WO2009142462A2 - 유기 발광 소자 및 이의 제조방법 - Google Patents

유기 발광 소자 및 이의 제조방법 Download PDF

Info

Publication number
WO2009142462A2
WO2009142462A2 PCT/KR2009/002734 KR2009002734W WO2009142462A2 WO 2009142462 A2 WO2009142462 A2 WO 2009142462A2 KR 2009002734 W KR2009002734 W KR 2009002734W WO 2009142462 A2 WO2009142462 A2 WO 2009142462A2
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
light emitting
layer
organic
emitting device
Prior art date
Application number
PCT/KR2009/002734
Other languages
English (en)
French (fr)
Other versions
WO2009142462A3 (ko
Inventor
강민수
손세환
최현
김정범
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN200980118792XA priority Critical patent/CN102037580A/zh
Priority to JP2011510431A priority patent/JP2011521423A/ja
Priority to US12/994,082 priority patent/US8455896B2/en
Priority to EP09750784A priority patent/EP2282361A4/en
Publication of WO2009142462A2 publication Critical patent/WO2009142462A2/ko
Publication of WO2009142462A3 publication Critical patent/WO2009142462A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/854Arrangements for extracting light from the devices comprising scattering means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission
    • H10K2102/3026Top emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/321Inverted OLED, i.e. having cathode between substrate and anode

Definitions

  • the present invention relates to an organic light emitting device and a method of manufacturing the same. More specifically, the present invention relates to an organic light emitting device capable of increasing external light efficiency by minimizing total reflection of light emitted from the device and a method of manufacturing the same.
  • OLEDs include two electrodes, ie, an anode 20 and a cathode 40, formed on a substrate 10 having suitable mechanical strength and flatness as illustrated in FIG. It consists of the organic substance 30 of the multilayered structure which exists as a thin film in between.
  • Such organic light emitting devices are commercially used in the manufacture of color flat panel displays, and in recent years, many studies have been made for applications as lighting applications.
  • the operation of the organic light emitting device uses a phenomenon in which holes and electrons are injected into the organic material from the anode and the cathode, respectively, and light emission occurs as these charges recombine.
  • the driving voltage is influenced by the height of the hole injection barrier existing between the anode material and the organic material interfacing with the anode, and the height of the electron injection barrier existing between the cathode material and the organic material interfacing with the cathode.
  • the organic material constituting the device may include a hole injection layer 31, a hole transport layer 32, a light emitting layer 33, an electron transport layer 34, and the like. Structured in multiple layers, and as a organic material constituting each layer, new and stable molecular structure materials continue to be developed.
  • a technique for preventing total reflection at the interface between the substrate and the air is used by providing a light extraction layer under the substrate.
  • 3 illustrates an organic light emitting diode having a light extraction layer 90 under the substrate.
  • the light emitting layer may be composed of a host material that simultaneously accepts electrons and holes and a dopant that efficiently converts exitons formed by recombination of electrons and holes into light.
  • a host material that simultaneously accepts electrons and holes
  • a dopant that efficiently converts exitons formed by recombination of electrons and holes into light.
  • the inventors have invented a new method of operation in which electrons and holes are generated between the hole injection layer and the hole transport layer and transferred to the anode and the light emitting layer, respectively, instead of holes being injected from the anode to the hole injection layer.
  • This new approach uses charge generation between organics and organics instead of hole injection from the anode, eliminating the need to overcome hole injection barriers and using charges generated at a stable interface, resulting in low drive voltages and high Stability.
  • the organic light emitting device is fabricated so that light emitted from the device is emitted through the substrate (bottom-emission) or on the opposite side of the substrate (top-emission), depending on the application.
  • the direction in which light is emitted is determined by the transmittance of the electrode through which the light passes.
  • the electrode When using a material with high reflectivity such as aluminum thickly, the electrode reflects light, and when using a transparent material such as a metal oxide or a thin metal having a thickness enough to transmit light, the light passes through the electrode. Come out.
  • both electrodes have high transmittance, light may emit light on both sides.
  • the characteristics of the cathode in the organic light emitting device should be able to smoothly inject electrons into the electron transport layer forming an interface with the cathode.
  • the injection of electrons from the cathode to the electron transport layer is closely related to the difference between the Low Unoccupied Molecular Orbital (LUMO) level of the electron transport layer and the work function of the material forming the cathode, which is called the electron injection barrier.
  • the driving voltage of the organic light emitting diode is related to the size of the electron injection barrier. The lower the injection barrier, the lower the driving voltage. On the contrary, the higher the injection barrier, the higher the driving voltage.
  • a metal having a small work function is used to reduce the size of the electron injection barrier and thus drive the device at a low voltage.
  • Materials forming the cathode meeting this purpose include magnesium (Mg), lithium (Li), cesium (Cs), calcium (Ca), and the like. Other materials are used for the purpose of improving interfacial adhesion, antioxidant properties, and reflectance. Some mixtures of these are also used. Since these materials have a work function of less than 4 eV, the electron injection barrier is small between the LUMO level of the electron transporting material. In contrast, a metal with a work function greater than 4 eV, such as aluminum (Al), is also used as the cathode.
  • a high electron injection barrier requires a high driving voltage.
  • the driving voltage can be significantly lowered by inserting the insulating material 41 in the form of a thin film between the organic layer and the cathode 42 as shown in FIG.
  • Representative insulating materials used for this purpose are lithium fluoride (LiF).
  • Lithium fluoride which is formed from thin films with a thickness of 5 to 30 ⁇ , has been described as playing a role of easily tunneling electron injection from the cathode to the electron transport layer when a voltage is applied to the device.
  • the chemical reaction with aluminum deposited after the ride produces a lithium atom having a low work function.
  • the cathode containing the low work function or aluminum is formed by a thermal vacuum deposition process.
  • an electrode forming process using metal or metal oxides may be performed through sputtering, electron beam (e-beam), CD (CVD), thermal vacuum deposition, or the like. Since the formation process is performed after the anode formation process and the organic material formation process, the cathode formation process using relatively low energy, such as thermal vacuum deposition, can minimize damage to the organic material deposited previously. Therefore, the cathode material used in the fabrication of the organic light emitting device is selected from metals having a relatively low melting point that can use a thermal vacuum deposition process.
  • the cathode material should be selected according to whether the direction of light emission is guided through the substrate or the light emission is induced opposite to the substrate.
  • the anode positioned on the substrate is selected from a material having high transparency
  • the cathode is selected from a material having high reflectivity, thereby inducing light emitting in the opposite direction to the substrate to the substrate.
  • the cathode suitable for this purpose the above-mentioned aluminum is generally known and widely used.
  • a transparent anode 22 is deposited on the highly reflective material 21, or a relatively high reflectivity and large work function (> 4.5 eV) material is used as the anode.
  • a material having a relatively low reflectivity is formed into a thin film to form a cathode (43), whereby the surface plasmon that may occur in the cathode of the thin film is suppressed or the conductivity of the cathode formed of the thin film is reduced. It is also known to form a transparent high dielectric material or transparent conductive material layer 44 of appropriate thickness on the cathode to increase the transparency.
  • anodes used for this purpose are magnesium or alloys containing magnesium, and metal oxides, oxides of metal mixtures, silicon-based oxides, silicon-based nitrides, etc. are generally used as the high dielectric or transparent conductive materials, but are not limited thereto. It doesn't work.
  • a device may be manufactured by stacking two or more organic light emitting device structures on a single substrate in a stacked form.
  • This type of device configuration exhibits a property in which two or more organic light emitting device structures are connected in series, and a charge generation layer inserted between the unit and the unit of the organic light emitting device which is repeated with two external electrodes (anode and cathode). ) Is characterized by including.
  • These devices exhibit characteristics that can increase the amount of light generated per unit area, and the driving voltage is increased in proportion to the number of repeating units in comparison with the structure of a general organic light emitting device, but the injected current is inversely lowered, so the durability of the device is increased. There is an effect that can increase.
  • the organic light emitting device may have a different structure from each other, and thus, various materials different from each other may be used. But even in such different structures, they have some things in common. That is, the fact that a substrate having a suitable mechanical strength for fabricating an organic light emitting device is required, that an electrode having at least two different polarities on the substrate is essential, and that charges between the electrodes having such different polarities The fact is that organic materials with transport and luminescence properties exist in thin films.
  • the two opposite electrodes are generally divided into a cathode and an anode, each of which injects electrons and holes into the organic material.
  • the present invention provides an organic light emitting device having improved light efficiency by reducing total reflection of light generated inside the device as described above, and a method of manufacturing the same.
  • the inventors of the present invention not only have total reflection occurring between the substrate made of glass or plastic and the air layer, but also total reflection occurring between the transparent electrode and the substrate have a great influence on the light efficiency, whereby It has been found that the prior art of forming a light extraction layer in the upper limit of improving the light efficiency. Therefore, based on this, the present invention provides an organic light emitting device having a structure capable of simultaneously minimizing total reflection occurring between a transparent electrode and a substrate as well as a total reflection occurring between a substrate made of glass or plastic and an air layer, and a method of manufacturing the same. The purpose is to provide.
  • the present invention provides a substrate, a first electrode provided on the substrate, at least one organic material layer provided on the first electrode, a second electrode provided on the organic material layer, and the second electrode It provides an organic light emitting device including a light extraction layer provided on the top.
  • the present invention also provides a substrate, a first electrode provided on the substrate, two or more light emitting units provided on the first electrode and including one or more organic material layers, an intermediate electrode provided between the light emitting units, and the light emission.
  • an organic light emitting device including a second electrode provided on a unit, and a light extraction layer provided on the second electrode.
  • the present invention is a step of forming a first electrode on a substrate, forming at least one organic layer on the first electrode, forming a second electrode on the organic material layer, and on the second electrode It provides a method of manufacturing an organic light emitting device comprising the step of forming a light extraction layer.
  • the present invention is a step of forming a first electrode on a substrate, forming at least two light emitting units including at least one organic layer on the first electrode, forming any one of the light emitting unit and Before forming one light emitting unit, forming an intermediate electrode, forming a second electrode on the light emitting unit, and forming a light extraction layer on the second electrode.
  • a method Provide a method.
  • the present invention instead of forming the light extraction film on the substrate portion in contact with the air layer as in the prior art, the top of the uppermost contact with the air in the organic light emitting device formed of two electrodes formed on the substrate and at least one organic material present therebetween
  • the light extraction film on the transparent electrode of the present invention it is possible to provide an organic light emitting device having a high efficiency that can minimize the total reflection between the transparent electrode and the substrate, which was difficult to solve the conventional problem.
  • the light extraction film of the organic light emitting device according to the prior art is exposed to the outermost surface may be damaged by the external mechanical friction, while the light extraction film of the organic light emitting device according to the present invention is present inside the protective substrate Therefore, durability is increased by not being exposed to mechanical friction.
  • FIG. 1 illustrates a structure of a general organic light emitting device.
  • FIG. 2 illustrates a structure of an organic material layer of the organic light emitting diode of FIG. 1.
  • FIG 3 illustrates a structure of an organic light emitting diode having a light extraction layer under a conventional substrate.
  • FIG. 4 illustrates the path of light traveling from a high refractive index medium to a low refractive index medium.
  • FIG. 5 illustrates a movement path of light generated in an organic material layer in a bottom emission organic light emitting diode.
  • FIG. 6 illustrates a structure of an organic light emitting device having an inverted structure having a light extraction layer on an upper electrode according to the present invention.
  • 7 to 12 illustrate the shape of the light extraction layer located on the upper electrode of the organic light emitting device according to the present invention.
  • FIG. 13 illustrates a structure of an organic light emitting device having a normal structure having a light extraction layer on an upper electrode according to the present invention.
  • FIG 16 illustrates the type of the anode of the organic light emitting device.
  • the organic light emitting device has a structure including a substrate, two electrodes positioned on the substrate, and an organic material layer provided between the two electrodes, as in the prior art. And a light extracting layer on top of the second electrode which is not in contact with the second electrode.
  • the organic light emitting device light is generated in the organic material layer, and depending on the type of the device structure, the light may be divided into a case in which light is emitted in a direction toward the substrate, a case in which light is emitted in an opposite direction of the substrate, or in both directions.
  • the light generated in the organic material layer In order for the light generated in the organic material layer to be emitted to the outside, it must pass through several interfaces depending on the structure of the organic light emitting device. For example, when light is emitted toward the substrate, the light generated by the organic light emitting layer passes through the hole transport layer, the hole injection layer, the transparent electrode layer, the substrate, and the like and is emitted into the air.
  • a glass or plastic substrate has a refractive index of about 1.5-1.6, and air has a refractive index of 1.
  • light travels from the glass or plastic substrate to the air layer only the light corresponding to the formula of 1 / 2n 2 is emitted and the remaining light is trapped in the glass or plastic substrate having a high refractive index by total internal reflection and converted into heat.
  • Total reflection occurs as the difference in refractive index between adjacent media increases, and as a result, the general organic light emitting device structure is known to occur most frequently between the substrate (glass or transparent plastic) and the air layer.
  • Total reflection connects the point of light generated at any point in a medium to a medium with a smaller index of refraction from that point on the boundary between the two media and from that point to any boundary between the two media.
  • the angle of the line is defined as theta
  • the present invention has recognized that there is a big limitation in improving the light extraction efficiency of the organic light emitting device when using the prior art as described above.
  • the total reflection phenomenon between the substrate and the air layer occurs not only at the interface between the substrate 10 and the air layer but also at the interface between the electrode 20 and the substrate 10.
  • the refractive index of the commonly used transparent anode material ITO or IZO is 1.7 to 2.2, which is relatively higher than the refractive index of 1.5 to 1.6 of glass or plastic substrates, some of the light may be caused by total reflection even between the transparent electrode and the substrate. There is a case where light is not emitted. Light loss occurs about 50% and about 30% between the electrode and the glass substrate and between the glass substrate and the air layer, respectively.
  • FIG. 6 illustrates the structure of a device according to the present invention, in which a cathode layer 40 including a highly reflective metal, an organic layer 30 and a highly transparent anode layer 20 are sequentially formed on the substrate 10.
  • the light extraction layer 90 is attached to the anode layer 20.
  • the structure or material of the light extraction layer is not particularly limited as long as it can improve the extraction of light generated from the device.
  • the light extraction layer preferably has a low light absorption.
  • the material used for this purpose is preferably made of a polymeric material for free molding, preferably a transmittance of> 50% at a wavelength in the visible light region, and more preferably a transmittance of> 80%.
  • the absorbance of each of the polymer forming the film and the material forming the filler is ⁇ 50%. It is preferred that it is more preferably ⁇ 30%.
  • the light extraction layer may be formed of a material having a refractive index between the refractive index of the upper electrode (second electrode) not in contact with the substrate of the device according to the invention and the refractive index of the air layer.
  • the average refractive index of the light extraction layer is preferably 1.3 or more and 2.5 or less. As the refractive index of the light extraction layer is higher, the light extraction efficiency may be increased. For this purpose, it is desirable to increase the refractive index of the polymer forming the light extraction layer.
  • the optical refractive index of the polymer may be affected by the atoms, functional groups, and densities constituting the polymer, and it is more preferable to use a polymer containing atoms such as oxygen or nitrogen having a larger atomic number than a polymer composed of carbon and hydrogen. desirable.
  • the refractive index may be further increased by including atoms such as sulfur or bromine in the polymer molecular structure.
  • the light extraction layer is disposed in contact with the second electrode, wherein the difference in refractive index between the light extraction layer and the second electrode is preferably 0.5 or less, and more preferably 0.2 or less.
  • the light extraction layer may be formed of a surface concave-convex structure, a lens structure, or a mixed layer structure of a material having a different refractive index, or a cross-sectional inverted trapezoidal shape, which may reduce total reflection, but is not limited thereto.
  • the light extraction layer may have a multi-layered structure and may be divided into a support layer attached to the second electrode, which is an upper electrode, and a layer in which a shape for light extraction is formed.
  • a critical angle when light generated by attaching a hemispherical lens-shaped film to the outside of the upper electrode or forming a hemispherical lens shape directly on the upper electrode 90b encounters the air layer. There is a way to reduce total reflection by increasing the probability of meeting within.
  • the light extraction layer may also use a film repeatedly formed with the hemispherical pattern as shown in FIG. 9 (90c), and adjust the radius and height of the hemisphere and the spacing between the hemispherical lenses to suit the purpose. Can be optimized
  • a film 90d having an inverted shape that is, an inverted trapezoidal cross-sectional shape, can be attached and used, as shown in FIG.
  • the film 90e which repeatedly formed such a shape can be attached and used.
  • FIG. 12 there is also a method of increasing light extraction efficiency by causing diffuse reflection by minimizing total reflection by attaching a film 90f containing two or more materials having different refractive indices to the upper electrode.
  • An organic light emitting diode includes a substrate, a first electrode provided on the substrate, one or more organic material layers provided on the first electrode, and a second electrode provided on the organic material layer. . At this time, the light extraction layer is provided on the second electrode.
  • An organic light emitting diode is a substrate, a first electrode provided on the substrate, at least two light emitting units provided on the first electrode and including at least one organic layer, the light emitting units An intermediate electrode provided in between, and a second electrode provided on the light emitting unit. At this time, the light extraction layer is provided on the second electrode.
  • the organic light emitting device may be a top emission type or a double-sided emission type.
  • a normal OLED is produced in the order that the organic material layer, such as the cathode is formed, and finally the cathode is formed (normal OLED) structure (see Fig. 13), inverted OLED formed in the reverse order, that is, organic material layers such as cathode, electron transport layer, light emitting layer, hole transport layer, hole injection layer, etc. inverted OLED) structure.
  • the upper electrode is preferably an inverted OLED structure that is a transparent anode.
  • the first electrode may be formed of a metal having high reflectance, and it is preferable to use a material having a work function of less than 4.5 eV.
  • a material having a work function of less than 4.5 eV aluminum, calcium, magnesium, silver, cesium (Cs), lithium or alloys containing them may be used.
  • the first electrode may be transparent oxide, i.e., indium tin oxide (ITO), indium zinc oxide (IZO), or the like by doping the electron transporting material included in the organic material layer with a material having a low work function or an organic material having n-type properties. By making it available, light emission can be induced simultaneously to both a 1st electrode and a 2nd electrode.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • the driving voltage may be lowered by inserting the insulating material 41 in the form of a thin film between the cathode and the organic material layer.
  • the cannon insulating material used for this purpose is lithium fluoride (LiF), but is not limited thereto.
  • Lithium fluoride which is formed from thin films with a thickness of 5 to 30 ⁇ , has been described as acting to facilitate the injection of electrons from the cathode to the electron transport layer into a phenomenon called tunneling when voltage is applied to the device, or lithium flow
  • the chemical reaction with aluminum deposited after the ride produces a lithium atom having a low work function.
  • the second electrode may be preferably formed of a material having high transmittance, for example, an oxide of a metal or an alloy. Specifically, oxides of indium tin, oxides of indium zinc, oxides in which other metals such as aluminum or nonmetals or amphoteric elements are added to the oxide may be used. A conductive polymer may also be used as the second electrode. In addition, the second electrode may be formed of a metal thin film. Preferably, the second electrode has a light transmittance of 50% or more.
  • the refractive index of the second electrode is not particularly limited, but when formed of a transparent conductive oxide, the refractive index is within 1.7 to 2.3.
  • the electrode containing the low work function material or aluminum may be formed by a thermal vacuum deposition process, and an electrode forming process using metal or metal oxides may be formed by sputtering, electron beam, and CD. (CVD), thermal vacuum deposition, or the like, but is not limited thereto.
  • the second electrode positioned on the opposite side of the substrate may be selected from materials having high transparency.
  • the first electrode positioned on the substrate may select one of materials having high reflectivity to induce light emitted in the direction of the substrate to the opposite direction of the substrate.
  • a transparent anode 22 is deposited on the highly reflective material 21 as shown in FIG. 16 or a relatively high reflectivity and a large work function (> 4.5 eV) material. May be used as the anode, and as shown in FIG.
  • a material having a relatively low reflectivity may be formed into a thin film to form a cathode, which is the second electrode.
  • a transparent high dielectric material or transparent conductive material layer 44 having an appropriate thickness may be formed on the cathode to increase transparency.
  • Representative cathodes used for this purpose are magnesium or alloys containing magnesium, and metal oxides, oxides of metal mixtures, silicon-based oxides, silicon-based nitrides, etc. are used as, but are not limited to, high dielectric or transparent conductive materials. Do not.
  • the intermediate electrode may use those exemplified as the first electrode or the second electrode material.
  • the organic light emitting diode according to the present invention may further include a transparent protective layer between the second electrode formed on the organic material layer and the light extraction layer formed on the second electrode.
  • a transparent protective layer silicon oxide, silicon nitride, silicon oxynitride, or the like may be formed through a deposition process such as chemical vapor deposition (CVD).
  • CVD chemical vapor deposition
  • the organic light emitting device may be protected from moisture or oxygen, and at the same time, mechanical breakdown that may occur when the light extraction layer is attached may be minimized.
  • the silicon oxide, silicon nitride, or silicon oxynitride deposited as described above may control the refractive index through stoichiometric ratio manipulation, thereby optimizing the light extraction efficiency.
  • the refractive index of the said protective layer is 1.3 or more and 2.5 or less.
  • the thickness of the said protective layer is 100 nm-500 micrometers.
  • the protective layer is disposed in contact with the second electrode and the light extraction layer, wherein the difference in refractive index between the protective layer and the second electrode and the difference in refractive index between the protective layer and the light extraction layer is preferably 0.5 or less, and is 0.2 or less. It is preferable.
  • the organic light emitting diode according to the present invention may further include an adhesive layer between the second electrode formed on the organic material layer and the light extraction layer formed on the second electrode.
  • a material such as epoxy or acrylic may be used as the adhesive layer, and the oligomeric material may be applied to the light extraction film and then pressed on the second electrode layer, followed by curing with heat or ultraviolet rays.
  • the organic light emitting device may be protected from moisture or oxygen, and at the same time, mechanical breakdown that may occur when the light extraction layer is attached may be minimized.
  • the adhesive layer is disposed in contact with the second electrode and the light extraction layer, wherein the difference in refractive index between the adhesive layer and the second electrode and the difference in refractive index between the adhesive layer and the light extraction layer is preferably 0.5 or less, and is 0.2 or less. More preferred.
  • the organic material layer constituting the organic light emitting device of the present invention can be formed using structures and materials known in the art.
  • the organic material layer may be composed of a single layer, or may be composed of a multilayer structure of two or more layers.
  • the organic material layer may include a hole injection layer, a hole transport layer, a light emitting layer and an electron transport layer.
  • a doped light emitting layer was formed to a thickness of 300 kPa by vacuum deposition of a light emitting host material having a structure of Formula B and a dopant material having a structure of Formula C at a volume ratio of 94: 6 on the electron transport layer.
  • the deposition rate of the light emitting host was maintained at 1 1 / sec.
  • the hole transport layer of the compound having the structure of Formula (D) and the hole injection layer of the compound having the structure of Formula (E) were sequentially formed on the light emitting layer by thermal vacuum deposition to a thickness of 400 kPa and 700 kPa, respectively. At this time, the deposition rate was maintained at 1 ⁇ / sec.
  • IZO indium zinc oxide
  • a light extracting film arranged in a hexagonal shape at intervals of 53 ⁇ m was attached to a hemispherical lens having a radius of 25 ⁇ m having a refractive index of 1.5 in the form of FIG. 9 on an anode formed of IZO.
  • the illuminance of 19.6 lumens was observed. Therefore, the roughness of 28% was improved after attaching the light extraction film on the anode.
  • An organic light emitting device having a normal structure shown in FIG. 1 was fabricated on the same substrate used in the examples. Specifically, a cathode formed of IZO, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and lithium fluoride and aluminum was sequentially formed on the substrate. Each layer was formed under the same conditions as in the example. When a 50mA / cm 2 current was injected, the driving voltage was 5.5 V and an illuminance of 11.9 lumens was observed. In the organic light emitting device, when the light extraction film having the form of FIG. 9 was attached on the glass substrate and the same current was injected, the illuminance of 13.9 lumens was observed. Therefore, the roughness of 17% was improved after attaching the light extraction film on the glass substrate.
  • the organic light emitting device having an inverted structure is driven by a lower driving voltage and produces a large amount of light at the same current as compared with a device having a normal structure.
  • the light extraction layers were attached to these two devices, respectively, on the anode and below the glass substrate, the light extraction efficiency increased by 1.6 times when attached to the glass substrate. Therefore, it has been found that the light extraction efficiency is increased when the light extraction film is attached on the transparent electrode formed on the organic material layer, rather than the light extraction layer on the substrate.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 발명은 기판, 상기 기판 상에 구비된 제1 전극, 상기 제1 전극 상에 구비된 1층 이상의 유기물층, 상기 유기물층 상에 구비된 제2 전극, 및 상기 제2 전극 상부에 구비된 광 추출 층을 포함하는 유기 발광 소자 및 이의 제조방법을 제공한다. 본 발명에 따른 유기 발광 소자는 소자 내부에서 발생된 빛의 전반사를 최소화하여 최대한 외부로 끌어냄으로써 발광효율을 극대화할 수 있다.

Description

유기 발광 소자 및 이의 제조방법
본 발명은 유기 발광 소자 및 이의 제조방법에 관한 것이다. 더욱 구체적으로, 본 발명은 소자로부터 방출하는 광의 전반사를 최소화함으로써 외부 광 효율을 증가시킬 수 있는 유기 발광 소자 및 이의 제조방법에 관한 것이다.
본 출원은 2008년 5월 23일에 한국특허청에 제출된 한국 특허 출원 제10-2008-0048216호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
유기 발광 소자 (Organic Light Emitting Diode: OLED)는 도 1에 예시한 바와 같이 적절한 기계적 강도와 평탄도를 갖는 기판 (10) 위에 형성된 두 개의 전극, 즉 양극(20) 및 음극 (40)과, 그 사이에 박막으로 존재하는 다층 구조의 유기물 (30)로 구성되어 있다. 상기와 같은 유기 발광 소자는 천연색 평판 디스플레이의 제조에 상업적으로 사용되고 있으며, 최근에는 조명 용도로서의 응용을 위한 많은 연구가 이루어 지고 있다.
일반적으로 유기 발광 소자의 작동은 양극과 음극으로부터 각각 정공과 전자가 유기물로 주입되고 이러한 전하들이 재결합을 하면서 빛의 방출이 일어나는 현상을 이용한다. 이때 구동 전압은 양극 물질과 양극과 계면을 이루는 유기 물질 사이에 존재하는 정공 주입 장벽의 높이, 그리고 음극 물질과 음극과 계면을 이루는 유기 물질 사이에 존재하는 전자 주입 장벽의 높이에 의하여 영향을 받는다.
유기 발광 소자가 갖추어야 할 특성 중 중요한 것은 높은 전력 효율과 내구성으로 압축될 수 있다. 상기와 같은 특성의 달성을 위하여, 도 2에 예시한 바와 같이, 소자를 구성하는 유기물이 정공주입 층 (31), 정공수송 층 (32), 발광 층 (33), 전자수송 층 (34) 등의 다층으로 구조화되었고, 또한 각 층을 구성하는 유기물로서 새롭고 안정한 분자 구조의 물질이 계속 개발되고 있다.
상기와 같은 구조의 유기 발광 소자에 있어서, 기판의 하부에 광 추출 층을 구비함으로써 소자로부터 방출되는 빛이 기판과 공기 사이의 계면에서 전반사되는 것을 방지하기 위한 기술이 사용되고 있다. 도 3은 기판의 하부에 광 추출 층(90)이 구비된 유기발광소자를 예시한 것이다.
특히 발광 층은 다시 전자와 정공을 동시에 받아들이는 호스트 (host) 물질과 전자와 정공의 재조합에 의하여 형성된 엑씨톤 (exiton)을 빛으로 효율적으로 전환하는 역할을 하는 도판트 (dopant)로 구성될 수 있다. 기존에는 싱글렛 (singlet) 엑시톤을 빛으로 전환시키는 형광 도판트를 사용하여 왔으나 최근에는 트리플렛 (triplet) 엑시톤을 빛으로 전환하는 인광 도판트가 도입됨에 따라 양자 효율이 매우 높은 소자가 제작되고 있다.
최근에 본 발명자들은 양극으로부터 정공주입 층으로 정공이 주입되는 대신 정공주입 층과 정공수송 층 사이에서 전자 및 정공이 생성되어 각각 양극과 발광 층으로 이송되는 새로운 작동 방식을 발명하였다. 이러한 새로운 방식은 양극으로부터의 정공 주입 대신 유기물과 유기물 사이에서의 전하 생성 방식을 이용하게 되므로, 정공 주입 장벽을 극복할 필요성이 없음과 동시에 안정된 계면에서 발생하는 전하를 이용하게 되므로 낮은 구동 전압과 높은 안정성을 나타낸다.
음극과 양극은 각각 전자 및 정공을 유기 층으로 효과적으로 주입하기 위하여, 그 재료로서 다양한 물질들이 개발되고 있다. 유기 발광 소자는 소자로부터 방출하는 빛이 그 응용에 따라 기판을 통하여 나오거나 (bottom-emission), 기판의 반대쪽으로 나오도록 (top-emission) 제작된다. 빛이 방출되는 방향은 빛이 통과하는 전극의 투과율에 따라 결정된다. 알루미늄 등의 반사율이 높은 물질을 두껍게 사용할 경우 그 전극은 빛을 반사하게 되고, 금속 산화물 같은 투명도가 높은 물질이나 빛이 투과할 정도의 두께를 갖는 박막 금속을 사용할 경우는 빛이 그 전극을 통하여 빠져 나오게 된다. 또한 두 개의 전극이 모두 높은 투과도를 가질 경우 빛은 양면으로 발광할 수 있다.
음극에 대하여 구체적으로 설명하면, 유기 발광 소자에서 음극이 가져야 할 특성은 음극과 계면을 이루고 있는 전자수송 층에 전자를 원활히 주입시킬 수 있어야 한다. 음극으로부터 전자수송 층으로의 전자 주입은 전자수송 층의 LUMO (Lowest Unoccupied Molecular Orbital) 준위와 음극을 이루는 물질의 일 함수의 차이와 밀접한 관계가 있으며, 이러한 차이를 전자 주입 장벽이라 부른다. 유기 발광 소자의 구동 전압은 상기 전자 주입 장벽의 크기와 관계가 있다. 주입 장벽이 낮으면 구동 전압을 낮아지고, 반대로 주입 장벽이 높으면 구동전압이 높아진다. 그러므로 전자 주입 장벽의 크기를 낮추고 이에 따라 낮은 전압에서 소자를 구동하기 위하여 일 함수가 작은 금속을 사용한다. 이러한 목적에 부합되는 음극을 형성하는 물질로는 마그네슘 (Mg), 리튬 (Li), 세슘 (Cs), 칼슘 (Ca) 등이 있으며, 계면 접착력, 항 산화성, 반사율 증대 등의 목적으로 다른 금속과의 혼합물을 사용하기도 한다. 이러한 물질들은 일 함수가 4 eV 보다 작으므로 전자 수송 물질의 LUMO 준위와의 사이에 전자 주입 장벽이 작다. 이와는 다르게 알루미늄 (Al)과 같이 일 함수가 4 eV 보다 큰 금속을 음극으로도 사용한다. 그러나 알루미늄을 음극으로 사용할 경우 전자 주입 장벽이 크므로 높은 구동 전압이 필요하다. 이의 해결을 위하여 도 14에 나타낸 것과 같이 유기 층과 음극 (42) 사이에 박막 형태의 절연 물질(41)을 삽입함으로써 구동 전압을 크게 낮출 수 있음이 알려져 있다. 이러한 용도로 사용하는 대표적인 절연 물질로는 리튬 플로라이드 (LiF)가 있다. 두께가 5~30 Å인 박막으로 형성된 리튬 플루오라이드는 소자에 전압이 가해질 때 음극으로부터 전자수송 층으로의 전자 주입을 터널링 (tunneling) 이라는 현상으로 쉽게 해 주는 역할을 한다고 설명되기도 하고, 또는 리튬 플로라이드 다음에 증착되는 알루미늄과 화학적 반응을 통하여 낮은 일 함수를 갖은 리튬 원자를 생성하므로 전자 주입을 원활하게 한다고 설명되기도 한다.
상기 낮은 일 함수를 갖는 물질 또는 알루미늄을 함유한 음극은 열 진공 증착 공정에 의하여 형성된다. 일반적으로 금속 또는 금속 산화물들을 이용한 전극 형성 공정은 스퍼터링 (sputtering), 전자 빔 (e-beam), 씨비디 (CVD), 열 진공 증착 방식 등을 통하여 이루어질 수 있지만, 일반적으로 유기 발광 소자 제작에서 음극 형성 공정은 양극 형성 공정 및 유기물 형성 공정 후에 이루어지므로, 열 진공 증착과 같이 비교적 낮은 에너지를 이용한 음극 형성 공정이 그 이전에 증착된 유기물에 대한 손상을 최소화할 수 있다. 그러므로 유기 발광 소자의 제작에 사용되는 음극 물질은 열 진공 증착 공정을 이용할 수 있는 비교적 낮은 융점을 갖는 금속 중에서 선택된다.
또한, 기판을 기준으로 발광의 방향을 기판을 통하도록 유도하느냐 아니면 기판과 반대쪽으로 발광을 유도하느냐에 따라 음극 물질을 선택하여야 한다. 기판 방향으로 발광을 유도하려면, 기판 위에 위치하는 양극은 투명도가 높은 물질 중에서 선택하게 되며, 음극은 반사도가 높은 물질 중에서 선택하여 기판 반대 방향으로 발광하는 빛을 다시 기판 쪽으로 유도하는 역할을 하게 한다. 이러한 목적에 적합한 음극으로는 상기에서 언급된 알루미늄이 일반적으로 알려져서 널리 사용되고 있다. 반면 기판의 반대 방향으로 발광을 유도하려면 도 16에서 나타내었듯이 반사도가 높은 물질 (21) 위에 투명한 양극 (22)을 증착하거나 비교적 반사도가 높으며 일 함수가 큰 (>4.5 eV) 재료를 양극으로 사용함과 동시에, 도 15에서 나타낸 바와 같이, 반사도가 비교적 낮은 물질을 박막으로 형성시켜 음극을 형성하며 (43), 이때 박막의 음극에서 발생할 수 있는 표면 플라즈몬 (surface plasmon)을 억제하거나 박막으로 형성된 음극의 전도도를 높이기 위하여 적절한 두께의 투명한 고 유전성 물질 또는 투명 전도성 물질 층 (44)을 음극 위에 형성하여 투명도를 높일 수 있는 방법도 알려져 있다. 이러한 목적으로 사용된 대표적인 음극은 마그네슘 또는 마그네슘을 함유한 알로이 (alloy)이며, 고유전성 또는 투명 전도성 물질로는 일반적으로 금속 산화물, 금속 혼합물의 산화물, 실리콘계 산화물, 실리콘계 질화물 등이 사용되나, 이로 한정되지는 않는다.
단위 면적당 발생하는 빛의 양을 증가시키기 위하여 하나의 기판에서 두 개 이상의 유기 발광 소자 구조를 적층 형태로 쌓아 소자를 제작할 수 있다. 이러한 형태의 소자 구성은 두 개 이상의 유기 발광 소자 구조가 직렬 연결된 특성을 나타내며, 두 개의 외부 전극 (양극 및 음극)과 반복되는 유기 발광 소자의 유닛과 유닛 사이에 삽입된 전하생성 층 (charge generation layer)을 포함하는 것을 특징으로 하고 있다. 이러한 소자는 단위 면적당 생성되는 빛의 양을 높일 수 있는 특성을 나타내며, 구동 전압은 일반적인 유기 발광 소자의 구조에 비하여 반복 유닛의 숫자에 비례하여 높아지지만 주입되는 전류는 그에 반비례하여 낮아지므로 소자의 내구성을 증대 시킬 수 있는 효과가 있다.
유기 발광 소자는 위에서 언급된 바와 같이 서로 상이한 구조를 가질 수 있으며 그에 따라 서로 상이한 다양한 물질들을 사용할 수 있다. 그러나 그러한 상이한 구조 속에서도 몇 가지 공통점을 가지고 있다. 즉 유기 발광 소자를 제작하기 위한 적절한 기계적 강도를 갖는 기판이 필요하다는 사실과, 그 기판 위에 적어도 두 개 이상의 서로 다른 극성을 갖는 전극이 필수적이라는 사실과, 그러한 서로 다른 극성을 갖는 전극 사이에 전하를 수송하는 성질과 발광을 하는 성질을 가진 유기 물질이 박막 형태로 존재한다는 사실이다. 두 개의 반대 전극은 일반적으로 음극과 양극으로 나뉘어지며, 각각은 전자와 정공을 유기물로 주입 시키는 역할을 한다.
본 발명에서는 전술한 바와 같은 소자 내부에서 발생하는 빛의 전반사가 감소됨으로써 광 효율이 향상된 유기 발광 소자 및 이의 제조방법을 제공하는 것을 목적으로 한다. 구체적으로, 본 발명자들은 유리 또는 플라스틱 등으로 이루어진 기판과 공기 층 사이에서 발생하는 전반사 뿐만 아니라, 투명 전극과 기판 사이에서 발생하는 전반사가 광 효율에 큰 영향을 미치며, 이에 의하여 유기 발광 소자의 기판 하부에 광 추출 층을 형성하는 종래기술이 광 효율을 향상시키는데 한계가 있음을 밝혀내었다. 따라서, 이를 기초로 본 발명은 유리 또는 플라스틱 등으로 이루어진 기판과 공기 층 사이에서 발생하는 전반사 뿐만 아니라, 투명 전극과 기판 사이에서 발생하는 전반사를 동시에 최소화할 수 있는 구조의 유기 발광 소자 및 이의 제조방법을 제공하는 것을 목적으로 한다.
상기 목적을 달성하기 위하여, 본 발명은 기판, 상기 기판 상에 구비된 제1 전극, 상기 제1 전극 상에 구비된 1층 이상의 유기물층, 상기 유기물층 상에 구비된 제2 전극, 및 상기 제2 전극 상부에 구비된 광 추출 층을 포함하는 유기 발광 소자를 제공한다.
또한, 본 발명은 기판, 상기 기판 상에 구비된 제1 전극, 상기 제1 전극 상에 구비되고 1층 이상의 유기물층을 포함하는 2 이상의 발광 유닛, 상기 발광 유닛들 사이에 구비된 중간 전극, 상기 발광 유닛 상에 구비된 제2 전극, 및 상기 제2 전극 상에 구비된 광 추출 층을 포함하는 유기 발광 소자를 제공한다.
또한, 본 발명은 기판 상에 제1 전극을 형성하는 단계, 상기 제1 전극 상에 1층 이상의 유기물층을 형성하는 단계, 상기 유기물층 상에 제2 전극을 형성하는 단계, 및 상기 제2 전극 상부에 광 추출 층을 형성하는 단계를 포함하는 유기 발광 소자의 제조방법을 제공한다.
또한, 본 발명은 기판 상에 제1 전극을 형성하는 단계, 상기 제1 전극 상에 1층 이상의 유기물층을 포함하는 2 이상의 발광 유닛을 형성하는 단계, 상기 발광 유닛 중 어느 하나를 형성하고 그 위에 또 하나의 발광 유닛을 형성하기 전에 중간 전극을 형성하는 단계, 상기 발광 유닛 상에 제2 전극을 형성하는 단계, 및 상기 제2 전극 상에 광 추출 층을 형성하는 단계를 포함하는 유기 발광 소자의 제조방법을 제공한다.
본 발명에서는 종래기술과 같이 공기 층과 접하는 기판 부분에 광 추출 필름을 형성하는 대신, 기판 위에 형성된 두 개의 전극과 그 사이에 존재하는 적어도 하나 이상의 유기물로 형성된 유기 발광 소자에서 공기와 접촉하는 최 상부의 투명 전극 위에 광 추출 필름을 형성함으로써, 기존에 문제해결이 어려웠던 투명전극과 기판 사이의 전반사를 최소화 시킬 수 있는 고효율의 유기 발광 소자를 제공할 수 있다. 또한 종래기술에 따른 유기 발광 소자의 광 추출 필름은 최 외곽에 노출됨으로써 외부의 기계적 마찰에 의하여 그 표면이 손상될 수 있는 반면, 본 발명에 따른 유기 발광 소자의 광 추출 필름은 보호 기판 내부에 존재하므로 기계적 마찰에 노출되지 않음으로써 내구성이 증대된다.
도 1은 일반적인 유기발광소자의 구조를 예시한 것이다.
도 2는 도 1의 유기발광소자의 유기물층의 구조를 예시한 것이다.
도 3은 종래 기판 하부에 광 추출 층을 구비한 유기발광소자의 구조를 예시한 것이다.
도 4는 굴절율이 높은 매질로부터 굴절율이 낮은 매질로 이동하는 빛의 경로를 예시한 것이다.
도 5는 배면 발광(bottom emission)형 유기발광소자에서 유기물층에서 발생한 빛의 이동 경로를 나타낸 것이다.
도 6은 본 발명에 따른 상부 전극 상부에 광 추출 층을 구비한 인버티드(inverted) 구조의 유기발광소자의 구조를 예시한 것이다.
도 7 내지 도 12는 본 발명에 따른 유기발광소자의 상부 전극 상에 위치하는 광 추출 층의 형태를 예시한 것이다.
도 13은 본 발명에 따른 상부 전극 상부에 광 추출 층을 구비한 노말(normal) 구조의 유기발광소자의 구조를 예시한 것이다.
도 14 및 도 15는 유기발광소자의 음극의 구조를 예시한 것이다.
도 16은 유기발광소자의 양극의 종류를 예시한 것이다.
이하에서, 본 발명에 대하여 상세히 설명한다.
본 발명에 따른 유기 발광 소자는 기판, 및 상기 기판 상에 위치하는 2개의 전극, 및 상기 2개의 전극 사이에 구비된 유기물층을 포함하는 구조에 있어서, 종래기술과 같이 상기 기판의 하부가 아닌 상기 기판과 접하지 않는 제2 전극의 상부에 광 추출 층을 갖는 것을 특징으로 한다.
유기 발광 소자에서 빛은 유기물층에서 생성되며, 소자 구조의 종류에 따라 기판 방향으로 빛이 방출되는 경우, 기판의 반대 방향으로 방출되는 경우 또는 양쪽 방향으로 방출되는 경우로 나뉠 수 있다. 상기 유기물층에서 생성된 빛이 외부로 방출되기 위해서는 유기 발광 소자의 구조에 따라 몇 가지 계면을 통과해야 한다. 예를 들어 기판 방향으로 빛이 방출될 경우 유기 발광 층에서 생성된 빛은 정공수송 층, 정공 주입 층, 투명 전극 층, 기판 등을 통과하여 공기 중으로 방출되게 된다.
빛이 공기 층을 향하여 진행할 때 서로 다른 굴절률을 가진 물질 층들을 통과하게 되며, 도 4에서 나타낸 바와 같이 굴절률이 상대적으로 높은 층에서 낮은 층으로 진행될 때에는 그 굴절률의 차에 따른 전반사가 일어난다. 예를 들어, 유리 또는 플라스틱 기판은 굴절률이 약 1.5~1.6이고, 공기는 굴절률이 1이다. 유리 또는 플라스틱 기판으로부터 공기 층으로 빛이 나아갈 때에는 1/2n2 의 공식에 상응하는 빛만이 방출되고 나머지 빛은 전반사 (total internal reflection)에 의하여 굴절률이 높은 유리 또는 플라스틱 기판에 갇혀서 열로 변하게 된다.
이러한 전반사는 인접하는 매질 사이의 굴절률 차이가 크면 클수록 많이 일어나게 되며, 결과적으로 일반적인 유기 발광 소자 구조에서는 기판 (유리 또는 투명 플라스틱)과 공기 층 사이에서 가장 많이 일어나는 것으로 알려져 있다. 전반사는 한 매질 속의 임의의 점에서 발생된 빛이 그 보다 굴절률이 작은 매질로 진행할 때 그 점으로부터 두 매질의 경계 면에 내려진 수선과 그 점으로부터 두 매질의 임의의 경계면 사이에 존재하는 점을 연결하는 선이 이루는 각을 theta라고 정의할 때, 전반사를 일으키기 시작하는 각도는 theta C = sin-1 (n2/n1)이며, 여기서 n2는 굴절률이 상대적으로 낮은 매질이며 n1은 굴절률이 상대적으로 높은 매질이다 (도 4).
종래 기술에서는 유기 발광 소자의 기판과 공기 층 사이에서 발생하는 전반사에 의한 광 손실을 최소화하기 위해서, 도 3에 도시한 바와 같이 기판(10)의 하부에 광 추출 층(90)을 형성하는 방법을 이용하는 시도가 이루어졌다.
그러나, 본 발명에서는 상기와 같은 종래 기술을 이용하는 경우 유기 발광 소자의 광 추출 효율을 향상시키는데 큰 제한이 있다는 사실을 인식하였다. 구체적으로, 상기와 같은 기판과 공기 층 사이에서의 전반사 현상은 도 5에 나타낸 바와 같이, 기판(10)과 공기 층의 계면에서뿐만이 아니라 전극(20)과 기판(10)의 계면에서도 발생하게 되며, 이에 의하여 기판과 공기 층 사이에서의 전반사 뿐만 아니라, 투명 전극과 기판 사이에서의 전반사가 소자로부터 광을 추출하는 효율에 상당한 영향을 미친다는 사실을 인식하였다.
따라서, 종래 기술에 따르면 투명 전극과 기판 사이에서 발생하는 전반사에 따른 광 손실을 감소시킬 수 없었다. 즉, 일반적으로 사용되는 투명 양극 물질인 ITO나 IZO의 굴절률은 1.7~2.2으로, 유리 또는 플라스틱 기판의 굴절률 1.5~1.6보다 상대적으로 높으므로, 일부의 빛은 상기 투명 전극과 기판 사이에서도 전반사에 의하여 빛이 방출되지 않는 경우가 발생한다. 전극과 유리기판 사이 및 유리 기판과 공기층 사이에서 각각 광 손실이 약 50% 및 약 30%가 발생한다.
이에 본 발명에서는 유기 발광 소자의 기판의 하부가 아닌, 상부 전극 상에 광 추출 층을 형성함으로써, 소자와 공기 층 사이에서의 전반사 뿐만 아니라, 소자 내부에서의 투명 전극과 기판 사이에서의 전반사로 인한 광 손실을 방지할 수 있다. 도 6은 본 발명에 따른 소자의 구조를 예시한 것으로서, 기판 (10)의 상부에 반사율이 높은 금속을 포함한 음극 층 (40), 유기물 층 (30) 및 투과도가 높은 양극 층 (20)이 순차적으로 적층되어 있고, 양극 층 (20)에는 광 추출 층 (90)이 부착되어 있다.
본 발명에 따른 유기 발광 소자에 있어서, 상기 광 추출 층의 구조 또는 재질은 소자로부터 발생하는 광의 추출을 향상시킬 수 있는 것이라면 특별히 제한되지 않는다.
광 추출 층은 낮은 광흡수도를 갖는 것이 바람직하다. 이를 위하여 사용되는 물질로는 자유로운 성형을 위하여 고분자 물질로 이루어지는 것이 바람직하며, 가시광선 영역의 파장에서 투과도가 >50%인 것이 바람직하고, 더욱 바람직하게는 투과도가 >80%인 것이 좋다. 상기 고분자에 고분자와 굴절률의 차이가 0.1 이상인 필러 (filler)를 첨가하여 산란을 일으킴으로써 광 추출 효율을 높이고자 할 경우는 필름을 형성하는 고분자와 필러를 형성하는 물질 각각의 흡수율이 <50%인 것이 바람직하며 더욱 바람직하게는 <30%인 것이 좋다.
상기 광 추출 층은 본 발명에 따른 소자의 기판과 접하지 않는 상부 전극(제2 전극)의 굴절율과 공기 층의 굴절율 사이의 굴절율을 갖는 재료로 형성할 수 있다. 또한, 상기 광 추출 층의 광 추출 효율을 높이기 위하여 광 추출 층의 평균 굴절률이 1.3 이상 2.5 이하인 것이 바람직하다. 광 추출 층의 굴절률이 높으면 높을수록 광 추출 효율은 증가될 수 있으며 이를 위하여 광 추출 층을 형성하는 고분자의 굴절률을 높이는 것이 바람직하다. 고분자의 광 굴절률은 고분자를 구성하는 원자, 작용 기, 밀도 등에 의하여 영향을 받을 수 있으며, 단순히 탄소와 수소로 이루어진 고분자에 비하여 원자번호가 큰 산소나 질소 등의 원자가 포함된 고분자를 사용하는 것이 더욱 바람직하다. 또한 황 또는 브롬과 같은 원자를 고분자 분자 구조에 포함시킴으로써 굴절률을 더욱 높일 수 있다.
상기 광 추출 층은 제2 전극과 접하여 배치되며, 이 때 광 추출 층과 제2 전극 사이의 굴절율 차이는 0.5 이하인 것이 바람직하고, 0.2 이하인 것이 더욱 바람직하다.
상기 광 추출 층은 전반사를 감소시킬 수 있는 표면 요철 구조, 렌즈 구조, 또는 굴절율이 상이한 재료의 혼합 층 구조, 단면이 역사다리꼴 형상인 구조로 형성할 수 있으나, 이들 예로만 한정되는 것은 아니다. 상기 광 추출 층은 다층의 구조를 가질 수 있으며 상부 전극인 제2 전극과 부착되는 지지 층과 광 추출을 위한 형태가 형성된 층으로 구분될 수 있다.
구체적으로, 도 7에 나타낸 바와 같이, 상부 전극과 공기가 접하는 면에 요철을 형성한 필름을 부착하거나(90a) 또는 상부 전극에 요철을 형성하여 빛의 산란을 발생시킴으로써 전반사되는 빛을 외부로 방출시키는 방법이 있다.
또한, 도 8에 나타낸 바와 같이, 상부 전극의 외부에 반구면 렌즈 형상의 필름을 부착하거나 상부 전극 위에 직접 반구면 렌즈 형상을 형성함으로써(90b) 발생되는 빛이 공기 층을 만날 때 임계각(critical angle) 이내로 만나게 하는 확률을 높임으로써 전반사를 줄이는 방법이 있다.
상기 광 추출 층은 또한 도 9에 나타낸 바와 같이 상기 반구 형태를 갖는 패턴을 반복적으로 형성한 필름을 사용할 수 있으며(90c), 반구의 반지름과 높이, 그리고 반구형 렌즈 사이의 간격들을 조절하여 목적에 맞게 최적화할 수 있다.
상기 반구 형태 이외에도, 도 10에 나타낸 바와 같이, 원뿔 형태의 상단을 제거하여 뒤집어 놓은 형태의 모양, 즉 역사다리꼴 단면형상을 형성한 필름(90d)을 부착하여 사용할 수 있으며, 도 11에서 나타낸 바와 같이 이러한 모양을 반복적으로 형성한 필름 (90e)을 부착하여 사용할 수 있다.
또는, 도 12에서 나타낸 바와 같이, 굴절률이 다른 2종 이상의 물질을 함유한 필름(90f)을 상부 전극에 부착함으로써 난반사를 일으키고 이를 이용하여 전반사를 최소화함으로써 광 추출 효율을 높일 수 있는 방법도 있다.
본 발명에 있어서, 광 추출 층을 제외한 유기 발광 소자의 구성에 대하여 설명하면 하기와 같다.
본 발명의 일 실시상태에 따른 유기 발광 소자는 기판, 상기 기판 상에 구비된 제1 전극, 상기 제1 전극 상에 구비된 1층 이상의 유기물층, 및 상기 유기물층 상에 구비된 제2 전극을 포함한다. 이 때, 상기 제2 전극 상부에 광 추출 층이 구비된다.
본 발명의 또 하나의 실시상태에 따른 유기 발광 소자는 기판, 상기 기판 상에 구비된 제1 전극, 상기 제1 전극 상에 구비되고 1층 이상의 유기물층을 포함하는 2 이상의 발광 유닛, 상기 발광 유닛들 사이에 구비된 중간 전극, 및 상기 발광 유닛 상에 구비된 제2 전극을 포함한다. 이 때, 상기 제2 전극 상에 광 추출 층이 구비된다.
본 발명에 따른 유기 발광 소자는 전면 발광(top emission)형 또는 양면 발광형일 수 있다. 또한, 본 발명에 따른 유기 발광 소자는 기판 위에 양극이 먼저 형성된 후, 정공주입 층, 정공수송 층, 발광 층, 전자수송 층 등의 유기물층이 형성되고 마지막으로 음극이 형성되는 순서로 제작되는 노말 OLED(normal OLED) 구조일 수도 있고(도 13참조), 그의 반대 순서, 즉 기판 위에 음극, 전자수송 층, 발광 층, 정공수송 층, 정공주입 층 등의 유기물층 및 양극의 순서로 형성된 인버티드 OLED(inverted OLED) 구조일 수도 있다. 본 발명에서는 상부 전극이 투명 양극인 인버티드 OLED 구조인 것이 바람직하다.
본 발명에 있어서, 상기 제 1 전극은 반사율이 높은 금속으로 형성될 수 있으며, 일 함수가 4.5 eV 보다 작은 물질을 사용하는 것이 바람직하다. 구체적인 예로는 알루미늄, 칼슘, 마그네슘, 은, 세슘 (Cs), 리튬 또는 이들을 포함하는 알로이 (alloy)들이 사용될 수 있다. 또는, 유기물층 내에 포함되는 전자 수송 물질에 상기 일함수가 낮은 물질이나 n-type 성질을 갖는 유기물을 도핑함으로써 제1 전극을 투명한 산화물, 즉 ITO (indium tin oxide)나 IZO (indium zinc oxide) 등을 사용 가능하게 함으로써 제1 전극과 제 2 전극 양쪽으로 동시에 발광을 유도할 수 있다.
도 14와 같이, 상기 제1 전극이 음극(42)인 경우, 음극과 유기물층 사이에 박막 형태의 절연 물질(41)을 삽입함으로써 구동 전압을 낮출 수 있다. 이러한 용도로 사용하는 대포적인 절연 물질로는 리튬 플루오라이드(LiF)가 있으나, 이에만 한정되는 것은 아니다. 두께가 5~30 Å인 박막으로 형성된 리튬 플루오라이드는 소자에 전압이 가해질 때 음극으로부터 전자수송 층으로의 전자 주입을 터널링 (tunneling) 이라는 현상으로 쉽게 해 주는 역할을 한다고 설명되기도 하고, 또는 리튬 플로라이드 다음에 증착되는 알루미늄과 화학적 반응을 통하여 낮은 일 함수를 갖은 리튬 원자를 생성하므로 전자 주입을 원활하게 한다고 설명되기도 한다.
상기 제 2 전극은 바람직하게는 투과도가 높은 재료로 형성할 수 있으며, 그 예로는 금속 또는 합금의 산화물로 형성할 수 있다. 구체적으로, 인듐 주석의 산화물, 인듐 아연의 산화물, 상기 산화물에 알루미늄 등 다른 금속 또는 비금속 또는 양쪽성 원소가 첨가된 산화물이 사용될 수 있다. 제2 전극으로는 전도성 고분자도 사용될 수 있다. 또한, 제2 전극은 금속 박막으로 형성될 수도 있다. 상기 제2 전극은 광투과도가 50% 이상인 것이 바람직하다. 상기 제2 전극의 굴절율은 특별히 한정되지 않으나, 투명 전도성 산화물로 형성되는 경우 그 굴절율은 1.7 내지 2.3내이다.
상기 낮은 일 함수를 갖는 물질 또는 알루미늄을 함유한 전극은 열 진공 증착 공정에 의하여 형성될 수 있고, 금속 또는 금속 산화물들을 이용한 전극 형성 공정은 스퍼터링 (sputtering), 전자 빔 (e-beam), 씨비디 (CVD), 열 진공 증착 방식 등을 통하여 이루어질 수 있으나, 이에만 한정되는 것은 아니다.
본원 발명에 따른 유기 발광 소자가 전면 발광형인 경우, 기판의 반대쪽에 위치하는 제2 전극은 투명도가 높은 물질 중에서 선택할 수 있다. 이에 의하여, 기판 위에 위치하는 제1 전극은 반사도가 높은 물질 중에서 선택하여 기판 방향으로 발광하는 빛을 기판 반대 방향으로 유도할 수 있다. 전면 발광형 유기 발광 소자에 있어서, 제1 전극이 양극인 경우 도 16과 같이 반사도가 높은 물질 (21) 위에 투명한 양극(22)을 증착하거나 비교적 반사도가 높으며 일 함수가 큰 (>4.5 eV) 재료를 양극으로 사용할 수 있고, 이 때 도 15에 나타낸 바와 같이, 반사도가 비교적 낮은 물질을 박막으로 형성시켜 제2 전극인 음극을 형성할 수 있다. 이때 박막인 음극에서 발생할 수 있는 표면 플라즈몬 (surface plasmon)을 억제하거나 박막으로 형성된 음극의 전도도를 높이기 위하여 적절한 두께의 투명한 고 유전성 물질 또는 투명 전도성 물질층(44)을 음극 위에 형성하여 투명도를 높일 수 있다. 이러한 목적으로 사용된 대표적인 음극은 마그네슘 또는 마그네슘을 함유한 알로이 (alloy)이며, 고유전성 또는 투명 전도성 물질로는 금속 산화물, 금속 혼합물의 산화물, 실리콘계 산화물, 실리콘계 질화물 등이 사용되나, 이로 한정되지는 않는다.
상기 중간 전극은 상기 제1 전극 또는 제2 전극 재료로 예시된 것들을 사용할 수 있다.
본 발명에 따른 유기 발광 소자는 유기물층 위에 형성된 제 2 전극과 제2 전극 위에 형성된 광 추출 층 사이에 투명한 보호 층을 추가로 포함할 수 있다. 이때 투명한 보호 층으로는 실리콘 산화물 (silicon oxide), 실리콘 질화물 (silicon nitride), 실리콘 산화 질화물 (silicon oxynitride) 등을 CVD (Chemical Vapor Deposition) 등의 증착 공정을 통하여 형성하여 사용할 수 있다. 이러한 방법을 통하여 유기 발광 소자를 수분이나 산소로부터 보호함과 동시에 광 추출 층의 부착 시 발생할 수 있는 기계적 파괴를 최소화 할 수 있다. 또한 이렇게 증착 형성된 실리콘 산화물, 실리콘 질화물 또는 실리콘 산화 질화물들은 화학 양론적인 비율 조작을 통하여 굴절률을 조절할 수 있으며, 이를 최적화하여 광 추출 효율을 극대화 할 수 있다. 상기 보호 층의 굴절율은 1.3이상 2.5이하인 것이 바람직하다. 상기 보호 층의 두께는 100nm 내지 500㎛인 것이 바람직하다.
상기 보호 층은 상기 제2 전극과 상기 광 추출 층과 접하여 배치되며, 이 때 보호 층과 제2 전극 사이의 굴절율 차이 및 보호 층과 광 추출 층 사이의 굴절율 차이는 0.5 이하인 것이 바람직하고, 0.2 이하인 것이 바람직하다.
본 발명에 따른 유기 발광 소자는 유기물층 위에 형성된 제2 전극과 제2 전극 위에 형성된 광 추출 층 사이에 접착 층을 추가로 포함할 수 있다. 이때 접착 층으로는 에폭시, 아크릴 등의 소재를 사용할 수 있으며 올리고머 형태의 소재를 광 추출 필름에 바른 뒤 제2 전극 층에 압착한 후 열 또는 자외선으로 경화하여 부착할 수 있다. 이러한 방법을 통하여 유기 발광 소자를 수분이나 산소로부터 보호함과 동시에 광 추출 층의 부착 시 발생할 수 있는 기계적 파괴를 최소화 할 수 있다.
상기 접착 층은 상기 제2 전극과 상기 광 추출 층과 접하여 배치되며, 이 때 접착 층과 제2 전극 사이의 굴절율 차이 및 접착 층과 광 추출 층 사이의 굴절율 차이는 0.5 이하인 것이 바람직하고, 0.2 이하인 것이 더욱 바람직하다.
본 발명의 유기 발광 소자를 구성하는 유기물층은 당기술분야에 알려져 있는 구조 및 재료를 이용하여 형성할 수 있다. 상기 유기물층은 단일층으로 구성될 수도 있고, 2층 이상의 다층 구조로 구성될 수도 있다. 예컨대, 상기 유기물층은 정공주입층, 정공수송층, 발광층 및 전자수송층을 포함할 수 있다.
이하, 실시예를 통하여 본 발명을 보다 상세히 설명한다. 그러나, 이하의 실시예는 본 발명을 예시하기 위한 것일 뿐 본 발명의 범위가 한정될 것을 의도한 것은 아니다.
실시예 1
투명한 유리 기판(Corning 7059 glass) 위에 알루미늄(700Å)과 리튬 프로라이드(LiF)를 차례로 열 진공 증착하여 음극을 형성하였다. 상기 음극 위에 9,10-비스-2-나프틸-2-[4-(N-페닐벤조 이미다조일)페닐]안트라센 (화학식 A)을 1 Å/sec의 증착 속도를 유지하며 200Å 두께로 전자수송 층을 형성하였다. 상기 전자 수송 층 위에 발광 층 역할을 하는 화학식 B의 구조를 갖는 발광 호스트 물질과 화학식 C의 구조를 갖는 도판트 물질을 94:6의 부피 비율로 진공 증착하여 도핑된 발광층을 300 Å의 두께로 형성하였으며, 발광 호스트의 증착 속도는 1 Å/sec을 유지하였다. 상기 발광 층 위에 순차적으로 화학식 D의 구조를 갖는 화합물의 정공수송 층과 화학식 E의 구조를 갖는 화합물의 정공주입 층을 각각 400Å과 700Å의 두께로 열 진공 증착 방법을 이용하여 형성하였다. 이때 증착 속도는 1 Å/sec을 유지하였다. 상기 정공주입 층 위에 1750Å 두께의 IZO (indium zinc oxide)를 스퍼터링 공정을 이용하여 증착하여 양극을 형성하였다. 상기와 같이 제작된 유기 발광소자는 도 6에서 나타낸 인버티드 OLED 소자 구조를 특징으로 하고 있으며 발광 면적은 4 mm2가 되도록 제작하였다. 상기 유기 발광 소자에 50mA/cm2의 전류를 주입하였을 때, 구동 전압은 4.8 V 이였으며 15.3 lumen의 조도가 관측 되었다. 상기 유기 발광 소자에서 IZO로 형성된 양극 위에 도 9의 형태를 가진 굴절율 1.5의 25㎛ 반경의 반구형 렌즈를 53㎛ 간격으로 육각형 형태로 배열된 광 추출 필름을 부착하였다. 광 추출 층의 부착 전과 동일한 전류를 주입하였을 때 19.6 lumen의 조도가 관측 되었다. 그러므로 양극 위에 광 추출 필름을 부착한 후 28%의 조도가 향상되었다.
Figure PCTKR2009002734-appb-I000001
비교예
실시예에서 사용한 동일한 기판 위에 도 1에서 나타낸 노말(normal) 구조의 유기 발광 소자를 제작하였다. 구체적으로, 기판 위에 순차적으로 양극인 IZO, 정공 주입 층, 정공 수송 층, 발광 층, 전자 수송 층, 그리고 리튬 플로라이드와 알루미늄으로 구성된 음극을 형성하였다. 각각의 층들은 실시 예와 동일한 조건으로 형성하였다. 50mA/cm2의 전류를 주입하였을 때 구동 전압은 5.5 V였으며 11.9 lumen의 조도가 관측 되었다. 상기의 유기 발광 소자에서 도 9의 형태를 가진 광 추출 필름을 유리 기판 위에 부착한 후 동일한 전류를 주입하였을 때 13.9 lumen의 조도가 관측 되었다. 그러므로 유리 기판 위에 광 추출 필름을 부착한 후 17%의 조도가 향상 되었다.
상기 실시예 및 비교예의 결과에서 보여주듯이 인버티드 구조를 갖는 유기 발광 소자는 노말 구조를 갖는 소자에 비하여 낮은 구동 전압에 의하여 구동이 됨과 동시에 동일 전류에서 많은 광량을 생산한다. 이러한 두 가지 소자에 광 추출 층을 각각 양극 위와 유리 기판 아래에 부착하였을 때 광 추출 효율은 양극에 부착된 경우가 유리 기판에 부착하였을 때 보다 1.6배 증가하였다. 그러므로 기판 위에 광 추출 층을 부착하는 경우보다 유기물층 위에 형성되어 있는 투명 전극 위에 광 추출 필름을 부착하는 경우의 광 추출 효율이 크게 증가함을 발견하였다.

Claims (20)

  1. 기판, 상기 기판 상에 구비된 제1 전극, 상기 제1 전극 상에 구비된 1층 이상의 유기물층, 상기 유기물층 상에 구비된 제2 전극, 및 상기 제2 전극 상부에 구비된 광 추출 층을 포함하는 유기 발광 소자.
  2. 기판, 상기 기판 상에 구비된 제1 전극, 상기 제1 전극 상에 구비되고 1층 이상의 유기물층을 포함하는 2 이상의 발광 유닛, 상기 발광 유닛들 사이에 구비된 중간 전극, 상기 발광 유닛 상에 구비된 제2 전극, 및 상기 제2 전극 상에 구비된 광 추출 층을 포함하는 유기 발광 소자.
  3. 청구항 1 또는 청구항 2에 있어서, 상기 광 추출 층은 상기 제2 전극과 접하여 배치되며, 상기 광 추출 층과 상기 제2 전극의 굴절율 차이는 0.5 이하인 유기 발광 소자.
  4. 청구항 1 또는 청구항 2에 있어서, 상기 광 추출 층은 가시광선 영역의 파장에서 투과도가 50% 초과인 것인 유기 발광 소자.
  5. 청구항 1 또는 청구항 2에 있어서, 상기 광 추출 층은 평균 굴절률이 1.3이상 2.5이하인 것인 유기 발광 소자.
  6. 청구항 1 또는 청구항 2에 있어서, 상기 광 추출 층은 표면 요철 구조, 렌즈 구조, 굴절율이 상이한 재료의 혼합 층 구조, 또는 단면이 역사다리꼴 형상인 구조인 것인 유기 발광 소자.
  7. 청구항 1 또는 청구항 2에 있어서, 상기 광 추출 층은 제2 전극과 부착되는 지지 층과 광 추출을 위한 구조를 갖는 층을 포함하는 다층 구조인 것인 유기 발광 소자.
  8. 청구항 1 또는 청구항 2에 있어서, 전면 발광(top emission)형 또는 양면 발광형인 유기 발광 소자.
  9. 청구항 1 또는 청구항 2에 있어서, 인버티드 OLED(inverted OLED) 구조인 유기 발광 소자.
  10. 청구항 1 또는 청구항 2에 있어서, 상기 제1 전극과 상기 유기물층 사이에 절연 물질 박막이 구비된 것인 유기 발광 소자.
  11. 청구항 1 또는 청구항 2에 있어서, 상기 제2 전극은 금속 산화물 또는 합금의 산화물로 형성된 것인 유기 발광 소자.
  12. 청구항 1 또는 청구항 2에 있어서, 상기 제2 전극은 전도성 고분자로 형성된 것인 유기 발광 소자.
  13. 청구항 1 또는 청구항 2에 있어서, 상기 제2 전극은 굴절율 1.7 내지 2.3인 물질로 이루어진 것인 유기 발광 소자.
  14. 청구항 1 또는 청구항 2에 있어서, 상기 제2 전극과 상기 광 추출 층 사이에 보호 층을 추가로 포함하는 유기 발광 소자.
  15. 청구항 14에 있어서, 상기 보호 층은 실리콘 산화물 (silicon oxide), 실리콘 질화물 (silicon nitride), 또는 실리콘 산화 질화물 (silicon oxynitride)을 증착하여 형성한 층인 유기 발광 소자.
  16. 청구항 14에 있어서, 상기 보호 층은 제2 전극 및 광 추출 층과 각각 접하여 배치되며, 보호 층과 제2 전극 사이의 굴절율 차이 및 보호 층과 광 추출 층 사이의 굴절율 차이는 각각 0.5 이하인 것인 유기 발광 소자.
  17. 청구항 1 또는 청구항 2에 있어서, 상기 제2 전극과 상기 광 추출 층 사이에 접착 층을 추가로 포함하는 유기 발광 소자.
  18. 청구항 17에 있어서, 상기 접착 층은 제2 전극 및 광 추출 층과 각각 접하여 배치되며, 접착 층과 제2 전극 사이의 굴절율 차이 및 접착 층과 광 추출 층 사이의 굴절율 차이는 각각 0.5 이하인 것인 유기 발광 소자.
  19. 기판 상에 제1 전극을 형성하는 단계, 상기 제1 전극 상에 1층 이상의 유기물층을 형성하는 단계, 상기 유기물층 상에 제2 전극을 형성하는 단계, 및 상기 제2 전극 상부에 광 추출 층을 형성하는 단계를 포함하는 유기 발광 소자의 제조방법.
  20. 기판 상에 제1 전극을 형성하는 단계, 상기 제1 전극 상에 1층 이상의 유기물층을 포함하는 2 이상의 발광 유닛을 형성하는 단계, 상기 발광 유닛 중 어느 하나를 형성하고 그 위에 또 하나의 발광 유닛을 형성하기 전에 중간 전극을 형성하는 단계, 상기 발광 유닛 상에 제2 전극을 형성하는 단계, 및 상기 제2 전극 상에 광 추출 층을 형성하는 단계를 포함하는 유기 발광 소자의 제조방법.
PCT/KR2009/002734 2008-05-23 2009-05-22 유기 발광 소자 및 이의 제조방법 WO2009142462A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN200980118792XA CN102037580A (zh) 2008-05-23 2009-05-22 有机发光二极管及其制备方法
JP2011510431A JP2011521423A (ja) 2008-05-23 2009-05-22 有機発光素子およびその製造方法
US12/994,082 US8455896B2 (en) 2008-05-23 2009-05-22 Organic LED and manufacturing method thereof
EP09750784A EP2282361A4 (en) 2008-05-23 2009-05-22 ORGANIC LED AND MANUFACTURING METHOD THEREFOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2008-0048216 2008-05-23
KR1020080048216A KR101115154B1 (ko) 2008-05-23 2008-05-23 유기 발광 소자 및 이의 제조방법

Publications (2)

Publication Number Publication Date
WO2009142462A2 true WO2009142462A2 (ko) 2009-11-26
WO2009142462A3 WO2009142462A3 (ko) 2010-02-18

Family

ID=41340699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/002734 WO2009142462A2 (ko) 2008-05-23 2009-05-22 유기 발광 소자 및 이의 제조방법

Country Status (6)

Country Link
US (1) US8455896B2 (ko)
EP (1) EP2282361A4 (ko)
JP (2) JP2011521423A (ko)
KR (1) KR101115154B1 (ko)
CN (1) CN102037580A (ko)
WO (1) WO2009142462A2 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012087067A2 (ko) * 2010-12-24 2012-06-28 주식회사 엘지화학 유기 발광 소자 및 이의 제조방법
JP2016028393A (ja) * 2010-07-26 2016-02-25 株式会社半導体エネルギー研究所 発光装置、照明装置および発光装置の作製方法
JP2016048694A (ja) * 2010-07-26 2016-04-07 株式会社半導体エネルギー研究所 発光装置
EP2590239A4 (en) * 2010-06-29 2017-10-18 Zeon Corporation Surface light source device and lighting apparatus

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101104765B1 (ko) * 2009-12-11 2012-01-12 호서대학교 산학협력단 유기발광다이오드의 광간섭 반사광 방지 박막
KR101084263B1 (ko) * 2009-12-14 2011-11-16 삼성모바일디스플레이주식회사 유기 발광 표시 장치
KR20120118307A (ko) * 2011-04-18 2012-10-26 삼성코닝정밀소재 주식회사 투명전극용 산화아연계 박막 제조방법 및 이에 의해 제조된 투명전극용 산화아연계 박막
KR20130015099A (ko) * 2011-08-02 2013-02-13 한국전자통신연구원 유기 발광 소자
JP6000703B2 (ja) * 2011-08-12 2016-10-05 キヤノン株式会社 有機el素子、及びこれを用いた発光装置、画像形成装置、発光素子アレイ、撮像装置、表示装置
US9601719B2 (en) * 2011-08-31 2017-03-21 Oledworks Gmbh Light source having an outsource device
KR20130062107A (ko) 2011-12-02 2013-06-12 삼성전자주식회사 직물형 유기 발광소자 및 그 제조방법
KR101614035B1 (ko) * 2012-05-31 2016-04-20 엘지디스플레이 주식회사 유기 발광 소자 및 이의 제조방법
WO2013190656A1 (ja) * 2012-06-20 2013-12-27 パイオニア株式会社 有機エレクトロルミネッセンス素子
JP6356124B2 (ja) 2012-07-18 2018-07-11 エルジー ディスプレイ カンパニー リミテッド 有機発光素子
US9379343B2 (en) * 2012-09-10 2016-06-28 Samsung Electronics Co., Ltd. Light transmissive electrode, organic photoelectric device, and image sensor
WO2014069565A1 (ja) * 2012-10-31 2014-05-08 昭和電工株式会社 有機el素子並びにそれを備えた画像表示装置及び照明装置
KR101502206B1 (ko) * 2012-11-20 2015-03-12 삼성디스플레이 주식회사 발광효율이 향상된 유기발광 표시장치
KR101943349B1 (ko) * 2012-11-26 2019-04-17 주성엔지니어링(주) Oled 조명장치
KR101715843B1 (ko) * 2012-12-14 2017-03-14 삼성전자주식회사 광추출 효율이 향상된 발광 소자
KR101501828B1 (ko) * 2013-05-27 2015-03-12 순천향대학교 산학협력단 유기발광다이오드
CN103346269B (zh) * 2013-07-15 2016-03-09 广州新视界光电科技有限公司 一种半透明电极及具有该半透明电极的有机电致发光器件
KR102322966B1 (ko) * 2013-12-30 2021-11-10 엘지디스플레이 주식회사 유기발광표시장치 및 그 제조방법
CN104882523A (zh) * 2014-02-27 2015-09-02 山东浪潮华光光电子股份有限公司 一种钝化层折射率渐变的GaN基发光二极管芯片及其制备方法
CN104795430A (zh) * 2015-04-14 2015-07-22 京东方科技集团股份有限公司 一种有机发光显示器件及其制作方法
CN104766927B (zh) 2015-04-30 2018-01-02 京东方科技集团股份有限公司 有机发光二极管器件及其制备方法
KR102354235B1 (ko) 2015-10-27 2022-01-21 동우 화인켐 주식회사 유기발광소자
CN107046047A (zh) * 2016-08-19 2017-08-15 广东聚华印刷显示技术有限公司 印刷型电致发光器件的像素单元及其制备方法和应用
CN107359265B (zh) * 2016-12-22 2019-06-11 广东聚华印刷显示技术有限公司 有机发光器件及其光取出组件
KR102576752B1 (ko) 2018-06-29 2023-09-07 엘지디스플레이 주식회사 유기 발광 소자를 이용한 조명 장치
KR20200058665A (ko) 2018-11-19 2020-05-28 삼성디스플레이 주식회사 표시장치
CN110828683B (zh) * 2019-10-28 2021-07-06 深圳市华星光电半导体显示技术有限公司 Oled器件及其制备方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5707745A (en) 1994-12-13 1998-01-13 The Trustees Of Princeton University Multicolor organic light emitting devices
KR100581850B1 (ko) 2002-02-27 2006-05-22 삼성에스디아이 주식회사 유기 전계 발광 표시 장치와 그 제조 방법
US6833667B2 (en) * 2002-02-27 2004-12-21 Matsushita Electric Industrial Co., Ltd. Organic electroluminescence element and image forming apparatus or portable terminal unit using thereof
JP4239499B2 (ja) 2002-07-12 2009-03-18 パナソニック株式会社 有機エレクトロルミネッセンス素子、それを用いた画像形成装置、携帯端末、有機エレクトロルミネッセンス素子の製造方法
JP2004031221A (ja) * 2002-06-27 2004-01-29 Fuji Photo Film Co Ltd 有機エレクトロルミネッセンス素子
JP4310995B2 (ja) * 2002-11-11 2009-08-12 パナソニック電工株式会社 有機電界発光素子
JP4350996B2 (ja) 2002-11-26 2009-10-28 日東電工株式会社 有機エレクトロルミネッセンス素子、面光源および表示装置
WO2004089042A1 (ja) 2003-03-12 2004-10-14 Mitsubishi Chemical Corporation エレクトロルミネッセンス素子
JP4465992B2 (ja) * 2003-06-27 2010-05-26 カシオ計算機株式会社 El表示装置
JP2005243549A (ja) * 2004-02-27 2005-09-08 Sony Corp 表示素子および表示装置並びに撮像装置
JP5005164B2 (ja) * 2004-03-03 2012-08-22 株式会社ジャパンディスプレイイースト 発光素子,発光型表示装置及び照明装置
KR100730114B1 (ko) * 2004-04-19 2007-06-19 삼성에스디아이 주식회사 평판표시장치
TWI279159B (en) * 2004-09-27 2007-04-11 Toshiba Matsushita Display Tec Organic EL display
KR100683693B1 (ko) * 2004-11-10 2007-02-15 삼성에스디아이 주식회사 발광 장치
JP4945089B2 (ja) * 2005-05-13 2012-06-06 株式会社日立製作所 照明装置及びその製造方法
EP1760800B1 (en) * 2005-09-02 2017-01-04 OSRAM OLED GmbH Radiation emitting device and method of manufacturing the same
JP5303726B2 (ja) 2006-02-07 2013-10-02 学校法人早稲田大学 有機エレクトロルミネッセンス素子
JP2007265987A (ja) * 2006-03-03 2007-10-11 Semiconductor Energy Lab Co Ltd 発光素子、発光装置、発光装置の作製方法及びシート状のシール材
JP2007287652A (ja) * 2006-03-23 2007-11-01 Fujifilm Corp 発光素子
JP2007287486A (ja) 2006-04-17 2007-11-01 Aitesu:Kk 透明基板と電極の間に微細構造体を有する有機el素子
JP5031445B2 (ja) 2006-06-02 2012-09-19 株式会社半導体エネルギー研究所 発光素子、発光装置並びに電子機器
EP1863105B1 (en) * 2006-06-02 2020-02-19 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, and electronic device
JP4464370B2 (ja) * 2006-06-07 2010-05-19 株式会社日立製作所 照明装置及び表示装置
JP5239145B2 (ja) * 2006-10-16 2013-07-17 凸版印刷株式会社 光学用部品およびその製造方法
JP2008108503A (ja) * 2006-10-24 2008-05-08 Fuji Electric Holdings Co Ltd 白色発光有機el素子の製造方法
EP2258007A2 (en) * 2008-02-21 2010-12-08 Konarka Technologies, Inc. Tandem photovoltaic cells

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2590239A4 (en) * 2010-06-29 2017-10-18 Zeon Corporation Surface light source device and lighting apparatus
JP2016028393A (ja) * 2010-07-26 2016-02-25 株式会社半導体エネルギー研究所 発光装置、照明装置および発光装置の作製方法
JP2016048694A (ja) * 2010-07-26 2016-04-07 株式会社半導体エネルギー研究所 発光装置
WO2012087067A2 (ko) * 2010-12-24 2012-06-28 주식회사 엘지화학 유기 발광 소자 및 이의 제조방법
WO2012087067A3 (ko) * 2010-12-24 2012-10-26 주식회사 엘지화학 유기 발광 소자 및 이의 제조방법
US9349964B2 (en) 2010-12-24 2016-05-24 Lg Chem, Ltd. Organic light emitting diode and manufacturing method thereof

Also Published As

Publication number Publication date
US8455896B2 (en) 2013-06-04
KR20090122022A (ko) 2009-11-26
US20110073897A1 (en) 2011-03-31
KR101115154B1 (ko) 2012-02-24
EP2282361A2 (en) 2011-02-09
JP2011521423A (ja) 2011-07-21
WO2009142462A3 (ko) 2010-02-18
CN102037580A (zh) 2011-04-27
JP2013214531A (ja) 2013-10-17
EP2282361A4 (en) 2011-08-10

Similar Documents

Publication Publication Date Title
WO2009142462A2 (ko) 유기 발광 소자 및 이의 제조방법
CN1571595B (zh) 有机电致发光显示器件组件
US9825258B2 (en) Layered structure for OLED device, method for manufacturing the same, and OLED device having the same
KR101427453B1 (ko) 유기전자소자용 기판 및 이를 포함하는 유기전자소자
EP2132802B1 (en) Oled with improved light outcoupling
CN103180993B (zh) 有机电致发光器件
US9508957B2 (en) OLED with improved light outcoupling
US20080238310A1 (en) OLED with improved light outcoupling
CN1822730A (zh) 有机el器件
KR20180030957A (ko) 발광 장치 및 제품
JP2005190931A (ja) エレクトロルミネッセンス素子とこれを用いた面光源および表示装置
CN1668154A (zh) 有机电激发光元件、平面显示器及可携带式电子装置
WO2016036150A1 (ko) 유기발광소자용 광추출 기판 제조방법, 유기발광소자용 광추출 기판 및 이를 포함하는 유기발광소자
CN101106180B (zh) 影像显示系统
KR20150037692A (ko) 유기전자장치의 제조 방법
US8310150B2 (en) Light emitting device with high outcoupling
WO2011111629A1 (ja) 有機led発光素子及びその製造方法
WO2016047970A2 (ko) 유기발광소자용 광추출 기판 및 이를 포함하는 유기발광소자
CN111864086A (zh) 发光结构、显示面板和显示装置
WO2016039551A2 (ko) 유기발광소자용 광추출 기판, 그 제조방법 및 이를 포함하는 유기발광소자
JP4103531B2 (ja) 有機電界発光素子
JPWO2014034308A1 (ja) 有機発光素子及び有機発光素子を用いた有機発光光源装置
WO2016111535A1 (ko) 탠덤형 유기발광소자
CN110518138B (zh) 一种像素结构有机发光二极管及其制备方法
JP2007329054A (ja) 画像表示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980118792.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09750784

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 12994082

Country of ref document: US

Ref document number: 2011510431

Country of ref document: JP

Ref document number: 2009750784

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE