WO2009130966A1 - 偏光ガラス、光アイソレーターおよび偏光ガラスの製造方法 - Google Patents
偏光ガラス、光アイソレーターおよび偏光ガラスの製造方法 Download PDFInfo
- Publication number
- WO2009130966A1 WO2009130966A1 PCT/JP2009/056048 JP2009056048W WO2009130966A1 WO 2009130966 A1 WO2009130966 A1 WO 2009130966A1 JP 2009056048 W JP2009056048 W JP 2009056048W WO 2009130966 A1 WO2009130966 A1 WO 2009130966A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- glass
- polarizing
- metal
- glass substrate
- light
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
- G02B5/3025—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B23/00—Re-forming shaped glass
- C03B23/02—Re-forming glass sheets
- C03B23/037—Re-forming glass sheets by drawing
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B23/00—Re-forming shaped glass
- C03B23/20—Uniting glass pieces by fusing without substantial reshaping
- C03B23/203—Uniting glass sheets
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C14/00—Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
- C03C14/006—Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix the non-glass component being in the form of microcrystallites, e.g. of optically or electrically active material
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C21/00—Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
- C03C21/001—Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
- C03C21/005—Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to introduce in the glass such metals or metallic ions as Ag, Cu
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C4/00—Compositions for glass with special properties
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2214/00—Nature of the non-vitreous component
- C03C2214/08—Metals
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2214/00—Nature of the non-vitreous component
- C03C2214/16—Microcrystallites, e.g. of optically or electrically active material
Definitions
- the present invention relates to a polarizing glass, an optical isolator, and a polarizing glass manufacturing method used as a polarizer, which is one of important components such as a small optical isolator, an optical switch, or an electromagnetic sensor used for optical communication. About.
- metal particles having shape anisotropy in glass for example, glass in which silver particles and copper particles are oriented and dispersed, become a polarizer because the light absorption wavelength band of the metal differs depending on the incident polarization direction.
- shape anisotropy means that the vertical dimension and the horizontal dimension are different
- orientation means that the longitudinal directions of a large number of shape anisotropic particles are aligned in a specific direction.
- dispersion means that the shape anisotropic particles are arranged separately from each other.
- polarizing glass As the polarizing glass as described above, for example, ion exchange treatment is performed on both main surfaces of a glass substrate, Ag ions are introduced into the glass from both main surfaces, and then Ag colloidal fine particles are formed by heat treatment. The substrate is stretched to give a shape anisotropy to the Ag fine particles to obtain a polarizing glass (see Non-Patent Document 1).
- This polarizing glass has been attracting attention because it is relatively easy to manufacture and can reduce manufacturing costs.
- FIG. 5 is an explanatory view of a conventional polarizing glass
- FIG. 5 (a) is a partial sectional view of the conventional polarizing glass
- FIG. 5 (b) is an Ag in the traveling direction of light that performs the polarizing action of the conventional polarizing glass. It is a figure which shows the density
- silver fine particles 13 having shape anisotropy are oriented and dispersed in regions 14 near both main surfaces of a glass substrate 12 as a glass substrate. Is. As shown in FIG. 5B, the concentration distribution of Ag particles is generally high in the vicinity of the surface of the glass substrate 12, and generally draws an attenuation curve in which the concentration decreases as it goes inside.
- FIG. 6 is a diagram for explaining the operation when an optical isolator is constructed using a conventional polarizing glass.
- an optical isolator 100 has a garnet crystal 20 as a Faraday rotator disposed between two polarizing glasses 10a and 10b whose polarization axes are inclined by 45 degrees. It is sandwiched between magnets 30a and 30b and placed under the magnetic field.
- shape-anisotropic silver particles having a distribution as shown in FIG. 5 are oriented and dispersed in one direction in the vicinity of both main surfaces of the glass substrate.
- the transmitted light component b (linearly polarized light) is light having a light component c by rotating the plane of polarization by 45 degrees Faraday when passing through the garnet crystal 20.
- the light of the light component c is transmitted as it is through the polarizing glass 10b whose polarization axis is inclined by 45 degrees with respect to the polarizing glass 10a, is incident on the optical fiber 50, and is transmitted.
- the linearly polarized light of the light collapses and becomes light having the light components d1, d2, etc., and enters the polarizing glass 10b.
- the incident light only the light (linearly polarized light) having the component e whose polarization plane is the same as that of the light component c can pass through the polarizing glass 10b.
- the plane of polarization is rotated by 45 degrees to become light of the light component f.
- the polarization plane of the light component f is orthogonal to the polarization axis of the polarizing glass 10a, it is essentially completely absorbed. This should substantially prevent return light from the optical fiber 50 from returning to the LD light source.
- the optical isolator is used to prevent the return light to the LD light source, and is indispensable for reliable optical communication. Yes.
- the surface of the polarizing glass 10a on the side bonded to the garnet crystal 20 reflects a part of the light of the component f, which is the light that should originally be absorbed by the plasma because the concentration of silver particles is high, It propagates in the garnet crystal 20 as light ⁇ toward the polarizing glass 10b on the optical fiber 50 side. At this time, while the light ⁇ is propagated through the garnet crystal 20, the plane of polarization is rotated 45 degrees, and the light ⁇ becomes light of the light component g and reaches the polarizing glass 10b.
- the polarizing glass 10b also has a high concentration of silver particles in the vicinity of the surface, so that a part of the light ⁇ of the component g is reflected and propagates in the garnet crystal 20 as light ⁇ . While the light ⁇ also propagates through the garnet crystal 20, the plane of polarization is rotated by 45 degrees, and becomes the light of the component h and reaches the polarizing glass 10a again.
- the polarization plane of the component h is the same as the polarization plane of the component b described above and can pass through the polarizing glass 10a, the light of the component h passes through the polarizing glass 10a as it is, It will enter the LD light source as it is, and this will deteriorate the isolation performance.
- the surface reflection of the polarizing glasses 10a and 10b as described above is reflected light due to the metal concentration of the polarizing glasses 10a and 10b being high on the surface. Therefore, an antireflection film (AR coating) is formed on both main surfaces of the polarizing glasses 10a and 10b. ) Is not essentially improved.
- the reflected light when the light emitted from the LD light source 40 first enters the polarizing glass 10a is formed by slightly tilting the integrated isolator 100 made of the polarizing glass 10a, the garnet crystal 20, and the polarizing glass 10b. It is possible to prevent returning directly to the light source.
- the transmission light to the optical fiber 50 or the like returns as return light
- the return light cannot be prevented even if the polarizing glass or the like is tilted, so that the isolation of the optical isolator 100 is low.
- the return light resulting from is incident on the light source.
- the isolation (Iso: dB) indicating the figure of merit is calculated by the following equation.
- Iso (dB) ⁇ 10 Log ⁇ R n +10 ( ⁇ X / 10) ⁇ (1)
- R represents the reflectance of linearly polarized light in the absorption direction of the polarizing glass
- n represents the number of reflections
- X represents Iso (dB) of the isolator when the reflectance R on the polarizing glass is 0.
- the return light because it is reflected twice in total, it will be reflected by R 2 minutes is deteriorated from isolation when 0.
- Iso is calculated to be 30 dB from the equation (1).
- FIG. 7 is a diagram showing the relationship between the reflectance R of linearly polarized light in the absorption direction of the polarizing glass and the isolation (Iso: dB).
- the isolator Iso (dB) X is 40 dB, 35 dB, and 32 dB when the reflectance R of the polarizing glass is 0.
- the influence of the reflectance cannot be ignored, and the isolator when the reflectance is zero is obtained. Even if the reflection is 40 dB, if the reflectance exceeds 3%, it is below the isolation of 30 dB, which is the lower limit of the optical isolator specification, and the performance is degraded.
- the thickness of the layer containing shape anisotropic metal particles is as thin as several ⁇ m.
- the thickness of the polarizing glass is not uniform, for example, when assembling a large number of optical isolators, the thickness of the integrated isolator with the polarizing glass bonded to both sides of the garnet film is not uniform, and the size of the holder that accommodates this is There is a big obstacle in production that it is not constant and mass production of holders is not possible.
- the present invention has been made under the above-mentioned background, and an object thereof is to provide a polarizing glass, an optical isolator, and a manufacturing method of the polarizing glass that can be manufactured relatively easily and have no problem of surface reflection.
- a polarizing glass comprising shape-anisotropic metal particles oriented and dispersed in a glass substrate, wherein the metal particle concentration is a surface on one side of the glass substrate in the traveling direction of light exhibiting a polarizing action. Near and near the surface of the other side is almost zero, and gradually increases from one side of the glass substrate to the other side, and reaches a predetermined range within the glass substrate.
- the polarizing glass has a distribution that gradually decreases toward the other side.
- An optical isolator including a Faraday rotator and at least one polarizer as components, wherein the polarizing glass according to any one of (1) to (5) is used as the polarizer.
- Optical isolator. A polarizing glass manufacturing method for manufacturing a polarizing glass comprising shape-anisotropic metal particles oriented and dispersed in a glass substrate, Two polarizing glasses each having at least one main surface including a metal particle-containing layer having a concentration distribution in which the shape anisotropic metal particle concentration is high in the vicinity of the surface and decreases in the internal direction, and the orientation direction of the metal particles of each other The main surface having the metal particle-containing layer facing each other so as to be in close contact with each other, if there is a metal particle layer on the other non-adhering main surface, by removing the metal particle-containing layer, The metal particle concentration is substantially zero in the vicinity of the surface on one side of the glass substrate and in the vicinity of the surface on the other side in the traveling direction of light exhibiting
- a polarizing glass characterized by producing a polarizing glass having a distribution that gradually increases toward the other side, becomes a predetermined range within the glass substrate, and then gradually decreases toward the other side.
- Manufacturing method (9) Metal ion-containing glass having a metal ion-containing layer in which metal ions are introduced into the main surface of the glass substrate by an ion exchange method, and the metal ion concentration is high near the glass surface and has a concentration distribution that decreases in the internal direction. Make the substrate, By heating the metal ion-containing glass substrate, a metal particle-containing glass having a metal particle-containing layer having a concentration distribution in which metal particles are generated and the metal particle concentration is high near the glass substrate surface and decreases in the inner direction.
- a polarizing glass manufacturing method characterized by manufacturing a polarizing glass having a distribution that becomes a predetermined range in the glass substrate and then gradually decreases toward the other side.
- the present invention even when a metal ion is introduced into a glass surface by an ion exchange method and heated, a metal particle is generated, and this is heated using a relatively simple method of stretching. Thus, it is possible to obtain a polarizing glass in which surface reflection is not a problem. Further, since there are almost no shape anisotropic particles in the vicinity of the surface, it is possible to easily adjust the polarizing glass to a predetermined thickness by dropping the vicinity of the surface by means such as polishing and etching.
- the thickness of the layer containing shape anisotropic metal particles in the central portion in the traveling direction (thickness direction) of light exhibiting a polarizing action is as thin as 10 ⁇ m or less in total, the thickness of the polarizing glass is maintained without impairing the polarization characteristics. It is also easy to produce a thin polarizing glass having a thickness of 50 ⁇ m or less.
- FIG. 1 is an explanatory view of a polarizing glass according to a first embodiment of the present invention.
- FIG. 1A is a partial sectional view of the polarizing glass according to the first embodiment, and FIG. It is a figure which shows density
- the polarizing glass 1 according to the first embodiment is one in which fine metal particles 3 having shape anisotropy are oriented and dispersed in a glass substrate 2 as a glass substrate. .
- the dimension of the metal fine particles 3 is about 50 to 210 nm in the longitudinal direction and about 10 to 30 nm in the direction orthogonal to the longitudinal direction.
- the metal fine particles 3 have a longitudinal direction facing a direction orthogonal to the traveling direction (thickness direction) of the light L subjected to the polarization action.
- the concentration distribution of the metal particles in the traveling direction of the light performing the polarization action is almost zero near the surface on one side and near the surface on the other side of the glass substrate 2.
- the concentration in the vicinity of the center may be about 1 ⁇ 10 8 to 1 ⁇ 10 12 pieces / mm 3 .
- the thickness t1 of the polarizing glass 1 is 0.03 to 0.6 mm, and the thickness t2 of the region 4 where the metal particles are present is 5 to 30 ⁇ m.
- FIG. 2 is an explanatory diagram of the manufacturing process of the polarizing glass 1 according to the first embodiment.
- the manufacturing process of the polarizing glass 1 concerning Embodiment 1 is demonstrated, referring FIG. First, two conventional polarizing glasses 10 shown in FIG. 5 are produced (see FIG. 2A). Next, the two polarizing glasses 10 are brought into close contact with each other so that the orientations of the shape anisotropic metal particles coincide with each other (see FIG. 2B). Next, the metal fine particle-containing layer 14 in the vicinity of the non-adhered surface is removed by polishing or etching (see FIG. 2C). Thereby, the polarizing glass 1 concerning Embodiment 1 can be obtained.
- the polarizing glass 1 there is no reflection due to the metal on the surface, and linearly polarized light enters the inside of the polarizing glass 1, and along with a gradual increase in the concentration of metal fine particles, Although the reflectivity gradually increases, the intensity of linearly polarized waves gradually decreases due to the plasma absorption of fine metal particles, so that even if a high-concentration metal-containing part (joint surface) is reached, the reflected light intensity is the conventional type. It becomes weaker than
- FIG. 3 is an explanatory diagram of the polarizing glass according to the second embodiment.
- FIG. 3A is a partial cross-sectional view of the polarizing glass according to the second embodiment
- FIG. 3B is a polarized light according to the second embodiment. It is a figure which shows the density distribution of the metal particle in the advancing direction of the light which performs the polarization effect of glass.
- the polarizing glass 1 according to the second embodiment is also shaped anisotropically in the vicinity of both main surfaces by using the ion exchange method, similarly to the polarizing glass according to the first embodiment. Two conventional polarizing glasses formed with layers are adhered to each other, but the two polarizing glasses used are different from those in the first embodiment.
- the two polarizing glasses used in the second embodiment have a shape anisotropic metal particle concentration at the outermost surface that is relatively low by a two-stage ion exchange method or the like, and anisotropy within a few ⁇ m from the outermost surface.
- the concentration of the conductive metal particles becomes the highest, and the concentration gradually decreases from there to the inside.
- the change in the metal fine particle concentration distribution changes from the change from the outermost surface to the highest point of the metal fine particle concentration.
- the change from the highest density point to the point where the density becomes substantially zero in the internal direction is more gradual.
- the change in the concentration distribution of the metal particles is gradual, it is possible to further suppress the reflection of light.
- Example 1 A molten salt in which sodium nitrate and silver nitrate are mixed at a weight ratio of 2: 1 is heated to 450 ° C., and a commercially available white plate glass having a thickness of 2 mm is immersed for 50 hours to ionize sodium ions in the glass and silver ions in the molten salt. Exchanged. Subsequently, the ion-exchanged white plate glass was heat-treated at 650 ° C. for 10 hours to deposit approximately 45 ⁇ m spherical silver fine particles. These silver fine particles were confirmed over a depth of 30 ⁇ m from both surfaces of the white plate glass.
- the silver-containing layers were heat-adhered through low-melting glass with the stretching direction of the two samples (C) accurately aligned. Furthermore, the surfaces of the two surfaces on which the glass pieces were not bonded were uniformly removed by polishing, the thickness was set to 0.2 mmt, and a sample (A) was obtained (corresponding to the polarizing glass of Embodiment 1). In the sample (A), the silver-containing layers on both surfaces of the glass were completely removed by polishing, and only the silver-containing layer was provided at the bonded portion of the central portion of the thickness. The thickness accuracy was 0.2 ⁇ 0.002 mm.
- sample (C) was polished to remove the layer containing silver particles, and two glass pieces having a thickness of 0.1 mmt were prepared by this single-side polishing.
- the two pieces of glass were aligned in the stretching direction accurately, and the silver-containing layers were heated and adhered to each other through a low-melting glass to obtain a sample (B) (corresponding to the polarizing glass of Embodiment 2).
- the silver-containing layers on both surfaces of the glass were completely removed by polishing, and only the silver-containing layer was provided at the bonded portion of the central portion of the thickness.
- the thickness accuracy was 0.2 ⁇ 0.005 mm.
- the extinction ratio of the glass samples (A), (B), and (C) was measured using a 1.31 ⁇ m LD light source.
- FIG. 4 is a diagram showing a measurement system used for measuring the reflectance of samples (A), (B), and (C).
- the light from the light source 65 is converted into a unidirectional linearly polarized light through the Glan-Thompson prism 61 and is incident on the measurement sample 64 through the non-polarization demultiplexer 62.
- the reflected light again enters the non-polarization demultiplexer 62, is diffracted in the direction C of the detector 63, and is detected by the detector 63.
- a reflecting plate coated with Al (aluminum) is placed at the arrangement position of the measurement sample 64 via the matching oil 66, and the intensity of reflected light incident on the detector 63 is measured.
- the polarizing glass (measurement sample) 64 to be measured is placed in the arrangement position of the measurement sample 64 via the matching oil 66 in the direction (parallel to the stretching direction) to absorb the linearly polarized light incident thereon, and the transmitted light b is minimized. Measure the reflected light at an angle.
- the matching oil 66 serves to eliminate the influence of reflection due to the difference in refractive index of the material.
- Example 2 As in Example 1, the extinction ratio and reflectance of the sample (D) were measured, and using two samples (D), an optical isolator was prepared in the same manner as in Example 1 and the isolation was measured. . These results are shown in Table 2 below. A 5 mm square was cut out from the glass tape in parallel to the stretching direction, both surfaces were evenly polished, finished to a thickness of 30 ⁇ m, and used as a sample (E). The thickness accuracy of the sample (E) was 30 ⁇ 8 ⁇ m. Further, like the sample (E), the silver-containing layers on both surfaces of the glass were completely removed by polishing, and the silver-containing layer had only a thickness of about 6 ⁇ m at the bonded portion of the central portion of the thickness. . The extinction ratio and the reflectance of the sample (E) were measured in the same manner as in Example 1. Using two samples (E), an optical isolator was produced in the same manner as in Example 1, and the isolation was measured. The results are shown in Table 2 described later.
- Example 3 A white plate having a thickness of 1.5 mm was subjected to ion exchange in the same manner as in Example 1.
- Two glass plates were placed on a flat alumina plate with their ion exchange surfaces facing each other, and a ceramic plate of about 2 kg was weighted. However, heat treatment was performed at 650 ° C. for 10 hours. The two glass plates were fused, and the glass plate thickness was 2.8 mm. On both surfaces of this fused glass plate, approximately spherical silver fine particles of about 50 ⁇ m were deposited over a depth of 30 ⁇ m. Further, in the central part of the thickness of the fused glass plate, approximately spherical silver fine particles of about 45 ⁇ m were deposited over a thickness of about 60 ⁇ m.
- the fused glass plate on which the silver fine particles were deposited was heated to about 710 ° C. and stretched.
- the obtained glass tape had a thickness of 0.28 ⁇ 0.03 mm.
- a 10 mm square was cut out from this glass tape in parallel with the drawing direction, immersed in an etching solution of a hydrofluoric acid aqueous solution, both surfaces were uniformly etched, and finished to a thickness of 0.2 mmt to obtain a sample (F).
- the silver-containing layers on both surfaces of the glass were completely removed by etching, and the silver-containing layer only had a thickness of about 6 ⁇ m in the fused portion of the central portion of the thickness.
- the thickness accuracy of the sample (F) was 0.2 ⁇ 0.01 mm.
- the extinction ratio and the reflectance were measured, and using two samples (F), an optical isolator was produced in the same manner as in Example 1, and the isolation was measured. The results are shown in Table 2 described later.
- Example 4 After depositing a Cr film with a thickness of 0.5 ⁇ m on one surface of a white plate having a thickness of 1.1 mm, the white plate was subjected to ion exchange in the same manner as in Example 1. Subsequently, the ion exchange surface was masked with an acid resistant tape, and only the Cr film was peeled off with a mixed acid of sulfuric acid and hydrofluoric acid. Silver fine particles were deposited simultaneously with the fusion of the two glasses. The fused glass plate had a thickness of 2.0 mmt, and no silver fine particles were deposited on both surfaces. Further, in the central part of the thickness of the fused glass plate, approximately spherical silver fine particles of about 45 ⁇ m were deposited over a thickness of about 60 ⁇ m.
- the fused glass plate on which the silver fine particles were deposited was heated to about 700 ° C. and stretched.
- the obtained glass tape had a thickness of 0.2 ⁇ 0.03 mm.
- a 10 mm square was cut out from this glass tape in parallel with the stretching direction to obtain a sample (G).
- Sample (G) only had a silver-containing layer at a thickness of about 6 ⁇ m in the fused portion of the central portion of the thickness.
- the extinction ratio and reflectance were measured, and using two samples (G), an optical isolator was prepared in the same manner as in Example 1, and the isolation was measured. The results are shown in Table 2 described later.
- sample (I) A glass piece cut into a 10 mm square parallel to the stretching direction from this glass tape was used as sample (I).
- One main surface of the sample (I) was removed by polishing, and two glass pieces having a thickness of 0.1 mmt were prepared by single-side polishing. Two glass pieces were aligned with each other in the direction of stretching accurately, and the silver-containing layers were brought into close contact with each other using a UV light curable resin to obtain a sample (H).
- the silver-containing layers on both surfaces of the glass were completely removed by polishing, and only the silver-containing layer was provided at the bonded portion of the central portion of the thickness.
- the thickness accuracy was 0.2 ⁇ 0.003 mm.
- Example 2 In the same manner as in Example 1, the extinction ratio and reflectance of the samples (H) and (I) were measured. In addition, using two samples (H) and two samples (I), optical isolators were produced in the same manner as in Example 1, and isolation was measured. The results are shown in Table 2.
- FIG.1 (a) is a fragmentary sectional view of the polarizing glass concerning this Embodiment 1
- FIG.1 (b) is this Embodiment 1.
- FIG. It is a figure which shows density
- FIG. 3 is an explanatory diagram of a manufacturing process of the polarizing glass 1 according to the first embodiment.
- FIG. 3A is an explanatory view of the polarizing glass according to the second embodiment, FIG.
- FIG. 3A is a partial sectional view of the polarizing glass according to the second embodiment
- FIG. 3B is the polarization of the polarizing glass according to the second embodiment. It is a figure which shows concentration distribution of the metal particle in the advancing direction of the light which performs an effect
- FIG. 3 is a diagram showing a measurement system used for measuring reflectance of samples (A) to (I).
- FIG. 5 (a) is a partial sectional view of a conventional polarizing glass
- FIG. 5 (b) is a concentration of Ag particles in the traveling direction of light that performs the polarizing action of the conventional polarizing glass. It is a figure which shows distribution.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Physics & Mathematics (AREA)
- Dispersion Chemistry (AREA)
- Ceramic Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Polarising Elements (AREA)
- Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
- Surface Treatment Of Glass (AREA)
Abstract
Description
Iso(dB)=-10Log{Rn+10(-X/10)}・・・(1)
ここで、Rは偏光ガラスの吸収方向の直線偏光の反射率を、nは反射回数を、Xは偏光ガラスでの反射率Rが0のときのアイソレーターのIso(dB)を表す。図6に示されるように、戻り光は、合計2回反射されるので、R2分だけ反射が0のときのアイソレーションから劣化することになる。例えば、Xが40dBあったとしても、反射率Rが3%あれば、(1)式よりIsoは30dBと計算される。
(1)ガラス基体中に配向分散された形状異方性金属粒子を含む偏光ガラスであって、前記金属粒子濃度が、偏光作用を示す光の進行方向において、前記ガラス基体の一方の側の表面近傍及び他方の側の表面近傍ではほぼゼロであり、前記ガラス基体の一方の側から他方の側へ向かうにしたがって次第に増加していき、前記ガラス基体内で所定の範囲の大きさになり、次に他方の側に向かうに従って次第に減少する分布を有することを特徴とする偏光ガラス。
(2)前記金属粒子が、金属銀微粒子または金属銅微粒子であることを特徴とする(1)に記載の偏光ガラス。
(3)前記形状異方性金属粒子を含む層の厚さが合計で20μm以下であることを特徴とする(1)又は(2)に記載の偏光ガラス。
(4)全体の厚さが、50μm以下であることを特徴とする(1)~(3)のいずれかに記載の偏光ガラス。
(5)中心波長が1.31μmである波長域の光及び中心波長が1.55μmである波長域の光の、一方または両方に対する消光比が30dB以上である(1)~(4)のいずれかに記載の偏光ガラス。
(6)(1)~(5)のいずれか1に記載の偏光ガラスを用いたことを特徴とする光アイソレーター。
(7)ファラデー回転素子及び少なくとも一つの偏光子を構成部品として含む光アイソレーターであって、前記偏光子として(1)~(5)のいずれか1に記載の偏光ガラスを用いたことを特徴とする光アイソレーター。
(8)ガラス基体中に配向分散された形状異方性金属粒子を含む偏光ガラスを製造する偏光ガラスの製造方法であって、
前記形状異方性金属粒子濃度が表面付近で高く、内部方向に減少してゆく濃度分布を有する金属粒子含有層を少なくとも一主表面に有する偏光ガラス2枚を、前記互いの金属粒子の配向方向が一致するように前記金属粒子含有層を有する主表面を対向させて密着させ、他方の非密着主表面に金属粒子層がある場合にはその金属粒子含有層を取り除くことによって、
前記金属粒子濃度が、偏光作用を示す光の進行方向において、前記ガラス基体の一方の側の表面近傍及び他方の側の表面近傍ではほぼゼロであり、前記ガラス基体の一方の側から他方の側へ向かうにしたがって次第に増加していき、前記ガラス基体内で所定の範囲の大きさになり、次に他方の側に向かうに従って次第に減少する分布を有する偏光ガラスを製造することを特徴とする偏光ガラスの製造方法。
(9)ガラス基板の主表面にイオン交換法により金属イオンを導入し、金属イオン濃度がガラス表面付近で高く、内部方向に減少してゆく濃度分布を有する金属イオン含有層を有する金属イオン含有ガラス基板を作製し、
前記金属イオン含有ガラス基板を加熱することによって、金属粒子を生成させて金属粒子濃度がガラス基板表面付近で高く、内部方向に減少してゆく濃度分布を有する金属粒子含有層を有する金属粒子含有ガラス基板を作製し、
前記金属粒子含有ガラス基板を2枚用意し、該ガラス基板の金属粒子生成面をお互いに密着させた後、加熱延伸することにより、前記金属粒子を一方向に配向された形状異方性金属粒子に形成させることによって、
偏光作用を示す光の進行方向において、前記ガラス基体の一方の側の表面近傍及び他方の側の表面近傍ではほぼゼロであり、前記ガラス基体の一方の側から他方の側へ向かうにしたがって次第に増加していき、前記ガラス基体内で所定の範囲の大きさになり、次に他方の側に向かうに従って次第に減少する分布を有する偏光ガラスを製造することを特徴とする偏光ガラスの製造方法。
(実施例1)
硝酸ナトリウムと硝酸銀をwt%で2:1に混合した溶融塩を450℃に加熱し、厚さ2mmの市販の白板ガラスを50時間浸漬し、ガラス中のナトリウムと溶融塩中の銀イオンをイオン交換した。続いて、このイオン交換した白板ガラスを、650℃で10時間熱処理し、約45μmの球形の銀微粒子を析出させた。白板ガラスの両表面から深さ30μmにわたり、この銀微粒子が確認された。
消光比=-10Log(Pout/Pin) 〔dB〕
通常の反射率が0.15%程度の偏光ガラスで、消光比が45dB以上あっても、ガーネット結晶の回転角の精度や2枚の偏光ガラスの貼り合わせ精度によって、光アイソレーターのアイソレーションは35dB程度になるのが一般的である。
R=P(g)/P(Al)
実施例1と同様にイオン交換し、熱処理して銀微粒子を析出させたガラス板2枚を、銀微粒子を含有する層同士を、低融点ガラスを介して加熱密着させた。このガラス板を約710℃で加熱延伸して、厚さ0.4±0.05mmのガラステープを得た。このガラステープから延伸方向に平行に10mm角に切り出し、両表面を均等に研磨して、厚さ0.2mmtに仕上げ、試料(D)とした。試料(D)は、研磨により、ガラス両表面の銀含有層は完全に除去され、厚さの中央部分の貼り合わせた部分に銀含有層を約6μmの厚さで有するだけとなった。また試料(D)の厚さ精度は、0.2±0.002mmだった。
試料(E)の消光比と反射率を実施例1と同様に測定し、2枚の試料(E)を用いて、実施例1と同様に光アイソレーターを作製し、アイソレーションを測定した。結果を後述する表2に示す。
厚さ1.5mmの白板を実施例1と同様にイオン交換し、このガラス板2枚を、イオン交換面同士を対向させ、平坦なアルミナ板に載せ、約2Kgのセラミック板の重しをしながら、650℃で10時間の熱処理をした。2枚のガラス板は融着されており、ガラス板厚は、2.8mmtだった。この融着ガラス板の両表面では、深さ30μmにわたり、約50μmのほぼ球形の銀微粒子が析出していた。またこの融着ガラス板の厚さの中央部分では、厚さ約60μmにわたり、約45μmのほぼ球形の銀微粒子が析出していた。
厚さ1.1mmの白板の片表面にCr膜を厚さ0.5μmの厚さで蒸着した後、該白板を実施例1と同様にイオン交換した。続いて、イオン交換面を耐酸テープでマスキングし、Cr膜のみを硫酸とフッ酸の混酸で剥離した後、耐酸テープを取り、イオン交換面同士を対向させ、実施例3と同様に熱処理して、2枚のガラスを融着するのと同時に銀微粒子を析出させた。この融着ガラス板の厚さは、2.0mmtで、両表面では、銀微粒子は全く析出していなかった。またこの融着ガラス板の厚さの中央部分では、厚さ約60μmにわたり、約45μmのほぼ球形の銀微粒子が析出していた。
硝酸ナトリウムと硝酸銀をwt%で4:1に混合した溶融塩を480℃に加熱し、厚さ2mmの市販の白板ガラスを150時間浸漬し、ガラス中のナトリウムと溶融塩中の銀イオンをイオン交換した。続いて、このイオン交換した白板ガラスを、400℃の硝酸ナトリウムの溶融塩中に70時間浸漬し、ガラス表面近くの銀イオン濃度を低下させた後、水素雰囲気下で620℃の温度で10時間熱処理し、約50μmの球形の銀微粒子を析出させた。白板ガラスの両表面から深さ90μmにわたり、この銀微粒子が確認された。続いて、この銀微粒子を析出させたガラス板を、約700℃に加熱して延伸した。得られたガラステープは、厚さ0.2±0.03mmで銀を含有している層は、両表面から9μmの深さだった。銀粒子濃度は、最表面から3μm内部の箇所で最大となり、それから内部方向にかけて除々に該濃度は減少し、最表面から9μmの箇所で銀濃度は実質的にゼロになった。
2 ガラス基板
3 金属微粒子
4 金属微粒子の存在する領域
Claims (9)
- ガラス基体中に配向分散された形状異方性金属粒子を含む偏光ガラスであって、前記金属粒子濃度が、偏光作用を示す光の進行方向において、前記ガラス基体の一方の側の表面近傍及び他方の側の表面近傍ではほぼゼロであり、前記ガラス基体の一方の側から他方の側へ向かうにしたがって次第に増加していき、前記ガラス基体内で所定の範囲の大きさになり、次に他方の側に向かうに従って次第に減少する分布を有することを特徴とする偏光ガラス。
- 前記金属粒子が、金属銀微粒子または金属銅微粒子であることを特徴とする請求項1に記載の偏光ガラス。
- 前記形状異方性金属粒子を含む層の厚さが合計で20μm以下であることを特徴とする請求項1又は2に記載の偏光ガラス。
- 全体の厚さが、50μm以下であることを特徴とする請求項1~3のいずれかに記載の偏光ガラス。
- 中心波長が1.31μmである波長域の光及び中心波長が1.55μmである波長域の光の、一方または両方に対する消光比が30dB以上である請求項1~4のいずれかに記載の偏光ガラス。
- 請求項1~5のいずれか1項に記載の偏光ガラスを用いたことを特徴とする光アイソレーター。
- ファラデー回転素子及び少なくとも一つの偏光子を構成部品として含む光アイソレーターであって、前記偏光子として請求項1~5のいずれか1項に記載の偏光ガラスを用いたことを特徴とする光アイソレーター。
- ガラス基体中に配向分散された形状異方性金属粒子を含む偏光ガラスを製造する偏光ガラスの製造方法であって、
前記形状異方性金属粒子濃度が表面付近で高く、内部方向に減少してゆく濃度分布を有する金属粒子含有層を少なくとも一主表面に有する偏光ガラス2枚を、前記互いの金属粒子の配向方向が一致するように前記金属粒子含有層を有する主表面を対向させて密着させ、他方の非密着主表面に金属粒子層がある場合にはその金属粒子含有層を取り除くことによって、
前記金属粒子濃度が、偏光作用を示す光の進行方向において、前記ガラス基体の一方の側の表面近傍及び他方の側の表面近傍ではほぼゼロであり、前記ガラス基体の一方の側から他方の側へ向かうにしたがって次第に増加していき、前記ガラス基体内で所定の範囲の大きさになり、次に他方の側に向かうに従って次第に減少する分布を有する偏光ガラスを製造することを特徴とする偏光ガラスの製造方法。 - ガラス基板の主表面にイオン交換法により金属イオンを導入し、金属イオン濃度がガラス表面付近で高く、内部方向に減少してゆく濃度分布を有する金属イオン含有層を有する金属イオン含有ガラス基板を作製し、
前記金属イオン含有ガラス基板を加熱することによって、金属粒子を生成させて金属粒子濃度がガラス基板表面付近で高く、内部方向に減少してゆく濃度分布を有する金属粒子含有層を有する金属粒子含有ガラス基板を作製し、
前記金属粒子含有ガラス基板を2枚用意し、該ガラス基板の金属粒子生成面をお互いに密着させた後、加熱延伸することにより、前記金属粒子を一方向に配向された形状異方性金属粒子に形成させることによって、
偏光作用を示す光の進行方向において、前記ガラス基体の一方の側の表面近傍及び他方の側の表面近傍ではほぼゼロであり、前記ガラス基体の一方の側から他方の側へ向かうにしたがって次第に増加していき、前記ガラス基体内で所定の範囲の大きさになり、次に他方の側に向かうに従って次第に減少する分布を有する偏光ガラスを製造することを特徴とする偏光ガラスの製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE200911000015 DE112009000015B4 (de) | 2008-04-21 | 2009-03-26 | Polarisierendes Glas, optischer Isolator und Verfahren zur Herstellung von polarisierendem Glas |
CN2009801040893A CN101939671B (zh) | 2008-04-21 | 2009-03-26 | 偏光玻璃、光隔离器及偏光玻璃的制造方法 |
US12/669,058 US7961394B2 (en) | 2008-04-21 | 2009-03-26 | Polarizing glass, optical isolator, and method for producing polarizing glass |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-110652 | 2008-04-21 | ||
JP2008110652A JP4402728B2 (ja) | 2008-04-21 | 2008-04-21 | 偏光ガラス、光アイソレーターおよび偏光ガラスの製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2009130966A1 true WO2009130966A1 (ja) | 2009-10-29 |
WO2009130966A9 WO2009130966A9 (ja) | 2010-04-22 |
Family
ID=41216705
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/056048 WO2009130966A1 (ja) | 2008-04-21 | 2009-03-26 | 偏光ガラス、光アイソレーターおよび偏光ガラスの製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US7961394B2 (ja) |
JP (1) | JP4402728B2 (ja) |
CN (1) | CN101939671B (ja) |
DE (1) | DE112009000015B4 (ja) |
WO (1) | WO2009130966A1 (ja) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101939672B (zh) * | 2008-07-31 | 2013-04-03 | 豪雅冠得股份有限公司 | 偏光元件 |
WO2010044472A1 (ja) | 2008-10-16 | 2010-04-22 | Hoya Candeo Optronics株式会社 | 偏光ガラスおよび光アイソレーター |
US8830578B2 (en) * | 2009-03-25 | 2014-09-09 | Kyocera Corporation | Optical isolator element and optical module using the same |
JP2013054323A (ja) * | 2011-09-06 | 2013-03-21 | Source Photonics (Chengdu) Inc | 偏光ガラス、偏光ガラス構造体、偏光ガラス組立体及び光アイソレータ |
DE102014007230A1 (de) * | 2014-05-19 | 2015-11-19 | Boraident Gmbh | Schutzglas |
DE102014221679B4 (de) * | 2014-10-24 | 2016-12-29 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Verfahren zur Herstellung eines Silber enthaltenden Glaspulvers sowie die Verwendung des Glaspulvers |
CN104656287A (zh) * | 2015-03-11 | 2015-05-27 | 宋博 | 一种超薄光隔离器及其制造方法 |
DE102015108762A1 (de) * | 2015-06-03 | 2016-12-08 | Valeo Schalter Und Sensoren Gmbh | Haltevorrichtung zum Halten einer Antriebseinheit einer Umlenkspiegelanordnung, Detektionsvorrichtung mit einer Umlenkspiegelanordnung sowie Kraftfahrzeug |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05150117A (ja) * | 1991-11-26 | 1993-06-18 | Shin Etsu Chem Co Ltd | 偏光ガラスの製造方法 |
JP2007248541A (ja) * | 2006-03-13 | 2007-09-27 | Hoya Corp | ファラデー回転機能付き偏光ガラス、および、それを用いた光アイソレータ |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0719742B1 (en) * | 1994-12-27 | 1998-04-08 | Hoya Corporation | Polarizing glass and production process thereof |
DE10065646C2 (de) * | 2000-12-29 | 2002-11-07 | Wolf-Gernot Drost | Polarisator mit einer von der Glasoberfläche tiefenabhängigen unterschiedlichen dichroitschen Absorption und Verfahren zu seiner Herstellung |
WO2003040772A2 (en) * | 2001-11-07 | 2003-05-15 | Fuji Photo Film Co., Ltd. | Polarizing plate, production method thereof and liquid crystal display using the same |
US7256937B2 (en) * | 2002-06-06 | 2007-08-14 | Codixx Ag | Structured polarizer and method for making the same |
US7110179B2 (en) * | 2002-12-19 | 2006-09-19 | Corning Incorporated | Polarizers and isolators and methods of manufacture |
US8114797B2 (en) * | 2006-04-14 | 2012-02-14 | Hoya Candeo Optronics Corporation | Polarizing glass containing copper and optical isolator |
US7957062B2 (en) * | 2007-02-06 | 2011-06-07 | Sony Corporation | Polarizing element and liquid crystal projector |
-
2008
- 2008-04-21 JP JP2008110652A patent/JP4402728B2/ja active Active
-
2009
- 2009-03-26 WO PCT/JP2009/056048 patent/WO2009130966A1/ja active Application Filing
- 2009-03-26 DE DE200911000015 patent/DE112009000015B4/de active Active
- 2009-03-26 US US12/669,058 patent/US7961394B2/en not_active Expired - Fee Related
- 2009-03-26 CN CN2009801040893A patent/CN101939671B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05150117A (ja) * | 1991-11-26 | 1993-06-18 | Shin Etsu Chem Co Ltd | 偏光ガラスの製造方法 |
JP2007248541A (ja) * | 2006-03-13 | 2007-09-27 | Hoya Corp | ファラデー回転機能付き偏光ガラス、および、それを用いた光アイソレータ |
Also Published As
Publication number | Publication date |
---|---|
WO2009130966A9 (ja) | 2010-04-22 |
DE112009000015B4 (de) | 2015-04-30 |
DE112009000015T5 (de) | 2010-05-20 |
CN101939671B (zh) | 2012-11-07 |
JP2009265119A (ja) | 2009-11-12 |
CN101939671A (zh) | 2011-01-05 |
US7961394B2 (en) | 2011-06-14 |
US20100284074A1 (en) | 2010-11-11 |
JP4402728B2 (ja) | 2010-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4402728B2 (ja) | 偏光ガラス、光アイソレーターおよび偏光ガラスの製造方法 | |
US10185067B2 (en) | Method of manufacturing polarizing plate | |
JP3288976B2 (ja) | 偏光子とその作製方法 | |
JP2010256840A (ja) | 偏光子、その製造方法及び光モジュール | |
JP3493149B2 (ja) | 偏光子とその製造方法及びこれを用いた導波型光デバイス | |
JP2009217177A (ja) | 光アイソレータ | |
JP2001083321A (ja) | 偏光子とその作製方法 | |
JP2002311403A (ja) | ファラデー回転子 | |
JP5112156B2 (ja) | 光学素子及びそれを用いた光アイソレータ | |
JPH06273621A (ja) | 偏光子およびその製造方法 | |
JP3616349B2 (ja) | 偏光素子付き磁気光学結晶板 | |
JP3784198B2 (ja) | 光アイソレータ | |
JP3722603B2 (ja) | 偏光子の製造方法 | |
JP6440172B2 (ja) | 無機偏光板 | |
JP2003156623A (ja) | 光アイソレータ及び偏光ガラスの加工方法 | |
WO2024204402A1 (ja) | 光アイソレータの製造方法、光アイソレータおよび偏光ガラス | |
JP2006309190A (ja) | 光アイソレータおよびそれを用いた光モジュール | |
JP2000180789A (ja) | 光アイソレータ | |
US12092848B2 (en) | Layered sheet polarizers and isolators having non-dichroic layers | |
WO2010110219A1 (ja) | 光アイソレータ素子およびこれを用いた光モジュール | |
WO2009116477A1 (ja) | 偏光素子 | |
JP2005134492A (ja) | 光アイソレータ及びその製造方法 | |
JP2008139578A (ja) | 導波路型光アイソレータ | |
JP2000193823A (ja) | 偏光子及びそれを用いた光アイソレ―タ | |
JP2008003189A (ja) | 光ファイバ一体型光アイソレータ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980104089.3 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09735966 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12669058 Country of ref document: US |
|
RET | De translation (de og part 6b) |
Ref document number: 112009000015 Country of ref document: DE Date of ref document: 20100520 Kind code of ref document: P |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8607 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09735966 Country of ref document: EP Kind code of ref document: A1 |