WO2009142050A1 - アルカリ剤含有粒子 - Google Patents

アルカリ剤含有粒子 Download PDF

Info

Publication number
WO2009142050A1
WO2009142050A1 PCT/JP2009/054458 JP2009054458W WO2009142050A1 WO 2009142050 A1 WO2009142050 A1 WO 2009142050A1 JP 2009054458 W JP2009054458 W JP 2009054458W WO 2009142050 A1 WO2009142050 A1 WO 2009142050A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
clay mineral
mass
water
average particle
Prior art date
Application number
PCT/JP2009/054458
Other languages
English (en)
French (fr)
Inventor
陽一 杉山
佐知子 吉岡
俊治 野口
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 花王株式会社 filed Critical 花王株式会社
Priority to EP09750412.0A priority Critical patent/EP2280059B1/en
Priority to US12/994,097 priority patent/US8455425B2/en
Priority to CN2009801187667A priority patent/CN102037116B/zh
Priority to AU2009250642A priority patent/AU2009250642B2/en
Publication of WO2009142050A1 publication Critical patent/WO2009142050A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/12Water-insoluble compounds
    • C11D3/124Silicon containing, e.g. silica, silex, quartz or glass beads
    • C11D3/1246Silicates, e.g. diatomaceous earth
    • C11D3/1253Layer silicates, e.g. talcum, kaolin, clay, bentonite, smectite, montmorillonite, hectorite or attapulgite
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K23/00Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
    • C09K23/002Inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0039Coated compositions or coated components in the compositions, (micro)capsules
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/06Powder; Flakes; Free-flowing mixtures; Sheets
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/06Powder; Flakes; Free-flowing mixtures; Sheets
    • C11D17/065High-density particulate detergent compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/04Water-soluble compounds
    • C11D3/10Carbonates ; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/02Inorganic compounds
    • C11D7/04Water-soluble compounds
    • C11D7/10Salts

Definitions

  • the present invention relates to alkali agent-containing particles and a method for suppressing caking of alkali agent-containing particles.
  • Particles containing an alkaline agent such as detergent particles may cause caking during storage, where the particles bind to each other and become solidified.
  • particles containing an alkali metal carbonate salt form sesquicarbonate on the surface by the action of carbon dioxide and water in the air during storage, and this sesquicarbonate agglomerates adjacent particles, It is clear from the study by the present inventors that it causes caking. This caking not only deteriorates the appearance, but also causes a problem that the usability of the detergent is remarkably impaired such that accurate weighing cannot be performed.
  • Patent Document 1 discloses a detergent composition containing a smectite-type clay softening agent
  • Patent Document 2 discloses a swellable clay composed of sodium montmorillonite, a detergent active substance, a water-soluble crystalline inorganic salt, and the like.
  • a method for producing a granular detergent composition is disclosed which is added to a particulate material containing sucrose and processed with a high speed mixer / granulator.
  • the swellable clay is contained in the detergent composition particles, not the surface coating.
  • Patent Document 3 discloses granular chemicals for detergent compositions coated with a lipophilic smectite-type clay
  • Patent Documents 4 and 5 disclose a surface treatment agent layer and a surface coating agent on the surface of the base detergent particles. Detergent particles coated with a layer are disclosed.
  • Patent Documents 3 to 6 can suppress caking to some extent by using clay minerals as surface modifiers for detergent particles, but they are not yet satisfactory, and are not satisfactory, without impairing easy solubility in water. There is a strong demand for technology that further improves caking properties.
  • the present invention relates to the following [1] and [2].
  • [1] A clay mineral having a water content of 200% by mass or more calculated by the following method and an average particle size of 1 to 200 ⁇ m on the surface of particles (a) having an average particle size of 150 to 1000 ⁇ m containing an alkali agent.
  • Alkali agent-containing particles formed by forming a layer of particles (b).
  • Water content (%) [(AB) / B] ⁇ 100 [2]
  • Clay mineral having a water content calculated by the above method of 200% by mass or more and an average particle size of 1 to 200 ⁇ m on the surface of particles (a) having an average particle size of 150 to 1000 ⁇ m containing an alkali agent A method for suppressing caking of alkali agent-containing particles for forming a layer of particles (b).
  • the present invention relates to alkali agent-containing particles that do not impair solubility in water and have excellent caking resistance, and a method for suppressing caking of alkali agent-containing particles.
  • a material that hardly absorbs water as a surface modifier.
  • Paradoxically it is common sense not to select a water-absorbing material because it is feared that the fluidity of particles will be remarkably impaired when a water-absorbing material is used as a surface modifier.
  • the present inventors have found that specific clay mineral particles having increased water absorption, on the contrary, significantly improve the caking resistance, and do not adversely affect the fluidity.
  • the present invention relates to the following [1] and [2].
  • [1] A clay mineral having a water content of 200% by mass or more calculated by the following method and an average particle size of 1 to 200 ⁇ m on the surface of particles (a) having an average particle size of 150 to 1000 ⁇ m containing an alkali agent.
  • Alkali agent-containing particles formed by forming a layer of particles (b).
  • Water content (%) [(AB) / B] ⁇ 100 [2]
  • Clay mineral having a water content calculated by the above method of 200% by mass or more and an average particle size of 1 to 200 ⁇ m on the surface of particles (a) having an average particle size of 150 to 1000 ⁇ m containing an alkali agent A method for suppressing caking of alkali agent-containing particles for forming a layer of particles (b).
  • the alkali agent-containing particles of the present invention have a water content calculated by the above method of 200% by mass or more on the surface of particles (a) having an average particle size of 150 to 1000 ⁇ m containing an alkali agent, and an average particle size of 1 It is characterized by forming a layer of clay mineral particles (b) having a size of ⁇ 200 ⁇ m.
  • the particles (a), the clay mineral particles (b) and the like will be described in order.
  • particles (a) containing an alkali agent and having an average particle diameter of 150 to 1000 ⁇ m are used as alkali agent-containing particles (hereinafter also referred to as “detergent particles”). Used as base particles.
  • the average particle diameter of the particles (a) is preferably 175 to 750 ⁇ m, more preferably 200 to 500 ⁇ m from the viewpoint of solubility and fluidity.
  • the bulk density of the particles (a) is preferably 300 g / L or more, more preferably 400 to 900 g / L, still more preferably 500 to 800 g / L, from the viewpoints of solubility and compactification.
  • the supporting ability of the liquid component (surfactant and the like) of the particles (a) is preferably higher from the viewpoint of suppressing aggregation of the particles, preferably 20 mL / 100 g or more, preferably 30 mL / 100 g or more, more preferably 40 mL / 100 g or more, more preferably 50 mL / 100 g or more.
  • the particle strength of the particles (a) is preferably larger from the viewpoint of suppressing collapse during the mixing operation described later, preferably 100 kg / cm 2 or more, more preferably 200 kg / cm 2 or more, Preferably it is 250 kg / cm 2 or more.
  • Examples of methods for improving the particle strength include (i) a method for increasing the blending ratio of an agent having a function of improving the particle strength, such as a water-soluble polymer in the slurry, and (ii) a slurry for increasing the true density of the particles.
  • strength can be performed by the method of an Example description.
  • alkali agent (a1) examples include alkali metal carbonates such as sodium carbonate and potassium carbonate, sodium silicate, sodium hydroxide, potassium hydroxide and the like.
  • alkali metal carbonates form sesquicarbonates by the reaction of carbon dioxide in the air with water during storage, and cause caking, so from the viewpoint of sufficiently exerting the effects of the present invention, Particles containing alkali metal salts, especially sodium carbonate, are preferred.
  • the particles (a) may be composed only of an alkali agent, but when the particles are alkali agent-containing particles (detergent particles), other inorganic component (a2), surfactant (a3) and / Or the particle
  • Other inorganic components (a2) include alkali metal sulfates such as sodium sulfate, alkali metal hydrogen carbonates such as sodium hydrogen carbonate, sulfites, hydrogen sulfates, hydrochlorides, phosphates, ammonium salts, etc. And water-insoluble inorganic salts (a2-2) such as crystalline silicates and aluminosilicates.
  • a3 As the surfactant (a3), an anionic surfactant (p), a nonionic surfactant (q), an amphoteric surfactant, and a cationic surfactant can be used in combination.
  • Anionic surfactants (p) include higher alcohol sulfates, higher alcohol ethoxylate sulfates, alkylbenzene sulfonates, paraffin sulfonates, ⁇ -olefin sulfonates, ⁇ -sulfo fatty acid salts.
  • an anionic surfactant having a sulfate group or a sulfonate group such as an alkyl ester salt or a fatty acid salt thereof can be used.
  • a linear alkylbenzene sulfonate having preferably 10 to 18 carbon atoms, more preferably 12 to 14 carbon atoms, and a sulfate ester salt of a higher alcohol having preferably 10 to 16 carbon atoms, more preferably 12 to 14 carbon atoms are preferable.
  • the nonionic surfactant (q) include ethylene oxide adducts or ethylene oxide / propylene oxide adducts of higher alcohols, fatty acid alkanolamides, and alkyl polyglycosides.
  • ethylene oxide is especially added to alcohols having 10 to 16 carbon atoms.
  • An adduct with 10 mol added is preferred.
  • amphoteric surfactants include alkyldimethylaminoacetic acid betaines and fatty acid aminopropyl betaines, and examples of cationic surfactants include mono (or di) long chain alkyl quaternary ammonium salts.
  • the surfactant (a3) is preferably an anionic surfactant (p) and / or a nonionic surfactant (q).
  • the weight ratio of the anionic surfactant (p) to the nonionic surfactant (q) [(p) / (q )] Is preferably 0.2 or more, more preferably 0.4 or more, still more preferably 0.5 or more, particularly preferably 1.0 or more, and the upper limit thereof is preferably 4.0 or less, more preferably 2 or less, more preferably 1.5 or less.
  • the water-soluble polymer compound (a4) is preferably a polymer in which 1 g or more, preferably 5 g or more, more preferably 10 g or more can be dissolved in 100 g of water at 20 ° C.
  • Specific examples include carboxylic acid polymers, carboxymethyl cellulose, soluble starch, and sugars.
  • polyacrylates and salts of acrylic acid-maleic acid copolymers are preferred.
  • the particles (a) are detergent particles
  • the particles (a) are produced by the method described in JP-A-2005-239867, JP-A-2005-239865, JP-A-2003-193091, and the like. can do.
  • grains currently disclosed by the international publication 2000/077158 pamphlet can be used as a detergent particle
  • Specific examples of the method for producing the particles (a) include the following methods A1 to A3.
  • the alkaline agent (a1) is preferably added to 10 to 50 parts by mass, preferably 15 to 40 parts by mass of the aqueous paste containing the surfactant (a3) preferably 50 to 100% by mass, more preferably 70 to 100% by mass.
  • the water-soluble polymer compound (a4) is preferably added in an amount of 1 to 15 parts by weight, more preferably 3 to 10 parts by weight.
  • the mixture is kneaded using a mixer such as a Gemixer, dried with a dryer such as a fluid dryer, and then sized / classified to have an average particle size of 150 to 1000 ⁇ m, preferably 175 to 750 ⁇ m, more preferably 200 to How to obtain particles of 00 ⁇ m.
  • a mixer such as a Gemixer
  • a dryer such as a fluid dryer
  • the alkali agent (a1) is preferably 10 to 70 parts by weight, more preferably 15 to 50 parts by weight
  • the water-soluble inorganic salt (a2-1) is preferably 5 to 60 parts by weight, more preferably 7 to 50 parts by weight
  • the water-insoluble inorganic salt (a2-2) is preferably 10-50 parts by weight, more preferably 15-40 parts by weight
  • the surfactant (a3) is preferably 10-70 parts by weight, more preferably 20-60 parts by weight.
  • the slurry preferably contains 1 to 15 parts by mass of the water-soluble polymer compound (a4), more preferably 3 to 10 parts by mass, and preferably 30 to 300 parts by mass of water, more preferably 50 to 250 parts by mass.
  • the particles obtained by spray-drying the liquid solution are sized / classified to obtain particles having an average particle size of 150 to 1000 ⁇ m, preferably 175 to 750 ⁇ m, particularly preferably 200 to 500 ⁇ m.
  • the alkali agent (a1) is preferably 10 to 70 parts by weight, more preferably 15 to 50 parts by weight
  • the water-soluble inorganic salt (a2-1) is preferably 5 to 60 parts by weight, more preferably 7 to 50 parts by weight
  • the water-insoluble inorganic salt (a2-2) is preferably 10 to 50 parts by mass, more preferably 15 to 40 parts by mass
  • the water-soluble polymer compound (a4) is preferably 1 to 15 parts by mass, more preferably 3 to 10 parts.
  • the surfactant (a3) is preferably added to the particles obtained by spray-drying a slurry-like solution containing 20 parts by weight and water, preferably 20 to 200 parts by weight, more preferably 40 to 150 parts by weight.
  • the method A3 is most preferable from the viewpoint of solubility in water and fluidity.
  • the particles (a) obtained by the method A3 have the following structure (A) and / or structure (B), the solubility in water is remarkably improved.
  • the pore diameter of the particles (a) is preferably 1/10 to 4/5, more preferably 1/5 to 4/5 of the particle diameter.
  • the pore diameter is calculated by cutting with a knife or the like including the maximum particle diameter so as not to break the particle (a), observing the cut surface with a scanning electron microscope, and the equivalent circle diameter ( ⁇ ⁇ m) of the cut surface of the cut particle. ), And the presence of pores inside the particles, the equivalent circle diameter ( ⁇ ⁇ m) of the pores is measured, and the ratio of the pore diameter to the particle diameter ( ⁇ / ⁇ ) can be obtained.
  • the equivalent circle diameter of the largest pore is ⁇ ⁇ m.
  • the particles (a) have the structure (B)
  • the water-soluble components in the vicinity of the surface dissolve faster in the water, and the dissolution behavior that promotes the disintegration of the surface-modified particles from the particle surface is exhibited.
  • high-speed solubility can be expressed.
  • the most preferable mode for expressing high-speed solubility is that the particles (a) have both the structure (A) and the structure (B).
  • it can be carried out by adjusting the blowing temperature, the exhaust air temperature and the like during spray drying.
  • the air blowing temperature is preferably 150 to 350 ° C., more preferably 175 to 325 ° C., further preferably 200 to 300 ° C., and the exhaust air temperature is preferably 70 to 130 ° C., more preferably 80 to 120 ° C. The temperature is preferably 90 to 110 ° C.
  • the uneven distribution of the water-soluble polymer compound having the structure (B) can be confirmed by the following method.
  • FT-IR Fourier transform infrared spectroscopy
  • PAS photoacoustic spectroscopy
  • the particle (a) to be measured has a structure in which more water-soluble polymer compounds and the like are present near the surface than inside.
  • measurement conditions for obtaining information up to about 10 ⁇ m from the surfaces of the particles (a) and the pulverized product thereof include conditions of a resolution of 8 cm ⁇ 1 , a scanning speed of 0.63 cm / s, and a total of 128 times.
  • FTS-60A / 896 type infrared spectrophotometer (manufactured by Bio-Rad Laboratories) is used as an infrared spectrophotometer
  • 300 type photoacoustic detector (manufactured by MTEC) is used as a PAS cell. ).
  • the details of FT-IR / PAS are described in APPLIED SPECTROSCOPY vol.47 1311-1316 (1993).
  • the particle (a) has a layer of clay mineral particles (b) on its surface, and further has a layer of metal oxide particles (c) described later on its surface as necessary.
  • the clay mineral particles (b) have a water content calculated by the following method of 200% by mass or more, preferably 300% by mass or more, more preferably 400% by mass or more, still more preferably 500% by mass or more, particularly preferably. 600% by mass or more.
  • the clay mineral particles (b) having an average particle diameter of 1 to 200 ⁇ m, preferably 5 to 100 ⁇ m, more preferably 10 to 50 ⁇ m form a layer on the surface of the particles (a).
  • the sample is allowed to stand for 24 hours, and the apparent volume of the sample deposited in the graduated cylinder is taken as the swelling force.
  • the total amount of the dispersion of the clay mineral particles (b) after the swelling force measurement is suction filtered using a Buchner funnel (0.5 MPa for 2 hours, filter paper: Advantech Toyo Co., Ltd., diameter 90 mm, model number 4A).
  • the mass (A) of the clay mineral particles (b) remaining on the filter paper is measured.
  • the mass (B) of the measured clay mineral particle (b) is measured, and water content is calculated
  • the swelling power (volume method) of the clay mineral particles (b) is preferably a value measured according to the above-mentioned JBAS-104-77, preferably 6 ml / 2 g or more, from the viewpoint of solubility and caking resistance. Is 9 ml / 2 g or more, more preferably 15 ml / 2 g or more.
  • the above-mentioned clay minerals having a water-containing capacity do not exist in nature and are found in layered clay minerals classified as smectite-type clay minerals.
  • Smectite is the name of the clay mineral group and includes saponite, hectorite, saconite, stevensite, montmorillonite, beidellite and nontronite.
  • the smectite-type clay mineral is smectite itself, clay minerals mainly composed of clay minerals classified as smectites, their ion exchangers, and general formulas (I) and (II) described later. It means a clay mineral having the structure represented.
  • Hectorite which is a type of smectite, satisfies the requirements for the water content.
  • some natural minerals satisfy this requirement.
  • Some clay minerals called bentonites containing montmorillonite as a main component satisfy the above water-containing ability.
  • Calcium / magnesium-type smectite-type clay minerals which are abundant in natural minerals, do not satisfy the requirements for water content.
  • an ion-exchanged smectite-type clay mineral obtained by exchanging a part or all of calcium and / or magnesium present in the smectite-type clay mineral with an alkali metal satisfies the requirements for the water content and can be suitably used.
  • the alkali metal for ion exchange sodium, potassium, and lithium are preferable, and sodium is particularly preferable.
  • particles of smectite type clay mineral which is a clay mineral having a structure represented by the following general formula (I) is preferable.
  • [Mg a Al b (Si 2 O 5) 4 (OH) 4] X- ⁇ X / n [Me] n + (I) (Wherein a, b and x are 0 ⁇ a ⁇ 6, 0 ⁇ b ⁇ 4, 0.2 ⁇ x ⁇ 1.2, x 12- (2a + 3b), and Me is Na, At least one selected from K, Li, Ca, Mg and NH 4 , and n represents the valence of Me.
  • the molar ratio [(Na + K + Li) / (Ca + Mg + NH 4 )] in [Me] n + is 0.5 or more. .)
  • the molar ratio [(Na + K + Li) / (Ca + Mg + NH 4 )] of the alkali metal ion to the total amount of alkaline earth metal ion and ammonium ion in [Me] n + is preferably 0.10 to 20.0, more preferably 0. 0.25 to 19.00, more preferably 0.50 to 18.00, particularly preferably 0.75 to 17.00, and most preferably 1.00 to 16.00.
  • More preferred specific examples include particles of smectite type clay mineral, which is a clay mineral having a structure represented by the following general formula (II).
  • Me is Na
  • At least one selected from K, Li, Ca, and Mg is shown, and n is the valence of Me.
  • the molar ratio [(Na + K + Li) / (Ca + Mg)] in [Me] n + is 0.5 or more.
  • [Me] n + molar ratio of alkali metal ion to alkaline earth metal ion [(Na + K + Li) / (Ca + Mg)] is preferably 0.10 to 20.0, more preferably 0.25 to 19.00, More preferably, it is 0.50 to 18.00, particularly preferably 0.75 to 17.00, and most preferably 1.00 to 16.00.
  • a production method including a step of adding a powder of an alkali metal salt such as sodium carbonate or an aqueous solution when granulating the clay mineral pulverized into a powder form with a granulator.
  • smectite is added to 100 parts by mass of a 0.05 to 0.33% by mass aqueous solution of a specific alkali metal carbonate, preferably sodium carbonate and / or potassium carbonate, particularly preferably sodium carbonate. 2-10 parts by mass of type clay mineral is added and dispersed and allowed to stand for 0.2-1 hour, and then the solution is dried.
  • a specific alkali metal carbonate preferably sodium carbonate and / or potassium carbonate, particularly preferably sodium carbonate.
  • the concentration of sodium carbonate aqueous solution, and by adjusting the addition ratio between the aqueous solution and the smectite-type clay mineral, [Me] molar ratio in the n + in the general formula (I) [(Na + K + Li) / (Ca + Mg + NH 4) ) or (( Na + K + Li) / (Ca + Mg)] can be adjusted to a desired value.
  • the molar ratio [(Na + K + Li) / (Ca + Mg)] is measured by the following method. First, clay mineral was pulverized in a mortar, 0.1 g of the sample that passed through a sieve with an opening of 125 ⁇ m was decomposed with sulfuric acid-hydrogen peroxide using a microwave wet ashing device (automatic), and the volume was increased to 50 mL with a volumetric flask. Then, the amount of Na, K, Li, Ca, and Mg is measured and measured with an ICP (inductively coupled plasma) emission spectrometer, and calculated.
  • ICP inductively coupled plasma
  • the amount of Mg determined by ICP emission analysis includes the amount of Mg present as an isomorphous substitution of Al in the basic skeleton of montmorillonite, in addition to Mg present as interlayer ions (Me) in the general formula (I). .
  • the amount of Ca and Mg obtained by ICP emission analysis includes the amount of calcium carbonate and magnesium carbonate produced when ion exchange is performed with sodium carbonate or potassium carbonate as described above. Therefore, in order to quantify the amount of alkaline earth metal contained between the clay mineral layers, 10 g of 10% by weight aqueous ammonia chloride solution is added to 1 g of the clay mineral of the object to be measured (crushed in a mortar, with a particle size of 150 ⁇ m or less.
  • the mass ratio of the clay mineral particles (b) to the particles (a) is preferably 0.01 to 0.40, more preferably 0.02 to 0.35, still more preferably 0.03 to 0.30.
  • the ratio of the average particle size of the clay mineral particles (b) to the average particle size of the particles (a) is preferably 0.01 to 0.50, more preferably 0.015 to 0.40, and still more preferably 0.02. ⁇ 0.30.
  • the water-containing ability is further added to the outer surface of the layer of the clay mineral particles (b). Is preferably 150% by mass or less, more preferably 100% by mass or less, and a metal having an average particle diameter of preferably 0.1 to 20 ⁇ m, more preferably 0.2 to 10 ⁇ m, still more preferably 0.5 to 8 ⁇ m. It is preferable to form a layer of oxide particles (c).
  • silicate compounds such as silicon dioxide and crystalline silicate compounds, bentonite, talc, clay, crystalline or amorphous aluminosilicate having a water content of 150% by mass or less are preferable.
  • a crystalline silicate compound it is preferable to use it mixed with fine powders other than the crystalline silicate compound from the viewpoint of preventing deterioration due to moisture absorption or aggregation of the crystalline silicate due to carbon dioxide gas, especially the fluidity of the detergent particles.
  • crystalline aluminosilicate is preferable, crystalline sodium aluminosilicate is more preferable, and zeolites such as A-type, P-type, and X-type are more preferable.
  • the mass ratio of the metal oxide particles (c) to the particles (a) is preferably 0.05 to 0.50, more preferably 0.10 to 0.45, still more preferably 0.15 to 0.40.
  • the ratio of the average particle diameter of the metal oxide particles (c) to the average particle diameter of the particles (a) is preferably 0.005 to 0.100, more preferably 0.010 to 0.075, still more preferably 0. .015 to 0.050.
  • the average particle size of the primary particles is preferably 10 ⁇ m or less, more preferably 0.1 to 10 ⁇ m.
  • the average particle diameter of the zeolite is measured by a method using Mie scattering, for example, a laser diffraction / scattering particle size distribution analyzer “LA-920” manufactured by Horiba, Ltd. If the mass ratio of [zeolite (c) / clay mineral particles (b)] is 10 or less, and even 3 or less, good fluidity and caking resistance can be obtained. When using clay mineral particles having a function, 1.66 or less is preferable, 1.48 or less is more preferable, and further 1.0 or less, particularly 0.5 or less, an excellent effect can be obtained.
  • a binder component (d) can be added in order to improve the adhesion between the particles such as the particles (a), the clay mineral particles (b), and the metal oxide particles (c).
  • binder component (d) examples include one or more selected from nonionic surfactants exemplified as the surfactant (a3), polyethylene glycol as the water-soluble polymer compound (a4), and (meth) acrylic. Examples include acid polymers, cellulose derivatives, and aqueous solutions thereof.
  • the polyethylene glycol preferably has a mass average molecular weight of 4,000 to 20,000 from the viewpoint of solidification at a temperature at which the detergent is usually used (40 ° C. or less) and solubility after the surface treatment, 15,000 is more preferable.
  • the cellulose derivative include carboxymethylcellulose, methylcellulose, hydroxypropylmethylcellulose and the like.
  • An acid precursor of an anionic surfactant can also be used as the binder component.
  • the acid precursor of the anionic surfactant is a substance that causes a neutralization reaction with the alkaline agent contained in the spray-dried particles.
  • alkylbenzene sulfonic acid, alkyl or alkenyl ether sulfate, alkyl or alkenyl sulfate, ⁇ -olefin examples thereof include sulfonic acid, ⁇ -sulfonated fatty acid, alkyl or alkenyl ether carboxylic acid, and fatty acid.
  • those having high water resistance are preferable, and specific examples include fatty acids, hydroxy fatty acids, alkyl phosphoric acids, and the like.
  • one or more selected from fatty acids having 10 to 22 carbon atoms or hydroxy fatty acids are preferable from the viewpoint of solubility, and one or more selected from saturated fatty acids having 12 to 20 carbons from the viewpoint of surface modified particle strength.
  • the amount of the binder component added is preferably 0.1 to 8 parts by mass, more preferably 0.5 to 6 parts by mass, and still more preferably 1 to 4 parts by mass with respect to 100 parts by mass of the particles (a).
  • the particles (a), clay mineral particles (b), metal oxide particles (c), and binder component (d) can be used alone or in combination of two or more.
  • the alkali agent-containing particles of the present invention can be produced by bringing the clay mineral particles (b) into contact with the particles (a).
  • a known stirring mixer can be used as a method of bringing the clay mineral particles (b) into contact with the particles (a).
  • a Ladige mixer and a Proshear mixer are horizontal mixers that have a stirring shaft at the center of a cylinder and are equipped with a stirring blade attached to the shaft to mix particles. Etc. are particularly preferred.
  • continuous mixers other than those described above include “Flexomix” (manufactured by Pauletta), “Turbulizer” (manufactured by Hosokawa Micron Corporation), and the like.
  • the particles (a) obtained by the methods A1 and A2 are poor in tackiness. Therefore, from the viewpoint of uniformly attaching the clay mineral particles (b) to the surfaces of the particles (a), a binder is used. It is preferable to use the component (d) in combination. On the other hand, in the case of Method A3, the surfactant (a3) is impregnated, and the surfactant (a3) functions as an adhesive, so that the binder component (d) is not particularly required.
  • the system temperature at the time of stirring and mixing the particles (a) and the clay mineral particles (b) is the melting point of the binder component (d) (in the case of a polymer compound) from the viewpoint of the adhesion of the clay mineral particles (b). Is preferably equal to or lower than Tg) and below a temperature at which quality problems do not occur, specifically 100 ° C. or lower, more preferably 90 ° C. or lower.
  • the layer of the metal oxide particles (c) is sequentially laminated on the outer surface of the layer of the clay mineral particles (b), and the layer of the clay mineral particles (b) is not necessarily the particle (a).
  • the metal oxide particle (c) layer does not necessarily need to cover the entire surface of the particle (b) layer. That is, the metal oxide particle (c) layer may be present on a part of the surface of the particle (a), or there may be a portion where the particle (a) is exposed.
  • the surface of the particles (a) is preferably 30 to 100%, more preferably 40 to 100%, and still more preferably 50 to 100% covered with a layer of clay mineral particles (b). Is preferably covered with a layer of metal oxide particles (c), and the entire surface of the particles (a) is covered sequentially with layers of clay mineral particles (b) and metal oxide particles (c). More preferably.
  • the alkali agent-containing particles of the present invention are suitably used as detergent particles for detergent compositions.
  • limiting in particular in the manufacturing method of a detergent composition For example, it can obtain by mixing the alkali agent containing particle
  • the detergent composition can be used without particular limitation as long as it is an application using a powder detergent.
  • it can be preferably used as a powder detergent for clothing, a detergent for automatic tableware, and the like.
  • Separately prepared detergent components include, for example, known detergent base materials such as surfactants and builder granules, bleaching agents (percarbonate, perborate, bleach activator, etc.), bleach activators, Examples thereof include anti-staining agents (such as carboxymethyl cellulose), softening agents, reducing agents (such as sulfites), fluorescent brighteners, antifoaming agents (such as silicone), enzymes such as cellulase and protease, dyes, and fragrances.
  • the content of the alkali agent-containing particles in the detergent composition is preferably 50% by mass or more, more preferably 60% by mass or more, still more preferably 70% by mass or more, and particularly preferably 80% by mass or more from the viewpoint of detergency. .
  • the content of the detergent component separately prepared in the detergent composition is preferably 50% by mass or less, more preferably 40% by mass or less, still more preferably 30% by mass or less, and particularly preferably 20% by mass or less.
  • the mass (A) of the clay mineral particles (b) and the mass of the clay mineral particles (b) dried by the sample drying method specified in 7 “Dehydration loss method” of JIS K0068 “Method for measuring moisture of chemical products” (B) is measured, and the water content is calculated from the following equation.
  • Water content (%) [(AB) / B] ⁇ 100 (3) Bulk density (g / L) It was measured by the method specified in JIS K3362.
  • Average particle size ( ⁇ m) Using a sieve specified in JIS Z 8801, a 100 g sample was vibrated for 5 minutes and sieved to calculate the average particle size.
  • a low-tapping machine made by HEIKO SEISAKUSHO, tapping: 156 times / min.
  • Dissolution rate (%) The mass [a] of the mesh net (110 mm ⁇ : 200 mesh) was measured with a precision balance. Particles 1.000 g ⁇ 0.010 g (sample mass [b]) are put into 1.00 L ⁇ 0.03 L of water 4 ° DH with 5 ° C. ⁇ 0.5 ° C. hardness and placed in a 1 L beaker (inner diameter 105 mm). After stirring at a rotation speed of 800 rpm with a cylindrical stirrer (length 35 mm, diameter 8 mm) for 60 seconds, the mixture was filtered by a tilt method on a mesh net fixed to a holder.
  • the used beaker, stirrer piece and holder were rinsed with water at 5 ° C., and the residue was collected on the mesh.
  • the used mesh net is placed on a filter paper to remove excess moisture and bubbles, so that the residue is not lost, dried at 105 ° C. for 30 minutes, cooled in a desiccator for 10 minutes, and massed with a precision balance. [C] was measured.
  • the dissolution rate V (%) was calculated by the following formula (3).
  • V (%) ⁇ 1- (ca) / b ⁇ ⁇ 100 (3)
  • Stain removal property The state of the stain on the bottom (non-contact surface with the powder) of the filter paper container subjected to the sieve passing rate test was visually observed and evaluated according to the following criteria of 1 to 5 ranks. (Evaluation criteria) Rank 1: not wet. Rank 2: The surface of about 1/4 is wet. Rank 3: about 1/2 surface is wet. Rank 4: The surface of about 3/4 is wet. Rank 5: The entire surface is wet.
  • Layered clay mineral 1 synthetic hectorite, hydrophilic (reagent: Wako Pure Chemical Industries, Ltd.), average particle size: 49.3 ⁇ m, swelling power 45 mL / 2 g, water content 2176%
  • Layered clay mineral 4 Talc (Takehara Chemical Co., Ltd., product name: T talc) Average particle size: 10.5 ⁇ m
  • ⁇ Layered clay mineral 2B Layered clay mineral 2B was obtained by the same preparation method as layered clay mineral 2A except that sodium carbonate was changed to 0.690 parts.
  • the average particle diameter of the layered clay mineral 2B was 36.5 ⁇ m, [(Na + K + Li) / (Ca + Mg)] was 9.414, the swelling power was 20 mL / 2 g, and the water content was 643%.
  • ⁇ Layered clay mineral 2C Layered clay mineral 2C was obtained by the same preparation method as layered clay mineral 2A except that sodium carbonate was changed to 0.525 parts.
  • the average particle diameter of the layered clay mineral 2C was 31.0 ⁇ m, [(Na + K + Li) / (Ca + Mg)] was 4.838, the swelling power was 25 mL / 2 g, and the water content was 770%.
  • ⁇ Layered clay mineral 2D Layered clay mineral 2D was obtained by the same preparation method as layered clay mineral 2A except that sodium carbonate was changed to 0.375 part.
  • the average particle diameter of the layered clay mineral 2D was 28.2 ⁇ m, [(Na + K + Li) / (Ca + Mg)] was 2.536, the swelling power was 28 mL / 2 g, and the water content was 930%.
  • ⁇ Layered clay mineral 2E A layered clay mineral 2E was obtained by the same preparation method as the layered clay mineral 2A, except that sodium carbonate was changed to 0.345 parts.
  • the average particle diameter of the layered clay mineral 2E was 27.9 ⁇ m, [(Na + K + Li) / (Ca + Mg)] was 1.681, the swelling power was 25 mL / 2 g, and the water content was 537%.
  • ⁇ Layered clay mineral 2F Layered clay mineral 2F was obtained by the same preparation method as layered clay mineral 2A, except that sodium carbonate was changed to 0.150 part.
  • the average particle diameter of the layered clay mineral 2F was 26.0 ⁇ m, [(Na + K + Li) / (Ca + Mg)] was 0.764, the swelling power was 16 mL / 2 g, and the water content was 529%.
  • FIG. 1 shows the relationship between the “mass ratio of sodium carbonate / bentonite” used for the activation of the layered clay mineral 2 and the “interlaminar calcium content” of the layered clay mineral eluted with ammonium chloride.
  • the mass ratio of sodium carbonate / bentonite to the layered clay mineral (bentonite) is 0.05. It can be seen that even when the above sodium carbonate is added, the degree of activation reaches saturation and there is no further effect of addition.
  • the minimum amount of sodium carbonate depends on the amount of calcium contained in the activated layered clay mineral (bentonite), but an optimum amount can be found by changing the concentration of sodium carbonate.
  • FIG. 2 shows the relationship between the molar ratio of [(Na + K + Li) / (Ca + Mg)] between layers of the layered clay mineral (bentonite) and the water content. From this result, although the water content is improved by activation, the water content tends to decrease due to an increase in the amount of salt remaining in the layered clay mineral (bentonite) when activated excessively. Turned out to be. Therefore, since the activation degree that maximizes the water content varies depending on the layered clay mineral (bentonite) to be used, it is preferable to appropriately change the activation degree depending on the layered clay mineral (bentonite) to be used.
  • Preparation Example 1 (Preparation of spray-dried particles) 410 parts of water was placed in a 1 m 3 mixing tank equipped with a stirring blade, and the water temperature was adjusted to 45 ° C. Then, 110 parts of sodium sulfate, 8 parts of sodium sulfite and 2 parts of fluorescent dye were added and stirred for 10 minutes. Next, 120 parts of sodium carbonate and 150 parts of 40% by weight sodium polyacrylate aqueous solution were added and stirred for 10 minutes. Further, 40 parts of sodium chloride and 160 parts of crystalline aluminosilicate were added and stirred for 15 minutes. A homogeneous slurry with a moisture content of 50% by weight was obtained. The final temperature of this slurry was 50 ° C.
  • the slurry While supplying nitrogen gas at 285 ° C from the bottom of the tower to the spray drying tower, the slurry is supplied to the spray drying tower (counterflow type) by a pump and sprayed at a spray pressure of 2.5 MPa from a pressure spray nozzle installed near the top of the tower. Went. Nitrogen gas was discharged at 98 ° C. from the top of the column.
  • the resulting spray-dried particles had a water content of 0%, an average particle size of 290 ⁇ m, a bulk density of 510 g / L, a support capacity of 65 mL / 100 g, and a particle strength of 350 kg / cm 2 .
  • Preparation Example 2-1 (Preparation of surfactant composition a) 840 parts of a nonionic surfactant and 69 parts of polyethylene glycol are heated to 80 ° C., 960 parts of an anionic surfactant and 258 parts of a 48% aqueous sodium hydroxide solution are added and stirred, and the surfactant composition a was prepared.
  • Preparation Example 2-2 (Preparation of surfactant composition b) 920 parts of a nonionic surfactant and 69 parts of polyethylene glycol are heated to 80 ° C., 883 parts of an anionic surfactant and 237 parts of a 48% aqueous sodium hydroxide solution are added and stirred, and surfactant composition b Was prepared.
  • Preparation Example 2-3 (Preparation of surfactant composition c) 1022 parts of a nonionic surfactant and 69 parts of polyethylene glycol are heated to 80 ° C., 785 parts of an anionic surfactant and 211 parts of a 48% aqueous sodium hydroxide solution are added and stirred, and a surfactant composition c Was prepared.
  • Preparation Example 2-4 (Preparation of surfactant composition d) 1150 parts of a nonionic surfactant and 69 parts of polyethylene glycol are heated to 80 ° C., 662 parts of an anionic surfactant and 178 parts of a 48% aqueous sodium hydroxide solution are added and stirred, and a surfactant composition d Was prepared.
  • Preparation Example 2-5 (Preparation of surfactant composition e) 1314 parts of a nonionic surfactant and 69 parts of polyethylene glycol are heated to 80 ° C., 505 parts of an anionic surfactant and 136 parts of a 48% aqueous sodium hydroxide solution are added and stirred, and a surfactant composition e Was prepared.
  • Preparation Example 2-6 (Preparation of surfactant composition f) 1533 parts of a nonionic surfactant and 69 parts of polyethylene glycol are heated to 80 ° C., 294 parts of an anionic surfactant and 79 parts of a 48% aqueous sodium hydroxide solution are added and stirred, and the surfactant composition f Was prepared.
  • Example 1 (Production of detergent particles 1) A Readyge mixer (Matsuzaka Giken Co., Ltd., capacity 130 L, with jacket) was charged with 45 parts of spray-dried particles and 10 parts of sodium carbonate, and the main shaft (rotating speed of stirring blade: 60 rpm, peripheral speed: 1. 6 m / s) was started. Warm water at 80 ° C. was passed through the jacket at 10 L / min. Thereto, 25 parts of surfactant composition a heated to 80 ° C. was added over 2 minutes, and then stirred for 5 minutes to carry the surfactant composition. Furthermore, 5 parts of layered clay mineral 1 was added and stirred for 5 minutes.
  • Example 2 (Production of detergent particles 2) Detergent particles 2 were produced in the same manner as in Example 1 except that the lamellar clay mineral 1 of the detergent particles 1 was changed to the lamellar clay mineral 2. The evaluation results of the obtained detergent particles 2 are shown in Table 1.
  • Examples 3 to 8 (Production of detergent particles 2A to 2F) Detergent particles 2A to 2F were produced in the same manner as in Example 1 except that the laminar clay mineral 1 of the detergent particles 1 was changed to the lamellar clay minerals 2A to 2F. The evaluation results of the obtained detergent particles 2A to 2F are shown in Table 1.
  • Comparative Examples 1 to 3 (Production of detergent particles 3 to 5) Detergent particles 3 to 5 were produced in the same manner as in Example 1 except that the lamellar clay mineral 1 of the detergent particles 1 was changed to the lamellar clay minerals 3 to 5. The evaluation results of the resulting detergent particles 3 to 5 are shown in Table 1.
  • Examples 9-13 Detergent particles 2Ab to 2Af in the same manner as in Example 1 except that the laminar clay mineral 1 of the detergent particle 1 is changed to the lamellar clay mineral 2A and the surfactant composition a is changed to the surfactant compositions b to f. Manufactured. Table 2 shows the evaluation results of the obtained detergent particles 2Ab to 2Af together with the evaluation results of the detergent particles 2A.
  • FIG. 3 shows the relationship between the water content of the layered clay mineral and the mass increase rate of the detergent particles
  • FIG. 4 shows the relationship between the water content of the layered clay mineral and the sieve passing rate.
  • FIG. 5 shows the case of the detergent particles 2D (water content 930%)
  • FIG. 6 shows the case of the detergent particles 4 (water content 86%). Comparing FIG. 5 and FIG.
  • alkali agent-containing particles of the present invention do not impair the solubility in water and have excellent caking resistance, they can be suitably used as detergent particles for detergent compositions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Detergent Compositions (AREA)

Abstract

 〔1〕アルカリ剤を含有する平均粒径150~1000μmの粒子(a)の表面に、下記方法によって算出される含水能が200質量%以上であり、平均粒径が1~200μmである粘土鉱物粒子(b)の層を形成してなる、水への溶解性を損なわず、かつ優れた耐ケーキング性を有するアルカリ剤含有粒子、及び〔2〕粒子(a)の表面に、粘土鉱物粒子(b)層を形成させるアルカリ剤含有粒子のケーキング抑制方法である。 (含水能の算出:JBAS-104-77に準じて、粘土鉱物粒子(b)の膨潤力を測定した後の分散液を吸引ろ過し、ろ紙上に残存した粘土鉱物粒子(b)の質量(A)と、JIS K0068「乾燥減量法」により乾燥させた粘土鉱物粒子(b)の質量(B)とから、含水能(%)=[(A-B)/B]×100 を算出する。)

Description

アルカリ剤含有粒子
 本発明は、アルカリ剤含有粒子、及びアルカリ剤含有粒子のケーキング抑制方法に関する。
 洗剤粒子等のアルカリ剤を含有する粒子は、貯蔵中に、粒子同士が結合し固化状態になるケーキングを引き起こすことがある。特に、炭酸アルカリ金属塩を含有する粒子は、貯蔵中に空気中の二酸化炭素と水の作用により、表面上にセスキ炭酸塩が形成し、このセスキ炭酸塩が隣接する粒子同士を凝着させ、ケーキングの原因となることが本発明者らの研究から明らかとなっている。このケーキングは、外観を悪化させるだけでなく、正確な計量ができなくなる等、洗剤の使い勝手を著しく損ねるという問題を生じる。
 このようなケーキング現象を避ける方法としては、粒子の表面をコーティングして外気と遮断することが一般的であるが、粉末洗剤のような粒子は水に対する易溶解性も求められるため、安定性と溶解性の両者を満足させることは、非常に難しい技術課題である。
 特許文献1には、スメクタイト型粘土柔軟化剤を含む洗剤組成物が開示されており、特許文献2には、ナトリウムモンモリロナイト等からなる膨潤性粘土を、洗剤活性物質と水溶性結晶質無機塩とを含む粒状物質に添加し、高速度ミキサー/グラニュレータで処理する顆粒状洗剤組成物の製造方法が開示されている。特許文献1及び2では、膨潤性粘土は表面コーティングではなく、洗剤組成物粒子中に含有されている。
 一方、特許文献3には、親油性スメクタイト型粘土を含むコーティングがなされた洗剤組成物用の顆粒状化学薬品、特許文献4及び5には、ベース洗剤粒子表面に下地処理剤層と表面被覆剤層が被覆された洗剤粒子が開示されている。
 特許文献3~6は、粘土鉱物を洗剤粒子の表面改質剤として用いることにより、ケーキングをある程度抑制することができるが、未だ満足できるものではなく、水に対する易溶解性を損なわずに、耐ケーキング性をより向上させる技術が強く求められている。
特開昭49-85102号公報 特開平3-210398号公報 特開平2-286800号公報 特開2004-143394号公報 特開2005-171149号公報 特開2008-189726号公報
 本発明は次の〔1〕及び〔2〕に関する。
〔1〕アルカリ剤を含有する平均粒径150~1000μmの粒子(a)の表面に、下記方法によって算出される含水能が200質量%以上であり、平均粒径が1~200μmである粘土鉱物粒子(b)の層を形成してなるアルカリ剤含有粒子。
(含水能の算出方法)
 日本ベントナイト工業会標準試験方法「ベントナイト(粉状)の膨潤試験方法」(JBAS-104-77)に準じて、粘土鉱物粒子(b)の膨潤力(容積法)を測定した後の分散液をブフナーロートを用いて吸引ろ過(0.5MPaで2時間、ろ紙:アドバンテック東洋株式会社製、直径90mm、型番4A)し、ろ紙上に残存した粘土鉱物粒子(b)の質量(A)と、JIS K0068「化学製品の水分測定方法」の7「乾燥減量法」に規定された試料の乾燥方法で乾燥させた粘土鉱物粒子(b)の質量(B)とを測定し、以下の式より含水能を算出する。
 含水能(%)=[(A-B)/B]×100
〔2〕アルカリ剤を含有する平均粒径150~1000μmの粒子(a)の表面に、前記方法によって算出される含水能が200質量%以上であり、平均粒径が1~200μmである粘土鉱物粒子(b)の層を形成させるアルカリ剤含有粒子のケーキング抑制方法。
層状粘土鉱物2の活性化に使用した「炭酸ナトリウム/ベントナイトの質量比」と、塩化アンモニウムで溶出する層状粘土鉱物の「層間カルシウム量」の関係を示す図である。 層状粘土鉱物(ベントナイト)の層間の〔(Na+K+Li)/(Ca+Mg)〕のモル比と含水能の関係を示す図である。 層状粘土鉱物の含水能と洗剤粒子の質量増加率の関係を示す図である。 洗剤粒子の含水能と篩通過率の関係を示す図である。 洗剤粒子2D(含水能930%)の表面状態を示す図である。 洗剤粒子4(含水能86%)の表面状態を示す図である。
 本発明は、水への溶解性を損なわず、かつ優れた耐ケーキング性を有するアルカリ剤含有粒子、及びアルカリ剤含有粒子のケーキング抑制方法に関する。
 耐ケーキング性を改善するためには、一般的に水を忌避することが必要であり、そのためには表面改質剤として吸水しにくい材料を選択することが常識である。逆説すれば、表面改質剤として吸水性材料を用いると粒子の流動性が著しく損なわれることが危惧されるため、吸水性材料を選択しないことが常識である。
 しかしながら、本発明者らは吸水性を高めた特定の粘土鉱物粒子が逆に耐ケーキング性を著しく改善し、さらには流動性にも悪影響を与えないことを見出した。
 すなわち、本発明は次の〔1〕及び〔2〕に関する。
〔1〕アルカリ剤を含有する平均粒径150~1000μmの粒子(a)の表面に、下記方法によって算出される含水能が200質量%以上であり、平均粒径が1~200μmである粘土鉱物粒子(b)の層を形成してなるアルカリ剤含有粒子。
(含水能の算出方法)
 日本ベントナイト工業会標準試験方法「ベントナイト(粉状)の膨潤試験方法」(JBAS-104-77)に準じて、粘土鉱物粒子(b)の膨潤力(容積法)を測定した後の分散液をブフナーロートを用いて吸引ろ過(0.5MPaで2時間、ろ紙:アドバンテック東洋株式会社製、直径90mm、型番4A)し、ろ紙上に残存した粘土鉱物粒子(b)の質量(A)と、JIS K0068「化学製品の水分測定方法」の7「乾燥減量法」に規定された試料の乾燥方法で乾燥させた粘土鉱物粒子(b)の質量(B)とを測定し、以下の式より含水能を算出する。
 含水能(%)=[(A-B)/B]×100
〔2〕アルカリ剤を含有する平均粒径150~1000μmの粒子(a)の表面に、前記方法によって算出される含水能が200質量%以上であり、平均粒径が1~200μmである粘土鉱物粒子(b)の層を形成させるアルカリ剤含有粒子のケーキング抑制方法。
 本発明のアルカリ剤含有粒子は、アルカリ剤を含有する平均粒径150~1000μmの粒子(a)の表面に、前記方法によって算出される含水能が200質量%以上であり、平均粒径が1~200μmである粘土鉱物粒子(b)の層を形成してなることを特徴とする。以下、粒子(a)、粘土鉱物粒子(b)等について順次説明する。
<粒子(a)>
 本発明においては、アルカリ剤を含有する平均粒径150~1000μmの粒子(a)〔以下、単に「粒子(a)」ともいう〕をアルカリ剤含有粒子(以下、「洗剤粒子」ともいう)のベース粒子として用いる。粒子(a)の平均粒径は、溶解性及び流動性の観点から、好ましくは175~750μm、より好ましくは200~500μmである。
 粒子(a)の嵩密度は、溶解性及びコンパクト化の観点から、好ましくは300g/L以上、より好ましくは400~900g/L、更に好ましくは500~800g/Lである。
 粒子(a)の液体成分(界面活性剤等)の担持能は、粒子の凝集を抑制する観点から高い方が好ましく、好ましくは20mL/100g以上、好ましくは30mL/100g以上、より好ましくは40mL/100g以上、更に好ましくは50mL/100g以上である。
 また、粒子(a)の粒子強度は、後述する混合操作中に崩壊するのを抑制する観点から、より大きいものが好ましく、好ましくは100kg/cm2以上、より好ましくは200kg/cm2以上、更に好ましくは250kg/cm2以上である。
 粒子強度を向上させる方法としては、例えば(i)スラリー中の水溶性ポリマーのように粒子強度を向上させる機能を有する剤の配合比率を上げる方法、(ii)粒子の真密度を上げるためにスラリー水分を低下させたり、乾燥温度を上げることで粒子(a)中の水分を減らす方法等があり、適宜選択可能である。
 なお、粒子(a)の平均粒径、嵩密度、担持能、粒子強度の測定は、実施例記載の方法により行うことができる。
(アルカリ剤(a1))
 アルカリ剤(a1)としては、炭酸ナトリウム、炭酸カリウム等の炭酸アルカリ金属塩、ケイ酸ナトリウム、水酸化ナトリウム、水酸化カリウム等が挙げられる。これらの中でも、炭酸アルカリ金属塩は、貯蔵中に空気中の二酸化炭素と水との反応によりセスキ炭酸塩を形成し、ケーキングの原因となるため、本発明の効果を十分発揮する観点から、炭酸アルカリ金属塩、特に炭酸ナトリウムを含有する粒子が好適である。
 粒子(a)は、アルカリ剤のみからなるものであってもよいが、アルカリ剤含有粒子(洗剤粒子)である場合には、更に他の無機成分(a2)や、界面活性剤(a3)及び/又は水溶性高分子化合物(a4)等の有機成分を含有する粒子が好適である。
(他の無機成分(a2))
 他の無機成分(a2)としては、硫酸ナトリウム等の硫酸アルカリ金属塩、炭酸水素ナトリウム等の炭酸水素アルカリ金属塩等の他、亜硫酸塩、硫酸水素塩、塩酸塩、リン酸塩、アンモニウム塩等の水溶性無機塩(a2-1)や、結晶性珪酸塩、アルミノシリケート等の水不溶性無機塩(a2-2)が挙げられる。
(界面活性剤(a3))
 界面活性剤(a3)としては、陰イオン界面活性剤(p)、非イオン界面活性剤(q)、両性界面活性剤、陽イオン界面活性剤を併用することができる。
 陰イオン界面活性剤(p)としては、高級アルコールの硫酸エステル塩、高級アルコールのエトキシル化物の硫酸エステル塩、アルキルベンゼンスルホン酸塩、パラフィンスルホン酸塩、α-オレフィンスルホン酸塩、α-スルホ脂肪酸塩若しくはそのアルキルエステル塩、又は脂肪酸塩等の硫酸基、スルホン酸基を有する陰イオン界面活性剤等が挙げられる。特に、炭素数が好ましくは10~18、より好ましくは12~14の直鎖アルキルベンゼンスルホン酸塩、炭素数が好ましくは10~16、より好ましくは12~14の高級アルコールの硫酸エステル塩が好ましい。
 非イオン界面活性剤(q)としては、高級アルコールのエチレンオキシド付加物又はエチレンオキシド/プロピレンオキシド付加物、脂肪酸アルカノールアミド、アルキルポリグリコシド等が挙げられる。皮脂汚れの除去、耐硬水性、生分解性の観点、及び直鎖アルキルベンゼンスルホン酸塩や高級アルコールの硫酸エステル塩との相性の観点から、特に炭素数が10~16のアルコールにエチレンオキシドが1~10モル付加した付加物が好ましい。
 両性界面活性剤としては、アルキルジメチルアミノ酢酸ベタイン、脂肪酸アミノプロピルベタイン等が、陽イオン界面活性剤としては、モノ(又はジ)長鎖アルキル型第四級アンモニウム塩等が挙げられる。
 界面活性剤(a3)としては、陰イオン界面活性剤(p)及び/又は非イオン界面活性剤(q)が好ましい。陰イオン界面活性剤(p)と非イオン界面活性剤(q)を併用する場合は、陰イオン界面活性剤(p)と非イオン界面活性剤(q)の重量比〔(p)/(q)〕は、好ましくは0.2以上、より好ましくは0.4以上、更に好ましくは0.5以上、特に好ましくは1.0以上であり、その上限は好ましくは4.0以下、より好ましくは2以下、更に好ましくは1.5以下である。
(水溶性高分子化合物(a4))
 水溶性高分子化合物(a4)としては、20℃の水100g中に、1g以上、好ましくは5g以上、より好ましくは10g以上が溶解しうるポリマーが好ましい。具体的には、カルボン酸系ポリマー、カルボキシメチルセルロース、可溶性澱粉、糖類等が挙げられる。金属イオン封鎖能、固体汚れ・粒子汚れの分散能及び再汚染防止能の観点から、質量平均分子量が好ましくは2,000~100,000、より好ましくは5,000~70,000のカルボン酸ポリマーが好ましく、特にポリアクリル酸塩、アクリル酸-マレイン酸コポリマーの塩が好ましい。
(粒子(a)の製造方法)
 粒子(a)が洗剤粒子の場合には、例えば、特開2005-239867号公報、特開2005-239865号公報、特開2003-193091号公報等に記載の方法により、粒子(a)を製造することができる。また、水への溶解性が非常に高い洗剤粒子として国際公開第2000/077158号パンフレットに開示されている粒子を用いることができる。
 粒子(a)の製造方法の具体例としては、以下の方法A1~A3が挙げられる。
(1)方法A1
 界面活性剤(a3)を好ましくは50~100質量%、より好ましくは70~100質量%含有する水性ペースト10~50質量部、好ましくは15~40質量部に、アルカリ剤(a1)を好ましくは10~70質量部、より好ましくは15~50質量部、水溶性無機塩(a2-1)を好ましくは5~60質量部、より好ましくは7~50質量部、水不溶性無機塩(a2-2)を好ましくは10~50質量部、より好ましくは15~40質量部、及び水溶性高分子化合物(a4)を好ましくは1~15質量部、より好ましくは3~10質量部を添加し、レディゲミキサー等の混合機を用いて混練し、流動乾燥機等の乾燥機で乾燥させた後、整粒/分級して、平均粒径150~1000μm、好ましくは175~750μm、更に好ましくは200~500μmの粒子を得る方法。
(2)方法A2
 アルカリ剤(a1)を好ましくは10~70質量部、より好ましくは15~50質量部、水溶性無機塩(a2-1)を好ましくは5~60質量部、より好ましくは7~50質量部、水不溶性無機塩(a2-2)を好ましくは10~50質量部、より好ましくは15~40質量部、界面活性剤(a3)を好ましくは10~70質量部、より好ましくは20~60質量部、水溶性高分子化合物(a4)を好ましくは1~15質量部、より好ましくは3~10質量部、及び水を好ましくは30~300質量部、より好ましくは50~250質量部を含有するスラリー状溶液を噴霧乾燥することで得られた粒子を、整粒/分級して、平均粒径150~1000μm、好ましくは175~750μm、特に好ましくは200~500μmの粒子を得る方法。
(3)方法A3
 アルカリ剤(a1)を好ましくは10~70質量部、より好ましくは15~50質量部、水溶性無機塩(a2-1)を好ましくは5~60質量部、より好ましくは7~50質量部、水不溶性無機塩(a2-2)を好ましくは10~50質量部、より好ましくは15~40質量部、水溶性高分子化合物(a4)を好ましくは1~15質量部、より好ましくは3~10質量部、及び水を好ましくは20~200質量部、より好ましくは40~150質量部を含有するスラリー状溶液を噴霧乾燥することで得られた粒子に界面活性剤(a3)を好ましくは10~50質量部、より好ましくは15~40質量部を含浸させ整粒/分級して、平均粒径150~1000μm、好ましくは175~750μm、特に好ましくは200~500μmの粒子を得る方法。
 これらの方法の中では、水への溶解性及び流動性の点から、方法A3が最も好適である。
 前記方法A3で得られた粒子(a)は、以下の構造(A)及び/又は構造(B)を有するため、水への溶解性が著しく向上するので好適である。
 構造(A):粒子(a)を水に分散した場合、それらの平均粒子径の好ましくは1/10以上、より好ましくは1/5以上、更に好ましくは1/4以上、特に好ましくは1/3以上の径の気泡を放出可能な気孔を有する構造。
 構造(B):水不溶性無機塩(a2-2)、水溶性高分子化合物(a4)及び水溶性無機塩(a2-1)を含有し、その内部よりも表面近傍に水溶性高分子化合物(a4)及び/又は水溶性無機塩(a2-1)(以下、「水溶性高分子化合物等」という)が多く存在する偏在性を有する構造。
 粒子(a)が、構造(A)を有することにより、表面改質粒子が水に溶解する過程において、まず粒子内部に少量の水が侵入して粒子内部から所定の大きさの気泡が放出され、次いで該粒子内部に大量の水が侵入することによって粒子自体が崩壊(自己崩壊)し、表面近傍からの溶解のみならず、粒子内部からの溶解及び崩壊が起こることにより、表面改質粒子が高速溶解性を有する。この気泡放出の現象は、デジタルマイクロスコープや光学顕微鏡等で確認でき、気泡径(円相当径)を測定することができる。
 また、粒子(a)の気孔径は、その粒子径の好ましくは1/10~4/5、より好ましくは1/5~4/5である。
 気孔径の算出は、粒子(a)を壊さないようにメス等で最大粒子径を含む面で切断し、切断面を走査型電子顕微鏡で観察し、切断粒子の切断面の円相当径(γμm)、及び粒子内部で気孔の存在が確認された場合には気孔の円相当径(δμm)を測定し、粒子径に対する気孔径の比(δ/γ)を求めることにより行うことができる。なお、複数個の気孔が確認される場合には、その中で最も大きい気孔についての円相当径をδμmとする。
 また、粒子(a)が、構造(B)を有することにより、水中で表面近傍の水溶性成分がより速く溶解して、表面改質粒子の粒子表面からの崩壊が促進される溶解挙動を示すことにより、高速溶解性を発現できる。高速溶解性を発現させる最も好ましい態様としては、粒子(a)が構造(A)と構造(B)を併せ持つことである。
 粒子(a)に構造(A)及び(B)を併せ持たせるためには、噴霧乾燥時の送風温度、排風温度等を調整することにより行うことができる。送風温度は、好ましくは150~350℃、より好ましくは175~325℃、更に好ましくは200~300℃であり、排風温度は、好ましくは70~130℃、より好ましくは80~120℃、更に好ましくは90~110℃である。
 構造(B)の水溶性高分子化合物等の偏在性は、次の方法で確認することができる。
(水溶性高分子化合物等の偏在性の確認)
 まず、測定対象の粒子(a)と、その粒子(a)をメノウ乳鉢等で十分に粉砕して均一な状態とした粒子(a)の粉砕物とを用意する。そして、粒子(a)及びその粉砕物の表面から約10μmまでの情報が得られる条件で、両者をそれぞれフーリエ変換赤外分光法(FT-IR)と光音響分光法(PAS)とを併用する方法(以下、「FT-IR/PAS」という)により測定する。前者の水溶性高分子化合物等の量が、後者のその量より多い場合、測定対象の粒子(a)はその内部よりも表面近傍に水溶性高分子化合物等が多く存在する構造を有する。
 粒子(a)及びその粉砕物の表面から約10μmまでの情報が得られる測定条件としては、例えば、分解能8cm-1、スキャン速度0.63cm/s、積算128回という条件が挙げられる。使用する装置は、例えば、赤外分光光度計として「FTS-60A/896型赤外分光光度計」(Bio-Rad Laboratories社製)、PASセルとして「300型光音響検出器」(MTEC社製)が挙げられる。なお、FT-IR/PASの詳細については、APPLIED SPECTROSCOPY vol.47 1311-1316(1993) に記載されている。
 粒子(a)は、その表面に粘土鉱物粒子(b)の層を有し、必要に応じて更にその表面に後述する金属酸化物粒子(c)の層を有する。
<粘土鉱物粒子(b)>
 粘土鉱物粒子(b)は、下記方法によって算出される含水能が200質量%以上であり、好ましくは300質量%以上、より好ましくは400質量%以上、更に好ましくは500質量%以上、特に好ましくは600質量%以上である。
 また、平均粒径が1~200μm、好ましくは5~100μm、より好ましくは10~50μmである粘土鉱物粒子(b)が粒子(a)の表面に層を形成している。
(含水能の算出方法)
 日本ベントナイト工業会標準試験方法「ベントナイト(粉状)の膨潤試験方法」(JBAS-104-77)及びJIS K0068「化学製品の水分測定方法」の7「乾燥減量法」に規定された試料の乾燥方法に従って測定する。具体的には、以下のように行う。
 すなわち、精製水100mlを入れた100mlの共栓付メスシリンダーに、試料2.0gを約10回に分けて加える。ただし、先に加えた試料が殆ど内壁に付着せず、スムーズにシリンダー底に沈着するように1回の加える量を加減する。先に加えた試料が殆ど沈着した後、次の試料を添加する。添加終了後、24時間放置し、メスシリンダー内に堆積した試料の見掛け容積を膨潤力とする。
 次に、膨潤力測定後の粘土鉱物粒子(b)の分散液の全量を、ブフナーロートを用いて吸引ろ過(0.5MPaで2時間、ろ紙:アドバンテック東洋株式会社製、直径90mm、型番4A)し、ろ紙上に残存した粘土鉱物粒子(b)の質量(A)を測定する。これを105℃で3時間乾燥させた後、測定した粘土鉱物粒子(b)の質量(B)とを測定し、以下の式より含水能を求める。
 含水能(%)=[(A-B)/B]×100
 なお、精製水は特に拘らないが、日本薬局方のものを用いることが好ましい。
 また、粘土鉱物粒子(b)の膨潤力(容積法)は、溶解性及び耐ケーキング性の観点から、前記JBAS-104-77に準じて測定した値で、好ましくは6ml/2g以上、より好ましくは9ml/2g以上、更に好ましくは15ml/2g以上である。
 前記の含水能を有する粘土鉱物は天然に多くは存在せず、スメクタイト型粘土鉱物に分類される層状粘土鉱物の中に見出される。
 スメクタイトは粘土鉱物グループの名称であり、サポナイト、ヘクトライト、ソーコナイト、スティーブンサイト、モンモリロナイト、バイデライト、ノントロナイトが含まれる。なお、本発明において、スメクタイト型粘土鉱物とは、スメクタイトそのもの、スメクタイトに分類される粘土鉱物を主成分とする粘土鉱物、それらのイオン交換体、及び後述する一般式(I)、(II)で表される構造を有する粘土鉱物を意味する。スメクタイトの一種であるヘクトライトは前記含水能の要件を満足する。その他のスメクタイト型粘土鉱物においても、一部の天然鉱物の中には本要件を満たすものがある。モンモリロナイトを主成分とするベントナイトと呼称される粘土鉱物の中には、上記含水能を満たすものがある。
 天然鉱物に多く存在するカルシウム/マグネシウム型のスメクタイト型粘土鉱物は前記含水能の要件を満足しない。しかしながら、スメクタイト型粘土鉱物中に存在するカルシウム及び/又はマグネシウムの一部又は全部をアルカリ金属に交換したイオン交換スメクタイト型粘土鉱物は前記含水能の要件を満足し、好適に用いることができる。イオン交換するアルカリ金属としては、ナトリウム、カリウム、リチウムが好ましく、特にナトリウムが好ましい。
 具体的には、下記一般式(I)で表される構造を有する粘土鉱物であるスメクタイト型粘土鉱物の粒子が好ましい。
 [MgaAlb(Si254(OH)4X-・X/n[Me]n+  (I)
(式中、a、b及びxは、それぞれ、0<a≦6、0≦b≦4、0.2≦x≦1.2、x=12-(2a+3b)であり、Meは、Na、K、Li、Ca、Mg及びNH4から選ばれる少なくとも1種を示し、nはMeの価数を示す。[Me]n+におけるモル比〔(Na+K+Li)/(Ca+Mg+NH4)〕は0.5以上である。)
 [Me]n+における、アルカリ土類金属イオンとアンモニウムイオンの合計量に対するアルカリ金属イオンのモル比〔(Na+K+Li)/(Ca+Mg+NH4)〕は、好ましくは0.10~20.0、より好ましくは0.25~19.00、更に好ましくは0.50~18.00、特に好ましくは0.75~17.00、最も好ましくは1.00~16.00である。
 より好適な具体例としては、下記一般式(II)で表される構造を有する粘土鉱物であるスメクタイト型粘土鉱物の粒子が挙げられる。
 [MgaAlb(Si254(OH)4X-・X/n[Me]n+  (II)
(式中、a、b及びxは、それぞれ、0<a≦6、0≦b≦4、0.2≦x≦1.2、x=12-(2a+3b)であり、Meは、Na、K、Li、Ca、及びMgから選ばれる少なくとも1種を示し、nはMeの価数を示す。[Me]n+におけるモル比〔(Na+K+Li)/(Ca+Mg)〕は0.5以上である。)
 [Me]n+における、アルカリ土類金属イオンに対するアルカリ金属イオンのモル比〔(Na+K+Li)/(Ca+Mg)〕は、好ましくは0.10~20.0、より好ましくは0.25~19.00、更に好ましくは0.50~18.00、特に好ましくは0.75~17.00、最も好ましくは1.00~16.00である。
 このようなイオン交換スメクタイト型粘土鉱物の製造方法としては、(i)水分を20%以上含む原料粘土鉱石に粉末の炭酸ナトリウム等のアルカリ金属塩を添加して充分に混合した後に乾燥する工程を含む製法、又は(ii)パウダー状に粉砕した粘土鉱物を造粒機で造粒する際に炭酸ナトリウム等のアルカリ金属塩の粉末や水溶液を添加する工程を含む製法等が挙げられる。
 また、効率よくイオン交換させるためには、特定の炭酸アルカリ金属、好ましくは炭酸ナトリウム及び/又は炭酸カリウム、特に好ましくは炭酸ナトリウムの0.05~0.33質量%の水溶液100質量部に、スメクタイト型粘土鉱物を2~10質量部を添加分散させ0.2~1時間放置した後、該溶液を乾燥させることで得ることができる。水溶液の炭酸ナトリウムの濃度、及び水溶液とスメクタイト型粘土鉱物との添加比率を調整することで、一般式(I)の[Me]n+におけるモル比〔(Na+K+Li)/(Ca+Mg+NH4)〕又は〔(Na+K+Li)/(Ca+Mg)〕を所望の値に調整することができる。
 なお、モル比〔(Na+K+Li)/(Ca+Mg)〕は次の方法で測定する。
 まず、粘土鉱物を乳鉢で粉砕し、目開き125μmの篩を通過した試料0.1gをマイクロウェーブ湿式灰化装置(自動)で硫酸-過酸化水素分解したのち、メスフラスコにて50mLにメスアップして、ICP(誘導結合プラズマ)発光分析装置で測定してNa、K、Li、Ca、Mg量を定量して計算する。
 なお、ICP発光分析で求めたMg量には、一般式(I)内の層間イオン(Me)として存在するMg以外にモンモリロナイトの基本骨格中でAlの同型置換として存在するMgの量も含まれる。またICP発光分析で得られたCaやMg量には、上述した炭酸ナトリウムや炭酸カリウムでイオン交換した場合に生成する炭酸カルシウムや炭酸マグネシウム量も含まれる。
 従って、粘土鉱物の層間に含まれるアルカリ土類金属の量を定量するために、10質量%の塩化アンモニア水溶液10mlに、測定対象物の粘土鉱物を1g(乳鉢ですりつぶし、粒径150μm以下の微粉末にしたもの)を添加、分散させ、12時間放置した後、遠心分離し、上澄み液に含まれる溶出したアルカリ土類金属の量(ppm)を求め、ICP発光分析で得られた値から差分をとるものとする。更に理論上のアルカリ金属、アルカリ土類金属及びNH4の合計mol量に対する測定されたアルカリ金属のmol量の比率を求めることができる。
 粒子(a)に対する粘土鉱物粒子(b)の質量比は、好ましくは0.01~0.40、より好ましくは0.02~0.35、更に好ましくは0.03~0.30であり、粒子(a)の平均粒径に対する粘土鉱物粒子(b)の平均粒径の比率は、好ましくは0.01~0.50、より好ましくは0.015~0.40、更に好ましくは0.02~0.30である。
(金属酸化物粒子(c))
 本発明のアルカリ剤含有粒子においては、粒子の流動性を向上させ、さらさらとしたきれいな粒子に仕上げる観点から、任意ではあるが、粘土鉱物粒子(b)の層の外表面に、さらに前記含水能が好ましくは150質量%以下、より好ましくは100質量%以下であり、平均粒径が好ましくは0.1~20μm、より好ましくは0.2~10μm、更に好ましくは0.5~8μmである金属酸化物粒子(c)の層を形成することが好ましい。
 金属酸化物粒子(c)としては、二酸化珪素、結晶性シリケート化合物等のシリケート化合物、前記含水能が150質量%以下であるベントナイト、タルク、クレイ、結晶性又は非晶質アルミノ珪酸塩等が好ましく挙げられる。
 結晶性シリケート化合物を用いる場合、吸湿や吸炭酸ガスによる結晶性シリケートの凝集等による劣化を防ぐ観点から、結晶性シリケート化合物以外の微粉体と混合して用いることが好ましく、特に洗剤粒子の流動性の観点から、結晶性アルミノ珪酸塩が好ましく、結晶性アルミノ珪酸ナトリウムがより好ましく、A型、P型、X型等のゼオライトが更に好ましい。
 粒子(a)に対する金属酸化物粒子(c)の質量比は、好ましくは0.05~0.50、より好ましくは0.10~0.45、更に好ましくは0.15~0.40であり、粒子(a)の平均粒径に対する金属酸化物粒子(c)の平均粒径の比率は、好ましくは0.005~0.100、より好ましくは0.010~0.075、更に好ましくは0.015~0.050である。
 金属酸化物粒子(c)が、ゼオライトである場合、その一次粒子の平均粒径は10μm以下が好ましく、0.1~10μmがより好ましい。平均粒径がこの範囲において、洗剤粒子の粒子表面の被覆率が向上し、洗剤粒子群の流動性と耐ケーキング性の向上の観点から好適である。ゼオライトの平均粒径は、Mie散乱を利用した方法、例えば、堀場製作所株式会社製、レーザ回折/散乱式粒度分布測定装置「LA-920」によって測定される。〔ゼオライト(c)/粘土鉱物粒子(b)〕の質量比は、10以下、更には3以下であれば、良好な流動性と耐ケーキング性を得ることができるが、本発明の規定する含水能を有する粘土鉱物粒子を用いる場合、1.66以下が好ましく、1.48以下がより好ましく、更には1.0以下、特には0.5以下において優れた効果を得ることができる。
 本発明においては、粒子(a)、粘土鉱物粒子(b)及び金属酸化物粒子(c)等の各粒子間の接着性を向上させるために、バインダー成分(d)を添加することができる。
(バインダー成分(d))
 バインダー成分(d)としては、前記界面活性剤(a3)として例示した非イオン界面活性剤から選ばれる一種以上のものや、前記水溶性高分子化合物(a4)であるポリエチレングリコール、(メタ)アクリル酸系ポリマー、セルロース系誘導体、及びその水溶液が挙げられる。ポリエチレングリコールは、洗剤が通常使用される温度(40℃以下)における固化性や表面処理後の溶解性の観点から、質量平均分子量が4,000~20,000のものが好ましく、5,000~15,000のものがより好ましい。セルロース系誘導体としては、カルボキシメチルセルロース、メチルセルロース、ヒドロキシプロピルメチルセルロース等が挙げられる。
 バインダー成分としては、陰イオン界面活性剤の酸前駆体も用いることができる。陰イオン界面活性剤の酸前駆体は、噴霧乾燥粒子中に含まれるアルカリ剤と中和反応を起こすものであり、例えば、アルキルベンゼンスルホン酸、アルキル又はアルケニルエーテル硫酸、アルキル又はアルケニル硫酸、α-オレフィンスルホン酸、α-スルホン化脂肪酸、アルキル又はアルケニルエーテルカルボン酸、脂肪酸等が挙げられる。これらの中でも、耐水性の高いものが好ましく、具体的には、脂肪酸、ヒドロキシ脂肪酸、アルキルリン酸等が好ましく挙げられる。特に、溶解性の観点から、炭素数10~22の脂肪酸又はヒドロキシ脂肪酸から選ばれる1種以上が好ましく、表面改質粒子強度の観点から、炭素数12~20の飽和脂肪酸から選ばれる1種以上が好ましい。
 バインダー成分の添加量としては、粒子(a)100質量部に対して、0.1~8質量部が好ましく、0.5~6質量部がより好ましく、1~4質量部が更に好ましい。
 粒子(a)、粘土鉱物粒子(b)、金属酸化物粒子(c)、及びバインダー成分(d)は、単独で又は2種以上を組み合わせて用いることができる。
(アルカリ剤含有粒子の製造方法)
 本発明のアルカリ剤含有粒子は、粒子(a)に粘土鉱物粒子(b)を接触させることにより製造することができる。粒子(a)に粘土鉱物粒子(b)を接触させる方法としては、公知の攪拌混合機を用いることができ、例えば「ヘンシェルミキサー」(三井鉱山株式会社製)、「ハイスピードミキサー」(深江工業株式会社製)、「バーチカルグラニュレーター」(株式会社パウレック製)、「レディゲミキサー」(松坂技研株式会社製)、「プロシェアミキサー」(太平洋機工株式会社製)、「ナウターミキサー」(ホソカワミクロン株式会社製)等を好ましく挙げることができる。これらの中でも、粒子(a)に強いせん断力がかかりにくく(粒子(a)を崩壊させにくく)、混合効率のよい装置が好ましい。かかる観点から、横型の混合層で円筒の中心に攪拌軸を有し、当該軸に攪拌羽根を取り付けて粒子の混合を行う形式のミキサー(横型混合機)である、レディゲミキサー、プロシェアミキサー等が特に好ましい。また、上記以外の連続型の混合機としては、「フレキソミックス」(株式会社パウレッタ製)、「タービュライザー」(ホソカワミクロン株式会社製)等が挙げられる。
 粒子(a)の製造方法において、方法A1及びA2で得られた粒子(a)は粘着性に乏しいため、粒子(a)の表面に粘土鉱物粒子(b)を均一に付着させる観点から、バインダー成分(d)を併用することが好ましい。また、一方、方法A3の場合には、界面活性剤(a3)を含浸させており、その界面活性剤(a3)が粘着剤として働くためバインダー成分(d)は特には必要としない。
 粒子(a)と粘土鉱物粒子(b)とを攪拌混合する際の系内温度は、粘土鉱物粒子(b)の付着性の観点から、バインダー成分(d)の融点(高分子化合物の場合にはTg)以上の温度が好ましく、かつ品質上の問題が起こらない温度以下、具体的には100℃以下が好ましく、90℃以下がより好ましい。
 本発明においては、粒子(a)と粘土鉱物粒子(b)との接触の後、所望により、引続いて金属酸化物粒子(c)と接触させることがより好ましい。この際の攪拌混合機等は、前記と同様のものを使用することができる。
 この操作により、粘土鉱物粒子(b)の層の外表面に、さらに金属酸化物粒子(c)の層が順次積層されて形成されるが、粘土鉱物粒子(b)層は必ずしも粒子(a)の表面全面を覆う必要はなく、金属酸化物粒子(c)層は必ずしも粒子(b)層の全面を覆う必要はない。すなわち、粒子(a)の表面の一部に金属酸化物粒子(c)層が存在することもあるし、粒子(a)がむき出しとなった状態の部分が存在することもある。
 粒子(a)の表面は、その好ましくは30~100%、より好ましくは40~100%、更に好ましくは50~100%が粘土鉱物粒子(b)の層で覆われていることが好ましく、残余の部分が金属酸化物粒子(c)の層で覆われていることが好ましく、粒子(a)の表面全面が、粘土鉱物粒子(b)及び金属酸化物粒子(c)の各層で順次覆われていることがより好ましい。
[洗剤組成物]
 本発明のアルカリ剤含有粒子は、洗剤組成物用の洗剤粒子として好適に利用される。洗剤組成物の製法には特に制限はなく、例えば本発明のアルカリ剤含有粒子と、別途用意される洗剤成分とを混合することにより得ることができる。該洗剤組成物は、粉末洗剤を用いる用途であれば特に制限なく用いることができるが、例えば、衣料用粉末洗剤、自動食器用洗剤等として好ましく用いることができる。
 別途用意される洗剤成分としては、例えば、界面活性剤、ビルダー顆粒等の公知の洗浄剤基材、漂白剤(過炭酸塩、過ホウ酸塩、漂白活性化剤等)、漂白活性化剤、再汚染防止剤(カルボキシメチルセルロース等)、柔軟化剤、還元剤(亜硫酸塩等)、蛍光増白剤、消泡剤(シリコーン等)、セルラーゼやプロテアーゼ等の酵素、染料、香料等が挙げられる。
 洗剤組成物中のアルカリ剤含有粒子の含有量は、洗浄力の観点から、50質量%以上が好ましく、60質量%以上がより好ましく、70質量%以上が更に好ましく、80質量%以上が特に好ましい。また、洗剤組成物中における別途用意される洗剤成分の含有量は、50質量%以下が好ましく、40質量%以下がより好ましく、30質量%以下が更に好ましく、20質量%以下が特に好ましい。
 以下の製造例、実施例及び比較例において、「部」及び「%」は特記しない限り「質量部」及び「質量%」である。また、実施例及び比較例で得られた粒子の膨潤力、含水能、嵩密度、平均粒径、担持能、粒子強度、流動性、溶解率、質量増加率、篩通過率及びシミだし性を、以下の方法により測定し、評価した。
 また、モル比〔(Na+K+Li)/(Ca+Mg)〕、及び粘土鉱物の層間に含まれるカルシウム量の測定は、段落〔0024〕に記載の方法により行った。
(1)膨潤力(mL/2g)
 日本ベントナイト工業会の「ベントナイト(粉状)の膨潤試験方法」(JBAS-104-77)規定された方法で膨潤力(容積法)を測定した。
(2)含水能(%)
 膨潤力(容積法)を測定した後の分散液をブフナーロートを用いて吸引ろ過(0.5MPaで2時間、ろ紙:アドバンテック東洋株式会社製、直径90mm、型番4A)し、ろ紙上に残存した粘土鉱物粒子(b)の質量(A)と、JIS K0068「化学製品の水分測定方法」の7「乾燥減量法」に規定された試料の乾燥方法で乾燥させた粘土鉱物粒子(b)の質量(B)とを測定し、以下の式より含水能を算出する。
 含水能(%)=[(A-B)/B]×100
(3)嵩密度(g/L)
 JIS K3362に規定された方法で測定した。
(4)平均粒径(μm)
 JIS Z 8801に規定の篩を用いて、100gの試料を5分間振動して篩い分けを行い、平均粒径を算出した。
 具体的には、目開きが2000μm、1400μm、1000μm、710μm、500μm、355μm、250μm、180μm及び125μmである9段の篩と受け皿を用い、ロータップマシーン(HEIKO SEISAKUSHO製、タッピング:156回/分、ローリング:290回/分)に取り付け、100gの試料を5分間振動して篩い分けを行った後、受け皿、125μm、180μm、250μm、355μm、500μm、710μm、1000μm、1400μm、2000μmの順番に受け皿及び各篩下に質量頻度を積算していくと、積算の質量頻度が50%以上となる最初の篩の目開きをxjμmとし、それよりも一段小さい篩の目開きをxj+1μmとした時、受け皿からxjμmの篩までの質量頻度の積算をQj%、受け皿からxj+1μmの篩までの質量頻度の積算をQj+1%とした場合、次式によって求めることができる。平均粒径xaは、下記式(1)、(2)によって算出した。
Figure JPOXMLDOC01-appb-M000001
(5)粒子(a)の担持能
 内部に攪拌翼を備えた内径5cm×高さ15cmの円筒型混合槽に試料100gを入れ、該攪拌翼を350rpmで攪拌させながら、25℃のポリオキシエチレンアルキルエーテル(花王株式会社製「エマルゲン106」)を10mL/minの速度で槽内に投入し、攪拌に要する動力が最も高くなった時のポリオキシエチレンアルキルエーテルの投入量を担持能とした。
(6)粒子強度(kg/cm2
 内径3cm×高さ8cmの円柱状の容器に、試料20gを入れ、30回タッピング(筒井理化学器機株式会社、TVP1型タッピング式密充填嵩密度測定器、条件;周期36回/分、60mmの高さから自由落下)を行い、タッピング操作終了直後の試料高さを初期試料高さとし、その後、加圧試験機にて容器内に保持した試料の上端面全体を10mm/minの速度で加圧し、荷重-変位曲線の測定を行い、該曲線における変位率が5%以下での直線部における傾きに初期試料高さを乗じて得られる値を、加圧面積で除した値を粒子強度とした。
(7)流動性
 JIS K 3362に規定された嵩密度測定用のホッパーから、100mLの粉末が流出するのに要する時間(sec)で評価した。
(8)溶解率(%)
 メッシュ網(110mmφ:200メッシュ)の質量〔a〕を精密天秤で測定した。5℃±0.5℃の硬度4°DHの水1.00L±0.03Lに、粒子1.000g±0.010g(サンプル質量〔b〕)を投入し、1Lビーカー(内径105mm)内で円柱状攪拌子(長さ35mm、直径8mm)にて60秒間、回転数800rpmにて攪拌した後、ホルダーに固定したメッシュ網に傾斜法にて濾過した。使用したビーカー、スターラーピース、ホルダーを5℃の水でリンスし、残留物をメッシュ上に回収した。使用したメッシュ網は、濾紙上に置き、余分な水分、泡を取り除いた後、残留物が損失しないようにし、105℃で30分乾燥した後、デシケーター内で10分冷却し、精密天秤で質量〔c〕を測定した。
 溶解率V(%)は、下記式(3)により算出した。
 V(%)={1-(c-a)/b}×100    (3)
(9)質量増加率(%)(保存安定性)
 質量増加率:Surface Measurement System社製の水蒸気吸脱着量測定装置(DVS-Advantage)にサンプル30mgをセットし、30℃、40%RH雰囲気下で3時間放置した後の質量をp、30℃、70%RHに変化させ、平衡に達したときの質量をqとして、以下の式に従い質量増加率w(%)を計算した。
 w(%)=100×(q-p)/p
 なお、直近1分間の質量変化率が0.002%以下になったところを平衡と判断した。
(10)篩通過率(%)及びシミだし性
 濾紙(アドバンテック東洋株式会社製、No.2)で長さ10.2cm×幅6.2cm×高さ4cmの天部のない箱を作り、四隅をステープラーでとめた。これに、粒子50gを入れて、温度30℃、湿度70%RH雰囲気下で21日及び28日放置した後のケーキング状態について下記の方法で測定した。
 篩通過率:試験後の試料を篩(JIS Z 8801規定の目開き4760μm)上に静かに移し、通過した粉末質量を計測し、試験後の試料に対する篩通過率(%)を求めた。
 シミ出し性:上記の篩通過率試験を行った濾紙の容器の底部(粉体との非接触面)でのシミ出し状態を目視して、下記の1~5ランクの基準で評価した。
(評価基準)
 ランク1:濡れていない。
 ランク2:1/4程度の面が濡れている。
 ランク3:1/2程度の面が濡れている。
 ランク4:3/4程度の面が濡れている。
 ランク5:全面が濡れている。
 なお、実施例及び比較例で用いた原料の詳細は、以下のとおりである。
・硫酸ナトリウム:四国化成株式会社製、品名:無水中性芒硝
・亜硫酸ナトリウム:三井化学株式会社製、品名:亜硫酸ソーダ
・炭酸ナトリウム:セントラル硝子株式会社製、品名:デンス灰、平均粒径:290μm
・ポリアクリル酸ナトリウム水溶液:花王株式会社製、質量平均分子量:1万
・結晶性アルミノケイ酸塩:ゼオビルダー社製、4A型ゼオライト、平均粒径:3.5μm
・ポリエチエングリコール:三井化学株式会社製、品名:PEG13000、質量平均分子量:10000、固形分:60%
・陰イオン界面活性剤(p):花王株式会社製、ドデシルベンゼンスルホン酸ナトリウム、品名:ネオペレックスG-25、固形分:26質量%
・非イオン界面活性剤(q):花王株式会社製、ポリオキシエチレンラウリルエーテル、品名:エマルゲン106(E-106)
・層状粘土鉱物1:合成ヘクトライト、親水性(試薬:和光純薬株式会社製)、平均粒径:49.3μm、膨潤力45mL/2g、含水能2176%
・層状粘土鉱物2:黒崎白土工業株式会社製、品名:オドアースP-700、平均粒径16.7μm、(Na+K+Li)/(Ca+Mg)=0.161、膨潤力9mL/2g、含水能261%、主成分:ベントナイト
・層状粘土鉱物3:カオリン(試薬:関東化学株式会社製)平均粒径:5.2μm
・層状粘土鉱物4:タルク(竹原化学工業株式会社製、品名:Tタルク)平均粒径:10.5μm
(層状粘土鉱物2のアクチベート化)
・層状粘土鉱物2A
 水300部を攪拌翼を備えた混合槽に入れ、水温を25℃にした後、炭酸ナトリウム1部を添加して5分間攪拌した。層状粘土鉱物1 5部を添加して60分間攪拌後、140℃のロータリーキルンで水分が5%以下になるまで乾燥し、ボールミルで粉砕し、層状粘土鉱物2Aを得た。層状粘土鉱物2Aの平均粒径は38.3μm、〔(Na+K+Li)/(Ca+Mg)〕は13.350、膨潤力は22mL/2g、含水能は623%であった。
・層状粘土鉱物2B
 炭酸ナトリウムを0.690部に変更した以外は、層状粘土鉱物2Aと同じ調製法で層状粘土鉱物2Bを得た。層状粘土鉱物2Bの平均粒径は36.5μm、〔(Na+K+Li)/(Ca+Mg)〕は9.414、膨潤力は20mL/2g、含水能は643%であった。
・層状粘土鉱物2C
 炭酸ナトリウムを0.525部に変更した以外は、層状粘土鉱物2Aと同じ調製法で層状粘土鉱物2Cを得た。層状粘土鉱物2Cの平均粒径は31.0μm、〔(Na+K+Li)/(Ca+Mg)〕は4.838、膨潤力は25mL/2g、含水能は770%であった。
・層状粘土鉱物2D
 炭酸ナトリウムを0.375部に変更した以外は、層状粘土鉱物2Aと同じ調製法で層状粘土鉱物2Dを得た。層状粘土鉱物2Dの平均粒径は28.2μm、〔(Na+K+Li)/(Ca+Mg)〕は2.536、膨潤力は28mL/2g、含水能は930%であった。
・層状粘土鉱物2E
 炭酸ナトリウムを0.345部に変更した以外は、層状粘土鉱物2Aと同じ調製法で層状粘土鉱物2Eを得た。層状粘土鉱物2Eの平均粒径は27.9μm、〔(Na+K+Li)/(Ca+Mg)〕は1.681、膨潤力は25mL/2g、含水能は537%であった。
・層状粘土鉱物2F
 炭酸ナトリウムを0.150部に変更した以外は、層状粘土鉱物2Aと同じ調製法で層状粘土鉱物2Fを得た。層状粘土鉱物2Fの平均粒径は26.0μm、〔(Na+K+Li)/(Ca+Mg)〕は0.764、膨潤力は16mL/2g、含水能は529%であった。
 図1に、層状粘土鉱物2の活性化に使用した「炭酸ナトリウム/ベントナイトの質量比」と、塩化アンモニウムで溶出する層状粘土鉱物の「層間カルシウム量」の関係を示した。層間カルシウム量(グラフの縦軸)の値が小さいほど、層状粘土鉱物2が活性化されたことを示すが、層状粘土鉱物(ベントナイト)に対して、炭酸ナトリウム/ベントナイトの質量比が0.05以上の炭酸ナトリウムを加えても、活性化度は飽和に達して、それ以上の添加効果がないことが分かる。必要最小限の炭酸ナトリウム量は、活性化される層状粘土鉱物(ベントナイト)に含有されるカルシウム量に依存するが、炭酸ナトリウムの濃度を変えて検討することで最適な量を見出すことができる。
 図2に、層状粘土鉱物(ベントナイト)の層間の〔(Na+K+Li)/(Ca+Mg)〕のモル比と含水能の関係を示す。この結果から、活性化することにより含水能が向上するものの、過剰に活性化すると、層状粘土鉱物(ベントナイト)中に残存する塩の量が増加することが原因で、含水能は下がる傾向が見られることが判明した。従って、使用する層状粘土鉱物(ベントナイト)により、含水能を最大化する活性化度は異なるので、用いる層状粘土鉱物(ベントナイト)によって活性化度を適宜変更することが好ましい。
調製例1(噴霧乾燥粒子の調製)
 水410部を攪拌翼を備えた1m3の混合槽に入れ、水温を45℃にした後、硫酸ナトリウム110部、亜硫酸ナトリウム8部、蛍光染料2部を添加して、10分間攪拌した。次いで、炭酸ナトリウム120部、40質量%のポリアクリル酸ナトリウム水溶液150部を添加して10分間攪拌し、さらに塩化ナトリウム40部、結晶性アルミノケイ酸塩160部を添加し、15分間攪拌してスラリー水分50質量%の均質なスラリーを得た。このスラリーの最終温度は50℃であった。
 285℃の窒素ガスを噴霧乾燥塔に塔下部より供給しながら、スラリーをポンプで噴霧乾燥塔(向流式)に供給し、塔頂付近に設置した圧力噴霧ノズルから噴霧圧2.5MPaで噴霧を行った。窒素ガスは、塔頂から98℃で排出された。得られた噴霧乾燥粒子の含水能は0%、平均粒径は290μm、嵩密度は510g/L、担持能は65mL/100g、粒子強度は350kg/cm2であった。
調製例2-1(界面活性剤組成物aの調製)
 非イオン界面活性剤を840部とポリエチレングリコール69部とを80℃に加熱し、陰イオン界面活性剤960部と48%水酸化ナトリウム水溶液258部を添加して撹拌し、界面活性剤組成物aを調製した。
調製例2-2(界面活性剤組成物bの調製)
 非イオン界面活性剤を920部とポリエチレングリコール69部とを80℃に加熱し、陰イオン界面活性剤883部と48%水酸化ナトリウム水溶液237部を添加して撹拌し、界面活性剤組成物bを調製した。
調製例2-3(界面活性剤組成物cの調製)
 非イオン界面活性剤を1022部とポリエチレングリコール69部とを80℃に加熱し、陰イオン界面活性剤785部と48%水酸化ナトリウム水溶液211部を添加して撹拌し、界面活性剤組成物cを調製した。
調製例2-4(界面活性剤組成物dの調製)
 非イオン界面活性剤を1150部とポリエチレングリコール69部とを80℃に加熱し、陰イオン界面活性剤662部と48%水酸化ナトリウム水溶液178部を添加して撹拌し、界面活性剤組成物dを調製した。
調製例2-5(界面活性剤組成物eの調製)
 非イオン界面活性剤を1314部とポリエチレングリコール69部とを80℃に加熱し、陰イオン界面活性剤505部と48%水酸化ナトリウム水溶液136部を添加して撹拌し、界面活性剤組成物eを調製した。
調製例2-6(界面活性剤組成物fの調製)
 非イオン界面活性剤を1533部とポリエチレングリコール69部とを80℃に加熱し、陰イオン界面活性剤294部と48%水酸化ナトリウム水溶液79部を添加して撹拌し、界面活性剤組成物fを調製した。
実施例1(洗剤粒子1の製造)
 レディゲミキサー(松坂技研株式会社製、容量130L、ジャケット付)に、45部の噴霧乾燥粒子と10部の炭酸ナトリウム、を投入し、主軸(攪拌翼の回転数:60rpm、周速:1.6m/s)の攪拌を開始した。ジャケットには80℃の温水を10L/分で流した。そこに、80℃に昇温した界面活性剤組成物a 25部を2分間かけて投入し、その後5分間攪拌を行って、界面活性剤組成物を担持させた。更に5部の層状粘土鉱物1を投入し5分間攪拌を行った。次に、5部の結晶性アルミノケイ酸塩を投入し、主軸(回転数:120rpm、周速:3.1m/s)とチョッパー(回転数:3600rpm、周速:28m/s)の攪拌を30秒間行った。レディゲミキサーの運転条件を、主軸(攪拌翼、回転数:60rpm、周速:1.6m/s)に戻し、さらに10部の結晶性アルミノケイ酸塩を投入する。さらにもう一度主軸(回転数:120rpm、周速:3.1m/s)とチョッパー(回転数:3600rpm、周速:28m/s)の攪拌を30秒間行った後、排出し、洗剤粒子1を得た。得られた洗剤粒子1の評価結果を表1に示す。
実施例2(洗剤粒子2の製造)
 洗剤粒子1の層状粘土鉱物1を層状粘土鉱物2に変更した以外は、実施例1と同様にして洗剤粒子2を製造した。得られた洗剤粒子2の評価結果を表1に示す。
実施例3~8(洗剤粒子2A~2Fの製造)
 洗剤粒子1の層状粘土鉱物1を層状粘土鉱物2A~2Fに変更した以外は、実施例1と同様にして洗剤粒子2A~2Fを製造した。得られた洗剤粒子2A~2Fの評価結果を表1に示す。
比較例1~3(洗剤粒子3~5の製造)
 洗剤粒子1の層状粘土鉱物1を層状粘土鉱物3~5に変更した以外は、実施例1と同様にして洗剤粒子3~5を製造した。得られた洗剤粒子3~5の評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000002
実施例9~13
 洗剤粒子1の層状粘土鉱物1を層状粘土鉱物2Aに変更し、界面活性剤組成物aを界面活性剤組成物b~fに変更した以外は、実施例1と同様にして洗剤粒子2Ab~2Afを製造した。得られた洗剤粒子2Ab~2Afの評価結果を、洗剤粒子2Aの評価結果と共に表2に示す。
Figure JPOXMLDOC01-appb-T000003
 図3に、層状粘土鉱物の含水能と洗剤粒子の質量増加率の関係を示し、図4に、層状粘土鉱物の含水能と篩通過率の関係を示した。
 図3から明らかなように、層状粘土鉱物の含水能が高いほど、洗剤粒子にした場合の質量増加率が低下することが分かり、洗剤粒子でケーキングの原因となるアルカリの溶解や再結晶化が起こりにくくなることが分かる。
 質量増加率測定後の洗剤粒子の表面状態を対比するため、洗剤粒子2D(含水能930%)の場合を図5に示し、洗剤粒子4(含水能86%)の場合を図6に示す。図5及び図6を対比すると、含水能が高いもの(洗剤粒子2D)は針状結晶が洗剤粒子表面に析出していないことが分かる。また、図4に示したように、洗剤粒子の含水能が高いものほど、篩通過率が向上することが分かる。
 さらに、含水能の高い実施例1~8の洗剤粒子は、含水能の低い比較例1~3の洗剤粒子に比べて、耐シミだし性が優れていることが分かる。
 また、実施例1~8の洗剤粒子は、嵩密度、平均粒径、流動性、溶解率において比較例1~3の洗剤粒子と同等であり、高嵩密度洗剤粒子として充分な物性を有していることが分かる。
 また、実施例2及び9~13の結果から、同じ種類のベントナイトを用いた場合、アニオン界面活性剤の比率が高い場合のほうが、保存安定性に優れることが確認された。
 本発明のアルカリ剤含有粒子は、水への溶解性を損なわず、かつ優れた耐ケーキング性を有しているので、洗剤組成物用の洗剤粒子として好適に利用できる。

Claims (10)

  1.  アルカリ剤を含有する平均粒径150~1000μmの粒子(a)の表面に、下記方法によって算出される含水能が200質量%以上であり、平均粒径が1~200μmである粘土鉱物粒子(b)の層を形成してなるアルカリ剤含有粒子。
    (含水能の算出方法)
     日本ベントナイト工業会標準試験方法「ベントナイト(粉状)の膨潤試験方法」(JBAS-104-77)に準じて、粘土鉱物粒子(b)の膨潤力(容積法)を測定した後の分散液をブフナーロートを用いて吸引ろ過(0.5MPaで2時間、ろ紙:アドバンテック東洋株式会社製、直径90mm、型番4A)し、ろ紙上に残存した粘土鉱物粒子(b)の質量(A)と、JIS K0068「化学製品の水分測定方法」の7「乾燥減量法」に規定された試料の乾燥方法で乾燥させた粘土鉱物粒子(b)の質量(B)とを測定し、以下の式より含水能を算出する。
     含水能(%)=[(A-B)/B]×100
  2.  アルカリ剤が炭酸アルカリ金属塩である、請求項1に記載のアルカリ剤含有粒子。
  3.  粒子(a)が洗剤粒子である、請求項1又は2に記載のアルカリ剤含有粒子。
  4.  粘土鉱物粒子(b)が層状粘土鉱物である請求項1~3のいずれかに記載のアルカリ剤含有粒子。
  5.  粘土鉱物粒子(b)が下記一般式(II)で表される構造を有する粘土鉱物の粒子である、請求項1~4のいずれかに記載のアルカリ剤含有粒子。
     [MgaAlb(Si254(OH)4X-・X/n[Me]n+  (II)
    (式中、a、b及びxは、それぞれ、0<a≦6、0≦b≦4、0.2≦x≦1.2、x=12-(2a+3b)であり、Meは、Na、K、Li、Ca、及びMgから選ばれる少なくとも1種を示し、nはMeの価数を示す。[Me]n+におけるモル比〔(Na+K+Li)/(Ca+Mg)〕は0.5以上である。)
  6.  粘土鉱物粒子(b)がヘクトライトである、請求項1~5のいずれかに記載のアルカリ剤含有粒子。
  7.  粘土鉱物粒子(b)の層の外表面に、さらに前記含水能が150質量%以下であり、平均粒径が0.1~20μmの金属酸化物粒子(c)の層を形成してなる、請求項1~6のいずれかに記載のアルカリ剤含有粒子。
  8.  粒子(a)が洗剤粒子であり、含有される陰イオン界面活性剤(p)と非イオン界面活性剤(q)の重量比〔(p)/(q)〕が0.5以上である、請求項1~7のいずれかに記載のアルカリ剤含有粒子。
  9.  請求項1~8のいずれかに記載のアルカリ剤含有粒子の洗剤組成物への使用。
  10.  アルカリ剤を含有する平均粒径150~1000μmの粒子(a)の表面に、前記方法によって算出される含水能が200質量%以上であり、平均粒径が1~200μmである粘土鉱物粒子(b)の層を形成させるアルカリ剤含有粒子のケーキング抑制方法。
PCT/JP2009/054458 2008-05-23 2009-03-09 アルカリ剤含有粒子 WO2009142050A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP09750412.0A EP2280059B1 (en) 2008-05-23 2009-03-09 Particle containing alkali
US12/994,097 US8455425B2 (en) 2008-05-23 2009-03-09 Particles containing alkali
CN2009801187667A CN102037116B (zh) 2008-05-23 2009-03-09 含碱剂颗粒
AU2009250642A AU2009250642B2 (en) 2008-05-23 2009-03-09 Particle containing alkali

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-135929 2008-05-23
JP2008135929A JP5478031B2 (ja) 2008-05-23 2008-05-23 アルカリ剤含有粒子

Publications (1)

Publication Number Publication Date
WO2009142050A1 true WO2009142050A1 (ja) 2009-11-26

Family

ID=41339989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/054458 WO2009142050A1 (ja) 2008-05-23 2009-03-09 アルカリ剤含有粒子

Country Status (7)

Country Link
US (1) US8455425B2 (ja)
EP (1) EP2280059B1 (ja)
JP (1) JP5478031B2 (ja)
CN (1) CN102037116B (ja)
AU (1) AU2009250642B2 (ja)
TW (1) TWI468508B (ja)
WO (1) WO2009142050A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018123943A1 (ja) * 2016-12-26 2018-07-05 花王株式会社 繊維製品用洗浄剤組成物
CN111257161B (zh) * 2020-03-08 2022-06-17 湖南科技大学 一种高液限土对重金属离子解吸附特性的试验方法
CN112284990A (zh) * 2020-10-19 2021-01-29 中交一公局集团有限公司 粘土颗粒的分离与含量测定的方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4885102A (ja) 1972-01-31 1973-11-12
JPS4985102A (ja) * 1972-07-14 1974-08-15
JPH02286800A (ja) 1989-03-31 1990-11-26 Ecc Internatl Ltd 洗剤顆粒
JPH08210398A (ja) 1995-02-06 1996-08-20 Toyota Motor Corp ディスクブレーキ装置用ブレーキパッド
JPH08283799A (ja) * 1995-04-07 1996-10-29 Lion Corp 高嵩密度洗剤の製造方法
WO2000077158A1 (fr) 1999-06-14 2000-12-21 Kao Corporation Base granulaire et detergent particulaire
JP2003193091A (ja) 2001-12-27 2003-07-09 Lion Corp 含水無機粒子及びそれを含有する洗剤組成物
JP2004143394A (ja) 2002-08-30 2004-05-20 Kao Corp 洗剤粒子
JP2005171149A (ja) 2003-12-12 2005-06-30 Kao Corp 洗浄剤粒子
JP2005239865A (ja) 2004-02-26 2005-09-08 Lion Corp 洗剤添加用粒子群及び洗剤組成物
JP2005239867A (ja) 2004-02-26 2005-09-08 Lion Corp 水溶性無機物質含有粒子
WO2007114484A1 (ja) * 2006-03-31 2007-10-11 Kao Corporation 柔軟洗浄剤組成物
JP2008189726A (ja) 2007-02-01 2008-08-21 Kao Corp 洗剤粒子

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3953379A (en) * 1973-10-26 1976-04-27 Colgate-Palmolive Company Manufacture of improved aqueous alkali metal silicate-alkali metal hydroxyalkyl iminodiacetate compositions
US4581042A (en) * 1984-06-22 1986-04-08 Pro-Strength, Inc. Composition for removing hard-water build-up
US5318714A (en) * 1988-03-14 1994-06-07 Novo Nordisk A/S Stabilized particulate composition
US5008029A (en) * 1989-11-20 1991-04-16 Block Drug Company Inc. Delayed action drain cleaner compositions
JP3192469B2 (ja) * 1991-05-17 2001-07-30 花王株式会社 ノニオン洗剤粒子の製造方法
ES2133728T3 (es) * 1993-12-30 1999-09-16 Ecolab Inc Metodo para hacer compuestos de limpieza solidos a partir de urea.
US5691297A (en) * 1994-09-20 1997-11-25 The Procter & Gamble Company Process for making a high density detergent composition by controlling agglomeration within a dispersion index
US5783537A (en) * 1996-03-05 1998-07-21 Kay Chemical Company Enzymatic detergent composition and method for degrading and removing bacterial cellulose
TW502064B (en) * 1996-03-11 2002-09-11 Kao Corp Detergent composition for clothes washing
CA2282405C (en) * 1997-03-20 2003-04-22 The Procter & Gamble Company Laundry additive particle having multiple surface coatings
US6596683B1 (en) * 1998-12-22 2003-07-22 The Procter & Gamble Company Process for preparing a granular detergent composition

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4885102A (ja) 1972-01-31 1973-11-12
JPS4985102A (ja) * 1972-07-14 1974-08-15
JPH02286800A (ja) 1989-03-31 1990-11-26 Ecc Internatl Ltd 洗剤顆粒
JPH08210398A (ja) 1995-02-06 1996-08-20 Toyota Motor Corp ディスクブレーキ装置用ブレーキパッド
JPH08283799A (ja) * 1995-04-07 1996-10-29 Lion Corp 高嵩密度洗剤の製造方法
WO2000077158A1 (fr) 1999-06-14 2000-12-21 Kao Corporation Base granulaire et detergent particulaire
JP2003193091A (ja) 2001-12-27 2003-07-09 Lion Corp 含水無機粒子及びそれを含有する洗剤組成物
JP2004143394A (ja) 2002-08-30 2004-05-20 Kao Corp 洗剤粒子
JP2005171149A (ja) 2003-12-12 2005-06-30 Kao Corp 洗浄剤粒子
JP2005239865A (ja) 2004-02-26 2005-09-08 Lion Corp 洗剤添加用粒子群及び洗剤組成物
JP2005239867A (ja) 2004-02-26 2005-09-08 Lion Corp 水溶性無機物質含有粒子
WO2007114484A1 (ja) * 2006-03-31 2007-10-11 Kao Corporation 柔軟洗浄剤組成物
JP2008189726A (ja) 2007-02-01 2008-08-21 Kao Corp 洗剤粒子

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Applied Spectroscopy", vol. 47, 1993, MTEC CO., LTD., article "300 Model Photo acoustic Detecto", pages: 1311 - 1316
"FTS-60AI896 Model Infrared Spectrophotometer", BIO-RAD LABORATORIES INC.

Also Published As

Publication number Publication date
US20110086792A1 (en) 2011-04-14
EP2280059A4 (en) 2012-12-05
CN102037116B (zh) 2013-02-27
AU2009250642B2 (en) 2015-02-12
AU2009250642A1 (en) 2009-11-26
CN102037116A (zh) 2011-04-27
TWI468508B (zh) 2015-01-11
EP2280059A1 (en) 2011-02-02
JP2009280742A (ja) 2009-12-03
EP2280059B1 (en) 2016-10-19
TW200948952A (en) 2009-12-01
US8455425B2 (en) 2013-06-04
JP5478031B2 (ja) 2014-04-23

Similar Documents

Publication Publication Date Title
TW460575B (en) Detergent particles and method for producing the same
JP5478031B2 (ja) アルカリ剤含有粒子
JP5466359B2 (ja) 洗剤粒子
JP5388860B2 (ja) 洗剤ビルダー顆粒
JP2008063419A (ja) 衣料用中嵩密度粉末洗剤とその製造方法
JP5226953B2 (ja) 洗剤粒子
JP2004143394A (ja) 洗剤粒子
JP5525126B2 (ja) 洗剤粒子
JP5192156B2 (ja) 洗剤組成物の製造方法
EP1953217B1 (en) A cogranule for use in solid detergent compositions
JP3912986B2 (ja) ベース顆粒群及び洗剤粒子群
JP3720632B2 (ja) ベース顆粒群
JP5612808B2 (ja) 洗剤粒子
JP4237532B2 (ja) 界面活性剤担持用顆粒群
JP2005054056A (ja) 界面活性剤担持用顆粒群
JP2011127105A (ja) 界面活性剤担持用顆粒群の製造方法
RU2335534C1 (ru) Способ получения гранулированного синтетического цеолитсодержащего компонента смс
JP5512980B2 (ja) 洗剤粒子
RU2335533C1 (ru) Способ получения гранулированного синтетического цеолитсодержащего компонента смс
JP4667730B2 (ja) 結晶性アルカリ金属珪酸塩の処理方法
JP4384906B2 (ja) 洗浄剤組成物
JP4189208B2 (ja) 界面活性剤担持用粒子群
JP5971753B2 (ja) 洗剤粒子の製造方法
JP2004210927A (ja) 界面活性剤組成物
WO2006016700A1 (ja) 非イオン性界面活性剤含有粒子およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980118766.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09750412

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12994097

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2009750412

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009750412

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009250642

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2009250642

Country of ref document: AU

Date of ref document: 20090309

Kind code of ref document: A