WO2016105029A1 - 유기발광소자 - Google Patents

유기발광소자 Download PDF

Info

Publication number
WO2016105029A1
WO2016105029A1 PCT/KR2015/013906 KR2015013906W WO2016105029A1 WO 2016105029 A1 WO2016105029 A1 WO 2016105029A1 KR 2015013906 W KR2015013906 W KR 2015013906W WO 2016105029 A1 WO2016105029 A1 WO 2016105029A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light emitting
organic light
electrode
substrate
Prior art date
Application number
PCT/KR2015/013906
Other languages
English (en)
French (fr)
Inventor
이주영
권윤영
김동현
김서현
Original Assignee
코닝정밀소재 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코닝정밀소재 주식회사 filed Critical 코닝정밀소재 주식회사
Priority to US15/539,892 priority Critical patent/US10153458B2/en
Priority to CN201580071153.8A priority patent/CN107112434B/zh
Priority to JP2017534577A priority patent/JP6592783B2/ja
Priority to EP15873556.3A priority patent/EP3240058B1/en
Publication of WO2016105029A1 publication Critical patent/WO2016105029A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/854Arrangements for extracting light from the devices comprising scattering means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/841Self-supporting sealing arrangements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/822Cathodes characterised by their shape

Definitions

  • the present invention relates to an organic light emitting device, and more specifically, through optimization of a wrinkled structure formed by being transferred from an internal light extraction layer, it is possible to dramatically increase the light extraction efficiency, and through this, an organic light emitting efficiency can be realized. It relates to a light emitting device.
  • the light emitting device may be classified into an organic light emitting device that forms a light emitting layer using organic materials and an inorganic light emitting device that forms a light emitting layer using inorganic materials.
  • organic light emitting device of the organic light emitting device electrons injected from an electron injection electrode and holes injected from a hole injection electrode are combined in an organic emission layer to form excitons, and the excitons are energy.
  • It is a self-luminous device that emits light while emitting light, and has advantages such as low power driving, self-luminous, wide viewing angle, high resolution and natural colors, and fast response speed.
  • the light extraction efficiency depends on the refractive index of each layer constituting the organic light emitting device.
  • the refractive index of each layer constituting the organic light emitting device when light emitted from the light emitting layer is emitted above the critical angle, total reflection occurs at an interface between a layer having a high refractive index such as a transparent electrode layer as an anode and a layer having a low refractive index such as substrate glass. The efficiency is lowered, and thus, the overall luminous efficiency of the organic light emitting device is reduced.
  • the organic light emitting device emits only 20% of the emitted light to the outside, and the light of about 80% includes the substrate glass, the anode and the hole injection layer, the hole transport layer, the light emitting layer, the electron transport layer, the electron injection layer, etc.
  • the wave guiding effect due to the refractive index difference of the organic light emitting layer and the total reflection effect due to the refractive index difference between the substrate glass and the air are lost. That is, the refractive index of the internal organic light emitting layer is 1.7 to 1.8, and the refractive index of ITO generally used as the anode is about 1.9.
  • the refractive index of the substrate glass is 1.5
  • the planar waveguide is naturally formed in the organic light emitting device. According to the calculation, the ratio of light lost in the internal waveguide mode by the cause reaches about 45%. Since the refractive index of the substrate glass is about 1.5 and the refractive index of the outside air is 1.0, when light exits from the substrate glass to the outside, light incident above the critical angle causes total reflection and is isolated inside the substrate glass. Since the ratio of about 35%, only 20% of the light emission amount is emitted to the outside.
  • the light extraction layer is largely divided into an inner light extraction layer and an outer light extraction layer.
  • the external light extraction layer by providing a film including various types of micro lenses on the outside of the substrate, it is possible to obtain a light extraction effect, there is a characteristic not largely affected by the shape of the micro lens.
  • the internal light extraction layer directly extracts the light lost in the optical waveguide mode, there is an advantage that the possibility of efficiency increase is much higher than the external light extraction layer.
  • the present invention has been made to solve the problems of the prior art as described above, the object of the present invention can significantly increase the light extraction efficiency through the optimization of the wrinkle structure formed by transferring from the internal light extraction layer , Through this, to provide an organic light emitting device capable of implementing excellent luminous efficiency.
  • the present invention the first substrate; An internal light extraction layer formed on the first substrate; A first electrode formed on the internal light extraction layer; An organic emission layer formed on the first electrode; And a second electrode formed on the organic light emitting layer, wherein wrinkles are formed on a surface of the internal light extraction layer, and the wrinkles are sequentially transferred to the first electrode, the organic light emitting layer, and the second electrode,
  • the surface of the second electrode has a corrugated structure, the corrugated structure is composed of a plurality of convex portions and a plurality of concave portions formed between the convex portions adjacent to each other, and a pitch between the convex portions adjacent to each other and
  • the aspect ratio (depth / pitch) to the depth (depth) of the recess provides an organic light emitting device, characterized in that 0.1 ⁇ 7.
  • the internal light extraction layer is formed on the first substrate, a matrix layer made of a first metal oxide, a second metal oxide dispersed in the matrix layer, the second metal oxide is different in refractive index from the first metal oxide Comprising a plurality of scattering particles, and a filling layer filled on the surface of the matrix layer, the surface of the filling layer may be formed of the wrinkles in the form of the shape of the scattering particles and aggregates of the scattering particles is transferred have.
  • cracks may be formed in the matrix layer.
  • the crack may be formed between the plurality of scattering particles and between the aggregates.
  • the surface roughness of the filling layer may be relatively lower than the surface roughness of the matrix layer.
  • the matrix layer may be made of any one or a combination of two or more metal oxide candidate groups including SiO 2 , TiO 2 , ZrO 2 , ZnO 2, and SnO 2 .
  • the scattering particles may be made of any one or two or more of the metal oxide candidate group including SiO 2 , TiO 2 , ZnO 2 and SnO 2 .
  • the plurality of scattering particles may be made of a core consisting of a hollow, and a shell structure surrounding the core.
  • the internal light extraction layer may further include a plurality of irregularly formed pores formed in the matrix layer.
  • the pore size may be 50 to 900 nm.
  • the area occupied by the plurality of pores in the matrix layer may be 2.5 to 10.8% of the area of the matrix layer.
  • the organic light emitting diode may further include a second substrate disposed on the second electrode to face the first substrate for encapsulation with the first substrate.
  • a surface corrugation structure formed by transferring from an internal light extraction layer (ILEL) and a pitch between the plurality of convex portions forming the corrugated structure, and the convex portion and the convex portion
  • the waveguide mode that causes the greatest loss in the luminous efficiency of the organic light emitting device ( It is possible to maximize the reduction of the waveguide mode) and the surface plasmon mode (surface plasmon mode), through which it is possible to significantly increase the light extraction efficiency, it is possible to implement excellent luminous efficiency.
  • FIG. 1 is a schematic cross-sectional view showing an organic light emitting device according to an embodiment of the present invention.
  • FIG. 2 is a scanning electron microscope photograph of the surface wrinkle structure of the organic light emitting device showing various aspect ratios.
  • 3 and 4 is a reference diagram for simulating the luminous efficiency of the organic light emitting device according to an embodiment of the present invention.
  • FIG. 5 is a graph showing a simulation result for the luminous efficiency of the organic light emitting device according to an embodiment of the present invention.
  • the organic light emitting diode 100 has a bottom emission structure.
  • the organic light emitting device 100 according to the embodiment of the present invention may be applied as a light source of illumination.
  • the organic light emitting diode 100 is formed to include a first substrate 110, an internal light extraction layer 120, a first electrode 130, an organic emission layer 140, and a second electrode 150.
  • the first substrate 110 is disposed in front of the organic light emitting layer 140, that is, at a portion where the light emitted from the organic light emitting layer 140 is in contact with the outside, thereby transmitting the emitted light to the outside and the internal light extracting layer.
  • the first electrode 130, the organic emission layer 140, and the second electrode 150 may be protected from the external environment.
  • the first substrate 110 has an edge.
  • the second substrate 150 may be bonded to a second substrate (not shown), which is a rear substrate disposed on the second electrode 150 so as to face the sealing material, for example, epoxy.
  • Internal spaces other than the space occupied by the 140 and the second electrode 150 may be filled with an inert gas or formed in a vacuum atmosphere.
  • the first substrate 110 is a transparent substrate and is not limited as long as it has excellent light transmittance and excellent mechanical properties.
  • a polymer-based material that is an organic film capable of thermosetting or UV curing may be used as the first substrate 110.
  • the first substrate 110 to have a chemical strengthened glass, soda lime glass (SiO 2 -CaO-Na 2 O ) or alumino-silicate glass (SiO 2 -Al 2 O 3 -Na 2 O) may be used .
  • soda lime glass may be used as the first substrate 110.
  • a substrate made of metal oxide or metal nitride may be used as the first substrate 110.
  • a thin glass having a thickness of 1.5 mm or less may be used as the first substrate 110. Such thin glass may be manufactured through a fusion method or a floating method.
  • the second substrate (not shown), which is a rear substrate that encapsulates the first substrate 110, may be made of the same or different material as that of the first substrate 110.
  • the internal light extraction layer 120 is disposed in front of the light emitted from the organic light emitting layer 140 to the outside, and is a light functional layer that serves to improve the light extraction efficiency of the organic light emitting device 100.
  • the internal light extraction layer 120 is formed on the first substrate 110. Based on the drawings, the first substrate 110 is disposed below the internal light extraction layer 120, and the first electrode 130 is disposed on the internal light extraction layer 120.
  • the internal light extraction layer 120 may include a matrix layer 121, a plurality of scattering particles 123, and a filling layer 126.
  • the matrix layer 121 and the plurality of scattering particles 123 may be formed of materials having different refractive indices from each other in order to improve light extraction efficiency, in which case, the larger the difference in refractive index between the matrix layer 121 and the scattering particles 123, the greater the contribution to light extraction efficiency.
  • the matrix layer 121 may be made of a material having a refractive index higher than that of the filling layer 126, or may be made of a material having a refractive index smaller than that of the filling layer 126, and may be made of a material having the same refractive index as the filling layer 126. Can be done.
  • the matrix layer 121 may be made of a high refractive index (HRI) material having a larger refractive index than the scattering particles 123.
  • the matrix layer 121 may be formed of a metal oxide in which any one or two or more of metal oxide candidate groups including SiO 2 , TiO 2 , ZrO 2 , ZnO 2, and SnO 2 are combined.
  • a crack 122 may be formed in the matrix layer 121.
  • the crack 122 is generated in a sintering process for forming a matrix layer 121 in which a plurality of scattering particles 123 are dispersed, and a plurality of scattering particles 123 and an aggregate composed of these scattering particles 123 are formed. It can be formed along the way.
  • the crack 122 may be formed in the direction of the first substrate 110 from the surface of the matrix layer 121, and part or all of the crack 122 may be formed on the surface of the matrix layer 121. ) May be formed to expose.
  • the crack 122 Like the scattering particles 123, the crack 122 further increases or decreases the path of light emitted from the organic light emitting layer 140, thereby improving the extraction efficiency of light to the front. As such, since the cracks 122 have the same scattering characteristics as the scattering particles 123, when the cracks 122 are generated a lot, the number of the scattering particles 123 can be reduced by that amount.
  • a plurality of amorphous pores may be formed, for example, in a size of 50 to 900 nm in the matrix layer 121.
  • These pores (not shown) are also generated during the sintering process for forming the matrix layer 121, and the role thereof is similar to the cracks 122 and the scattering particles 123, and the light emitted from the organic light emitting layer 140 may be diversified. It will play a role in spawning.
  • an area occupied by a plurality of pores (not shown) formed in the matrix layer 121 may be 2.5 to 10.8% of the area of the matrix layer 121, and an area occupied by a plurality of pores (not shown) may be large. The light extraction efficiency can be further increased.
  • the plurality of scattering particles 123 dispersed in the matrix layer 121 may be formed of a material having a refractive index smaller than that of the matrix layer 121.
  • the scattering particles 123 may be formed of a metal oxide in which any one or two or more of metal oxide candidate groups including SiO 2 , TiO 2 , ZnO 2, and SnO 2 are combined.
  • the scattering particles 123 may form the matrix layer 121 among the remaining metal oxide candidate groups. It may be composed of one or two or more metal oxides having a smaller refractive index than the metal oxide.
  • the scattering particles 123 make a difference in refractive index with the matrix layer 121, and also complicate or divert the path of light emitted from the organic light emitting layer 140, thereby improving the extraction efficiency of light to the front.
  • the scattering particles 123 is formed in the form of spheres of nanoscale.
  • the scattering particles 123 may also be formed in a rod shape, and the plurality of scattering particles 123 may be formed in the same or various shapes or sizes. That is, the plurality of scattering particles 123 form a random size and spacing, shape, or shape.
  • the organic light emitting device 100 according to an embodiment of the present invention is for illumination, it may be more useful.
  • the scattering particles 123 may be composed of a core 124 made of a hollow and a shell 125 surrounding the core 124.
  • the plurality of scattering particles 123 dispersed in the matrix layer 121 may include some scattering particles having a core-shell structure or all of the plurality of scattering particles 123 may be composed of scattering particles having a core-shell structure.
  • the scattering particles 123 of the core-shell structure make a sharp change in the refractive index between the core 124 and the shell 125 and a complicated light scattering path, thereby further improving the light extraction efficiency of the organic light emitting device 100. do.
  • the matrix layer 121 exhibits a very high surface roughness due to the plurality of scattering particles 123 and cracks 122 and pores (not shown) dispersed therein.
  • the rough surface shape of the matrix layer 121 is transferred to the first electrode 130 as it is.
  • current is concentrated at the sharply protruding portion of the first electrode 130.
  • electrical characteristics of the organic light emitting diode 100 are deteriorated.
  • the filling layer 126 is filled on the surface of the matrix layer 121 to alleviate its surface roughness.
  • the filling layer 126 may be made of a material having the same or different refractive index as the matrix layer 121.
  • the filling layer 126 may be made of a high refractive inorganic material or a high refractive hybrid.
  • the filling layer 126 fills the cracks 122 formed in the matrix layer 121, and the organic light emitting device due to a sudden change in surface roughness of the matrix layer 121 in which a plurality of cracks 122 are formed ( The defect of 100) can be effectively prevented.
  • the shape of the plurality of scattering particles 123 and the cracks 122 are transferred to the surface of the filling layer 126 to form wrinkles, which are gentler wrinkles than the wrinkle structure formed on the surface of the matrix layer 121, for example, Round wrinkles are formed.
  • the filling layer 126 is a layer that serves to mitigate the surface roughness of the matrix layer 121, and thus, the filling layer 126 has a surface roughness lower than that of the matrix layer 121. Surface wrinkles of the filling layer 126 induce a sudden change in the refractive index, and the light emitted from the organic light emitting layer 140 has excellent scattering characteristics.
  • the surface wrinkles of the filling layer 126 are transferred to the surface of the second electrode 150.
  • the surface plasmon may be formed.
  • Mode can be reduced. That is, the wrinkles of the first electrode 130, the organic emission layer 140, and the second electrode 150 constituting the device layer, together with the refractive index change through the surface wrinkles of the filling layer 126 and the waveguide mode reduction through the light scattering, are reduced.
  • the surface plasmon mode is reduced through the structure, the light extraction efficiency of the organic light emitting device 100 is dramatically increased.
  • the first electrode 130 is a transparent electrode serving as an anode of the organic light emitting device 100, and is formed on the internal light extraction layer 120, and more specifically, the filling layer of the internal light extraction layer 120. 126 is formed on. At this time, the upper and lower surfaces (based on the drawing) of the first electrode 130 are transferred to wrinkles of the filling layer 126 to form a wrinkle structure having a shape corresponding to the surface wrinkles of the filling layer 126.
  • the first electrode 130 may be formed of, for example, ITO having a large work function so that hole injection into the organic emission layer 140 occurs well.
  • the organic emission layer 140 is formed on the first electrode 130.
  • the organic light emitting layer 140 has a form in which the corrugation structure of the first electrode 130 is transferred to correspond to the corrugation structure thereof. It is formed into a wrinkled structure.
  • the organic light emitting layer 140 may include a hole layer, a light emitting layer, and an electronic layer that are sequentially stacked between the first electrode 130 and the second electrode 150.
  • the hole layer may be formed of a hole injection layer (HIL) and a hole transfer layer (HTL) that are sequentially stacked on the first electrode 130, and the electron layer is sequentially stacked on the light emitting layer.
  • HIL hole injection layer
  • HTL hole transfer layer
  • the organic light emitting diode 100 may be formed of an electron transfer layer (ETL) and an electron injection layer (EIL) formed.
  • ETL electron transfer layer
  • EIL electron injection layer
  • the organic light emitting diode 100 according to the embodiment of the present invention is a white organic light emitting diode for illumination
  • the light emitting layer has a stacked structure of a polymer emitting layer emitting light of a blue region and a low molecular emitting layer emitting light of an orange-red region.
  • the light emitting device may be formed in various structures to realize white light emission.
  • the cathode second electrode 150 when a forward voltage is applied between the anode first electrode 130 and the cathode second electrode 150, electrons from the second electrode 150 through the electron injection layer and the electron transport layer of the electron layer
  • the light emitting layer moves to the light emitting layer, and holes move from the first electrode 130 to the light emitting layer through the hole injection layer and the hole transport layer of the hole layer.
  • the electrons and holes injected into the light emitting layer recombine in the light emitting layer to generate excitons, and the excitons emit light while transitioning from the excited state to the ground state.
  • the brightness of the light is proportional to the amount of current flowing between the first electrode 130 serving as an anode and the second electrode 150 serving as a cathode.
  • the organic light emitting layer 140 may have a tandem structure. That is, the organic light emitting layer 140 may be provided in plurality, and each of the organic light emitting layers 140 may be alternately disposed through an interconnecting layer (not shown).
  • the second electrode 150 is a metal electrode serving as a cathode of the organic light emitting diode 100 and is formed on the organic light emitting layer 140.
  • the second electrode 150 may be formed of a metal thin film of Al, Al: Li, or Mg; Ag having a small work function so that electron injection into the organic light emitting layer 140 may occur easily.
  • the surface of the second electrode 150 is formed on the surface of the second electrode 150.
  • a corrugated structure of a shape corresponding to these corrugated structures is formed.
  • the corrugated structure formed on the surface of the second electrode 150 is defined by a plurality of convex portions 151 and a plurality of concave portions 152 formed between adjacent convex portions 151.
  • an aspect ratio (depth / pitch) with respect to the depth of the convex portion 151 and the depth of the concave portion 152 adjacent to each other is controlled to 0.1 to 7.
  • the aspect ratio of the pitch between the convex portions 151 adjacent to each other and the depth of the concave portion 152 is smaller than 0.1, The wrinkles hardly appear, and the effect of reducing the surface plasmon mode is lowered.
  • the pitch between the convex portions 151 may be defined as an average value of the pitches between the plurality of convex portions 151, and the average depth of the concave portions 152 may be AFM (atomic force microscopy) or confocal microscopy. ) Can be measured.
  • the aspect ratio of the convex portion 151 and the concave portion 152 of the corrugated structure formed on the second electrode 150 is controlled in the above range.
  • a wrinkle structure optimized for improving light extraction efficiency is realized.
  • the corrugation structure formed on the second electrode 150 is optimized, the waveguide mode and the surface plasmon mode are reduced, which causes the greatest loss in the efficiency of the organic light emitting diode 100. It can be maximized, and through this, it is possible to significantly increase the light extraction efficiency, it is possible to implement the excellent luminous efficiency of the organic light emitting device 100 after all.
  • the haze may be changed to 5 to 85% by controlling the packing density of the scattering particles 123 or the thickness of the filling layer 126. .
  • 3 and 4 are reference diagrams for simulating the luminous efficiency of the organic light emitting diode according to the embodiment of the present invention.
  • the SiO 2 particles having a diameter of 600 nm are coated on a substrate, and then a high refractive hybrid is filled thereon to form a filling layer, and then an organic light emission in which an ITO electrode, an organic light emitting layer, and an Al electrode are formed on the filling layer.
  • the light emission efficiency is simulated in consideration of the light emission amount according to the area as shown in Figure 4 and the following equation As shown in FIG. 5, it was confirmed that the organic light emitting device (reference) having no internal light extraction layer and a corrugation structure exhibited a higher light extraction efficiency.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 발명은 유기발광소자에 관한 것으로서 더욱 상세하게는 내부 광추출층으로부터 전사되어 형성되는 주름구조의 최적화를 통해, 광추출 효율을 획기적으로 증가시킬 수 있고, 이를 통해, 우수한 발광 효율 구현이 가능한 유기발광소자에 관한 것이다. 이를 위해, 본 발명은, 제1 기판; 상기 제1 기판 상에 형성되는 내부 광추출층; 상기 내부 광추출층 상에 형성되는 제1 전극; 상기 제1 전극 상에 형성되는 유기 발광층; 및 상기 유기 발광층 상에 형성되는 제2 전극을 포함하고, 상기 내부 광추출층의 표면에는 주름이 형성되며, 상기 주름은 상기 제1 전극, 상기 유기 발광층 및 상기 제2 전극에 차례로 전사되어, 상기 제2 전극의 표면은 주름 구조를 이루되, 상기 주름 구조는 다수의 볼록부 및 서로 이웃하는 상기 볼록부 사이에 형성되는 다수의 오목부로 이루어지며, 서로 이웃하는 상기 볼록부 간의 피치(pitch)와 상기 오목부의 깊이(depth)에 대한 종횡비(depth/pitch)는 0.1~7인 것을 특징으로 하는 유기발광소자를 제공한다.

Description

유기발광소자
본 발명은 유기발광소자에 관한 것으로서 더욱 상세하게는 내부 광추출층으로부터 전사되어 형성되는 주름구조의 최적화를 통해, 광추출 효율을 획기적으로 증가시킬 수 있고, 이를 통해, 우수한 발광 효율 구현이 가능한 유기발광소자에 관한 것이다.
일반적으로, 발광장치는 크게 유기물을 이용하여 발광층을 형성하는 유기 발광장치와 무기물을 이용하여 발광층을 형성하는 무기 발광장치로 구분할 수 있다. 이중, 유기 발광장치를 이루는 유기발광소자는 전자주입전극(cathode)으로부터 주입된 전자와 정공주입전극(anode)으로부터 주입된 정공이 유기 발광층에서 결합하여 엑시톤(exciton)을 형성하고, 이 엑시톤이 에너지를 방출하면서 발광하는 자체 발광형 소자로서, 저전력 구동, 자체발광, 넓은 시야각, 높은 해상도와 천연색 실현, 빠른 응답 속도 등의 장점을 가지고 있다.
최근에는 이러한 유기발광소자를 휴대용 정보기기, 카메라, 시계, 사무용기기, 자동차 등의 정보 표시 창, 텔레비전, 디스플레이 또는 조명용 등에 적용하기 위한 연구가 활발히 진행되고 있다.
상술한 바와 같은 유기발광소자의 발광 효율을 향상시키기 위해서는 발광층을 구성하는 재료의 발광 효율을 높이거나 발광층에서 발광된 광의 광추출 효율을 향상시키는 방법이 있다.
이때, 광추출 효율은 유기발광소자를 구성하는 각 층들의 굴절률에 의해 좌우된다. 일반적인 유기발광소자의 경우, 발광층으로부터 방출되는 광이 임계각 이상으로 출사될 때, 애노드인 투명전극층과 같이 굴절률이 높은 층과 기판유리와 같이 굴절률이 낮은 층 사이의 계면에서 전반사를 일으키게 되어, 광추출 효율이 낮아지게 되고, 이로 인해, 유기발광소자의 전체적인 발광 효율이 감소되는 문제점이 있었다.
이를 구체적으로 설명하면, 유기발광소자는 발광량의 20%만 외부로 방출되고, 80% 정도의 빛은 기판유리와 애노드 및 정공 주입층, 전공 수송층, 발광층, 전자 수송층, 전자 주입층 등을 포함하는 유기 발광층의 굴절률 차이에 의한 도파관(wave guiding) 효과와 기판유리와 공기의 굴절률 차이에 의한 전반사 효과로 손실된다. 즉, 내부 유기 발광층의 굴절률은 1.7~1.8이고, 애노드로 일반적으로 사용되는 ITO의 굴절률은 약 1.9이다. 이때, 두 층의 두께는 대략 200~400㎚로 매우 얇고, 기판유리의 굴절률은 1.5이므로, 유기발광소자 내에는 평면 도파로가 자연스럽게 형성된다. 계산에 의하면, 상기 원인에 의한 내부 도파모드로 손실되는 빛의 비율이 약 45%에 이른다. 그리고 기판유리의 굴절률은 약 1.5이고, 외부 공기의 굴절률은 1.0이므로, 기판유리에서 외부로 빛이 빠져 나갈 때, 임계각 이상으로 입사되는 빛은 전반사를 일으켜 기판유리 내부에 고립되는데, 이렇게 고립된 빛의 비율은 약 35%에 이르기 때문에, 불과 발광량의 20% 정도만 외부로 방출된다.
이러한 문제를 해결하기 위해, 광도파모드에 의해 소실되는 80%의 빛을 외부로 끌어내는 광추출층에 대한 연구가 활발히 진행되고 있다. 여기서, 광추출층은 크게 내부 광추출층과 외부 광추출층으로 나뉜다. 이때, 외부 광추출층의 경우에는 다양한 형태의 마이크로 렌즈를 포함하는 필름을 기판 외부에 설치함으로써, 광추출 효과를 얻을 수 있는데, 마이크로 렌즈의 형태에 크게 구애 받지 않은 특성이 있다. 또한, 내부 광추출층은 광도파모드로 소실되는 빛을 직접적으로 추출함으로써, 외부 광추출층에 비해 효율증대 가능성이 훨씬 높은 장점이 있다.
하지만, 내부 광추출층을 통해 광추출 효율이 증대되더라도 외부로 방출되는 발광량을 기준으로 보면, 그 효과가 여전히 미진하므로, 광추출 효율을 보다 향상시킬 수 있는 방법 혹은 기술에 대한 연구가 절실히 요구되고 있는 실정이다.
[선행기술문헌]
대한민국 등록특허공보 제1093259호(2011.12.06.)
본 발명은 상술한 바와 같은 종래기술의 문제점을 해결하기 위해 안출된 것으로서, 본 발명의 목적은 내부 광추출층으로부터 전사되어 형성되는 주름구조의 최적화를 통해, 광추출 효율을 획기적으로 증가시킬 수 있고, 이를 통해, 우수한 발광 효율 구현이 가능한 유기발광소자를 제공하는 것이다.
이를 위해, 본 발명은, 제1 기판; 상기 제1 기판 상에 형성되는 내부 광추출층; 상기 내부 광추출층 상에 형성되는 제1 전극; 상기 제1 전극 상에 형성되는 유기 발광층; 및 상기 유기 발광층 상에 형성되는 제2 전극을 포함하고, 상기 내부 광추출층의 표면에는 주름이 형성되며, 상기 주름은 상기 제1 전극, 상기 유기 발광층 및 상기 제2 전극에 차례로 전사되어, 상기 제2 전극의 표면은 주름 구조를 이루되, 상기 주름 구조는 다수의 볼록부 및 서로 이웃하는 상기 볼록부 사이에 형성되는 다수의 오목부로 이루어지며, 서로 이웃하는 상기 볼록부 간의 피치(pitch)와 상기 오목부의 깊이(depth)에 대한 종횡비(depth/pitch)는 0.1~7인 것을 특징으로 하는 유기발광소자를 제공한다.
여기서, 상기 내부 광추출층은, 상기 제1 기판 상에 형성되고, 제1 금속산화물로 이루어진 매트릭스 층, 상기 매트릭스 층 내부에 분산되어 있고, 상기 제1 금속산화물과 굴절률이 다른 제2 금속산화물로 이루어진 다수의 산란입자, 및 상기 매트릭스 층의 표면에 충진되는 충진층을 포함하되, 상기 충진층의 표면에는 상기 산란입자 및 상기 산란입자들의 응집체의 형상이 전사된 형태의 상기 주름이 형성되어 있을 수 있다.
이때, 상기 매트릭스 층에는 균열이 형성되어 있을 수 있다.
또한, 상기 균열은 상기 다수의 산란입자 사이 및 상기 응집체들 사이를 따라 형성될 수 있다.
그리고 상기 충진층의 표면조도는 상기 매트릭스 층의 표면조도보다 상대적으로 낮을 수 있다.
아울러, 상기 매트릭스 층은 SiO2, TiO2, ZrO2, ZnO2 및 SnO2를 포함하는 금속산화물 후보군 중 어느 하나 또는 둘 이상의 조합으로 이루어질 수 있다.
또한, 상기 산란입자는 SiO2, TiO2, ZnO2 및 SnO2를 포함하는 금속산화물 후보군 중 어느 하나 또는 둘 이상을 조합으로 이루어질 수 있다.
그리고 상기 다수의 산란입자 중 일부 또는 전부는, 중공으로 이루어져 있는 코어, 및 상기 코어를 감싸는 쉘 구조로 이루어질 수 있다.
게다가, 상기 내부 광추출층은, 상기 매트릭스 층의 내부에 형성되어 있는 부정형의 다수의 기공을 더 포함할 수 있다.
이 경우, 상기 기공의 크기는 50~900㎚일 수 있다.
이때, 상기 매트릭스 층에서 상기 다수의 기공이 차지하는 면적은 상기 매트릭스 층의 면적 대비 2.5~10.8%일 수 있다.
아울러, 상기 유기발광소자는 상기 제1 기판과의 인캡슐레이션을 위해 상기 제2 전극 상부에 상기 제1 기판과 대향되게 배치되는 제2 기판을 더 포함할 수 있다.
본 발명에 따르면, 내부 광추출층(Internal Light Extraction Layer; ILEL)으로부터 전사되어 형성되는 표면 주름 구조(corrugation structure) 및 이 주름 구조를 이루는 다수의 볼록부 간의 피치(pitch) 및 볼록부와 볼록부 사이를 이루는 오목부의 깊이(depth)의 비율인 종횡비(aspect ratio; depth/pitch)를 소정 범위로 제어하는 주름구조의 최적화를 통해, 유기발광소자의 발광 효율에 가장 큰 손실을 초래하는 도파관 모드(waveguide mode) 및 표면 플라즈몬 모드(surface plasmon mode)의 감소를 극대화시킬 수 있고, 이를 통해, 광추출 효율을 획기적으로 증가시킬 수 있어, 결국, 우수한 발광 효율을 구현할 수 있다.
도 1은 본 발명의 실시 예에 따른 유기발광소자를 개략적으로 나타낸 단면 모식도.
도 2는 다양한 종횡비를 나타내는 유기발광소자의 표면 주름 구조를 촬영한 주사전자현미경 사진들.
도 3 및 도 4는 본 발명의 실시 예에 따른 유기발광소자의 발광 효율을 시뮬레이션 하기 위한 참고도.
도 5는 본 발명의 실시 예에 따른 유기발광소자의 발광 효율에 대한 시뮬레이션 결과를 나타낸 그래프.
이하에서는 첨부된 도면들을 참조하여 본 발명의 실시 예에 따른 유기발광소자에 대해 상세히 설명한다.
아울러, 본 발명을 설명함에 있어서, 관련된 공지 기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단된 경우 그 상세한 설명은 생략한다.
도 1에 도시한 바와 같이, 본 발명의 실시 예에 따른 유기발광소자(100)는 배면 발광(bottom emission) 구조를 이룬다. 또한, 본 발명의 실시 예에 따른 유기발광소자(100)는 조명의 광원으로 적용될 수 있다. 이러한 유기발광소자(100)는 제1 기판(110), 내부 광추출층(120), 제1 전극(130), 유기 발광층(140) 및 제2 전극(150)을 포함하여 형성된다.
제1 기판(110)은 유기 발광층(140)의 전방, 즉, 유기 발광층(140)으로부터 발광된 빛이 외기와 접하는 부분에 배치되어, 발광된 빛을 외부로 투과시킴과 아울러, 내부 광추출층(120), 제1 전극(130), 유기 발광층(140) 및 제2 전극(150)을 외부 환경으로부터 보호하는 역할을 한다. 이를 위해, 즉, 내부 광추출층(120), 제1 전극(130), 유기 발광층(140) 및 제2 전극(150)을 인캡슐레이션(incapsulation)시키기 위해, 제1 기판(110)은 테두리를 따라 형성되는 예컨대, 에폭시와 같은 씰링재를 매개로, 제2 전극(150) 상부에 이와 대향되게 배치되는 후면 기판인 제2 기판(미도시)과 접합된다. 이때, 서로 대향되는 제1 기판(110)과 제2 기판(미도시) 그리고 이들 테두리에 형성되는 씰링재에 의해 구획되는 내부 공간 중 내부 광추출층(120), 제1 전극(130), 유기 발광층(140) 및 제2 전극(150)이 차지하고 있는 공간 이외의 내부 공간은 불활성 기체로 채워지거나 진공 분위기로 조성될 수 있다.
이러한 제1 기판(110)은 투명 기판으로, 광 투과율이 우수하고 기계적인 물성이 우수한 것이면 어느 것이든 제한되지 않는다. 예를 들어, 제1 기판(110)으로는 열경화 또는 UV 경화가 가능한 유기필름인 고분자 계열의 물질이 사용될 수 있다. 또한, 제1 기판(110)으로는 화학강화유리인 소다라임 유리(SiO2-CaO-Na2O) 또는 알루미노실리케이트계 유리(SiO2-Al2O3-Na2O)가 사용될 수 있다. 여기서, 본 발명의 실시 예에 따른 유기발광소자(100)가 조명용인 경우, 제1 기판(110)으로는 소다라임 유리가 사용될 수 있다. 이외에도 제1 기판(110)으로는 금속산화물이나 금속질화물로 이루어진 기판이 사용될 수도 있다. 그리고 본 발명의 실시 예에서는 제1 기판(110)으로 두께 1.5㎜ 이하의 박판 유리가 사용될 수 있는데, 이러한 박판 유리는 퓨전(fusion) 공법 또는 플로팅(floating) 공법을 통해 제조될 수 있다.
한편, 제1 기판(110)과 인캡슐레이션을 이루는 후면 기판인 제2 기판(미도시)은 제1 기판(110)과 동일 또는 다른 물질로 이루어질 수 있다.
내부 광추출층(120)은 유기 발광층(140)으로부터 발광된 빛이 외부로 방출되는 전방에 배치되어, 유기발광소자(100)의 광추출 효율을 향상시키는 역할을 하는 광 기능성 층이다. 본 발명의 실시 예에서, 내부 광추출층(120)은 제1 기판(110) 상에 형성된다. 도면기준으로, 내부 광추출층(120)의 아래에는 제1 기판(110)이 배치되고, 내부 광추출층(120)의 위에는 제1 전극(130)이 배치된다.
본 발명의 실시 예에서, 이러한 내부 광추출층(120)은 매트릭스 층(121), 다수의 산란입자(123) 및 충진층(126)을 포함하여 형성될 수 있다. 이때, 매트릭스 층(121) 및 다수의 산란입자(123는 광추출 효율 향상을 위해, 서로 굴절률이 다른 물질로 이루어질 수 있다. 이때, 이들의 굴절률 차이가 클수록 광추출 효율 향상에 더욱 기여하게 된다. 한편, 매트릭스 층(121)은 충진층(126)보다 굴절률이 큰 물질로 이루어지거나, 충진층(126)보다 굴절률이 작은 물질로 이루어질 수 있고, 충진층(126)과 동일한 굴절률을 갖는 물질로도 이루어질 수 있다.
매트릭스 층(121)은 산란입자(123)보다 굴절률이 큰 고굴절(high refractive index; HRI) 물질로 이루어질 수 있다. 예를 들어, 매트릭스 층(121)은 SiO2, TiO2, ZrO2, ZnO2 및 SnO2를 포함하는 금속산화물 후보군 중 어느 하나 또는 둘 이상을 조합한 금속산화물로 이루어질 수 있다.
본 발명의 실시 예에서, 매트릭스 층(121)에는 균열(crack)(122)이 형성될 수 있다. 균열(122)은 내부에 다수의 산란입자(123)가 분산되어 있는 매트릭스 층(121) 형성을 위한 소성 과정에서 발생되는 것으로, 다수의 산란입자(123) 및 이들 산란입자(123)로 이루어진 응집체들 사이를 따라 형성될 수 있다. 이때, 균열(122)은 매트릭스 층(121)의 표면으로부터 제1 기판(110) 방향으로 형성될 수 있고, 균열(122)의 일부 또는 전부는 매트릭스 층(121)의 표면으로 제1 기판(110)을 노출시킬 정도로 형성될 수도 있다. 이러한 균열(122)은 산란입자(123)와 마찬가지로, 유기 발광층(140)으로부터 방출되는 빛의 경로를 더욱 복잡화 혹은 다변화시켜, 전방으로의 빛의 추출 효율을 향상시키는 역할을 하게 된다. 이와 같이, 균열(122)이 산란입자(123)과 동일한 산란특성을 가지므로, 균열(122)이 많이 발생되면, 그 만큼, 산란입자(123)의 개수를 줄일 수 있게 된다.
한편, 매트릭스 층(121)의 내부에는 부정형의 다수의 기공(미도시)이 예컨대, 50~900㎚ 크기로 형성될 수 있다. 이 기공(미도시) 또한 매트릭스 층(121) 형성을 위한 소성 과정에서 발생되는 것으로, 그 역할은 균열(122) 및 산란입자(123)와 마찬가지로, 유기 발광층(140)으로부터 방출된 빛을 다양한 경로로 산란시키는 역할을 하게 된다. 이때, 매트릭스 층(121) 내부에 형성되는 다수의 기공(미도시)이 차지하는 면적은 매트릭스 층(121)의 면적 대비 2.5~10.8%일 수 있는데, 다수의 기공(미도시)이 차지하는 면적이 넓을수록 광추출 효율은 더욱 증가될 수 있다.
매트릭스 층(121) 내부에 분산되어 있는 다수의 산란입자(123)는 매트릭스 층(121)보다 굴절률이 작은 물질로 이루어질 수 있다. 예를 들어, 산란입자(123)는 SiO2, TiO2, ZnO2 및 SnO2를 포함하는 금속산화물 후보군 중 어느 하나 또는 둘 이상을 조합한 금속산화물로 이루어질 수 있다. 이때, 상기 금속산화물 후보군 중 어느 하나 또는 둘 이상을 조합한 금속산화물이 매트릭스 층(121)을 이루는 금속산화물로 선택되는 경우, 산란입자(123)는 나머지 금속산화물 후보군 중 매트릭스 층(121)을 이루는 금속산화물보다 굴절률이 작은 하나 또는 둘 이상을 조합한 금속산화물로 이루어질 수 있다. 이러한 산란입자(123)는 매트릭스 층(121)과 굴절률 차이를 이룸과 아울러, 유기 발광층(140)으로부터 발광된 빛의 경로를 복잡화 혹은 다변화시켜, 전방으로의 광의 추출 효율을 향상시키는 역할을 한다. 본 발명의 실시 예에서, 산란입자(123)는 나노 스케일의 스피어(sphere) 형태로 이루어진다. 하지만, 산란입자(123)는 로드(rod) 형태로도 형성될 수 있고, 다수의 산란입자(123)는 동일 또는 다양한 모양이나 크기로 형성될 수도 있다. 즉, 다수의 산란입자(123)는 랜덤한 크기와 간격, 형태나 모양을 이루게 되는데, 이와 같이, 다수의 산란입자(123)가 랜덤하게 형성되면, 특정 파장대가 아닌 넓은 파장대에서 고르게 광추출을 유도할 수 있어, 본 발명의 실시 예에 따른 유기발광소자(100)가 조명용인 경우, 보다 유용할 수 있다.
본 발명의 실시 예에서, 이러한 산란입자(123)는 중공으로 이루어져 있는 코어(124) 및 이를 감싸는 쉘(125)로 이루어질 수 있다. 이때, 매트릭스 층(121) 내부에 분산되어 있는 다수의 산란입자(123)에는 코어-쉘 구조의 산란입자가 일부 포함되거나 다수의 산란입자(123) 전부가 코어-쉘 구조의 산란입자로 이루어질 수도 있다. 이와 같은 코어-쉘 구조의 산란입자(123)는 코어(124)와 쉘(125) 간의 굴절률의 급격한 변화와 복잡한 광 산란 경로를 만들게 되어, 유기발광소자(100)의 광추출 효율을 더욱 향상시키게 된다.
여기서, 매트릭스 층(121)은 내부에 분산되어 있는 다수의 산란입자(123)와 발생된 균열(122) 및 기공(미도시)들로 인해, 매우 높은 표면조도를 나타내게 되는데, 이 상태로 제1 전극(130)과 접하게 되면, 제1 전극(130)에 매트릭스 층(121)의 거친 표면 형상이 그대로 전사되는데, 이렇게 되면, 제1 전극(130)의 뾰족하게 돌출된 부분에 전류가 집중되어, 결국, 유기발광소자(100)의 전기적 특성이 악화된다. 이를 방지하기 위해, 본 발명의 실시 예에서는 매트릭스 층(121)의 표면에 이의 표면조도를 완화시키는 충진층(126)이 충진된다. 이러한 충진층(126)은 매트릭스 층(121)과 동일 또는 다른 굴절률을 갖는 물질로 이루어질 수 있다. 예를 들어, 충진층(126)은 고굴절 무기물 또는 고굴절 하이브리머(hybrimer)로 이루어질 수 있다.
이러한 충진층(126)은 매트릭스 층(121)에 형성되어 있는 균열(122)을 메워, 다수의 균열(122)이 형성되어 있는 매트릭스 층(121)의 급격한 표면조도의 변화로 인한 유기발광소자(100)의 불량을 효과적으로 방지하게 된다. 이때, 충진층(126)의 표면에는 다수의 산란입자(123) 및 균열(122)의 형상이 전사되어 주름이 형성되는데, 매트릭스 층(121)의 표면에 형성된 주름 구조보다 완만한 주름, 예컨대, 라운드 형상의 주름이 형성된다. 즉, 충진층(126)은 매트릭스 층(121)의 표면조도를 완화시키는 역할을 하는 층으로, 이에 따라, 충진층(126)은 매트릭스 층(121)보다 상대적으로 낮은 표면조도를 갖게 된다. 이러한 충진층(126)의 표면 주름은 굴절률의 급격한 변화를 유도하고, 유기 발광층(140)로부터 방출된 빛이 우수한 산란특성을 갖게 한다.
한편, 충진층(126)의 표면 주름은 제2 전극(150)의 표면에 까지 전사된다. 이와 같이, 충진층(126)의 표면 주름으로 인해, 이의 상부에 차례로 적층되는 제1 전극(130), 유기 발광층(140) 및 제2 전극(150)에 주름이 형성되면, 표면 플라즈몬(surface plasmon) 모드를 감소시킬 수 있게 된다. 즉, 충진층(126)의 표면 주름을 통한 굴절률 변화와 광 산란을 통한 도파관 모드 감소와 함께, 소자층을 이루는 제1 전극(130), 유기 발광층(140) 및 제2 전극(150)의 주름 구조를 통해 표면 플라즈몬 모드가 감소되면, 유기발광소자(100)의 광추출 효율은 획기적으로 증가하게 된다.
제1 전극(130)은 유기발광소자(100)의 애노드(anode)로 작용하는 투명전극으로, 내부 광추출층(120) 상에 형성, 보다 상세하게는 내부 광추출층(120)의 충진층(126) 상에 형성된다. 이때, 제1 전극(130)의 상, 하면(도면 기준)은 충진층(126)의 주름이 전사되어, 충진층(126)의 표면 주름과 대응되는 형태의 주름 구조로 형성된다. 이러한 제1 전극(130)은 유기 발광층(140)으로의 정공 주입이 잘 일어나도록 예컨대, 일함수(work function)가 큰 ITO로 이루어질 수 있다.
유기 발광층(140)은 제1 전극(130) 상에 형성된다. 이때, 제1 전극(130)이 충진층(126)에 의해 주름 구조를 이룸에 따라, 유기 발광층(140)은 제1 전극(130)의 주름 구조가 전사되어, 이들의 주름 구조와 대응되는 형태의 주름 구조로 형성된다. 구체적으로 도시하진 않았지만, 이러한 유기 발광층(140)은 제1 전극(130)과 제2 전극(150) 사이에 차례로 적층되는 정공층, 발광층 및 전자층을 포함하여 형성될 수 있다. 여기서, 정공층은 제1 전극(130) 상에 차례로 적층 형성되는 정공 주입층(hole injection layer; HIL) 및 정공 수송층(hole transfer layer; HTL)으로 이루어질 수 있고, 전자층은 발광층 상에 차례로 적층 형성되는 전자 수송층(electron transfer layer; ETL) 및 전자 주입층(electron injection layer; EIL)으로 이루어질 수 있다. 그리고 발광층은 본 발명의 실시 예에 따른 유기발광소자(100)가 조명용 백색 유기발광소자인 경우, 청색 영역의 광을 방출하는 고분자 발광층과 오렌지-적색 영역의 광을 방출하는 저분자 발광층의 적층 구조로 형성될 수 있고, 이외에도 다양한 구조로 형성되어 백색 발광을 구현할 수 있다.
이러한 구조에 따라, 애노드인 제1 전극(130)과 캐소드인 제2 전극(150) 사이에 순방향 전압이 인가되면, 제2 전극(150)으로부터 전자가 전자층의 전자 주입층 및 전자 수송층을 통해 발광층으로 이동하게 되고, 제1 전극(130)으로부터 정공이 정공층의 정공 주입층 및 정공 수송층을 통해 발광층으로 이동하게 된다. 그리고 발광층 내로 주입된 전자와 정공은 발광층에서 재결합하여 엑시톤(exciton)을 생성하고, 이러한 엑시톤이 여기상태(excited state)에서 기저상태(ground state)로 전이하면서 빛을 방출하게 되는데, 이때, 방출되는 빛의 밝기는 애노드로 작용하는 제1 전극(130)과 캐소드로 작용하는 제2 전극(150) 사이에 흐르는 전류량에 비례하게 된다.
한편, 본 발명의 실시 예에서, 유기 발광층(140)은 텐덤(tandem) 구조를 이룰 수 있다. 즉, 유기 발광층(140)은 복수 개로 구비될 수 있고, 각각의 유기 발광층(140)은 연결층(interconnecting layer)(미도시)을 매개로 교번 배치될 수 있다.
제2 전극(150)은 유기발광소자(100)의 캐소드(cathode)로 작용하는 금속전극으로, 유기 발광층(140) 상에 형성된다. 이러한 제2 전극(150)은 유기 발광층(140)으로의 전자 주입이 잘 일어나도록 일함수가 작은 Al, Al:Li 또는 Mg;Ag의 금속 박막으로 이루어질 수 있다.
본 발명의 실시 예에서는 충진층(126)의 주름으로부터 전사된 주름 구조를 갖는 제1 전극(130)에 의해 유기 발광층(140)이 주름 구조를 이룸에 따라, 제2 전극(150)의 표면에는 이들의 주름 구조와 대응되는 형상의 주름 구조가 형성된다. 이와 같이, 제2 전극(150)의 표면에 형성되는 주름 구조는 다수의 볼록부(151) 및 서로 이웃하는 볼록부(151) 사이에 형성되는 다수의 오목부(152)로 정의된다. 이때, 본 발명의 실시 예에서, 서로 이웃하는 볼록부(151) 간의 피치(pitch)와 오목부(152)의 깊이(depth)에 대한 종횡비(depth/pitch)는 0.1~7로 제어된다. 도 2의 다양한 종횡비를 나타내는 주름 구조를 촬영한 주사전자현미경 사진들에서 보여지는 바와 같이, 서로 이웃하는 볼록부(151) 간의 피치와 오목부(152)의 깊이에 대한 종횡비가 0.1보다 작을 경우에는 주름이 거의 나타나지 않게 되어, 표면 플라즈몬 모드의 감소 효과가 저하된다. 또한, 서로 이웃하는 볼록부(151) 간의 피치와 오목부(152)의 깊이에 대한 종횡비가 7보다 클 경우에는 주름 구조의 볼록부(151)가 지나치게 돌출되는 구조가 되는데, 이는, 유기발광소자(100)의 수명에 악영향을 끼치게 된다. 이때, 볼록부(151) 간의 피치는 다수의 볼록부(151) 간의 피치의 평균값으로 정의될 수 있고, 오목부(152)의 평균적인 깊이는 AFM(atomic force microscopy)나 공초점 현미경(confocal microscopy)로 측정 가능하다.
이와 같이, 본 발명의 실시 예에서는 광추출 효율을 더욱 향상시키기 위해, 제2 전극(150)에 형성되는 주름 구조의 볼록부(151) 및 오목부(152)의 종횡비를 상기와 같은 범위로 제어함으로써, 광추출 효율 향상에 최적화된 주름 구조를 구현하게 된다. 이와 같이, 제2 전극(150)에 형성되는 주름 구조가 최적화되면, 유기발광소자(100)의 효율에 가장 큰 손실을 초래하는 도파관 모드(waveguide mode) 및 표면 플라즈몬 모드(surface plasmon mode)의 감소를 극대화시킬 수 있고, 이를 통해, 광추출 효율을 획기적으로 증가시킬 수 있어, 결국, 유기발광소자(100)의 우수한 발광 효율을 구현할 수 있게 된다. 또한, 본 발명의 실시 예에서는 필요에 따라, 산란입자(123)의 실장 밀도(packing density)나 충진층(126)의 두께 제어를 통해, 헤이즈(haze)를 5~85%로 변화시킬 수 있다.
한편, 도 3 및 도 4는 본 발명의 실시 예에 따른 유기발광소자의 발광 효율을 시뮬레이션 하기 위한 참고 도면이다. 여기에서는 직경 600㎚의 SiO2 입자를 기판 상에 코팅한 후 그 위에 고굴절 하이브리머를 충진하여 충진층을 형성한 다음, 충진층 상에 차례로, ITO 전극, 유기 발광층 및 Al 전극을 형성한 유기발광소자 구조를 상정한 것으로, 유기 발광층의 각 지역에서 발광하는 다이폴(dipole; D1, D2, D3)을 가정하고, 이를 도 4 및 하기의 수학식과 같이 면적에 따른 발광량을 고려하여 발광 효율을 시뮬레이션 하면, 도 5에 나타낸 바와 같이, 내부 광추출층 및 주름구조를 구비하지 않은 유기발광소자(reference)이 비해, 더 높은 광추출 효율을 나타내는 것으로 확인되었다.
Figure PCTKR2015013906-appb-M000001
이상과 같이 본 발명은 비록 한정된 실시 예와 도면에 의해 설명되었으나, 본 발명은 상기의 실시 예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다.
그러므로 본 발명의 범위는 설명된 실시 예에 국한되어 정해져서는 아니 되며, 후술하는 특허청구범위뿐만 아니라 특허청구범위와 균등한 것들에 의해 정해져야 한다.

Claims (10)

  1. 제1 기판;
    상기 제1 기판 상에 형성되는 내부 광추출층;
    상기 내부 광추출층 상에 형성되는 제1 전극;
    상기 제1 전극 상에 형성되는 유기 발광층; 및
    상기 유기 발광층 상에 형성되는 제2 전극;
    을 포함하고,
    상기 내부 광추출층의 표면에는 주름이 형성되며,
    상기 주름은 상기 제1 전극, 상기 유기 발광층 및 상기 제2 전극에 차례로 전사되어, 상기 제2 전극의 표면은 주름 구조를 이루되,
    상기 주름 구조는 다수의 볼록부 및 서로 이웃하는 상기 볼록부 사이에 형성되는 다수의 오목부로 이루어지며,
    서로 이웃하는 상기 볼록부 간의 피치(pitch)와 상기 오목부의 깊이(depth)에 대한 종횡비(depth/pitch)는 0.1~7이고,
    상기 내부 광추출층은,
    상기 제1 기판 상에 형성되고, 금속산화물로 이루어지며, 균열이 형성되어 있는 매트릭스 층,
    상기 매트릭스 층 내부에 분산되어 있고, 상기 금속산화물과 굴절률이 다른 금속산화물로 이루어진 다수의 산란입자, 및
    상기 매트릭스 층의 표면에 상기 균열을 메우는 형태로 충진되어 상기 매트릭스 층의 표면조도를 완화시키는 충진층을 포함하되,
    상기 충진층의 표면에는 상기 산란입자 및 상기 산란입자들의 응집체의 형상이 전사된 형태의 상기 주름이 형성되어 있는 것을 특징으로 하는 유기발광소자.
  2. 제1항에 있어서,
    상기 균열은 상기 다수의 산란입자 사이 및 상기 응집체들 사이를 따라 형성되는 것을 특징으로 하는 유기발광소자.
  3. 제2항에 있어서,
    상기 충진층의 표면조도는 상기 매트릭스 층의 표면조도보다 상대적으로 낮은 것을 특징으로 하는 유기발광소자.
  4. 제1항에 있어서,
    상기 매트릭스 층은 SiO2, TiO2, ZrO2, ZnO2 및 SnO2를 포함하는 금속산화물 후보군 중 어느 하나 또는 둘 이상의 조합으로 이루어진 것을 특징으로 하는 유기발광소자.
  5. 제4항에 있어서,
    상기 산란입자는 SiO2, TiO2, ZnO2 및 SnO2를 포함하는 금속산화물 후보군 중 어느 하나 또는 둘 이상을 조합으로 이루어지되, 상기 금속산화물 후보군 중 어느 하나 또는 둘 이상을 조합한 금속산화물이 상기 매트릭스 층을 이루는 금속산화물로 선택되는 경우, 상기 산란입자는 나머지 금속산화물 후보군 중 상기 매트릭스 층을 이루는 금속산화물보다 굴절률이 작은 하나 또는 둘 이상의 금속산화물의 조합으로 이루어지는 것을 특징으로 하는 유기발광소자.
  6. 제1항에 있어서,
    상기 다수의 산란입자 중 일부 또는 전부는,
    중공으로 이루어져 있는 코어, 및
    상기 코어를 감싸는 쉘 구조로 이루어진 것을 특징으로 하는 유기발광소자.
  7. 제1항에 있어서,
    상기 내부 광추출층은,
    상기 매트릭스 층의 내부에 형성되어 있는 부정형의 다수의 기공을 더 포함하는 것을 특징으로 하는 유기발광소자.
  8. 제7항에 있어서,
    상기 기공의 크기는 50~900㎚인 것을 특징으로 하는 유기발광소자.
  9. 제8항에 있어서,
    상기 매트릭스 층에서 상기 다수의 기공이 차지하는 면적은 상기 매트릭스 층의 면적 대비 2.5~10.8%인 것을 특징으로 하는 유기발광소자.
  10. 제1항에 있어서,
    상기 제1 기판과의 인캡슐레이션을 위해 상기 제2 전극 상부에 상기 제1 기판과 대향되게 배치되는 제2 기판을 더 포함하는 것을 특징으로 하는 유기발광소자.
PCT/KR2015/013906 2014-12-24 2015-12-18 유기발광소자 WO2016105029A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/539,892 US10153458B2 (en) 2014-12-24 2015-12-18 Organic light emitting diode
CN201580071153.8A CN107112434B (zh) 2014-12-24 2015-12-18 有机发光二极管
JP2017534577A JP6592783B2 (ja) 2014-12-24 2015-12-18 有機発光素子
EP15873556.3A EP3240058B1 (en) 2014-12-24 2015-12-18 Organic light emitting diode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140188494A KR101674066B1 (ko) 2014-12-24 2014-12-24 유기발광소자
KR10-2014-0188494 2014-12-24

Publications (1)

Publication Number Publication Date
WO2016105029A1 true WO2016105029A1 (ko) 2016-06-30

Family

ID=56150984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/013906 WO2016105029A1 (ko) 2014-12-24 2015-12-18 유기발광소자

Country Status (6)

Country Link
US (1) US10153458B2 (ko)
EP (1) EP3240058B1 (ko)
JP (1) JP6592783B2 (ko)
KR (1) KR101674066B1 (ko)
CN (1) CN107112434B (ko)
WO (1) WO2016105029A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10629851B2 (en) * 2016-08-02 2020-04-21 Wuhan China Star Optoelectronics Technology Co., Ltd. OLED thin film encapsulation structure

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016204058A1 (ja) * 2015-06-15 2016-12-22 住友化学株式会社 有機el素子の製造方法
KR102640404B1 (ko) * 2018-10-18 2024-02-26 삼성디스플레이 주식회사 표시장치 및 그 표시장치의 제조방법
US11315982B2 (en) * 2018-12-05 2022-04-26 Boe Technology Group Co., Ltd. Light emitting diode with a patterned scattering layer and fabrication method thereof, display substrate and display panel
US11296296B2 (en) * 2019-11-06 2022-04-05 Applied Materials, Inc. Organic light-emtting diode light extraction layer having graded index of refraction
CN112799158B (zh) * 2021-01-27 2022-04-08 福州大学 一种基于光波导的类谐振腔光提取结构
KR102661158B1 (ko) * 2021-10-20 2024-04-26 선문대학교 산학협력단 내부 광 추출용 양자점 함유한 내부 산란층을 포함하는 유기발광소자

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100009527A (ko) * 2007-04-24 2010-01-27 아사히 가라스 가부시키가이샤 막 부착 기판, 투명 도전성막 부착 기판 및 발광 소자
JP2011233412A (ja) * 2010-04-28 2011-11-17 Mitsubishi Rayon Co Ltd 透明導電性積層体およびその製造方法
KR20120053318A (ko) * 2010-11-17 2012-05-25 한국기계연구원 유기발광 디스플레이 및 이의 제조 방법
KR20120054887A (ko) * 2010-11-22 2012-05-31 엘지디스플레이 주식회사 유기발광소자 및 그의 제조방법
WO2013001891A1 (ja) * 2011-06-28 2013-01-03 パナソニック株式会社 有機エレクトロルミネッセンス素子

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3899011B2 (ja) * 2001-10-25 2007-03-28 松下電工株式会社 面発光体
JP3988935B2 (ja) * 2002-11-25 2007-10-10 富士フイルム株式会社 網目状導電体及びその製造方法並びに用途
JP2004342521A (ja) * 2003-05-16 2004-12-02 Toyota Industries Corp 自発光デバイス
US7245065B2 (en) * 2005-03-31 2007-07-17 Eastman Kodak Company Reducing angular dependency in microcavity color OLEDs
US7851995B2 (en) * 2006-05-05 2010-12-14 Global Oled Technology Llc Electroluminescent device having improved light output
JP4858337B2 (ja) * 2007-07-11 2012-01-18 日本ゼオン株式会社 有機エレクトロルミネッセンス素子およびその製造方法
EP2384086B1 (en) * 2009-01-26 2018-04-11 Asahi Glass Company, Limited Substrate for electronic device and electronic device using same
JP5239936B2 (ja) * 2009-02-23 2013-07-17 日本電気硝子株式会社 有機el素子用ガラス基板及びその製造方法
KR101093259B1 (ko) 2009-07-02 2011-12-15 황선용 자성 나노 입자층 형성 방법 및 이를 이용한 나노 패턴 형성 방법
TW201123961A (en) * 2009-12-28 2011-07-01 Au Optronics Corp Organic light emitting diode (OLED) display device
JP5789439B2 (ja) * 2011-07-19 2015-10-07 株式会社日立製作所 有機発光素子、光源装置および有機発光素子の製造方法
AU2012338004B2 (en) * 2011-11-18 2015-07-09 Jx Nippon Oil & Energy Corporation Organic EL element
KR101657604B1 (ko) * 2012-06-11 2016-09-30 제이엑스 에네루기 가부시키가이샤 유기 el 소자 및 그 제조 방법
JP6118525B2 (ja) * 2012-09-03 2017-04-19 出光興産株式会社 有機エレクトロルミネッセンス素子および電子機器
WO2014129536A1 (ja) * 2013-02-22 2014-08-28 コニカミノルタ株式会社 有機発光素子の製造方法及び有機発光素子
KR101466830B1 (ko) * 2013-05-06 2014-11-28 코닝정밀소재 주식회사 유기발광소자용 광추출 기판 제조방법
CN103972423B (zh) * 2014-05-08 2016-03-23 京东方科技集团股份有限公司 一种oled发光器件及其制备方法、显示装置
KR101632614B1 (ko) * 2014-12-24 2016-06-22 코닝정밀소재 주식회사 유기발광소자용 광추출 기판 제조방법, 유기발광소자용 광추출 기판 및 이를 포함하는 유기발광소자

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100009527A (ko) * 2007-04-24 2010-01-27 아사히 가라스 가부시키가이샤 막 부착 기판, 투명 도전성막 부착 기판 및 발광 소자
JP2011233412A (ja) * 2010-04-28 2011-11-17 Mitsubishi Rayon Co Ltd 透明導電性積層体およびその製造方法
KR20120053318A (ko) * 2010-11-17 2012-05-25 한국기계연구원 유기발광 디스플레이 및 이의 제조 방법
KR20120054887A (ko) * 2010-11-22 2012-05-31 엘지디스플레이 주식회사 유기발광소자 및 그의 제조방법
WO2013001891A1 (ja) * 2011-06-28 2013-01-03 パナソニック株式会社 有機エレクトロルミネッセンス素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3240058A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10629851B2 (en) * 2016-08-02 2020-04-21 Wuhan China Star Optoelectronics Technology Co., Ltd. OLED thin film encapsulation structure

Also Published As

Publication number Publication date
EP3240058B1 (en) 2019-07-03
CN107112434B (zh) 2018-11-23
US10153458B2 (en) 2018-12-11
CN107112434A (zh) 2017-08-29
EP3240058A4 (en) 2018-07-25
KR20160077947A (ko) 2016-07-04
JP2018504747A (ja) 2018-02-15
JP6592783B2 (ja) 2019-10-23
EP3240058A1 (en) 2017-11-01
US20170338443A1 (en) 2017-11-23
KR101674066B1 (ko) 2016-11-08

Similar Documents

Publication Publication Date Title
WO2016105029A1 (ko) 유기발광소자
WO2016105026A1 (ko) 유기발광소자용 광추출 기판 제조방법, 유기발광소자용 광추출 기판 및 이를 포함하는 유기발광소자
WO2016036150A1 (ko) 유기발광소자용 광추출 기판 제조방법, 유기발광소자용 광추출 기판 및 이를 포함하는 유기발광소자
US10033012B2 (en) Method for manufacturing light extraction substrate
WO2016105018A1 (ko) 유기발광소자용 광추출 기판 제조방법, 유기발광소자용 광추출 기판 및 이를 포함하는 유기발광소자
EP3249712B1 (en) Light extraction substrate for organic light emitting device, and organic light emitting device comprising same
WO2016047970A2 (ko) 유기발광소자용 광추출 기판 및 이를 포함하는 유기발광소자
WO2016047936A1 (ko) 플렉서블 기판 및 그 제조방법
KR101484089B1 (ko) 초박형 유기발광소자 제조방법
EP3200254B1 (en) Light extraction substrate for organic light emitting element and organic light emitting element comprising same
US9893320B2 (en) Method for manufacturing light extraction substrate for organic light emitting element, light extraction substrate for organic light emitting element, and organic light emitting element including same
WO2016036151A1 (ko) 유기발광소자용 광추출 기판 제조방법, 유기발광소자용 광추출 기판 및 이를 포함하는 유기발광소자
WO2016105016A1 (ko) 유기발광소자용 광추출 기판, 그 제조방법 및 이를 포함하는 유기발광소자
WO2016039551A2 (ko) 유기발광소자용 광추출 기판, 그 제조방법 및 이를 포함하는 유기발광소자
US20160308167A1 (en) Organic light-emitting element
TWI673898B (zh) 用於有機發光二極體之光萃取基板、製造其之方法、及包含其之有機發光二極體裝置
WO2016105025A1 (ko) 유기발광소자용 광추출 기판 제조방법, 유기발광소자용 광추출 기판 및 이를 포함하는 유기발광소자
WO2016117924A1 (ko) 유기발광장치용 광추출 기판 및 이를 포함하는 유기발광장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15873556

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017534577

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015873556

Country of ref document: EP