WO2016036150A1 - 유기발광소자용 광추출 기판 제조방법, 유기발광소자용 광추출 기판 및 이를 포함하는 유기발광소자 - Google Patents

유기발광소자용 광추출 기판 제조방법, 유기발광소자용 광추출 기판 및 이를 포함하는 유기발광소자 Download PDF

Info

Publication number
WO2016036150A1
WO2016036150A1 PCT/KR2015/009272 KR2015009272W WO2016036150A1 WO 2016036150 A1 WO2016036150 A1 WO 2016036150A1 KR 2015009272 W KR2015009272 W KR 2015009272W WO 2016036150 A1 WO2016036150 A1 WO 2016036150A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
organic light
light emitting
metal oxide
emitting device
Prior art date
Application number
PCT/KR2015/009272
Other languages
English (en)
French (fr)
Inventor
김동현
김서현
김의수
박경욱
백일희
송창민
윤근상
윤홍
이주영
이현희
최은호
Original Assignee
코닝정밀소재 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코닝정밀소재 주식회사 filed Critical 코닝정밀소재 주식회사
Priority to US15/508,732 priority Critical patent/US20170263893A1/en
Publication of WO2016036150A1 publication Critical patent/WO2016036150A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/877Arrangements for extracting light from the devices comprising scattering means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/854Arrangements for extracting light from the devices comprising scattering means
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/48Ion implantation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/816Multilayers, e.g. transparent multilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/10Applying interconnections to be used for carrying current between separate components within a device
    • H01L2221/1005Formation and after-treatment of dielectrics
    • H01L2221/1042Formation and after-treatment of dielectrics the dielectric comprising air gaps
    • H01L2221/1047Formation and after-treatment of dielectrics the dielectric comprising air gaps the air gaps being formed by pores in the dielectric
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass

Definitions

  • the present invention relates to a method of manufacturing a light extraction substrate for an organic light emitting device, and more particularly, to improve light extraction efficiency of an organic light emitting device, as well as to reduce the manufacturing process, manufacturing cost and manufacturing time light extraction for an organic light emitting device. It relates to a substrate manufacturing method.
  • an organic light emitting diode is formed including an anode, a light emitting layer, and a cathode.
  • OLED organic light emitting diode
  • a voltage is applied between the anode and the cathode, holes are injected from the anode into the hole injection layer and moved through the hole transport layer to the light emitting layer, and electrons are injected from the cathode into the electron injection layer and through the electron transport layer to the light emitting layer.
  • holes and electrons injected into the light emitting layer recombine in the light emitting layer to generate excitons, and the excitons emit light while transitioning from the excited state to the ground state.
  • the organic light emitting diode display including the organic light emitting diode is divided into a passive matrix method and an active matrix method according to a method of driving the N ⁇ M pixels arranged in a matrix form.
  • a pixel electrode defining a light emitting area and a unit pixel driving circuit for applying current or voltage to the pixel electrode are positioned in the unit pixel area.
  • the unit pixel driving circuit includes at least two thin film transistors (TFTs) and one capacitor, and thus, a constant current can be supplied regardless of the number of pixels, thereby providing stable luminance. have.
  • TFTs thin film transistors
  • Such an active matrix type organic light emitting display device has low power consumption, which is advantageous for high resolution and large display applications.
  • the problem-solving strategy through the light extraction technology is to remove the factors that prevent the light lost from the inside or the interface of the organic light emitting device from going to the front or to hinder the movement of the light.
  • an object of the present invention is to improve the light extraction efficiency of the organic light emitting device, as well as to significantly reduce the manufacturing process, manufacturing cost and manufacturing time It is to provide a light extraction substrate manufacturing method for a light emitting device.
  • the present invention the ion implantation step of forming an ion implantation layer in the interior of the substrate by implanting ions from one surface of the substrate disposed on the transparent electrode of the organic light emitting device; And a heat treatment step of forming a pore layer made of a plurality of pores having different refractive indices from the base material through the application of thermal energy to the ion implantation layer, wherein the plurality of pores are formed through gasification of the ions. It provides a method for producing a light extraction substrate for an organic light emitting device, characterized in that induced.
  • a transparent substrate may be used as the substrate, and any one of a polymer-based material, sodalim glass, and aluminosilicate-based glass capable of thermosetting or UV curing may be used as the transparent substrate.
  • At least one selected from the group consisting of hydrogen, argon, helium, and nitrogen may be used as the ion.
  • any one metal oxide of ZnO, Al 2 O 3 , TiO 2 , SnO 2 , ZrO 2, and SiO 2 may be used as the metal oxide.
  • At least one selected from the group consisting of hydrogen, argon, helium, and nitrogen may be used as the ion.
  • the exposed surface of the metal oxide layer may be in contact with the transparent electrode of the organic light emitting device.
  • the present invention by injecting ions into the substrate serving as the light extraction layer of the organic light emitting device and induces the formation of pores in the substrate through the application of heat energy, by forming a substrate having two refractive index, The light extraction efficiency of the light emitting device can be improved.
  • 1 to 3 is a process chart showing a method of manufacturing a light extraction substrate for an organic light emitting device according to an embodiment of the present invention.
  • Figure 4 is a schematic cross-sectional view showing a state in which the light extraction substrate prepared according to an embodiment of the present invention disposed on the organic light emitting device.
  • 5 to 8 is a process chart showing a method of manufacturing a light extraction substrate for an organic light emitting device according to another embodiment of the present invention.
  • Figure 9 is a schematic cross-sectional view showing a state in which the light extraction substrate prepared in accordance with another embodiment of the present invention disposed on the organic light emitting device.
  • the light emitted from the organic light emitting device 10 is disposed on one surface of the organic light emitting device 10, and the organic light emitting device (
  • the light extraction substrate 100 serves as a path for emitting light emitted from the outside to the outside, while improving the light extraction efficiency of the organic light emitting device 10 and protecting the organic light emitting device 10 from the external environment. ) Is a method of manufacturing.
  • the light extraction substrate manufacturing method for an organic light emitting device includes an ion implantation step and a heat treatment step.
  • the ion implantation step is a step of forming the ion implantation layer 120 inside the substrate 110.
  • the substrate 110 serves as a light extraction layer of the organic light emitting device (10 of FIG. 4) and also serves as an encapsulation substrate that protects the organic light emitting device (10 of FIG. 4) from the external environment.
  • the substrate 110 is not limited as long as it has excellent light transmittance and excellent mechanical properties.
  • the substrate 110 may be a polymer-based material that is thermally curable or UV curable, or a soda-lime glass (SiO 2 -CaO-Na 2 O) or an aluminosilicate-based glass (SiO 2 ) that is a chemically strengthened glass. -Al 2 O 3 -Na 2 O) can be used.
  • the substrate 110 is soda-lime glass.
  • Aluminosilicate-based glass may be used as the substrate 110 when the organic light emitting diode (10 of FIG. 4) is for display.
  • ions are implanted into the substrate 110 from one surface of the substrate 110.
  • ions are implanted at a predetermined depth from one surface of the substrate 110.
  • the implanted ions are concentrated and distributed at a predetermined depth inside the substrate 110, so that, for example, a layer having a thickness of, for example, several hundred nm to several ⁇ m thick, that is, an ion implantation layer ( 120).
  • At least one selected from the group consisting of hydrogen, argon, helium and nitrogen may be selected and used as ions implanted into the substrate 110 to form the ion implantation layer 120.
  • the implantation of the ions may proceed through an ion implanter (not shown).
  • the heat treatment step is a step of applying heat energy to the ion implantation layer 120.
  • the heat treatment step is a step of forming a pore layer made of a plurality of pores different in refractive index from the substrate 110 inside the substrate 110 through the application of such thermal energy.
  • a high temperature annealing is performed on the substrate 110.
  • thermal energy is transferred to the ion injection layer 120, whereby the ions forming the ion injection layer 120 are formed.
  • Mobility is greatly increased by thermal energy.
  • the ions increased in mobility is changed into a gas (gas) as the aggregated with the surrounding ions, as shown in Figure 3, the gas generated in this way, due to the rapid increase in volume, and the refractive index within the substrate 110 The other plurality of pores 130 will be formed.
  • the plurality of pores 130 formed in the substrate 110 through the heat treatment step are induced through gasification of the ions constituting the ion injection layer 120 formed in the substrate 110.
  • the plurality of pores 130 may be formed in a random size and shape.
  • the light extraction substrate 100 for the organic light emitting device 100 is formed of the substrate 110 and a plurality of pores 130 having different refractive indices.
  • the method for manufacturing the light extraction substrate for an organic light emitting device provides a simple process consisting of an ion implantation step and a heat treatment step, thereby manufacturing process, manufacturing cost and manufacturing of the light extraction substrate 100. It can significantly reduce the time.
  • the organic light emitting diode 10 has a stacked structure of an anode 11, an organic light emitting layer 12, and a cathode 13.
  • the anode 11 is a transparent electrode, and may be made of a metal having a large work function (for example, Au, In, Sn, or ITO) or a metal oxide such that hole injection occurs well.
  • the cathode 13 may be formed of a metal thin film of Al, Al: Li, or Mg: Ag having a small work function so that electron injection may occur well.
  • the organic emission layer 12 may include a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer that are sequentially stacked on the anode 11.
  • the organic light emitting device 10 when the organic light emitting device 10 according to an embodiment of the present invention consists of a white organic light emitting device for illumination, for example, the light emitting layer is a polymer light emitting layer for emitting light in the blue region and a low molecule for emitting light in the orange-red region
  • the light emitting layer may be formed in a stacked structure, and in addition, the light emitting layer may be formed in various structures to realize white light emission.
  • the organic light emitting diode 10 may have a tandem structure. In this case, the organic light emitting layer 12 may be provided in plural numbers, and may be alternately disposed through an interconnecting layer.
  • the organic light emitting device 10 is configured as described above, when a forward voltage is applied between the anode 11 and the cathode 13, electrons move from the cathode 13 to the light emitting layer through the electron injection layer and the electron transport layer. From the anode 11, holes move to the light emitting layer through the hole injection layer and the hole transport layer. The electrons and holes injected into the light emitting layer recombine in the light emitting layer to generate excitons, and the excitons emit light while transitioning from the excited state to the ground state.
  • the brightness of the light is proportional to the amount of current flowing between the anode 11 and the cathode 13.
  • the substrate 110 and the plurality of pores 130 are formed. Due to the difference in refractive index between), it is possible to improve the extraction efficiency of light emitted from the organic light emitting layer 12.
  • the plurality of pores 130 serves to scatter the light emitted from the organic light emitting layer 12 in various paths, thereby further improving the light extraction efficiency of the organic light emitting device 10, through this, Since the organic light emitting diode 10 can be driven even with a current, power consumption of an illumination or display device employing the organic light emitting diode 10 as a light source can be reduced, and brightness can be improved.
  • the light extraction substrate manufacturing method for an organic light emitting device includes a metal oxide layer forming step, an ion implantation step and a heat treatment step.
  • the metal oxide layer forming step is a step of forming a metal oxide layer 220 made of a metal oxide having a first refractive index on the substrate 210.
  • the substrate 210 serves to protect the metal oxide layer 220 and the organic light emitting device 10 from the outside, and also serves as a path through which light emitted from the organic light emitting device 10 is emitted to the outside.
  • the substrate 210 may be made of the same material as the substrate (110 in FIG. 1) according to an embodiment of the present invention.
  • the metal oxide layer 220 may be formed using any one of metal oxides of ZnO, Al 2 O 3 , TiO 2 , SnO 2 , ZrO 2, and SiO 2 .
  • the ion implantation step in the ion implantation step, ions are injected into the metal oxide layer 220 from one surface of the metal oxide layer 220, and then inside the metal oxide layer 220.
  • the ion implantation layer 230 is formed.
  • the ion implantation step according to another embodiment of the present invention differs only in the ion implantation object and is identical in process, and thus, detailed description thereof will be omitted. do.
  • the heat treatment step is to apply heat energy to the ion implantation layer 230.
  • the heat treatment step is a step of forming a pore layer made of a plurality of pores different in refractive index from the metal oxide 220 inside the metal oxide layer 220 by applying such thermal energy.
  • the heat treatment step according to another embodiment of the present invention is carried out in the same process as the heat treatment step according to an embodiment of the present invention. Accordingly, the ions constituting the ion implantation layer 230 are greatly increased in motility by thermal energy, and these ions are internal to the metal oxide layer 220 by the same mechanism as the ions according to the embodiment of the present invention.
  • a plurality of pores 240 having different refractive indices are formed. In this case, the formed plurality of pores 240 may have a random size and shape.
  • the light extraction substrate 200 for the organic light emitting device is made of a pore 240 of the.
  • the light extraction substrate 200 manufactured according to another embodiment of the present invention may be disposed on one surface from which light is emitted from the organic light emitting element 10.
  • the metal oxide layer 220 of the light extraction substrate 200 serves as an internal light extraction layer of the organic light emitting device 10.
  • the contact surface of the metal oxide layer 220 contacting the anode 11, which is a transparent electrode of the organic light emitting device 10 is a high flat surface.
  • the planarization layer formed between the light extraction layer and the anode 11 can be omitted.
  • the method of manufacturing the light extraction substrate for the organic light emitting device according to another embodiment of the present invention as well as the light extraction efficiency of the organic light emitting device 10, as well as ion implantation and heat treatment
  • the manufacturing process, manufacturing cost and manufacturing time of the light extraction substrate 200 can be significantly reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 발명은 유기발광소자용 광추출 기판 제조방법에 관한 것으로서 더욱 상세하게는 유기발광소자의 광추출 효율 향상은 물론, 제조공정, 제조원가 및 제조시간을 획기적으로 감소시킬 수 있는 유기발광소자용 광추출 기판 제조방법에 관한 것이다. 이를 위해, 본 발명은, 유기발광소자의 투명전극 상에 배치되는 기재의 일면으로부터 상기 기재의 내부로 이온을 주입하여, 상기 기재의 내부에 이온 주입층을 형성하는 이온 주입단계; 및 상기 이온 주입층으로의 열 에너지 인가를 통해, 상기 기재 내부에 상기 기재와 굴절률이 다른 다수의 기공으로 이루어진 기공층을 형성하는 열처리 단계를 포함하되, 상기 다수의 기공은 상기 이온의 가스(gas)화를 통해 유도되는 것을 특징으로 하는 유기발광소자용 광추출 기판 제조방법을 제공한다.

Description

유기발광소자용 광추출 기판 제조방법, 유기발광소자용 광추출 기판 및 이를 포함하는 유기발광소자
본 발명은 유기발광소자용 광추출 기판 제조방법에 관한 것으로서 더욱 상세하게는 유기발광소자의 광추출 효율 향상은 물론, 제조공정, 제조원가 및 제조시간을 획기적으로 감소시킬 수 있는 유기발광소자용 광추출 기판 제조방법에 관한 것이다.
일반적으로, 유기 발광소자(organic light emitting diode; OLED)는 애노드(anode), 발광층 및 캐소드(cathode)를 포함하여 형성된다. 여기서, 애노드와 캐소드 간에 전압을 인가하면, 정공은 애노드로부터 전공 주입층 내로 주입되고 전공 수송층을 거쳐 발광층으로 이동되며, 전자는 캐소드로부터 전자 주입층 내로 주입되고 전자 수송층을 거쳐 발광층으로 이동된다. 이때, 발광층 내로 주입된 정공과 전자는 발광층에서 재결합하여 엑시톤(excition)을 생성하고, 이러한 엑시톤이 여기상태(excited state)에서 기저상태(ground state)로 전이하면서 빛을 방출하게 된다.
한편, 이러한 유기 발광소자로 이루어진 유기 발광 표시장치는 매트릭스 형태로 배치된 N×M개의 화소들을 구동하는 방식에 따라, 수동 매트릭스(passive matrix) 방식과 능동 매트릭스(active matrix) 방식으로 나뉘어진다.
여기서, 능동 매트릭스 방식의 경우 단위화소 영역에는 발광영역을 정의하는 화소전극과 이 화소전극에 전류 또는 전압을 인가하기 위한 단위화소 구동회로가 위치하게 된다. 이때, 단위화소 구동회로는 적어도 두 개의 박막트랜지스터(thin film transistor; TFT)와 하나의 캐패시터(capacitor)를 구비하며, 이를 통해, 화소수와 상관없이 일정한 전류의 공급이 가능해져 안정적인 휘도를 나타낼 수 있다. 이러한 능동 매트릭스 방식의 유기 발광 표시장치는 전력 소모가 적어, 고해상도 및 대형 디스플레이의 적용에 유리하다는 장점을 갖고 있다.
하지만, 유기발광소자를 이용한 면광원 조명소자의 경우, 박막 층상 구조로 인하여, 발광층에서 생성된 빛의 절반 이상이 소자의 내부 또는 계면에서 반사 또는 흡수되어 전면으로 나오지 못하고 소실된다. 따라서, 원하는 휘도를 얻기 위해서는 추가적인 전류를 인가해야 하는데, 이 경우, 전력 소모가 증가하게 되고, 결국, 소자의 수명이 감소하게 된다.
이러한 문제를 해결하기 위해서는 유기발광소자의 내부 또는 계면에서 소실되는 빛을 전면으로 추출하는 기술이 필요한데, 이를 광추출 기술이라 한다. 광 추출 기술을 통한 문제 해결 전략은 유기발광소자의 내부 또는 계면에서 소실되는 빛이 전면으로 진행하지 못하는 요인을 제거하거나 빛의 이동을 방해하는 것이다. 이를 위해, 일반적으로 사용되는 방법들 중에는 기판의 최외각부에 표면요철을 형성하거나 기판과 굴절률이 다른 층을 코팅하여 기판과 공기 계면에서 발생하는 내부 전반사를 줄이는 외부 광추출 기술과, 기판과 투명전극 사이에 표면 요철을 형성하거나 기판과 굴절률이 다른 층을 코팅하여 빛이 굴절률과 두께가 다른 층간 계면에서 전면으로 이동하지 않고 계면을 따라 진행하게 되는 도파관(wave guiding) 효과를 줄이는 내부 광추출 기술이 있다.
그러나 이러한 종래의 광추출 기술 혹은 광추출층 형성 방법들은 포토리소그래피(photolithography)와 같은 복잡한 공정 및 고가의 장비를 사용해야 하는 문제점이 있었고, 이를 통해 기판과 투명전극 사이에 표면 요철을 형성했을 지라도 평탄도를 확보해야 함에 따라, 표면 요철과 투명전극 사이에 추가적인 평탄층을 형성해야만 하는 등 제조공정, 제조원가 및 제조시간이 증가되는 문제가 있었다.
[선행기술문헌]
미국 공개특허공보 제2012-0049151호(2012.03.01.)
본 발명은 상술한 바와 같은 종래기술의 문제점을 해결하기 위해 안출된 것으로서, 본 발명의 목적은 유기발광소자의 광추출 효율 향상은 물론, 제조공정, 제조원가 및 제조시간을 획기적으로 감소시킬 수 있는 유기발광소자용 광추출 기판 제조방법을 제공하는 것이다.
이를 위해, 본 발명은, 유기발광소자의 투명전극 상에 배치되는 기재의 일면으로부터 상기 기재의 내부로 이온을 주입하여, 상기 기재의 내부에 이온 주입층을 형성하는 이온 주입단계; 및 상기 이온 주입층으로의 열 에너지 인가를 통해, 상기 기재 내부에 상기 기재와 굴절률이 다른 다수의 기공으로 이루어진 기공층을 형성하는 열처리 단계를 포함하되, 상기 다수의 기공은 상기 이온의 가스화를 통해 유도되는 것을 특징으로 하는 유기발광소자용 광추출 기판 제조방법을 제공한다.
여기서, 상기 기재로는 투명 기판이 사용되되, 상기 투명 기판으로는 열경화 또는 UV 경화가 가능한 고분자 계열의 물질, 소다리임 유리 및 알루미노실리케이트계 유리 중 어느 하나가 사용될 수 있다.
그리고 상기 이온 주입단계에서는 수소, 아르곤, 헬륨 및 질소로 이루어진 후보군 중 적어도 어느 하나를 선택하여 상기 이온으로 사용할 수 있다.
한편, 본 발명은, 기재 상에 제1 굴절률을 갖는 금속산화물로 이루어진 금속산화물층을 형성하는 금속산화물층 형성단계; 상기 금속산화물층의 일면으로부터 상기 금속산화물층의 내부로 이온을 주입하여, 상기 금속산화물층의 내부에 이온 주입층을 형성하는 이온 주입단계; 및 상기 이온 주입층으로의 열 에너지 인가를 통해, 상기 금속산화물층 내부에 제2 굴절률을 갖는 다수의 기공으로 이루어진 기공층을 형성하는 열처리 단계를 포함하되, 상기 다수의 기공은 상기 이온의 가스화를 통해 유도되는 것을 특징으로 하는 유기발광소자용 광추출 기판 제조방법을 제공한다.
여기서, 상기 금속산화물층 형성단계에서는 상기 금속산화물로 ZnO, Al2O3, TiO2, SnO2, ZrO2 및 SiO2 중 어느 하나의 금속산화물을 사용할 수 있다.
그리고 상기 이온 주입단계에서는 수소, 아르곤, 헬륨 및 질소로 이루어진 후보군 중 적어도 어느 하나를 선택하여 상기 이온으로 사용할 수 있다.
아울러, 상기 금속산화물층의 노출면은 유기발광소자의 투명전극과 접할 수 있다.
본 발명에 따르면, 유기발광소자의 광추출층 역할을 하는 기판에 이온을 주입한 후 이에 열 에너지 인가를 통해 기판 내부에 기공 형성을 유도하여, 하나의 기판이 두 개의 굴절률을 갖도록 형성함으로써, 유기발광소자의 광추출 효율을 향상시킬 수 있다.
또한, 본 발명에 따르면, 이온 주입 및 열처리를 포함하는 간단한 공정을 통해 기판 내부에 다수의 기공을 형성함으로써, 제조공정, 제조원가 및 제조시간을 획기적으로 감소시킬 수 있다.
도 1 내지 도 3은 본 발명의 일 실시 예에 따른 유기발광소자용 광추출 기판 제조방법을 공정 순으로 나타낸 공정도.
도 4는 본 발명의 일 실시 예에 따라 제조한 광추출 기판을 유기발광소자 상에 배치한 모습을 보여주는 개략적인 단면도.
도 5 내지 도 8은 본 발명의 다른 실시 예에 따른 유기발광소자용 광추출 기판 제조방법을 공정 순으로 나타낸 공정도.
도 9는 본 발명의 다른 실시 예에 따라 제조한 광추출 기판을 유기발광소자 상에 배치한 모습을 보여주는 개략적인 단면도.
이하에서는 첨부된 도면들을 참조하여 본 발명의 실시 예에 따른 유기발광소자용 광추출 기판 제조방법에 대해 상세히 설명한다.
아울러, 본 발명을 설명함에 있어서, 관련된 공지 기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단된 경우 그 상세한 설명은 생략한다.
도 4에 도시한 바와 같이, 본 발명의 일 실시 예에 따른 유기발광소자용 광추출 기판 제조방법은 유기발광소자(10)로부터 발광된 빛이 외부로 방출되는 일면에 배치되어, 유기발광소자(10)로부터 발광된 광을 외부로 방출시키는 통로 역할을 하는 한편, 유기발광소자(10)의 광추출 효율을 향상시킴과 아울러, 유기발광소자(10)를 외부 환경으로부터 보호하는 광추출 기판(100)을 제조하는 방법이다.
이러한 본 발명의 일 실시 예에 따른 유기발광소자용 광추출 기판 제조방법은 이온 주입단계 및 열처리 단계를 포함한다.
도 1 및 도 2에 도시한 바와 같이, 이온 주입단계는 기재(110)의 내부에 이온 주입층(120)을 형성하는 단계이다. 여기서, 기재(110)는 유기발광소자(도 4의 10)의 광추출층으로서의 역할을 함과 동시에 유기발광소자(도 4의 10)를 외부 환경으로부터 보호하는 봉지(encapsulation) 기판으로서의 역할을 한다. 이러한 기재(110)로는 광 투과율이 우수하고 기계적인 물성이 우수한 것이면 어느 것이든 제한되지 않는다. 예를 들어, 기재(110)로는 열경화 또는 UV 경화가 가능한 유기필름인 고분자 계열의 물질이나 화학강화유리인 소다라임 유리(SiO2-CaO-Na2O) 또는 알루미노실리케이트계 유리(SiO2-Al2O3-Na2O)가 사용될 수 있다. 여기서, 본 발명의 일 실시 예에 따라 제조된 광추출 기판(도 3의 100)을 광추출층으로 채용하는 유기발광소자(도 4의 10)가 조명용인 경우, 기재(110)로는 소다라임 유리가 사용될 수 있고, 유기발광소자(도 4의 10)가 디스플레이용인 경우 알루미노실리케이트계 유리가 기재(110)로 사용될 수 있다.
이온 주입단계에서는 이러한 기재(110)의 일면으로부터 기재(110)의 내부로 이온을 주입한다. 이때, 이온 주입단계에서는 기재(110)의 일면으로부터 소정 깊이에 이온을 주입한다. 이와 같이, 이온을 주입하면, 주입한 이온들이 기재(110) 내부의 소정 깊이에 밀집 및 분포되어, 기재(110) 내부에서 예컨대, 수백㎚~수㎛ 두께를 이루는 층, 즉, 이온 주입층(120)을 형성하게 된다.
이러한 이온 주입단계에서는 이온 주입층(120) 형성을 위해, 기재(110) 내부로 주입되는 이온으로 수소, 아르곤, 헬륨 및 질소로 이루어진 후보군 중 적어도 어느 하나를 선택하여 사용할 수 있다. 이때, 이러한 이온의 주입은 이온 주입장치(미도시)를 통해 진행할 수 있다.
다음으로, 열처리 단계는 이온 주입층(120)으로의 열 에너지를 인가하는 단계이다. 또한, 열처리 단계는 이러한 열 에너지 인가를 통해 기재(110) 내부에 기재(110)와 굴절률이 다른 다수의 기공으로 이루어진 기공층을 형성하는 단계이다.
열처리 단계에서는 이온 주입층(120)에 열 에너지를 인가하기 위해, 기재(110)에 대한 고온 어닐링(thermal annealing)을 진행한다. 이와 같이, 내부에 이온 주입층(120)이 형성되어 있는 기재(110)를 고온 어닐링하면, 이온 주입층(120)에 열 에너지가 전달되고, 이에 따라, 이온 주입층(120)을 이루는 이온들은 열 에너지에 의해 운동성이 매우 증가하게 된다. 이때, 운동성이 증가된 이온들은 주변 이온들과 뭉쳐 가스(gas)로 변화하게 되고, 도 3에 도시한 바와 같이, 이와 같이 생성된 가스는 급격한 부피 증가로 인해, 기재(110) 내부에 이와는 굴절률이 다른 다수의 기공(130)을 형성하게 된다. 즉, 열처리 단계를 통해 기재(110) 내부에 형성되는 다수의 기공(130)은 기재(110) 내부에 형성된 이온 주입층(120)을 이루는 이온들의 가스화를 통해 유도된다. 이때, 다수의 기공(130)은 랜덤한 크기 및 형상으로 형성될 수 있다.
도 3에 도시한 바와 같이, 열처리 단계가 완료되면, 기재(110) 및 이의 내부에 형성되고 이와 굴절률이 다른 다수의 기공(130)으로 이루어진 유기발광소자용 광추출 기판(100)이 제조된다.
상술한 바와 같이, 본 발명의 일 실시 예에 따른 유기발광소자용 광추출 기판 제조방법은 이온 주입단계와 열처리 단계로 이루어진 간단한 공정을 제공함으로써, 광추출 기판(100)의 제조공정, 제조원가 및 제조시간을 획기적으로 감소시킬 수 있다.
도 4는 본 발명의 일 실시 예에 따라 제조한 광추출 기판(100)을 유기발광소자(10)에 적용한 모습을 보여주는 도면이다. 여기서, 유기발광소자(10)는 애노드(11), 유기 발광층(12) 및 캐소드(13)의 적층 구조로 이루어진다. 이때, 애노드(11)는 투명전극으로, 정공 주입이 잘 일어나도록 일함수(work function)가 큰 금속, 예컨대, Au, In, Sn 또는 ITO와 같은 금속 또는 금속산화물로 이루어질 수 있다. 또한, 캐소드(13)는 전자 주입이 잘 일어나도록 일함수가 작은 Al, Al:Li 또는 Mg:Ag의 금속 박막으로 이루어질 수 있다. 그리고 유기 발광층(12)은 애노드(11) 상에 차례로 적층되는 정공 주입층, 정공 수송층, 발광층, 전자 수송층 및 전자 주입층을 포함하여 형성될 수 있다. 이때, 본 발명의 일 실시 예에 따른 유기발광소자(10)가 조명용 백색 유기발광소자로 이루어지는 경우, 예컨대, 발광층은 청색 영역의 광을 방출하는 고분자 발광층과 오렌지-적색 영역의 광을 방출하는 저분자 발광층의 적층 구조로 형성될 수 있고, 이 외에도 다양한 구조로 형성되어 백색 발광을 구현할 수 있다. 아울러, 유기발광소자(10)는 텐덤(tandem) 구조로 이루어질 수 있다. 이 경우, 유기 발광층(12)은 복수 개로 구비되고, 연결층(interconnecting layer)을 매개로 교번 배치될 수 있다.
이와 같은 구조로 유기발광소자(10)가 이루어짐에 따라, 애노드(11)와 캐소드(13) 사이에 순방향 전압이 인가되면, 캐소드(13)로부터 전자가 전자 주입층 및 전자 수송층을 통해 발광층으로 이동하게 되고, 애노드(11)로부터 정공이 정공 주입층 및 정공 수송층을 통해 발광층으로 이동하게 된다. 그리고 발광층 내로 주입된 전자와 정공은 발광층에서 재결합하여 엑시톤(exciton)을 생성하고, 이러한 엑시톤이 여기상태(excited state)에서 기저상태(ground state)로 전이하면서 빛을 방출하게 되는데, 이때, 방출되는 빛의 밝기는 애노드(11)와 캐소드(13) 사이에 흐르는 전류량에 비례하게 된다.
이러한 유기발광소자(10)의 투명전극인 애노드(11) 상에 본 발명의 일 실시 예에 따라 제조한 광추출 기판(100)을 형성 혹은 배치하게 되면, 기재(110)와 다수의 기공(130) 간의 굴절률 차이로 인해, 유기 발광층(12)으로부터 발광된 광의 추출 효율을 향상시킬 수 있다. 이때, 다수의 기공(130)은 유기 발광층(12)으로부터 방출되는 광을 다양한 경로로 산란시키는 역할을 하게 되어, 유기발광소자(10)의 광추출 효율을 더욱 향상시킬 수 있고, 이를 통해, 저 전류로도 유기발광소자(10)를 구동할 수 있게 되어, 유기발광소자(10)를 광원으로 채용한 조명 또는 디스플레이 장치의 소비 전력을 감소시킬 수 있고, 휘도를 향상시킬 수 있다.
이하, 본 발명의 다른 실시 예에 따른 유기발광소자용 광추출 기판 제조방법에 대하여, 도 5 내지 도 9를 참조하여 설명하기로 한다.
본 발명의 다른 실시 예에 따른 유기발광소자용 광추출 기판 제조방법은 금속산화물층 형성단계, 이온 주입단계 및 열처리 단계를 포함한다.
먼저, 도 5에 도시한 바와 같이, 금속산화물층 형성단계는 기재(210) 상에 제1 굴절률을 갖는 금속산화물로 이루어진 금속산화물층(220)을 형성하는 단계이다. 여기서, 기재(210)는 금속산화물층(220) 및 유기발광소자(10)를 외부로부터 보호하는 역할을 함과 아울러, 유기발광소자(10)로부터 발광된 광이 외부로 방출되는 통로 역할을 한다. 이러한 기재(210)는 본 발명의 일 실시 예에 따른 기재(도 1의 110)와 동일한 물질로 이루어질 수 있다.
한편, 금속산화물층 형성단계에서는 ZnO, Al2O3, TiO2, SnO2, ZrO2 및 SiO2 중 어느 하나의 금속산화물을 사용하여 금속산화물층(220)을 형성할 수 있다.
다음으로, 도 6 및 도 7에 도시한 바와 같이, 이온 주입단계는 금속산화물층(220)의 일면으로부터 금속산화물층(220)의 내부로 이온을 주입하여, 금속산화물층(220)의 내부에 이온 주입층(230)을 형성하는 단계이다. 본 발명의 다른 실시 예에 따른 이온 주입단계는 본 발명의 일 실시 예에 따른 이온 주입단계와 비교하여, 이온 주입 대상물에만 차이가 있을 뿐, 공정적으로 동일하므로, 이에 대한 상세한 설명은 생략하기로 한다.
다음으로, 열처리 단계는 이온 주입층(230)으로의 열 에너지를 인가하는 단계이다. 또한, 열처리 단계는 이러한 열 에너지 인가를 통해 금속산화물층(220) 내부에 금속산화물(220)과 굴절률이 다른 다수의 기공으로 이루어진 기공층을 형성하는 단계이다.
본 발명의 다른 실시 예에 따른 열처리 단계는 본 발명의 일 실시 예에 따른 열처리 단계와 동일한 공정으로 진행된다. 이에 따라, 이온 주입층(230)을 이루는 이온들은 열 에너지에 의해 운동성이 매우 증가하게 되고, 이러한 이온들은 본 발명의 일 실시 예에 따른 이온들과 동일한 매커니즘에 의해, 금속산화물층(220) 내부에 이와는 굴절률이 다른 다수의 기공(240)을 형성하게 된다. 이때, 형성된 다수의 기공(240)은 랜덤한 크기 및 형상을 가질 수 있다.
도 8에 도시한 바와 같이, 열처리 단계가 완료되면, 기재(210), 기재(210)의 일면에 형성된 금속산화물층(220) 및 금속산화물층(220)의 내부에 형성되고 이와는 굴절률이 다른 다수의 기공(240)으로 이루어진 유기발광소자용 광추출 기판(200)이 제조된다.
도 9에 도시한 바와 같이, 본 발명의 다른 실시 예에 따라 제조된 광추출 기판(200)은 유기발광소자(10)로부터 광이 방출되는 일면에 배치될 수 있다. 이때, 광추출 기판(200)의 금속산화물층(220)은 유기발광소자(10)의 내부 광추출층으로서의 역할을 하게 된다. 이때, 다수의 기공(240)은 금속산화물층(220)의 내부에 형성되어 있으므로, 유기발광소자(10)의 투명전극인 애노드(11)와 접하는 금속산화물층(220)의 접촉면은 고평탄면으로 이루어져 있어, 종래 광추출층과 애노드(11) 사이에 형성하였던 평탄화층을 생략할 수 있다.
상술한 바와 같이, 본 발명의 다른 실시 예에 따른 유기발광소자용 광추출 기판 제조방법은 본 발명의 일 실시 예와 마찬가지로, 유기발광소자(10)의 광추출 효율 향상은 물론, 이온 주입 및 열처리라는 단순한 공정을 통해, 광추출 기판(200)의 제조공정, 제조원가 및 제조시간을 획기적으로 감소시킬 수 있다.
이상과 같이 본 발명은 비록 한정된 실시 예와 도면에 의해 설명되었으나, 본 발명은 상기의 실시 예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다.
그러므로 본 발명의 범위는 설명된 실시 예에 국한되어 정해져서는 아니 되며, 후술하는 특허청구범위뿐만 아니라 특허청구범위와 균등한 것들에 의해 정해져야 한다.

Claims (11)

  1. 유기발광소자의 투명전극 상에 배치되는 기재의 일면으로부터 상기 기재의 내부로 이온을 주입하여, 상기 기재의 내부에 이온 주입층을 형성하는 이온 주입단계; 및
    상기 이온 주입층으로의 열 에너지 인가를 통해, 상기 기재 내부에 상기 기재와 굴절률이 다른 다수의 기공(air void)으로 이루어진 기공층을 형성하는 열처리 단계;
    를 포함하되,
    상기 다수의 기공은 상기 이온의 가스(gas)화를 통해 유도되는 것을 특징으로 하는 유기발광소자용 광추출 기판 제조방법.
  2. 제1항에 있어서,
    상기 기재로는 투명 기판이 사용되되, 상기 투명 기판으로는 열경화 또는 UV 경화가 가능한 고분자 계열의 물질, 소다리임 유리 및 알루미노실리케이트계 유리 중 어느 하나가 사용되는 것을 특징으로 하는 유기발광소자용 광추출 기판 제조방법.
  3. 제1항에 있어서,
    상기 이온 주입단계에서는 수소, 아르곤, 헬륨 및 질소로 이루어진 후보군 중 적어도 어느 하나를 선택하여 상기 이온으로 사용하는 것을 특징으로 하는 유기발광소자용 광추출 기판 제조방법.
  4. 기재 상에 제1 굴절률을 갖는 금속산화물로 이루어진 금속산화물층을 형성하는 금속산화물층 형성단계;
    상기 금속산화물층의 일면으로부터 상기 금속산화물층의 내부로 이온을 주입하여, 상기 금속산화물층의 내부에 이온 주입층을 형성하는 이온 주입단계; 및
    상기 이온 주입층으로의 열 에너지 인가를 통해, 상기 금속산화물층 내부에 제2 굴절률을 갖는 다수의 기공으로 이루어진 기공층을 형성하는 열처리 단계;
    를 포함하되,
    상기 다수의 기공은 상기 이온의 가스화를 통해 유도되는 것을 특징으로 하는 유기발광소자용 광추출 기판 제조방법.
  5. 제4항에 있어서,
    상기 금속산화물층 형성단계에서는 상기 금속산화물로 ZnO, Al2O3, TiO2, SnO2, ZrO2 및 SiO2 중 어느 하나의 금속산화물을 사용하는 것을 특징으로 하는 유기발광소자용 광추출 기판 제조방법.
  6. 제4항에 있어서,
    상기 이온 주입단계에서는 수소, 아르곤, 헬륨 및 질소로 이루어진 후보군 중 적어도 어느 하나를 선택하여 상기 이온으로 사용하는 것을 특징으로 하는 유기발광소자용 광추출 기판 제조방법.
  7. 제4항에 있어서,
    상기 금속산화물층의 노출면은 유기발광소자의 투명전극과 접하는 것을 특징으로 하는 유기발광소자용 광추출 기판 제조방법.
  8. 기재; 및
    상기 기재의 내부에 형성되고, 상기 기재와 굴절률이 다른 다수의 기공으로 이루어지되, 상기 다수의 기공은 상기 기재 내부에 주입된 이온의 가스화를 통해 유도되는 것을 특징으로 하는 유기발광소자용 광추출 기판.
  9. 제8항에 따른 유기발광소자용 광추출 기판을, 발광된 빛이 외부로 방출되는 일면에 구비하는 것을 특징으로 하는 유기발광소자.
  10. 기재;
    상기 기재의 일면에 형성되는 금속산화물층; 및
    상기 금속산화물층의 내부에 형성되고, 상기 금속산화물층과 굴절률이 다른 다수의 기공으로 이루어지되, 상기 다수의 기공은 상기 금속산화물층 내부에 주입된 이온의 가스화를 통해 유도되는 것을 특징으로 하는 유기발광소자용 광추출 기판.
  11. 제10항에 따른 유기발광소자용 광추출 기판을, 발광된 빛이 외부로 방출되는 일면에 구비하되, 상기 금속산화물층의 노출면은 투명전극과 접하는 것을 특징으로 하는 유기발광소자.
PCT/KR2015/009272 2014-09-05 2015-09-03 유기발광소자용 광추출 기판 제조방법, 유기발광소자용 광추출 기판 및 이를 포함하는 유기발광소자 WO2016036150A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/508,732 US20170263893A1 (en) 2014-09-05 2015-09-03 Method for manufacturing light extraction substrate for organic light-emitting diode, light extraction substrate for organic light-emitting diode, and organic light-emitting diode including same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0118893 2014-09-05
KR1020140118893A KR101608273B1 (ko) 2014-09-05 2014-09-05 유기발광소자용 광추출 기판 제조방법, 유기발광소자용 광추출 기판 및 이를 포함하는 유기발광소자

Publications (1)

Publication Number Publication Date
WO2016036150A1 true WO2016036150A1 (ko) 2016-03-10

Family

ID=55440108

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/009272 WO2016036150A1 (ko) 2014-09-05 2015-09-03 유기발광소자용 광추출 기판 제조방법, 유기발광소자용 광추출 기판 및 이를 포함하는 유기발광소자

Country Status (3)

Country Link
US (1) US20170263893A1 (ko)
KR (1) KR101608273B1 (ko)
WO (1) WO2016036150A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017178168A1 (en) * 2016-04-12 2017-10-19 Agc Glass Europe Heat treatable antireflective glass substrate and method for manufacturing the same
WO2017178166A1 (en) * 2016-04-12 2017-10-19 Agc Glass Europe Glass substrate with reduced internal reflectance and method for manufacturing the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102518130B1 (ko) 2016-08-04 2023-04-06 삼성디스플레이 주식회사 유기발광 표시장치
US10366674B1 (en) 2016-12-27 2019-07-30 Facebook Technologies, Llc Display calibration in electronic displays
CN112533882A (zh) * 2018-06-14 2021-03-19 旭硝子欧洲玻璃公司 降低用于透射红外光的基板的反射率
CN111477763A (zh) * 2020-04-28 2020-07-31 Tcl华星光电技术有限公司 一种显示面板及其制备方法、显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060040750A (ko) * 1996-11-05 2006-05-10 꼼미사리아 아 레네르지 아토미끄 지지체 상에 박막을 형성하는 방법 및 이 방법에 의해서제조되는 구조물
KR20110104037A (ko) * 2008-12-17 2011-09-21 쓰리엠 이노베이티브 프로퍼티즈 컴파니 나노입자 코팅을 갖는 광 추출 필름
KR20120029425A (ko) * 2009-05-14 2012-03-26 에스알아이 인터내셔널 유기 발광 소자의 개선된 출력 효율
KR20140080745A (ko) * 2012-12-14 2014-07-01 삼성전자주식회사 광추출 효율이 향상된 발광 소자
KR20140096674A (ko) * 2013-01-28 2014-08-06 (주)켐옵틱스 고굴절률을 갖는 유무기 하이브리드 수지 조성물 및 상기 조성물을 포함하는 광학 필름

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120049151A1 (en) 2010-08-30 2012-03-01 Invenlux Corporation Light-emitting devices with two-dimensional composition-fluctuation active-region and method for fabricating the same
US8852695B2 (en) * 2012-09-10 2014-10-07 The Research Foundation For The State University Of New York Optical barriers, waveguides, and methods for fabricating barriers and waveguides for use in harsh environments

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060040750A (ko) * 1996-11-05 2006-05-10 꼼미사리아 아 레네르지 아토미끄 지지체 상에 박막을 형성하는 방법 및 이 방법에 의해서제조되는 구조물
KR20110104037A (ko) * 2008-12-17 2011-09-21 쓰리엠 이노베이티브 프로퍼티즈 컴파니 나노입자 코팅을 갖는 광 추출 필름
KR20120029425A (ko) * 2009-05-14 2012-03-26 에스알아이 인터내셔널 유기 발광 소자의 개선된 출력 효율
KR20140080745A (ko) * 2012-12-14 2014-07-01 삼성전자주식회사 광추출 효율이 향상된 발광 소자
KR20140096674A (ko) * 2013-01-28 2014-08-06 (주)켐옵틱스 고굴절률을 갖는 유무기 하이브리드 수지 조성물 및 상기 조성물을 포함하는 광학 필름

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017178168A1 (en) * 2016-04-12 2017-10-19 Agc Glass Europe Heat treatable antireflective glass substrate and method for manufacturing the same
WO2017178166A1 (en) * 2016-04-12 2017-10-19 Agc Glass Europe Glass substrate with reduced internal reflectance and method for manufacturing the same
JP2019513674A (ja) * 2016-04-12 2019-05-30 エージーシー グラス ユーロップAgc Glass Europe 低下した内部反射率のガラス基材およびその製造方法

Also Published As

Publication number Publication date
KR20160029408A (ko) 2016-03-15
US20170263893A1 (en) 2017-09-14
KR101608273B1 (ko) 2016-04-01

Similar Documents

Publication Publication Date Title
WO2016036150A1 (ko) 유기발광소자용 광추출 기판 제조방법, 유기발광소자용 광추출 기판 및 이를 포함하는 유기발광소자
US20150102307A1 (en) Electroluminescent element, method for manufacturing electroluminescent element, display device, and illumination device
KR101654360B1 (ko) 유기 발광소자용 기판 및 그 제조방법
WO2016105029A1 (ko) 유기발광소자
CN107634082B (zh) 主动发光显示面板及其制造方法
KR101579457B1 (ko) 유기발광소자용 광추출 기판 제조방법, 유기발광소자용 광추출 기판 및 이를 포함하는 유기발광소자
WO2016047936A4 (ko) 플렉서블 기판 및 그 제조방법
KR101484089B1 (ko) 초박형 유기발광소자 제조방법
KR101466833B1 (ko) 유기발광소자용 광추출 기판, 그 제조방법 및 이를 포함하는 유기발광소자
WO2016039551A2 (ko) 유기발광소자용 광추출 기판, 그 제조방법 및 이를 포함하는 유기발광소자
WO2016105016A1 (ko) 유기발광소자용 광추출 기판, 그 제조방법 및 이를 포함하는 유기발광소자
US9688571B2 (en) Method of fabricating light extraction substrate for organic light emitting device
KR101699275B1 (ko) 유기발광소자용 광추출 기판, 그 제조방법 및 이를 포함하는 유기발광소자
WO2016010172A1 (ko) 광추출 효율이 향상된 유기발광소자
KR101484088B1 (ko) 유기발광소자용 광추출 기판, 그 제조방법 및 이를 포함하는 유기발광소자
KR101615524B1 (ko) 유기전계발광소자
CN104701466A (zh) 阵列基板及其制备方法和显示装置
WO2016111535A1 (ko) 탠덤형 유기발광소자
US20220158107A1 (en) Structure and method for patterned quantum dots light emitting diodes (qleds)
KR101580596B1 (ko) 유기발광소자용 광추출 기판 제조방법, 유기발광소자용 광추출 기판 및 이를 포함하는 유기발광소자
KR100287860B1 (ko) 유기전계발광소자및그제조방법
TWI242390B (en) Organic electroluminescent display panel and barrier substrate thereof
JP6191382B2 (ja) 有機発光素子用光取り出し基板の製造方法
WO2019061733A1 (zh) 有机发光器件及有机发光显示装置
WO2014193105A1 (ko) 더미 전극을 갖는 유기전계 발광소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15837977

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15508732

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15837977

Country of ref document: EP

Kind code of ref document: A1