WO2009139536A1 - Construction method for a semi-integral abutment bridge using a steel box girder - Google Patents

Construction method for a semi-integral abutment bridge using a steel box girder Download PDF

Info

Publication number
WO2009139536A1
WO2009139536A1 PCT/KR2009/000424 KR2009000424W WO2009139536A1 WO 2009139536 A1 WO2009139536 A1 WO 2009139536A1 KR 2009000424 W KR2009000424 W KR 2009000424W WO 2009139536 A1 WO2009139536 A1 WO 2009139536A1
Authority
WO
WIPO (PCT)
Prior art keywords
bridge
steel box
box girder
slab
section
Prior art date
Application number
PCT/KR2009/000424
Other languages
French (fr)
Korean (ko)
Inventor
박영호
김성환
김낙영
이병주
옥창권
이원태
허재훈
Original Assignee
한국도로공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국도로공사 filed Critical 한국도로공사
Priority to CN200980117187.0A priority Critical patent/CN102037185B/en
Priority to JP2011509397A priority patent/JP5113290B2/en
Publication of WO2009139536A1 publication Critical patent/WO2009139536A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D21/00Methods or apparatus specially adapted for erecting or assembling bridges
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D19/00Structural or constructional details of bridges
    • E01D19/02Piers; Abutments ; Protecting same against drifting ice
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D19/00Structural or constructional details of bridges
    • E01D19/04Bearings; Hinges
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D19/00Structural or constructional details of bridges
    • E01D19/06Arrangement, construction or bridging of expansion joints
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D19/00Structural or constructional details of bridges
    • E01D19/12Grating or flooring for bridges; Fastening railway sleepers or tracks to bridges
    • E01D19/125Grating or flooring for bridges
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D2/00Bridges characterised by the cross-section of their bearing spanning structure
    • E01D2/04Bridges characterised by the cross-section of their bearing spanning structure of the box-girder type
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D2101/00Material constitution of bridges
    • E01D2101/20Concrete, stone or stone-like material
    • E01D2101/24Concrete
    • E01D2101/26Concrete reinforced
    • E01D2101/268Composite concrete-metal

Abstract

The present invention relates to a construction method for a semi-integral abutment bridge which constitutes a form of bridge embodying a new concept developed in order to bring out as much as possible the advantages of integral abutment bridges in which the abutments and superstructure are integrated and at the same time to compensate for restrictive conditions in use; and in particular it relates to a construction method for a semi-integral abutment bridge using a steel box girder. The present invention provides a construction method for a semi-integral abutment bridge using a steel box girder, characterised in that it comprises: a first stage in which abutment-section banking work is carried out and piles are constructed and then lean concrete for the abutment foundations is cast and pile-head reinforcement is effected; a second stage in which a spread foundation is constructed and the construction of the abutment stem walls and wing walls is completed and then bridge bearings are installed; a third stage in which a steel box girder, which has been manufactured in a factory and transported to the site, is put in place and joining of the steel box girder and crossbeams is carried out on site and then connecting reinforcing bars are put in place for connecting the steel box girder and end partition walls; a fourth stage in which an expansion joint filler is provided on the joining surfaces of the end partition walls and the wing walls in order to separate them; a fifth stage in which the reinforcing bars of the end partition walls are put in place at the same time as the reinforcing bars of the bridge deck panel, and the bridge deck panel and the end partition walls are integrally cast; a sixth stage in which back filling is carried out on the back surfaces of the abutments; a seventh stage in which, after the back filling has been completed, a first and a second support slab are constructed and then the first support slab has constructed on the upper surface thereof a connecting slab which is coupled with the bridge deck panel and a shock-absorbing slab which connects with a main-lane paving section, and the second support slab has constructed on the upper surface thereof a shock-absorbing slab and a main-lane surfacing section; and an eighth stage in which an expansion-regulating device is installed between the connecting slab and the shock-absorbing slab.

Description

강박스거더를 이용한 반일체식 교대 교량의 시공방법Construction Method of Semi-Integrated Shift Bridge Using Steel Box Girder
본 발명은 교량의 시공방법에 관한 것으로, 특히 신축이음장치(Expansion Joint)를 사용하지 않고 주형으로 강박스거더를 이용한 반일체식 교대 교량의 시공방법에 관한 것이다.The present invention relates to a method for constructing bridges, and more particularly, to a method for constructing a semi-integrated alternating bridge using a steel box girder as a mold without using an expansion joint.
조인트 교량은 계절적인 온도변화에 의해 발생하는 상부구조물의 신축량을 조절 및 해소하기 위하여 구조물 내에 신축이음장치를 설치한다. 이 신축이음장치가 없는 교량을 무조인트 교량(Jointless Bridge)이라 하며 교대 관점에서 일체식 교대 교량(Integral Abutment Bridge)과 반일체식 교대 교량(Semi-Integral Abutment Bridge)으로 분류한다. Joint bridges are equipped with expansion joints in the structure to control and eliminate the amount of expansion of the superstructure caused by seasonal temperature changes. The bridge without expansion joints is called a jointless bridge and is classified as an integral abutment bridge and a semi-integral abutment bridge from the perspective of the shift.
일체식 교대 교량의 경우에는 상부구조와 난쟁이 교대가 일체로 연결되어 상부구조로부터 전달되는 하중을 교대 기초부 말뚝의 유연성으로 흡수하는 반면에 반일체식 교대 교량은 상부구조와 교대 사이에 설치되는 유연한 교량받침(Flexibility Bearing)으로 교대부로 전달되는 하중을 흡수 및 최소화한다.In the case of integral shift bridges, the superstructure and the dwarf shift are integrally connected to absorb the loads transmitted from the superstructure with the flexibility of the shift foundation piles, whereas the semi-integrated bridge bridge is a flexible bridge installed between the superstructure and the shift. Flexibility Bearings absorb and minimize the load transferred to the alternating part.
다시 말해서 반일체식 교대 교량은 일체식 교량 교량과 마찬가지로 온도변화에 의한 상부구조의 신축을 일반교량(조인트 교량)의 신축이음장치가 아닌 접속 슬래브와 본선 포장부 사이에 줄눈 형식으로 설치되는 신축조절장치(Cycle Control Joint), 교대 크기, 뒷채움재료 강성 그리고 말뚝과 거더의 연결상태로 조절하는 교량을 말한다.In other words, the semi-integrated bridge bridge is a telescopic control device that is installed in the form of a joint between the connecting slab and the main pavement part, rather than the expansion joint of the general bridge (joint bridge). (Cycle Control Joint), alternating size, backfill stiffness, and bridge that is controlled by the connection between pile and girder.
이로 인해 반일체식 교대 교량의 교대부는 일반 조인트 교량의 교대와 같이 고정기초 역할로 유도하는 개념이지만 일체식 교대 교량은 고정과 힌지기초의 사이로 유도하는 개념이다.For this reason, the shift part of the semi-integrated shift bridge is a concept that guides the fixed foundation role like the shift of the general joint bridge, but the integral shift bridge leads the gap between the fixed and the hinge base.
교대부 상부구조는 온도변화에 의해 발생하는 뒷채움 재료의 구속력(수동토압)에 저항하기 위해서 거더가 충분히 저항하도록 교대단부의 단부격벽(End Diaphram)에 매입한다.The alternating superstructure is embedded in the end diaphragm of the alternating end so that the girder is sufficiently resistant to resist the restraining force (manual earth pressure) of the backfill material caused by the temperature change.
따라서 단부격벽의 응력을 최소화하기 위하여 반일체식 교대 교량의 설계시 계절적인 온도변화로 발생하는 상부구조의 신축변위로 인한 수동토압의 발생을 최소화하는 것이 중요하다.Therefore, in order to minimize the stress of the end bulkhead, it is important to minimize the generation of passive earth pressure due to the expansion and contraction of the superstructure caused by seasonal temperature change in the design of the semi-integral shift bridge.
반일체식 교대 교량은 교대부 신축이음장치가 설치되지 않은 교량형식이기 때문에 공용중 신축이음장치의 파손으로 인한 유지관리 및 교체의 필요성이 없으므로 일반 조인트 교량형식에 비해 유지관리성이 뛰어나며, 장기적인 생애주기비용 측면을 고려한 경제성도 우수하다. 또한 차량의 신축이음부 통과시 발생하는 소음 및 충격의 영향이 없을 뿐만 아니라 도로의 연속성을 확보하여 통과차량의 주행성 및 고속도로 사용자의 편리성을 최대로 보장하는 교량형식이다. Since the semi-integrated bridge is a bridge type with no expansion joints installed on the bridge, there is no need for maintenance and replacement due to breakage of the expansion joints in common. The economy is also excellent considering the cost. In addition, it is a bridge type that ensures the continuity of the road and the convenience of the highway user by ensuring the continuity of the road as well as the effect of noise and impact generated when passing through the new joint of the vehicle.
본 발명은 교대와 상부구조가 완전히 일체화되는 일체식 교대 교량의 장점을 최대한 살리면서 적용상의 제한조건을 보완하기 위해 개발된 새로운 개념의 교량형식인 반일체식 교대 교량의 시공방법을 제공하는 것을 과제로 하며, 특히 강박스거더를 이용한 반일체식 교대 교량의 시공방법을 제공하는 것을 과제로 한다.The present invention is to provide a construction method of a semi-integrated bridge bridge, which is a new concept bridge type developed to supplement the application constraints while maximizing the advantages of the integral bridge bridge in which the shift and the superstructure are completely integrated. In particular, the object of the present invention is to provide a method of constructing a semi-integrated shift bridge using a steel box girder.
상기한 목적을 달성하기 위해 본 발명은 교대부의 성토 작업을 실시하고 말뚝을 시공한 다음 교대 기초의 린콘크리트(lean concrete)를 타설하고 말뚝머리 보강을 실시하는 제1단계와, 확대기초를 시공하고 교대 흉벽 및 날개벽 시공을 완료한 다음 교량받침을 설치하는 제2단계와, 공장제작하여 현장으로 운반된 강박스거더를 거치시키고 강박스거더와 가로보의 현장이음을 실시한 다음 강박스거더와 단부격벽 연결을 위한 연결철근을 배근하는 제3단계와, 단부격벽과 날개벽이 분리되도록 그들의 접합면에 신축이음채움재를 설치하는 제4단계와, 교량 바닥판 철근과 동시에 단부격벽 철근을 배근하고 교량 바닥판과 단부격벽을 일체로 타설하는 제5단계와, 교대 배면에 뒷채움을 실시하는 제6단계와, 뒷채움이 완료된 후 제1, 2 받침슬래브를 시공한 다음 제1 받침슬래브 상면에 교량 바닥판과 연결되는 접속슬래브와 본선 포장부와 접속되는 완충슬래브를 시공하고 제2 받침슬래브 상면에 완충슬래브와 본선포장부를 시공하는 제7단계와, 접속슬래브와 완충슬래브 사이에 신축조절장치를 설치하고 교면을 포장하는 제8단계를 포함하는 것을 특징으로 하는 강박스거더를 이용한 반일체식 교대 교량의 시공방법을 제공한다.In order to achieve the above object, the present invention is the first step of carrying out the excavation work of the alternating part and constructing the pile, then pouring the lean concrete of the alternating foundation and reinforcing the pile head, and constructing the expansion foundation. After completing the construction of the alternating chest wall and wing wall, install the bridge support, mount the steel box girder transported to the site by the factory, and perform the joint of the steel box girder and the cross beam, and then connect the steel box girder and the end bulkhead. The third step of reinforcing the connecting reinforcing bar and the fourth step of installing the expansion joint material on their joint surface to separate the end bulkhead and the wing wall, and the end bulkhead reinforcing the bridge bottom plate and the bridge bottom plate and The fifth step of integrally placing the end bulkheads, the sixth step of backfilling the alternating rear surface, and the first and second support slabs after the backfill is completed. 1 The seventh step of constructing the connecting slab connected to the bridge bottom plate and the buffer slab connected to the main packing part on the upper surface of the supporting slab and the buffer slab and the main packing part on the upper surface of the second supporting slab, between the connecting slab and the buffer slab. It provides a construction method of a semi-integral shift bridge using a steel box girder, characterized in that it comprises an eighth step of installing the expansion control device and paving the bridge.
여기서, 상기 제6단계는, 교대 배면로부터 교대 성토부를 향해 토압저감구간, 완충구간, 일반성토구간으로 나누며 토압저감구간은 점착력이 없고 내부마찰각이 작으며 입자가 비교적 둥근 골재를 이용하여 느슨하게 채우고, 완충구간은 다짐장비를 이용하여 무진동 다짐을 실시하며, 완충구간과 토압저감구간 사이에는 부직포를 설치하여 완충구간의 토사가 토압저감구간으로 유입되는 것을 막아 토압증가를 막는 것을 특징으로 한다.Here, in the sixth step, the earth pressure reduction section, the buffer section, the general earthwork section are divided from the alternating back surface to the alternating fill section, and the earth pressure reduction section has no cohesive force, the internal friction angle is small, and the particles are loosely filled using aggregate which is relatively round, The buffer section is characterized by vibration-free compaction using compaction equipment. A nonwoven fabric is installed between the buffer section and the earth pressure reduction section to prevent the soil from entering the earth pressure reduction section by preventing the sedimentation of the buffer section.
한편, 상기 제6단계는, 뒷채움부를 2단으로 나누어 교대 흉벽 배면으로부터 교대 성토부를 향해서는 안식각을 고려하여 경사지게 보조기층구간을 시공하고 연이어 성토구간을 시공하며, 교대 단부격벽 배면으로부터 교대 성토를 향해서는 토압저감구간과 일반성토구간으로 나누어 시공하되 토압저감구간은 점착력이 없고 내부마찰각이 작으며 입자가 비교적 둥근 골재를 이용하여 느슨하게 경사지게 채우고, 일반성토구간과 토압저감구간 사이에는 부직포를 설치하여 일반성토구간의 토사가 토압저감구간으로 유입되는 것을 막아 토압 저감을 유도하며, 이때 부직포(610)는 이형철근 또는 못으로 고정하는 방법을 적용할 수도 있다,On the other hand, in the sixth step, the sub-filling section is divided into two stages, constructing the auxiliary base section inclined in consideration of the angle of repose from the rear chest wall to the alternating fill section, and subsequently constructing the fill section section, and shifting the rear fill section from the rear end of the alternate end partition wall The construction is divided into earth pressure reduction section and general earth pressure section, but the earth pressure reduction section has no adhesive force, the internal friction angle is small, and it fills loosely inclined using relatively round aggregate, and non-woven fabric is installed between general embankment section and earth pressure reduction section. Preventing the soil from entering the sediment section into the earth pressure reduction section to induce earth pressure reduction, the non-woven fabric 610 may be applied to a method of fixing with a deformed rebar or nail,
그리고 상기 제7단계는, 받침슬래브를 시공한 후 받침슬래브의 좌우측에 횡구배를 고려하여 폴리에틸렌 쉬트와 유공관을 설치하고 유공관 주위에 선택층을 시공한 다음 선택층 상면에 폴리에틸렌 쉬트를 설치한 후 접속슬래브와 완충슬래브를 시공하는 것을 특징으로 한다.In the seventh step, after installing the supporting slab, the polyethylene sheet and the perforated pipe are installed in the left and right sides of the supporting slab in consideration of the lateral gradient, and the optional layer is installed around the perforated pipe, and then the polyethylene sheet is installed on the selected layer. It is characterized in that the construction of the slab and the buffer slab.
또한 상기 강박스거더는 강박스거더를 보강하기 위해 내부에 길이방향으로 설치된 스티프너를 교대 단부와의 결합도를 높이기 위해 강박스거더의 단부에서 돌출되도록 연장하고 돌출된 스티프너의 끝단에는 정착판을 접합한 것이 바람직하다.In addition, the steel box girders extend the stiffeners installed in the longitudinal direction to reinforce the steel box girder to protrude from the end of the steel box girder to increase the coupling with the alternating end, and the fixing plate is bonded to the end of the protruding stiffeners One is preferable.
또한 상기 강박스거더의 단부 상부판에는 콘크리트의 유동 및 수직철근 배근을 위한 다수개의 관통공 또는 단부 상부판의 일부를 절단해 낸 유입부를 형성할 수 있다.In addition, the end top plate of the steel box girder may be formed with an inlet portion cut out of a plurality of through-holes or end top plate for the flow of concrete and vertical reinforcement.
또한 상기 강박스거더의 단부와 강박스거더의 단부 사이에는 거더를 가로방향으로 지지하면서 강성을 높여주고 교량받침으로 토사가 유입되는 것을 방지함과 아울러 단부격벽 콘크리트 타설을 용이하게 하기 위해 또는 단부격벽의 결합도를 증가시키기 위해 격벽판이 더 설치될 수 있다.In addition, between the end of the steel box girder and the end of the steel box girder to increase the stiffness while supporting the girder in the horizontal direction and to prevent the inflow of soil to the bridge bearing and to facilitate the end partition concrete pouring or end bulkhead In order to increase the degree of coupling of the partition plate may be further installed.
본 발명에 따른 반일체식 교대 교량은 교대 단면의 감소로 기초 안정성 확보에 유리하고 뒷채움재료와의 상호거동으로 종방향 지진력을 감소시켜 내진에 유리한 구조이며 단부격벽 일체구조로 교대부 활하중 분배에 유리하다. The semi-integral alternating bridge according to the present invention is advantageous for securing the basic stability by reducing the alternating cross section and reducing the seismic force in the longitudinal direction by mutual action with the backfill material, which is advantageous for earthquake resistance, and the end bulkhead structure is advantageous for distributing the live load of the alternate part. .
또한 교대 단면 축소 및 신축이음장치 미설치로 초기공사비가 감소하고 교량의 신축이음부 누수에 대한 문제점 발생을 미연에 방지할 수 있어 내구성이 증가되며 신축이음장치 미설치로 신축이음부 파손에 의한 보수 및 교체에 대한 유지관리비가 절감되어 경제적이다. In addition, the initial construction cost is reduced due to the reduction of the cross section of the bridge and the installation of expansion joints, and the problems of leakage of the expansion joints of the bridge can be prevented beforehand. The durability is increased, and the repair and replacement of the expansion joints by damage of the expansion joints can be prevented. Maintenance cost is reduced and economical.
또한 도로 포장부 연속화로 소음 및 진동이 감소하여 차량의 주행성이 향상되는 효과가 있다.In addition, the road pavement continuity is reduced noise and vibration has the effect of improving the running of the vehicle.
도 1, 도 2는 본 발명에 따른 반일체식 교대 교량의 시공순서를 나타낸 흐름도이다.1 and 2 is a flow chart showing the construction sequence of the semi-integral shift bridge according to the present invention.
도 3은 본 발명에 따라 시공된 반일체식 교대 교량을 개략적으로 나타낸 단면도이다Figure 3 is a cross-sectional view schematically showing a half integral shift bridge constructed in accordance with the present invention
도 4 내지 도 13은 본 발명에 따른 반일체식교대 교량의 시공방법을 순서대로 도시한 것이다.4 to 13 show the construction method of the half-integrated bridge in accordance with the present invention in order.
도 14는 본 발명의 일실시예에 따른 강박스거더의 단부구조를 나타낸 분해사시도이다.14 is an exploded perspective view showing the end structure of the steel box girder according to an embodiment of the present invention.
도 15는 본 발명의 다른 실시예에 따른 강박스거더의 단부구조를 나타낸 분해사시도이다.15 is an exploded perspective view showing the end structure of the steel box girder according to another embodiment of the present invention.
도 16은 본 발명의 또 다른 실시예에 따른 강박스거더의 단부구조를 나타낸 분해사시도이다.Figure 16 is an exploded perspective view showing the end structure of the steel box girder according to another embodiment of the present invention.
도 17은 거더와 거더 사이에 격벽판이 설치된 상태를 도시한 사시도이다.17 is a perspective view showing a state in which a partition plate is installed between a girder and a girder.
이하 본 발명의 바람직한 실시 예를 첨부한 도면을 참조하여 상세히 설명한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1, 도 2는 본 발명에 따른 반일체식 교대 교량의 시공순서를 나타낸 흐름도이다.1 and 2 is a flow chart showing the construction sequence of the semi-integral shift bridge according to the present invention.
도시된 바와 같이 본 발명에 따른 반일체식 교대 교량의 시공방법은 크게 교대부 성토 및 기초 말뚝 매입 단계(제1단계), 교대 구체 및 날개벽 시공단계(제2단계), 강박스거더 거치단계(제3단계), 단부격벽과 거더 접합면 처리단계(4단계), 교량 바닥판 및 단부격벽 시공단계(제5단계), 뒷채움부 시공단계(제6단계), 받침슬래브 및 접속슬래브 시공단계(제7단계), 신축조절장치 설치단계(제8단계)로 구성된다.As shown, the construction method of the semi-integral shift bridge according to the present invention is largely divided into the fill section and foundation pile purchase step (first step), shift sphere and wing wall construction step (second step), steel box girder mounting step (first Step 3), end bulkhead and girder joint surface processing step (4 step), bridge deck and end bulkhead construction step (5th step), backfill part construction step (6th step), supporting slab and connecting slab construction step (1st step) Step 7), and the expansion control device installation step (eighth step).
도 3은 본 발명에 따라 시공된 반일체식 교대 교량을 개략적으로 나타낸 단면도이고, 도 4 내지 도 13은 본 발명에 따른 반일체식 교대 교량의 시공방법을 순서대로 도시한 것으로, 각 단계를 도면을 참조하여 보다 구체적으로 살펴보면 다음과 같다. Figure 3 is a cross-sectional view schematically showing a half integral shift bridge constructed in accordance with the present invention, Figures 4 to 13 shows the construction method of the half integral shift bridge in accordance with the present invention in sequence, each step with reference to the drawings Looking in more detail as follows.
도 4에 도시된 바와 같이 제1단계는 교대부의 성토 작업을 실시하고(110, 교대성토부) 말뚝(120)을 시공한 다음 교대 기초의 린콘크리트(130)를 타설하고 말뚝머리(140) 보강을 실시한다. 말뚝의 시공은 주지된 공법 중 현장상황이나 경제성 등을 고려하여 적절한 방법을 선택하여 시공하면 되며, 말뚝시공시 말뚝항타소음에 영향을 받을 경우에는 양질의 지지층까지 오거로 굴착한 후 말뚝을 삽입하고 최종 항타하는 프리보링 타격말뚝공법이나 최종 압입 또는 경타하는 시멘트 밀크 공법(SIP, Soil-cement Injected Precasted piles)을 실시한다.As shown in FIG. 4, the first step is to fill the shift portion (110, shift fill portion), construct the pile 120, and then cast the lean concrete 130 of the shift foundation and reinforce the pile head 140. Is carried out. For the construction of the pile, select the appropriate method considering the site situation or economic feasibility among the well-known construction methods.In the case of the pile construction, if the pile driving noise is affected, excavate the pile with a good support layer and insert the pile. Soil-injected precasted piles (SIP) may be applied to the final pre-boring blow pile or final indentation or beating.
도 5에 도시된 바와 같이 제2단계는 교대 구체 및 날개벽 기초(확대기초, 210)를 시공하고 교대 구체와 날개벽 콘크리트를 타설하여 교대(220) 시공이 완료된 후 교량받침(230)을 설치한다. 이때, 유공관의 날개벽 관통을 위한 강관(240)을 설치하여야 한다. 그리고 교량받침(230)으로는 공지의 교량받침 중 시공성, 경제성, 구조적 제한조건을 고려하여 적절한 교량받침으로 시공한다. 교대 구체 및 날개벽 기초는 단면을 최소화하여 작용토압을 감소하도록 한다. As shown in FIG. 5, in the second step, the construction of the alternating sphere and the wing wall foundation (expanded foundation, 210) and the construction of the alternating sphere and the wing wall concrete are carried out to install the bridge support 230 after the construction of the shift 220 is completed. At this time, the steel pipe 240 for penetrating the wing wall of the perforated pipe should be installed. In addition, the bridge support 230 is constructed as a suitable bridge support in consideration of the construction conditions, economical efficiency, structural constraints of the known bridge support. The alternating sphere and wing wall foundations minimize cross section to reduce the working earth pressure.
제3단계는 공장제작하여 현장으로 운반된 강박스거더를 거치시키고 강박스거더와 가로보의 현장이음을 실시한 다음 강박스거더와 단부격벽 콘크리트의 일체화를 위한 연결철근을 배근한다. 강박스거더는 교대부 기초 및 교대 시공 후 전체적인 시공일정에 맞추어 공장 제작한다. In the third stage, the steel box girders are manufactured and transported to the site, the steel box girders and the cross beams are joined together, and the steel bars girder and the end reinforcement for the integration of the end bulkhead concrete are reinforced. Steel box girders are factory manufactured according to the overall construction schedule after the shift foundation and shift construction.
도 6 및 7에 도시된 바와 같이 제4단계는 단부격벽과 날개벽의 접합면에 신축이음채움재(520)를 설치한다. 즉, 반일체식 교대 교량의 구조거동 특성상 상부구조와 하부구조가 서로 분리되어 상부구조 변위가 자유롭게 발생되도록 하기 위해 단부격벽(320)과 날개벽(510)은 서로 분리되어야 하기 때문에 접합면에는 공간을 확보한다. 그리고 이 접합면에는 신축기능 및 방수의 목적으로 신축이음채움재(520)로 채운다. 신축이음채움재(520)로는 공지의 충진재로부터 선택적으로 사용될 수 있으며, 예를 들어 Preformed Expansion Joint Filler가 사용될 수 있다.As illustrated in FIGS. 6 and 7, a fourth step is to install the expansion joint filler 520 on the joint surface of the end partition wall and the wing wall. That is, the end partition 320 and the wing wall 510 must be separated from each other in order to freely displace the upper structure and the lower structure due to the structural behavior of the semi-integrated shift bridge, so that space is secured at the joint surface. do. And this joint surface is filled with the expansion joint filling material 520 for the purpose of stretching and waterproofing. The expansion joint filler 520 may be selectively used from a known filler, for example, a preformed expansion joint filler may be used.
도 8 및 9에 도시된 바와 같이 제5단계는 교량 바닥판 철근과 동시에 단부격벽 철근을 배근하고 교량 바닥판(330)과 단부격벽(320)을 일체로 타설한다. 단부격벽 횡방향 철근(도 14, 313) 조립시 하나 또는 둘 이상의 철근을 커플링 또는 용접으로 연결할 수 있다. 이렇게 형성된 단부격벽(320)은 온도변화에 의한 교대 뒷채움부 토압에 저항하고, 상부구조 및 접속슬래브와 일체화된 구조인 교대부로 전달되는 활하중을 분배하며, 발생하는 부모멘트에 저항하게 된다.As shown in FIGS. 8 and 9, the fifth step reinforces the end partition reinforcement at the same time as the bridge bottom plate reinforcement and pours the bridge bottom plate 330 and the end partition 320 integrally. When assembling the end bulkhead transverse reinforcing bars (FIGS. 14, 313) one or more reinforcing bars may be connected by coupling or welding. The end partition wall 320 formed as described above resists alternating backfill earth pressure due to temperature change, distributes live load transmitted to the alternating portion, which is a structure integrated with the superstructure and the connecting slab, and resists the generated parent moment.
한편, 거더를 가로방향으로 지지하면서 강성을 높여주고 교량받침으로 토사가 유입되는 것을 방지함과 아울러 단부격벽 콘크리트 타설을 용이하게 하기 위해 또는 단부격벽의 결합도를 증가시키기 위해 거더와 거더 사이에 격벽판(350)이 설치될 수 있다(도 9, 도 17 참조). 이 격벽판(350)은 일 예로 도 17에 도시된 바와 같이 인접하는 거더의 측면에 용접되는 H형강(352)을 덮개판(354)을 이용해 볼트 접합하는 것으로 구성할 수 있으며 단부격벽 콘크리트와의 합성력을 높이기 위해 스티프너나 고장력 볼트(356) 등이 부착될 수 있다.On the other hand, the bulkhead between the girder and the girders to support the girders in the transverse direction to increase the rigidity, to prevent the inflow of soil into the bridge support, and to facilitate the installation of end bulkhead concrete or to increase the coupling of the end bulkheads Plate 350 may be installed (see FIGS. 9 and 17). For example, the partition plate 350 may be configured by bolting an H-beam steel 352 welded to a side of an adjacent girder using a cover plate 354, as shown in FIG. Stiffeners or high tension bolts 356 may be attached to increase the combined force.
도 14 내지 도 16를 참조하여, 강박스거더(310)와 단부격벽(320)의 접합부구조를 보다 상세히 설명하면 아래와 같다.14 to 16, the joint structure of the steel box girder 310 and the end partition 320 will be described in more detail as follows.
본 발명은 강박스거더(310)의 단부를 보강하기 위하여 내부에 길이방향으로 설치된 스티프너(311)를 강박스거더(310)의 단부로 돌출되도록 연장하고, 돌출된 스티프너(311)의 끝단에는 정착판(312)을 접합하며, 스티프너(311)와 강박스거더(310)의 단부에 횡방향 연결철근(313)과 수직철근(314)을 설치한 후 단부격벽 콘크리트를 타설함으로써 단부격벽과 강박스거더를 일체화하였다.The present invention extends so as to protrude to the end of the steel box girder 310 longitudinally installed stiffener 311 in the longitudinal direction to reinforce the end of the steel box girder 310, the fixing of the end of the protruding stiffener 311 After joining the plate 312, the transverse connecting reinforcing bars 313 and vertical reinforcing bars 314 are installed at the ends of the stiffeners 311 and the steel box girder 310, and the end partition concrete is poured by placing the end partition concrete. The girder is integrated.
스티프너(311)는 도 14에 도시된 바와 같이 강박스거더의 상부에 위치한 스티프너(311)만을 연장할 수도 있고, 도 15에 도시된 바와 같이 강박스거더의 상부에 위치한 스티프너(311)만을 연장할 수도 있으며, 도 16에 도시된 바와 같이 강박스거더의 상하부에 위치한 스티프너(311) 모두를 연장할 수도 있다.The stiffener 311 may extend only the stiffener 311 located at the top of the steel box girder as shown in FIG. 14, and may extend only the stiffener 311 located at the top of the steel box girder as shown in FIG. 15. As shown in FIG. 16, all of the stiffeners 311 located above and below the steel box girder may be extended.
여기서, 스티프너(311)와 강박스거더(310)의 단부 양측판에는 연결철근(313)을 배근하기 위하여 각각 복수의 관통공(310a)(310b)을 형성하고 정착판(312)은 스티프너(311)의 끝단에 수직하게 접합된다. 그리고 강박스거더(310)의 단부 상부판에는 콘크리트의 유동 및 수직철근(314) 배근을 위한 관통공(310c)을 다수개 형성함과 아울러 단부격벽 콘크리트 타설을 용이하게 하기 위하여 일정한 부분을 절단해 낸 유입부(315)를 형성한다.Here, a plurality of through holes 310a and 310b are formed in both side plates of the end portions of the stiffener 311 and the steel box girder 310 to reinforce the connecting reinforcing bars 313, and the fixing plate 312 is a stiffener 311. Are joined perpendicular to the ends. In addition, a plurality of through holes 310c for the flow of concrete and the reinforcement of the vertical reinforcing bars 314 are formed in the end upper plate of the steel box girder 310, and a portion is cut to facilitate the end partition concrete pouring. A cut inlet 315 is formed.
이상과 같이 본 발명에 따르면 강박스거더를 보강하기 위해 설치되는 스티프너를 단부격벽과 강박스거더를 일체화하는 연결요소로 사용함으로써 단부격벽과 강박스거더의 연결을 용이하게 할 수 있으며 스티프너의 단부에 정착판을 접합함으로써 단부격벽과 강박스거더의 연결부에 발생하는 부모멘트에 저항하는 별도의 철근을 배근하지 않고도 효과적으로 저항할 수 있다.According to the present invention as described above, by using the stiffener installed to reinforce the steel box girder as a connecting element integrating the end bulkhead and the steel box girder can facilitate the connection of the end bulkhead and the steel box girder and to the end of the stiffener By joining the fixing plate, it is possible to effectively resist without reinforcing the additional reinforcing bar resisting the parent moment generated in the connection portion between the end partition and the steel box girder.
도 10 (a)에 도시된 바와 같이 제6단계는 교대 배면에 뒷채움을 실시한다. 교대 배면의 뒷채움부는 교대 배면으로부터 교대 성토부를 향해 토압저감구간(A), 완충구간(B), 일반성토구간(C)으로 나누며 토압저감구간(A)은 상부구조의 수평이동에 대한 구속을 최소로 하기 위해서 점착력이 없고 내부마찰각이 작으며 입자가 비교적 둥근재료인 강자갈이나 둥근골재 25mm 이상을 이용하여 느슨하게 채운다. 완충구간(B)은 다짐장비를 이용하여 무진동 다짐을 실시한다. 완충구간(B)과 토압저감층(A) 사이에는 부직포(610)를 설치하여 완충구간의 토사가 토압저감층으로 유입되는 것을 막아 밀도증가 또는 토압증가를 막는다.As shown in Fig. 10 (a), the sixth step is to backfill the back of the shift. The rear fill part of the alternating back is divided into earth pressure reducing section (A), buffer section (B), and general soil filling section (C) from the alternating back surface to the alternating fill section, and the earth pressure reducing section (A) minimizes the restraint on the horizontal movement of the superstructure. In order to ensure the low adhesion, the internal friction angle is small, and the particles are loosely filled by using more than 25mm of steel gravel or round aggregate. The buffer section (B) performs vibration free compaction using compaction equipment. A nonwoven fabric 610 is installed between the buffer section B and the earth pressure reducing layer A to prevent the soil from entering the buffer pressure layer from entering the earth pressure reducing layer, thereby preventing the increase in density or the earth pressure.
한편, 뒷채움 방법은 도 10 (b)에 도시된 방법을 적용할 수도 있다. 이 방법은 뒷채움부를 2단으로 나누어 교대 흉벽 배면으로부터 교대 성토부를 향해서는 안식각을 고려하여 경사지게 보조기층이나 유용토로 보조기층구간(D)을 시공하고 연이어 성토구간(E)을 시공하며, 교대 단부격벽 배면으로부터 교대 성토를 향해서는 토압저감구간(A)과 일반성토구간(C)으로 나누어 시공하되 토압저감구간은 점착력이 없고 내부마찰각이 작으며 입자가 비교적 둥근 강자갈이나 골재 25mm 이상을 이용하여 느슨하게 경사지게 채우고, 일반성토구간과 토압저감구간 사이에는 부직포(610)를 설치하여 일반성토구간의 토사가 토압저감구간으로 유입되는 것을 막아 토압 증가를 막는다. 이때 부직포(610)는 이형철근 또는 못(615) 등으로 고정한다.On the other hand, the back filling method may be applied to the method shown in Figure 10 (b). This method divides the backfill into two stages and constructs the subbase section (D) with the subbase or useful soil inclined in consideration of the angle of repose from the rear of the alternating chest wall to the alternating fill site, followed by the construction of the fill section (E). The construction is divided into earth pressure reducing section (A) and general soil filling section (C) from the back side, but the earth pressure reducing section has no cohesive force, small internal friction angle, and loosely inclined by using more than 25mm of rounded aggregate or aggregate. Filling, the non-woven fabric 610 is installed between the general soil section and the earth pressure reduction section to prevent the soil sediment of the general soil section into the earth pressure reduction section to prevent the increase in earth pressure. At this time, the nonwoven fabric 610 is fixed with a deformed rebar or nail 615.
제7단계는 뒷채움이 완료된 후 제1 받침슬래브(710)와 제2 받침슬래브(780)를 시공한 다음 접속슬래브(750)와 완충슬래브(760) 및 본선포장부(770)를 순차적으로 시공한다. In the seventh step, after the back filling is completed, the first supporting slab 710 and the second supporting slab 780 are constructed, and then the connecting slab 750, the buffering slab 760, and the main packing unit 770 are sequentially installed. .
즉, 도 11에 나타낸 바와 같이 제1 받침슬래브(710)를 시공한 후 제1 받침슬래브(710)의 좌우측에 횡구배를 고려하여 폴리에틸렌 쉬트(720)와 유공관(730)을 설치하고 유공관(730) 주위에 선택층(740)을 시공한 다음 선택층(740) 상면에 폴리에틸렌 쉬트(720)를 설치한다. 이때, 유공관(730)은 완충슬래브(760)와 접속슬래브(750) 쪽으로 침투수의 배수를 위해 설치되며, 접속슬래브(750) 하면에 설치되는 폴리에틸렌 쉬트(720)는 접속슬래브(750)로 전달되는 신축이음이 원활하게 발생하도록 하기 위함이다. 한편 제1 받침슬래브(710)의 좌우측에 설치되는 유공관은 도로 편경사를 고려하여 결정하되 편구배를 적용한다. 여기서, 접속슬래브(750)는 활하중에 의한 교대 뒷채움부 침하를 방지하고 상부구조의 신축변위를 신축조절장치로 전달하는 역할을 하며, 제1 받침슬래브(710)는 접속슬래브(750)와 완충슬래브(760)를 지지하고 접속슬래브(750)의 부등침하로 인해 발생할 수 있는 단부격벽의 부모멘트 발생을 억제한다.That is, after constructing the first support slab 710 as shown in FIG. 11, the polyethylene sheet 720 and the perforated pipe 730 are installed in the left and right sides of the first support slab 710 in consideration of the horizontal gradient. Next, the selective layer 740 is constructed around the polyethylene layer 720 on the upper surface of the selective layer 740. At this time, the hole pipe 730 is installed for the drainage of the infiltration water toward the buffer slab 760 and the connecting slab 750, the polyethylene sheet 720 installed on the lower surface of the connecting slab 750 is transferred to the connecting slab 750. This is to ensure that the expansion joint is smoothly generated. On the other hand, the perforated pipes installed on the left and right sides of the first support slab 710 are determined in consideration of the road superelevation slope, but applies a single slope. Here, the connecting slab 750 serves to prevent the alternating backfill subsidence due to the live load and to transfer the expansion and contraction of the upper structure to the expansion and contraction control device, the first support slab 710 is the connection slab 750 and the buffer slab Support 760 and suppress the generation of the parent cement of the end bulkhead that may occur due to the uneven settlement of the connecting slab (750).
한편, 도 13에 나타낸 것처럼 제2 받침슬래브(780)은 본선포장부(770)와 완충슬래브(760)가 접속하는 부분의 하부에는 본선포장부(770)와 완충슬래브(760)의 단차로 인해 발생하는 소음과 완충슬래브 단부 파손을 줄이기 위해 설치한다.Meanwhile, as shown in FIG. 13, the second support slab 780 is formed at the lower portion of the portion where the main packaging part 770 and the buffer slab 760 are connected due to the step between the main packaging part 770 and the buffer slab 760. Install to reduce noise and breakage of buffer slab end.
도 12에 도시된 바와 같이 제8단계는 접속슬래브(750)와 완충슬래브(760) 사이에 신축조절장치(810)를 설치하고 마지막으로 아스팔트 또는 LMC(Latex Modified Concrete)로 교면을 포장한다. 신축조절장치(Cycle Control Joint)는 일반교량의 신축이음장치의 역할을 대체하는 것으로 포장용 아스팔트 콘크리트 다짐과 동일하게 실시한다. As shown in FIG. 12, in the eighth step, the expansion control device 810 is installed between the connecting slab 750 and the cushioning slab 760, and finally, the bridge is paved with asphalt or latex modified concrete (LMC). The cycle control joint replaces the role of the expansion joint of the general bridge and is performed in the same way as the pavement concrete compaction.
위에서 본 발명은 실시 예를 이용하여 상세하게 설명이 되었다. 제시된 실시 예는 예시적인 것으로 이 분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상 을 벗어나지 않는 제시된 실시 예에 대한 다양한 변형 및 수정 발명을 만들 수 있을 것이다. 본 발명의 범위는 이러한 변형 및 수정 발명에 의하여 제한되지 않고 다만 아래에 첨부된 청구범위에 의해서만 제한된다.The present invention has been described above in detail by using an embodiment. The presented embodiments are illustrative and can be made by those skilled in the art to various modifications and modifications to the disclosed embodiments without departing from the spirit of the invention. The scope of the invention is not limited by these modifications and variations, but only by the claims appended below.
본 발명에 따르면 교대 단면의 감소로 기초 안정성 확보에 유리하고 뒷채움재료와의 상호거동으로 종방향 지진력을 감소시켜 내진에 유리한 구조이며 신축이음장치 미설치로 신축이음부 파손에 의한 보수 및 교체에 대한 유지관리비가 절감되어 경제적이고 도로 포장부 연속화로 소음 및 진동이 감소하여 차량의 주행성이 향상되는 효과가 있는 매우 유용한 발명이다.According to the present invention, it is advantageous to secure the basic stability by reducing the alternating cross-section, and to reduce the seismic force in the longitudinal direction by mutual action with the backfill material. It is a very useful invention that has the effect of reducing the management cost and improving the running performance of the vehicle by reducing the noise and vibration due to the continuous road pavement.

Claims (7)

  1. 교대부의 성토 작업을 실시하고 말뚝을 시공한 다음 교대 기초의 린콘크리트(lean concrete)를 타설하고 말뚝머리 보강을 실시하는 제1단계와,The first step of filling the shift part, constructing the pile, pouring the lean concrete of the shift foundation and reinforcing the pile head,
    확대기초를 시공하고 교대 흉벽 및 날개벽 시공을 완료한 다음 교량받침을 설치하는 제2단계와,The second step of constructing the enlarged foundation, completing the alternating chest wall and wing wall construction, and then installing the bridge bearing;
    공장제작하여 현장으로 운반된 강박스거더를 거치시키고 강박스거더와 가로보의 현장이음을 실시한 다음 강박스거더와 단부격벽 연결을 위한 연결철근을 배근하는 제3단계와,The third step of mounting the steel box girder carried out to the site by the factory, carrying out the field joint of the steel box girder and the cross beam, and then placing the connecting reinforcing bar for connecting the steel box girder and the end bulkhead,
    단부격벽과 날개벽이 분리되도록 그들의 접합면에 신축이음채움재를 설치하는 제4단계와,A fourth step of installing the expansion joint filling material on their joint surface so that the end bulkhead and the wing wall are separated;
    교량 바닥판 철근과 동시에 단부격벽 철근을 배근하고 교량 바닥판과 단부격벽을 일체로 타설하는 제5단계와,A fifth step of placing the end plate reinforcement at the same time as the bridge bottom plate reinforcement and placing the bridge bottom plate and the end bulkhead integrally;
    교대 배면에 뒷채움을 실시하는 제6단계와,The sixth step of backfilling the back of the shift,
    뒷채움이 완료된 후 제1, 2 받침슬래브를 시공한 다음 제1 받침슬래브 상면에 교량 바닥판과 연결되는 접속슬래브와 본선 포장부와 접속되는 완충슬래브를 시공하고 제2 받침슬래브 상면에 완충슬래브와 본선포장부를 시공하는 제7단계와,After the back filling is completed, construct the 1st and 2nd support slabs, and then install the connecting slab connected to the bridge bottom plate and the buffer slab connected to the main ship packaging on the top of the first support slab, and the cushioning slab and the main ship on the upper surface of the second support slab. The seventh step of constructing the packing part;
    접속슬래브와 완충슬래브 사이에 신축조절장치를 설치하고 교면을 포장하는 제8단계를 포함하는 것을 특징으로 하는 강박스거더를 이용한 반일체식 교대 교량의 시공방법.A method of constructing a semi-integrated shift bridge using a steel box girder, comprising an eighth step of installing a stretch control device and paving the bridge between the connecting slab and the cushioning slab.
  2. 제1항에 있어서, The method of claim 1,
    상기 제6단계는, The sixth step,
    교대 배면로부터 교대 성토부를 향해 토압저감구간, 완충구간, 일반성토구간으로 나누며 토압저감구간은 점착력이 없고 내부마찰각이 작으며 입자가 비교적 둥근 골재를 이용하여 느슨하게 채우고, 완충구간은 다짐장비를 이용하여 무진동 다짐을 실시하며, 완충구간과 토압저감구간 사이에는 부직포를 설치하여 완충구간의 토사가 토압저감구간으로 유입되는 것을 막아 토압증가를 막는 것을 특징으로 하는 강박스거더를 이용한 반일체식 교대 교량의 시공방법. It is divided into earth pressure reduction section, buffer section, and general soil section from alternating back surface to alternating fill section. The earth pressure reduction section has no cohesive force, small internal friction angle, and loosely fills with relatively round aggregates, and buffer section uses compaction equipment. Non-vibration compaction is provided, and a non-woven fabric is installed between the buffer section and the earth pressure reduction section to prevent the sediment of the buffer section from entering the earth pressure reduction section to prevent the increase in earth pressure. Way.
  3. 제1항에 있어서,The method of claim 1,
    상기 제6단계는,The sixth step,
    뒷채움부를 2단으로 나누어 교대 흉벽 배면으로부터 교대 성토부를 향해서는 안식각을 고려하여 경사지게 보조기층구간을 시공하고 연이어 성토구간을 시공하며, Dividing the backfill into two stages, construct the auxiliary base section inclined in consideration of the angle of repose from the rear of the alternating chest wall to the alternating fill section, followed by the construction of the fill section.
    교대 단부격벽 배면으로부터 교대 성토를 향해서는 토압저감구간과 일반성토구간으로 나누어 시공하되 토압저감구간은 점착력이 없고 내부마찰각이 작으며 입자가 비교적 둥근 골재를 이용하여 느슨하게 경사지게 채우고, 일반성토구간과 토압저감구간 사이에는 부직포를 설치하여 일반성토구간의 토사가 토압저감구간으로 유입되는 것을 막아 토압 증가를 억제하며, 이때 부직포는 이형철근 또는 못으로 고정하는 것을 특징으로 하는 강박스거더를 이용한 반일체식 교대 교량의 시공방법. From the rear of the alternate end bulkhead to the alternating soil, the construction is divided into earth pressure reducing section and general earth filling section. Non-woven fabrics are installed between the reduction sections to prevent soil from entering the earth pressure reduction section by preventing non-woven fabrics from flowing into the earth pressure reduction section.At this time, the non-woven fabrics are semi-integral shifts using steel box girders. Construction method of bridge
  4. 제1항 내지 제3항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 3,
    상기 제7단계는,The seventh step,
    받침슬래브를 시공한 후 받침슬래브의 좌우측에 횡구배를 고려하여 폴리에틸렌 쉬트와 유공관을 설치하고 유공관 주위에 선택층을 시공한 다음 선택층 상면에 폴리에틸렌 쉬트를 설치한 후 접속슬래브와 완충슬래브를 시공하는 것을 특징으로 하는 강박스거더를 이용한 반일체식 교대 교량의 시공방법. After constructing the supporting slab, install the polyethylene sheet and perforated pipe on the left and right sides of the supporting slab in consideration of the lateral gradient, install the selective layer around the perforated pipe, install the polyethylene sheet on the top of the selected layer, and then install the connecting slab and the cushioning slab. Construction method of the semi-integral shift bridge using a steel box girder, characterized in that.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 강박스거더는 강박스거더를 보강하기 위해 내부에 길이방향으로 설치된 스티프너를 교대 단부와의 결합도를 높이기 위해 강박스거더의 단부에서 돌출되도록 연장하고 돌출된 스티프너의 끝단에는 정착판을 접합한 것을 특징으로 하는 강박스거더를 이용한 반일체식 교대 교량의 시공방법. The steel box girder extends the stiffener installed in the longitudinal direction to reinforce the steel box girder to protrude from the end of the steel box girder to increase the coupling with the alternating end, and the fixing plate is bonded to the end of the protruding stiffener Construction method of the semi-integral shift bridge using a steel box girder, characterized in that.
  6. 제5항에 있어서,The method of claim 5,
    상기 강박스거더의 단부 상부판에는 콘크리트의 유동 및 수직철근 배근을 위한 다수개의 관통공 또는 단부 상부판의 일부를 절단해 낸 유입부가 형성되어 있는 것을 특징으로 하는 강박스거더를 이용한 반일체식 교대 교량의 시공방법.Semi-integral shift bridge using the steel box girder is formed in the end top plate of the steel box girder is formed by cutting a portion of the plurality of through holes or the end top plate for the flow of concrete and vertical reinforcement. Construction method.
  7. 제6항에 있어서,The method of claim 6,
    상기 강박스거더와 강박스거더 사이에는 거더를 가로방향으로 지지하면서 강성을 높여주고 교량받침으로 토사가 유입되는 것을 방지함과 아울러 단부격벽 콘크리트 타설을 용이하게 하기 위해 또는 단부격벽의 결합도를 증가시키기 위해 격벽판이 더 설치된 것을 특징으로 하는 강박스거더를 이용한 반일체식 교대 교량의 시공방법. Between the steel box girder and the steel box girder to increase the rigidity while supporting the girder in the transverse direction, to prevent the inflow of soil to the bridge bearing and to facilitate the construction of the end bulkhead concrete or increase the coupling of the end bulkhead Method of constructing a semi-integrated shift bridge using a steel box girder, characterized in that the partition plate is further installed to make.
PCT/KR2009/000424 2008-05-13 2009-01-29 Construction method for a semi-integral abutment bridge using a steel box girder WO2009139536A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN200980117187.0A CN102037185B (en) 2008-05-13 2009-01-29 Construction method for a semi-integral abutment bridge using a steel box girder
JP2011509397A JP5113290B2 (en) 2008-05-13 2009-01-29 Construction method of semi-integral abut bridge using steel box girder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2008-0044205 2008-05-13
KR1020080044205A KR100972884B1 (en) 2008-05-13 2008-05-13 Construction method of semi-integral abutment bridge using steel box girder

Publications (1)

Publication Number Publication Date
WO2009139536A1 true WO2009139536A1 (en) 2009-11-19

Family

ID=41318871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/000424 WO2009139536A1 (en) 2008-05-13 2009-01-29 Construction method for a semi-integral abutment bridge using a steel box girder

Country Status (4)

Country Link
JP (1) JP5113290B2 (en)
KR (1) KR100972884B1 (en)
CN (1) CN102037185B (en)
WO (1) WO2009139536A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102251482A (en) * 2011-05-10 2011-11-23 吴江市明港道桥工程有限公司 Construction method for connection part of bridge lapping slab and cement stabilized base
CN103485286A (en) * 2013-10-08 2014-01-01 中铁二局股份有限公司 Method for strengthening box girder prefabricated segment box chamber
CN104294769A (en) * 2014-09-16 2015-01-21 杭州江润科技有限公司 Built abutment structure reinforced through combination of pile supplementing and abutment cap enlarging and construction method
WO2015055876A1 (en) * 2013-10-18 2015-04-23 Ingeturarte, S.L. Transition slab between the abutment and the deck of a bridge with expansion and contraction joints having a long service life, and methods for absorbing the expansion and contraction movements of the deck of a bridge
CN104746436A (en) * 2015-04-10 2015-07-01 福建省交通规划设计院 Simplified design and construction method of integrated abutment bridge
CN117436183A (en) * 2023-12-21 2024-01-23 湖南大学 Synchronous construction method for bridge, municipal road and adjacent service area in deep soft soil area

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100984758B1 (en) * 2010-03-11 2010-10-01 주식회사 승화이엔씨 Semi-integral abutment bridge with parapet
CN101962933B (en) * 2010-08-25 2012-05-23 江苏省交通科学研究院股份有限公司 Splicable flange plate of bridge
KR101034013B1 (en) 2011-01-06 2011-05-09 (주)지승컨설턴트 Rapid cnstruction method of semi-integral abutment bridge using prestressed concrete girder having end diaphragm
KR101452178B1 (en) 2014-05-20 2014-10-22 주식회사 에이스이엔씨 Semi-integral abutment bridge using precast parapet and the construction therefor
KR101613784B1 (en) 2014-06-10 2016-04-20 (주)지승컨설턴트 Integral abutment bridge construction method of old joint butment bridge
CN105113412A (en) * 2015-08-26 2015-12-02 中国十七冶集团有限公司 Construction method of prestressed splint abutment backfilling and reinforcement
CN108086126A (en) * 2017-12-19 2018-05-29 厦门市市政建设开发有限公司 Monoblock type bicycle occupation bridge structure and its construction method
CN108265620A (en) * 2018-04-10 2018-07-10 深圳市市政设计研究院有限公司 The Integral Abutment construction method and Integral Abutment of jointless bridge
KR102008516B1 (en) * 2018-11-16 2019-08-08 화성산업주식회사 Covered Rib in Pipe Girder
CN114319113B (en) * 2021-12-14 2024-03-22 中铁建大桥工程局集团靖江重工有限公司 Method for transversely butt-jointing adjustable elevation and counterpoint of split diaphragm plates of steel box girder
KR102583155B1 (en) * 2022-10-26 2023-09-26 홍석희 The continuous rahmen bridge constructed by the hybrid sections that made 2-girder & panel, and constructing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100279124B1 (en) * 1998-12-30 2001-01-15 유성용 Construction method of filling joints to allow displacement of integral bridges
KR20020075136A (en) * 2001-03-23 2002-10-04 (주)석탑엔지니어링 Construction Method of Approach Slab with Fixed End
KR100743832B1 (en) * 2006-05-11 2007-07-30 (주)씨팁스이엔지 Bridge construction method using preflex girder and integral abutment

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1548655A (en) * 2003-04-21 2004-11-24 朴大源 Bridge expansion joint apparatus
JP2005016196A (en) * 2003-06-27 2005-01-20 Yasuhiko Okochi Construction method for embankment on backside of substructure
KR100585987B1 (en) * 2003-09-24 2006-06-07 주식회사 용마엔지니어링 Method for constructing semi-integral abutment bridge
JP4020918B2 (en) * 2005-02-24 2007-12-12 朝日エンヂニヤリング株式会社 Bridge structure of girder bridge
CN1851139A (en) * 2006-05-19 2006-10-25 成都亿通达实业发展有限公司 Bridge pad repair method
CN100513696C (en) * 2007-10-16 2009-07-15 中铁大桥局集团第四工程有限公司 Pier body cap cracking body outside stress reinforcing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100279124B1 (en) * 1998-12-30 2001-01-15 유성용 Construction method of filling joints to allow displacement of integral bridges
KR20020075136A (en) * 2001-03-23 2002-10-04 (주)석탑엔지니어링 Construction Method of Approach Slab with Fixed End
KR100743832B1 (en) * 2006-05-11 2007-07-30 (주)씨팁스이엔지 Bridge construction method using preflex girder and integral abutment

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102251482A (en) * 2011-05-10 2011-11-23 吴江市明港道桥工程有限公司 Construction method for connection part of bridge lapping slab and cement stabilized base
CN103485286A (en) * 2013-10-08 2014-01-01 中铁二局股份有限公司 Method for strengthening box girder prefabricated segment box chamber
WO2015055876A1 (en) * 2013-10-18 2015-04-23 Ingeturarte, S.L. Transition slab between the abutment and the deck of a bridge with expansion and contraction joints having a long service life, and methods for absorbing the expansion and contraction movements of the deck of a bridge
CN104294769A (en) * 2014-09-16 2015-01-21 杭州江润科技有限公司 Built abutment structure reinforced through combination of pile supplementing and abutment cap enlarging and construction method
CN104294769B (en) * 2014-09-16 2015-12-30 杭州江润科技有限公司 A kind of piling and the construction method increasing the built bridge abutment structure of platform cap composite reinforcement
CN104746436A (en) * 2015-04-10 2015-07-01 福建省交通规划设计院 Simplified design and construction method of integrated abutment bridge
CN117436183A (en) * 2023-12-21 2024-01-23 湖南大学 Synchronous construction method for bridge, municipal road and adjacent service area in deep soft soil area
CN117436183B (en) * 2023-12-21 2024-03-05 湖南大学 Synchronous construction method for bridge, municipal road and adjacent service area in deep soft soil area

Also Published As

Publication number Publication date
CN102037185B (en) 2013-02-13
JP5113290B2 (en) 2013-01-09
CN102037185A (en) 2011-04-27
KR20090118433A (en) 2009-11-18
JP2011520054A (en) 2011-07-14
KR100972884B1 (en) 2010-07-28

Similar Documents

Publication Publication Date Title
WO2009139536A1 (en) Construction method for a semi-integral abutment bridge using a steel box girder
KR101123842B1 (en) The construction method and the continuous structure with gerber's hinge made by the rigid connection between the civil engineering structure and approach slab, and inserted by the mesnage hinge in the continuous approach slab
KR101216511B1 (en) Method for constructing a abutment of integral abutment bridge
KR101896403B1 (en) Integral bridge structure and construction method thereof
KR20090093556A (en) Panel , Wall Structure with panels and Construction Method using the Same
KR20090130637A (en) Fill-up structure for back-area of rigid structure and construction method of the same
KR101300296B1 (en) Rapid cnstruction method of semi-integral abutment bridge using prestressed concrete girder having end diaphragm
KR20060096810A (en) Non-support, non-expension joint and non-abutment slab bridge having synchronized supporting post system, and installing method thereof
KR101082765B1 (en) Method of the bridge construction which connects the steel pipe pile of abutment substituion and the precast girder with a fixation
KR102369701B1 (en) Transitional zone available deformation absorption and subsidence reduction and constructing method therefor
KR100312066B1 (en) Construction method of integrated shift bridge
JP2008223291A (en) Rigid frame bridge formed integrally with revetment and method of constructing same
KR101198286B1 (en) Non-wale strut system for top-down construction and top-down construction method thereby
KR100998414B1 (en) Method of the bridge construction which connects the steel pipe pile of abutment substituion and the precast girder with a fixation
CN211171579U (en) Take seamless antidetonation abutment of disconnect-type strap
KR100908904B1 (en) Preflex synthetic arch cover structure of embedded type and constructing method thereof
KR100245048B1 (en) Reinforced soil structure
KR102244029B1 (en) Rahmen bridge without abuttment and construction method thereof
KR100555433B1 (en) Structure of Integral Abutment with Concrete Filled Composite Pile for Jointless Bridge and Its Construction Method
KR101973657B1 (en) Inverted Arcuate Structure to prevent Lateral Flow of the Bridge Abutments and Reparing Method using the Same
KR100492373B1 (en) Non-Bearing, Jointless and Non-Abutment Bridge Structure
KR101341147B1 (en) Structure of integrated pavement on road-bridge and the method
KR102377895B1 (en) Hinge-type abutment embankment transition for monent reduction and and constructing method thereof
KR102562385B1 (en) Protrusive transitional zone available deformation absorption and subsidence reduction and constructing method therefor
Habel et al. Seismic upgrading of the mission bridge

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980117187.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09746715

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011509397

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09746715

Country of ref document: EP

Kind code of ref document: A1