WO2009139536A1 - Procédé de construction d'un pont à butée semi-intégrée utilisant une poutrelle en boîte d'acier - Google Patents

Procédé de construction d'un pont à butée semi-intégrée utilisant une poutrelle en boîte d'acier Download PDF

Info

Publication number
WO2009139536A1
WO2009139536A1 PCT/KR2009/000424 KR2009000424W WO2009139536A1 WO 2009139536 A1 WO2009139536 A1 WO 2009139536A1 KR 2009000424 W KR2009000424 W KR 2009000424W WO 2009139536 A1 WO2009139536 A1 WO 2009139536A1
Authority
WO
WIPO (PCT)
Prior art keywords
bridge
steel box
box girder
slab
section
Prior art date
Application number
PCT/KR2009/000424
Other languages
English (en)
Korean (ko)
Inventor
박영호
김성환
김낙영
이병주
옥창권
이원태
허재훈
Original Assignee
한국도로공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국도로공사 filed Critical 한국도로공사
Priority to JP2011509397A priority Critical patent/JP5113290B2/ja
Priority to CN200980117187.0A priority patent/CN102037185B/zh
Publication of WO2009139536A1 publication Critical patent/WO2009139536A1/fr

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D21/00Methods or apparatus specially adapted for erecting or assembling bridges
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D19/00Structural or constructional details of bridges
    • E01D19/02Piers; Abutments ; Protecting same against drifting ice
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D19/00Structural or constructional details of bridges
    • E01D19/04Bearings; Hinges
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D19/00Structural or constructional details of bridges
    • E01D19/06Arrangement, construction or bridging of expansion joints
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D19/00Structural or constructional details of bridges
    • E01D19/12Grating or flooring for bridges; Fastening railway sleepers or tracks to bridges
    • E01D19/125Grating or flooring for bridges
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D2/00Bridges characterised by the cross-section of their bearing spanning structure
    • E01D2/04Bridges characterised by the cross-section of their bearing spanning structure of the box-girder type
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D2101/00Material constitution of bridges
    • E01D2101/20Concrete, stone or stone-like material
    • E01D2101/24Concrete
    • E01D2101/26Concrete reinforced
    • E01D2101/268Composite concrete-metal

Definitions

  • the present invention relates to a method for constructing bridges, and more particularly, to a method for constructing a semi-integrated alternating bridge using a steel box girder as a mold without using an expansion joint.
  • Joint bridges are equipped with expansion joints in the structure to control and eliminate the amount of expansion of the superstructure caused by seasonal temperature changes.
  • the bridge without expansion joints is called a jointless bridge and is classified as an integral abutment bridge and a semi-integral abutment bridge from the perspective of the shift.
  • the superstructure and the dwarf shift are integrally connected to absorb the loads transmitted from the superstructure with the flexibility of the shift foundation piles, whereas the semi-integrated bridge bridge is a flexible bridge installed between the superstructure and the shift. Flexibility Bearings absorb and minimize the load transferred to the alternating part.
  • the semi-integrated bridge bridge is a telescopic control device that is installed in the form of a joint between the connecting slab and the main pavement part, rather than the expansion joint of the general bridge (joint bridge). (Cycle Control Joint), alternating size, backfill stiffness, and bridge that is controlled by the connection between pile and girder.
  • the shift part of the semi-integrated shift bridge is a concept that guides the fixed foundation role like the shift of the general joint bridge, but the integral shift bridge leads the gap between the fixed and the hinge base.
  • the alternating superstructure is embedded in the end diaphragm of the alternating end so that the girder is sufficiently resistant to resist the restraining force (manual earth pressure) of the backfill material caused by the temperature change.
  • the semi-integrated bridge is a bridge type with no expansion joints installed on the bridge, there is no need for maintenance and replacement due to breakage of the expansion joints in common.
  • the economy is also excellent considering the cost.
  • it is a bridge type that ensures the continuity of the road and the convenience of the highway user by ensuring the continuity of the road as well as the effect of noise and impact generated when passing through the new joint of the vehicle.
  • the present invention is to provide a construction method of a semi-integrated bridge bridge, which is a new concept bridge type developed to supplement the application constraints while maximizing the advantages of the integral bridge bridge in which the shift and the superstructure are completely integrated.
  • the object of the present invention is to provide a method of constructing a semi-integrated shift bridge using a steel box girder.
  • the present invention is the first step of carrying out the excavation work of the alternating part and constructing the pile, then pouring the lean concrete of the alternating foundation and reinforcing the pile head, and constructing the expansion foundation.
  • install the bridge support mount the steel box girder transported to the site by the factory, and perform the joint of the steel box girder and the cross beam, and then connect the steel box girder and the end bulkhead.
  • the earth pressure reduction section, the buffer section, the general earthwork section are divided from the alternating back surface to the alternating fill section, and the earth pressure reduction section has no cohesive force, the internal friction angle is small, and the particles are loosely filled using aggregate which is relatively round
  • the buffer section is characterized by vibration-free compaction using compaction equipment.
  • a nonwoven fabric is installed between the buffer section and the earth pressure reduction section to prevent the soil from entering the earth pressure reduction section by preventing the sedimentation of the buffer section.
  • the sub-filling section is divided into two stages, constructing the auxiliary base section inclined in consideration of the angle of repose from the rear chest wall to the alternating fill section, and subsequently constructing the fill section section, and shifting the rear fill section from the rear end of the alternate end partition wall
  • the construction is divided into earth pressure reduction section and general earth pressure section, but the earth pressure reduction section has no adhesive force, the internal friction angle is small, and it fills loosely inclined using relatively round aggregate, and non-woven fabric is installed between general embankment section and earth pressure reduction section.
  • the non-woven fabric 610 may be applied to a method of fixing with a deformed rebar or nail,
  • the polyethylene sheet and the perforated pipe are installed in the left and right sides of the supporting slab in consideration of the lateral gradient, and the optional layer is installed around the perforated pipe, and then the polyethylene sheet is installed on the selected layer. It is characterized in that the construction of the slab and the buffer slab.
  • the steel box girders extend the stiffeners installed in the longitudinal direction to reinforce the steel box girder to protrude from the end of the steel box girder to increase the coupling with the alternating end, and the fixing plate is bonded to the end of the protruding stiffeners One is preferable.
  • end top plate of the steel box girder may be formed with an inlet portion cut out of a plurality of through-holes or end top plate for the flow of concrete and vertical reinforcement.
  • the semi-integral alternating bridge according to the present invention is advantageous for securing the basic stability by reducing the alternating cross section and reducing the seismic force in the longitudinal direction by mutual action with the backfill material, which is advantageous for earthquake resistance, and the end bulkhead structure is advantageous for distributing the live load of the alternate part. .
  • the initial construction cost is reduced due to the reduction of the cross section of the bridge and the installation of expansion joints, and the problems of leakage of the expansion joints of the bridge can be prevented beforehand.
  • the durability is increased, and the repair and replacement of the expansion joints by damage of the expansion joints can be prevented. Maintenance cost is reduced and economical.
  • the road pavement continuity is reduced noise and vibration has the effect of improving the running of the vehicle.
  • 1 and 2 is a flow chart showing the construction sequence of the semi-integral shift bridge according to the present invention.
  • Figure 3 is a cross-sectional view schematically showing a half integral shift bridge constructed in accordance with the present invention
  • FIG. 14 is an exploded perspective view showing the end structure of the steel box girder according to an embodiment of the present invention.
  • 15 is an exploded perspective view showing the end structure of the steel box girder according to another embodiment of the present invention.
  • Figure 16 is an exploded perspective view showing the end structure of the steel box girder according to another embodiment of the present invention.
  • FIG. 17 is a perspective view showing a state in which a partition plate is installed between a girder and a girder.
  • 1 and 2 is a flow chart showing the construction sequence of the semi-integral shift bridge according to the present invention.
  • the construction method of the semi-integral shift bridge according to the present invention is largely divided into the fill section and foundation pile purchase step (first step), shift sphere and wing wall construction step (second step), steel box girder mounting step (first Step 3), end bulkhead and girder joint surface processing step (4 step), bridge deck and end bulkhead construction step (5th step), backfill part construction step (6th step), supporting slab and connecting slab construction step (1st step) Step 7), and the expansion control device installation step (eighth step).
  • FIG 3 is a cross-sectional view schematically showing a half integral shift bridge constructed in accordance with the present invention
  • Figures 4 to 13 shows the construction method of the half integral shift bridge in accordance with the present invention in sequence, each step with reference to the drawings Looking in more detail as follows.
  • the first step is to fill the shift portion (110, shift fill portion), construct the pile 120, and then cast the lean concrete 130 of the shift foundation and reinforce the pile head 140.
  • the pile For the construction of the pile, select the appropriate method considering the site situation or economic feasibility among the well-known construction methods.In the case of the pile construction, if the pile driving noise is affected, excavate the pile with a good support layer and insert the pile. Soil-injected precasted piles (SIP) may be applied to the final pre-boring blow pile or final indentation or beating.
  • SIP soil-injected precasted piles
  • the construction of the alternating sphere and the wing wall foundation (expanded foundation, 210) and the construction of the alternating sphere and the wing wall concrete are carried out to install the bridge support 230 after the construction of the shift 220 is completed.
  • the steel pipe 240 for penetrating the wing wall of the perforated pipe should be installed.
  • the bridge support 230 is constructed as a suitable bridge support in consideration of the construction conditions, economical efficiency, structural constraints of the known bridge support.
  • the alternating sphere and wing wall foundations minimize cross section to reduce the working earth pressure.
  • the steel box girders are manufactured and transported to the site, the steel box girders and the cross beams are joined together, and the steel bars girder and the end reinforcement for the integration of the end bulkhead concrete are reinforced.
  • Steel box girders are factory manufactured according to the overall construction schedule after the shift foundation and shift construction.
  • a fourth step is to install the expansion joint filler 520 on the joint surface of the end partition wall and the wing wall. That is, the end partition 320 and the wing wall 510 must be separated from each other in order to freely displace the upper structure and the lower structure due to the structural behavior of the semi-integrated shift bridge, so that space is secured at the joint surface. do. And this joint surface is filled with the expansion joint filling material 520 for the purpose of stretching and waterproofing.
  • the expansion joint filler 520 may be selectively used from a known filler, for example, a preformed expansion joint filler may be used.
  • the fifth step reinforces the end partition reinforcement at the same time as the bridge bottom plate reinforcement and pours the bridge bottom plate 330 and the end partition 320 integrally.
  • one or more reinforcing bars may be connected by coupling or welding.
  • the end partition wall 320 formed as described above resists alternating backfill earth pressure due to temperature change, distributes live load transmitted to the alternating portion, which is a structure integrated with the superstructure and the connecting slab, and resists the generated parent moment.
  • the bulkhead between the girder and the girders to support the girders in the transverse direction to increase the rigidity, to prevent the inflow of soil into the bridge support, and to facilitate the installation of end bulkhead concrete or to increase the coupling of the end bulkheads Plate 350 may be installed (see FIGS. 9 and 17).
  • the partition plate 350 may be configured by bolting an H-beam steel 352 welded to a side of an adjacent girder using a cover plate 354, as shown in FIG. Stiffeners or high tension bolts 356 may be attached to increase the combined force.
  • the present invention extends so as to protrude to the end of the steel box girder 310 longitudinally installed stiffener 311 in the longitudinal direction to reinforce the end of the steel box girder 310, the fixing of the end of the protruding stiffener 311 After joining the plate 312, the transverse connecting reinforcing bars 313 and vertical reinforcing bars 314 are installed at the ends of the stiffeners 311 and the steel box girder 310, and the end partition concrete is poured by placing the end partition concrete.
  • the girder is integrated.
  • the stiffener 311 may extend only the stiffener 311 located at the top of the steel box girder as shown in FIG. 14, and may extend only the stiffener 311 located at the top of the steel box girder as shown in FIG. 15. As shown in FIG. 16, all of the stiffeners 311 located above and below the steel box girder may be extended.
  • a plurality of through holes 310a and 310b are formed in both side plates of the end portions of the stiffener 311 and the steel box girder 310 to reinforce the connecting reinforcing bars 313, and the fixing plate 312 is a stiffener 311. Are joined perpendicular to the ends.
  • a plurality of through holes 310c for the flow of concrete and the reinforcement of the vertical reinforcing bars 314 are formed in the end upper plate of the steel box girder 310, and a portion is cut to facilitate the end partition concrete pouring.
  • a cut inlet 315 is formed.
  • the stiffener installed to reinforce the steel box girder as a connecting element integrating the end bulkhead and the steel box girder can facilitate the connection of the end bulkhead and the steel box girder and to the end of the stiffener By joining the fixing plate, it is possible to effectively resist without reinforcing the additional reinforcing bar resisting the parent moment generated in the connection portion between the end partition and the steel box girder.
  • the sixth step is to backfill the back of the shift.
  • the rear fill part of the alternating back is divided into earth pressure reducing section (A), buffer section (B), and general soil filling section (C) from the alternating back surface to the alternating fill section, and the earth pressure reducing section (A) minimizes the restraint on the horizontal movement of the superstructure.
  • the internal friction angle is small, and the particles are loosely filled by using more than 25mm of steel gravel or round aggregate.
  • the buffer section (B) performs vibration free compaction using compaction equipment.
  • a nonwoven fabric 610 is installed between the buffer section B and the earth pressure reducing layer A to prevent the soil from entering the buffer pressure layer from entering the earth pressure reducing layer, thereby preventing the increase in density or the earth pressure.
  • the back filling method may be applied to the method shown in Figure 10 (b).
  • This method divides the backfill into two stages and constructs the subbase section (D) with the subbase or useful soil inclined in consideration of the angle of repose from the rear of the alternating chest wall to the alternating fill site, followed by the construction of the fill section (E).
  • the construction is divided into earth pressure reducing section (A) and general soil filling section (C) from the back side, but the earth pressure reducing section has no cohesive force, small internal friction angle, and loosely inclined by using more than 25mm of rounded aggregate or aggregate.
  • the non-woven fabric 610 is installed between the general soil section and the earth pressure reduction section to prevent the soil sediment of the general soil section into the earth pressure reduction section to prevent the increase in earth pressure. At this time, the nonwoven fabric 610 is fixed with a deformed rebar or nail 615.
  • the first supporting slab 710 and the second supporting slab 780 are constructed, and then the connecting slab 750, the buffering slab 760, and the main packing unit 770 are sequentially installed. .
  • the polyethylene sheet 720 and the perforated pipe 730 are installed in the left and right sides of the first support slab 710 in consideration of the horizontal gradient.
  • the selective layer 740 is constructed around the polyethylene layer 720 on the upper surface of the selective layer 740.
  • the hole pipe 730 is installed for the drainage of the infiltration water toward the buffer slab 760 and the connecting slab 750, the polyethylene sheet 720 installed on the lower surface of the connecting slab 750 is transferred to the connecting slab 750. This is to ensure that the expansion joint is smoothly generated.
  • the perforated pipes installed on the left and right sides of the first support slab 710 are determined in consideration of the road superelevation slope, but applies a single slope.
  • the connecting slab 750 serves to prevent the alternating backfill subsidence due to the live load and to transfer the expansion and contraction of the upper structure to the expansion and contraction control device
  • the first support slab 710 is the connection slab 750 and the buffer slab Support 760 and suppress the generation of the parent cement of the end bulkhead that may occur due to the uneven settlement of the connecting slab (750).
  • the second support slab 780 is formed at the lower portion of the portion where the main packaging part 770 and the buffer slab 760 are connected due to the step between the main packaging part 770 and the buffer slab 760. Install to reduce noise and breakage of buffer slab end.
  • the expansion control device 810 is installed between the connecting slab 750 and the cushioning slab 760, and finally, the bridge is paved with asphalt or latex modified concrete (LMC).
  • LMC asphalt or latex modified concrete
  • the present invention it is advantageous to secure the basic stability by reducing the alternating cross-section, and to reduce the seismic force in the longitudinal direction by mutual action with the backfill material. It is a very useful invention that has the effect of reducing the management cost and improving the running performance of the vehicle by reducing the noise and vibration due to the continuous road pavement.

Abstract

La présente invention porte sur un procédé de construction d'un pont à butée semi-intégrée, qui constitue une forme de pont mettant en œuvre un nouveau concept développé pour profiter autant que possible des avantages des ponts à butée intégrée dans lesquels les butées et la superstructure sont intégrées, et pour compenser en même temps des conditions d'utilisation restrictives ; et elle porte en particulier sur un procédé de construction d'un pont à butée semi-intégrée utilisant une poutrelle en boîte d'acier. La présente invention porte sur un procédé de construction d'un pont à butée semi-intégrée utilisant une poutrelle en boîte d'acier, caractérisé en ce qu'il inclut : une première étape dans laquelle un travail d'accostage de section de butée est effectué et des piles sont construites, puis du béton maigre pour les fondations de butée est coulé et un renforcement de tête de pile est effectué ; une deuxième étape dans laquelle une fondation d'étalement est construite et la construction des parois de tige de butée et des parois d'aile est achevée, après quoi des portées de pont sont installées ; une troisième étape dans laquelle une poutrelle en boîte d'acier, qui a été fabriquée en usine, est transportée sur le site et mise en place, et la réunion de la poutrelle en boîte d'acier et d'entretoises est effectuée sur le site, puis des barres de renfort de liaison sont mises en place pour relier la poutrelle en boîte d'acier et les parois de séparation d'extrémité ; une quatrième étape dans laquelle une charge de joint de dilatation est disposée dans les surfaces de jonction des parois de séparation d'extrémité et des parois d'aile pour séparer celles-ci ; une cinquième étape dans laquelle les barres de renfort des parois de séparation d'extrémité sont mises en place en même temps que les barres de renfort du panneau de tablier de pont, et le panneau de tablier de pont et les parois de séparation d'extrémité sont coulés d'un seul tenant, une sixième étape dans laquelle un remplissage à l'extérieur est effectué sur les surfaces arrière des butées ; une septième étape, dans laquelle, après que le remplissage ultérieur a été achevé, des première et seconde dalles de support sont construites, après quoi la première dalle de support comporte, construite sur sa surface supérieure, une dalle de liaison qui est couplée au panneau de tablier de pont et une dalle d'absorption de choc qui est reliée à une section de pavage de voie de circulation principale, et la seconde dalle de support comporte, construite sur sa surface supérieure, une dalle d'absorption de choc et une section de surfaçage de voie de circulation principale ; et une huitième étape, dans laquelle un dispositif de régulation de dilatation est installé entre la dalle de liaison et la dalle d'absorption de choc.
PCT/KR2009/000424 2008-05-13 2009-01-29 Procédé de construction d'un pont à butée semi-intégrée utilisant une poutrelle en boîte d'acier WO2009139536A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011509397A JP5113290B2 (ja) 2008-05-13 2009-01-29 鋼箱桁を用いたセミインテグラルアバット橋の施工方法
CN200980117187.0A CN102037185B (zh) 2008-05-13 2009-01-29 利用钢箱梁的半整体式桥台桥梁的施工方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020080044205A KR100972884B1 (ko) 2008-05-13 2008-05-13 강박스거더를 이용한 반일체식 교대 교량의 시공방법
KR10-2008-0044205 2008-05-13

Publications (1)

Publication Number Publication Date
WO2009139536A1 true WO2009139536A1 (fr) 2009-11-19

Family

ID=41318871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/000424 WO2009139536A1 (fr) 2008-05-13 2009-01-29 Procédé de construction d'un pont à butée semi-intégrée utilisant une poutrelle en boîte d'acier

Country Status (4)

Country Link
JP (1) JP5113290B2 (fr)
KR (1) KR100972884B1 (fr)
CN (1) CN102037185B (fr)
WO (1) WO2009139536A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102251482A (zh) * 2011-05-10 2011-11-23 吴江市明港道桥工程有限公司 桥梁搭板与水稳基层接合部位的施工方法
CN103485286A (zh) * 2013-10-08 2014-01-01 中铁二局股份有限公司 一种箱梁预制节段箱室加固方法
CN104294769A (zh) * 2014-09-16 2015-01-21 杭州江润科技有限公司 一种补桩与增大台帽组合加固已建桥台结构及施工方法
WO2015055876A1 (fr) * 2013-10-18 2015-04-23 Ingeturarte, S.L. Dalle de transition entre la culée et le tablier d'un pont avec des joints d'expansion et de contraction à longue durée de vie, et procédés d'absorption des mouvements d'expansion et de contraction du tablier d'un pont
CN104746436A (zh) * 2015-04-10 2015-07-01 福建省交通规划设计院 一种整体式桥台桥梁的简化设计施工方法
CN117436183A (zh) * 2023-12-21 2024-01-23 湖南大学 深厚软土区桥梁、市政道路与邻近服务区同步施工方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100984758B1 (ko) * 2010-03-11 2010-10-01 주식회사 승화이엔씨 흉벽이 구비된 반일체식 교대 교량
CN101962933B (zh) * 2010-08-25 2012-05-23 江苏省交通科学研究院股份有限公司 桥梁的可拼接翼缘板
KR101034013B1 (ko) 2011-01-06 2011-05-09 (주)지승컨설턴트 단부 격벽 일체형 피에스씨 거더를 이용한 반일체식 교대 교량의 급속 시공방법
KR101452178B1 (ko) 2014-05-20 2014-10-22 주식회사 에이스이엔씨 프리캐스트 교대흉벽을 이용한 반일체식 교량 및 그 시공방법
KR101613784B1 (ko) 2014-06-10 2016-04-20 (주)지승컨설턴트 조인트 노후 교량을 무조인트 교량으로 시공하는 방법
CN105113412A (zh) * 2015-08-26 2015-12-02 中国十七冶集团有限公司 一种预应力夹板台背回填加固的施工方法
CN108086126A (zh) * 2017-12-19 2018-05-29 厦门市市政建设开发有限公司 整体式自行车专用桥梁结构及其施工方法
CN108265620A (zh) * 2018-04-10 2018-07-10 深圳市市政设计研究院有限公司 无伸缩缝桥梁的整体式桥台施工方法及整体式桥台
KR102008516B1 (ko) * 2018-11-16 2019-08-08 화성산업주식회사 Crp 거더
CN110847006A (zh) * 2019-12-04 2020-02-28 东南大学 全无缝路桥连接结构
CN114319113B (zh) * 2021-12-14 2024-03-22 中铁建大桥工程局集团靖江重工有限公司 一种钢箱梁分体式横隔板横向对拼可调标高及对位的方法
KR102583155B1 (ko) * 2022-10-26 2023-09-26 홍석희 2주패널 복합형 연속 라아멘교 및 그 시공방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100279124B1 (ko) * 1998-12-30 2001-01-15 유성용 일체식 교대 교량의 변위 허용을 위한 채움 조인트 시공방법
KR20020075136A (ko) * 2001-03-23 2002-10-04 (주)석탑엔지니어링 고정단을 갖는 접속슬래브 및 그의 시공방법
KR100743832B1 (ko) * 2006-05-11 2007-07-30 (주)씨팁스이엔지 프리플렉스 거더와 일체식교대를 이용한 교량의 시공방법

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1548655A (zh) * 2003-04-21 2004-11-24 朴大源 桥梁伸缩缝装置
JP2005016196A (ja) * 2003-06-27 2005-01-20 Yasuhiko Okochi 橋台背面盛土工法
KR100585987B1 (ko) * 2003-09-24 2006-06-07 주식회사 용마엔지니어링 반 일체식 교대 교량의 시공방법
JP4020918B2 (ja) * 2005-02-24 2007-12-12 朝日エンヂニヤリング株式会社 桁橋の架橋構造
CN1851139A (zh) * 2006-05-19 2006-10-25 成都亿通达实业发展有限公司 桥梁支座修复方法
CN100513696C (zh) * 2007-10-16 2009-07-15 中铁大桥局集团第四工程有限公司 墩身帽开裂体外予应力加固方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100279124B1 (ko) * 1998-12-30 2001-01-15 유성용 일체식 교대 교량의 변위 허용을 위한 채움 조인트 시공방법
KR20020075136A (ko) * 2001-03-23 2002-10-04 (주)석탑엔지니어링 고정단을 갖는 접속슬래브 및 그의 시공방법
KR100743832B1 (ko) * 2006-05-11 2007-07-30 (주)씨팁스이엔지 프리플렉스 거더와 일체식교대를 이용한 교량의 시공방법

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102251482A (zh) * 2011-05-10 2011-11-23 吴江市明港道桥工程有限公司 桥梁搭板与水稳基层接合部位的施工方法
CN103485286A (zh) * 2013-10-08 2014-01-01 中铁二局股份有限公司 一种箱梁预制节段箱室加固方法
WO2015055876A1 (fr) * 2013-10-18 2015-04-23 Ingeturarte, S.L. Dalle de transition entre la culée et le tablier d'un pont avec des joints d'expansion et de contraction à longue durée de vie, et procédés d'absorption des mouvements d'expansion et de contraction du tablier d'un pont
CN104294769A (zh) * 2014-09-16 2015-01-21 杭州江润科技有限公司 一种补桩与增大台帽组合加固已建桥台结构及施工方法
CN104294769B (zh) * 2014-09-16 2015-12-30 杭州江润科技有限公司 一种补桩与增大台帽组合加固已建桥台结构的施工方法
CN104746436A (zh) * 2015-04-10 2015-07-01 福建省交通规划设计院 一种整体式桥台桥梁的简化设计施工方法
CN117436183A (zh) * 2023-12-21 2024-01-23 湖南大学 深厚软土区桥梁、市政道路与邻近服务区同步施工方法
CN117436183B (zh) * 2023-12-21 2024-03-05 湖南大学 深厚软土区桥梁、市政道路与邻近服务区同步施工方法

Also Published As

Publication number Publication date
CN102037185B (zh) 2013-02-13
JP2011520054A (ja) 2011-07-14
KR20090118433A (ko) 2009-11-18
CN102037185A (zh) 2011-04-27
JP5113290B2 (ja) 2013-01-09
KR100972884B1 (ko) 2010-07-28

Similar Documents

Publication Publication Date Title
WO2009139536A1 (fr) Procédé de construction d'un pont à butée semi-intégrée utilisant une poutrelle en boîte d'acier
KR100743832B1 (ko) 프리플렉스 거더와 일체식교대를 이용한 교량의 시공방법
KR101123842B1 (ko) 토목구조물과 접속슬래브를 강결 연결하고 메나지힌지장치를 설치한 게르버힌지구조와 이의 시공방법
KR101216511B1 (ko) 일체식 교대 교량의 교대 시공방법
KR101896403B1 (ko) 일체식 교량구조물 및 그 시공방법
KR20090130637A (ko) 강성 구조체의 뒷채움 보강구조 및 그 시공방법
KR20060096810A (ko) 접속슬래브 연결 및 말뚝과 거더가 강결일체화되고 하중상쇄 및 캠버를 자동관리하는 씽크로라이즈 동바리시스템을설치한 무받침, 무신축이음 및 무교대 다가구 슬래브 교량및 이의 설치방법
KR101300296B1 (ko) 스템형상을 갖는 격벽교대 일체형 피에스씨 거더를 이용한 반일체식 교대 교량의 급속 시공방법
KR101082765B1 (ko) 교대역할 강관말뚝과 프리캐스트거더 일체화교량 시공방법
KR102369701B1 (ko) 변형흡수 및 침하저감이 가능한 구조물 접속부 및 그 시공방법
KR100312066B1 (ko) 일체식교대교량의시공방법
JP2008223291A (ja) 護岸一体ラーメン橋梁及びその施工方法
KR101198286B1 (ko) 지하외벽의 연속시공을 위한 역타지지공법용 논웨일 스트러트 시스템 및 이에 의한 지하구조물의 역타 시공방법
KR100998414B1 (ko) 교대역할 강관말뚝과 프리캐스트거더 일체화교량 시공방법
CN211171579U (zh) 一种带分离式搭板的无缝抗震桥台
KR100908904B1 (ko) 매립형 프리플랙스 합성아치 복개구조물 및 이 시공방법
KR100245048B1 (ko) 보강토 구조물
KR102244029B1 (ko) 무교대 라멘교 구조물 및 그 시공방법
KR100555433B1 (ko) 콘크리트 충진 섬유강화 복합소재 말뚝을 이용한 무조인트일체식 교대구조
KR101973657B1 (ko) 교대 측방유동 방지용 역아치 구조 및 이를 이용한 개보수공법
KR100492373B1 (ko) 무받침, 무신축이음 및 무교대 교량 구조체
KR101341147B1 (ko) 도로-교량간 포장 일체화 구조체 및 그 시공방법
KR102377895B1 (ko) 모멘트 저감을 위한 힌지형 교대접속부 및 그 시공방법
KR102562385B1 (ko) 교량상부구조 변형흡수가 가능한 돌출형 교량접속부 및 그 시공방법
Habel et al. Seismic upgrading of the mission bridge

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980117187.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09746715

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011509397

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09746715

Country of ref document: EP

Kind code of ref document: A1