는 이차원 테이블을 기억하는 기억부를 마련하고, 이러한 테이블에서 계통 상전류치 Ir, Is, It에 근거하여, 계통 위상 보상치 dθrst를 출력하더라도 좋다. 또한, dθrst=-tan-1(IQ/IP)의 연산에 의해 계통 위상 보상치 dθrst를 구하여 출력하더라도 좋다.
또한, 상술한 실시 형태에서는, 무효 전류 보상부(42)의 일례로서, 도 3에 나타내는 구성을 설명했지만, 무효 전류 보상부(42)는 테이블을 이용한 구성이어도 좋다. 즉, 무효 전류 보상부(42)에 있어서, 계통 무효 전류 지령 IQref와 발전기 위상 보정치 dθuvw의 관계를 나타내는 테이블을 기억하는 기억부를 마련하고, 이러한 테이블로부터 계통 무효 전류 지령 IQref에 근거하여, 발전기 위상 보정치 dθuvw를 출력하더라도 좋다.
또한, 상술한 실시 형태에 있어서, 계통 펄스 패턴 생성기(76)는, 계통 위상 θrst에 대해서 90도 지연된 120도 통전 제어의 전류를 흘리는 스위치 구동 신호 Srp∼Stn를 생성할 수도 있다. 이에 의해, 전력 계통(2)측에 90도 지연되고 또한 계통 유효 전류 IP가 제로인 무효 전류를 흘릴 수 있다. 또한, 전력 계통(2)측에 90도 지연에 의한 무효 전류를 흘리거나 90도 진전에 의한 무효 전류를 흘리는 지는, 예를 들면, 외부로부터 계통 펄스 패턴 생성기(76)에의 설정에 의해 선택할 수 있다.
(제 2 실시 형태)
다음에, 제 2 실시 형태에 따른 매트릭스 컨버터에 대해 설명한다. 제 2 실시 형태에 따른 매트릭스 컨버터는, 도 3에 나타내는 계통 펄스 패턴 생성기(76) 대신에, 계통 펄스 패턴 생성기(176)를 구비하는 점을 제외하고, 제 1 실시 형태에 따른 매트릭스 컨버터(1)와 마찬가지의 구성이다.
이 때문에, 여기에서는, 제 2 실시 형태에 따른 계통 펄스 패턴 생성기(176)에 대해 설명하고, 계통 펄스 패턴 생성기(176) 이외의 구성요소에 대해서는, 제 1 실시 형태에서 설명한 각 구성요소와 동일한 부호를 부여함으로써, 그 설명을 생략한다.
도 13은, 제 2 실시 형태에 따른 계통 펄스 패턴 생성기(176)의 구성의 일례를 나타내는 도면이다. 도 13에 나타낸 바와 같이, 계통 펄스 패턴 생성기(176)는, 가산기(73)로부터 입력되는 계통 보정 위상 θrst'에 근거하여, 스위치 구동 신호 Srp∼Stn를 생성하는 처리부이다. 계통 펄스 패턴 생성기(176)는, 선택 제어부(191), 합성 신호 생성부(192), 캐리어 신호 생성부(193), 및 타이머(194)를 구비한다.
또한, 계통 펄스 패턴 생성기(176)는, Srp 패턴 생성부(195a), Srn 패턴 생성부(195b), Ssp 패턴 생성부(195c), Ssn 패턴 생성부(195d), Stp 패턴 생성부(195e), 및 Stn 패턴 생성부(195f)를 구비한다. 또한, 이하에서는 Srp 패턴 생성부(195a)∼Stn 패턴 생성부(195f)의 6개의 처리부 중, 임의의 하나를 나타내는 경우에는 패턴 생성부(195)라 칭한다.
선택 제어부(191)는, 패턴 생성부(195)의 각각이 스위치 구동 신호로서 출력 가능한 High 레벨 신호 SH, Low 레벨 신호 SL, PWM 신호 Spwm로부터 어느 하나를 선택하여 출력시키는 선택 신호 Ssel를 패턴 생성부(195)에 출력한다.
이러한 선택 제어부(191)는, R상을 기준으로 하여, 0도∼360도까지의 계통 위상 θrst를 30도씩 12 등분한 위상 범위마다, 패턴 생성부(195)에 선택 신호 Ssel를 출력한다. 또한, 선택 제어부(191)가 각 위상 범위에서 패턴 생성부(195)에 출력하는 선택 신호 Ssel의 일례에 대해서는, 도 17을 참조하여 후술한다.
합성 신호 생성부(192)는, 패턴 생성부(195)가, 스위치 구동 신호 Srp∼Stn에 포함되는 PWM 제어용의 펄스 패턴의 부분을 생성하는 경우에 이용하는 합성 신호 Sref를 생성하여 패턴 생성부(195)에 출력한다.
여기서, 도 14를 참조하여, 합성 신호 생성부(192)에 의한 합성 신호 Sref의 생성 순서의 일례에 대해 설명한다. 도 14는 제 2 실시 형태에 따른 계통 펄스 패턴 생성기(176)의 합성 신호 생성부(192)가 출력하는 합성 신호 Sref의 생성 순서의 일례를 나타내는 도면이다. 여기에서는, 패턴 생성부(195)가 도 6에 나타내는 스위치 구동 신호 Srp∼Stn를 생성하는 경우에, 합성 신호 생성부(192)가 패턴 생성부(195)에 출력하는 합성 신호 Sref의 생성 순서에 대해 설명한다.
도 6에 나타내는 스위치 구동 신호 Srp∼Stn는 R상의 전압치 Vr에 대해서 위상이 90도 진전된 전류를 R상에, S상의 전압치 Vs에 대해서 위상이 90도 진전된 전류를 S상에, T상의 전압치 Vt에 대해서 위상이 90도 진전된 전류를 T상에 흘리기 위한 것이다.
이 때문에, 합성 신호 생성부(192)는, 도 14 위로부터 1단째에 나타낸 바와 같이, R상의 전압치 Vr에 대해서 위상이 90도 진전된 전류 지령의 파형 IRref를 계통 보정 위상 θrst'에 근거하여 생성한다. 또한, 여기서의 파형 IRref는, R상에 흘리는 전류의 목표치가 되는 전류 지령의 파형이다.
또한, 합성 신호 생성부(192)는, S상 및 T상에 대해서도 마찬가지로, 전류 지령의 파형 ISref, ITref를 생성한다. 구체적으로는, 합성 신호 생성부(192)는, 도 14 위로부터 2단째에 나타낸 바와 같이, S상의 전압치 Vs에 대해서 위상이 90도 진전된 전류 지령의 파형 ISref를 계통 보정 위상 θrst'에 근거하여 생성한다. 또한, 여기서의 파형 ISref는 S상에 흘리는 전류의 목표치가 되는 전류 지령의 파형이다.
마찬가지로, 합성 신호 생성부(192)는, 도 14 위로부터 3단째에 나타낸 바와 같이, T상의 전압치 Vt에 대해서 위상이 90도 진전된 전류 지령의 파형 ITref를 계통 보정 위상 θrst'에 근거하여 생성한다. 또한, 여기서의 파형 ITref는 T상에 흘리는 전류의 목표치가 되는 전류 지령의 파형이다.
여기서, 예를 들면, 도 6에 나타내는 스위치 구동 신호 Srn의 펄스 패턴을 생성하는 경우, 30°≤θrst<150°의 범위에서는, 전류 지령의 파형 IRref와는 관계없이 High 레벨의 펄스 패턴을 생성하면 좋다. 또한, 180°≤θrst<360°의 범위에서는, 전류 지령의 파형 IRref와는 관계없이 Low 레벨의 펄스 패턴을 생성하면 좋다. 단, 0°≤θrst<30°및 150°≤θrst<180°의 범위에서는, 전류 지령의 파형 IRref의 증감에 따른 PWM 제어용의 펄스 패턴을 생성할 필요가 있다.
마찬가지로, 도 6에 나타내는 스위치 구동 신호 Srp의 펄스 패턴을 생성하는 경우, 210°≤θrst<330°의 범위에서는, 전류 지령의 파형 IRref와는 관계없이 High 레벨의 펄스 패턴을 생성하면 좋다. 또한, 0°≤θrst<180°의 범위에서는, 전류 지령의 파형 IRref와는 관계없이 Low 레벨의 펄스 패턴을 생성하면 좋다. 단, 180°≤θrst<210°및 330°≤θrst<360°의 범위에서는, 전류 지령의 파형 IRref의 증감에 따른 PWM 제어용의 펄스 패턴을 생성할 필요가 있다.
즉, 전류 지령의 파형 IRref에서, R상에 전류를 흘리는 스위치 구동 신호 Srn, Srp의 생성에 필요한 전류 지령을 포함하는 범위는, 0°≤θrst<30°, 150°≤θrst<180°, 180°≤θrst<210°, 330°≤θrst<360°이다. 그래서, 합성 신호 생성부(192)는, 전류 지령의 파형 IRref 중에서, 0°≤θrst<30°, 150°≤θrst<180°, 180°≤θrst<210°, 330°≤θrst<360°의 범위의 파형을 발췌한다.
또한, 합성 신호 생성부(192)는, S상의 전류 지령의 파형 ISref에 대해서도 마찬가지로, S상에 전류를 흘리는 스위치 구동 신호 Ssn, Ssp의 생성에 필요한 전류 지령을 포함하는 범위를 발췌한다. 구체적으로는, 합성 신호 생성부(192)는, 전류 지령의 파형 ISref 중에서, 90°≤θrst<120°, 120°≤θrst<150°, 270°≤θrst<300°, 300°≤θrst<330°의 범위의 파형을 발췌한다.
또한, 합성 신호 생성부(192)는, T상의 전류 지령의 파형 ITref에 대해서도 마찬가지로, T상에 전류를 흘리는 스위치 구동 신호 Stn, Stp의 생성에 필요한 전류 지령을 포함하는 범위를 발췌한다. 구체적으로는, 합성 신호 생성부(192)는, 전류 지령의 파형 ITref 중에서, 30°≤θrst<60°, 60°≤θrst<90°, 210°≤θrst<240°, 240°≤θrst<270°의 범위의 파형을 발췌한다.
그리고, 합성 신호 생성부(192)는, 3개의 각 전류 지령의 파형 IRref, ISref, ITref로부터 발췌한 파형을, 발췌한 계통 위상 θrst의 범위에 따라 연결하는 것에 의해 합성하여, 도 14 위로부터 4단째에 나타내는 합성 신호 Sref를 생성한다. 이러한 경우, 합성 신호 생성부(192)는, 발췌한 파형 중, 전류 지령이 정의 파형에 대해서는 그대로 합성하고, 전류 지령이 부의 파형에 대해서는 양음을 반전시켜 합성하는 것에 의해 합성 신호 Sref를 생성한다.
그리고, 합성 신호 생성부(192)는, 생성한 합성 신호 Sref를 패턴 생성부(195)에 출력한다. 이에 의해, 패턴 생성부(195)는, 합성 신호 Sref와 1 종류의 캐리어 신호 Stri를 비교함으로써, PWM 제어용의 펄스 패턴을 생성할 수 있다.
또한, 합성 신호 생성부(192)는, 도 14 위로부터 4단째에 나타내는 미리 생성된 합성 신호 Sref를 기억해 두고, 계통 보정 위상 θrst'에 따른 타이밍에 패턴 생성부(195)에 출력하는 구성이어도 좋다. 이러한 경우, 예를 들면, R상을 기준으로 하여, R상의 전압치 Vr가 최대치로 된 타이밍에서 합성 신호 Sref의 출력을 개시한다. 이러한 구성으로 함으로써, 합성 신호 생성부(192)의 처리 부하를 경감할 수 있다.
도 13으로 복귀하여, 타이머(194)는 정전 검출 신호 Sd가 High 레벨이 된 시점으로부터의 시간을 계측한다. 이러한 타이머(194)는, 도시하지 않는 프로세서의 동작 클록에 근거하여 시간의 계측을 행하고, 계측한 시간을 캐리어 신호 생성부(193)에 출력한다.
캐리어 신호 생성부(193)는, 타이머(194)로부터 입력되는 시간과 소정의 캐리어 주파수에 근거하여, 예를 들면, 진폭이 「0」과, 전류 지령의 파형 IRref의 최대치를 1/2배가 된 값의 사이에서 변동하는 삼각파를 캐리어 신호 Stri로서 생성한다. 그리고, 캐리어 신호 생성부(193)는, 생성한 캐리어 신호 Stri를 패턴 생성부(195)에 출력한다.
패턴 생성부(195)는, 0도∼360도까지의 계통 위상 θrst를 12 등분한 각 위상 범위에서, High 레벨, Low 레벨, 또는 PWM 제어용의 펄스 패턴 중, 어느 하나의 펄스 패턴을 스위치 구동 신호 Srp∼Stn로서 출력한다. 이러한 패턴 생성부(195)는, 생성한 스위치 구동 신호 Srp∼Stn를 GeGr 스위치 구동 신호 생성기(78) 및 GrGe 스위치 구동 신호 생성기(79)에 출력한다.
다음에, 도 15를 참조하여, 패턴 생성부(195)의 구성예에 대해 설명한다. 또한, Srp 패턴 생성부(195a)∼Stn 패턴 생성부(195f)는, 선택 제어부(191)로부터 입력되는 선택 신호 Ssel에 따라 위상 범위마다 선택하는 펄스 패턴이 상이하지만, 구성은 모두 마찬가지이다. 이 때문에, 여기에서는, Srp 패턴 생성부(195a)의 구성예에 대해 설명한다.
도 15는 제 2 실시 형태에 따른 계통 펄스 패턴 생성기(176)에 있어서의 Srp 패턴 생성부(195a)의 구성의 일례를 나타내는 도면이다. 도 15에 나타낸 바와 같이, Srp 패턴 생성부(195a)는, High 레벨 신호 생성부(196), Low 레벨 신호 생성부(197), 비교부(198), 및 선택부(199)를 구비한다.
High 레벨 신호 생성부(196)는, High 레벨 신호 SH를 생성하여 선택부(199)에 출력한다. Low 레벨 신호 생성부(197)는, Low 레벨 신호 SL을 생성하여 선택부(199)에 출력한다. 비교부(198)는, 합성 신호 생성부(192)로부터 입력되는 합성 신호 Sref와, 캐리어 신호 생성부(193)로부터 입력되는 캐리어 신호 Stri를 비교하고, 비교 결과를 나타내는 PWM 제어용의 펄스 패턴(이하, 「PWM 신호 Spwm」라고 기재함)을 생성하여 선택부(199)에 출력한다.
선택부(199)는 멀티플렉서이며, 선택 제어부(191)로부터 입력되는 선택 신호 Ssel에 따라, High 레벨 신호 SH, Low 레벨 신호 SL, PWM 신호 Spwm 중 어느 하나의 펄스 패턴을 스위치 구동 신호 Srp로서 출력한다. 마찬가지로, Srn 패턴 생성부(195b)∼Stn 패턴 생성부(195f)는, 각각 스위치 구동 신호 Srn∼Stn를 출력한다.
다음에, 도 16을 참조하여, 패턴 생성부(195)의 동작예에 대해 설명한다. 여기에서는, Srp 패턴 생성부(195a) 및 Srn 패턴 생성부(195b)의 동작예에 대해 설명한다. 도 16은, 제 2 실시 형태에 따른 스위치 구동 신호 Srn, Srp의 생성 순서의 일례를 나타내는 도면이다.
도 16에 일점 쇄선으로 나타내는 R상의 전압치 Vr에 대해서 위상이 90도 진전된 전류를 R상에 흘리는 경우, Srn 패턴 생성부(195b)는, 0°≤θrst<30°, 150°≤θrst<180°의 범위에서, PWM 제어용의 스위치 구동 신호 Srn를 출력한다. 구체적으로는, Srn 패턴 생성부(195b)는 합성 신호 Sref가 캐리어 신호 Stri 이상인 경우에 High 레벨, 캐리어 신호 Stri 미만인 경우에 Low 레벨이 되는 펄스 패턴의 PWM 신호 Spwm를 스위치 구동 신호 Srn로서 선택하여 출력한다.
또한, Srn 패턴 생성부(195b)는, 30°≤θrst<150°의 범위에서, 120도 통전 제어용의 스위치 구동 신호 Srn를 출력한다. 즉, Srn 패턴 생성부(195b)는 High 레벨 신호 SH를 스위치 구동 신호 Srn로서 선택하여 출력한다. 또한, Srn 패턴 생성부(195b)는 180°≤θrst<360°의 범위에서, Low 레벨 신호 SL을 스위치 구동 신호 Srn로서 선택하여 출력한다.
한편, Srp 패턴 생성부(195a)는, 180°≤θrst<210°, 330°≤θrst<360°의 범위에서, PWM 제어용의 스위치 구동 신호 Srp를 출력한다. 구체적으로는, Srp 패턴 생성부(195a)는, 합성 신호 Sref가 캐리어 신호 Stri 이상인 경우에 High 레벨, 캐리어 신호 Stri 미만인 경우에 Low 레벨이 되는 펄스 패턴의 PWM 신호 Spwm를 스위치 구동 신호 Srp로서 선택하여 출력한다.
또한, Srp 패턴 생성부(195a)는, 210°≤θrst<330°의 범위에서, 120도 통전 제어용의 스위치 구동 신호 Srp를 출력한다. 즉, Srp 패턴 생성부(195a)는, High 레벨 신호 SH를 스위치 구동 신호 Srp로서 선택하여 출력한다. 또한, Srp 패턴 생성부(195a)는, 0°≤θrst<180°의 범위에서, Low 레벨 신호 SL을 스위치 구동 신호 Srp로서 선택하여 출력한다.
Ssp 패턴 생성부(195c)∼Stn 패턴 생성부(195f)도 마찬가지로, 선택 신호 Ssel에 근거하여, 각 위상 범위에서 High 레벨 신호 SH, Low 레벨 신호 SL, PWM 신호 Spwm 중 어느 하나를 스위치 구동 신호 Ssp∼Stn로서 출력한다.
다음에, 도 17을 참조하여, 선택 제어부(191)가 각 위상 범위에서 패턴 생성부(195)에 출력하는 선택 신호 Ssel의 일례에 대해 설명한다. 도 17은, 제 2 실시 형태에 따른 계통 펄스 패턴 생성기(176)의 선택 제어부(191)가 유지하는 테이블의 일례를 나타내는 도면이다.
도 17에 나타낸 바와 같이, 선택 제어부(191)는, 0도∼360도까지의 계통 위상 θrst를 30도씩 12 등분한 (0)∼(11)의 각 위상 범위와, 패턴 생성부(195)에 출력하는 선택 신호 Ssel를 대응지은 테이블을 유지하고 있다. 테이블에 있어서의 Srn, Ssn, Stn, Srp, Ssp, Stp는, 선택 신호 Ssel의 출력처가 되는 패턴 생성부(195)의 각각을 나타내고 있다.
또한, 테이블에 있어서의 (0)은, 0°≤θrst<30°의 위상 범위를 나타내고 있고, (1)은 30°≤θrst<60°의 위상 범위를 나타내고 있다. 즉, 테이블에서는, 계통 위상 θrst의 위상이 작은 순서대로, 30도마다 각 위상 범위에 (0)∼(11)까지의 번호를 할당되어 있다.
또한, 테이블에 있어서의 Spwm는 패턴 생성부(195)가 출력 가능한 3 종류의 펄스 패턴 중, PWM 신호 Spwm를 선택시키는 선택 신호 Ssel를 나타내고 있다. 테이블에 있어서의 ()가 첨부되어 있지 않은 숫자 「1」은, 패턴 생성부(195)가 출력 가능한 3 종류의 펄스 패턴 중, High 레벨 신호 SH를 선택시키는 선택 신호 Ssel를 나타내고 있다. 테이블에 있어서의 ()가 첨부되어 있지 않은 숫자 「0」은, 패턴 생성부(195)가 출력 가능한 3 종류의 펄스 패턴 중, Low 레벨 신호 SL을 선택시키는 선택 신호 Ssel를 나타내고 있다.
그리고, 선택 제어부(191)는, 이러한 테이블에 근거하여, (0)∼(11)의 각 위상 범위에서 패턴 생성부(195)에 선택 신호 Ssel를 출력함으로써, 패턴 생성부(195)로부터 스위치 구동 신호 Srp∼Stn를 출력시킨다.
이에 의해, 선택 제어부(191)는, 도 6에 나타내는 펄스 패턴의 스위치 구동 신호 Srp∼Stn를 패턴 생성부(195)로부터 출력시킬 수 있다. 또한, 이러한 테이블에서 알 수 있는 바와 같이, (0)∼(11)의 각 위상 범위에 있어서, 스위치 구동 신호 Srn, Ssn, Stn 중, 항상 1개는 ON(High 레벨)이 되고, 스위치 구동 신호 Srp, Ssp, Stp 중, 항상 1개는 ON이 된다. 이에 의해, 스위치의 전체 개방을 방지할 수 있다.
이와 같이, 계통 펄스 패턴 생성기(176)에서는, Srp 패턴 생성부(195a)∼Stn 패턴 생성부(195f)는, 1 종류의 합성 신호 Sref와, 1 종류의 캐리어 신호 Stri에 근거하여 PWM 신호 Spwm를 생성할 수 있다.
이에 의해, 계통 펄스 패턴 생성기(176)에서는, Srp 패턴 생성부(195a)∼Stn 패턴 생성부(195f)의 각각에, PWM 신호 Spwm를 생성하기 위한 전류 지령의 파형이나 캐리어 신호를 생성하는 처리부를 마련할 필요가 없다. 따라서, 계통 펄스 패턴 생성기(176)의 구성을 간략화할 수 있다.
또한, 도 13∼도 17을 참조하여 설명한 계통 펄스 패턴 생성기(176)의 구성 및 동작은, 일례이며, 이것으로 한정되는 것은 아니다. 여기서, 제 2 실시 형태의 변형예에 따른 계통 펄스 패턴 생성기(176A)에 대해 설명한다.
도 18은, 제 2 실시 형태의 변형예에 따른 계통 펄스 패턴 생성기(176A)의 구성의 일례를 나타내는 도면이며, 도 19는 제 2 실시 형태의 변형예에 따른 계통 펄스 패턴 생성기(176A)에 있어서의 Srp 패턴 생성부(195a)의 구성의 일례를 나타내는 도면이다.
또한, 여기에서는, 도 18, 도 19에 나타내는 구성요소 중, 도 13, 도 15에 나타내는 구성요소와 마찬가지의 기능을 갖는 구성요소에 대해, 도 13, 도 15에 나타내는 부호와 동일한 부호를 부여함으로써, 그 설명을 생략한다. 또한, 여기에서도 Srp 패턴 생성부(195a), Srn 패턴 생성부(195b), Ssp 패턴 생성부(195c), Ssn 패턴 생성부(195d), Stp 패턴 생성부(195e), Stn 패턴 생성부(195f)의 6개의 처리부 중, 임의의 하나를 나타내는 경우에는 패턴 생성부(195)라 칭한다.
도 18에 나타낸 바와 같이, 변형예에 따른 계통 펄스 패턴 생성기(176A)는, 비교부(198)를 6개의 패턴 생성부(195)에서 공용하는 점이, 도 13에 나타내는 펄스 패턴 생성기(176)와는 상이하다.
구체적으로는, 계통 펄스 패턴 생성기(176A)는 패턴 생성부(195)의 외부에, 1개의 비교부(198)를 구비한다. 이러한 비교부(198)는, 합성 신호 Sref와 캐리어 신호 Stri를 비교하여 생성하는 PWM 신호 Spwm를 각 패턴 생성부(195)에 입력한다.
또한, 도 19에 나타낸 바와 같이, 변형예에 따른 Srp 패턴 생성부(195a)는, 내부에 비교부(198)를 구비하지 않고, 외부에 설치되는 비교부(198)로부터 PWM 신호 Spwm가 선택부(199)에 입력되는 점이, 도 15에 나타내는 Srp 패턴 생성부(195a)와는 상이하다. 또한 6개의 패턴 생성부(195)는 모두 동일한 구성이다.
그리고, 계통 펄스 패턴 생성기(176A)의 선택 제어부(191)는, 도 13에 나타내는 선택 제어부(191)와 마찬가지로, 도 17에 나타내는 테이블에 근거하여, (0)∼(11)의 각 위상 범위에서 패턴 생성부(195)에 선택 신호 Ssel를 출력한다. 이에 의해, 각 패턴 생성부(195)로부터 스위치 구동 신호 Srp∼Stn이 출력된다.
이와 같이 계통 펄스 패턴 생성기(176A)를 구성하는 것에 의해서도, 도 13∼도 17을 참조하여 설명한 계통 펄스 패턴 생성기(176)와 마찬가지의 스위치 구동 신호 Srp∼Stn(도 6 참조)를 생성할 수 있다. 또한,, 이러한 계통 펄스 패턴 생성기(176A)에 의하면, 비교부(198)의 개수를 저감할 수 있음과 아울러, 각 패턴 생성부(195)의 구성을 간략화할 수 있다.
상술한 바와 같이, 계통 펄스 패턴 생성기(176)는, 전력 계통(2)의 각 상에 흘리는 전류를 제어하는 스위칭 소자에 대해서, 120도 통전 제어와 PWM 제어를 병용하여 온/오프 제어를 행하는 스위치 구동 신호 Srp∼Stn의 펄스 패턴을 생성한다. 이에 의해, 전력 계통(2)의 각 상에 흘리는 전류의 파형을 정현파의 파형에 근접하게 할 수 있으므로, 공진 현상의 발생을 억제할 수 있고, 전류 및 전압의 파형에 생기는 공진 현상에 기인한 왜곡을 저감할 수 있다.
또한, 계통 펄스 패턴 생성기(176)는, 전력 계통(2)의 각 상에 흘리는 전류를 제어하는 스위칭 소자를 120도 통전 제어에 의해 온으로 하는 전후에서 PWM 제어를 행하는 스위치 구동 신호 Srp∼Stn의 펄스 패턴을 생성한다. 이에 의해, 전력 계통(2)의 각 상에 흘리는 전류의 파형을 정현파의 파형에 보다 근접하게 할 수 있다.
또한, 여기에서는, 120도 통전 제어를 행하는 전후에서 PWM 제어를 행하는 경우에 대해 설명했지만, 120도 통전 제어를 행하기 전 또는 후의 어느 한쪽에서 PWM 제어를 행해도 좋다. 이러한 제어를 행하는 것에 의해서도, PWM 제어를 행하지 않는 경우에 비해, 공진 현상의 발생을 억제하여, 전류 및 전압의 파형에 생기는 공진 현상에 기인한 왜곡을 저감할 수 있다.
또한, 상술해 온 제 2 실시 형태에서 설명한 스위칭 제어는, 복수의 전력 변환 셀을 직렬로 복수 단 접속하여 구성한 전력 변환 셀을 상마다 마련한 직렬 다중 매트릭스 컨버터에 대해서 적용하는 것도 가능하다. 이하, 도 20∼도 22를 참조하여, 제 2 실시 형태에서 설명한 스위칭 제어를 적용한 제 3 실시 형태에 따른 직렬 다중 매트릭스 컨버터(1A)에 대해 설명한다.
(제 3 실시 형태)
도 20은, 제 3 실시 형태에 따른 직렬 다중 매트릭스 컨버터(1A)의 구성예를 나타내는 도면이다. 또한, 도 21은, 도 20에 나타내는 전력 변환 셀(19a∼19i)(이하, 전력 변환 셀(19)이라 총칭하는 경우가 있음)의 구체적 구성의 일례를 나타내는 도면이다. 또한, 도 22는 직렬 다중 매트릭스 컨버터(1A)에 있어서의 계통 펄스 패턴 생성기(76A), GeGr 스위치 구동 신호 생성기(78a) 및 GrGe 스위치 구동 신호 생성기(79a)의 구성을 나타내는 도면이다.
또한, 여기에서는, 도 20∼도 22에 나타내는 구성 요건 중, 도 1 또는 도 3에 나타내는 구성 요건과 동일한 구성 요건에 대해서는, 도 1 또는 도 3에 나타내는 부호와 동일한 부호를 부여함으로써, 그 설명을 생략한다.
도 20에 나타내는 직렬 다중 매트릭스 컨버터(1A)는, 도 1에 나타내는 매트릭스 컨버터(1)의 전력 변환부(10) 대신에, 다중 변압기(10A)와 전력 변환부(10B)를 구비하는 점, 및, 제어부(15A)에 의한 스위칭 제어의 내용이 도 1에 나타내는 것과는 상이하다. 또한, 직렬 다중 매트릭스 컨버터(1A)에서는, 도 1에 나타내는 LC 필터(11)는, 후술의 각 전력 변환 셀(19)(도 21 참조) 내에 설치된다.
다중 변압기(10A)는, 1차 코일(17)과, 9개의 2차 코일(18a∼18i)(이하, 2차 코일(18)이라 총칭하는 경우가 있음)를 구비하며, 전력 계통(2)으로부터 1차 코일(17)에 입력되는 교류 전력을 9개의 2차 코일(18a∼18i)로 변압하여 출력하고, 이들 9개의 2차 코일(18a∼18i은 후술하는 전력 변환 셀(19a∼19i)에 각각 접속된다.
이러한 다중 변압기(10A)는, 1차 코일(17)과 적어도 일부의 2차 코일(18)의 사이에 전압 위상차를 발생시키는 이상(移相) 변압기이다. 또한, 다중 변압기(10A)에서는, U상, V상, W상의 각 상에 대응하여 설치된 전력 변환 셀부에 접속되는 3개의 2차 코일(18) 간에 전압 위상차를 갖게 하고 있다. 하기 표 1에는, 1차 코일(17)과 2차 코일(18)의 사이의 전압 위상차의 일례가 도시되어 있다.
Figure pat00004
구체적으로는, U상에서는, 위치 U1에 대응하는 2차 코일(18a)은, 1차 코일(17)과는 전압 위상차가 제로이며, 위치 U2에 대응하는 2차 코일(18d)은, 2차 코일(18a)에 대해 20도 진전된 전압 위상차를 갖고, 위치 U3에 대응하는 2차 코일(18g)은, 2차 코일(18d)에 대해 20도 진전된 전압 위상차를 갖는다. 마찬가지로, V상에서는 위치 V1에 대응하는 2차 코일(18b)은, 1차 코일(17)과는 전압 위상차가 제로이며, 위치 V2에 대응하는 2차 코일(18e)은, 2차 코일(18b)에 대해 20도 진전된 전압 위상차를 갖고, 위치 V3에 대응하는 2차 코일(18h)은, 2차 코일(18e)에 대해 20도 진전된 전압 위상차를 갖는다.
또한, W상에서는 위치 W1에 대응하는 2차 코일(18c)은, 1차 코일(17)과는 전압 위상차가 제로이며, 위치 W2에 대응하는 2차 코일(18f)은, 2차 코일(18c)에 대해 20도 진전된 전압 위상차를 갖고, 위치 W3에 대응하는 2차 코일(18i)은, 2차 코일(18f)에 대해 20도 진전된 전압 위상차를 갖는다.
따라서, 2차 코일(18a∼18c)의 r1상, s1상 및 t1상의 전압 위상(이하 「전압 위상 θrst1」라고 기재함)은, 계통 위상 θrst와 동일하다. 또한, 2차 코일(18d∼18f)의 r2상, s2상 및 t2상의 전압 위상(이하, 「전압 위상 θrst2」라고 기재함)은, 계통 위상 θrst에 대해서 20도 진전되어 있다. 또한, 2차 코일(18g∼18i)의 r3상, s3상 및 t3상의 전압 위상(이하, 「전압 위상 θrst3」라고 기재함)은, 계통 위상 θrst에 대해서 40도 진전되어 있다.
이와 같이, 전압 위상차를 마련하는 것에 의해, 1차 코일(17)측에 흐르는 고조파 전류를 저감할 수 있다. 또한, 상기 표 1에 나타내는 전압 위상차는 일례이며, 다른 값의 전압 위상차이어도 좋다. 또한 위상차를 마련하지 않아도 좋다. 또한, 다중 변압기(10A)를 이용하지 않고, 전력 변환 셀(19a∼19i)에 별도의 교류 전원을 접속할 수도 있다.
전력 변환부(10B)는, 9개의 2차 코일(18a∼18i)에 각각 접속되는 9개의 전력 변환 셀(19)을 구비한다. 각 전력 변환 셀(19)은, 2차 코일(18)에 접속되는 단자 T3(후술하는 단자 T3r, T3s, T3t)와 단자 T1, T2의 사이의 전력 변환을 행한다.
2차 코일(18a∼18c)은, U상, V상 및 W상의 각각의 1단째의 전력 변환 셀(19a∼19c)에 접속되고, 2차 코일(18d∼18f)은 U상, V상 및 W상의 각각의 2단째의 전력 변환 셀(19d∼19f)에 접속된다. 또한, 2차 코일(18g∼18i)은, U상, V상 및 W상의 각각의 3단째의 전력 변환 셀(19g∼19i)에 접속된다.
이러한 전력 변환부(10B)에서는, 3개의 전력 변환 셀(19)의 출력이 직렬 접속되어 각 출력상이 구성된다. 즉, 전력 변환 셀(19a, 19d, 19g)에 의해 U상의 전력 변환 셀부가 구성되고, 전력 변환 셀(19b, 19e, 19h)에 의해 V상의 전력 변환 셀부가 구성되고, 전력 변환 셀(19c, 19f, 19i)에 의해 W상의 전력 변환 셀부가 구성된다.
구체적으로는, 전력 변환 셀(19a)의 단자 T2가 중성점 N에 접속되고, 또한, 전력 변환 셀(19a)의 단자 T1과 전력 변환 셀(19d)의 단자 T2가 접속되고, 전력 변환 셀(19d)의 단자 T1과 전력 변환 셀(19g)의 단자 T2가 접속된다. 이에 의해, 전력 변환 셀(19g)의 단자 T1을 출력 단자로 한 U상의 전력 변환 셀부가 구성된다.
마찬가지로, 전력 변환 셀(19b)의 단자 T2가 중성점 N에 접속되고, 또한, 전력 변환 셀(19b)의 단자 T1과 전력 변환 셀(19e)의 단자 T2가 접속되고, 전력 변환 셀(19e)의 단자 T1과 전력 변환 셀(19h)의 단자 T2가 접속된다. 이에 의해, 전력 변환 셀(19h)의 단자 T1을 출력 단자로 한 V상의 전력 변환 셀부가 구성된다.
또한, 전력 변환 셀(19c)의 단자 T2가 중성점 N에 접속되고, 또한, 전력 변환 셀(19c)의 단자 T1과 전력 변환 셀(19f)의 단자 T2가 접속되고, 전력 변환 셀(19f)의 단자 T1과 전력 변환 셀(19i)의 단자 T2가 접속된다. 이에 의해, 전력 변환 셀(19i)의 단자 T1을 출력 단자로 한 W상의 전력 변환 셀부가 구성된다.
여기서, 도 21을 참조하여, 전력 변환 셀(19)의 구성에 대해 설명한다. 도 21은, 전력 변환 셀(19)의 구체적 구성의 일례를 나타내는 도면이다. 도 21에 나타낸 바와 같이, 전력 변환 셀(19)은, 스위치부(190)와 LC 필터(11)를 구비한다. 이러한 전력 변환 셀(19)은, 단상 매트릭스 컨버터라고도 불린다. 또한, 전력 변환 셀(19)에는, 예를 들면, 미도시의 스너버(snubber) 회로가 설치된다.
스위치부(190)는, 쌍방향 스위치 Sw1∼Sw6를 구비한다. 쌍방향 스위치 Sw1~Sw3은, 단자 T3r, T3s, T3t와 단자 T1의 사이에 접속된다. 또한, 쌍방향 스위치 Sw4~Sw6은, 단자 T3r, T3s, T3t와 단자 T2의 사이에 접속된다. 이러한 쌍방향 스위치 Sw1∼Sw6은 각 단자 T3r, T3s, T3t와 각 단자 T1, T2와의 사이에 각각 접속된다. 이러한 쌍방향 스위치 Sw1∼Sw6은, 도 12에 나타내는 쌍방향 스위치 Sw1∼Sw9와 마찬가지의 구성이다. 또한, LC 필터(11)는, 도 1에 나타내는 LC 필터(11)와 마찬가지의 구성이다. 또한, LC 필터(11)는, 도 1에 나타내는 구성으로 한정하는 것은 아니며, 예를 들면, 리액터를 마련하지 않고, 그 대신에 전력 변환 셀(19)이 접속되는 다중 변압기(10A)의 2차 코일(18)의 누설 인덕턴스를 이용하는 구성이어도 좋다.
도 20으로 복귀하여 제어부(15A)는, 제 1 구동 제어부(20A)와, 제 2 구동 제어부(21A)와, 전환부(22)를 구비한다. 제 1 구동 제어부(20A)는, 회전 전기 기기(3)가 발생하는 토크량을 지시하는 토크 지령에 근거하여 전압 지령을 생성하고, 공지의 직렬 다중 매트릭스 컨버터의 PWM 제어 방법에 따라 전압 지령에 따른 전압을 회전 전기 기기(3)에 출력하기 위한 스위치 구동 신호를 생성하여 전력 변환부(10B)에 출력한다.
또한, 전압 지령은, 토크 지령에 근거하여 공지의 동기 발전기의 벡터 제어칙에 의해 생성된다. 또한, 스위치 구동 신호에 의해, 전력 변환부(10B)는 각 쌍방향 스위치 Sw1∼Sw6를 구성하는 복수의 단방향 스위칭 소자를 모두 온으로 하면서, 전압 지령에 따른 전압을 PWM 제어에 의해 출력하여, 흐르는 전류의 크기나 통전 방향이 출력 전압과 발전 전압의 관계로 정해지는 전력 변환을 행한다.
제 2 구동 제어부(21A)는, 계통 상 전압치 Vr, Vs, Vt, 및 계통 상전류치 Ir, Is, It에 근거하여, 전력 변환부(10B)의 각 쌍방향 스위치 Sw1∼Sw6를 구성하는 복수의 단방향 스위칭 소자의 일부를 온으로 하여 전력 변환 제어를 행한다.
각 쌍방향 스위치 Sw1∼Sw6를 구성하는 복수의 단방향 스위칭 소자의 일부를 온으로 함으로써, 통전 방향을 제어할 수 있다. 이에 의해, 전력 계통(2)의 전압이 회전 전기 기기(3)의 전압보다 극단적으로 낮은 정전과 같은 경우에도, 회전 전기 기기(3)와 전력 계통(2)의 사이에 대전류가 계속 흐르는 것을 방지하여, 전류 제어를 행하면서 전력 변환 동작을 행할 수 있다.
예를 들면, 제 2 구동 제어부(21A)는, 전력 변환부(10B)의 쌍방향 스위치 Sw1∼Sw6를 구성하는 단방향 스위칭 소자 중, 2차 코일(18)측의 어느 2개의 상의 사이에 전류를 흘리는 단방향 스위칭 소자를 항상 온으로 한다. 또한, 제 2 구동 제어부(21A)는, 전력 변환부(10B)의 쌍방향 스위치 Sw1∼Sw6를 구성하는 단방향 스위칭 소자 중, 회전 전기 기기(3)측의 어느 2개의 상의 사이에 전류를 흘리는 단방향 스위칭 소자를 항상 온으로 한다. 이러한 제어에 의해, 2차 코일(18)측의 어느 2개의 상의 사이에 및 회전 전기 기기(3)의 어느 2개의 상의 사이에 전류를 계속 흘릴 수 있다.
전환부(22)는, 도 1에 나타내는 전환부(22)와 마찬가지의 구성이다. 이러한 전환부(22)는 정전 검출부(14)로부터 출력되는 정전 검출 신호 Sd가 Low 레벨인 경우, 제 1 구동 제어부(20A)에 의해 생성되는 스위치 구동 신호를 전력 변환부(10B)에 출력한다.
한편, 전환부(22)는, 정전 검출부(14)로부터 출력되는 정전 검출 신호 Sd가 High 레벨인 경우, 제 2 구동 제어부(21A)에 의해 생성되는 스위치 구동 신호를 전력 변환부(10B)에 출력한다.
따라서, 전력 계통(2)이 저전압으로 되었을 경우에, 제 2 구동 제어부(21A)에 의해 생성되는 스위치 구동 신호에 의해, 쌍방향 스위치 Sw1∼Sw6를 각각 구성하는 복수의 단방향 스위칭 소자의 일부를 온으로 하는 전력 변환 제어가 행해진다. 이에 의해, 전력 계통(2)이 저전압으로 되었을 경우에도, 전력 변환 동작을 계속할 수 있다.
또한, 직렬 다중 매트릭스 컨버터(1A)에 설치되는 정전 검출부(14)는 2차 코일(18a∼18i) 중 어느 하나의 전압에 근거하여, 정전 검출 신호 Sd를 출력할 수도 있다. 예를 들면, 정전 검출부(14)는, 2차측 전압치 Va1가 소정의 전압치 V11 이하인 경우에, 전력 계통(2)이 정전한 것으로 판정하여 High 레벨의 정전 검출 신호 Sd를 출력한다. 한편, 정전 검출부(14)는 2차측 전압치 Va1가 전압치 V1을 넘는 경우에는, 전력 계통(2)이 정전하고 있지 않은 것으로 판정하여 Low 레벨의 정전 검출 신호 Sd를 출력한다.
이 경우, 정전 검출부(14)는, 예를 들면, 2차 코일(18a)의 r1상, s1상 및 t1상의 전압 Vr1, Vs1, Vt1을 고정 좌표상의 직교한 2축의 αβ 성분으로 변환하여, α축 방향의 계통 전압치 Vα1과 β축 방향의 계통 전압치 Vβ1을 구한다. 그리고, 정전 검출부(14)는, 계통 전압치 Vα1, Vβ1의 자승 평방근(=√(Vα12+Vβ12))을 연산하여, 연산 결과를 2차측 전압치 Va1로 한다.
이러한 제 2 구동 제어부(21A)로서는, 도 3에 나타내는 제 2 구동 제어부(21)를 이용할 수 있다. 또한, 제 2 구동 제어부(21A)로서 도 3에 나타내는 제 2 구동 제어부(21)를 이용하는 경우, 펄스 패턴 생성부(43)에는, 도 13에 나타내는 계통 펄스 패턴 생성기(176)가 설치된다.
단, 도 3에 나타내는 제 2 구동 제어부(21)를 이용하는 경우, 계통 펄스 패턴 생성기(176), GeGr 스위치 구동 신호 생성기(78) 및 GrGe 스위치 구동 신호 생성기(79)의 구성을 변경할 필요가 있다.
여기서, 도 22를 참조하여, 도 3에 나타내는 제 2 구동 제어부(21)를 이용하는 경우에, 제 2 구동 제어부(21A)에 설치되는 계통 펄스 패턴 생성기(76A), GeGr 스위치 구동 신호 생성기(78a) 및 GrGe 스위치 구동 신호 생성기(79a)의 구성에 대해 설명한다.
도 22에 나타낸 바와 같이, 계통 펄스 패턴 생성기(76A)는, 가산기(761∼763)와, 패턴 생성기(764∼766)를 구비한다. 가산기(761∼763)는, 다중 변압기(10A)의 1차 코일(17)과 2차 코일(18)의 사이의 전압 위상차(예를 들면, 표 1 참조)에 따른 위상을 가산하고, 가산 결과를 각각 패턴 생성기(764∼766)에 출력한다. 구체적으로는, 가산기(761)는, 계통 보정 위상 θrst'에 대해서 0도의 위상을 가산하고, 가산기(762)는 계통 보정 위상 θrst'에 대해서 20도의 위상을 가산하고, 가산기(763)는, 계통 보정 위상 θrst'에 대해서 40도의 위상을 가산한다.
또한, 위에서 설명한 바와 같이, 1차 코일(17)과 2차 코일(18)의 사이의 전압 위상차는, 표 1에 나타내는 예로 한정되지 않는다. 예를 들면, 1차 코일(17)과 2차 코일(18a∼18c)의 위상차를 10도, 1차 코일(17)과 2차 코일(18d∼18f)의 위상차를 30도, 1차 코일(17)과 2차 코일(18g)∼18i의 위상차를 50도으로 해도 좋다. 이 경우, 가산기(761)는, 계통 보정 위상 θrst'에 대해서 10도의 위상을 가산하고, 가산기(762)는 계통 보정 위상 θrst'에 대해서 30도의 위상을 가산하고, 가산기(763)는, 계통 보정 위상 θrst'에 대해서 50도의 위상을 가산한다.
패턴 생성기(764∼766)는, 가산기(761∼763)의 가산 결과에 근거하여, 각 2차 코일(18)의 전압 위상 θrst1∼θrst3에 대해서 제 2 실시 형태와 마찬가지로, 120도 통전 제어 및 PWM 제어를 병용하여, 전류를 흘리는 컨버터(81)의 스위치 구동 신호 Srp∼Stn의 패턴을 생성한다.
이러한 패턴 생성기(764∼766)는, 각각 도 13에 나타내는 계통 펄스 패턴 생성기(176)와 마찬가지의 구성이다. 또한, 패턴 생성기(764∼766)로서, 각각 도 13에 나타내는 계통 펄스 패턴 생성기(176)를 이용하는 경우, 타이머(194) 및 캐리어 신호 생성부(193)를 패턴 생성기(764∼766) 중 어느 하나에 마련하고, 다른 2개에도 캐리어 신호를 공급하는 구성으로 해도 좋다.
패턴 생성기(764)는, 가산기(761)의 가산 결과에 근거하여, 스위치 구동 신호 Srp1, Ssp1, Stp1, Srn1, Ssn1, Stn1(이하, 「스위치 구동 신호 Srp1∼Stn1」라고 기재함)를 생성한다.
또한, 패턴 생성기(765)는, 가산기(762)의 가산 결과에 근거하여, 스위치 구동 신호 Srp2, Ssp2, Stp2, Srn2, Ssn2, Stn2(이하, 「스위치 구동 신호 Srp2∼Stn2」라고 기재함)를 생성한다. 또한, 패턴 생성기(766)는, 가산기(763)의 가산 결과에 근거하여, 스위치 구동 신호 Srp3, Ssp3, Stp3, Srn3, Ssn3, Stn3(이하, 「스위치 구동 신호 Srp3∼Stn3」라고 기재함)를 생성한다.
이들 패턴 생성기(764∼766)는, 모두 도 13에 나타내는 계통 펄스 패턴 생성기(176)와 마찬가지의 동작을 행하는 것에 의해, 각각 스위치 구동 신호 Srp1∼Stn1, Srp2∼Stn2, Srp3∼Stn3를 생성한다.
여기서, 스위치 구동 신호 Srp1∼Stn1는, 전압 위상 θrst1에 대해서 90도 진전된 위상의 전류를 2차 코일(18a∼18c)에 각각 흘리는 펄스 패턴이다. 또한, 2차 코일(18a∼18c)의 r1상, s1상, t1상의 전압 위상 θrst1과 스위치 구동 신호 Srp1∼Stn1의 관계는, 도 6에 나타내는 Vr, Vs, Vt를 Vr1, Vs1, Vt1에, Srp∼Stn를 Srp1∼Stn1으로 각각 치환한 관계가 된다.
스위치 구동 신호 Srp2∼Stn2는, 스위치 구동 신호 Srp1∼Stn1에 대해서 위상이 20도 진전된 신호이며, 전압 위상 θrst2에 대해서 90도 진전된 위상의 전류를 2차 코일(18d∼18f)에 각각 흘리는 펄스 패턴이다.
스위치 구동 신호 Srp3∼Stn3은, 스위치 구동 신호 Srp1∼Stn1에 대해서 위상이 40도 진전된 신호이며, 전압 위상 θrst3에 대해서 90도 진전된 위상의 전류를 2차 코일(18g∼18i)에 각각 흘리는 펄스 패턴이다.
이와 같이, 2차 코일(18a∼18i)에 각각 90도 진전되고 또한 유효 전류가 제로인 무효 전류를 흘릴 수 있고, 이에 의해, 전력 계통(2)측에도 계통 유효 전류 IP가 제로인 무효 전류를 흘릴 수 있다.
GeGr 스위치 구동 신호 생성기(78a)는, 신호 생성기(781∼783)를 구비한다. 신호 생성기(781∼783)는, 패턴 생성기(764∼766)로부터 출력되는 스위치 구동 신호 Srni, Ssni, Stni(1≤i≤3)와 발전기 펄스 패턴 생성기(77)로부터 출력되는 스위치 구동 신호 Sup∼Swn에 근거하여, 하기 식(4)을 이용하여, 스위치 구동 신호 S1r, S1s, S1t, S2r, S2s, S2t를 생성한다. 스위치 구동 신호 S1r, S1s, S1t, S2r, S2s, S2t는, 도 21에 나타낸 바와 같이, 쌍방향 스위치 Sw1∼Sw6 중, 회전 전기 기기(3)측에서 2차 코일(18)측으로 전류를 흘리는 단방향 스위칭 소자를 구동하는 신호이다. 하기 식(4)에 있어서 「*」는 「u」, 「v」 또는 「w」이다.
[수 4]
Figure pat00005
구체적으로는, 신호 생성기(781)는, 패턴 생성기(764)로부터 출력되는 스위치 구동 신호 Srn1, Ssn1, Stn1과 스위치 구동 신호 Sup, Sun에 근거하여, 하기 식(5)을 이용하여, U상의 스위치 구동 신호 S1r, S1s, S1t, S2r, S2s, S2t(이하, SAu1라고 기재함)를 생성한다.
[수 5]
Figure pat00006
또한, 신호 생성기(781)는, 패턴 생성기(764)로부터 출력되는 스위치 구동 신호 Srn1, Ssn1, Stn1과 스위치 구동 신호 Svp, Svn에 근거하여, 하기 식(6)을 이용하여, V상의 스위치 구동 신호 S1r, S1s, S1t, S2r, S2s, S2t(이하, SAv1라고 기재함)를 생성한다.
[수 6]
Figure pat00007
또한, 신호 생성기(781)는,, 패턴 생성기(764)로부터 출력되는 스위치 구동 신호 Srn1, Ssn1, Stn1과 스위치 구동 신호 Swp, Swn에 근거하여, 하기 식(7)을 이용하여, W상의 스위치 구동 신호 S1r, S1s, S1t, S2r, S2s, S2t(이하, SAw1라고 기재함)를 생성한다.
[수 7]
Figure pat00008
신호 생성기(782)는, 신호 생성기(781)와 마찬가지의 구성을 갖는다. 신호 생성기(782)는, 신호 생성기(781)와 마찬가지로, 패턴 생성기(765)로부터 출력되는 스위치 구동 신호 Srn2, Ssn2, Stn2와 스위치 구동 신호 Sup∼Swn에 근거하여, 상기 (5)∼(7)을 이용하여, U상, V상 및 W상의 각각의 스위치 구동 신호 S1r, S1s, S1t, S2r, S2s, S2t(이하, 각각 SAu2, SAv2, SAw2라고 기재함)를 생성한다. 또한, 상기 (5)∼(7)에 있어서의 「Srn1」, 「Ssn1」, 「Stn1」에 각각 스위치 구동 신호 Srn2, Ssn2, Stn2의 각 값을 설정한다.
신호 생성기(783)는, 신호 생성기(781)와 마찬가지의 구성을 갖는다. 신호 생성기(783)는, 신호 생성기(781)와 마찬가지로, 패턴 생성기(766)로부터 출력되는 스위치 구동 신호 Srn3, Ssn3, Stn3와 스위치 구동 신호 Sup∼Swn에 근거하여, 상기 (5)∼(7)을 이용하여, U상, V상 및 W상의 각각의 스위치 구동 신호 S1r, S1s, S1t, S2r, S2s, S2t(이하, 각각 SAu3, SAv3, SAw3라고 기재함)를 생성한다. 또한, 상기 (5)∼(7)에 있어서의 「Srn1」, 「Ssn1」, 「Stn1」에 각각 스위치 구동 신호 Srn3, Ssn3, Stn3의 각 값을 설정한다.
GrGe 스위치 구동 신호 생성기(79a)는, 신호 생성기(791∼793)를 구비한다. 신호 생성기(791∼793)는, 패턴 생성기(764∼766)로부터 출력되는 스위치 구동 신호 Srpi, Sspi, Stpi(1≤i≤3)와 발전기 펄스 패턴 생성기(77)로부터 출력되는 스위치 구동 신호 Sup∼Swn에 근거하여, 상기 식(4)을 이용하여, 스위치 구동 신호 Sr1, Ss1, St1, Sr2, Ss2, St2를 생성한다. 스위치 구동 신호 Sr1, Ss1, St1, Sr2, Ss2, St2는, 도 21에 나타낸 바와 같이, 쌍방향 스위치 Sw1∼Sw6 중 2차 코일(18)측으로부터 회전 전기 기기(3)측으로 전류를 흘리는 단방향 스위칭 소자를 구동하는 신호이다.
구체적으로는, 신호 생성기(791)는, 패턴 생성기(764)로부터 출력되는 스위치 구동 신호 Srp1, Ssp1, Stp1과 스위치 구동 신호 Sup, Sun에 근거하여, 하기 식(8)을 이용하여, U상의 스위치 구동 신호 Sr1, Ss1, St1, Sr2, Ss2, St2(이하, SBu1라고 기재함)를 생성한다.
[수 8]
Figure pat00009
또한, 신호 생성기(791)는, 패턴 생성기(764)로부터 출력되는 스위치 구동 신호 Srp1, Ssp1, Stp1과 스위치 구동 신호 Svp, Svn에 근거하여, 하기 식(9)을 이용하여, V상의 스위치 구동 신호 Sr1, Ss1, St1, Sr2, Ss2, St2(이하, SBv1라고 기재함)를 생성한다.
[수 9]
Figure pat00010
또한, 신호 생성기(791)는, 패턴 생성기(764)로부터 출력되는 스위치 구동 신호 Srp1, Ss1p, Stp1과 스위치 구동 신호 Swp, Swn에 근거하여, 하기 식(10)을 이용하여, W상의 스위치 구동 신호 Sr1, Ss1, St1, Sr2, Ss2, St2(이하, SBw1라고 기재함)를 생성한다.
[수 10]
Figure pat00011
신호 생성기(792)는, 신호 생성기(791)와 마찬가지의 구성을 갖는다. 신호 생성기(792)는, 신호 생성기(791)와 마찬가지로, 패턴 생성기(765)로부터 출력되는 스위치 구동 신호 Srp2, Ssp2, Stp2와 스위치 구동 신호 Sup∼Swn에 근거하여, 상기 (8)∼(10)를 이용하여, U상, V상 및 W상의 각각의 스위치 구동 신호 Sr1, Ss1, St1, Sr2, Ss2, St2(이하, 각각 SBu2, SBv2, SBw2라고 기재함)를 생성한다. 또한, 상기 (8)∼(10)에 있어서의 「Srp1」, 「Ssp1」, 「Stp1」에 각각 스위치 구동 신호 Srp2, Ssp2, Stp2의 각 값을 설정한다.
신호 생성기(793)는, 신호 생성기(791)와 마찬가지의 구성을 갖는다. 신호 생성기(793)는, 신호 생성기(791)와 마찬가지로, 패턴 생성기(766)로부터 출력되는 스위치 구동 신호 Srp3, Ssp3, Stp3와 스위치 구동 신호 Sup∼Swn에 근거하여, 상기 (8)∼(10)을 이용하여, U상, V상 및 W상의 각각의 스위치 구동 신호 Sr1, Ss1, St1, Sr2, Ss2, St2(이하, 각각 SBu3, SBv3, SBw3라고 기재함)를 생성한다. 또한, 상기 (8)∼(10)에 있어서의 「Srp1」, 「Ssp1」, 「Stp1」에 각각 스위치 구동 신호 Srp3, Ssp3, Stp3의 각 값을 설정한다.
이와 같이 U상, V상 및 W상의 각각에 대해 생성된 스위치 구동 신호 SAu1∼3, SAv1∼3, SAw1∼3, SBu1∼3, SBv1∼3, SBw1∼3은, 펄스 패턴 생성부(43)로부터 전력 변환부(10B)에 출력된다.
구체적으로는, 도 20에 나타낸 바와 같이, U상의 스위치 구동 신호 SAu1∼3, SBu1∼3은, U상의 전력 변환 셀부를 구성하는 전력 변환 셀(19a, 19d, 19g)에 출력된다. 또한, V상의 스위치 구동 신호 SAv1∼3, SBv1∼3은, V상의 전력 변환 셀부를 구성하는 전력 변환 셀(19b, 19e, 19h)에 출력된다. 또한, W상의 스위치 구동 신호 SAw1∼3, SBw1∼3은, W상의 전력 변환 셀부를 구성하는 전력 변환 셀(19c, 19f, 19i)에 출력된다.
이에 의해, 전력 변환부(10B)의 쌍방향 스위치 Sw1∼Sw6를 구성하는 단방향 스위칭 소자 중, 2차 코일(18)측의 어느 2개의 상의 사이에 전류를 흘리고, 또한, 회전 전기 기기(3)측의 어느 2개의 상의 사이에 전류를 흘리는 단방향 스위칭 소자가 항상 온으로 된다.
이러한 직렬 다중 매트릭스 컨버터(1A)에서는, 도 22에 나타내는 3개의 패턴 생성기(764∼766)는, 도 13에 나타내는 계통 펄스 패턴 생성기(176) 또는 도 18에 나타내는 계통 펄스 패턴 생성기(176A)와 마찬가지의 동작을 행한다. 구체적으로는, 패턴 생성기(764∼766)는, 전력 계통(2)의 각 상에 흘리는 전류를 제어하는 스위칭 소자를 120도 통전 제어에 의해 온으로 하는 전후에서 PWM 제어를 행하는 스위치 구동 신호 Srp1∼Stn1, Srp2∼Stn2, Srp3∼Stn3를 생성한다.
그리고, 직렬 다중 매트릭스 컨버터(1A)에서는, 스위치 구동 신호 Srp1∼Stn1, Srp2∼Stn2, Srp3∼Stn3에 의해 구동되는 각 스위칭 소자에 대해서, 120도 통전 제어 및 PWM 제어를 병용하여 온/오프 제어를 행한다.
제 3 실시 형태에 따른 직렬 다중 매트릭스 컨버터(1A)에 의하면, 제 2 실시 형태의 매트릭스 컨버터(1)와 마찬가지로, 전력 계통(2)의 각 상에 흘리는 전류의 파형을 정현파의 파형에 보다 근접하게 하는 것이 가능해지므로, 공진 현상의 발생을 억제할 수 있다.
또한, 상술한 실시 형태에서는, U상, V상 및 W상의 전력 변환 셀부의 구성을 각각 전력 변환 셀(19)을 직렬로 3단 접속한 구성으로 했지만, 전력 변환 셀(19)을 직렬로 2단 접속한 구성이나 전력 변환 셀(19)을 직렬로 4단 이상 접속한 구성이어도 좋다.
또한, 상술한 실시 형태에 있어서, 제어부(15A)의 일부의 기능을 전력 변환 셀(19)에 마련하도록 해도 좋다. 예를 들면, 각 전력 변환 셀(19)마다, 제 2 구동 제어부(21A) 및 전환부(22)의 기능의 일부 또는 전부를 구비하도록 해도 좋다.
또한, 상술한 실시 형태에 있어서, 계통 펄스 패턴 생성기(76a)는 각 2차 코일(18)의 전압 위상 θrst1∼θrst3에 대해서 90도 지연된 120도 통전 제어의 전류를 흘리는 스위치 구동 신호 Srp1∼3∼Stn1∼3을 생성할 수도 있다. 이에 의해, 전력 계통(2)측에 90도 지연되고 또한 계통 유효 전류 IP가 제로인 무효 전류를 흘릴 수 있다. 또한, 전력 계통(2)측에 90도 지연에 의한 무효 전류를 흘리거나 90도 진전에 의한 무효 전류를 흘리는 지는, 예를 들면, 외부로부터 계통 펄스 패턴 생성기(76a)에의 설정에 의해 선택할 수 있다.
또한, 상술한 직렬 다중 매트릭스 컨버터(1A)는, 계통 위상 θrst에 계통 위상 보상치 dθrst를 가산하여 생성된 계통 보정 위상 θrst'에 근거하여, 스위치 구동 신호 Srp1∼Stn1 등을 생성하지만, 이것은 일례이다. 즉, 스위치 구동 신호 Srp1∼Stn1을 생성하는 방법은, 상술한 방법으로 한정되는 것은 아니며, 여러 가지의 변형이 가능하다.
예를 들면, 직렬 다중 매트릭스 컨버터(1A)는, 2차 코일(18)의 각 전압 위상 θrst1∼θrst3에 계통 위상 보상치 dθrst를 가산하여 생성한 보상 위상 θrst1'∼θrst3'에 근거하여, 스위치 구동 신호 Srp1∼Stn1 등을 생성하더라도 좋다.
이러한 경우, 직렬 다중 매트릭스 컨버터(1A)에는, 2차 코일(18a, 18d, 18g)의 전압을 검출하여 제어부(15A)의 제 2 구동 제어부(21A)에 출력하는 전압 검출부가 설치되고, 제 2 구동 제어부(21A)는, 이하의 처리를 행하도록 구성된다.
예를 들면, 제 2 구동 제어부(21A)는, 전압 검출부에 의해 검출되는 2차 코일(18a, 18d, 18g)의 전압에 근거하여, 전술의 각 전압 위상 θrst1∼θrst3를 생성한다. 계속해서, 제 2 구동 제어부(21A)는, 각 전압 위상 θrst1∼θrst3에 계통 위상 보상치 dθrst를 각각 가산하여 생성한 보상 위상 θrst1'∼θrst3'를 생성한다.
그리고, 제 2 구동 제어부(21A)는, 보상 위상 θrst1'를 도 22에 나타내는 패턴 생성기(764)에, 보상 위상 θrst2'를 패턴 생성기(765)에, 보상 위상 θrst3'를 패턴 생성기(766)에 입력한다. 이러한 처리를 행하는 제 2 구동 제어부(21A)에 의해서도, 각 2차 코일(18)의 전압 위상 θrst1∼θrst3에 대해서 120도 통전 제어의 전류를 흘리는 스위치 구동 신호 Srp1∼Stn1, Srp2∼Stn2, Srp3∼Stn3의 패턴을 생성할 수 있다. 이에 의해, 예를 들면, 다중 변압기(10A)의 특성에 근거한 설정을 행하는 일 없이, 제어가 가능해진다.
다음에, 상술한 실시 형태에 따른 제어부(15, 15A)가 실행하는 처리에 대해 설명한다. 도 23은, 실시 형태에 따른 제어부(15, 15A)가 실행하는 처리를 나타내는 플로우차트이다.
도 23에 나타낸 바와 같이, 제어부(15, 15A)는, 교류 전원의 전압인 계통 전압치 Va를 검출한다(스텝 S101). 계속해서, 제어부(15, 15A)는, 검출한 계통 전압치 Va가 소정치인 전압치 V1 이하인지 여부를 판정한다(스텝 S102).
그리고, 제어부(15, 15A)는, 계통 전압치 Va가 소정치인 전압치 V1 이하라고 판정했을 경우(스텝 S102, Yes), 제 2 제어 모드를 실행한다. 구체적으로는, 제어부(15, 15A)는, 복수의 쌍방향 스위치 Sw1~Sw9, Sw1~Sw6를 구성하는 복수의 단방향 스위칭 소자(31, 32)의 각각을, 개별적으로 120도 통전 제어에 의해 온으로 하기 전, 후, 또는 전후에서, PWM 제어에 의해 온/오프 제어하여 상기 교류 전원(2)과 회전 전기 기기(3)의 사이의 전력 변환 제어를 행한다.
그 후, 제어부(15, 15A)는, 처리를 종료하고, 재차 스텝 S101로부터 처리를 개시한다. 또한, 제어부(15, 15A)는, 계통 전압치 Va가 소정치인 전압치 V1보다 크다고 판정했을 경우(스텝 S102, No), 제 1 제어 모드를 실행하고(스텝 S104), 그 후, 처리를 종료하고, 재차 스텝 S101로부터 처리를 개시한다. 또한, 제 1 제어 모드에 대해서는, 전술한 제 1 구동 제어부(20)의 동작 설명에서 이미 설명했으므로, 여기에서는, 그 설명을 생략한다.

Claims (11)

  1. 교류 전원의 각 상과 회전 전기 기기의 각 상을 접속하는 복수의 쌍방향 스위치와,
    상기 복수의 쌍방향 스위치를 제어하여 상기 교류 전원과 상기 회전 전기 기기의 사이의 전력 변환 제어를 행하는 제어부를 구비하며,
    상기 제어부는,
    상기 쌍방향 스위치를 구성하는 복수의 단방향 스위칭 소자의 각각을 개별적으로 120도 통전 제어 및 PWM 제어를 병용하여 온/오프 제어하는
    매트릭스 컨버터.
  2. 제 1 항에 있어서,
    상기 제어부는,
    상기 단방향 스위칭 소자를 상기 120도 통전 제어에 의해 온으로 하는 전후에서 상기 PWM 제어에 의해 온/오프 제어하는 매트릭스 컨버터.
  3. 제 1 항 또는 제 2 항에 있어서,
    상기 120도 통전 제어의 기간에 있어서 캐리어 신호의 크기 이상의 변조파 신호를 생성하고, 해당 변조파 신호와 상기 캐리어 신호를 비교하는 것에 의해 상기 단방향 스위칭 소자를 제어하는 스위치 구동 신호를 생성하는 구동 신호 생성기를 더 구비하는 매트릭스 컨버터.
  4. 제 3 항에 있어서,
    상기 변조파 신호는, 정현파 신호 또는 사다리꼴형파 신호인 매트릭스 컨버터.
  5. 제 3 항에 있어서,
    상기 구동 신호 생성기는,
    상기 캐리어 신호로서, 극성이 상이한 제 1 캐리어 신호와 제 2 캐리어 신호를 생성하는 캐리어 신호 생성기와,
    상기 변조파 신호를 생성하는 변조파 신호 생성기와,
    상기 제 1 캐리어 신호와 상기 변조파 신호를 비교하여 제 1 스위치 구동 신호를 생성하는 제 1 비교기와,
    상기 제 2 캐리어 신호와 상기 변조파 신호를 비교하여 제 2 스위치 구동 신호를 생성하는 제 2 비교기를 구비하며,
    상기 제 1 스위치 구동 신호 및 상기 제 2 스위치 구동 신호에 의해 각각 상이한 상기 단방향 스위칭 소자를 제어하는 매트릭스 컨버터.
  6. 제 1 항에 있어서,
    상기 제어부는,
    상기 교류 전원의 각 상에 흘리는 전류의 목표치가 되는 전류 지령에 따른 상마다의 파형으로부터 상기 PWM 제어의 기간에 대응하는 부분의 파형을 발췌하여 합성한 합성 신호와, 캐리어 신호를 비교하는 것에 의해, 상기 PWM 제어를 행하는 기간에 있어서 상기 단방향 스위칭 소자를 제어하는 스위치 구동 신호를 생성하고, 상기 복수의 단방향 스위칭 소자의 각각을, 개별적으로 120도 통전 제어에 의해 온/오프 제어하는 전후에서, PWM 제어에 의해 온/오프 제어하여 상기 교류 전원과 상기 회전 전기 기기의 사이의 전력 변환 제어를 행하는 매트릭스 컨버터.
  7. 제 6 항에 있어서,
    상기 120도 통전 제어의 기간에 있어서 상기 단방향 스위칭 소자를 제어하는 스위치 구동 신호 및 상기 PWM 제어를 행하는 기간에 있어서 상기 단방향 스위칭 소자를 제어하는 스위치 구동 신호의 펄스 패턴을 생성하여 출력하는 복수의 패턴 생성부와,
    상기 복수의 패턴 생성부로부터 출력되는 상기 펄스 패턴을 선택하는 선택 제어부를 더 구비하는 매트릭스 컨버터.
  8. 제 7 항에 있어서,
    상기 합성 신호를 생성하여 상기 복수의 패턴 생성부에 출력하는 합성 신호 생성부와,
    상기 캐리어 신호를 생성하여 상기 복수의 패턴 생성부에 출력하는 캐리어 신호 생성부를 더 구비하는 매트릭스 컨버터.
  9. 제 7 항 또는 제 8 항에 있어서,
    상기 복수의 패턴 생성부는,
    동일한 구성을 구비하며, 상기 교류 전원의 상마다 마련되는 매트릭스 컨버터.
  10. 제 7 항 또는 제 8 항에 있어서,
    상기 선택 제어부는,
    상기 교류 전원의 전압 위상의 범위와, 상기 복수의 패턴 생성부로부터 출력되는 상기 펄스 패턴의 종류를 대응지은 테이블을 구비하는 매트릭스 컨버터.
  11. 교류 전원의 전압을 검출하고,
    상기 교류 전원의 전압이 소정치 이하인지 여부를 판단하고,
    상기 교류 전원의 전압이 소정치 이하인 경우에, 복수의 쌍방향 스위치를 구성하는 복수의 단방향 스위칭 소자의 각각을, 개별적으로 120도 통전 제어에 의해 온으로 하기 전, 후, 또는 전후에서, PWM 제어에 의해 온/오프 제어하여 상기 교류 전원과 회전 전기 기기의 사이의 전력 변환 제어를 행하는
    것을 포함하는 매트릭스 컨버터의 제어 방법.
KR1020130152242A 2012-12-10 2013-12-09 매트릭스 컨버터 및 매트릭스 컨버터의 제어 방법 KR20140074849A (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012269528A JP5590106B2 (ja) 2012-12-10 2012-12-10 マトリクスコンバータ
JPJP-P-2012-269528 2012-12-10
JPJP-P-2013-010505 2013-01-23
JP2013010505A JP5534052B1 (ja) 2013-01-23 2013-01-23 マトリクスコンバータ

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020150102371A Division KR20150088777A (ko) 2012-12-10 2015-07-20 매트릭스 컨버터 및 매트릭스 컨버터의 제어 방법

Publications (1)

Publication Number Publication Date
KR20140074849A true KR20140074849A (ko) 2014-06-18

Family

ID=49759091

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020130152242A KR20140074849A (ko) 2012-12-10 2013-12-09 매트릭스 컨버터 및 매트릭스 컨버터의 제어 방법
KR1020150102371A KR20150088777A (ko) 2012-12-10 2015-07-20 매트릭스 컨버터 및 매트릭스 컨버터의 제어 방법

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020150102371A KR20150088777A (ko) 2012-12-10 2015-07-20 매트릭스 컨버터 및 매트릭스 컨버터의 제어 방법

Country Status (4)

Country Link
US (1) US20140160824A1 (ko)
EP (1) EP2741410A2 (ko)
KR (2) KR20140074849A (ko)
CN (1) CN103872923A (ko)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6237400B2 (ja) * 2014-03-27 2017-11-29 株式会社安川電機 発電装置、制御装置、制御方法、発電システム、電力変換装置及びシステム
CN104152629B (zh) * 2014-07-22 2016-08-24 安徽大学 多边界条件下钢包精炼炉变压器容量及参数的确定方法
CN106471723B (zh) * 2014-07-31 2019-03-12 三菱电机株式会社 再生转换器装置的控制装置
US10437288B2 (en) 2014-10-06 2019-10-08 Fasetto, Inc. Portable storage device with modular power and housing system
JP6285572B2 (ja) * 2014-12-15 2018-02-28 日立オートモティブシステムズ株式会社 電力変換装置
DE102017126622A1 (de) * 2016-11-15 2018-05-17 Johnson Electric S.A. Motor und diesen verwendendes Gebrauchsgerät
US10050561B2 (en) * 2016-12-30 2018-08-14 Sunpower Corporation Three-level inverter switching
US10587214B1 (en) * 2019-03-22 2020-03-10 Hamilton Sundstrand Corporation Matrix converter operation in current control mode with regulation of output voltage vector
CN109818548A (zh) * 2019-03-27 2019-05-28 张洋 采用单pwm控制电机转动的控制电路
US10868482B1 (en) * 2019-05-28 2020-12-15 General Electric Company Dual-frequency filter for distinguishing between different types of grid events

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4648022A (en) * 1986-02-14 1987-03-03 Westinghouse Electric Corp. Matrix converter control system
US5005115A (en) * 1989-07-28 1991-04-02 Westinghouse Electric Corp. Forced-commutated current-source converter and AC motor drive using the same
US5430362A (en) * 1993-05-12 1995-07-04 Sundstrand Corporation Engine starting system utilizing multiple controlled acceleration rates
WO2001067590A1 (en) * 2000-03-08 2001-09-13 Kabushiki Kaisha Yaskawa Denki Pwm cycloconverter and power fault detector
JP3666433B2 (ja) * 2001-09-28 2005-06-29 松下電器産業株式会社 マグネトロン駆動用電源
JP4059098B2 (ja) * 2003-02-18 2008-03-12 富士電機ホールディングス株式会社 交流−交流電力変換器のバックアップ装置
JP4506949B2 (ja) * 2004-03-30 2010-07-21 株式会社安川電機 マトリクスコンバータ装置
JP4626651B2 (ja) * 2005-04-27 2011-02-09 株式会社安川電機 電力変換装置と電力変換方法
JP2008172925A (ja) * 2007-01-11 2008-07-24 Mitsubishi Electric Corp マトリックスコンバータのバックアップ運転装置
WO2008108147A1 (ja) * 2007-03-07 2008-09-12 Kabushiki Kaisha Yaskawa Denki 電力変換装置
JP4957304B2 (ja) * 2007-03-14 2012-06-20 株式会社明電舎 交流−交流直接変換装置の空間ベクトル変調方法
JP5126550B2 (ja) * 2007-07-20 2013-01-23 株式会社安川電機 マトリクスコンバータ
CN102047545B (zh) * 2008-05-30 2014-12-10 株式会社安川电机 矩阵变换器的控制装置及其输出电压产生方法
WO2010140650A1 (ja) * 2009-06-04 2010-12-09 ダイキン工業株式会社 電力変換装置
JP5013283B2 (ja) * 2010-02-17 2012-08-29 株式会社安川電機 マトリクスコンバータの制御装置
JP5329587B2 (ja) * 2011-03-07 2013-10-30 株式会社安川電機 電力変換装置

Also Published As

Publication number Publication date
EP2741410A2 (en) 2014-06-11
KR20150088777A (ko) 2015-08-03
US20140160824A1 (en) 2014-06-12
CN103872923A (zh) 2014-06-18

Similar Documents

Publication Publication Date Title
KR20150088777A (ko) 매트릭스 컨버터 및 매트릭스 컨버터의 제어 방법
KR101460458B1 (ko) 매트릭스 컨버터
KR101509338B1 (ko) 매트릭스 컨버터
KR20150076113A (ko) 매트릭스 컨버터, 풍력 발전 시스템, 및 매트릭스 컨버터의 제어 방법
JP6529614B2 (ja) 電力変換装置
JP2005535277A (ja) 中〜高電圧、3レベル以上のac駆動インバーターブリッジを駆動する低電圧、2レベル、6パルス誘導モーターコントローラー
JP2021027672A (ja) 電子回路および無線電力伝送装置
CN114221591A (zh) 多相电动机和发电机系统的多谐波磁场定向控制
Łuczak et al. Comparison of fault tolerant control algorithm using space vector modulation of PMSM drive
US5151853A (en) Cycloconverter and the method of controlling the same
JP5012309B2 (ja) 交流−交流直接変換装置のスイッチングパターン切替方法
US20240120858A1 (en) Motor control device, motor control method, and program
JP5534052B1 (ja) マトリクスコンバータ
JPWO2019106903A1 (ja) 電圧補償装置
JP5573919B2 (ja) マトリクスコンバータ
Orfanoudakis et al. Combined positive-sequence flux estimation and current balancing for sensorless motor control under imbalanced conditions
JP5573935B2 (ja) 直列多重マトリクスコンバータ
KR101422132B1 (ko) 모터 제어 장치, 및 그것을 사용한 공기 조화기
WO2019216074A1 (ja) 回転機の制御装置
Malinowski et al. Control of three-phase PWM rectifiers
JP5590106B2 (ja) マトリクスコンバータ
JP5012311B2 (ja) 交流−交流直接変換装置のスイッチングパターン切替方法
JP7294982B2 (ja) 電動機制御装置
Razzaq Complex Vector Synchronous Frame PI Current Regulator Development in Discrete-time Domain
JP2019140814A (ja) モータ制御装置

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
A107 Divisional application of patent
J201 Request for trial against refusal decision
J301 Trial decision

Free format text: TRIAL NUMBER: 2015101004096; TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20150720

Effective date: 20170120

S901 Examination by remand of revocation