WO2009139444A1 - 光調整粒子の製造方法及び該製造方法で得られた光調整粒子を用いた調光フィルム - Google Patents

光調整粒子の製造方法及び該製造方法で得られた光調整粒子を用いた調光フィルム Download PDF

Info

Publication number
WO2009139444A1
WO2009139444A1 PCT/JP2009/059000 JP2009059000W WO2009139444A1 WO 2009139444 A1 WO2009139444 A1 WO 2009139444A1 JP 2009059000 W JP2009059000 W JP 2009059000W WO 2009139444 A1 WO2009139444 A1 WO 2009139444A1
Authority
WO
WIPO (PCT)
Prior art keywords
light control
mass
amount
parts
water
Prior art date
Application number
PCT/JP2009/059000
Other languages
English (en)
French (fr)
Inventor
田中 徹
山崎 仁
野村 理行
森下 芳伊
Original Assignee
日立化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成工業株式会社 filed Critical 日立化成工業株式会社
Priority to JP2010512017A priority Critical patent/JP5849393B2/ja
Priority to US12/992,360 priority patent/US8520294B2/en
Priority to EP09746650.2A priority patent/EP2280305A4/en
Publication of WO2009139444A1 publication Critical patent/WO2009139444A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/28Treatment by wave energy or particle radiation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/17Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on variable-absorption elements not provided for in groups G02F1/015 - G02F1/169
    • G02F1/172Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on variable-absorption elements not provided for in groups G02F1/015 - G02F1/169 based on a suspension of orientable dipolar particles, e.g. suspended particles displays

Definitions

  • the present invention relates to a method for producing light control particles. More specifically, the present invention relates to a method for producing light control particles used in a light control film whose light transmittance varies depending on the magnitude of an electric field. Moreover, it is related with the light control film using the light control particle
  • the light modulating material is a material whose light transmittance changes depending on the magnitude of the applied electric field and the amount of incident light can be adjusted.
  • a light control suspension in which light control particles that can respond to an electric field are dispersed is dispersed in a resin matrix to obtain a light control material.
  • This light control film is a film using a light control layer in which a light control material in which fine droplets of a light control suspension in which light control particles are dispersed is dispersed in a resin matrix cured by ultraviolet irradiation is formed into a film. It is.
  • the light adjusting particles absorb, scatter, or reflect light by Brownian motion in a state where no electric field is applied, and therefore light incident on the film cannot be transmitted.
  • the light adjustment particles are arranged in a direction parallel to the electric field due to the polarization of the light adjusting particles, so that light incident on the film starts to be transmitted.
  • the amount of transmitted light is adjusted by the response of the light adjusting particles to the electric field (see, for example, Patent Document 1).
  • Patent Document 2 As the light control particles, those listed in Patent Document 2 are known, but in recent years, the light control particles disclosed in Patent Document 3 are most commercialized because they are excellent in heat resistance and weather resistance. It is considered close.
  • Patent Document 4 discloses a manufacturing method of the light adjusting particles, which is the most preferable and preferable manufacturing method.
  • water greatly affects the particle size and shape of the light control particles, the total amount of water present in the reaction system at the time of production must be determined strictly.
  • cellulose nitrate added for preventing aggregation of the light control particles or the like is generally commercially available that contains water up to about 5% by mass. Need to ask.
  • calcium iodide is usually used by dehydrating an inexpensive hydrate, but it is necessary to accurately determine the amount of water remaining.
  • Japanese Patent No. 3434295 Japanese Patent Publication No. 1-334369 Japanese Patent No. 2871837 Japanese Patent No. 3448354
  • the light control particles having the optimum particle size and shape as a light control material are efficiently used for moisture that greatly affects the particle size and shape.
  • it aims at providing the manufacturing method of the light control particle
  • the present invention is as follows.
  • a resin matrix comprising a polymer medium that is cured by irradiation with energy rays;
  • a method for producing light control particles that can be used for a light control material comprising a dispersion medium and a light control suspension having a light control particle dispersed in a flowable state in the dispersion medium.
  • A) elemental molecular iodine, (B) alkaline earth metal iodide and (C) heterocyclic compound in a medium and granulating (A), (B) and (C 50 parts by mass or more and 110 parts by mass or less of methanol are allowed to coexist and react with respect to 100 parts by mass in total.
  • a resin matrix formed from a polymer medium that cures when irradiated with energy rays In a light control film comprising a light control layer comprising a light control material comprising a dispersion medium, and a light control suspension having a light control particle dispersed in a flowable state in the dispersion medium, A light control film, wherein the light control particles are obtained by the method for manufacturing light control particles according to any one of the above (1) to (3).
  • the present invention there is provided a method for producing light-controlling particles that reduces the influence of moisture and has good reproducibility in the granulation step for obtaining the particle size and shape of light-controlling particles suitable as a light control material It becomes possible to do.
  • the method for producing light control particles of the present invention includes a resin matrix composed of a polymer medium that is cured by irradiation with energy rays, and A method for producing light control particles that can be used for a light control material comprising a dispersion medium and a light control suspension having a light control particle dispersed in a flowable state in the dispersion medium.
  • a method for producing light control particles that can be used for a light control material comprising a dispersion medium and a light control suspension having a light control particle dispersed in a flowable state in the dispersion medium.
  • the light control particles obtained by the method for manufacturing light control particles of the present invention are used for a light control material.
  • the light control material in the present invention includes a light control suspension having a dispersion medium and light control particles suspended and dispersed in a fluid state in the dispersion medium, and a polymer medium that is cured by irradiation with energy rays. A resin matrix.
  • the light control material is used as a film-shaped light control layer, and the light control film can be formed by sandwiching the light control layer between two transparent conductive substrates.
  • a liquid light control suspension is dispersed in the form of fine droplets in a resin matrix made of a solid polymer medium.
  • a light control film absorbs, scatters, or reflects light due to the random arrangement of the light adjusting particles in a state where no electric field is applied, so that light incident on the film can hardly be transmitted.
  • the light adjusting particles when an electric field is applied to the light control film, the light adjusting particles have an electric dipole moment, and therefore the light adjusting particles are arranged in a direction parallel to the electric field, so that light incident on the film is transmitted.
  • the light adjustment particles respond to the applied electric field, thereby adjusting the light transmission amount.
  • the light dimming particles needle-like or rod-like particles are preferable.
  • the particle size used in the light control film is considered to be preferably the following size from the relationship between the response time with respect to the applied voltage when the light control film is used and the aggregation and precipitation in the light control suspension.
  • the major axis of the light control particles is preferably 225 to 625 nm, more preferably 250 to 550 nm, and further preferably 300 to 500 nm.
  • the ratio of the major axis to the minor axis of the light control particles is preferably 3 to 8, more preferably 3.3 to 7, and still more preferably 3.6 to 6.
  • the major axis and minor axis of the light adjusting particles in the present invention are obtained by photographing the light adjusting particles with an electron microscope such as a scanning electron microscope or a transmission electron microscope, and arbitrarily extracting 50 light adjusting particles from the photographed image,
  • the major axis and minor axis of each light control particle can be calculated as an average value.
  • the major axis is the length of the longest part of the light control particles projected in the two-dimensional visual field by the photographed image.
  • the minor axis is the length of the longest part orthogonal to the major axis.
  • a particle size distribution meter using the principle of the photon correlation method or the dynamic light scattering method can be used as a method for evaluating the particle diameter of the light control particles in the present invention.
  • the size and shape of the particles are not directly measured, but the equivalent diameter is evaluated on the assumption that the particles are spherical, which is different from the SEM observation.
  • the particle diameter of the light control particles Is preferably from 135 to 220 nm, more preferably from 140 to 210 nm, still more preferably from 145 to 205 nm.
  • This Z average value is, for example, a measured value of a different particle size distribution meter based on an optical correlation method or a dynamic light scattering method, specifically, an optical adjustment particle measured by an electron microscope such as the transmission electron microscope described above. It is known that it shows a good correlation with the major axis and minor axis, and is suitable as an index for evaluating the particle diameter.
  • the elemental molecular iodine (A) used in the present invention is a compound of simple iodine, and is generally represented by I 2 .
  • elemental molecular iodine may be input into the reaction system as it is, it is preferable to add the elemental molecular iodine after it is dissolved in the medium. It can also be dissolved in a medium in advance and charged as a solution. This is because, when a solution is used, all molecules can react in a reaction stoichiometry. In this case, the concentration of the solution is preferably 3 to 20% by mass, more preferably 5 to 15% by mass, and further preferably 7 to 12% by mass. Further, (A) elemental molecular iodine to be used is not particularly limited, but those that are easily dissolved in a medium such as powder or spherical fine particles are preferable.
  • alkyl ester organic solvents are preferable, and specific examples include acetate solvents such as ethyl acetate, butyl acetate, isopentyl acetate, and hexyl acetate.
  • the (B) alkaline earth metal iodide used in the present invention is not particularly limited, but calcium, for example, among alkaline earth metals can be used.
  • Calcium iodide is hygroscopic, and hydrates are generally inexpensive. However, since they are in a lump, they are difficult to dissolve in organic solvents. Therefore, it is preferable to remove moisture as much as possible by drying it under reduced pressure or heat treatment before dissolving it in an organic solvent.
  • the moisture content after moisture removal is preferably 1.0% by mass or less, more preferably 0.8% by mass or less, and further preferably 0.5% by mass or less.
  • the calcium iodide thus dried may be charged into the reaction system as a solid, but it is preferable to dissolve the calcium iodide without dissolving in the solvent. It can also be dissolved in a medium in advance and charged as a solution.
  • the concentration of this solution is preferably 5 to 35% by mass, more preferably 10 to 30% by mass, and further preferably 15 to 25% by mass.
  • the water content of 0 to 1.0% by mass in calcium iodide corresponds to 0 to 0.26 parts by mass with respect to 100 masses in total of (A), (B), and (C). It is difficult to accurately measure this amount of water, and in general, a predetermined amount of calcium iodide is measured by titrating and evaluating the amount of calcium with EDTA2Na (ethylenediaminetetraacetic acid) and the like, and the maximum amount of water is estimated by converting the purity. be able to.
  • EDTA2Na ethylenediaminetetraacetic acid
  • the medium for dissolving calcium iodide is not particularly limited, and examples thereof include acetate solvents such as ethyl acetate, butyl acetate, isopentyl acetate and hexyl acetate, and alcohols such as methanol.
  • acetate solvents such as ethyl acetate, butyl acetate, isopentyl acetate and hexyl acetate
  • alcohols such as methanol.
  • the (C) heterocyclic compound used in the present invention is not particularly limited, but is preferably a compound represented by the following formula (1).
  • R 1 and R 2 each independently represents an alkyl group which is hydrogen or a saturated hydrocarbon, and the carbon number thereof is in the range of 1 to 13
  • R 1 and R 2 are preferably, for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, t-butyl group, and the like.
  • Examples include pyrazine-2,5-dicarboxylic acid, which can also be used as a hydrate.
  • the compound represented by the above formula (1) may be charged into the reaction system as a solid, or may be charged after being dissolved in a medium. However, since the medium for dissolving the above formula (1) is limited, it may continue to exist as undissolved as long as the particles are increased even after being charged into the reaction system. Examples of the medium used for dissolving the compound represented by the above formula (1) include a mixed solvent with water and a basic aqueous solution.
  • the molar ratio of the above (A), (B), (C) used in the method for producing a light control particle of the present invention is not particularly limited, and when used for production at a ratio of X: Y: Z, X: 1.7 to 2.3, Y: 0.7 to 1.3, and Z: 1.7 to 2.3 can be used independently.
  • light control particles having a large aspect ratio specifically, light control particles having an aspect ratio of 3 to 8, a major axis of 225 to 625 nm, and a particle size of 135 to 220 nm determined by particle size distribution measurement.
  • X: 1.8 to 2.2, Y: 0.8 to 1.2, Z: 1.8 to 2.2, X: 1.9 to 2.1, Y: 0.9 To 1.1 and Z: 1.9 to 2.1 are more preferable.
  • the medium used in the method for producing the light control particles of the present invention is not particularly limited as long as it is an organic solvent used for dissolving the above (A), (B), and (C).
  • ethyl acetate, butyl acetate It is preferable that at least one acetate solvent such as isopentyl acetate and hexyl acetate is contained. These media may be used alone or in combination of two or more.
  • cellulose nitrate is also called nitrocellulose and is a nitrate ester of cellulose, and is not particularly limited. Generally, it is classified according to the content of nitro groups in the step of nitrate conversion of cellulose, but any one is used as long as it is dissolved in an organic solvent as a medium used in the method for producing light control particles of the present invention. be able to. Therefore, when it is charged into the reaction system, it may be a solid or may be once dissolved in an organic solvent.
  • the relationship between the cellulose nitrate used in the present invention and the medium mass to be used is not particularly limited, but the total mass of cellulose nitrate is preferably 5 to 20% by mass of the medium mass. In particular, in order to produce light control particles with good reproducibility, 6 to 15% by mass is preferable, 7 to 14% by mass is more preferable, and 8 to 13% by mass is further preferable.
  • the above (A) , (B) and (C) are preferably from 90 to 150 parts by weight, more preferably from 100 to 145 parts by weight, even more preferably from 105 to 140 parts by weight, based on a total of 100 parts by weight.
  • the amount of water present in the reaction system at the time of manufacture is strong in the size and shape of the particle size of the light control particles to be manufactured. Affect. Therefore, the amount of water contained in the (A) elemental molecular iodine, (B) alkali metal earth iodide, (C) heterocyclic compound, organic solvent as a medium, methanol, and cellulose nitrate is accurately evaluated. Furthermore, it is necessary to empirically determine the amount of water necessary to obtain light control particles having a more preferable particle size and shape.
  • the total amount of water necessary to obtain light control particles having a preferred particle size and shape is determined empirically as described above, but when methanol is used within the scope of the present invention, for example, the aspect ratio
  • the amount of water for obtaining light control particles having a particle diameter of 135 to 220 nm and 3 to 8, long diameters of 225 to 625 nm and particle size distribution measurement in the particle size distribution measurement is as described in (A), (B) and (C) above. 7.5 to 9.6 parts by mass is preferable with respect to 100 parts by mass in total.
  • the amount of water is the sum of the above (A), (B) and (C).
  • the amount of water is the sum of the above (A), (B) and (C).
  • 7.9 to 9.3 parts by mass is more preferable with respect to 100 parts by mass in total of the above (A), (B), and (C).
  • the present invention it is essential to coexist methanol in the step of mixing (A), (B) and (C) in the medium and granulating. Specifically, by using 50 to 110 parts by mass of methanol with respect to a total of 100 parts by mass of the above (A), (B) and (C), the influence of moisture is reduced, and the light control particles can be stably produced. It turns out that it can be manufactured.
  • the coexisting methanol is less than 50 parts by mass with respect to 100 parts by mass in total of the above (A), (B), and (C), the influence of moisture tends to be large.
  • the coexisting methanol exceeds 110 parts by mass with respect to the total of 100 parts by mass of the above (A), (B), and (C), the aspect ratio of the particles tends to decrease.
  • the coexisting methanol is outside the scope of the present invention, specifically, in the case of 5 to 50 parts by mass with respect to the total of 100 parts by mass of the above (A), (B), (C),
  • the amount of water for obtaining light control particles having an aspect ratio of 3 to 8, a major axis of 225 to 625 nm, and a light control particle having a particle size of 135 to 220 nm required in the particle size distribution measurement is the above (A), (B), (C ) To 7.3 to 8.7 parts by mass with respect to 100 parts by mass in total.
  • the water content is as described above in (A), (B), (C). 7.4 to 8.6 parts by mass with respect to a total of 100 parts by mass, and light adjustment particles having a major axis of 300 to 500 nm and light adjustment particles having a particle diameter of 145 to 205 nm required in particle size distribution measurement are produced.
  • the required amount of moisture it can be seen that the influence of moisture is greater than when methanol is used within the range specified in the present invention.
  • the light adjusting particle manufacturing method of the present invention can make light adjusting particles having a target particle size and shape stably compared to the conventional method when considering an actual manufacturing process.
  • the total amount of moisture is determined empirically as described above, but the range is 3 to 15 masses with respect to a total of 100 mass parts of (A), (B), and (C) as described above. Enter the range of the department. However, this varies within this range depending on the molar ratio of (A), (B), and (C) above, the concentration with respect to the medium, and the amount of cellulose nitrate, and the likelihood width is 2 mass% or less.
  • the amount of water required in the present invention also considers the water contained in the above-mentioned (A), (B), (C), cellulose nitrate, and the solvent used as a medium. That is, when used as a hydrate, the water content in the hydrate is taken into account, and when water is contained in the solvent, the water content is also taken into account. It is preferable to subtract them.
  • the reaction temperature is preferably 30 to 60 ° C., more preferably 33 to 55 ° C., and more preferably 35 to 50 ° C.
  • the apparatus for heating and maintaining the temperature is not particularly limited, and any of a mantle heater, an oil bath, and a water bath may be used.
  • the order of adding each component is not particularly limited. Is preferred.
  • the light control particles obtained by the production method of the present invention can be used for various purposes as in the conventional case.
  • the light control particles are preferably used as light control particles of a light control material for a light control film.
  • the light control film of the present invention comprises a resin matrix formed from a polymer medium that is cured by irradiation with energy rays, a dispersion medium, and light control particles dispersed in a flowable state in the dispersion medium. And a light control layer made of a light control material.
  • the light control film of the present invention is preferably formed by sandwiching the light control layer between two transparent conductive substrates.
  • examples of the polymer medium that is cured by irradiation with energy rays include polymer compositions that are cured by energy rays such as ultraviolet rays, visible rays, and electron beams.
  • examples of the polymer composition include a polymer composition containing a polymer compound having a substituent having an ethylenically unsaturated bond and a photopolymerization initiator.
  • a silicone resin, an acrylic resin, a polyester resin, or the like is preferable from the viewpoints of ease of synthesis, light control performance, durability, and the like.
  • These resins may further have a substituent.
  • the substituent include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a tert-butyl group, an amyl group, an isoamyl group, and a hexyl group.
  • an alkyl group such as a cyclohexyl group
  • an aryl group such as a phenyl group and a naphthyl group are preferable from the viewpoints of light control performance and durability.
  • a photopolymerization initiator that activates radical polymerization when exposed to energy rays can be used.
  • the dispersion medium in the light-adjusting suspension one that is phase-separated from the polymer medium and a resin matrix that is a cured product thereof is used.
  • the light adjusting particles serve to disperse the light adjusting particles in a flowable state, and are selectively attached and coated on the light adjusting particles so that the light adjusting particles are phase-separated during phase separation from the polymer medium.
  • Liquid that acts to move to the droplet phase has no electrical conductivity, has no affinity with the polymer medium, and has a refractive index approximate to that of the resin matrix formed from the polymer medium when used as a light control film A copolymer is used.
  • a (meth) acrylic acid ester oligomer having a fluoro group and / or a hydroxyl group is preferred, and a (meth) acrylic acid ester oligomer having a fluoro group and a hydroxyl group is more preferred.
  • one monomer unit of either a fluoro group or a hydroxyl group has an affinity for the light control particle, and the remaining monomer unit is a droplet of the light control suspension in a polymer medium. Since it works to maintain stability, the light adjusting particles are easily dispersed in the light adjusting suspension, and the light adjusting particles are easily guided into the phase-separated droplets during the phase separation.
  • Examples of the (meth) acrylic acid ester oligomer having such a fluoro group and / or hydroxyl group include 2,2,2-trifluoroethyl methacrylate / butyl acrylate / 2-hydroxyethyl acrylate copolymer, acrylic acid 3 , 5,5-trimethylhexyl / 2-hydroxypropyl acrylate / fumaric acid copolymer, butyl acrylate / 2-hydroxyethyl acrylate copolymer, 2,2,3,3-tetrafluoropropyl acrylate / acrylic Butyl acrylate / acrylic acid 2-hydroxyethyl copolymer, acrylic acid 1H, 1H, 5H-octafluoropentyl / butyl acrylate / acrylic acid 2-hydroxyethyl copolymer, acrylic acid 1H, 1H, 2H, 2H-hepta Decafluorodecyl / butyl acrylate / acrylic acid 2-hydroxy E
  • the light control suspension in the present invention preferably contains 1 to 15% by weight of light control particles, more preferably 2 to 10% by weight, based on the total weight of the light control suspension.
  • the dispersion medium is preferably contained in an amount of 30 to 99% by mass, more preferably 50 to 96% by mass, based on the total mass of the light control suspension.
  • the light-modulating material preferably contains 1 to 100 parts by weight, more preferably 4 to 70 parts by weight, and more preferably 6 to 60 parts by weight of the light control suspension with respect to 100 parts by weight of the polymer medium. More preferably, it is contained in an amount of 8 to 50 parts by mass.
  • the light control material is applied on a transparent conductive substrate, and the polymer medium is irradiated with energy rays to form a light control layer. It can manufacture by sticking a transparent conductive substrate.
  • a light adjustment suspension is prepared as follows. A liquid in which the light control particles are dispersed in a solvent and a dispersion medium of the light control suspension are mixed, and the solvent is distilled off with a rotary evaporator or the like.
  • the light control suspension and the polymer medium are mixed to obtain a mixed liquid (light control material) in which the light control suspension is dispersed in a droplet state in the polymer medium.
  • This mixed solution is applied on a transparent conductive substrate with a certain thickness, and after removing the solvent by drying as necessary, the polymer medium is cured by irradiating energy rays using a metal halide lamp, high-pressure mercury lamp, etc. Let As a result, a film is obtained in which the liquid light control suspension is dispersed in the form of droplets in the cured resin matrix containing the polymer medium. At this time, the light transmittance of the film can be adjusted by variously changing the mixing ratio of the polymer medium and the light control suspension.
  • a light control film can be obtained by bringing another transparent conductive substrate into close contact with the light control layer thus formed.
  • Another transparent conductive substrate may be brought into close contact with the light control layer before the energy ray irradiation, or may be brought into close contact with the light control layer during the energy ray irradiation.
  • a light control layer may be formed on each surface of the two transparent conductive substrates, and the light control layers may be laminated so that the light control layers are in close contact with each other.
  • the thickness of the light control layer is preferably 5 to 1,000 ⁇ m, and more preferably 20 to 100 ⁇ m.
  • the light control suspension and the polymer medium are mixed with a homogenizer, an ultrasonic homogenizer, etc.
  • a method of finely dispersing the prepared suspension, a phase separation method by polymerization of polymer compound components in the polymer medium, a phase separation method by solvent volatilization when the polymer medium contains a solvent, a phase separation method by temperature, etc. can be used.
  • a coating means such as a bar coater, an applicator, a doctor blade, a roll coater, a die coater, and a comma coater, It can be applied to a substrate such as a conductive substrate.
  • a coating you may dilute with a suitable solvent as needed. When a solvent is used, drying is required after coating on the substrate.
  • solvent for example, tetrahydrofuran, toluene, heptane, cyclohexane, ethyl acetate, ethanol, methanol, isoamyl acetate, hexyl acetate and the like can be used.
  • the transparent conductive substrate for example, a transparent substrate coated with a transparent conductive film such as ITO, SnO 2 or In 2 O 3 can be used.
  • the light transmittance of the transparent conductive film is preferably 80% or more, and the thickness of the transparent conductive film is preferably 10 to 5,000 nm.
  • the light transmittance can be measured according to the total light transmittance measuring method of JIS K7105.
  • a transparent substrate glass, a polymer film, etc. can be used, for example.
  • said glass means a substrate transparent to visible light, etc.
  • organic materials such as inorganic material glass of various compositions, transparent acrylic resin, polycarbonate resin, etc.
  • the used resin glass can also be used.
  • the polymer film examples include polyester films such as polyethylene terephthalate, polyolefin films such as polypropylene, polyvinyl chloride, acrylic resin films, polyether sulfone films, polyarylate films, and polycarbonate films.
  • a polyethylene terephthalate film is preferable because it is excellent in transparency and excellent in moldability, adhesiveness, workability, and the like.
  • the thickness of the transparent substrate is not particularly limited, but for example, it is preferably 1 to 15 mm in the case of glass, and preferably 10 to 200 ⁇ m in the case of a polymer film.
  • the surface resistance value of the transparent conductive substrate is preferably 3 to 600 ⁇ . Further, when producing a light control film by narrowing the distance between the transparent conductive substrates, in order to prevent a short-circuit phenomenon caused by mixing of different substances, the thickness of 200 to 1,000 mm is formed on the transparent conductive film. You may use the board
  • a light control film whose light transmittance can be arbitrarily adjusted by forming an electric field can be produced.
  • the droplet size (average droplet size) of the light control suspension dispersed in the resin matrix is 0.5 to 0.5 from the viewpoint of preventing aggregation and deposition of the light control particles.
  • the thickness is preferably 50 ⁇ m, more preferably 1 to 10 ⁇ m.
  • For the average droplet diameter for example, using an optical microscope, take an image such as a photograph from one side of the light control film, and measure multiple droplet diameters (the longest droplet diameter) selected arbitrarily. The average value can be calculated. Further, it is also possible to take a visual field image of the light control film with an optical microscope into a computer as digital data and calculate it using image processing integration software.
  • the size of the droplets depends on the concentration of each component constituting the light control suspension, the viscosity of the light control suspension and the polymer medium, and the compatibility of the dispersion medium in the light control suspension with the polymer medium. It is decided by etc.
  • the refractive index of the liquid light-adjusting suspension and the refractive index of the polymer medium that cures when irradiated with energy rays are close to each other. It is preferable in terms of improving the degree.
  • the power source used is normally AC and can be operated in the frequency range of 10 to 220 volts (effective value) and 30 Hz to 500 kHz.
  • the light control film of the present invention includes, for example, indoor and outdoor partitions, window glass / skylights for buildings, various flat display elements used in the electronics industry and video equipment, various instrument panels, and existing liquid crystal display elements. Suitable for applications such as light shutters, various indoor / outdoor advertisements and signboards, window glass for aircraft / railway vehicles / ships, window glass / back mirror / sunroof for automobiles, glasses, sunglasses, sun visors, etc. Can be used.
  • the light control film of the present invention may be sandwiched between two base materials or used. It may be used by pasting it on one side.
  • said base material glass, a polymer film, etc. can be used similarly to the said transparent substrate, for example.
  • Example 1 From iodine (JIS reagent special grade, Wako Pure Chemical Industries, Ltd.) and isopentyl acetate (reagent special grade, Wako Pure Chemical Industries, Ltd.), an 8.47 mass% iodine isopentyl acetate solution, and cellulose nitrate 1/4 LIG
  • An isopentyl acetate solution of 20.0 mass% cellulose nitrate was prepared from (trade name: manufactured by Bergerac NC) and isopentyl acetate.
  • Calcium iodide hydrate (chemical use, manufactured by Wako Pure Chemical Industries, Ltd.) was dried by heating, dehydrated and dissolved in isopentyl acetate to prepare a 20.88 mass% calcium iodide solution.
  • a 300 ml four-necked flask was equipped with a stirrer and a condenser, and 65.55 g of iodine solution and 82.93 g of cellulose nitrate solution were added, and the flask was heated at a water bath temperature of 35 to 40 ° C. After the temperature of the contents of the flask reached 35 to 40 ° C., 7.41 g of dehydrated methanol (special grade reagent, manufactured by Wako Pure Chemical Industries, Ltd.) and purified water (manufactured by Wako Pure Chemical Industries, Ltd.) were added to 0. 525 g was added and stirred.
  • dehydrated methanol special grade reagent, manufactured by Wako Pure Chemical Industries, Ltd.
  • purified water manufactured by Wako Pure Chemical Industries, Ltd.
  • the water ratio (%) in the cellulose nitrate solution was measured using Hiranuma Sangyo Co., Ltd. Hiranuma moisture measuring device AQ-7 (generating liquid: Hydranal Aqualite RS, counter electrode liquid: Aqualite CN).
  • the amount of water in the cellulose nitrate solution was 0.697 g from the mass of the added solution.
  • the amount of water present in the reaction system was 1.222 g if it was contained in cellulose nitrate and purified water added.
  • calcium iodide contains 0 to 1% by mass of moisture after drying after heating and drying and is dehydrated. However, moisture content is considered because accurate measurement is difficult. Not done.
  • the amount of methanol was 59.2 parts by mass when the total mass of 12.51 g of (A), (B) and (C) was 100 parts by mass, and the water content was 9.77 parts by mass.
  • the obtained light control particles had a particle diameter of 139 nm determined by particle size distribution measurement, a major axis of 259 nm and an aspect ratio of 4.1 by SEM observation.
  • the supernatant was removed by inclining, and the precipitate remaining at the bottom was added with 5 times the mass of the precipitate, isopentyl acetate to disperse the precipitate with ultrasound, The mass of the whole liquid was measured.
  • the dispersed liquid was weighed on a 1 g metal plate, dried at 120 ° C. for 1 hour, then weighed again to determine the non-volatile content ratio%. From the nonvolatile content ratio and the mass of the entire liquid, the total nonvolatile content, that is, the precipitation yield of 4.15 g was determined.
  • Example 2 Light adjustment particles were produced in the same manner as in Example 1 except that the amount of purified water added was 0.300 g and the added cellulose nitrate solution was 83.05 g. The amount of water in the cellulose nitrate solution was 0.673 g (water ratio 0.81% by mass), and the amount of water present in the reaction system was 0.973 g.
  • the amount of methanol was 59.2 parts by mass with respect to a total of 100 parts by mass of (A), (B) and (C), and the moisture content was 7.78 parts by mass.
  • the obtained light control particles had a particle diameter of 147 nm determined by particle size distribution measurement, a major axis of 307 nm, an aspect ratio of 4.5, and a precipitation yield of 4.74 g as observed by SEM.
  • Example 3 Light adjustment particles were produced in the same manner as in Example 1 except that the amount of purified water added was 0.375 g and the added cellulose nitrate solution was 82.54 g. The amount of water in the cellulose nitrate solution was 0.669 g (water ratio 0.81% by mass), and the amount of water present in the reaction system was 1.044 g.
  • the amount of methanol was 59.2 parts by mass with respect to a total of 100 parts by mass of (A), (B) and (C), and the moisture content was 8.34 parts by mass.
  • the obtained light control particles had a particle diameter of 162 nm determined by particle size distribution measurement, a major axis of 400 nm, an aspect ratio of 5.5, and a precipitation yield of 5.76 g as observed by SEM.
  • Example 4 Light adjustment particles were produced in the same manner as in Example 1 except that the amount of purified water added was 0.375 g and the added cellulose nitrate solution was 82.89 g. The amount of water in the cellulose nitrate solution was 0.671 g (water ratio 0.81% by mass), and the amount of water present in the reaction system was 1.046 g.
  • the amount of methanol was 59.2 parts by mass with respect to a total of 100 parts by mass of (A), (B) and (C), and the water content was 8.37 parts by mass.
  • the obtained light control particles had a particle diameter of 162 nm determined by particle size distribution measurement, a major axis of 400 nm, an aspect ratio of 5.2, and a precipitation yield of 5.63 g as observed by SEM.
  • Example 5 Light adjustment particles were produced in the same manner as in Example 1 except that the amount of purified water added was 0.450 g and the added cellulose nitrate solution was 82.25 g. The amount of water in the cellulose nitrate solution was 0.666 g (water ratio 0.81% by mass), and the amount of water present in the reaction system was 1.116 g.
  • the amount of methanol was 59.2 parts by mass with respect to a total of 100 parts by mass of (A), (B) and (C), and the water content was 8.92 parts by mass.
  • the obtained light control particles had a particle diameter of 200 nm determined by particle size distribution measurement, a major axis of 594 nm, an aspect ratio of 6.3, and a precipitation yield of 7.41 g by SEM observation.
  • Example 6 Light adjustment particles were produced in the same manner as in Example 1 except that the amount of purified water added was 0.325 g and the added cellulose nitrate solution was 83.13 g. The amount of water in the cellulose nitrate solution was 0.798 g (water ratio 0.96% by mass), and the amount of water present in the reaction system was 1.123 g.
  • the amount of methanol was 59.2 parts by mass with respect to a total of 100 parts by mass of (A), (B) and (C), and the water content was 8.98 parts by mass.
  • the obtained light control particles had a particle diameter of 189 nm determined by particle size distribution measurement, a major axis of 384 nm, an aspect ratio of 5.3, and a precipitation yield of 6.62 g by SEM observation.
  • Example 7 Light adjustment particles were produced in the same manner as in Example 1 except that the amount of purified water added was 0.525 g and the added cellulose nitrate solution was 82.77 g. The amount of water in the cellulose nitrate solution was 0.6709 g (water ratio 0.81% by mass), and the amount of water present in the reaction system was 1.195 g.
  • the amount of methanol was 59.2 parts by mass with respect to a total of 100 parts by mass of (A), (B) and (C), and the water content was 9.56 parts by mass.
  • the obtained light control particles had a particle diameter of 231 nm determined by particle size distribution measurement, a major axis of 581 nm, an aspect ratio of 6.9, and a precipitation yield of 7.70 g as observed by SEM.
  • Example 8 Calcium iodide hydrate was dried by heating and dehydrated and dissolved in isopentyl acetate and methanol to prepare a 20.88% calcium iodide solution. At this time, the mass ratio of isopentyl acetate and methanol is 2.0: 3.0. A 300 ml four-necked flask was equipped with a stirrer and a condenser, and 65.55 g of iodine solution and 82.71 g of cellulose nitrate solution were added and stirred.
  • the flask was heated at a water bath temperature of 42 to 44 ° C., and after the contents reached 42 to 44 ° C., purified water was not added, 15.6 g of calcium iodide solution was added, and then pyrazine-2,5-dicarboxylic acid was added. 3.70 g was added. The mixture was stirred for 2 hours at a water bath temperature of 42 to 44 ° C. and then allowed to cool.
  • the amount of water in the cellulose nitrate solution was 0.695 g (water ratio 0.84% by mass), and the amount of water present in the reaction system was 0.695 g.
  • Methanol amount was 59.2 parts by mass with a total mass of 12.51 g of (A), (B) and (C) as 100 parts by mass, and the water content was 5.55 parts by mass.
  • the obtained light control particles had a particle diameter of 126 nm determined by particle size distribution measurement, a major axis of 173 nm and an aspect ratio of 2.3 by SEM observation.
  • Example 9 Light adjusting particles were produced in the same manner as in Example 8 with 0.325 g of purified water added and 83.05 g of the added cellulose nitrate solution.
  • the amount of water in the cellulose nitrate solution was 0.698 g (water ratio 0.84% by mass), and the amount of water present in the reaction system was 1.023 g.
  • the amount of methanol was 59.2 parts by mass with respect to a total of 100 parts by mass of (A), (B) and (C), and the water content was 8.17 parts by mass.
  • the obtained light control particles had a particle diameter of 155 nm determined by particle size distribution measurement, a major axis of 335 nm, an aspect ratio of 4.6, and a precipitation yield of 6.37 g by SEM observation.
  • Example 10 Light adjustment particles were produced in the same manner as in Example 8 except that the amount of purified water added was 0.375 g and the added cellulose nitrate solution was 82.78 g. The amount of water in the cellulose nitrate solution was 0.695 g (water ratio 0.84% by mass), and the amount of water present in the reaction system was 1.070 g.
  • the amount of methanol was 59.2 parts by mass with respect to a total of 100 parts by mass of (A), (B) and (C), and the water content was 8.56 parts by mass.
  • the obtained light control particles had a particle diameter of 169 nm determined by particle size distribution measurement, a major axis of 348 nm, an aspect ratio of 4.8, and a precipitation yield of 6.46 g as observed by SEM.
  • Example 11 Light adjustment particles were produced in the same manner as in Example 8 with 0.375 g of purified water added and 82.83 g of the added cellulose nitrate solution.
  • the amount of water in the cellulose nitrate solution was 0.696 g (water ratio 0.84% by mass), and the amount of water present in the reaction system was 1.071 g.
  • the amount of methanol was 59.2 parts by mass with respect to a total of 100 parts by mass of (A), (B) and (C), and the water content was 8.56 parts by mass.
  • the obtained light control particles had a particle diameter of 167 nm determined by particle size distribution measurement, a major axis of 343 nm, an aspect ratio of 4.7, and a precipitation yield of 6.49 g as observed by SEM.
  • Example 12 Light adjustment particles were produced in the same manner as in Example 8 with 0.375 g of purified water added and 83.18 g of the added cellulose nitrate solution.
  • the amount of water in the cellulose nitrate solution was 0.699 g (water ratio 0.84% by mass), and the amount of water present in the reaction system was 1.074 g.
  • the amount of methanol was 59.2 parts by mass with respect to a total of 100 parts by mass of (A), (B) and (C), and the water content was 8.58 parts by mass.
  • the obtained light control particles had a particle diameter of 177 nm determined by particle size distribution measurement, a major axis of 402 nm, an aspect ratio of 5.1, and a precipitation yield of 6.26 g as observed by SEM.
  • Example 13 Light adjusting particles were produced in the same manner as in Example 8 with 0.375 g of purified water added and 83.28 g of the added cellulose nitrate solution.
  • the amount of water in the cellulose nitrate solution was 0.700 g (water ratio 0.84% by mass), and the amount of water present in the reaction system was 1.075 g.
  • the amount of methanol was 59.2 parts by mass with respect to a total of 100 parts by mass of (A), (B) and (C), and the moisture content was 8.59 parts by mass.
  • the obtained light control particles had a particle diameter of 178 nm determined by particle size distribution measurement, a major axis of 409 nm, an aspect ratio of 5.2, and a precipitation yield of 6.55 g by SEM observation.
  • Example 14 Light adjustment particles were produced in the same manner as in Example 8 except that the amount of purified water added was 0.475 g and the added cellulose nitrate solution was 82.59 g. The amount of water in the cellulose nitrate solution was 0.694 g (water ratio 0.84% by mass), and the amount of water present in the reaction system was 1.169 g.
  • the amount of methanol was 59.2 parts by mass with respect to a total of 100 parts by mass of (A), (B) and (C), and the water content was 9.34 parts by mass.
  • the obtained light control particles had a particle diameter of 213 nm determined by particle size distribution measurement, a major axis of 505 nm, an aspect ratio of 5.6, and a precipitation yield of 7.45 g by SEM observation.
  • Example 15 The amount of purified water added was 0.375 g, the added cellulose nitrate solution was 82.63 g, and dehydrated methanol was 9.88 g. The amount of water in the cellulose nitrate solution was 0.669 g (water ratio 0.81% by mass), and the amount of water present in the reaction system was 1.044 g.
  • the amount of methanol was 79.0 parts by mass with respect to a total of 100 parts by mass of (A), (B) and (C), and the water content was 8.35 parts by mass.
  • the obtained light control particles had a particle diameter of 159 nm determined by particle size distribution measurement, a major axis of 382 nm, an aspect ratio of 5.0, and a precipitation yield of 5.59 g as observed by SEM.
  • Example 16 The amount of purified water added was 0.450 g, the added cellulose nitrate solution was 82.59 g, and dehydrated methanol was 9.88 g. The amount of water in the cellulose nitrate solution was 0.669 g (water ratio 0.81% by mass), and the amount of water present in the reaction system was 1.119 g.
  • the amount of methanol was 79.0 parts by mass with respect to a total of 100 parts by mass of (A), (B) and (C), and the water content was 8.95 parts by mass.
  • the obtained light control particles had a particle diameter of 183 nm determined by particle size distribution measurement, a major axis of 462 nm, an aspect ratio of 5.3, and a precipitation yield of 6.78 g as observed by SEM.
  • Example 17 Light adjustment particles were produced in the same manner as in Example 1 except that the amount of purified water added was 0.300 g, the added cellulose nitrate solution was 83.21 g, and dehydrated methanol was 12.35 g. The amount of water in the cellulose nitrate solution was 0.649 g (water ratio 0.78% by mass), and the amount of water present in the reaction system was 0.949 g.
  • the amount of methanol was 98.7 parts by mass with respect to a total of 100 parts by mass of (A), (B) and (C), and the moisture content was 7.59 parts by mass.
  • the obtained light control particles had a particle diameter of 139 nm determined by particle size distribution measurement, a major axis of 242 nm, an aspect ratio of 3.1, and a precipitation yield of 5.38 g by SEM observation.
  • Example 18 The amount of purified water added was 0.375 g, the added cellulose nitrate solution was 83.25 g, and dehydrated methanol was 12.35 g. The amount of water in the cellulose nitrate solution was 0.649 g (water ratio 0.78% by mass), and the amount of water present in the reaction system was 1.024 g.
  • the amount of methanol was 98.7 parts by mass and the amount of water was 8.19 parts by mass with respect to 100 parts by mass in total of (A), (B) and (C).
  • the obtained light control particles had a particle diameter of 149 nm determined by particle size distribution measurement, a major axis of 232 nm, an aspect ratio of 3.0, and a precipitation yield of 5.47 g by SEM observation.
  • Example 19 The amount of purified water added was 0.450 g, the added cellulose nitrate solution was 82.89 g, and dehydrated methanol was 12.35 g. The amount of water in the cellulose nitrate solution was 0.647 g (water ratio 0.78% by mass), and the amount of water present in the reaction system was 1.097 g.
  • the amount of methanol was 98.7 parts by mass and the amount of water was 8.77 parts by mass with respect to 100 parts by mass in total of (A), (B) and (C).
  • the obtained light control particles had a particle diameter of 174 nm determined by particle size distribution measurement, a major axis of 351 nm, an aspect ratio of 4.1, and a precipitation yield of 6.79 g as observed by SEM.
  • Example 20 The amount of purified water added was 0.525 g, the added cellulose nitrate solution was 82.96 g, and dehydrated methanol was 12.35 g. The amount of water in the cellulose nitrate solution was 0.672 g (water ratio 0.81% by mass), and the amount of water present in the reaction system was 1.197 g.
  • the amount of methanol was 98.7 parts by mass with respect to 100 parts by mass in total of (A), (B) and (C), and the water content was 9.57 parts by mass.
  • the obtained light control particles had a particle size of 213 nm determined by particle size distribution measurement, a major axis of 607 nm, an aspect ratio of 5.6, and a precipitation yield of 6.98 g by SEM observation.
  • the amount of methanol was 19.7 parts by mass with respect to a total of 100 parts by mass of (A), (B) and (C), and the water content was 5.36 parts by mass.
  • the obtained light control particles had a particle diameter of 86 nm determined by particle size distribution measurement, a major axis of 114 nm, an aspect ratio of 1.6, and a precipitation yield of 1.73 g by SEM observation.
  • the amount of methanol was 19.7 parts by mass with respect to a total of 100 parts by mass of (A), (B) and (C), and the water content was 7.56 parts by mass.
  • the obtained light control particles had a particle diameter of 144 nm determined by particle size distribution measurement, a major axis of 308 nm, an aspect ratio of 4.0, and a precipitation yield of 3.76 g by SEM observation.
  • the amount of methanol was 19.7 parts by mass with respect to a total of 100 parts by mass of (A), (B) and (C), and the moisture content was 7.81 parts by mass.
  • the obtained light control particles had a particle size of 173 nm determined by particle size distribution measurement, a major axis of 397 nm, an aspect ratio of 5.1, and a precipitation yield of 5.96 g as observed by SEM.
  • the amount of methanol was 19.7 parts by mass and the amount of water was 7.82 parts by mass with respect to 100 parts by mass in total of (A), (B) and (C).
  • the obtained light control particles had a particle diameter of 166 nm determined by particle size distribution measurement, a major axis of 370 nm, an aspect ratio of 5.3, and a precipitation yield of 4.93 g by SEM observation.
  • the amount of methanol was 19.7 parts by mass with respect to a total of 100 parts by mass of (A), (B) and (C), and the moisture content was 7.83 parts by mass.
  • the obtained light control particles had a particle diameter of 169 nm determined by particle size distribution measurement, a major axis of 378 nm, an aspect ratio of 5.2, and a precipitation yield of 4.98 g by SEM observation.
  • the amount of methanol was 19.7 parts by mass with respect to a total of 100 parts by mass of (A), (B) and (C), and the moisture content was 7.84 parts by mass.
  • the obtained light control particles had a particle diameter of 170 nm determined by particle size distribution measurement, a major axis of 401 nm, an aspect ratio of 4.9, and a precipitation yield of 4.35 g by SEM observation.
  • the amount of methanol was 19.7 parts by mass with respect to a total of 100 parts by mass of (A), (B) and (C), and the moisture content was 7.85 parts by mass.
  • the obtained light control particles had a particle diameter of 161 nm determined by particle size distribution measurement, a major axis of 376 nm, an aspect ratio of 5.4, and a precipitation yield of 4.13 g as observed by SEM.
  • the amount of methanol was 19.7 parts by mass with respect to a total of 100 parts by mass of (A), (B) and (C), and the moisture content was 7.96 parts by mass.
  • the obtained light control particles had a particle diameter of 180 nm obtained by particle size distribution measurement, a major axis of 401 nm, an aspect ratio of 4.7, and a precipitation yield of 7.09 g by SEM observation.
  • the amount of methanol was 19.7 parts by mass with respect to a total of 100 parts by mass of (A), (B) and (C), and the water content was 8.00 parts by mass.
  • the obtained light control particles had a particle diameter of 165 nm obtained by particle size distribution measurement, a major axis of 366 nm, an aspect ratio of 4.1, and a precipitation yield of 6.26 g by SEM observation.
  • the amount of methanol was 19.7 parts by mass with respect to a total of 100 parts by mass of (A), (B) and (C), and the water content was 8.17 parts by mass.
  • the obtained light control particles had a particle diameter of 187 nm determined by particle size distribution measurement, a major axis of 436 nm, an aspect ratio of 5.3, and a precipitation yield of 7.04 g by SEM observation.
  • the amount of methanol was 19.7 parts by mass with respect to a total of 100 parts by mass of (A), (B) and (C), and the water content was 8.17 parts by mass.
  • the obtained light control particles had a particle diameter of 183 nm determined by particle size distribution measurement, a major axis of 423 nm, an aspect ratio of 4.7, and a precipitation yield of 6.92 g as observed by SEM.
  • the amount of methanol was 19.7 parts by mass with respect to a total of 100 parts by mass of (A), (B) and (C), and the water content was 8.15 parts by mass.
  • the obtained light control particles had a particle diameter of 190 nm determined by particle size distribution measurement, a major axis of 476 nm, an aspect ratio of 5.0, and a precipitation yield of 7.35 g by SEM observation.
  • the amount of methanol was 19.7 parts by mass with respect to a total of 100 parts by mass of (A), (B) and (C), and the water content was 8.15 parts by mass.
  • the obtained light control particles had a particle size of 173 nm determined by particle size distribution measurement, a major axis of 412 nm, an aspect ratio of 5.4, and a precipitation yield of 6.60 g by SEM observation.
  • the amount of methanol was 19.7 parts by mass with respect to 100 parts by mass in total of (A), (B) and (C), and the water content was 8.14 parts by mass.
  • the obtained light control particles had a particle diameter of 185 nm determined by particle size distribution measurement, a major axis of 454 nm, an aspect ratio of 4.8, and a precipitation yield of 7.21 g by SEM observation.
  • the amount of methanol was 19.7 parts by mass with respect to a total of 100 parts by mass of (A), (B) and (C), and the water content was 8.18 parts by mass.
  • the obtained light control particles had a particle diameter of 170 nm determined by particle size distribution measurement, a major axis of 390 nm, an aspect ratio of 5.1, and a precipitation yield of 6.37 g by SEM observation.
  • the amount of methanol was 19.7 parts by mass and the amount of water was 8.23 parts by mass with respect to 100 parts by mass in total of (A), (B) and (C).
  • the obtained light control particles had a particle diameter of 190 nm obtained by particle size distribution measurement, a major axis of 462 nm, an aspect ratio of 5.6, and a precipitation yield of 7.15 g by SEM observation.
  • the amount of methanol was 19.7 parts by mass with respect to a total of 100 parts by mass of (A), (B) and (C), and the water content was 8.38 parts by mass.
  • the obtained light control particles had a particle size of 198 nm determined by particle size distribution measurement, a major axis of 455 nm, an aspect ratio of 5.6, and a precipitation yield of 6.76 g by SEM observation.
  • the amount of methanol was 19.7 parts by mass with respect to a total of 100 parts by mass of (A), (B) and (C), and the water content was 8.98 parts by mass.
  • the obtained light control particles had a particle diameter of 252 nm determined by particle size distribution measurement, a major axis of 645 nm, an aspect ratio of 7.1, and a precipitation yield of 7.61 g as observed by SEM.
  • the amount of methanol was 19.7 parts by mass with respect to a total of 100 parts by mass of (A), (B) and (C), and the water content was 9.58 parts by mass.
  • the obtained light control particles had a particle diameter of 260 nm obtained by particle size distribution measurement, a major axis of 689 nm, an aspect ratio of 5.5, and a precipitation yield of 7.50 g as observed by SEM.
  • the amount of methanol was 39.5 parts by mass with respect to a total of 100 parts by mass of (A), (B) and (C), and the moisture content was 7.83 parts by mass.
  • the obtained light control particles had a particle diameter of 181 nm determined by particle size distribution measurement, a major axis of 466 nm, an aspect ratio of 5.4, and a precipitation yield of 6.64 g by SEM observation.
  • the amount of methanol was 39.5 parts by mass with respect to a total of 100 parts by mass of (A), (B) and (C), and the moisture content was 7.9 parts by mass.
  • the obtained light control particles had a particle diameter of 184 nm determined by particle size distribution measurement, a major axis of 409 nm, an aspect ratio of 4.8, and a precipitation yield of 6.80 g by SEM observation.
  • the amount of methanol was 39.5 parts by mass with respect to a total of 100 parts by mass of (A), (B) and (C), and the water content was 9.02 parts by mass.
  • the obtained light control particles had a particle size of 261 nm determined by particle size distribution measurement, a major axis of 851 nm, an aspect ratio of 7.3, and a precipitation yield of 7.48 g as observed by SEM.
  • the amount of methanol was 197.4 parts by mass with respect to a total of 100 parts by mass of (A), (B) and (C), and the moisture content was 8.201 parts by mass.
  • the obtained light control particles had a particle diameter of 300 nm determined by particle size distribution measurement, a major axis of 386 nm, an aspect ratio of 2.4, and a precipitation yield of 4.05 g as observed by SEM.
  • Table 1 shows the results of Examples 1 to 20 and Comparative Examples 1 to 23. As can be seen from Table 1, the use of an appropriate amount of methanol within the scope of the present invention can reduce the effect of moisture on the resulting particle size.
  • particles having a desired size can be obtained. ⁇ 625 nm is obtained with better yield than when methanol is used in amounts outside the scope of the present invention.
  • the influence of moisture is reduced and reproducibility is good in the granulation step of the method of manufacturing light adjusting particles.
  • a method for producing a light control particle in order to efficiently obtain light adjusting particles having an optimal particle size and shape as a light modulating material, the influence of moisture is reduced and reproducibility is good in the granulation step of the method of manufacturing light adjusting particles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 光調整粒子の製造方法において、エネルギー線を照射することにより硬化する高分子媒体から形成された樹脂マトリックス及び、分散媒と、該分散媒中に流動可能な状態で分散した光調整粒子と、を有する光調整懸濁液、を含有する調光材料に用いることが可能な光調整粒子の製造方法であって、(A)元素状分子ヨウ素、(B)アルカリ土類金属ヨウ化物、(C)複素環式化合物とを媒体中で混合して造粒する工程において、前記(A)、(B)及び(C)の合計100質量部に対して50質量部以上110質量部以下のメタノールを共存させ、反応させる。それにより、調光材料として最適な粒子サイズ及び形状を有する光調整粒子を効率よく得るために、光調整粒子の製造方法の造粒工程において、水分の影響を低減させ、且つ再現性が良好な光調整粒子の製造方法を提供できる。

Description

光調整粒子の製造方法及び該製造方法で得られた光調整粒子を用いた調光フィルム
 本発明は、光調整粒子の製造方法に関する。より詳しくは、電界の大きさによって光透過度が変化する調光フィルムに使用される光調整粒子の製造方法に関する。また、その製造方法で得られた光調整粒子を用いた調光フィルムに関する。
 調光材料は、電界の印加の大きさにより光透過率が変化し、入射光量の調整が可能な材料である。例えば、電界に対して応答可能な光調整粒子を分散した光調整懸濁液を、樹脂マトリックス中に分散して、調光材料を得る。該調光材料をフィルム状とした調光層を、透明導電性基板上で挟持させた調光フィルムが知られている。
 この調光フィルムは、光調整粒子を分散した光調整懸濁液の微細な液滴が、紫外線照射によって硬化した樹脂マトリックス中に分散した調光材料をフィルム状とした調光層を用いたフィルムである。この調光フィルム中で光調整粒子は、電界を印加していない状態では、ブラウン運動により光を吸収、散乱又は反射するため、フィルムへの入射光は透過できない。電界を印加した場合、光調整粒子の分極により、電界につれて平行な方向に配列するため、フィルムに入射した光を透過させはじめる。このように、光調整粒子の電界への応答により、光の透過量を調整している(例えば、特許文献1参照)。
 この光調整粒子としては特許文献2に挙げられているものが知られているが、近年、特許文献3で開示された光調整粒子が、耐熱性や耐候性に優れていることから最も商業化に近いと考えられている。
 この光調整粒子の製造方法は、例えば特許文献4に開示されているものが、最も生産性が良く好ましい製造方法である。しかし、水分が光調整粒子の粒子サイズ、形状に大きく影響することから、製造時に反応系内に存在する全水分量を厳密に求めなければならない。例えば、上記製造方法において、光調整粒子の凝集防止等のために加えられる硝酸セルロースは、商業利用できるものは約5質量%程度まで水分を含むものが一般的であり、この水分量を正確に求める必要がある。また、ヨウ化カルシウムは通常、廉価な水和物を脱水して使用することが多いが、残存している水分量も正確に求める必要がある。
 調光材料として最適な粒子サイズ、形状を有する光調整粒子となるようにするには、製造時の反応系内に存在する水分量を厳密に調整する必要がある。
 このように、特許文献4に開示される光調整粒子の製造方法は、調光材料として最適な粒子サイズ、形状を有する光調整粒子を得るために、製造時に系内に存在する水分量を正確に把握しなければならない。さらに、所望する粒子サイズ、形状を有する光調整粒子を得るために必要とされる水分量の許容される範囲が狭いことから、大量生産時の水分量調整が非常に難しく、産業利用上の課題を抱えており、工業化が困難となっている。
特許第3434295号公報 特公平1-34369号公報 特許第2871837号公報 特許第3448354号公報
 そこで、上記を鑑みて、光調整粒子の製造において必須成分であるが、粒子サイズ及び形状に大きな影響を与える水分に対して、調光材料として最適な粒子サイズ及び形状を有する光調整粒子を効率よく得るために、光調整粒子の製造方法の造粒工程における水分量の影響を低減させ、且つ再現性が良好な光調整粒子の製造方法を提供することを目的とする。
 本発明者等は、鋭意検討を重ねた結果、光調整粒子の製造方法における造粒工程において、メタノールを特定の量で共存させることにより、得られる光調整粒子の粒子サイズ、形状に対する水分の影響を低減できることを見出し、本発明を完成するに至った。
 すなわち、本発明は以下の通りである。
(1)エネルギー線を照射することにより硬化する高分子媒体からなる樹脂マトリックス及び、
分散媒と、該分散媒中に流動可能な状態で分散した光調整粒子と、を有する光調整懸濁液、を含有する調光材料に用いることが可能な光調整粒子の製造方法であって、
(A)元素状分子ヨウ素、(B)アルカリ土類金属ヨウ化物、(C)複素環式化合物とを媒体中で混合して造粒する工程において、前記(A)、(B)及び(C)の合計100質量部に対して50質量部以上110質量部以下のメタノールを共存させ、反応させることを特徴とする光調整粒子の製造方法。
(2)前記(B)アルカリ土類金属ヨウ化物が、ヨウ化カルシウムであることを特徴とする上記(1)に記載の光調整粒子の製造方法。
(3)前記(C)複素環式化合物が、下記式(1)で示される化合物であることを特徴とする上記(1)又は(2)に記載の光調整粒子の製造方法。
Figure JPOXMLDOC01-appb-C000002
(式中R、Rはそれぞれ独立に水素又は飽和炭化水素であるアルキル基を表し、その炭素数は1~13の範囲にある。)
(4)前記造粒工程において、硝酸セルロースを共存させることを特徴とする上記(1)~(3)のいずれか一つに記載の光調整粒子の製造方法。
(5)エネルギー線を照射することにより硬化する高分子媒体から形成された樹脂マトリックス及び、
分散媒と、該分散媒中に流動可能な状態で分散した光調整粒子と、を有する光調整懸濁液、を含む調光材料からなる調光層を有する調光フィルムにおいて、
前記光調整粒子が上記(1)~(3)のいずれか一つに記載の光調整粒子の製造方法で得られたことを特徴とする調光フィルム。
 本発明によれば、調光材料として適切な光調整粒子の粒子サイズ、形状を得るための造粒工程において、水分の影響を低減させ、且つ再現性が良好な光調整粒子の製造方法を提供することが可能となる。
 本願の開示は、2008年5月15日に出願された特願2008-128560号に記載の主題と関連しており、それらの開示内容は引用によりここに援用される。
粒度分布測定により求められる粒子径と水分量との関係を示すグラフである。 SEMにより求められる粒子径と水分量との関係を示すグラフである。 粒度分布測定により求められる粒子径と収量との関係を示すグラフである。 SEMにより求められる粒子径と収量との関係を示すグラフである。
 以下、本発明について詳しく説明する。
 本発明の光調整粒子の製造方法は、エネルギー線を照射することにより硬化する高分子媒体からなる樹脂マトリックス及び、
分散媒と、該分散媒中に流動可能な状態で分散した光調整粒子と、を有する光調整懸濁液、を含有する調光材料に用いることが可能な光調整粒子の製造方法であって、
(A)元素状分子ヨウ素、(B)アルカリ土類金属ヨウ化物、(C)複素環式化合物とを媒体中で混合して造粒する工程において、前記(A)、(B)及び(C)の合計100質量部に対して50質量部以上110質量部以下のメタノールを共存させ、反応させることを特徴とする。
 本発明の光調整粒子の製造方法で得られる光調整粒子は、調光材料に用いられる。本発明における調光材料は、分散媒と、該分散媒中に流動状態で浮遊分散された光調整粒子と、を有する光調整懸濁液及び、エネルギー線を照射することにより硬化する高分子媒体から形成された樹脂マトリックス、を含む。
 また、調光材料は、フィルム状の調光層として用いられ、該調光層を2枚の透明導電性基板間等に挟んで調光フィルムを形成することが可能である。
 調光フィルムの調光層では、液状の光調整懸濁液が、固体状の高分子媒体からなる樹脂マトリックス内に微細な液滴の形態で分散されている。このような調光フィルムは、電界を印加していない状態では、光調整粒子のランダムな配置により光を吸収、散乱又は反射するため、フィルムに入射した光はほとんど透過できない。しかし、調光フィルムに電界を印加すると、上記光調整粒子が電気的双極子モーメントを持つことから、光調整粒子が電界と平行な方向に配列するため、フィルムに入射した光を透過させる。このように、光調整粒子が、印加された電界に対して応答することにより、光の透過量を調整することが可能となる。光調光粒子としては、針状または棒状のようなものが好ましい。
 調光フィルムに用いられる粒子サイズは、調光フィルムとしたときの印加電圧に対する応答時間と、光調整懸濁液中の凝集及び沈殿との関係から、以下のサイズが好ましいと考えている。
 光調整粒子の長径は、225~625nmが好ましく、250~550nmがより好ましく、300~500nmがさらに好ましい。
 光調整粒子の短径に対する長径の比率、すなわちアスペクト比は3~8が好ましく、3.3~7がより好ましく、3.6~6がさらに好ましい。
 本発明における光調整粒子の長径と短径は、走査型電子顕微鏡、透過型電子顕微鏡等の電子顕微鏡で光調整粒子を撮影し、撮影した画像より任意に50個の光調整粒子を抽出し、各光調整粒子の長径と短径を平均値として算出することができる。ここで、長径とは、上記撮影した画像により二次元視野内に投影された光調整粒子について、最も長い部分の長さとする。また、短径とは、上記長径に直交する最も長い部分の長さとする。
 また、本発明における光調整粒子の粒子径を評価する方法として、光子相関法や動的光散乱法の原理を用いた粒度分布計を用いることができる。この方法では直接粒子の大きさや形状を計測するのではなく、粒子を球状と仮定して相当径を評価することになり、SEM観察とは異なる値となる。特に、シスメックス株式会社製ゼータサイザーナノシリーズを用い、Z averageとして出力される相当径を粒子径とした場合に、光調整粒子の粒子径(以下、「粒度分布測定により求められる粒子径」ともいう)は135~220nmが好ましく、140~210nmがより好ましく、145~205nmがさらに好ましい。
 このZ average値は、例えば、光相関法や動的光散乱法に基づいた、違う粒度分布計の測定値、具体的には上述の透過型電子顕微鏡等の電子顕微鏡で測定される光調整粒子の長径、短径とよい相関を示すことが知られおり、粒子径を評価する指標として適当である。
 本発明で用いる(A)元素状分子ヨウ素とは、ヨウ素単体の化合物であり、一般にIで表記されるものである。(A)元素状分子ヨウ素は、そのまま反応系内に投入してもよいが、媒体に溶け残りなく溶解させて投入することが好ましい。また、媒体に予め溶解させて溶液として投入することができる。溶液とすると、反応量論上すべての分子が反応可能となるためである。その場合、溶液の濃度は3~20質量%が好ましく、5~15質量%がより好ましく、7~12質量%がさらに好ましい。
 また、用いる(A)元素状分子ヨウ素は、特に制限がないが、粉末状、もしくは球状微粒子等のように媒体に溶解しやすいものが好ましい。
 溶解させるために用いる媒体としては特に制限はないが、有機溶媒であることが好ましい。特にアルキルエステル系の有機溶媒が好ましく、具体的には、酢酸エチル、酢酸ブチル、酢酸イソペンチル、酢酸ヘキシル等の酢酸エステル系溶媒を挙げることができる。
 本発明で用いる(B)アルカリ土類金属ヨウ化物は、特に制限はないが、例えばアルカリ土類金属のうち、カルシウムを用いることができる。
 このヨウ化カルシウムには吸湿性があり、一般には水和物が廉価であるが、塊状であるため有機溶媒には溶解しにくい。そのため、有機溶媒に溶解させる前に減圧や加熱処理により乾燥させて可能な限り水分を除去することが好ましい。水分除去後の水分量は1.0質量%以下が好ましく、0.8質量%以下がより好ましく、0.5質量%以下がさらに好ましい。このようにして乾燥したヨウ化カルシウムは固体のまま反応系内に投入してもよいが、溶媒に溶け残りなく溶解させることが好ましい。また、媒体に予め溶解させて溶液として投入することができる。この溶液の濃度は5~35質量%が好ましく、10~30質量%がより好ましく、15~25質量%がさらに好ましい。また、ヨウ化カルシウム中の0~1.0質量%の水分量は(A)、(B)、(C)の合計100質量に対して0~0.26質量部に相当する。この水分量を正確に測定することは困難であり、一般には、所定量秤量したヨウ化カルシウムをEDTA2Na(エチレンジアミン四酢酸)などでカルシウム量を滴定評価し、純度換算することで最大水分量を見積もることができる。
 このヨウ化カルシウムを溶解させる媒体としては特に制限はないが、例えば酢酸エチル、酢酸ブチル、酢酸イソペンチル、酢酸ヘキシル等の酢酸エステル系溶媒、メタノール等のアルコールを挙げることができる。なお、ヨウ化カルシウムの溶解にメタノールを用いる場合は、本発明の製造方法の造粒工程で用いるメタノールの量は、ヨウ化カルシウムの溶解に使用した量を差し引き、メタノールの使用量が合計で上記(A)、(B)及び(C)の合計100質量部に対して50質量部以上110質量部以下とする。
 本発明で用いる(C)複素環式化合物は、特に制限はないが、下記式(1)に示される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000003
(式中R、Rはそれぞれ独立に水素又は飽和炭化水素であるアルキル基を表し、その炭素数は1~13の範囲にある。)
 上記式(1)中、好ましいのはR、Rは、例えばメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t-ブチル基等であり、より具体的には、ピラジン-2,5-ジカルボン酸等が挙げられ、これらは水和物として用いることも可能である。
 上記式(1)に示される化合物は固体のまま、反応系内に投入してもよいし、媒体に溶解して投入してもよい。ただし、上記式(1)を溶解する上記媒体は限られているため、反応系に投入後も粒子が増粒している間は溶け残りとして存在し続けることがある。上記式(1)で示される化合物を溶解するために用いる媒体としては、水との混合溶媒、塩基性水溶液等が挙げられる。
 本発明の光調整粒子の製造方法で用いる上記(A)、(B)、(C)のモル数比は特に限定されるものでなく、それぞれX:Y:Zの比で製造に用いる場合、X:1.7~2.3、Y:0.7~1.3、Z:1.7~2.3でそれぞれ独立に用いることができる。ただし、針状すなわちアスペクト比の大きな光調整粒子、具体的にはアスペクト比3~8、長径225~625nmの光調整粒子且つ粒度分布測定により求められる粒子径135~220nmの光調整粒子を得るためには、X:1.8~2.2、Y:0.8~1.2、Z:1.8~2.2が好ましく、X:1.9~2.1、Y:0.9~1.1、Z:1.9~2.1がより好ましい。
 本発明の光調整粒子の製造方法に用いる媒体は、上記(A)、(B)、(C)を溶解するために用いられる有機溶媒であれば特に制限はないが、例えば酢酸エチル、酢酸ブチル、酢酸イソペンチル、酢酸ヘキシル等の酢酸エステル系溶媒が一種以上含まれていることが好ましい。これら媒体は一種のみでもよいし、二種類以上を混合して用いてもよい。
 本発明の光調整粒子の製造方法で用いる上記(A)、(B)、(C)の合計質量と用いる媒体質量との間の関係には特に制限はないが、上記(A)、(B)、(C)の合計質量が媒体質量の3~15質量%であるとよい。特に再現性よく光調整粒子を製造するためには4~12質量%が好ましく、5~10質量%がより好ましい。
 本発明の光調整粒子の製造方法における造粒工程では、硝酸セルロースを用いることも好ましい。硝酸セルロースはニトロセルロースとも呼ばれているものであり、セルロースの硝酸エステルであり、特に制限はない。
 一般にはセルロースを硝酸エステル化する工程でニトロ基の含有量により分類されているが、いずれのものも、本発明の光調整粒子の製造方法に用いられる媒体としての有機溶媒に溶解する限り、用いることができる。
 従って、反応系内に投入する場合は固体のままでもよいし、一旦有機溶媒に溶解して投入してもよい。具体的にはベルジュラックNC社製LIG1/8、LIG1/4、LIG1/2A、LIG1/2、HIG1/16、HIG1/8、HIG1/4、HIG1/2A、HIG1/2、HIG1、HIG2、HIG5、HIG7、HIG20、ノーベルエンタープライズ社製DHX1-2,DHX3-5、DHX4-6、DHX5-10、DHX8-13、DHX11-16、DHX30-50、DHX40-70、DHL25-45、DHL120-170、DLX3-5、DLX5-8、DLX8-13、DLX30-50、などを挙げることができる。
 本発明で用いる硝酸セルロースと用いる媒体質量との関係は特に制限はないが、硝酸セルロースの合計質量が媒体質量の5~20質量%であるとよい。特に再現性よく光調整粒子を製造するためには6~15質量%が好ましく、7~14質量%がより好ましく、8~13質量%がさらに好ましい。
 また、本発明で用いる硝酸セルロースと上記(A)、(B)、(C)の合計質量との関係には特に制限はないが、硝酸セルロースの質量が上記(A)、(B)、(C)の合計100質量部に対して80~160質量部が好ましい。この範囲で用いると、均一な大きさの光調整粒子を形成でき、また、調光材料としたときに光調整懸濁液内での光調整粒子の分散性を向上させることができる。
 特にアスペクト比の大きな光調整粒子、具体的にはアスペクト比3~8、長径225~625nm、且つ粒度分布測定により求められる粒子径135~220nmの光調整粒子を得るためには、上記(A)、(B)、(C)の合計100質量部に対して90~150質量部が好ましく、100~145質量部がより好ましく、105~140質量部がさらに好ましい。
 光調整粒子の製造方法では、例えば、特許文献4で既に示されているように、製造時の反応系内に存在する水分量が、製造される光調整粒子の粒子サイズの大きさや形状に強く影響する。そこで前記(A)元素状分子ヨウ素、(B)アルカリ金属土類ヨウ化物、(C)複素環式化合物、媒体である有機溶媒、メタノール、硝酸セルロース中に含有される水分量を正確に評価し、さらに好ましい粒子サイズ、形状の光調整粒子を得るために必要な水分量を経験的に求める必要がある。
 好ましい粒子サイズ、形状の光調整粒子を得るために必要な水分量の総量は、上記の通り経験的に求められるものであるが、メタノールを本発明の範囲内で用いる場合は、例えば、アスペクト比3~8、長径225~625nmの光調整粒子、且つ粒度分布測定において求められる粒子径135~220nmの光調整粒子を得るための水分量は、上記(A)、(B)、(C)の合計100質量部に対して7.5~9.6質量部が良い。
 特に長径250~550nmの光調整粒子、且つ粒度分布測定において求められる粒子径140~210nmの光調整粒子を製造するためには、水分量は上記(A)、(B)、(C)の合計100質量部に対して7.8~9.4質量部が好ましく、長径300~500nmの光調整粒子、且つ粒度分布測定において求められる粒子径145~205nmの光調整粒子を製造するためには、上記(A)、(B)、(C)の合計100質量部に対して7.9~9.3質量部がより好ましい。
 好ましい粒子サイズ、形状の光調整粒子を得るために必要な水分量は計算することができるが、実際には原料や媒体等に含まれるすべての水分量を正確に求めることは困難であり、また、製造作業過程においても空気中での取扱いにより水分量も容易に変化するため、経験的に求めた水分量どおりに水分総量をあわせても、予想される光調整粒子サイズとは異なる光調整粒子が得られることがよく見受けられる。これは、反応系内に存在する水分量が得られる光調整粒子の粒子サイズや形状に強く影響するため、計算上求めた必要水分量と実際の水分量とに少しの誤差がある場合でも、大きく影響するためである。
 本発明では、上記(A)、(B)、(C)を媒体中で混合して造粒する工程において、メタノールを共存させることが必須である。具体的には、メタノールを上記(A)、(B)、(C)の合計100質量部に対して50~110質量部用いることで、水分の影響を低減させ、安定して光調整粒子を製造できることが分かった。共存させるメタノールが上記(A)、(B)、(C)の合計100質量部に対して50質量部未満であると、水分の影響が大きく傾向がある。一方、共存させるメタノールが上記(A)、(B)、(C)の合計100質量部に対して110質量部を超えると、粒子のアスペクト比が減少する傾向がある。
 例えば、共存させるメタノールが、本発明の範囲外となる場合、具体的には上記(A)、(B)、(C)の合計100質量部に対して5~50質量部の場合、例えば、アスペクト比3~8、長径225~625nmの光調整粒子、且つ粒度分布測定において求められる粒子径135~220nmの光調整粒子を得るための水分量は、上記(A)、(B)、(C)の合計100質量部に対して7.3~8.7質量部とする必要がある。また、長径250~550nmの光調整粒子、且つ粒度分布測定において求められる粒子径140~210nmの光調整粒子を製造するためには、水分量は上記(A)、(B)、(C)の合計100質量部に対して7.4~8.6質量部とする必要があり、長径300~500nmの光調整粒子、且つ粒度分布測定において求められる粒子径145~205nmの光調整粒子を製造するためには、上記(A)、(B)、(C)の合計100質量部に対して7.5~8.5質量部とする必要がある。必要水分量からわかるように、メタノールを本発明で規定する範囲で用いたときよりも水分の影響が大きいことがわかる。
 本発明の光調整粒子の製造方法は、実際の製造工程を考えた場合、従来の方法に比べ安定して目標とする粒子サイズ、形状の光調整粒子を作ることができる。水分量の総量は上記の通り経験的に求められるものであるが、その範囲は上述したように、上記(A)、(B)、(C)の合計100質量部に対して3~15質量部の範囲に入る。ただし、これは上記(A)、(B)、(C)のモル比、媒体に対する濃度、硝酸セルロールの量によりこの範囲内で変化し、尤度幅は2質量%以下である。
 なお、本発明における必要水分量は、上記(A)、(B)、(C)、硝酸セルロース、媒体として用いる溶媒中に含まれる水分も考慮したものとする。すなわち、水和物として用いる場合は、水和物中の水分を考慮し、溶媒中に水分が含まれる場合はそれらの水分も考慮し、反応系内に添加する水分量は、必要水分量からそれらを差し引いたものとすることが好ましい。
 本発明の光調整粒子の製造方法における造粒工程で、反応温度は30~60℃であることが好ましく、33~55℃がよりこのましく、35~50℃がより好ましい。また、加熱及び温度維持をさせる装置は特に限定されないが、マントルヒーター、油浴、水浴のいずれでもよい。
 なお、本発明の光調整粒子の製造方法における造粒工程では、各成分の投入順序は特に制限しないが、各成分の溶け残りがないように、また溶解熱の影響を低減できるようにすることが好ましい。
 本発明の製造方法で得られた光調整粒子は、従来と同様に各種の用途に使用できるが、例えば、調光フィルム用の調光材料の光調整粒子として用いることが好ましい。
 本発明の調光フィルムは、エネルギー線を照射することにより硬化する高分子媒体から形成された樹脂マトリックス及び、分散媒と、該分散媒中に流動可能な状態で分散した光調整粒子と、を有する光調整懸濁液、を含む調光材料からなる調光層を有する。また、本発明の調光フィルムは、前記調光層が、2枚の透明導電性基板間に挟持されて形成されることが好ましい。
 本発明において、エネルギー線を照射することにより硬化する高分子媒体としては、例えば、紫外線、可視光線、電子線等のエネルギー線により硬化する高分子組成物が挙げられる。高分子組成物としては、例えば、エチレン性不飽和結合を有する置換基をもつ高分子化合物と、光重合開始剤と、を含む高分子組成物が挙げられる。
 上記エチレン性不飽和結合を有する置換基をもつ高分子化合物としては、シリコーン系樹脂、アクリル系樹脂、ポリエステル樹脂等が合成容易性、調光性能、耐久性等の点から好ましい。これらの樹脂は、さらに置換基を有していても良く、置換基として、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、アミル基、イソアミル基、ヘキシル基、シクロヘキシル基等のアルキル基、フェニル基、ナフチル基等のアリール基を有することが、調光性能、耐久性等の点から好ましい。
 上記エチレン性不飽和結合を有する置換基をもつ高分子化合物を用いる場合、エネルギー線に露光するとラジカル重合を活性化する光重合開始剤を用いることができる。
 本発明において、光調整懸濁液中の分散媒としては、上記高分子媒体及びその硬化物である樹脂マトリックスと相分離するものが用いられる。好ましくは、光調整粒子を流動可能な状態で分散させる役割を果たし、また、光調整粒子に選択的に付着被覆し、高分子媒体との相分離の際に光調整粒子が相分離された液滴相に移動するように作用し、電気導電性がなく、高分子媒体とは親和性がなく、調光フィルムとした際に高分子媒体から形成される樹脂マトリックスとの屈折率が近似した液状共重合体を使用する。
 例えば、フルオロ基及び/又は水酸基を有する(メタ)アクリル酸エステルオリゴマーが好ましく、フルオロ基及び水酸基を有する(メタ)アクリル酸エステルオリゴマーがより好ましい。このような共重合体を使用すると、フルオロ基、水酸基のどちらか1つのモノマー単位は光調整粒子に親和性があり、残りのモノマー単位は高分子媒体中で光調整懸濁液が液滴として安定に維持するために働くことから、光調整懸濁液内に光調整粒子が分散しやすく、相分離の際に光調整粒子が相分離される液滴内に誘導されやすい。
 このようなフルオロ基及び/又は水酸基を有する(メタ)アクリル酸エステルオリゴマーとしては、メタクリル酸2,2,2-トリフルオロエチル/アクリル酸ブチル/アクリル酸2-ヒドロキシエチル共重合体、アクリル酸3,5,5-トリメチルヘキシル/アクリル酸2-ヒドロキシプロピル/フマール酸共重合体、アクリル酸ブチル/アクリル酸2-ヒドロキシエチル共重合体、アクリル酸2,2,3,3-テトラフルオロプロピル/アクリル酸ブチル/アクリル酸2-ヒドロキシエチル共重合体、アクリル酸1H,1H,5H-オクタフルオロペンチル/アクリル酸ブチル/アクリル酸2-ヒドロキシエチル共重合体、アクリル酸1H,1H,2H,2H-ヘプタデカフルオロデシル/アクリル酸ブチル/アクリル酸2-ヒドロキシエチル共重合体、メタクリル酸2,2,2-トリフルオロエチル/アクリル酸ブチル/アクリル酸2-ヒドロキシエチル共重合体、メタクリル酸2,2,3,3-テトラフルオロプロピル/アクリル酸ブチル/アクリル酸2-ヒドロキシエチル共重合体、メタクリル酸1H,1H,5H-オクタフルオロペンチル/アクリル酸ブチル/アクリル酸2-ヒドロキシエチル共重合体、メタクリル酸1H,1H,2H,2H-ヘプタデカフルオロデシル/アクリル酸ブチル/アクリル酸2-ヒドロキシエチル共重合体、メタクリル酸ブチル/メタクリル酸2-ヒドロキシエチル共重合体、メタクリル酸ヘキシル/メタクリル酸2-ヒドロキシエチル共重合体、メタクリル酸オクチル/メタクリル酸2-ヒドロキシエチル共重合体、メタクリル酸デシル/メタクリル酸2-ヒドロキシエチル共重合体、メタクリル酸ウンデシル/メタクリル酸2-ヒドロキシエチル共重合体、メタクリル酸ドデシル/メタクリル酸2-ヒドロキシエチル共重合体、メタクリル酸トリデシル/メタクリル酸2-ヒドロキシエチル共重合体、メタクリル酸テトラデシル/メタクリル酸2-ヒドロキシエチル共重合体、メタクリル酸ヘキサデシル/メタクリル酸2-ヒドロキシエチル共重合体、メタクリル酸オクタデシル/メタクリル酸2-ヒドロキシエチル共重合体等が挙げられる。
 本発明における光調整懸濁液は、光調整懸濁液の全質量に対し、光調整粒子を1~15質量%含有することが好ましく、2~10質量%含有することがより好ましい。また、光調整懸濁液の全質量に対し、分散媒を30~99質量%含有することが好ましく、50~96質量%含有することがより好ましい。
 また、調光材料は、光調整懸濁液を、高分子媒体100質量部に対して、1~100質量部含有することが好ましく、4~70質量部含有することがより好ましく、6~60質量部含有することがさらに好ましく、8~50質量部含有することが特に好ましい。
 本発明の調光フィルムは、例えば、上記調光材料を透明導電性基板の上に塗布し、エネルギー線を照射して高分子媒体を硬化させて調光層を形成し、調光層上に透明導電性基板を密着させることによって製造することができる。
 具体的には、まず、光調整懸濁液を以下の様に作製する。光調整粒子を溶媒に分散した液と光調整懸濁液の分散媒を混合し、ロータリーエバポレーター等で溶媒を留去する。
 次いで、光調整懸濁液及び高分子媒体を混合し、光調整懸濁液が高分子媒体中に液滴状態で分散した混合液(調光材料)とする。この混合液を透明導電性基板上に一定の厚さで塗布し、必要に応じて溶剤を乾燥除去した後、メタルハライドランプ、高圧水銀灯等を用いてエネルギー線を照射し、上記高分子媒体を硬化させる。その結果、硬化した上記高分子媒体を含む樹脂マトリックス中に、液状光調整懸濁液が液滴状に分散されているフィルムが得られる。この際、高分子媒体と光調整懸濁液との混合比率を様々に変えることにより、フィルムの光透過率を調節することができる。
 このようにして形成された調光層の上に他の透明導電性基板を密着させることにより、調光フィルムが得られる。他の透明導電性基板は、エネルギー線照射前に調光層に密着させてもよいし、エネルギー線照射時に調光層に密着させてもよい。また、2枚の透明導電性基板の各面に調光層を形成し、それを調光層同士が密着するようにして積層してもよい。調光層の厚みは、5~1,000μmが好ましく、20~100μmがより好ましい。
 上記光調整懸濁液が高分子媒体中に液滴状態で分散した調光材料を得る方法としては、例えば、光調整懸濁液及び高分子媒体をホモジナイザー、超音波ホモジナイザー等で混合して光調整懸濁液を微細に分散させる方法、高分子媒体中の高分子化合物成分の重合による相分離法、高分子媒体が溶媒を含む場合には溶媒揮発による相分離法、温度による相分離法等を利用することができる。
 また、上記調光材料を透明導電性基板上に一定な厚さで塗布する方法としては、バーコーター、アプリケーター、ドクターブレード、ロールコーター、ダイコーター、コンマコーター等の塗工手段を用いて、透明導電性基板等の基板に塗布することができる。なお、塗布する際は、必要に応じて、適当な溶剤で希釈してもよい。溶剤を用いた場合には、基材上に塗布した後に乾燥を要する。溶剤としては、例えば、テトラヒドロフラン、トルエン、ヘプタン、シクロヘキサン、エチルアセテート、エタノール、メタノール、酢酸イソアミル、酢酸ヘキシル等を用いることができる。
 上記透明導電性基板としては、例えば、ITO、SnO、In等の透明導電膜がコーティングされている透明基板を用いることができる。透明導電膜の光透過率は80%以上であることが好ましく、透明導電膜の厚みは、10~5,000nmであることが好ましい。
 なお、光透過率はJIS K7105の全光線透過率の測定法に準拠して測定することができる。また、透明基板としては、例えば、ガラス、高分子フィルム等を使用することができる。
 上記ガラスとしては、可視光線等に透明な基板を意味し、二酸化ケイ素を主成分とする一般的なガラスの他、種々の組成の無機材料ガラス、透明なアクリル樹脂、ポリカーボネート樹脂等の有機材料を用いた樹脂ガラスも用いることができる。
 上記高分子フィルムとしては、例えば、ポリエチレンテレフタレート等のポリエステル系フィルム、ポリプロピレン等のポリオレフィン系フィルム、ポリ塩化ビニル、アクリル樹脂系のフィルム、ポリエーテルサルフォンフィルム、ポリアリレートフィルム、ポリカーボネートフィルム等の樹脂フィルムが挙げられるが、ポリエチレンテレフタレートフィルムが、透明性に優れ、成形性、接着性、加工性等に優れるので好ましい。透明基板の厚さに特に制限はないが、例えば、ガラスの場合には1~15mmが好ましく、高分子フィルムの場合には10~200μmが好ましい。
 上記透明導電性基板の表面抵抗値は3~600Ωであることが好ましい。また、透明導電性基板同士の間隔を狭くして調光フィルムを作製する際は、異物質の混入等により発生する短絡現象を防止するために、透明導電膜の上に200~1,000Åの厚さの透明絶縁層が形成されている基板を使用してもよい。また、自動車用リアビューミラー等の反射型の調光窓を作製する場合、反射体であるアルミニウム、金、又は銀のような導電性金属の薄膜を電極として直接用いてもよい。
 上記の方法によれば、電場の形成により任意に光透過率が調節できる調光フィルムを作製することができる。
 上記調光フィルムにおいて、樹脂マトリックス中に分散されている光調整懸濁液の液滴の大きさ(平均液滴径)は、光調整粒子の凝集と沈積を防止する観点で、0.5~50μmであることが好ましく、1~10μmであることがより好ましい。
 平均液滴径は、例えば、光学顕微鏡を用いて、調光フィルムの一方の面方向から写真等の画像を撮影し、任意に選択した複数の液滴直径(液滴の最長の径)を測定し、その平均値として算出することができる。また、上記調光フィルムの光学顕微鏡での視野画像をデジタルデータとしてコンピュータに取り込み、画像処理インテグレーションソフトウェアを使用し算出することも可能である。液滴の大きさは、光調整懸濁液を構成している各成分の濃度、光調整懸濁液及び高分子媒体の粘度、光調整懸濁液中の分散媒の高分子媒体に対する相溶性等により決められる。
 また、液状の光調整懸濁液の屈折率と、エネルギー線を照射することにより硬化する高分子媒体の屈折率は近似していることが、透明状態における透過率の向上と、着色状態における鮮明度の向上の点で好ましい。
 調光性能を発揮させる条件は特に制限はないが、通常、使用電源は交流で、10~220ボルト(実効値)、30Hz~500kHzの周波数の範囲で作動させることができる。
 本発明の調光フィルムは、例えば、室内外の仕切り(パーティッション)、建築物用の窓硝子/天窓、電子産業及び映像機器に使用される各種平面表示素子、各種計器板と既存の液晶表示素子の代替品、光シャッター、各種室内外広告及び案内標示板、航空機/鉄道車両/船舶用の窓硝子、自動車用の窓硝子/バックミラー/サンルーフ、眼鏡、サングラス、サンバイザー等の用途に好適に使用することができる。
 適用法としては、本発明の調光フィルムを直接使用することも可能であるが、用途によっては、例えば、本発明の調光フィルムを2枚の基材に挟持させて使用したり、基材の片面に貼り付けて使用したりしてもよい。前記基材としては、上記透明基板と同様に、例えば、ガラス、高分子フィルム等を使用することができる。
(実施例1)
 ヨウ素(JIS試薬特級、和光純薬工業(株)製)と酢酸イソペンチル(試薬特級、和光純薬工業(株)製)から8.47質量%ヨウ素の酢酸イソペンチル溶液を、また硝酸セルロース1/4LIG(商品名:ベルジュラックNC社製)と酢酸イソペンチルから20.0質量%硝酸セルロースの酢酸イソペンチル溶液を調製した。
 ヨウ化カルシウム水和物(化学用、和光純薬工業(株)製)を加熱乾燥して無水化して酢酸イソペンチルに溶解させ、20.88質量%ヨウ化カルシウム溶液を調整した。300mlの四口フラスコに撹拌機と冷却管を備え、ヨウ素溶液を65.55g、硝酸セルロース溶液を82.93g、を加え水浴温度を35~40℃としてフラスコを加熱した。フラスコ内容物の温度が35~40℃となった後、脱水メタノール(試薬特級、和光純薬工業(株)製)を7.41g、精製水(和光純薬工業(株)製)を0.525g加えて撹拌した。
 ヨウ化カルシウム溶液を15.6g、次いでピラジン-2,5-ジカルボン酸(日化テクノサービス(株)製)を3.70g加えた。水浴温度を42~44℃として4時間撹拌した後、放冷した。
 硝酸セルロース溶液中の水分比(%)は平沼産業(株)製、平沼水分測定装置AQ-7(発生液:ハイドラナールアクアライトRS、対極液:アクアライトCN)を用いて測定したところ、0.84%であり、加えた溶液質量から硝酸セルロース溶液中の水分量は0.697gであった。また、反応系内に存在する水分量は硝酸セルロースに含まれるものと加えた精製水とすると、1.222gだった。
 なお、本実施例において、ヨウ化カルシウムについては加熱乾燥して無水化した後、吸湿性が強いため乾燥後0~1質量%の水分を含むが、正確な測定が困難なため水分量は考慮していない。
 メタノール量は、(A)、(B)及び(C)の合計質量12.51gを100質量部とすると59.2質量部、水分量は9.77質量部であった。得られた光調整粒子は粒度分布測定で求められる粒子径139nm、SEM観察で長軸259nm、アスペクト比4.1であった。また、得られた合成液を9260Gで5時間遠心分離後、傾斜して上澄み液を除き、底部に残存した沈殿にこの沈殿の質量の5倍の酢酸イソペンチルを加え超音波で沈殿を分散し、液全体の質量を測定した。
 この分散した液を1g金属プレートに秤量し、120℃1時間で乾燥後、再び質量を測定し、不揮発分比%を求めた。この不揮発分比と液全体の質量から全不揮発分量、すなわち沈殿収量4.15gを求めた。
(実施例2)
 加えた精製水の量を0.300g、加えた硝酸セルロース溶液を83.05gとして実施例1と同様にして、光調整粒子を製造した。硝酸セルロース溶液中の水分量は0.673g(水分比0.81質量%)、反応系内に存在する水分量は0.973gであった。
 メタノール量は、(A)、(B)及び(C)の合計100質量部に対して59.2質量部、水分量は7.78質量部であった。得られた光調整粒子は、粒度分布測定で求められる粒子径147nm、SEM観察で長径307nm、アスペクト比4.5、沈殿収量4.74gであった。
(実施例3)
 加えた精製水の量を0.375g、加えた硝酸セルロース溶液を82.54gとして実施例1と同様にして、光調整粒子を製造した。硝酸セルロース溶液中の水分量は0.669g(水分比0.81質量%)、反応系内に存在する水分量は1.044gであった。
 メタノール量は、(A)、(B)及び(C)の合計100質量部に対して59.2質量部、水分量は8.34質量部であった。得られた光調整粒子は、粒度分布測定で求められる粒子径162nm、SEM観察で長径400nm、アスペクト比5.5、沈殿収量5.76gであった。
(実施例4)
 加えた精製水の量を0.375g、加えた硝酸セルロース溶液を82.89gとして実施例1と同様にして、光調整粒子を製造した。硝酸セルロース溶液中の水分量は0.671g(水分比0.81質量%)、反応系内に存在する水分量は1.046gであった。
 メタノール量は、(A)、(B)及び(C)の合計100質量部に対して59.2質量部、水分量は8.37質量部であった。得られた光調整粒子は、粒度分布測定で求められる粒子径162nm、SEM観察で長径400nm、アスペクト比5.2、沈殿収量5.63gであった。
(実施例5)
 加えた精製水の量を0.450g、加えた硝酸セルロース溶液を82.25gとして実施例1と同様にして、光調整粒子を製造した。硝酸セルロース溶液中の水分量は0.666g(水分比0.81質量%)、反応系内に存在する水分量は1.116gであった。
 メタノール量は、(A)、(B)及び(C)の合計100質量部に対して59.2質量部、水分量は8.92質量部であった。得られた光調整粒子は、粒度分布測定で求められる粒子径200nm、SEM観察で長径594nm、アスペクト比6.3、沈殿収量7.41gであった。
(実施例6)
 加えた精製水の量を0.325g、加えた硝酸セルロース溶液を83.13gとして実施例1と同様にして、光調整粒子を製造した。硝酸セルロース溶液中の水分量は0.798g(水分比0.96質量%)、反応系内に存在する水分量は1.123gであった。
 メタノール量は、(A)、(B)及び(C)の合計100質量部に対して59.2質量部、水分量は8.98質量部であった。得られた光調整粒子は、粒度分布測定で求められる粒子径189nm、SEM観察で長径384nm、アスペクト比5.3、沈殿収量6.62gであった。
(実施例7)
 加えた精製水の量を0.525g、加えた硝酸セルロース溶液を82.77gとして実施例1と同様にして、光調整粒子を製造した。硝酸セルロース溶液中の水分量は0.6709g(水分比0.81質量%)、反応系内に存在する水分量は1.195gであった。
 メタノール量は、(A)、(B)及び(C)の合計100質量部に対して59.2質量部、水分量は9.56質量部であった。得られた光調整粒子は、粒度分布測定で求められる粒子径231nm、SEM観察で長径581nm、アスペクト比6.9、沈殿収量7.70gであった。
(実施例8)
 ヨウ化カルシウム水和物を加熱乾燥して無水化して酢酸イソペンチルとメタノールに溶解させ、20.88%ヨウ化カルシウム溶液を調整した。このとき、酢酸イソペンチルとメタノールの質量比は2.0:3.0である。300mlの四口フラスコに撹拌機と冷却管を備え、ヨウ素溶液を65.55g、硝酸セルロース溶液を82.71g、加えて撹拌した。
 水浴温度を42~44℃としてフラスコを加熱し、内容物が42~44℃となった後、精製水は加えず、ヨウ化カルシウム溶液を15.6g、次いでピラジン-2,5-ジカルボン酸を3.70g加えた。水浴温度を42~44℃として2時間撹拌した後、放冷した。硝酸セルロース溶液中の水分量は0.695g(水分比0.84質量%)、反応系内に存在する水分量は0.695gであった。
 メタノール量は、(A)、(B)及び(C)の合計質量12.51gを100質量部として59.2質量部、水分量は5.55質量部であった。得られた光調整粒子は粒度分布測定で求められる粒子径126nm、SEM観察で長軸173nm、アスペクト比2.3であった。
(実施例9)
 加えた精製水の量を0.325g、加えた硝酸セルロース溶液を83.05gとして実施例8と同様にして、光調整粒子を製造した。硝酸セルロース溶液中の水分量は0.698g(水分比0.84質量%)、反応系内に存在する水分量は1.023gであった。
 メタノール量は、(A)、(B)及び(C)の合計100質量部に対して59.2質量部、水分量は8.17質量部であった。得られた光調整粒子は、粒度分布測定で求められる粒子径155nm、SEM観察で長径335nm、アスペクト比4.6、沈殿収量6.37gであった。
(実施例10)
 加えた精製水の量を0.375g、加えた硝酸セルロース溶液を82.78gとして実施例8と同様にして、光調整粒子を製造した。硝酸セルロース溶液中の水分量は0.695g(水分比0.84質量%)、反応系内に存在する水分量は1.070gであった。
 メタノール量は、(A)、(B)及び(C)の合計100質量部に対して59.2質量部、水分量は8.56質量部であった。得られた光調整粒子は、粒度分布測定で求められる粒子径169nm、SEM観察で長径348nm、アスペクト比4.8、沈殿収量6.46gであった。
(実施例11)
 加えた精製水の量を0.375g、加えた硝酸セルロース溶液を82.83gとして実施例8と同様にして、光調整粒子を製造した。硝酸セルロース溶液中の水分量は0.696g(水分比0.84質量%)、反応系内に存在する水分量は1.071gであった。
 メタノール量は、(A)、(B)及び(C)の合計100質量部に対して59.2質量部、水分量は8.56質量部であった。得られた光調整粒子は、粒度分布測定で求められる粒子径167nm、SEM観察で長径343nm、アスペクト比4.7、沈殿収量6.49gであった。
(実施例12)
 加えた精製水の量を0.375g、加えた硝酸セルロース溶液を83.18gとして実施例8と同様にして、光調整粒子を製造した。硝酸セルロース溶液中の水分量は0.699g(水分比0.84質量%)、反応系内に存在する水分量は1.074gであった。
 メタノール量は、(A)、(B)及び(C)の合計100質量部に対して59.2質量部、水分量は8.58質量部であった。得られた光調整粒子は、粒度分布測定で求められる粒子径177nm、SEM観察で長径402nm、アスペクト比5.1、沈殿収量6.26gであった。
(実施例13)
 加えた精製水の量を0.375g、加えた硝酸セルロース溶液を83.28gとして実施例8と同様にして、光調整粒子を製造した。硝酸セルロース溶液中の水分量は0.700g(水分比0.84質量%)、反応系内に存在する水分量は1.075gであった。
 メタノール量は、(A)、(B)及び(C)の合計100質量部に対して59.2質量部、水分量は8.59質量部であった。得られた光調整粒子は、粒度分布測定で求められる粒子径178nm、SEM観察で長径409nm、アスペクト比5.2、沈殿収量6.55gであった。
(実施例14)
 加えた精製水の量を0.475g、加えた硝酸セルロース溶液を82.59gとして実施例8と同様にして、光調整粒子を製造した。硝酸セルロース溶液中の水分量は0.694g(水分比0.84質量%)、反応系内に存在する水分量は1.169gであった。
 メタノール量は、(A)、(B)及び(C)の合計100質量部に対して59.2質量部、水分量は9.34質量部であった。得られた光調整粒子は、粒度分布測定で求められる粒子径213nm、SEM観察で長径505nm、アスペクト比5.6、沈殿収量7.45gであった。
(実施例15)
 加えた精製水の量を0.375g、加えた硝酸セルロース溶液を82.63g、脱水メタノールを9.88gとして実施例1と同様にして、光調整粒子を製造した。硝酸セルロース溶液中の水分量は0.669g(水分比0.81質量%)、反応系内に存在する水分量は1.044gであった。
 メタノール量は、(A)、(B)及び(C)の合計100質量部に対して79.0質量部、水分量は8.35質量部であった。得られた光調整粒子は、粒度分布測定で求められる粒子径159nm、SEM観察で長径382nm、アスペクト比5.0、沈殿収量5.59gであった。
(実施例16)
 加えた精製水の量を0.450g、加えた硝酸セルロース溶液を82.59g、脱水メタノールを9.88gとして実施例1と同様にして、光調整粒子を製造した。硝酸セルロース溶液中の水分量は0.669g(水分比0.81質量%)、反応系内に存在する水分量は1.119gであった。
 メタノール量は、(A)、(B)及び(C)の合計100質量部に対して79.0質量部、水分量は8.95質量部であった。得られた光調整粒子は、粒度分布測定で求められる粒子径183nm、SEM観察で長径462nm、アスペクト比5.3、沈殿収量6.78gであった。
(実施例17)
 加えた精製水の量を0.300g、加えた硝酸セルロース溶液を83.21g、脱水メタノールを12.35gとして実施例1と同様にして、光調整粒子を製造した。硝酸セルロース溶液中の水分量は0.649g(水分比0.78質量%)、反応系内に存在する水分量は0.949gであった。
 メタノール量は、(A)、(B)及び(C)の合計100質量部に対して98.7質量部、水分量は7.59質量部であった。得られた光調整粒子は、粒度分布測定で求められる粒子径139nm、SEM観察で長径242nm、アスペクト比3.1、沈殿収量5.38gであった。
(実施例18)
 加えた精製水の量を0.375g、加えた硝酸セルロース溶液を83.25g、脱水メタノールを12.35gとして実施例1と同様にして、光調整粒子を製造した。硝酸セルロース溶液中の水分量は0.649g(水分比0.78質量%)、反応系内に存在する水分量は1.024gであった。
 メタノール量は、(A)、(B)及び(C)の合計100質量部に対して98.7質量部、水分量は8.19質量部であった。得られた光調整粒子は、粒度分布測定で求められる粒子径149nm、SEM観察で長径232nm、アスペクト比3.0、沈殿収量5.47gであった。
(実施例19)
 加えた精製水の量を0.450g、加えた硝酸セルロース溶液を82.89g、脱水メタノールを12.35gとして実施例1と同様にして、光調整粒子を製造した。硝酸セルロース溶液中の水分量は0.647g(水分比0.78質量%)、反応系内に存在する水分量は1.097gであった。
 メタノール量は、(A)、(B)及び(C)の合計100質量部に対して98.7質量部、水分量は8.77質量部であった。得られた光調整粒子は、粒度分布測定で求められる粒子径174nm、SEM観察で長径351nm、アスペクト比4.1、沈殿収量6.79gであった。
(実施例20)
 加えた精製水の量を0.525g、加えた硝酸セルロース溶液を82.96g、脱水メタノールを12.35gとして実施例1と同様にして、光調整粒子を製造した。硝酸セルロース溶液中の水分量は0.672g(水分比0.81質量%)、反応系内に存在する水分量は1.197gであった。
 メタノール量は、(A)、(B)及び(C)の合計100質量部に対して98.7質量部、水分量は9.57質量部であった。得られた光調整粒子は、粒度分布測定で求められる粒子径213nm、SEM観察で長径607nm、アスペクト比5.6、沈殿収量6.98gであった。
(比較例1)
 精製水を加えずに、また、加えた硝酸セルロース溶液を82.78g、脱水メタノールを2.47gとして実施例1と同様にして、光調整粒子を製造した。硝酸セルロース溶液中の水分量は0.671g(水分比0.81質量%)、反応系内に存在する水分量は0.671gであった。
 メタノール量は、(A)、(B)及び(C)の合計100質量部に対して19.7質量部、水分量は5.36質量部であった。得られた光調整粒子は、粒度分布測定で求められる粒子径86nm、SEM観察で長径114nm、アスペクト比1.6、沈殿収量1.73gであった。
(比較例2)
 加えた精製水の量を0.300g、加えた硝酸セルロース溶液を82.78g、脱水メタノールを2.47gとして実施例1と同様にして、光調整粒子を製造した。硝酸セルロース溶液中の水分量は0.646g(水分比0.78質量%)、反応系内に存在する水分量は0.946gであった。
 メタノール量は、(A)、(B)及び(C)の合計100質量部に対して19.7質量部、水分量は7.56質量部であった。得られた光調整粒子は、粒度分布測定で求められる粒子径144nm、SEM観察で長径308nm、アスペクト比4.0、沈殿収量3.76gであった。
(比較例3)
 加えた精製水の量を0.375g、加えた硝酸セルロース溶液を82.48g、脱水メタノールを2.47gとして実施例1と同様にして、光調整粒子を製造した。硝酸セルロース溶液中の水分量は0.602g(水分比0.73質量%)、反応系内に存在する水分量は0.977gであった。
 メタノール量は、(A)、(B)及び(C)の合計100質量部に対して19.7質量部、水分量は7.81質量部であった。得られた光調整粒子は、粒度分布測定で求められる粒子径173nm、SEM観察で長径397nm、アスペクト比5.1、沈殿収量5.96gであった。
(比較例4)
 加えた精製水の量を0.375g、加えた硝酸セルロース溶液を82.71g、脱水メタノールを2.47gとして実施例1と同様にして、光調整粒子を製造した。硝酸セルロース溶液中の水分量は0.604g(水分比0.73質量%)、反応系内に存在する水分量は0.979gであった。
 メタノール量は、(A)、(B)及び(C)の合計100質量部に対して19.7質量部、水分量は7.82質量部であった。得られた光調整粒子は、粒度分布測定で求められる粒子径166nm、SEM観察で長径370nm、アスペクト比5.3、沈殿収量4.93gであった。
(比較例5)
 加えた精製水の量を0.375g、加えた硝酸セルロース溶液を82.85g、脱水メタノールを2.47gとして実施例1と同様にして、光調整粒子を製造した。硝酸セルロース溶液中の水分量は0.605g(水分比0.73質量%)、反応系内に存在する水分量は0.980gであった。
 メタノール量は、(A)、(B)及び(C)の合計100質量部に対して19.7質量部、水分量は7.83質量部であった。得られた光調整粒子は、粒度分布測定で求められる粒子径169nm、SEM観察で長径378nm、アスペクト比5.2、沈殿収量4.98gであった。
(比較例6)
 加えた精製水の量を0.375g、加えた硝酸セルロース溶液を82.89g、脱水メタノールを2.47gとして実施例1と同様にして、光調整粒子を製造した。硝酸セルロース溶液中の水分量は0.605g(水分比0.73質量%)、反応系内に存在する水分量は0.980gであった。
 メタノール量は、(A)、(B)及び(C)の合計100質量部に対して19.7質量部、水分量は7.84質量部であった。得られた光調整粒子は、粒度分布測定で求められる粒子径170nm、SEM観察で長径401nm、アスペクト比4.9、沈殿収量4.35gであった。
(比較例7)
 加えた精製水の量を0.375g、加えた硝酸セルロース溶液を83.10g、脱水メタノールを2.47gとして実施例1と同様にして、光調整粒子を製造した。硝酸セルロース溶液中の水分量は0.607g(水分比0.73質量%)、反応系内に存在する水分量は0.982gであった。
 メタノール量は、(A)、(B)及び(C)の合計100質量部に対して19.7質量部、水分量は7.85質量部であった。得られた光調整粒子は、粒度分布測定で求められる粒子径161nm、SEM観察で長径376nm、アスペクト比5.4、沈殿収量4.13gであった。
(比較例8)
 加えた精製水の量を0.375g、加えた硝酸セルロース溶液を82.84g、脱水メタノールを2.47gとして実施例1と同様にして、光調整粒子を製造した。硝酸セルロース溶液中の水分量は0.621g(水分比0.75質量%)、反応系内に存在する水分量は0.996gであった。
 メタノール量は、(A)、(B)及び(C)の合計100質量部に対して19.7質量部、水分量は7.96質量部であった。得られた光調整粒子は、粒度分布測定で求められる粒子径180nm、SEM観察で長径401nm、アスペクト比4.7、沈殿収量7.09gであった。
(比較例9)
 加えた精製水の量を0.375g、加えた硝酸セルロース溶液を82.31g、脱水メタノールを2.47gとして実施例1と同様にして、光調整粒子を製造した。硝酸セルロース溶液中の水分量は0.626g(水分比0.76質量%)、反応系内に存在する水分量は1.001gであった。
 メタノール量は、(A)、(B)及び(C)の合計100質量部に対して19.7質量部、水分量は8.00質量部であった。得られた光調整粒子は、粒度分布測定で求められる粒子径165nm、SEM観察で長径366nm、アスペクト比4.1、沈殿収量6.26gであった。
(比較例10)
 加えた精製水の量を0.375g、加えた硝酸セルロース溶液を82.94g、脱水メタノールを2.47gとして実施例1と同様にして、光調整粒子を製造した。硝酸セルロース溶液中の水分量は0.647g(水分比0.78質量%)、反応系内に存在する水分量は1.022gであった。
 メタノール量は、(A)、(B)及び(C)の合計100質量部に対して19.7質量部、水分量は8.17質量部であった。得られた光調整粒子は、粒度分布測定で求められる粒子径187nm、SEM観察で長径436nm、アスペクト比5.3、沈殿収量7.04gであった。
(比較例11)
 加えた精製水の量を0.375g、加えた硝酸セルロース溶液を82.96g、脱水メタノールを2.47gとして実施例1と同様にして、光調整粒子を製造した。硝酸セルロース溶液中の水分量は0.647g(水分比0.78質量%)、反応系内に存在する水分量は1.022gであった。
 メタノール量は、(A)、(B)及び(C)の合計100質量部に対して19.7質量部、水分量は8.17質量部であった。得られた光調整粒子は、粒度分布測定で求められる粒子径183nm、SEM観察で長径423nm、アスペクト比4.7、沈殿収量6.92gであった。
(比較例12)
 加えた精製水の量を0.375g、加えた硝酸セルロース溶液を82.69g、脱水メタノールを2.47gとして実施例1と同様にして、光調整粒子を製造した。硝酸セルロース溶液中の水分量は0.645g(水分比0.78質量%)、反応系内に存在する水分量は1.020gであった。
 メタノール量は、(A)、(B)及び(C)の合計100質量部に対して19.7質量部、水分量は8.15質量部であった。得られた光調整粒子は、粒度分布測定で求められる粒子径190nm、SEM観察で長径476nm、アスペクト比5.0、沈殿収量7.35gであった。
(比較例13)
 加えた精製水の量を0.375g、加えた硝酸セルロース溶液を82.58g、脱水メタノールを2.47gとして実施例1と同様にして、光調整粒子を製造した。硝酸セルロース溶液中の水分量は0.644g(水分比0.78質量%)、反応系内に存在する水分量は1.019gであった。
 メタノール量は、(A)、(B)及び(C)の合計100質量部に対して19.7質量部、水分量は8.15質量部であった。得られた光調整粒子は、粒度分布測定で求められる粒子径173nm、SEM観察で長径412nm、アスペクト比5.4、沈殿収量6.60gであった。
(比較例14)
 加えた精製水の量を0.375g、加えた硝酸セルロース溶液を82.47g、脱水メタノールを2.47gとして実施例1と同様にして、光調整粒子を製造した。硝酸セルロース溶液中の水分量は0.643g(水分比0.78質量%)、反応系内に存在する水分量は1.018gであった。
 メタノール量は、(A)、(B)及び(C)の合計100質量部に対して19.7質量部、水分量は8.14質量部であった。得られた光調整粒子は、粒度分布測定で求められる粒子径185nm、SEM観察で長径454nm、アスペクト比4.8、沈殿収量7.21gであった。
(比較例15)
 加えた精製水の量を0.375g、加えた硝酸セルロース溶液を83.14g、脱水メタノールを2.47gとして実施例1と同様にして、光調整粒子を製造した。硝酸セルロース溶液中の水分量は0.648g(水分比0.78質量%)、反応系内に存在する水分量は1.023gであった。
 メタノール量は、(A)、(B)及び(C)の合計100質量部に対して19.7質量部、水分量は8.18質量部であった。得られた光調整粒子は、粒度分布測定で求められる粒子径170nm、SEM観察で長径390nm、アスペクト比5.1、沈殿収量6.37gであった。
(比較例16)
 加えた精製水の量を0.375g、加えた硝酸セルロース溶液を83.85g、脱水メタノールを2.47gとして実施例1と同様にして、光調整粒子を製造した。硝酸セルロース溶液中の水分量は0.654g(水分比0.78質量%)、反応系内に存在する水分量は1.029gであった。
 メタノール量は、(A)、(B)及び(C)の合計100質量部に対して19.7質量部、水分量は8.23質量部であった。得られた光調整粒子は、粒度分布測定で求められる粒子径190nm、SEM観察で長径462nm、アスペクト比5.6、沈殿収量7.15gであった。
(比較例17)
 加えた精製水の量を0.375g、加えた硝酸セルロース溶液を83.05g、脱水メタノールを2.47gとして実施例1と同様にして、光調整粒子を製造した。硝酸セルロース溶液中の水分量は0.673g(水分比0.81質量%)、反応系内に存在する水分量は1.048gであった。
 メタノール量は、(A)、(B)及び(C)の合計100質量部に対して19.7質量部、水分量は8.38質量部であった。得られた光調整粒子は、粒度分布測定で求められる粒子径198nm、SEM観察で長径455nm、アスペクト比5.6、沈殿収量6.76gであった。
(比較例18)
 加えた精製水の量を0.450g、加えた硝酸セルロース溶液を83.17g、脱水メタノールを2.47gとして実施例1と同様にして、光調整粒子を製造した。硝酸セルロース溶液中の水分量は0.674g(水分比0.81質量%)、反応系内に存在する水分量は1.124gであった。
 メタノール量は、(A)、(B)及び(C)の合計100質量部に対して19.7質量部、水分量は8.98質量部であった。得られた光調整粒子は、粒度分布測定で求められる粒子径252nm、SEM観察で長径645nm、アスペクト比7.1、沈殿収量7.61gであった。
(比較例19)
 加えた精製水の量を0.525g、加えた硝酸セルロース溶液を83.09g、脱水メタノールを2.47gとして実施例1と同様にして、光調整粒子を製造した。硝酸セルロース溶液中の水分量は0.673g(水分比0.81質量%)、反応系内に存在する水分量は1.198gであった。
 メタノール量は、(A)、(B)及び(C)の合計100質量部に対して19.7質量部、水分量は9.58質量部であった。得られた光調整粒子は、粒度分布測定で求められる粒子径260nm、SEM観察で長径689nm、アスペクト比5.5、沈殿収量7.50gであった。
(比較例20)
 加えた精製水の量を0.375g、加えた硝酸セルロース溶液を82.88g、脱水メタノールを4.94gとして実施例1と同様にして、光調整粒子を製造した。硝酸セルロース溶液中の水分量は0.603g(水分比0.73質量%)、反応系内に存在する水分量は0.980gであった。
 メタノール量は、(A)、(B)及び(C)の合計100質量部に対して39.5質量部、水分量は7.83質量部であった。得られた光調整粒子は、粒度分布測定で求められる粒子径181nm、SEM観察で長径466nm、アスペクト比5.4、沈殿収量6.64gであった。
(比較例21)
 加えた精製水の量を0.375g、加えた硝酸セルロース溶液を83.19g、脱水メタノールを4.94gとして実施例1と同様にして、光調整粒子を製造した。硝酸セルロース溶液中の水分量は0.624g(水分比0.75質量%)、反応系内に存在する水分量は0.999gであった。
 メタノール量は、(A)、(B)及び(C)の合計100質量部に対して39.5質量部、水分量は7.99質量部であった。得られた光調整粒子は、粒度分布測定で求められる粒子径184nm、SEM観察で長径409nm、アスペクト比4.8、沈殿収量6.80gであった。
(比較例22)
 加えた精製水の量を0.525g、加えた硝酸セルロース溶液を82.60g、脱水メタノールを4.94gとして実施例1と同様にして、光調整粒子を製造した。硝酸セルロース溶液中の水分量は0.605g(水分比0.73質量%)、反応系内に存在する水分量は1.128gであった。
 メタノール量は、(A)、(B)及び(C)の合計100質量部に対して39.5質量部、水分量は9.02質量部であった。得られた光調整粒子は、粒度分布測定で求められる粒子径261nm、SEM観察で長径851nm、アスペクト比7.3、沈殿収量7.48gであった。
(比較例23)
 加えた精製水の量を0.375g、加えた硝酸セルロース溶液を83.46g、脱水メタノールを24.69gとして実施例1と同様にして、光調整粒子を製造した。硝酸セルロース溶液中の水分量は0.651g(水分比0.78質量%)、反応系内に存在する水分量は1.026gであった。
 メタノール量は、(A)、(B)及び(C)の合計100質量部に対して197.4質量部、水分量は8.201質量部であった。得られた光調整粒子は、粒度分布測定で求められる粒子径300nm、SEM観察で長径386nm、アスペクト比2.4、沈殿収量4.05gであった。
 実施例1~20、比較例1~23の結果を表1に示す。表1からわかるように、本発明の範囲内でメタノールを適量使用することにより、得られる粒子サイズに対する水分の影響が低減できる。
 なお、実施例及び比較例における水分量と、粒度分布測定により求められる粒子径との関係を図1のグラフに、また、収量と粒度分布測定により求められる粒子径との関係を図3のグラフに示す。
 実施例及び比較例における水分量と、SEMにより求められる長径との関係を図2のグラフに、収量とSEMにより求められる長径との関係を図4のグラフに示す。
 図3及び図4からわかるように、本発明の範囲内でメタノールを適量使用することにより、所望のサイズの粒子(特に、粒度分布測定により求められる粒子径135~220nm且つSEMにより求められる長径225~625nm)が、メタノールを本発明の範囲外の量で用いた場合よりも収量良く得られることがわかる。
Figure JPOXMLDOC01-appb-T000004
 本発明により、調光材料として最適な粒子サイズ及び形状を有する光調整粒子を効率よく得るために、光調整粒子の製造方法の造粒工程において、水分の影響を低減させ、且つ再現性が良好な光調整粒子の製造方法を提供できる。

Claims (5)

  1.  エネルギー線を照射することにより硬化する高分子媒体から形成された樹脂マトリックス及び、
    分散媒と、該分散媒中に流動可能な状態で分散した光調整粒子と、を有する光調整懸濁液、を含有する調光材料に用いることが可能な光調整粒子の製造方法であって、
    (A)元素状分子ヨウ素、(B)アルカリ土類金属ヨウ化物、(C)複素環式化合物とを媒体中で混合して造粒する工程において、前記(A)、(B)及び(C)の合計100質量部に対して50質量部以上110質量部以下のメタノールを共存させ、反応させることを特徴とする光調整粒子の製造方法。
  2.  前記(B)アルカリ土類金属ヨウ化物が、ヨウ化カルシウムであることを特徴とする請求項1に記載の光調整粒子の製造方法。
  3.  前記(C)複素環式化合物が、下記式(1)で示される化合物であることを特徴とする請求項1又は2に記載の光調整粒子の製造方法。
    Figure JPOXMLDOC01-appb-C000001
    (式中R、Rはそれぞれ独立に水素又は飽和炭化水素であるアルキル基を表し、その炭素数は1~13の範囲にある。)
  4.  前記造粒工程において、硝酸セルロースを共存させることを特徴とする請求項1~3のいずれか一項に記載の光調整粒子の製造方法。
  5.  エネルギー線を照射することにより硬化する高分子媒体から形成された樹脂マトリックス及び、
    分散媒と、該分散媒中に流動可能な状態で分散した光調整粒子と、を有する光調整懸濁液、を含む調光材料からなる調光層を有する調光フィルムにおいて、
    前記光調整粒子が請求項1~3のいずれか一項に記載の光調整粒子の製造方法で得られたことを特徴とする調光フィルム。
PCT/JP2009/059000 2008-05-15 2009-05-14 光調整粒子の製造方法及び該製造方法で得られた光調整粒子を用いた調光フィルム WO2009139444A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010512017A JP5849393B2 (ja) 2008-05-15 2009-05-14 光調整粒子の製造方法及び該製造方法で得られた光調整粒子を用いた調光フィルム
US12/992,360 US8520294B2 (en) 2008-05-15 2009-05-14 Method for manufacturing light control particles and light control film using light control particles obtained by the method
EP09746650.2A EP2280305A4 (en) 2008-05-15 2009-05-14 METHOD FOR MANUFACTURING PHOTOCHROMIC PARTICLES AND INTELLIGENT FILM USING PHOTOCHROMIC PARTICLES MADE THEREBY

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008128560 2008-05-15
JP2008-128560 2008-05-15

Publications (1)

Publication Number Publication Date
WO2009139444A1 true WO2009139444A1 (ja) 2009-11-19

Family

ID=41318806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/059000 WO2009139444A1 (ja) 2008-05-15 2009-05-14 光調整粒子の製造方法及び該製造方法で得られた光調整粒子を用いた調光フィルム

Country Status (4)

Country Link
US (1) US8520294B2 (ja)
EP (1) EP2280305A4 (ja)
JP (2) JP5849393B2 (ja)
WO (1) WO2009139444A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5704075B2 (ja) * 2010-01-26 2015-04-22 日立化成株式会社 調光材料用(メタ)アクリロイル基含有ポリシロキサン樹脂の製造方法
KR20210037719A (ko) * 2018-11-19 2021-04-06 저지앙 징이 뉴 머티리얼 테크놀로지 컴퍼니 리미티드 무기-유기 하이브리드 코어-쉘 나노로드 및 상기 나노로드를 갖는 광 밸브

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5913787B2 (ja) * 2010-02-26 2016-04-27 株式会社堀場製作所 粒度分布測定装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0134369B2 (ja) 1982-06-28 1989-07-19 Research Frontiers Inc
JPH0345905A (ja) * 1989-07-07 1991-02-27 Res Frontiers Inc 偏光材料及びその懸濁物
JPH05302074A (ja) * 1990-07-30 1993-11-16 Res Frontiers Inc 偏光物質
JPH07168211A (ja) * 1993-07-21 1995-07-04 Res Frontiers Inc 光−偏向性粒子の製法
JP2871837B2 (ja) 1989-10-27 1999-03-17 リサーチ フロンティアーズ インコーポレーテッド 偏光材料及び該偏光材料を含む光弁用液状懸濁液
JP3434295B2 (ja) 1992-11-06 2003-08-04 リサーチ フロンティアーズ インコーポレイテッド ライトバルブ用の改善された透明度の光変調フィルム
JP2008128560A (ja) 2006-11-21 2008-06-05 National Institute Of Advanced Industrial & Technology 吸着剤粒子循環式冷凍機

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4877313A (en) * 1986-09-30 1989-10-31 Research Frontiers Incorporated Light-polarizing materials and suspensions thereof
JPS6434369A (en) 1987-07-30 1989-02-03 Hideo Kazamaki Woods bathing apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0134369B2 (ja) 1982-06-28 1989-07-19 Research Frontiers Inc
JPH0345905A (ja) * 1989-07-07 1991-02-27 Res Frontiers Inc 偏光材料及びその懸濁物
JP2871837B2 (ja) 1989-10-27 1999-03-17 リサーチ フロンティアーズ インコーポレーテッド 偏光材料及び該偏光材料を含む光弁用液状懸濁液
JPH05302074A (ja) * 1990-07-30 1993-11-16 Res Frontiers Inc 偏光物質
JP3434295B2 (ja) 1992-11-06 2003-08-04 リサーチ フロンティアーズ インコーポレイテッド ライトバルブ用の改善された透明度の光変調フィルム
JPH07168211A (ja) * 1993-07-21 1995-07-04 Res Frontiers Inc 光−偏向性粒子の製法
JP3448354B2 (ja) 1993-07-21 2003-09-22 リサーチ フロンティアーズ インコーポレイテッド 偏光性粒子の製法
JP2008128560A (ja) 2006-11-21 2008-06-05 National Institute Of Advanced Industrial & Technology 吸着剤粒子循環式冷凍機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2280305A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5704075B2 (ja) * 2010-01-26 2015-04-22 日立化成株式会社 調光材料用(メタ)アクリロイル基含有ポリシロキサン樹脂の製造方法
KR20210037719A (ko) * 2018-11-19 2021-04-06 저지앙 징이 뉴 머티리얼 테크놀로지 컴퍼니 리미티드 무기-유기 하이브리드 코어-쉘 나노로드 및 상기 나노로드를 갖는 광 밸브
KR102293089B1 (ko) 2018-11-19 2021-08-23 저지앙 징이 뉴 머티리얼 테크놀로지 컴퍼니 리미티드 무기-유기 하이브리드 코어-쉘 나노로드 및 상기 나노로드를 갖는 광 밸브

Also Published As

Publication number Publication date
EP2280305A4 (en) 2014-06-11
JP5849393B2 (ja) 2016-01-27
EP2280305A1 (en) 2011-02-02
US8520294B2 (en) 2013-08-27
JP2015163987A (ja) 2015-09-10
US20110063715A1 (en) 2011-03-17
JPWO2009139444A1 (ja) 2011-09-22

Similar Documents

Publication Publication Date Title
JP5768843B2 (ja) 調光フィルム
JP5600874B2 (ja) 調光フィルム
JP5233676B2 (ja) 調光フィルム及び調光ガラス
JP5104954B2 (ja) 調光フィルム
JP2013210670A (ja) 調光フィルム及び調光ガラス
JPH09189898A (ja) 液体ドメインを含有する粒子および液滴
JP2008158043A (ja) 調光フィルム
WO2009110563A1 (ja) 調光フィルムの製造方法及び調光フィルム
JPWO2010092953A1 (ja) 調光フィルム
JP2015163987A (ja) 光調整粒子の製造方法及び該製造方法で得られた光調整粒子を用いた調光フィルム
JP2012037558A (ja) 調光性構造体
JP5704076B2 (ja) (メタ)アクリロイル基含有ポリシロキサン樹脂の製造方法及び該方法により得られた(メタ)アクリロイル基含有ポリシロキサン樹脂を用いた調光フィルム
JP2008158040A (ja) 調光材料、それを用いた調光フィルム及びその製造方法
JP2008158042A (ja) 調光フィルム
JP2005300962A (ja) 調光材料、調光フィルムおよび調光ガラスならびにその製造方法
JP2006064832A (ja) 調光材料、調光フィルムおよびその製造方法
JP5266767B2 (ja) 調光材料、調光フィルム、及び調光材料の製造方法
JP5842396B2 (ja) 調光材料および調光フィルム
JP6048011B2 (ja) 調光材料及び調光フィルム
JP2005105131A (ja) 調光材料、調光フィルムおよびその製造方法
JP2008158041A (ja) 調光材料、調光フィルム及び調光フィルムの製造方法
JP5569412B2 (ja) 調光材料および調光フィルム
JP2013182112A (ja) 調光フィルム及びその製造方法
JP5652033B2 (ja) 光調整懸濁液の製造方法、調光材料の製造方法、及び調光フィルムの製造方法
JP5682338B2 (ja) 調光材料及び調光フィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09746650

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010512017

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12992360

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2009746650

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009746650

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE