WO2009136637A1 - 光走査用アクチュエータおよび光走査用アクチュエータの製造方法 - Google Patents
光走査用アクチュエータおよび光走査用アクチュエータの製造方法 Download PDFInfo
- Publication number
- WO2009136637A1 WO2009136637A1 PCT/JP2009/058696 JP2009058696W WO2009136637A1 WO 2009136637 A1 WO2009136637 A1 WO 2009136637A1 JP 2009058696 W JP2009058696 W JP 2009058696W WO 2009136637 A1 WO2009136637 A1 WO 2009136637A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mirror
- optical scanning
- leaf spring
- movable member
- scanning actuator
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/435—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material
- B41J2/47—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using the combination of scanning and modulation of light
- B41J2/471—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using the combination of scanning and modulation of light using dot sequential main scanning by means of a light deflector, e.g. a rotating polygonal mirror
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/08—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
- G02B26/10—Scanning systems
- G02B26/105—Scanning systems with one or more pivoting mirrors or galvano-mirrors
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/18—Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
- G02B7/182—Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors
- G02B7/1821—Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors for rotating or oscillating mirrors
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/04—Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa
- H04N1/113—Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using oscillating or rotating mirrors
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N2201/00—Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
- H04N2201/0077—Types of the still picture apparatus
- H04N2201/0082—Image hardcopy reproducer
Definitions
- the present invention relates to an optical scanning actuator that scans a predetermined range with light emitted toward the outside, and a method for manufacturing the optical scanning actuator.
- a scanning laser radar device a laser scanner, a laser printer, a laser marker, an object monitoring device, and the like are known as devices using a scanning device such as a laser beam.
- a scanning device such as a laser beam.
- one movable mirror is swung or rotated by a motor as an optical scanning actuator for use in a scanning laser radar device for preventing collision of a vehicle, and the light from the laser light source is movable.
- a technique for irradiating a mirror and scanning a predetermined range using the reflected light as exploration light is known (see, for example, Patent Document 1).
- FIG. 10 is a perspective view showing a configuration of a conventional optical scanning actuator.
- the base end portions of a pair of plate springs 34a and 34b arranged in parallel up and down are fixed to a fixing member 33 assembled to a base member 32 (the plate spring 34b is Not shown).
- the distal ends of the leaf springs 34a and 34b are fixed to a mirror holder 35 that holds a mirror 36 that reflects light emitted from a predetermined light source.
- the mirror holder 35 is movable according to the movement of the leaf springs 34a and 34b.
- a pair of coils 37a and 37b are disposed at symmetrical positions around the origin position of the leaf springs 34a and 34b.
- An arcuate yoke 38 is fastened to the base member 32 of the optical scanning actuator 31.
- the arc-shaped portion of the yoke 38 is composed of a lower portion 38a and an upper portion 38b that are parallel to each other, and the lower portion 38a passes through the opening surfaces of the coils 37a and 37b.
- a magnet 39 is fixed to the surface of the upper portion 38b that faces the lower portion 38a.
- the optical scanning actuator 31 having the above configuration forms a magnetic circuit in which the yoke 38 and the magnet 39 are closed. For this reason, the mirror holder 35 holding the coils 37 a and 37 b is driven by the electromagnetic force generated according to the current flowing through the coils 37 a and 37 b, and swings together with the mirror 36. Therefore, a predetermined range can be scanned with the light emitted from the mirror 36 to the outside.
- the mirror 36 is positioned on the outer peripheral side with respect to the tips of the leaf springs 34a and 34b when viewed from the fixing member 33, and therefore the mirror when the mirror holder 35 swings.
- the amount of movement of 36 was large.
- the area of the mirror surface of the mirror 36 must be increased in accordance with the amount of movement of the mirror 36, and the light in a narrow space is required. In some cases, it is difficult to arrange the scanning actuator 31.
- the present invention has been made in view of the above, and an optical scanning actuator that can reduce the area of the mirror surface of a mirror that emits scanning light and can be disposed in a narrow space, and It is an object of the present invention to provide a method for manufacturing an optical scanning actuator.
- an optical scanning actuator is an optical scanning actuator that scans a predetermined range with light emitted toward the outside, and includes a leaf spring, A fixing member that fixes one end of the leaf spring, a movable member that holds the other end of the leaf spring, is movable according to the movement of the leaf spring, is attached to the movable member, and is projected from the outside.
- the optical scanning actuator according to the present invention is characterized in that, in the above invention, the mirror surface is orthogonal to the main surface of the leaf spring in an initial state where the leaf spring is not bent.
- the mirror surface is an intersection of a tangential plane of the free end at a predetermined deflection position of the leaf spring and a main surface of the leaf spring in the initial state. It passes through the vicinity of the line or the line of intersection, and is perpendicular to the tangent plane.
- the swinging means has a couple of forces whose central axes are axes parallel to the main surface of the leaf spring and the mirror surface in the initial state. It adds to a movable member, It is characterized by the above-mentioned.
- the swing means is held by the magnet, a yoke to which the magnet is fixed, and a closed magnetic circuit together with the magnet, and the movable member.
- a coil through which the magnetic flux of the magnetic circuit penetrates, and an opening surface of the coil is parallel to a main surface of the leaf spring in the initial state and intersects with a plane including the mirror surface. .
- the optical scanning actuator according to the present invention includes a plurality of the leaf springs in the above invention, and in the initial state, the main surface of each leaf spring is located on the same plane and the longitudinal direction of each leaf spring is The magnet, the yoke, and the coil are arranged in parallel with each other in a substantially parallel state, and are located between any two adjacent leaf springs.
- the width of the mirror surface along the swing direction in which the movable member and the mirror swing is the width of the movable member along the swing direction. It is characterized by being less than the width.
- An optical scanning actuator manufacturing method is an optical scanning actuator manufacturing method for manufacturing the optical scanning actuator according to the invention, wherein a plurality of candidate positions are set as the mirror installation position candidates. And the amount of movement of the mirror from the initial state according to the amount of deflection of the leaf spring when the mirror is arranged at each of the set candidate positions, and the amount of movement is minimized.
- the method includes a step of setting the candidate position as the installation position of the mirror.
- a leaf spring a fixing member that fixes one end of the leaf spring, a movable member that holds the other end of the leaf spring and is movable according to the movement of the leaf spring, and attached to the movable member
- FIG. 1 is a block diagram showing a configuration of an object detection apparatus including an optical scanning actuator according to an embodiment of the present invention.
- FIG. 2 is a perspective view showing a configuration of an optical scanning actuator according to an embodiment of the present invention.
- FIG. 3 is a diagram in which a part of the configuration of the object detection apparatus is added to the partial cross-sectional view along the line AA in FIG.
- FIG. 4 is a diagram for explaining the installation positions of the mirrors provided in the optical scanning actuator according to the embodiment of the present invention.
- FIG. 5 is a cross-sectional view taken along the line CC of FIG.
- FIG. 6 is a diagram illustrating a driving mode of the optical scanning actuator according to the embodiment of the present invention.
- FIG. 7 is a diagram schematically showing an outline of the process of determining the mirror installation position in the method of manufacturing an optical scanning actuator according to one embodiment of the present invention.
- FIG. 8 is a diagram showing the amount of movement of the rotation axis of the mirror.
- FIG. 9 is a diagram illustrating the relationship between the deflection of the leaf spring and the amount of movement.
- FIG. 10 is a perspective view showing a configuration of a conventional optical scanning actuator.
- FIG. 1 is a block diagram illustrating a configuration of an object detection apparatus that includes an optical scanning actuator according to an embodiment of the present invention and detects an object using light emitted from the optical scanning actuator.
- the object detection apparatus 100 shown in the figure emits light toward the outside, and the optical scanning actuator 1 that scans a predetermined range with the emitted light, and the projection that irradiates the optical scanning actuator 1 with light.
- the control part 5 which performs is provided.
- the light projecting unit 2 includes a laser diode and irradiates the optical scanning actuator 1 with laser light.
- the light receiving unit 4 includes a photodiode that receives laser light.
- FIG. 2 is a perspective view showing a configuration of the optical scanning actuator 1 according to the present embodiment.
- FIG. 3 is a diagram showing a configuration of a main part of the optical scanning actuator 1, and is a diagram obtained by adding a part of the configuration of the object detection device 100 to the AA line partial sectional view of FIG.
- the optical scanning actuator 1 includes two plate springs 11 and 12 having a thin plate shape, a fixing member 13 fixed to a predetermined place and fixing one end of the plate springs 11 and 12, and the plate springs 11 and 12.
- a movable member 14 that can move according to the movement of the leaf springs 11 and 12, a mirror 15 that is attached to the movable member 14 and reflects the laser light emitted by the light projecting unit 2, and 2
- the magnets 16 and 17, the magnets 16 and 17 are fixed, the yoke 18 that forms a closed magnetic circuit together with the magnets 16 and 17, and the movable member 14 is held, and the magnets 16 and 17 are positioned near the magnets 16, 17 and the yoke 18.
- a coil 19 to be provided.
- the leaf springs 11 and 12 have the same shape, and each main surface is located on the same plane in an initial state where the leaf springs are not bent (state shown in FIG. 2).
- the longitudinal directions of the leaf springs 11 and 12 in the initial state are parallel to each other.
- the fixed end 11 a of the leaf spring 11 is a boundary between a portion where the leaf spring 11 is held by the fixing member 13 and a portion where the leaf spring 11 is not held.
- the free end 11b of the leaf spring 11 is a boundary between a portion where the leaf spring 11 is held by the movable member 14 and a portion where the leaf spring 11 is not held.
- the fixed end 12a and the free end 12b of the leaf spring 12 are at the same positions as the fixed end 11a and the free end 11b of the leaf spring 11, respectively.
- the end portions held by the fixing member 13 are provided with electrode terminal portions 111 and 121 that protrude in the opposite direction to the direction in which the leaf springs 11 and 12 extend. ing.
- Lead wires for electrically connecting the leaf springs 11 and 12 and the controller 5 are attached to the electrode terminal portions 111 and 121, respectively.
- the other end of the lead wire whose one end is connected to the winding end of the coil 19 is connected in the vicinity of the end fixed to the movable member 14 among the ends of the leaf springs 11 and 12.
- the control unit 5 and the coil 19 are electrically connected via the leaf springs 11 and 12.
- the plate springs 11 and 12 are made of a thin plate spring material such as beryllium copper, phosphor bronze, or stainless steel, and are formed by stamping or etching by pressing.
- the movable member 14 has a substantially columnar shape orthogonal to the longitudinal direction of the leaf springs 11 and 12 in the initial state of the leaf springs 11 and 12, and is a plate that holds the distal end side of the free ends 11b and 12b of the leaf springs 11 and 12, respectively.
- a spring holding portion 141 a substantially columnar shape extending from the upper end of the leaf spring holding portion 141 to the fixing member 13 perpendicularly to the leaf spring holding portion 141, and a mirror mounting portion 142 to which the mirror 15 is attached on the upper surface; and a leaf spring holding In the state in which the coil 19 is sandwiched between the two columnar portions, extending from the substantially central portion of the portion 141 to the fixing member 13 side along the longitudinal direction in the initial state of the leaf springs 11 and 12. And a coil holding part 143 for holding.
- the fixed member 13 and the movable member 14 are formed by injection molding an engineering plastic such as a liquid crystal polymer (LCP) or polyphenylene sulfide (PPS) filled with a lightweight and highly rigid glass fiber.
- LCP liquid crystal polymer
- PPS polyphenylene sulfide
- the leaf springs 11 and 12 may be integrally formed as an insert material.
- the width of the mirror surface of the mirror 15 along the swing direction in which the movable member 14 and the mirror 15 swing is equal to the width along the swing direction of the movable member 14. More generally, the width of the mirror surface in the swing direction may be equal to or less than the width of the movable member in the swing direction.
- the mirror 15 is realized using a light metal such as glass, synthetic resin, or aluminum, and has a mirror surface that is formed smoothly by aluminum vapor deposition or the like. You may provide the protective layer which consists of thin films, such as a silicon dioxide, with respect to this mirror surface.
- FIG. 4 is a diagram illustrating the installation position of the mirror 15 and is a diagram illustrating the positional relationship between the leaf spring 11 and the mirror 15 when viewed from the direction of arrow B in FIG.
- the leaf spring 11 and the leaf spring 12 are assumed to swing in substantially the same manner.
- the leaf springs 11 and 12 are each bent at a predetermined deflection angle ⁇ 0 (0 ° ⁇ 0 ⁇ 90 °).
- the “deflection angle” here refers to the plane P0 that passes through the main surface in the initial state of the leaf springs 11 and 12, the tangential plane of the free end 11b of the leaf spring 11 (the plane P1 in the case of FIG. 4). It is an angle formed by.
- the rotation axis Q that passes through the mirror surface of the mirror 15 and becomes the rotation center at the time of swinging is formed between the plane P0 and the tangential plane P1 of the free end 11b of the leaf spring 11 at the deflection angle ⁇ 0 .
- the position coincides with the intersection line.
- the value of the deflection angle ⁇ 0 that determines the installation position of the mirror 15 can be arbitrarily set. For example, it can be a value when the leaf springs 11 and 12 are most bent.
- FIG. 5 is a cross-sectional view taken along the line CC of FIG.
- the yoke 18 is made of a soft magnetic material such as pure iron and is a block having a substantially E-shaped uniform cross section, and the portion corresponding to the central horizontal line among the three E-shaped horizontal lines is the hollow part of the coil 19. It penetrates.
- flat magnets 16 and 17 are fixed to the inner peripheral side of portions corresponding to the two upper and lower horizontal lines among the three E-shaped horizontal lines.
- the yoke 18 is fixed to the fixing member 13.
- the fixed position of the yoke 18 is a position where when the movable member 14 swings, the yoke 18 can pass through the recess 14 a surrounded by the leaf spring holding portion 141 and the coil holding portion 143 of the movable member 14.
- a yoke having a substantially B-shaped closed cross section may be configured by attaching a flat soft magnetic material to a portion of the yoke 18 having an open substantially E-shaped cross section.
- the coil 19 is held by the coil holding part 143 of the movable member 14.
- the opening surface of the coil 19 is parallel to the main surface of the leaf springs 11 and 12.
- the opening surface of the coil 19 intersects with a plane including the mirror surface of the mirror 15.
- a portion of the yoke 18 corresponding to the horizontal line at the center of the E shape passes through the hollow portion of the coil 19.
- the coil 19 may be added as an insert material when the fixed member 13 and the movable member 14 are formed.
- the control unit 5 supplies a drive current to the coil 19
- the coil 19 is parallel to the main surfaces of the leaf springs 11 and 12 and the mirror surface of the mirror 15.
- a couple (size 2F) is generated with the axis passing through the center of the coil 19 (axis O in FIG. 5) as the central axis, and acts on the movable member 14 as a driving force for driving the movable member 14 and the mirror 15.
- the magnets 16 and 17, the yoke 18, and the coil 19 constitute swinging means that swings the movable member 14 and the mirror 15 based on the drive current sent from the control unit 5.
- FIG. 6 is a diagram showing a driving mode of the optical scanning actuator 1 viewed from the direction of arrow B in FIG.
- the movable member 14 starts swinging together with the leaf springs 11 and 12 in the vertical direction of FIG.
- the light projecting unit 2 irradiates the oscillating mirror 15 with laser light
- the mirror 15 reflects the laser light.
- the optical scanning actuator 1 scans a predetermined range with this reflected light.
- the position detection unit 3 detects the position of a predetermined portion of the leaf spring 11, the movable member 14 or the mirror 15 and outputs it to the control unit 5.
- the control unit 5 controls the drive current that flows through the coil 19 by using the position information of the leaf spring 11, the movable member 14, or the mirror 15 sent from the position detection unit 3.
- the position of the rotation axis Q of the mirror 15 is hardly moved by the swing of the mirror 15 in the optical scanning actuator 1. For this reason, even if it does not enlarge the area of the mirror surface of the mirror 15 like the prior art of the patent document 1 mentioned above, the light with which the light projection part 2 irradiates can be made to reach a mirror surface reliably. Therefore, the width of the mirror 15 in the swing direction can be reduced, and the width of the fixed member 13 and the movable member 14 in the swing direction can be reduced accordingly. As a result, the entire optical scanning actuator 1 can be downsized and installed in a narrow space.
- the movable member 14 and the mirror 15 do not swing with each part drawing a complete arc. For this reason, the position of the rotation axis Q of the mirror 15 slightly changes with the magnitude of the deflection angle ⁇ 0 .
- FIG. 7 is a diagram showing an outline of the process of determining the installation position of the mirror 15 in the method for manufacturing an optical scanning actuator according to one embodiment of the present invention.
- the plurality of candidate positions four candidate positions 15a ⁇ 15d in the case shown in FIG. 7
- the amount of movement of the rotation axis of the mirror 15 from the initial state at this time is obtained, and the candidate position where the amount of movement is minimized is set as the installation position of the mirror 15.
- FIG. 8 is a diagram illustrating a specific example of the amount of movement of the rotation axis of the mirror 15 when the mirror 15 is installed at the candidate position 15a.
- the rotation axis of the mirror 15 when the leaf springs 11 and 12 are in the initial state is represented by Qa, while the leaf spring 11 and 12 is deflected at a certain deflection angle ⁇ ( ⁇ ⁇ 0 ).
- the rotation axis is Qa ′, and the amount of movement from the rotation axis Qa to the rotation axis Qa ′ is ha.
- FIG. 9 is a diagram illustrating the relationship between the deflection ⁇ of the leaf springs 11 and 12 and the amount of movement h.
- the amount of deflection of the free ends 11b and 12b when deflected at the deflection angle ⁇ 0 is ⁇ max .
- the four straight lines La to Ld shown in FIG. 9 correspond to the case where the mirror 15 is arranged at the candidate positions 15a to 15d, respectively.
- the straight line Lc has the smallest movement amount h with respect to the same deflection ⁇ . Therefore, in the case shown in FIG. 9, the candidate position 15 c is the installation position of the mirror 15.
- the rotation axis Q shown in FIG. 4 is most preferable as the installation position.
- the rotation axis of the mirror 15 at the candidate position does not always coincide with the rotation axis Q.
- the movement amount of the rotation shaft is minute compared to the movement amount when the tip portions of the leaf springs 11 and 12 are swung. For this reason, even if the rotation axis of the mirror 15 at the candidate position does not coincide with the rotation axis Q, there is no practical problem.
- the mirror is installed at a position where the amount of movement of the rotation axis of the mirror 15 corresponding to the amount of deflection from the initial state of the leaf springs 11 and 12 is minimized, the movement of the mirror during swinging is minimized. can do.
- the leaf spring, the fixing member that fixes one end portion of the leaf spring, and the other end portion of the leaf spring are held and movable according to the movement of the leaf spring.
- a movable member, a mirror attached to the movable member and reflecting light projected from the outside, and a swinging means for swinging the movable member and the mirror are provided, and the mirror surface of the mirror is fixed by the fixed member Since it is located on a plane passing between the fixed end of the leaf spring and the free end of the leaf spring held by the movable member, the amount of movement in the swinging direction in which the mirror swings can be reduced. Therefore, the area of the mirror surface of the mirror can be reduced, and the mirror can be arranged in a narrow space.
- the present invention should not be limited only by the above-described embodiment.
- the position where the mirror is installed need not necessarily be above the leaf spring.
- the mirror surface of the mirror may face the fixed end side of the leaf spring.
- the leaf spring may have a shape in which the width gradually decreases from the fixed end held by the fixed member toward the free end held by the movable member.
- the number of leaf springs applied in the present invention is not limited to two, and may be one or three or more.
- the coil and the control unit may be electrically connected without using a leaf spring.
- the present invention is suitable for irradiating a laser beam to the outside in a scanning laser radar device, a laser scanner, a laser printer, a laser marker, an object monitoring device, etc., and scanning a predetermined range with the irradiated laser beam. is there.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Mechanical Optical Scanning Systems (AREA)
- Reciprocating, Oscillating Or Vibrating Motors (AREA)
Abstract
走査光を出射するミラーのミラー面の面積を小さくすることができ、狭い空間にも配置することが可能な光走査用アクチュエータおよび光走査用アクチュエータの製造方法を提供する。この目的のため、板バネと、板バネの一端部を固定する固定部材と、板バネの他端部を保持し、板バネの動きに応じて移動可能な可動部材と、可動部材に取り付けられ、外部から投射された光を反射するミラーと、可動部材およびミラーを揺動させる揺動手段と、を備え、ミラーのミラー面は、固定部材によって固定される板バネの固定端と可動部材によって保持される板バネの自由端との間を通過する平面上に位置することとする。
Description
本発明は、外部へ向けて出射した光によって所定の範囲を走査する光走査用アクチュエータおよび光走査用アクチュエータの製造方法に関する。
従来、レーザ光等の走査装置を利用した装置として、走査型レーザレーダ装置、レーザスキャナ、レーザプリンタ、レーザマーカ、物体監視装置等が知られている。これらの装置の中で、車両の衝突防止のための走査型レーザレーダ装置で使用する光走査用アクチュエータとして、1枚の可動ミラーをモータによって揺動または回転運動させ、レーザ光源からの光を可動ミラーに向けて照射し、その反射光を探査光として所定の範囲を走査する技術が知られている(例えば、特許文献1を参照)。
図10は、従来の光走査用アクチュエータの構成を示す斜視図である。同図に示す光走査用アクチュエータ31は、ベース部材32に組み付けられた固定部材33に、上下に並設される一対の板バネ34a、34bの基端部が固定されている(板バネ34bは図示せず)。板バネ34a、34bの各先端部は、所定の光源から照射された光を反射するミラー36を保持するミラーホルダ35に固着されている。ミラーホルダ35は、板バネ34a、34bの動きに応じて移動可能である。ミラーホルダ35には、一対のコイル37a、37bが、板バネ34a、34bの原点位置を中心として左右対称な位置に配設されている。
光走査用アクチュエータ31のベース部材32には、弧状のヨーク38が締結されている。このヨーク38の弧状部分は、互いに平行な下側部分38aと上側部分38bとからなり、下側部分38aはコイル37a、37bの各開口面を貫通している。また、上側部分38bの表面のうち下側部分38aと対向する表面には、磁石39が固着されている。
以上の構成を有する光走査用アクチュエータ31は、ヨーク38および磁石39が閉じた磁気回路を形成している。このため、コイル37a、37bに流れる電流に応じて発生する電磁力によってコイル37a、37bを保持するミラーホルダ35が駆動し、ミラー36とともに揺動する。したがって、ミラー36が外部へ向けて出射する光によって所定の範囲を走査することが可能となる。
上述した従来の光走査用アクチュエータ31では、固定部材33から見たとき、ミラー36が板バネ34a、34bの先端よりも外周側に位置しているため、ミラーホルダ35が揺動する際のミラー36の移動量が大きかった。このため、固定された光源からの光をミラー36が常に反射できるようにするには、ミラー36のミラー面の面積をミラー36の移動量に応じて大きくしなければならず、狭い空間に光走査用アクチュエータ31を配置することが困難な場合があった。
本発明は、上記に鑑みてなされたものであって、走査光を出射するミラーのミラー面の面積を小さくすることができ、幅が狭い空間にも配置することが可能な光走査用アクチュエータおよび光走査用アクチュエータの製造方法を提供することを目的とする。
上述した課題を解決し、目的を達成するために、本発明に係る光走査用アクチュエータは、外部へ向けて出射した光によって所定の範囲を走査する光走査用アクチュエータであって、板バネと、前記板バネの一端部を固定する固定部材と、前記板バネの他端部を保持し、前記板バネの動きに応じて移動可能な可動部材と、前記可動部材に取り付けられ、外部から投射された光を反射するミラーと、前記可動部材および前記ミラーを揺動させる揺動手段と、を備え、前記ミラーのミラー面は、前記固定部材によって固定される前記板バネの固定端と前記可動部材によって保持される前記板バネの自由端との間を通過する平面上に位置することを特徴とする。
また、本発明に係る光走査用アクチュエータは、上記発明において、前記ミラー面は、前記板バネがたわんでいない初期状態で前記板バネの主面と直交することを特徴とする。
また、本発明に係る光走査用アクチュエータは、上記発明において、前記ミラー面は、前記板バネの所定のたわみ位置における前記自由端の接平面と前記初期状態における前記板バネの主面との交線または該交線の近傍を通過し、前記接平面と直交することを特徴とする。
また、本発明に係る光走査用アクチュエータは、上記発明において、前記揺動手段は、前記初期状態における前記板バネの主面および前記ミラー面とそれぞれ平行な軸を中心軸とする偶力を前記可動部材に加えることを特徴とする。
また、本発明に係る光走査用アクチュエータは、上記発明において、前記揺動手段は、磁石と、前記磁石が固着され、前記磁石とともに閉じた磁気回路を形成するヨークと、前記可動部材に保持され、前記磁気回路の磁束が貫通するコイルと、を備え、前記コイルの開口面は、前記初期状態における前記板バネの主面と平行であり、前記ミラー面を含む平面と交わることを特徴とする。
また、本発明に係る光走査用アクチュエータは、上記発明において、前記板バネを複数有し、前記初期状態において、各板バネの主面が同じ平面上に位置するとともに各板バネの長手方向が互いに略平行な状態で並列に配置され、前記磁石、前記ヨークおよび前記コイルは、隣り合ういずれか二つの前記板バネの間に位置することを特徴とする。
また、本発明に係る光走査用アクチュエータは、上記発明において、前記可動部材および前記ミラーが揺動する揺動方向に沿った前記ミラー面の幅は、前記揺動方向に沿った前記可動部材の幅以下であることを特徴とする。
また、本発明に係る光走査用アクチュエータの製造方法は、上記発明に記載の光走査用アクチュエータを製造する光走査用アクチュエータの製造方法であって、前記ミラーの設置位置の候補として複数の候補位置を設定し、この設定した複数の候補位置の各々に前記ミラーを配置したときの前記板バネのたわみ量に応じた前記ミラーの前記初期状態からの移動量を求め、この移動量が最小となる候補位置を前記ミラーの設置位置とする工程を含むことを特徴とする。
本発明によれば、板バネと、板バネの一端部を固定する固定部材と、板バネの他端部を保持し、板バネの動きに応じて移動可能な可動部材と、可動部材に取り付けられ、外部から投射された光を反射するミラーと、可動部材およびミラーを揺動させる揺動手段と、を備え、ミラーのミラー面が、固定部材によって固定される板バネの固定端と可動部材によって保持される板バネの自由端との間を通過する平面上に位置することとしたため、ミラーが揺動する揺動方向の移動量を小さくすることができる。したがって、ミラーのミラー面の面積を小さくすることができ、幅が狭い空間にも配置することが可能となる。
以下、添付図面を参照して本発明を実施するための形態を説明する。なお、図面は模式的なものであって、同じ物体を異なる図面で示す場合には、寸法や縮尺等が異なる場合もある。
図1は、本発明の一実施の形態に係る光走査用アクチュエータを備え、この光走査用アクチュエータが出射する光を用いて物体を検出する物体検出装置の構成を示すブロック図である。同図に示す物体検出装置100は、外部へ向けて光を出射し、この出射した光によって所定の範囲を走査する光走査用アクチュエータ1と、光走査用アクチュエータ1に対して光を照射する投光部2と、光走査用アクチュエータ1の所定箇所の位置を検出する位置検出部3と、光走査用アクチュエータ1が出射した光の反射光を受光する受光部4と、物体検出装置100の制御を行う制御部5と、を備える。投光部2はレーザダイオードを有し、光走査用アクチュエータ1に対してレーザ光を照射する。受光部4はレーザ光を受光するフォトダイオードを有する。
図2は、本実施の形態に係る光走査用アクチュエータ1の構成を示す斜視図である。図3は、光走査用アクチュエータ1の要部の構成を示す図であり、図2のA-A線部分断面図に物体検出装置100の構成の一部を加えた図である。光走査用アクチュエータ1は、薄板状をなす2枚の板バネ11、12と、所定の場所に固設され、板バネ11、12の一端部を固定する固定部材13と、板バネ11、12の他端部を保持し、板バネ11、12の動きに応じて移動可能な可動部材14と、可動部材14に取り付けられ、投光部2が照射したレーザ光を反射するミラー15と、2枚の磁石16、17と、磁石16、17が固着され、磁石16、17とともに閉じた磁気回路を形成するヨーク18と、可動部材14に保持され、磁石16、17およびヨーク18の近傍に位置するコイル19と、を備える。
板バネ11、12は同じ形状をなし、各板バネがたわんでいない初期状態(図2に示す状態)で各々の主面が同じ平面上に位置する。また、板バネ11、12は、初期状態における各々の長手方向が平行である。図3に示すように、板バネ11の固定端11aは、板バネ11が固定部材13に保持されている部分と保持されていない部分との境界である。他方、板バネ11の自由端11bは、板バネ11が可動部材14に保持されている部分と保持されていない部分との境界である。板バネ12の固定端12aおよび自由端12bも、板バネ11の固定端11aおよび自由端11bとそれぞれ同様の位置である。
板バネ11、12の端部のうち固定部材13に保持されている端部には、板バネ11、12がそれぞれ延びている方向と反対側へ突出する電極端子部111、121がそれぞれ設けられている。電極端子部111、121には、板バネ11、12と制御部5とを電気的に接続するリード線がそれぞれ取り付けられている。一方、板バネ11、12の端部のうち可動部材14に固定されている端部付近には、一端がコイル19の巻き線端部に接続されたリード線の他端が接続されている。このため、制御部5とコイル19は、板バネ11、12を介して電気的に接続されている。このようにして板バネ11、12をリード線の代わりとして機能させることにより、コイル通電用の回路を簡略化することができる。
板バネ11、12は、ベリリウム銅、リン青銅またはステンレスなどの薄板バネ材からなり、プレス加工による打ち抜き成形やエッチング成形によってそれぞれ形成される。
可動部材14は、板バネ11、12の初期状態において板バネ11、12の長手方向と直交する略柱状をなし、板バネ11、12の自由端11b、12bよりもそれぞれ先端側を保持する板バネ保持部141と、板バネ保持部141の上端から板バネ保持部141と直交して固定部材13側に延びる略柱状をなし、上面にミラー15が取り付けられるミラー取付部142と、板バネ保持部141の略中央部から板バネ11、12の初期状態における長手方向に沿って固定部材13側へ互いに平行に延びる二つの柱状部分からなり、この二つの柱状部分によってコイル19を挟持した状態で保持するコイル保持部143と、を有する。
固定部材13および可動部材14は、軽量かつ高剛性なガラス繊維などを充填した液晶ポリマー(LCP)やポリフェニレンサルファイド(PPS)などのエンジニアリングプラスチックを射出成形することによって形成されている。なお、固定部材13および可動部材14を成形する際に、板バネ11、12をインサート材として一体成形してもよい。
ミラー15は、可動部材14およびミラー15が揺動する揺動方向に沿ったミラー面の幅が、可動部材14の揺動方向に沿った幅と等しい。より一般には、揺動方向のミラー面の幅が揺動方向の可動部材の幅以下であってもよい。ミラー15は、ガラス、合成樹脂またはアルミニウムなどの軽金属を用いて実現され、アルミニウム蒸着などによって平滑に形成したミラー面を有する。このミラー面に対して二酸化ケイ素などの薄膜からなる保護層を設けてもよい。
図4は、ミラー15の設置位置を説明する図であり、図2の矢視B方向から見たときの板バネ11とミラー15の位置関係を示す図である。以下、板バネ11と板バネ12は、ほぼ同じ態様で揺動するものとする。図4において、板バネ11、12は、所定のたわみ角θ0(0°<θ0<90°)でそれぞれたわんでいる。ここでいう「たわみ角」とは、板バネ11、12の初期状態における主面を通過する平面P0と、板バネ11の自由端11bの接平面(図4に示す場合には平面P1)とのなす角である。本実施の形態では、ミラー15のミラー面上を通過し、揺動時の回転中心となる回転軸Qを、平面P0とたわみ角θ0における板バネ11の自由端11bの接平面P1との交線と一致する位置とする。ミラー15の設置位置を定めるたわみ角θ0の値は任意に設定可能であり、例えば板バネ11、12が最もたわんだときの値とすることができる。
図5は、図3のC-C線断面図である。ヨーク18は、純鉄等の軟磁性材からなり、略E字状の均一な断面を有するブロックであり、E字の3本の横線のうち中央の横線に相当する部分がコイル19の中空部を貫通している。また、E字の3本の横線のうち上下2本の横線に相当する部分には、内周側に平板状の磁石16、17がそれぞれ固着されている。ヨーク18は、固定部材13に固定されている。ヨーク18の固定位置は、可動部材14が揺動する際、可動部材14の板バネ保持部141とコイル保持部143とによって囲まれた凹部14aを通り抜けることが可能な位置である。なお、ヨーク18の略E字状の断面の開いた部分に平板状の軟磁性材を取り付けることにより、略B字状の閉じた断面を有するヨークを構成してもよい。
コイル19は、可動部材14のコイル保持部143によって保持されている。板バネ11、12の初期状態において、コイル19の開口面は板バネ11、12の主面と平行である。また、コイル19の開口面は、ミラー15のミラー面を含む平面と交わっている。上述したように、ヨーク18のうちE字の中央の横線に相当する部分はコイル19の中空部を貫通している。なお、固定部材13および可動部材14を成形する際に、コイル19をインサート材として加えてもよい。
以上の構成を有する光走査用アクチュエータ1の動作を説明する。図2、図3および図5に示す初期状態において制御部5がコイル19に駆動電流を流すと、コイル19には、板バネ11、12の主面およびミラー15のミラー面とそれぞれ平行であり、コイル19の中心を通過する軸(図5の軸O)を中心軸とする偶力(大きさ2F)が発生し、可動部材14およびミラー15を駆動する駆動力として可動部材14に作用する。この意味で、磁石16、17、ヨーク18およびコイル19は、制御部5から送られてくる駆動電流に基づいて可動部材14およびミラー15を揺動させる揺動手段を構成する。
図6は、図3の矢視B方向から見た光走査用アクチュエータ1の駆動の態様を示す図である。可動部材14は、コイル19から駆動力を受けると、板バネ11および12とともに図6の上下方向へ揺動を開始する。揺動するミラー15に対して投光部2がレーザ光を照射すると、ミラー15はレーザ光を反射する。光走査用アクチュエータ1は、この反射光によって所定の範囲を走査する。
可動部材14およびミラー15が揺動している間、位置検出部3は、板バネ11、可動部材14またはミラー15の所定箇所の位置を検出して制御部5へ出力する。制御部5は、位置検出部3から送られてくる板バネ11、可動部材14またはミラー15の位置情報を用いることにより、コイル19に流す駆動電流を制御する。
光走査用アクチュエータ1は、ミラー15の回転軸Qの位置がミラー15の揺動によってほとんど動かない。このため、上述した特許文献1の従来技術のようにミラー15のミラー面の面積を大きくしなくても、投光部2が照射する光を確実に光をミラー面に到達させることができる。したがって、ミラー15の揺動方向の幅を小さくすることができ、これに応じて固定部材13や可動部材14の揺動方向の幅も小さくすることができる。この結果、光走査用アクチュエータ1全体を小型化し、幅の狭い空間にも設置することが可能となる。
ところで、可動部材14およびミラー15は、各部分が完全な円弧を描いて揺動するわけではない。このため、ミラー15の回転軸Qの位置は、たわみ角θ0の大きさとともにわずかに変化する。
図7は、本発明の一実施の形態に係る光走査用アクチュエータの製造方法においてミラー15の設置位置を決める工程の概要を示す図である。ミラー15の設置位置を決める際には、複数の候補位置(図7に示す場合には4つの候補位置15a~15d)に対し、たわみ角θが所定のたわみ角θ0に達するまで徐々に大きくしていったときのミラー15の回転軸の初期状態からの移動量を求め、この移動量が最小となる候補位置をミラー15の設置位置とする。
図8は、ミラー15を候補位置15aに設置した場合のミラー15の回転軸の移動量の具体例を示す図である。図8では、板バネ11、12が初期状態にあるときのミラー15の回転軸をQaとする一方、板バネ11、12があるたわみ角θ(≦θ0)でたわんだときのミラー15の回転軸をQa'とし、回転軸Qaから回転軸Qa’への移動量をhaとしている。また、図8では、たわみ角θにおける板バネ11の自由端11bの接平面をP2としている(θ=θ0の場合の接平面P2は接平面P1に他ならない)。
図9は、板バネ11、12のたわみνと移動量hとの関係を示す図である。図9では、たわみ角θ0でたわんだときの自由端11b、12bのたわみ量をνmaxとしている。図9に示す4本の直線La~Ldは、ミラー15を候補位置15a~15dにそれぞれ配置した場合に対応している。4本の直線La~Ldのうち、同じたわみνに対する移動量hが最も小さいのは直線Lcである。したがって、図9に示す場合には、候補位置15cがミラー15の設置位置となる。
ところで、設置位置として最も好ましいのは、図4に示す回転軸Qである。しかしながら、実際には有限個の候補位置しか調べることはできないため、候補位置におけるミラー15の回転軸が回転軸Qに一致するとは限らない。また、候補位置におけるミラー15の回転軸が回転軸Qの近傍にあれば、その回転軸の移動量は、板バネ11、12の先端部の揺動時の移動量に比べて微小である。このため、候補位置におけるミラー15の回転軸が回転軸Qに一致しなくても、実用上は問題とならない。
なお、図9に示す関係を求める場合には、実測によって求めてもよいし、コンピュータを用いたシミュレーションによって求めてもよい。
このようにして、板バネ11、12の初期状態からのたわみ量に応じたミラー15の回転軸の移動量が最小となる位置にミラーを設置するため、揺動時のミラーの移動をできるだけ少なくすることができる。
以上説明した本発明の一実施の形態によれば、板バネと、板バネの一端部を固定する固定部材と、板バネの他端部を保持し、板バネの動きに応じて移動可能な可動部材と、可動部材に取り付けられ、外部から投射された光を反射するミラーと、可動部材およびミラーを揺動させる揺動手段と、を備え、ミラーのミラー面が、固定部材によって固定される板バネの固定端と可動部材によって保持される板バネの自由端との間を通過する平面上に位置することとしたため、ミラーが揺動する揺動方向の移動量を小さくすることができる。したがって、ミラーのミラー面の面積を小さくすることができ、幅が狭い空間にも配置することが可能となる。
ここまで、本発明を実施するための最良の形態を説明してきたが、本発明は上述した一実施の形態によってのみ限定されるべきものではない。例えば、本発明において、ミラーを設置する位置は、必ずしも板バネの上方でなくてもよい。
また、本発明において、ミラーのミラー面が板バネの固定端側を向いていてもよい。
また、本発明において、板バネが、固定部材によって保持される固定端側から可動部材によって保持される自由端側へ向けて徐々にその幅が狭くなる形状をなしていてもよい。
また、本発明において適用する板バネの枚数は2枚に限られるわけではなく、1枚でもよいし、3枚以上でもよい。
また、本発明において、板バネを介さずにコイルと制御部とを電気的に接続してもよい。
本発明は、走査型レーザレーダ装置、レーザスキャナ、レーザプリンタ、レーザマーカ、物体監視装置等において、外部へ向けてレーザ光を照射し、この照射したレーザ光によって所定の範囲を走査するのに好適である。
1、31 光走査用アクチュエータ
2 投光部
3 位置検出部
4 受光部
5 制御部
11a、12a 固定端
11b、12b 自由端
11、12、34a、34b 板バネ
13、33 固定部材
14 可動部材
14a 凹部
15、36 ミラー
15a、15b、15c、15d 候補位置
16、17、39 磁石
18、38 ヨーク
19、37a、37b コイル
32 ベース部材
35 ミラーホルダ
38a 下側部分
38b 上側部分
100 物体検出装置
111、121 電極端子部
141 板バネ保持部
142 ミラー取付部
143 コイル保持部
2 投光部
3 位置検出部
4 受光部
5 制御部
11a、12a 固定端
11b、12b 自由端
11、12、34a、34b 板バネ
13、33 固定部材
14 可動部材
14a 凹部
15、36 ミラー
15a、15b、15c、15d 候補位置
16、17、39 磁石
18、38 ヨーク
19、37a、37b コイル
32 ベース部材
35 ミラーホルダ
38a 下側部分
38b 上側部分
100 物体検出装置
111、121 電極端子部
141 板バネ保持部
142 ミラー取付部
143 コイル保持部
Claims (8)
- 外部へ向けて出射した光によって所定の範囲を走査する光走査用アクチュエータであって、
板バネと、
前記板バネの一端部を固定する固定部材と、
前記板バネの他端部を保持し、前記板バネの動きに応じて移動可能な可動部材と、
前記可動部材に取り付けられ、外部から投射された光を反射するミラーと、
前記可動部材および前記ミラーを揺動させる揺動手段と、
を備え、
前記ミラーのミラー面は、前記固定部材によって固定される前記板バネの固定端と前記可動部材によって保持される前記板バネの自由端との間を通過する平面上に位置することを特徴とする光走査用アクチュエータ。 - 前記ミラー面は、
前記板バネがたわんでいない初期状態で前記板バネの主面と直交することを特徴とする請求項1に記載の光走査用アクチュエータ。 - 前記ミラー面は、
前記板バネの所定のたわみ位置における前記自由端の接平面と前記初期状態における前記板バネの主面との交線または該交線の近傍を通過し、前記接平面と直交することを特徴とする請求項2に記載の光走査用アクチュエータ。 - 前記揺動手段は、
前記初期状態における前記板バネの主面および前記ミラー面とそれぞれ平行な軸を中心軸とする偶力を前記可動部材に加えることを特徴とする請求項2または3に記載の光走査用アクチュエータ。 - 前記揺動手段は、
磁石と、
前記磁石が固着され、前記磁石とともに閉じた磁気回路を形成するヨークと、
前記可動部材に保持され、前記磁気回路の磁束が貫通するコイルと、
を備え、
前記コイルの開口面は、
前記初期状態における前記板バネの主面と平行であり、前記ミラー面を含む平面と交わることを特徴とする請求項2~4のいずれか一項に記載の光走査用アクチュエータ。 - 前記板バネを複数有し、前記初期状態において、各板バネの主面が同じ平面上に位置するとともに各板バネの長手方向が互いに略平行な状態で並列に配置され、
前記磁石、前記ヨークおよび前記コイルは、隣り合ういずれか二つの前記板バネの間に位置することを特徴とする請求項5に記載の光走査用アクチュエータ。 - 前記可動部材および前記ミラーが揺動する揺動方向に沿った前記ミラー面の幅は、前記揺動方向に沿った前記可動部材の幅以下であることを特徴とする請求項1~6のいずれか一項に記載の光走査用アクチュエータ。
- 請求項1~7のいずれか一項に記載の光走査用アクチュエータを製造する光走査用アクチュエータの製造方法であって、
前記ミラーの設置位置の候補として複数の候補位置を設定し、この設定した複数の候補位置の各々に前記ミラーを配置したときの前記板バネのたわみ量に応じた前記ミラーの前記初期状態からの移動量を求め、この移動量が最小となる候補位置を前記ミラーの設置位置とする工程を含むことを特徴とする光走査用アクチュエータの製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010511085A JP5198561B2 (ja) | 2008-05-08 | 2009-05-08 | 光走査用アクチュエータおよび光走査用アクチュエータの製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008122097 | 2008-05-08 | ||
JP2008-122097 | 2008-05-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009136637A1 true WO2009136637A1 (ja) | 2009-11-12 |
Family
ID=41264691
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/058696 WO2009136637A1 (ja) | 2008-05-08 | 2009-05-08 | 光走査用アクチュエータおよび光走査用アクチュエータの製造方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5198561B2 (ja) |
WO (1) | WO2009136637A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011112896A (ja) * | 2009-11-27 | 2011-06-09 | Sumitomo Chemical Co Ltd | 振動ミラー用台座および光走査装置 |
JP2011118217A (ja) * | 2009-12-04 | 2011-06-16 | Fuji Xerox Co Ltd | 光走査装置、画像形成装置 |
JP2018014873A (ja) * | 2016-07-21 | 2018-01-25 | エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. | リニア振動モータ |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0954264A (ja) * | 1995-08-10 | 1997-02-25 | Omron Corp | 光走査装置、距離測定装置及び光センサ装置 |
JP2002174794A (ja) * | 2000-12-07 | 2002-06-21 | Denso Corp | 光スキャナ |
JP2005127971A (ja) * | 2003-10-27 | 2005-05-19 | Nhk Spring Co Ltd | 角度検出装置およびこれを用いたスキャン型アクチュエータ |
JP2005254448A (ja) * | 2004-03-09 | 2005-09-22 | Lucent Technol Inc | 適応制御光学ミラー用mems素子 |
WO2006112184A1 (ja) * | 2005-03-31 | 2006-10-26 | Nhk Spring Co., Ltd. | 光走査用アクチュエータ |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3500044B2 (ja) * | 1997-06-27 | 2004-02-23 | ペンタックス株式会社 | ガルバノミラー装置 |
JP3500043B2 (ja) * | 1997-06-27 | 2004-02-23 | ペンタックス株式会社 | ガルバノミラー装置 |
-
2009
- 2009-05-08 JP JP2010511085A patent/JP5198561B2/ja not_active Expired - Fee Related
- 2009-05-08 WO PCT/JP2009/058696 patent/WO2009136637A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0954264A (ja) * | 1995-08-10 | 1997-02-25 | Omron Corp | 光走査装置、距離測定装置及び光センサ装置 |
JP2002174794A (ja) * | 2000-12-07 | 2002-06-21 | Denso Corp | 光スキャナ |
JP2005127971A (ja) * | 2003-10-27 | 2005-05-19 | Nhk Spring Co Ltd | 角度検出装置およびこれを用いたスキャン型アクチュエータ |
JP2005254448A (ja) * | 2004-03-09 | 2005-09-22 | Lucent Technol Inc | 適応制御光学ミラー用mems素子 |
WO2006112184A1 (ja) * | 2005-03-31 | 2006-10-26 | Nhk Spring Co., Ltd. | 光走査用アクチュエータ |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011112896A (ja) * | 2009-11-27 | 2011-06-09 | Sumitomo Chemical Co Ltd | 振動ミラー用台座および光走査装置 |
JP2011118217A (ja) * | 2009-12-04 | 2011-06-16 | Fuji Xerox Co Ltd | 光走査装置、画像形成装置 |
JP2018014873A (ja) * | 2016-07-21 | 2018-01-25 | エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. | リニア振動モータ |
Also Published As
Publication number | Publication date |
---|---|
JPWO2009136637A1 (ja) | 2011-09-08 |
JP5198561B2 (ja) | 2013-05-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9488829B2 (en) | Optical scanning device and projector | |
US8164811B2 (en) | Optical scanning actuator | |
CN104570333B (zh) | 光扫描仪、图像显示装置、头戴式显示器以及平视显示器 | |
US8035875B2 (en) | Object detector | |
US20100118363A1 (en) | Optical scanning sensor | |
US9772490B2 (en) | Optical scanner, image display device, head mount display, and heads-up display | |
JP2008052008A (ja) | 光偏光器、光走査装置及び走査型画像表示装置 | |
JP5198561B2 (ja) | 光走査用アクチュエータおよび光走査用アクチュエータの製造方法 | |
JP4884139B2 (ja) | スキャナ装置 | |
WO2011040492A1 (ja) | 光学的情報読取装置 | |
JP5208488B2 (ja) | 車両用光スキャン装置 | |
US7813019B2 (en) | Optical scanning actuator | |
JP3949068B2 (ja) | アクチュエータ、このアクチュエータを用いた物体検出装置 | |
EP3882683B1 (en) | Movable device, image projection apparatus, object recognition device, and mobile object | |
JP2005181395A (ja) | 光偏向器 | |
JP3785668B2 (ja) | 光走査装置 | |
WO2021100803A1 (ja) | ミラースキャナ | |
US20230194675A1 (en) | Light scanning apparatus, adjustment method of light scanning apparatus, and storage medium | |
JP2007078722A (ja) | 光走査装置 | |
JP2000258713A (ja) | 走査線湾曲補正方法及び光走査装置 | |
JP5020551B2 (ja) | 光学走査装置 | |
JPH09236764A (ja) | 光走査装置 | |
JP2005352300A (ja) | 光走査素子及びこれを用いた走査光学装置 | |
JPH09179053A (ja) | 光走査装置 | |
JPH02203432A (ja) | ピックアップ装置のガルバノミラー支持装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09742761 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010511085 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09742761 Country of ref document: EP Kind code of ref document: A1 |