WO2009139351A1 - 積層光学フィルム、その製造方法及びそれを用いた発光デバイス - Google Patents

積層光学フィルム、その製造方法及びそれを用いた発光デバイス Download PDF

Info

Publication number
WO2009139351A1
WO2009139351A1 PCT/JP2009/058769 JP2009058769W WO2009139351A1 WO 2009139351 A1 WO2009139351 A1 WO 2009139351A1 JP 2009058769 W JP2009058769 W JP 2009058769W WO 2009139351 A1 WO2009139351 A1 WO 2009139351A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
pressure
sensitive adhesive
adhesive layer
microlens
Prior art date
Application number
PCT/JP2009/058769
Other languages
English (en)
French (fr)
Inventor
祐治 堀田
孝志 富永
安季子 中島
Original Assignee
株式会社オプトメイト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オプトメイト filed Critical 株式会社オプトメイト
Publication of WO2009139351A1 publication Critical patent/WO2009139351A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0056Arrays characterized by the distribution or form of lenses arranged along two different directions in a plane, e.g. honeycomb arrangement of lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • G02F1/133607Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/28Adhesive materials or arrangements

Definitions

  • the present invention relates to a laminated optical film in which an adhesive transparent film is bonded to the lens pattern surface of a microlens film.
  • the laminated optical film of the present invention is applied to the surface of various optical devices, and can improve light extraction efficiency or prevent reflection on the surface of the optical device depending on the type of optical device.
  • microlens films are used to manage light.
  • the microlens film is used by being laminated on another optical film via an adhesive layer.
  • an integrated optical plate in which a surface of a microlens film on which a microlens pattern is not formed is bonded to a surface of a convex lens plate on which a convex lens pattern is formed (Patent Document 1). ).
  • the integrated optical plate described in Patent Document 1 is used as a backlight assembly in a liquid crystal display device.
  • Patent Document 2 After laminating a double-sided PSA sheet having an adhesive layer formed from an uncured UV curable resin on the lens surface of the microlens film, the adhesive is cured by UV irradiation to produce a laminated film.
  • a method is disclosed (Patent Document 2).
  • the laminated film obtained in Patent Document 2 is bonded to the polarizing plate by the other adhesive layer (the side not bonded to the lens sheet) of the double-sided pressure-sensitive adhesive sheet, and the viewing side surface of the liquid crystal display device It is used in.
  • the microlens pattern surface of the microlens film has a fine structure, the microlens pattern surface is easily scratched and has low scratch resistance. Therefore, as in Patent Document 1, the structure in which the microlens pattern surface of the microlens film is exposed does not have sufficient scratch resistance.
  • the microlens film is used for an external member that is predicted to be externally contacted. In some cases, it is particularly desirable to have scratch resistance.
  • An object of the present invention is to provide a laminated optical film having a microlens film having scratch resistance and satisfying the function as a microlens and a method for producing the same. Furthermore, an object of the present invention is to provide an optical device using a laminated optical film.
  • the present inventors have found that the above object can be achieved by the following laminated optical film and the like, and have completed the present invention.
  • the present invention includes a microlens film, A first pressure-sensitive adhesive layer having a storage elastic modulus at 80 ° C. of 1.1 ⁇ 10 5 to 5 ⁇ 10 5 Pa is provided on one side of a transparent film (but not including a polarizing film). Adhesive transparent film The surface on which the lens pattern of the microlens film is provided and the first pressure-sensitive adhesive layer of the adhesive transparent film are bonded to form an air layer, and The present invention relates to a laminated optical film comprising a second pressure-sensitive adhesive layer for a light-emitting device on a surface on which the lens pattern of the microlens film is not provided.
  • the thickness of the first pressure-sensitive adhesive layer of the adhesive transparent film is preferably 0.5 to 4 times the lens height of the lens pattern of the microlens film.
  • the laminated optical film may have a hard coat layer on the surface of the transparent film on the side where the first pressure-sensitive adhesive layer is not provided.
  • the above-mentioned laminated optical film and the above-mentioned adhesive type transparent film can have UV absorption and antistatic properties.
  • the microlens film is preferably a microlens array film in which a lens pattern is formed of a thermoplastic resin on one side of a transparent base film.
  • the present invention is also a method for producing the laminated optical film, Micro lens film, A first pressure-sensitive adhesive layer having a storage elastic modulus at 80 ° C. of 1.1 ⁇ 10 5 to 5 ⁇ 10 5 Pa is provided on one side of a transparent film (but not including a polarizing film).
  • Adhesive transparent film A laminated optical system comprising a step of bonding the surface of the microlens film on which the lens pattern is provided and the first pressure-sensitive adhesive layer of the adhesive-type transparent film so as to form an air layer.
  • the present invention relates to a film manufacturing method.
  • the above-mentioned laminated optical film is bonded to the surface of the light emitting device via the second pressure-sensitive adhesive layer of the laminated optical film.
  • the present invention relates to an optical device with a laminated optical film, wherein the optical device is provided on the outside.
  • the light emitting device is preferably applied to an organic EL light emitter.
  • the laminated optical film of the present invention is provided with an adhesive transparent film on the lens pattern surface of the micro lens film, and the lens pattern surface does not directly contact the outside, improving the scratch resistance of the micro lens film. can do.
  • the laminated optical film of the present invention is bonded to the lens pattern surface of the microlens film.
  • the pressure-sensitive adhesive layer of the adhesive transparent film is controlled to a predetermined storage elastic modulus and is in close contact with the lens pattern surface. Even when bonded to the lens pattern surface, the pressure-sensitive adhesive layer can maintain its shape substantially, so that the lens pattern is hardly buried by the adhesive, and the pressure-sensitive adhesive layer and the lens An air layer is formed by the pattern, and the function as a lens is hardly impaired. That is, the laminated optical film of the present invention has a good adhesion to the lens pattern surface and can sufficiently have an air layer interposed between the pressure-sensitive adhesive layer. Even in the case of stacking, the refraction required for the lens effect can be generated by the contact area between the lens pattern surface and the air layer.
  • the laminated optical film of the present invention combines an adhesive transparent film with the microlens film, the scratch resistance can be further improved by providing a hard coat layer on the adhesive transparent film. it can. Furthermore, it is possible to improve light resistance by imparting UV absorption to the adhesive-type transparent film, and electrostatic characteristics by imparting antistatic properties.
  • the laminated optical film A of the present invention has a microlens film 1 and an adhesive transparent film 2 bonded together as shown in FIG.
  • the microlens film 1 is exemplified by a microlens array film in which a lens pattern is formed on one side of a transparent substrate film 11.
  • the microlens film 1 is a transparent substrate film.
  • the lens layer may be integrally formed to form a lens pattern.
  • the adhesive-type transparent film 2 is provided with a first pressure-sensitive adhesive layer 22 controlled to a predetermined storage elastic modulus on one surface of the transparent film 21.
  • the lens layer 12 and the first pressure-sensitive adhesive layer are bonded by bonding the surface of the microlens film 1 having the lens layer 12 and the first pressure-sensitive adhesive layer 22 of the adhesive transparent film 2.
  • An air layer a is formed between 22.
  • the adhesive transparent film 2 can be provided with a hard coat layer on the side where the first pressure-sensitive adhesive layer 22 is not provided. Further, the adhesive transparent film 2 can be provided with UV absorption and antistatic properties by providing another layer on the transparent film 21 and / or the first pressure-sensitive adhesive layer 22. When providing the transparent film 21 and / or the first pressure-sensitive adhesive layer 22 with UV absorption and antistatic properties, the transparent film 21 and / or the first pressure-sensitive adhesive layer 22 are provided with UV absorbers and antistatic properties. An agent is appropriately blended. Moreover, when providing another layer, a UV absorption layer and an antistatic layer can be formed by using a UV absorber, an antistatic agent, or combining these with a binder.
  • FIG. 2 shows a case where the second pressure-sensitive adhesive layer 3 is provided on the laminated optical film A shown in FIG.
  • the second pressure-sensitive adhesive layer 3 is provided on the surface of the microlens film on which the lens pattern is not provided.
  • the second pressure-sensitive adhesive layer 3 is provided on one side of the transparent base film 11 on which the lens layer 12 of the microlens film 1 is not provided.
  • the second pressure-sensitive adhesive layer 3 in FIG. 2 can be provided with a separator.
  • UV absorption and antistatic properties can be imparted, or a UV absorption layer and an antistatic layer can be separately formed.
  • FIG. 3 shows an optical device with a laminated optical film in which a laminated optical film A is provided on the surface of the optical device 4.
  • the laminated optical film A is provided so that the adhesive transparent film 2 is located outside the microlens film 1 with respect to the optical device 4.
  • the laminated optical film A shown in FIG. 2 is provided on the optical device 4 via the second pressure-sensitive adhesive layer 3, but the laminated optical film A as shown in FIG. It can also be provided on the surface of the optical device 4 as it is.
  • the microlens film used in the present invention various types having a lens layer on the film surface can be used.
  • the lens layer include various shapes such as a bullet shape, a spherical shape, a hemispherical shape, a pyramid shape, a kamaboko shape, and a prism shape.
  • the production of the microlens film is appropriately selected according to the type of the microlens film.
  • the overall thickness of the microlens film is usually about 10 to 500 ⁇ m, preferably 20 to 100 ⁇ m.
  • the height of the lens layer is usually about 1 to 50 ⁇ m, preferably 3 to 10 ⁇ m, and is usually subjected to uniform processing.
  • the height of the lens layer is the length between the top of the lens layer and the flat portion on the lens side of the microlens film (the lowest part of the lens).
  • thermoplastic resins As the material of the microlens film, various thermoplastic resins can be used. For example, acrylic resin, polyester resin, epoxy resin, polystyrene resin, polycarbonate resin, urethane resin, styrene-acrylonitrile copolymer, Examples thereof include styrene-methyl methacrylate copolymers.
  • the microlens film When the microlens film is a microlens array film, it has a lens layer having a pattern formed of a thermoplastic resin on one side of the transparent substrate film.
  • the material of the lens layer As the material of the lens layer, the material of the microlens film is used.
  • the material for the transparent substrate film include polyester resins such as polyethylene terephthalate, polycarbonate resins, acrylic resins such as polymethyl methacrylate, and transparent resins such as cellulose resins such as triacetyl cellulose.
  • the thickness of the transparent substrate film is determined in consideration of the total thickness of the film, and is usually about 8 to 450 ⁇ m, preferably 15 to 90 ⁇ m.
  • a first pressure-sensitive adhesive layer having a storage elastic modulus at 80 ° C. of 1.1 ⁇ 10 5 to 5 ⁇ 10 5 Pa is provided on one side of the transparent film as an adhesive-type transparent film.
  • a hard coat layer can be provided on the side of the transparent film on which the first pressure-sensitive adhesive layer is not provided.
  • an antireflection treatment or the like can be performed.
  • transparent film materials include polyester resins such as polyethylene terephthalate, cellulose resins, acetate resins, polyether sulfone resins, polycarbonate resins, polyamide resins, polyimide resins, polyolefin resins, and acrylic resins.
  • transparent polymers such as resins. Among these polymers, those having a film surface hardness (pencil hardness) of HB or more, more preferably 2H or more are preferred from the viewpoint of scratch resistance.
  • polyester resins such as polyethylene terephthalate, polyethersulfone resins, polycarbonate resins and the like are suitable.
  • the thickness of the transparent film is usually about 10 to 100 ⁇ m, preferably 15 to 50 ⁇ m.
  • the first pressure-sensitive adhesive layer of the adhesive-type transparent film has an adhesive force capable of sufficiently adhering to the microlens film, and a sufficient air layer can be formed between the lens layer of the microlens film.
  • the one having a storage elastic modulus at 80 ° C. in the range of 1.1 ⁇ 10 5 to 5 ⁇ 10 5 Pa is used.
  • the storage elastic modulus is preferably 1.2 ⁇ 10 5 to 4 ⁇ 10 5 Pa, and more preferably 1.5 ⁇ 10 5 to 3 ⁇ 10 5 Pa. If the storage elastic modulus is too large, the adhesion is not sufficient and partial floating occurs, which is not preferable in terms of light extraction efficiency, and the brightness is reduced as compared with the case where the adhesion is sufficient. To do.
  • the adhesiveness is further deteriorated, and the adhesive transparent film is peeled off.
  • the pressure-sensitive adhesive layer may flow over time, particularly at high temperatures, and fill the lens layer. Luminance decreases compared to the adhesive layer.
  • the pressure-sensitive adhesive (adhesive) for forming the first pressure-sensitive adhesive layer various pressure-sensitive adhesives can be used, which is preferable from the viewpoint of the productivity of the laminated optical film.
  • pressure-sensitive adhesives include acrylic adhesives, ethylene-vinyl acetate copolymers, natural rubber adhesives, polyisobutylene, butyl rubber, styrene-butylene-styrene copolymers, styrene-imprene-
  • Various pressure-sensitive adhesives such as a synthetic rubber-based pressure-sensitive adhesive such as a styrene block copolymer, a polyurethane-based pressure-sensitive adhesive, and a polyester-based pressure-sensitive adhesive can be used.
  • the first pressure-sensitive adhesive layer preferably has a low refractive index so as to be close to the refractive index 1 of the air layer, and preferably has a refractive index of 1.4 to 1.5, for example.
  • acrylic pressure-sensitive adhesives are preferably used from the viewpoints of high transparency and good adhesion characteristics with a transparent film.
  • the acrylic pressure-sensitive adhesive is based on a (meth) acrylic polymer whose main skeleton is a monomer unit of (meth) acrylic acid alkyl ester having an average alkyl group with about 3 to 9 carbon atoms.
  • Copolymerization of (meth) acrylic polymers with carboxyl group-containing monomers such as (meth) acrylic acid, hydroxyl group-containing monomers such as hydroxyalkyl (meth) acrylate, and other monomers having functional groups can do.
  • the adhesive can contain a crosslinking agent.
  • the crosslinking agent include various crosslinking agents such as polyisocyanate, polyamine, melamine, urea, and epoxy.
  • the amount of the crosslinking agent is preferably 1 to 5 parts by weight, more preferably 1.2 to 4 parts by weight, and further preferably 1.3 to 2 parts by weight with respect to 100 parts by weight of the base polymer.
  • the storage elastic modulus of the first pressure-sensitive adhesive layer can be performed, for example, by controlling the blending amount of the crosslinking agent blended in the adhesive.
  • the adhesive may contain other known additives such as vulcanizing agents, tackifiers, colorants, pigments and other powders, dyes, surfactants, plastics, and the like. Agents, surface lubricants, leveling agents, softeners, antioxidants, anti-aging agents, light stabilizers, UV absorbers, polymerization inhibitors, inorganic or organic fillers, metal powders, particles, foils, etc. It can add suitably according to the use to be used. Moreover, you may employ
  • the first pressure-sensitive adhesive layer can be formed by applying the adhesive to a separator or the like, and drying and removing the solvent to form a pressure-sensitive adhesive layer.
  • the pressure sensitive adhesive layer formed on the separator is transferred to a transparent film.
  • a method of directly applying the adhesive to the transparent film, drying and removing the solvent, and forming the pressure-sensitive adhesive layer directly on the transparent film can be employed.
  • the thickness of the first pressure-sensitive adhesive layer is usually about 2 to 20 ⁇ m, preferably 2.5 to 15 ⁇ m, and more preferably 3 to 10 ⁇ m.
  • the thickness of the first pressure-sensitive adhesive layer is designed to be 0.5 to 4 times, more preferably 0.75 to 3 times, further 1 to 2 times the lens height. It is preferable because a sufficient air layer can be formed between the lens layer of the microlens film.
  • the microlens film, the adhesive transparent film, the surface on which the pattern of the microlens film is provided, and the first pressure-sensitive adhesive layer of the adhesive transparent film are bonded together.
  • the first pressure-sensitive adhesive layer has a predetermined storage elastic modulus
  • the obtained laminated optical film has good adhesion to the lens layer of the microlens film, and is the same as before bonding even after bonding. The state can be maintained, and the pressure-sensitive adhesive layer forms an air layer without substantially filling the lens layer of the microlens film.
  • the laminated optical film may be provided with a second pressure-sensitive adhesive layer as shown in FIG. 2 for bonding to other members on the surface of the microlens film on which the lens pattern is not provided.
  • the second pressure-sensitive adhesive layer can be provided in advance on the surface of the microlens film (or transparent base film) on which the lens pattern is not provided before the laminated optical film is manufactured.
  • the pressure-sensitive adhesive (adhesive) that forms the second pressure-sensitive adhesive layer is not particularly limited.
  • acrylic polymer, silicone polymer, polyester, polyurethane, polyamide, polyether, fluorine-based or rubber-based polymer, etc. Can be selected and used as appropriate.
  • the second pressure-sensitive adhesive layer is suitable from the viewpoint of workability for attaching the laminated optical film.
  • an acrylic adhesive that is excellent in optical transparency, exhibits appropriate wettability, cohesiveness, and adhesive pressure-sensitive adhesive properties, and is excellent in weather resistance, heat resistance, and the like can be preferably used.
  • the second pressure-sensitive adhesive layer can be formed by the same method as the first pressure-sensitive adhesive layer.
  • the second pressure sensitive adhesive layer can also be provided as a superimposed layer of different compositions or types.
  • the thickness of the second pressure-sensitive adhesive layer can be appropriately determined according to the purpose of use and adhesive force, and is generally 3 to 30 ⁇ m, preferably 3 to 20 ⁇ m, particularly preferably 5 to 10 ⁇ m.
  • the thin air layer (refractive index is 1) generated when the laminated optical film is simply placed.
  • the presence reduces light loss.
  • the refractive index of the second pressure-sensitive adhesive layer to be higher than the refractive index of the optical device surface (usually, it is preferable to increase the refractive index by 1.5 or more), the light loss. Is almost eliminated and light can be emitted efficiently.
  • Examples of the optical device include light emitting devices such as a light source, a light guide, and a light source unit.
  • Examples of the light source include a PDP phosphor, an LED phosphor, an organic EL light emitter, a cold cathode tube, and a laser light source.
  • the light guide and the light source unit are usually used in combination with the light source.
  • the light emitting device is used, for example, for a backlight system used inside a liquid crystal display device, or for illumination in various places indoors and outdoors.
  • it is used in the surface at the side of visual recognition of image display devices, such as a liquid crystal display device, an organic electroluminescent display device, CRT, and PDP.
  • examples of the optical device include a light receiving device such as a solar cell and an optical sensor.
  • the laminated optical film of the present invention is suitable for application to the surface of a light emitting device, particularly an organic EL light emitter, among the optical devices.
  • a light emitting device particularly an organic EL light emitter
  • Example 1 (Micro lens array film) A solution obtained by dissolving a thermoplastic polyester resin in toluene was applied onto a polyethylene terephthalate (PET) film (38 ⁇ m thickness) so that the thickness after drying was 0.1 ⁇ m, thereby forming an easy-adhesion layer. Furthermore, a solution in which polystyrene resin was dissolved in toluene was applied on the easy-adhesion layer so as to have a thickness of 5 ⁇ m after drying to form a polystyrene layer, thereby producing a PET / polystyrene laminated film.
  • PET polyethylene terephthalate
  • An acrylic pressure-sensitive adhesive layer (refractive index 1.53) having a thickness of 10 ⁇ m was formed on the PET side of the laminated film by a transfer method to produce a film for forming a microlens array film.
  • a microlens array film (lens layer) having a hemispherical close-packed lens layer having a diameter of 10 ⁇ m and a height of 5 ⁇ m is formed by hot press molding a polystyrene layer of the film for forming the microlens array film.
  • the acrylic pressure-sensitive adhesive layer is provided on the opposite side of the above.
  • Adhesive transparent film 1. Trimethylolpropane / tolylene diisocyanate trimer adduct (Coronate L, manufactured by Nippon Polyurethane Industry Co., Ltd.) as a crosslinking agent with respect to 100 parts by weight of solid content of an ethyl acrylate polymer (refractive index is 1.47) An adhesive composition containing 8 parts by weight was prepared.
  • This adhesive composition was applied to a separator (38 ⁇ m PET subjected to silicone peeling treatment) so that the pressure-sensitive adhesive layer had a dry thickness of 10 ⁇ m, dried at 120 ° C. for 3 minutes, and crosslinked at 80 ° C.
  • a pressure-sensitive adhesive layer having a storage elastic modulus of 2 ⁇ 10 5 Pa and a refractive index of 1.47 was formed.
  • the pressure-sensitive adhesive layer was transferred to a polyethylene terephthalate (PET) film (38 ⁇ m thickness), which was a transparent film, to produce an adhesive transparent film.
  • PET polyethylene terephthalate
  • the pressure-sensitive adhesive layer of the adhesive-type transparent film was attached to the lens side of the microlens array film obtained above to produce a laminated optical film.
  • Example 1 the preparation of the adhesive-type transparent film was carried out except that the blending amount of the crosslinking agent was changed as shown in Table 1, and the storage elastic modulus of the pressure-sensitive adhesive layer was controlled as shown in Table 1.
  • a laminated optical film was produced in the same manner as in Example 1.
  • Example 4 In Example 1, the production of the adhesive transparent film was performed in the same manner as in Example 1 except that the transparent film was changed to an antistatic polyethylene terephthalate (PET) film with a hard coat layer (38 ⁇ m thickness). A film was prepared.
  • PET polyethylene terephthalate
  • Example 5 In Example 1, a laminated optical film was prepared in the same manner as in Example 1 except that the transparent film was changed to a UV-cut polyethylene terephthalate (PET) film (38 ⁇ m thickness) with a hard coat layer as the transparent film. A film was prepared.
  • PET polyethylene terephthalate
  • ⁇ Durability evaluation> The organic EL device with the laminated optical film obtained by allowing the laminated optical film to stand for 168 hours in an atmosphere at 80 ° C. and then pasting the laminated optical film on the surface of the organic EL device in the same manner as described above ⁇ Measurement>, ⁇ appearanceevaluation>, and ⁇ pencil hardness measurement> were evaluated.
  • * 1 to 3 are as follows. * 1: Adhesion between the top of the lens layer and the pressure-sensitive adhesive layer was poor, and partial lifting occurred on the adhesive transparent film on the lens layer. * 2: Adhesiveness between the top of the lens layer and the pressure-sensitive adhesive layer was poor, and the adhesive transparent film was peeled off on the lens layer. * 3: The pressure-sensitive adhesive layer flowed, filling the lens layer and making the lens layer transparent.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Electroluminescent Light Sources (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Liquid Crystal (AREA)
  • Laminated Bodies (AREA)

Abstract

 本発明の積層光学フィルムは、マイクロレンズフィルムと、透明フィルム(但し、偏光フィルムを含まない)の片面に、80℃での貯蔵弾性率が、1.1×10~5×10Paである第一感圧接着剤層が設けられている接着型透明フィルムを、前記マイクロレンズフィルムのレンズパターンが設けられている面と、前記接着型透明フィルムの第一感圧接着剤層とが、空気層を形成するように貼り合わされており、かつ、前記マイクロレンズフィルムのレンズパターンが設けられていない側の面に、発光デバイス用の第二感圧接着剤層を有する。当該積層光学フィルムは、耐スクラッチ性を有し、かつ、マイクロレンズとしての機能を満足することができ、発光デバイスに好適に適用される。

Description

積層光学フィルム、その製造方法及びそれを用いた発光デバイス
 本発明は、マイクロレンズフィルムのレンズパターン面に、接着型透明フィルムが貼り合わされている積層光学フィルムに関する。本発明の積層光学フィルムは、各種の光学デバイスの表面に適用されて、光学デバイスの種類に応じて、光の取り出し効率を向上させたり、光学デバイス表面の反射を防止したりすることができる。
 光学デバイスにおいて、光をマネジメントするために、マイクロレンズフィルムが用いられている。また、マイクロレンズフィルムは、接着剤層を介して、他の光学フィルムに積層して用いられている。
 例えば、凸レンズ板の凸レンズパターンが形成された面に、マイクロレンズフィルムのマイクロレンズパターンが形成されていない側の面を、接着部材によって貼り合せた一体型光学板が開示されている(特許文献1)。当該特許文献1に記載の一体型光学板は、液晶表示装置におけるバックライトアセンブリとして用いられている。
 また、マイクロレンズフィルムのレンズ面に、未硬化の紫外線硬化樹脂から形成されている接着剤層を有する両面粘着シートを貼り合せた後に、紫外線照射により前記接着剤を硬化させて積層フィルムを製造する方法が開示されている(特許文献2)。当該特許文献2で得られた積層フィルムは、前記両面粘着シートの他の接着剤層(レンズシートに貼り合せていない側)によって、偏光板に貼り合せられて、液晶表示装置の視認側の表面で用いられている。
特開2008-3604号公報 特開2002-96395号公報
 マイクロレンズフィルムのマイクロレンズパターン面は、微細構造を有しているため、当該マイクロレンズパターン面は、傷付きやすく、耐スクラッチ性が弱い。従って、特許文献1のように、マイクロレンズフィルムのマイクロレンズパターン面が露出しているような構造では、耐スクラッチ性が十分ではない。特許文献1のように、マイクロレンズフィルムを、液晶表示装置におけるバックライトアセンブリのように内部部材として用いる場合に比べて、例えば、マイクロレンズフィルムを、外部接触が予測される外部部材の用途に用いる場合には、特に耐スクラッチ性が有することが望まれる。
 一方、特許文献2では、マイクロレンズフィルムのレンズ面に両面粘着シートを貼り合せた積層フィルムを、液晶表示装置の視認側の偏光板に適用しているため、マイクロレンズフィルムのレンズ面が、外部から直接接触することはない。しかし、特許文献2の方法では、マイクロレンズフィルムのレンズ面と、両面粘着シートの貼り合せを、流動性の高い未硬化の接着剤層により行った後に、当該接着剤層を硬化させているため、マイクロレンズフィルムのレンズ面において、レンズの先端部分が未硬化の接着剤によって埋まってしまい、レンズとしての機能を発揮する部分が少なくなってしまうといった問題がある。即ち、接着剤層が、レンズパターンを埋めると、レンズ材料の屈折率と同様の屈折率を有する接着剤層によって、接着剤層中に埋まったレンズ先端部分は、レンズとしては充分に機能しなくなる。
 本発明は、耐スクラッチ性を有し、かつ、マイクロレンズとしての機能を満足することができるマイクロレンズフィルムを有する積層光学フィルムおよびその製造方法を提供することを目的とする。さらには、本発明は積層光学フィルムを用いた光学デバイスを提供することを目的とする。
 本発明者らは、上記の目的を達成すべく鋭意検討した結果、下記の積層光学フィルム等により上記目的を達成できることを見出し、本発明を完成するに至った。
 即ち、本発明は、マイクロレンズフィルムと、
 透明フィルム(但し、偏光フィルムを含まない)の片面に、80℃での貯蔵弾性率が、1.1×10~5×10Paである第一感圧接着剤層が設けられている接着型透明フィルムを、
 前記マイクロレンズフィルムのレンズパターンが設けられている面と、前記接着型透明フィルムの第一感圧接着剤層とが、空気層を形成するように貼り合わされており、かつ、
 前記マイクロレンズフィルムのレンズパターンが設けられていない側の面に、発光デバイス用の第二感圧接着剤層を有することを特徴とする積層光学フィルム、に関する。
 上記積層光学フィルムにおいて、前記接着型透明フィルムの第一感圧接着剤層の厚さが、前記マイクロレンズフィルムのレンズパターンのレンズ高さの0.5~4倍であることが好ましい。
 上記積層光学フィルムは、前記接着型透明フィルムは、第一感圧接着剤層が設けられていない側の透明フィルムの面にハードコート層を有することができる。
 上記積層光学フィルムは、前記接着型透明フィルムは、UV吸収性や、帯電防止性を有することができる。
 上記積層光学フィルムにおいて、前記マイクロレンズフィルムとしては、透明基材フィルムの片側に、熱可塑性樹脂によりレンズパターンが形成されたマイクロレンズアレイフィルムであることが好ましい。
 また本発明は、前記積層光学フィルムの製造方法であって、
 マイクロレンズフィルムと、
 透明フィルム(但し、偏光フィルムを含まない)の片面に、80℃での貯蔵弾性率が、1.1×10~5×10Paである第一感圧接着剤層が設けられている接着型透明フィルムを、
 前記マイクロレンズフィルムのレンズパターンが設けられている面と、前記接着型透明フィルムの第一感圧接着剤層とが、空気層を形成するように貼り合わす工程を有することを特徴とする積層光学フィルムの製造方法、に関する。
 また本発明は、発光デバイスの表面に、前記記載の積層光学フィルムが、当該積層光学フィルムの第二感圧接着剤層を介して、マイクロレンズフィルムよりも接着型透明フィルムが発光デバイスに対して外側になるように設けられていることを特徴とする積層光学フィルム付き光学デバイス、に関する。当該積層光学フィルム付き発光デバイスにおいて、発光デバイスとしては、有機EL発光体への適用が好適である。
 本発明の積層光学フィルムは、マイクロレンズフィルムのレンズパターン面に、接着型透明フィルムが設けられおり、レンズパターン面が、直接、外部に接触することはなく、マイクロレンズフィルムの耐スクラッチ性を向上することができる。
 また、本発明の積層光学フィルムは、マイクロレンズフィルムのレンズパターン面に貼り合せる、接着型透明フィルムの感圧接着剤層は、所定の貯蔵弾性率に制御されており、レンズパターン面との密着性がよく、また、レンズパターン面に貼り合せた場合にも、感圧接着剤層はその形状を略維持できるため、レンズパターンが接着剤によって殆ど埋まることはなく、感圧接着剤層とレンズパターンによって空気層が形成されて、レンズとしての機能を殆ど損なうことはない。即ち、本発明の積層光学フィルムは、レンズパターン面と密着性よく、かつ、感圧接着剤層との間に介在する空気層を十分に存在させることができ、マイクロレンズフィルムに接着型透明フィルムを積層した場合においても、レンズパターン面と空気層との接触領域によってレンズ効果に必要な屈折を生じさせることができる。
 また、本発明の積層光学フィルムは、前記マイクロレンズフィルムに、接着型透明フィルムを組み合わせているため、接着型透明フィルムに、ハードコート層を設けることにより、より、耐スクラッチ性を向上することができる。さらには、接着型透明フィルムに、UV吸収性を付与することに有することにより耐光性を、帯電防止性を付与することにより静電気特性を向上させることができる。
本発明の積層光学フィルムの一態様を示す断面図である。 本発明の積層光学フィルムの一態様を示す断面図である。 本発明の積層光学フィルム付き光学デバイスの一態様を示す断面図である。
 以下、本発明の積層光学フィルム等を図面を参照しながら詳細に説明する。
 本発明の積層光学フィルムAは、図1に示すように、マイクロレンズフィルム1と、接着型透明フィルム2を貼り合せている。図1では、マイクロレンズフィルム1は透明基材フィルム11の片側に、レンズ層12がレンズパターンが形成された、マイクロレンズアレイフィルムが例示されているが、マイクロレンズフィルム1は、透明基材フィルムとともに、レンズ層が一体成形されてレンズパターンが形成されているものであってもよい。接着型透明フィルム2は、透明フィルム21の片面に、所定の貯蔵弾性率に制御された第一感圧接着剤層22が設けられている。積層光学フィルムAにおいて、マイクロレンズフィルム1のレンズ層12を有する面と、前記接着型透明フィルム2の第一感圧接着剤層22の貼り合せによって、レンズ層12と第一感圧接着剤層22の間に空気層aが形成されている。
 また、図1には図示していないが、接着型透明フィルム2には、第一感圧接着剤層22が設けられていない側に、ハードコート層を設けることができる。また、接着型透明フィルム2には、透明フィルム21および/または第一感圧接着剤層22に、さらに、別の層を設けることによりUV吸収性、帯電防止性を付与することができる。透明フィルム21および/または第一感圧接着剤層22にUV吸収性、帯電防止性を付与する場合には、透明フィルム21および/または第一感圧接着剤層22にUV吸収剤、帯電防止剤が適宜に配合される。また、別の層を設ける場合には、UV吸収剤、帯電防止剤により、またはこれらとバインダー等を組み合わせることにより、UV吸収層、帯電防止層を形成することができる。
 図2は、図1に記載の積層光学フィルムAに、第二感圧接着剤層3が設けられている場合である。第二感圧接着剤層3は、マイクロレンズフィルムのレンズパターンが設けられていない側の面に設けられる。図1でいえば、マイクロレンズフィルム1のレンズ層12が設けられていない透明基材フィルム11の片側に第二感圧接着剤層3が設けられている。なお、図示していないが、図2の第二感圧接着剤層3には、セパレータを設けることができる。なお、第二感圧接着剤層3の形成にあたっては、UV吸収性、帯電防止性を付与したり、別途、UV吸収層、帯電防止層を形成したりすることができる。
 図3は、光学デバイス4の表面に、積層光学フィルムAが設けられている積層光学フィルム付き光学デバイスである。積層光学フィルムAは、マイクロレンズフィルム1よりも、接着型透明フィルム2が光学デバイス4に対して外側になるように設けられている。なお、図3では、図2に示す積層光学フィルムAが、第二感圧接着剤層3を介して光学デバイス4に設けられているが、図1に示すような、積層光学フィルムAを、そのまま光学デバイス4の表面に設けることもできる。
 本発明で用いられる、マイクロレンズフィルムは、フィルム表面に、レンズ層を有する各種のものを用いることができる。レンズ層は、砲弾状、球状、半球状、ピラミッド状、カマボコ状、プリズム状等の各種の形状のものがあげられる。マイクロレンズフィルムの製造は、マイクロレンズフィルムの種類に応じて適宜に選択される。
 上記マイクロレンズフィルムの全体の厚さは、通常、10~500μm程度であり、好ましくは20~100μmである。レンズ層の高さは、通常、1~50μm程度であり、好ましくは3~10μmであり、通常、均一な加工処理が施されている。なお、レンズ層の高さは、レンズ層の頂上部とマイクロレンズフィルムのレンズ側の平面部(レンズの最下部)との長さである。
 上記マイクロレンズフィルムの材料としては、各種の熱可塑性樹脂を用いることができ、例えば、アクリル樹脂、ポリエステル樹脂、エポキシ樹脂、ポリスチレン系樹脂、ポリカーボネート系樹脂、ウレタン系樹脂、スチレン-アクリロニトリル共重合体、スチレン-メタクリル酸メチル共重合体等があげられる。
 マイクロレンズフィルムが、マイクロレンズアレイフィルムの場合には、透明基材フィルムの片面に、熱可塑性樹脂によりパターンが形成されたレンズ層を有する。レンズ層の材料としては、前記マイクロレンズフィルムの材料が用いられる。透明基材フィルムの材料としては、ポリエチレンテレフタレート等のポリエステル樹脂、ポリカーボネート系樹脂、ポリメチルメタクリレート等のアクリル系樹脂、トリアセチルセルロース等のセルロース系樹脂等の透明樹脂があげられる。なお、透明基材フィルムの厚さは、フィルムの全体の厚さを考慮して決定され、通常、8~450μm程度、好ましくは15~90μmである。
 本発明では、接着型透明フィルムとして、透明フィルムの片面に、80℃での貯蔵弾性率が、1.1×10~5×10Paである第一感圧接着剤層が設けられているものを用いる。なお、前述の通り、第一感圧接着剤層が設けられていない側の透明フィルムの面には、ハードコート層を設けることができる。その他、反射防止処理等を施すことができる。
 透明フィルムの材料としては、例えば、ポリエチレンテレフタレート等のポリエステル系樹脂、セルロース系樹脂、アセテート系樹脂、ポリエーテルサルホン系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリオレフィン系樹脂、アクリル系樹脂のような透明なポリマーがあげられる。これらポリマーのなかでも、耐スクラッチ性の点から、フィルム表面の硬度(鉛筆硬度)が、HB以上、さらには2H以上を有するものが好ましい。例えば、ポリエチレンテレフタレート等のポリエステル系樹脂、ポリエーテルサルホン系樹脂、ポリカーボネート系樹脂等が好適である。透明フィルムの厚さは、通常、10~100μm程度、好ましくは15~50μmである。
 前記接着型透明フィルムの第一感圧接着剤層は、マイクロレンズフィルムと十分に密着できる粘着力を有し、かつ、マイクロレンズフィルムのレンズ層との間に十分な空気層を形成できるように、80℃での貯蔵弾性率が1.1×10~5×10Paの範囲にあるものを用いる。前記貯蔵弾性率は、1.2×10~4×10Paであるのが好ましく、さらには1.5×10~3×10Paであるのが好ましい。前記貯蔵弾性率が大きくなりすぎると、密着性が十分でなく、部分的な浮きが発生して、光の取り出し効率の点で好ましくなく、十分な密着をしている場合に比べて輝度が低下したりする。また、経時的には、密着性がより悪化して、接着型透明フィルムが剥離したりする。一方、前記貯蔵弾性率が小さくなりすぎると、経時的に、特に高温下において、感圧接着剤層が流動して、レンズ層を埋めてしまうおそれがあり、硬化状態を維持している感圧接着剤層に比べて輝度が低下したりする。
 第一感圧接着剤層を形成する感圧接着剤(粘着剤)としては、各種感圧接着剤を用いることができ、積層光学フィルムの生産性の点から好適である。感圧接着剤(粘着剤)としては、例えば、アクリル系粘着剤、エチレン-酢酸ビニル共重合体、天然ゴム系粘着剤、ポリイソブチレン、ブチルゴム、スチレン-ブチレン-スチレン共重合体、スチレン-インプレン-スチレンブロック共重合体等の合成ゴム系粘着剤、ポリウレタン系粘着剤、ポリエステル系粘着剤などの各種粘着剤があげられる。なお、第一感圧接着剤層は、空気層の屈折率1に近くなるように、屈折率が低いものが好ましく、例えば、屈折率1.4~1.5であるものが好ましい。
 前記感圧接着剤(粘着剤)の中でも透明性が高く、かつ透明フィルムとの良好な密着特性等の点から、アクリル系粘着剤が好適に用いられる。
 アクリル系粘着剤は、アルキル基の平均炭素数は3~9程度の(メタ)アクリル酸アルキルエステルのモノマーユニットを主骨格とする(メタ)アクリル系ポリマーをベースポリマーとする。(メタ)アクリル系ポリマーには、(メタ)アクリル酸等のカルボキシル基含有モノマーや、(メタ)アクリル酸ヒドロキシアルキル等のヒドロキシル基含有モノマー、その他、官能基を有するモノマーを共重合モノマーとして共重合することができる。
 また、前記接着剤(粘着剤)は架橋剤を含有することができる。架橋剤としては、ポリイソシアネート系、ポリアミン系、メラミン系、尿素系、エポキシ系等の各種架橋剤があげられる。架橋剤の配合量は、ベースポリマー100重量部に対して、1~5重量部が好ましく、さらには1.2~4重量部、さらには1.3~2重量部が好ましい。第一感圧接着剤層の貯蔵弾性率は、例えば、接着剤に配合する架橋剤の配合量を制御することにより行うことができる。前記架橋剤によって、感圧接着剤層に架橋構造が付与されて、硬化して流動性がなくなった状態の粘着剤層を形成できる。
 上記接着剤(粘着剤)には、その他の公知の添加剤を含有していてもよく、たとえば、加硫剤、粘着付与剤、着色剤、顔料などの粉体、染料、界面活性剤、可塑剤、表面潤滑剤、レベリング剤、軟化剤、酸化防止剤、老化防止剤、光安定剤、紫外線吸収剤、重合禁止剤、無機または有機の充填剤、金属粉、粒子状、箔状物などを使用する用途に応じて適宜添加することができる。また、制御できる範囲内で、還元剤を加えてのレドックス系を採用してもよい。
 第一感圧接着剤層の形成方法は、前記接着剤をセパレータなどに塗布し、溶媒などを乾燥除去して感圧接着剤層を形成することにより行うことができる。前記セパレータに形成した感圧接着剤層は透明フィルムに転写される。または透明フィルムに前記接着剤を塗布し、溶媒などを乾燥除去して感圧接着剤層を透明フィルムに、直接、形成する方法などを採用できる。
 前記第一感圧接着剤層の厚さは、通常、2~20μm程度であり、2.5~15μmであるのが好ましく、さらには3~10μmであるのが好ましい。また、前記第一感圧接着剤層の厚さは、レンズ高さの0.5~4倍、さらには0.75~3倍、さらには1~2倍になるように設計するのが、マイクロレンズフィルムのレンズ層との間に、十分な空気層を形成できる点から好ましい。
 本発明の積層光学フィルムは、前記マイクロレンズフィルムと、接着型透明フィルムを、前記マイクロレンズフィルムのパターンが設けられている面と、前記接着型透明フィルムの第一感圧接着剤層を貼り合せることにより得られる。得られた積層光学フィルムは、第一感圧接着剤層が所定の貯蔵弾性率を有することから、マイクロレンズフィルムのレンズ層と密着性よく、かつ、貼り合わせ後においても貼り合わせ前と同様の状態を維持することができ、感圧接着剤層はマイクロレンズフィルムのレンズ層を殆ど埋めることなく、空気層が形成される。
 前記積層光学フィルムには、前記マイクロレンズフィルムのレンズパターンが設けられていない側の面に、他部材と接着するための図2に示すような、第二感圧接着剤層を設けることができる。第二感圧接着剤層は、前記積層光学フィルムを製造する前に、前記マイクロレンズフィルム(または透明基材フィルム)のレンズパターンが設けられていない側の面に予め設けておくことができる。
 第二感圧接着剤層を形成する感圧接着剤(粘着剤)は特に制限されないが、例えばアクリル系ポリマー、シリコーン系ポリマー、ポリエステル、ポリウレタン、ポリアミド、ポリエーテル、フッ素系やゴム系などのポリマーをベースポリマーとするものを適宜に選択して用いることができる。第二感圧接着剤層は、積層光学フィルムの貼り付け作業性の点から好適である。特に、アクリル系接着剤の如く光学的透明性に優れ、適度な濡れ性と凝集性と接着性の粘着特性を示して、耐候性や耐熱性などに優れるものが好ましく用いうる。
 第二感圧接着剤層の形成は、前記第一感圧接着剤層の形成方法と同様の方法を採用できる。第二感圧接着剤層は、異なる組成又は種類等のものの重畳層として設けることもできる。第二感圧接着剤層の厚さは、使用目的や接着力などに応じて適宜に決定でき、一般には3~30μmであり、3~20μmが好ましく、特に5~10μmが好ましい。
 光学デバイスの表面に、前記積層光学フィルムを、第二感圧接着剤層を介して貼り合わせる場合には、単に前記積層光学フィルムを載せる場合に生じていた薄い空気層(屈折率が1)の存在により光のロスが少なくなる。さらには、第二感圧接着剤層の屈折率を、光学デバイス表面の屈折率より高くなるように設計(通常、屈折率を1.5以上高くするのが好ましい)することで、光のロスがほとんどなくなり、光を効率よく出射させることができる。
 光学デバイスとしては、光源、導光体、光源ユニットなどの発光デバイスがあげられる。上記光源としては、例えば、PDP蛍光体、LED蛍光体、有機EL発光体、冷極管、レーザー光源などがあげられる。導光体、光源ユニットは、通常、前記光源と組み合わされて用いられる。発光デバイスは、例えば、液晶表示装置内部に用いられるバックライトシステムや、室内、室外における各所の照明に用いられる。また、光学デバイスとしては、また、液晶表示装置、有機EL表示装置、CRT、PDP等の画像表示デバイスの視認側の表面において用いられる。その他、光学デバイスとしては、太陽電池、光学センサー等の受光デバイス等があげられる。本発明の積層光学フィルムは、前記光学デバイスのなかでも、発光デバイス、特に、有機EL発光体の表面に適用する場合に好適である。例えば、有機EL発光体を、室内、室外の照明に用いる場合には照明光の取り出し効率を向上させ、かつ、有機EL発光体で問題とされている表面反射を防止することができる。
 以下、本発明の実施例等について説明するが、本発明は、これら実施例に限られるものではない。なお、実施例等における評価項目は下記のようにして行った。
 <貯蔵粘弾性の測定>
 貯蔵粘弾性の測定は以下の条件で行った。
・装置:ティー・エイ・インスツルメント社製 ARES
・変形モード:ねじり
・測定周波数:一定周波数1Hz
・昇温速度:5℃/分
・測定温度:接着剤のガラス転移温度付近から160℃でまで測定
・形状:パラレルプレート 8.0mmφ
・試料厚さ:0.5~2mm(取り付け初期)
 80℃での貯蔵弾性率(G’)を読み取った。
 <屈折率の測定>
 25℃の雰囲気下で、ナトリウムD線(589nm)を照射し、アッベ屈折率計(ATAGO社製、DR=M4)を用いて屈折率の測定をおこなった。
 実施例1
 (マイクロレンズアレイフィルム)
 熱可塑性ポリエステル樹脂をトルエンに溶解した溶液を、ポリエチレンテレフタレート(PET)フィルム(38μm厚)上に乾燥後の厚さが0.1μmになるように塗工して、易接着層を形成した。さらに、ポリスチレン樹脂をトルエンで溶解した溶液を、前記易接着層上に、乾燥後に5μm厚になるように塗工して、ポリスチレン層を形成し、PET/ポリスチレン積層フィルムを作製した。前記積層フィルムのPET側に、厚さ10μmのアクリル系感圧接着剤層(屈折率1.53)を転写法にて形成して、マイクロレンズアレイフィルム形成用フィルムを作製した。次いで、前記マイクロレンズアレイフィルム形成用のフィルムのポリスチレン層を、金型を用いて熱プレス成形し、直径10μm、高さ5μmの半球状最密充填のレンズ層を有するマイクロレンズアレイフィルム(レンズ層の反対側に前記アクリル系感圧接着剤層を有する)を作製した。
 (接着型透明フィルム)
 エチルアクリレート系ポリマー(屈折率は1.47)溶液の固形分100重量部に対して、架橋剤としてトリメチロールプロパン/トリレンジイソシアネート3量体付加物(日本ポリウレタン工業社製、コロネートL)1.8重量部を配合した接着剤組成物を調製した。
 この接着剤組成物を、セパレータ(シリコーン剥離処理した38μmのPET)に、感圧接着剤層の乾燥厚さが10μmになるように塗布し、120℃で3分乾燥・架橋を行い、80℃での貯蔵弾性率が2×10Pa、屈折率1.47の感圧接着剤層を形成した。当該感圧接着剤層を、透明フィルムである、ポリエチレンテレフタレート(PET)フィルム(38μm厚)に転写して、接着型透明フィルムを作製した。
 (積層光学フィルム)
 上記接着型透明フィルムの感圧接着剤層を、上記で得られたマイクロレンズアレイフィルムのレンズ側に貼り付け、積層光学フィルムを作製した。
 実施例2~3、比較例1~2
 実施例1において、接着型透明フィルムの作製にあたり、架橋剤の配合量を表1に示すように変え、表1に示すように感圧接着剤層の貯蔵弾性率を制御したこと以外は、実施例1と同様にして積層光学フィルムを作製した。
 実施例4
 実施例1において、接着型透明フィルムの作製にあたり、透明フィルムとして、ハードコート層付帯電防止型ポリエチレンテレフタレート(PET)フィルム(38μm厚)に変えたこと以外は、実施例1と同様にして積層光学フィルムを作製した。
 実施例5
 実施例1において、接着型透明フィルムの作製にあたり、透明フィルムとして、ハードコート層付UVカット型ポリエチレンテレフタレート(PET)フィルム(38μm厚)に変えたこと以外は、実施例1と同様にして積層光学フィルムを作製した。
 実施例および比較例で得られた積層光学フィルムについて下記評価を行った。結果を表1に示す。評価にあたっては、積層光学フィルムを、アクリル系感圧接着剤層(マイクロレンズアレイフィルムに予め設けていたもの)により、白色有機ELデバイス(ボトムエミッション型)の表面に貼り合せた、積層光学フィルム付きの有機ELデバイスについて行った。なお、比較例3は、積層光学フィルムの代わりに、マイクロレンズアレイフィルムのみを有機ELデバイスに貼り合せたものについて行った。
 <輝度の測定>
 輝度計BM-9(TOPCON社製)を用いて、有機ELデバイスと輝度計の距離を350mmとして、20mm角の部分以外を遮光した光源の中心に輝度計を合わせて、暗室内にて正面輝度を測定(cd/cm)した。表1には、有機ELデバイスのみ、即ち、積層光学フィルムを貼り合せていない場合(表1では参考例)についての輝度を100とした相対値を示す。
 <外観の評価>
 接着型透明フィルムの感圧接着剤層とマイクロレンズアレイフィルムのレンズ層の頂上部の密着性の状態を、目視及び走査型電子顕微鏡(株式会社日立ハイテクノロジーズ製,S‐3400N型)により観察した。目視及び走査型電子顕微鏡による観察において、感圧接着剤層が貼り合わせ前の状態を維持してレンズ層の頂上部と密着している場合を「○」とした。それ以外の場合を「×」とした。目視は、広い範囲(積層光学フィルム全体)のレンズ層と感圧接着剤層の密着性を、浮き等観察し、走査型電子顕微鏡では、個々のレンズ層と感圧接着剤層の密着性を観察した。
 <鉛筆硬度の測定:耐スクラッチ性>
 接着型透明フィルムの透明フィルム側の表面について、JIS-K5600-5-4に基づき測定、鉛筆硬度を測定した。
 <耐久性評価>
 積層光学フィルムを、80℃の雰囲気中で168時間放置した後に、上記同様にして有機ELデバイスの表面に貼り合せて得られた、積層光学フィルム付きの有機ELデバイスについて、上記同様の<輝度の測定>、<外観の評価>、<鉛筆硬度の測定>の評価を行った。
 <表面抵抗の測定>
 23℃、65%RHの雰囲気中で、接着型透明フィルムの透明フィルム側の表面について、高抵抗率計(三菱油化株式会社製,Hiresta IP MCP‐HT260)により、表面抵抗(Ω)を測定した。
 <UV透過率の測定>
 23℃、65%RHの雰囲気中で、接着型透明フィルムの透明フィルムについて、分光光度計(株式会社日立ハイテクノロジーズ製,U4100)により、波長350nmでの透過率を測定した。
Figure JPOXMLDOC01-appb-T000001
 表1中、*1乃至3は下記の通りである。
 *1:レンズ層の頂上部と感圧接着剤層との密着性が悪く、レンズ層上で、接着型透明フィルムに部分的な浮きが発生していた。
 *2:レンズ層の頂上部と感圧接着剤層との密着性が悪く、レンズ層上で、接着型透明フィルムが剥離していた。
 *3:感圧接着剤層の流れが発生して、レンズ層を埋めて、レンズ層が透明化していた。
  A:積層光学フィルム
  1:マイクロレンズフィルム
  11:透明基材フィルム
  12:レンズ層
  2:接着型透明フィルム
  21:透明フィルム
  22:第一感圧接着剤層
  3:第二感圧接着剤層
  4:光学デバイス
  a:空気層

Claims (10)

  1.  マイクロレンズフィルムと、
     透明フィルム(但し、偏光フィルムを含まない)の片面に、80℃での貯蔵弾性率が、1.1×10~5×10Paである第一感圧接着剤層が設けられている接着型透明フィルムを、
     前記マイクロレンズフィルムのレンズパターンが設けられている面と、前記接着型透明フィルムの第一感圧接着剤層とが、空気層を形成するように貼り合わされており、かつ、
     前記マイクロレンズフィルムのレンズパターンが設けられていない側の面に、発光デバイス用の第二感圧接着剤層を有することを特徴とする積層光学フィルム。
  2.  前記接着型透明フィルムの第一感圧接着剤層の厚さが、前記マイクロレンズフィルムのレンズパターンのレンズ高さの0.5~4倍であることを特徴とする請求項1記載の積層光学フィルム。
  3.  前記接着型透明フィルムは、第一感圧接着剤層が設けられていない側の透明フィルムの面にハードコート層を有することを特徴とする請求項1または2記載の積層光学フィルム。
  4.  前記接着型透明フィルムは、UV吸収性を有することを特徴とする請求項1~3のいずれかに記載の積層光学フィルム。
  5.  前記接着型透明フィルムは、帯電防止性を有することを特徴とする請求項1~4のいずれかに記載の積層光学フィルム。
  6.  前記マイクロレンズフィルムが、透明基材フィルムの片側に、熱可塑性樹脂によりレンズパターンが形成されたマイクロレンズアレイフィルムであることを特徴とする請求項1~5のいずれかに記載の積層光学フィルム。
  7.  接着型透明フィルムの第一感圧接着剤層の80℃での貯蔵弾性率が、1.1×10~3×10Paであることを特徴とする請求項1~6のいずれかに記載の積層光学フィルム。
  8.  請求項1~7のいずれかに記載の積層光学フィルムの製造方法であって、
     マイクロレンズフィルムと、
     透明フィルム(但し、偏光フィルムを含まない)の片面に、80℃での貯蔵弾性率が、1.1×10~5×10Paである第一感圧接着剤層が設けられている接着型透明フィルムを、
     前記マイクロレンズフィルムのレンズパターンが設けられている面と、前記接着型透明フィルムの第一感圧接着剤層とが、空気層を形成するように貼り合わす工程を有することを特徴とする積層光学フィルムの製造方法。
  9.  発光デバイスの表面に、請求項1~7のいずれかに記載の積層光学フィルムが、当該積層光学フィルムの第二感圧接着剤層を介して、マイクロレンズフィルムよりも接着型透明フィルムが発光デバイスに対して外側になるように設けられていることを特徴とする積層光学フィルム付き発光デバイス。
  10.  発光デバイスが、有機EL発光体であることを特徴とする請求項9記載の積層光学フィルム付き発光デバイス。
PCT/JP2009/058769 2008-05-16 2009-05-11 積層光学フィルム、その製造方法及びそれを用いた発光デバイス WO2009139351A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-129824 2008-05-16
JP2008129824A JP4340321B1 (ja) 2008-05-16 2008-05-16 積層光学フィルム、その製造方法及びそれを用いた光学デバイス

Publications (1)

Publication Number Publication Date
WO2009139351A1 true WO2009139351A1 (ja) 2009-11-19

Family

ID=41253445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/058769 WO2009139351A1 (ja) 2008-05-16 2009-05-11 積層光学フィルム、その製造方法及びそれを用いた発光デバイス

Country Status (2)

Country Link
JP (1) JP4340321B1 (ja)
WO (1) WO2009139351A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011115058A1 (ja) * 2010-03-16 2011-09-22 日東電工株式会社 粘接着剤層付光学シート、粘接着剤層付光学シートの製造方法、粘接着剤層付光学シートを用いた光源、粘接着剤層付光学シートを用いた画像表示装置
JP2011215601A (ja) * 2010-03-16 2011-10-27 Nitto Denko Corp 粘接着剤層付光学シート、粘接着剤層付光学シートの製造方法、粘接着剤層付光学シートを用いた光源、粘接着剤層付光学シートを用いた画像表示装置
WO2011162223A1 (ja) * 2010-06-23 2011-12-29 日東電工株式会社 光学積層シート付部材の製造方法
JP2012007046A (ja) * 2010-06-23 2012-01-12 Nitto Denko Corp 光学積層シート、光学積層シートの製造方法、光学積層シート付光源、および光学積層シート付画像表示装置
WO2012165184A1 (ja) * 2011-05-31 2012-12-06 住友化学株式会社 複合偏光板および液晶表示装置
JP2017097334A (ja) * 2015-11-12 2017-06-01 日東電工株式会社 光学部材
EP2658344A4 (en) * 2010-12-21 2017-12-20 Kimoto Co., Ltd. Microrelief structure for light emitting element, and light emitting element and illumination device using said microrelief structure

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102906126B (zh) 2009-10-30 2018-02-16 3M创新有限公司 具有防静电性质的光学装置
JP5452266B2 (ja) * 2010-02-08 2014-03-26 パナソニック株式会社 発光装置
JP5513917B2 (ja) * 2010-02-08 2014-06-04 パナソニック株式会社 発光装置
JP5297399B2 (ja) * 2010-02-10 2013-09-25 パナソニック株式会社 発光装置
JP5297400B2 (ja) * 2010-02-12 2013-09-25 パナソニック株式会社 発光装置
FR2969311B1 (fr) * 2010-12-20 2013-01-18 Rhodia Acetow Gmbh Module de source lumineuse a led (diode electroluminescente)
KR20150048851A (ko) * 2012-08-30 2015-05-07 울트라-디 코퍼라티에프 유.에이. 무안경 입체 디스플레이를 위한 밴딩-방지 층
JPWO2014103848A1 (ja) * 2012-12-26 2017-01-12 昌栄印刷株式会社 レンチキュラーレンズシート積層体
JP6317565B2 (ja) * 2013-10-24 2018-04-25 リコーインダストリアルソリューションズ株式会社 有機el光源及びその製造方法
US9862124B2 (en) 2014-07-18 2018-01-09 3M Innovative Properties Company Multilayer optical adhesives and methods of making same
JP6081416B2 (ja) * 2014-08-07 2017-02-15 本田技研工業株式会社 外装部材及びその外装部材を備えた車両
CN112736111A (zh) * 2019-10-29 2021-04-30 北京小米移动软件有限公司 屏幕模组及电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007260983A (ja) * 2006-03-27 2007-10-11 Fujifilm Corp 光学シートおよび接着層の製造方法
JP2007323049A (ja) * 2006-05-02 2007-12-13 Toppan Printing Co Ltd 透過型スクリーン
JP2008003233A (ja) * 2006-06-21 2008-01-10 Fujifilm Corp ディスプレイ用光学シート及びその製造方法
JP2008027620A (ja) * 2006-07-18 2008-02-07 Konica Minolta Holdings Inc 面発光体及び表示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007260983A (ja) * 2006-03-27 2007-10-11 Fujifilm Corp 光学シートおよび接着層の製造方法
JP2007323049A (ja) * 2006-05-02 2007-12-13 Toppan Printing Co Ltd 透過型スクリーン
JP2008003233A (ja) * 2006-06-21 2008-01-10 Fujifilm Corp ディスプレイ用光学シート及びその製造方法
JP2008027620A (ja) * 2006-07-18 2008-02-07 Konica Minolta Holdings Inc 面発光体及び表示装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011115058A1 (ja) * 2010-03-16 2011-09-22 日東電工株式会社 粘接着剤層付光学シート、粘接着剤層付光学シートの製造方法、粘接着剤層付光学シートを用いた光源、粘接着剤層付光学シートを用いた画像表示装置
JP2011215601A (ja) * 2010-03-16 2011-10-27 Nitto Denko Corp 粘接着剤層付光学シート、粘接着剤層付光学シートの製造方法、粘接着剤層付光学シートを用いた光源、粘接着剤層付光学シートを用いた画像表示装置
EP2549303A4 (en) * 2010-03-16 2016-10-12 Nitto Denko Corp OPTICAL FILM WITH HAFT COAT, METHOD FOR THE PRODUCTION OF THE OPTICAL FILM WITH HAFTSCHICHT, LIGHT SOURCE WITH THE OPTICAL FILM WITH HAFTSCHICHT AND IMAGE DISPLAY DEVICE WITH THE OPTICAL FILM WITH HAFTSCHICHT
WO2011162223A1 (ja) * 2010-06-23 2011-12-29 日東電工株式会社 光学積層シート付部材の製造方法
JP2012007046A (ja) * 2010-06-23 2012-01-12 Nitto Denko Corp 光学積層シート、光学積層シートの製造方法、光学積層シート付光源、および光学積層シート付画像表示装置
EP2658344A4 (en) * 2010-12-21 2017-12-20 Kimoto Co., Ltd. Microrelief structure for light emitting element, and light emitting element and illumination device using said microrelief structure
KR101821445B1 (ko) 2010-12-21 2018-01-23 키모토 컴파니 리미티드 발광소자용 미세 구조체, 당해 미세 구조체를 사용한 발광소자 및 조명장치
WO2012165184A1 (ja) * 2011-05-31 2012-12-06 住友化学株式会社 複合偏光板および液晶表示装置
JP2013011853A (ja) * 2011-05-31 2013-01-17 Sumitomo Chemical Co Ltd 複合偏光板および液晶表示装置
JP2017097334A (ja) * 2015-11-12 2017-06-01 日東電工株式会社 光学部材

Also Published As

Publication number Publication date
JP2009276687A (ja) 2009-11-26
JP4340321B1 (ja) 2009-10-07

Similar Documents

Publication Publication Date Title
JP4340321B1 (ja) 積層光学フィルム、その製造方法及びそれを用いた光学デバイス
US8384998B2 (en) Antireflection film, display device and light transmissive member
JP6342791B2 (ja) 偏光板用保護フィルム及びそれを用いた偏光板
KR100974195B1 (ko) 광학시트와 이의 제조방법 그리고 이를 이용한액정표시장치
JP5258332B2 (ja) 光散乱粘着剤組成物、光散乱粘着剤層、光散乱粘着シート、及びこれらを用いたバックライトシステム
JP2010015043A (ja) 積層光学フィルム、その製造方法及びそれを用いた光学デバイス
JP5343492B2 (ja) 光学シート
WO2004111152A1 (ja) 透明ゲル粘着剤、透明ゲル粘着シート、及びディスプレイ用光学フィルタ
KR20150140696A (ko) 광학 필름 및 면발광체
JP5391739B2 (ja) El素子、並びにそれを用いた照明装置及び表示装置
JP2023059986A (ja) 粘着剤層、その製造方法、粘着シート、粘着剤層付光学フィルムおよび画像表示装置
KR20170039590A (ko) 점착 시트
JP6934996B2 (ja) フレキシブル画像表示装置およびそれに用いる光学積層体
JP2016212443A (ja) 光学フィルム積層体及びその製造方法
JP6858912B2 (ja) フレキシブル画像表示装置およびそれに用いる光学積層体
WO2021131152A1 (ja) 加飾付積層体、光学積層体、およびフレキシブル画像表示装置
WO2011122380A1 (ja) Led照明用光拡散フィルム
JP2004240087A (ja) 積層偏光フィルム
JP2005022365A (ja) ディスプレイ用光学フィルタ及びディスプレイ表面構造。
JP2010066309A (ja) 積層光学フィルムおよび光学デバイス
JP7447404B2 (ja) 粘着シート、バックライトユニット及び液晶表示装置
TW202043023A (zh) 光學膜組、光學層疊體
JP6903830B1 (ja) フレキシブル画像表示装置およびそれに用いる光学積層体
JP6903804B1 (ja) フレキシブル画像表示装置およびそれに用いる光学積層体
JP6880521B2 (ja) 光反射フィルムおよびエッジライト型バックライト

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09746558

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09746558

Country of ref document: EP

Kind code of ref document: A1