WO2009130880A1 - 固定化酵素の製造方法 - Google Patents

固定化酵素の製造方法 Download PDF

Info

Publication number
WO2009130880A1
WO2009130880A1 PCT/JP2009/001801 JP2009001801W WO2009130880A1 WO 2009130880 A1 WO2009130880 A1 WO 2009130880A1 JP 2009001801 W JP2009001801 W JP 2009001801W WO 2009130880 A1 WO2009130880 A1 WO 2009130880A1
Authority
WO
WIPO (PCT)
Prior art keywords
enzyme
immobilized
parts
dag
immobilized enzyme
Prior art date
Application number
PCT/JP2009/001801
Other languages
English (en)
French (fr)
Inventor
真平 福原
加瀬 実
小松 利照
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 花王株式会社 filed Critical 花王株式会社
Priority to EP09734871.8A priority Critical patent/EP2272954B1/en
Priority to CN2009801140637A priority patent/CN102016019B/zh
Priority to US12/988,063 priority patent/US20110053229A1/en
Publication of WO2009130880A1 publication Critical patent/WO2009130880A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/02Enzymes or microbial cells immobilised on or in an organic carrier
    • C12N11/08Enzymes or microbial cells immobilised on or in an organic carrier the carrier being a synthetic polymer
    • C12N11/089Enzymes or microbial cells immobilised on or in an organic carrier the carrier being a synthetic polymer obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C12N11/091Phenol resins; Amino resins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/18Carboxylic ester hydrolases (3.1.1)
    • C12N9/20Triglyceride splitting, e.g. by means of lipase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/62Carboxylic acid esters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6436Fatty acid esters
    • C12P7/6445Glycerides
    • C12P7/6454Glycerides by esterification

Definitions

  • the present invention relates to a method for producing an immobilized enzyme.
  • an immobilized enzyme in which a lipolytic enzyme is immobilized on an inorganic or organic carrier is used.
  • this immobilized enzyme is used for a reaction over a long period of time, its activity decreases. Therefore, it is necessary to collect the immobilized enzyme when it has decreased to some extent and replace it with a new immobilized enzyme.
  • Patent Document 1 As a means of effectively using the recovered used immobilized enzyme, there is a method of removing all the proteins adhering thereto by using alkali and reusing them as a carrier (Patent Document 1).
  • the immobilized lipase with reduced activity used in the transesterification reaction or transesterification reaction is wet-treated with a solvent or a solvent and a phospholipid to control the water contributing to the reaction, thereby re-existing the remaining lipase.
  • Patent Document 2 There is a method of activation
  • the method of removing an enzyme using an alkali has a limited immobilization carrier and cannot be immediately applied to an enzyme using another immobilization carrier.
  • the method of wet-treating the immobilized enzyme with reduced activity using a solvent or a solvent and a phospholipid does not regenerate the immobilized enzyme with reduced activity due to elimination of some lipases, but it remains to the last. This is a method for reactivating lipase.
  • the immobilized lipolytic enzyme used in the esterification reaction is mixed with a solvent, and the remaining amount of oil in the immobilized lipolytic enzyme is 50 parts by mass or less with respect to 100 parts by mass of the immobilized carrier. Then, after contacting the alkaline solution, the immobilized carrier is recovered, and a method for producing an immobilized lipolytic enzyme is provided in which the lipolytic enzyme is adsorbed on the immobilized carrier.
  • the present invention relates to providing a method for producing an immobilized lipolytic enzyme having the same performance as before use by effectively using the immobilized carrier of the used immobilized enzyme used in the esterification reaction.
  • DAG diacylglycerol
  • TAG triacylglycerol
  • the enzyme with reduced activity can be almost completely desorbed from the immobilized carrier used in the esterification reaction by washing the immobilized enzyme with a solvent and then treating with the alkaline solution. Then, it was found that the target immobilized lipolytic enzyme can be produced by adsorbing a new lipolytic enzyme to the recovered immobilized carrier.
  • an immobilized lipolytic enzyme having an activity equivalent to that before use can be obtained by effectively utilizing the immobilized carrier of the used immobilized enzyme in the esterification reaction. And if the immobilized lipolytic enzyme manufactured by the method of this invention is used, DAG containing fats and oils with high DAG purity can be manufactured.
  • the immobilized enzyme (used immobilized enzyme) that is the target of the production method of the present invention is an immobilized lipolytic enzyme that has been used in the esterification reaction and has reduced lipolytic activity.
  • the esterification reaction include an esterification reaction of glycerin and a fatty acid or a lower alkyl ester thereof shown below.
  • the immobilization carrier in the immobilization enzyme that is the target of the production method of the present invention celite, diatomaceous earth, kaolinite, silica gel, molecular sieves, porous glass, activated carbon, calcium carbonate, ceramics and other inorganic carriers, ceramic powder,
  • organic polymers such as polyvinyl alcohol, polypropylene, chitosan, ion exchange resin, hydrophobic adsorption resin, chelate resin, and synthetic adsorption resin, and ion exchange resins are particularly preferable.
  • a porous anion exchange resin is preferable. Since such a porous carrier has a large surface area, a larger amount of enzyme adsorbed can be obtained.
  • the particle diameter of the resin is preferably 100 to 1000 ⁇ m, and the pore diameter is preferably 10 to 150 nm.
  • Patent Document 1 since the adsorption based on hydrophobicity is strong, it is difficult for the enzyme to be detached from the carrier, and it is difficult to desorb the enzyme deactivated by use and reuse the carrier. It is described. On the other hand, in the present invention, if the immobilized enzyme is washed with a solvent and then treated with an alkaline solution, the enzyme is easily desorbed even in a carrier on which the enzyme is hydrophobically adsorbed, and a new enzyme is also adsorbed. Was found to be reusable.
  • the material of the anion exchange resin includes phenol formaldehyde series, polystyrene series, acrylamide series, divinylbenzene series, etc., and phenol formaldehyde series resins (for example, Rhand Hass Duolite A-568) is preferred.
  • lipase is exemplified as the lipolytic enzyme.
  • the kind of lipase can be selected arbitrarily, the 1,3-position selective lipase is preferable from the viewpoint of producing a DAG-containing fat with high DAG purity.
  • the lipase not only those derived from animals and plants but also commercially available lipases derived from microorganisms can be used.
  • the microorganism-derived lipases include the genus Rhizopus, the genus Aspergillus, the genus Mucor, the genus Rhizomucor, the genus Pseudomonum, the genus Geotrichum (Candida) and other origins.
  • Examples of the solvent used for washing the used immobilized enzyme include n-hexane, acetone, chloroform, ethanol, methanol, ethyl acetate, acetonitrile, acetic acid, pentane, and octane.
  • n-Hexane, acetone, and ethanol are preferable, and n-hexane is particularly preferable from the viewpoint of the oil removing property of the enzyme and the solvent removing property.
  • Examples of the cleaning method include batch type mixing and continuous contact, but batch type mixing is preferable from the viewpoint of operability.
  • the solvent is preferably removed from the immobilized enzyme by a method such as filtration and distillation under reduced pressure.
  • the amount of oil remaining in the immobilized lipolytic enzyme after washing is reduced because washing reduces the amount of oil attached after washing, reduces saponification of the oil and alkali in the alkali treatment step, and improves operability.
  • the amount is 50 parts or less with respect to 100 parts by mass of the immobilization carrier (hereinafter simply expressed as “parts”).
  • the remaining amount of oil in the immobilized lipolytic enzyme after washing is preferably 1 to 50 parts from the same point, and more preferably 10 to 40 parts from the same point and processing cost.
  • the washing operation may be performed only once or may be performed several times.
  • the enzyme is desorbed from the used immobilized enzyme by contacting with an alkaline solution.
  • alkali used in the alkaline solution in the present invention include sodium hydroxide, potassium hydroxide, calcium carbonate, potassium carbonate and the like, and sodium hydroxide is preferable from the viewpoint of the removability of the used enzyme.
  • Examples of the contact method with the alkaline solution include batch-type mixing and continuous contact, but batch-type mixing is preferable from the viewpoint of operability.
  • Examples of the contact method include standing, stirring, shaking and the like.
  • the temperature of the alkaline solution used for desorbing the enzyme from the used immobilized enzyme is preferably 0 to 70 ° C. from the viewpoint of effectively drawing out the activity of the produced immobilized enzyme and preventing a decrease in DAG purity. 30 to 65 ° C is more preferable, and 40 to 60 ° C is particularly preferable.
  • DAG purity refers to mass% of DAG in DAG and TAG (hereinafter, simply expressed as “%”), and is expressed as DAG / (TAG + DAG) ⁇ 100.
  • the concentration of the alkaline solution is preferably 0.25 to 2 N, particularly preferably 0.8 to 1.5 N, from the viewpoint of effectively drawing out the activity of the produced immobilized enzyme and preventing a decrease in DAG purity. .
  • the contact time with the alkaline solution is preferably 2 to 48 hours, particularly preferably 20 to 30 hours, from the viewpoint of effectively drawing out the activity of the produced immobilized enzyme and preventing a decrease in DAG purity.
  • After contacting the alkali solution it is preferable to remove the alkali by washing with water, pH treatment or the like.
  • the enzyme When a new lipolytic enzyme is immobilized, the enzyme may be directly adsorbed on the immobilization carrier. However, in order to obtain an adsorption state that expresses high activity, the immobilization carrier is preliminarily fixed to the fat-soluble fatty acid before the enzyme adsorption. Or it is preferable to process with the derivative (s). As a method of contacting the fat-soluble fatty acid or derivative thereof with the immobilization carrier, these may be added directly to water or an organic solvent. However, in order to improve dispersibility, the fat-soluble fatty acid or derivative thereof is once dispersed in the organic solvent. After dissolution, it may be added to a carrier dispersed in water.
  • the organic solvent examples include chloroform, hexane, ethanol, and the like.
  • the use mass of the fat-soluble fatty acid or derivative thereof is preferably 1 to 500 parts, particularly 10 to 200 parts, relative to 100 parts of the immobilization carrier.
  • the contact temperature is preferably 0 to 100 ° C., particularly preferably 20 to 60 ° C., and the contact time is preferably about 5 minutes to 5 hours.
  • the carrier after this treatment is collected by filtration, but may be dried.
  • the drying temperature is preferably room temperature to 100 ° C., and drying under reduced pressure may be performed.
  • the fat-soluble fatty acids or their derivatives that are pre-treated with the carrier have saturated or unsaturated, straight or branched, hydroxyl groups having 4 to 24 carbon atoms, preferably 8 to 18 carbon atoms.
  • Fatty acids that may be used are listed. Specific examples include capric acid, lauric acid, myristic acid, oleic acid, linoleic acid, ⁇ -linolenic acid, ricinoleic acid, isostearic acid and the like.
  • the fat-soluble fatty acid derivatives include esters of these fat-soluble fatty acids with mono- or polyhydric alcohols or saccharides, phospholipids, and those obtained by adding ethylene oxide to these esters.
  • fat-soluble fatty acids and derivatives thereof are preferably liquid at normal temperature (20 ° C.) in terms of immobilizing the enzyme on the carrier.
  • these fat-soluble fatty acids or derivatives thereof two or more of the above may be used in combination, and naturally derived fatty acids such as rapeseed fatty acids and soybean fatty acids may be used.
  • the temperature at which the enzyme is immobilized can be determined depending on the properties of the enzyme, but it is preferably 0 to 60 ° C., particularly 5 to 40 ° C. at which the enzyme is not deactivated.
  • the pH of the enzyme solution used at the time of immobilization may be in a range where no denaturation of the enzyme occurs and can be determined by the enzyme characteristics as well as the temperature, but is preferably pH 3-9.
  • a buffer solution is used. Examples of the buffer solution include an acetate buffer solution, a phosphate buffer solution, and a Tris-HCl buffer solution.
  • the enzyme concentration in the enzyme solution is not more than the saturation solubility of the enzyme and sufficient concentration from the viewpoint of immobilization efficiency.
  • the enzyme solution can also use the supernatant which removed the insoluble part by centrifugation as needed, and what was refine
  • the amount of enzyme used is preferably 5 to 1000 parts, particularly 10 to 500 parts, relative to 100 parts of the immobilization carrier.
  • the enzyme adsorption rate is preferably 50% or more, more preferably 80% or more, particularly 92% or more, and particularly preferably 94 to 99%.
  • the “enzyme adsorption rate” here refers to the residual rate of activity of the enzyme solution after adsorption of the enzyme (excluding the immobilized enzyme) relative to the activity of the enzyme solution before adsorption of the enzyme.
  • the residual water content is adjusted by dehydrating the lipid-degrading fatty acid, fatty acid triglyceride, fatty acid partial glyceride, etc. without contact with drying. Is preferred.
  • the residual water content is preferably adjusted to be 1 to 50 parts, particularly 1 to 30 parts with respect to 100 parts of the immobilization carrier from the viewpoint of storage stability.
  • the fat-soluble fatty acid used to adjust the residual water content is preferably a vegetable liquid oil such as rapeseed oil, soybean oil or sunflower oil, or a fatty acid generated from fish oil such as sardine oil, tuna oil or bonito oil.
  • the fatty acid, fatty acid triglyceride or fatty acid partial glyceride to be used is preferably selected as an oil phase substrate in an actual esterification reaction using the immobilized enzyme prepared by the method of the present invention.
  • the amount of fatty acid, fatty acid triglyceride or fatty acid partial glyceride used to adjust the residual water content is sufficient to make contact with the immobilized enzyme and avoid waste due to excessive use, and fluidity 20 to 3000 parts is preferable with respect to 100 parts of the immobilization carrier, but more preferably 100 to 1000 parts, from the viewpoint of increasing the dehydration efficiency and improving the dehydration efficiency.
  • the present invention immobilized enzyme DAG in TAG + TAG has a high ratio
  • DAG in TAG + TAG has a high ratio
  • the DAG purity of the DAG-containing fat is preferably 50% or more from the viewpoint of physiological function, more preferably 65% or more, particularly preferably 80 to 100%, and particularly preferably 93 to 98%.
  • the TAG content in the DAG-containing fat is preferably 20% or less, more preferably 10% or less, particularly 5% or less, and particularly preferably 4% or less.
  • DAG is produced using the immobilized enzyme of the present invention
  • DAG is produced using an immobilized enzyme obtained by adsorbing the enzyme to an unused immobilization carrier (hereinafter referred to as “new immobilized enzyme”).
  • new immobilized enzyme an immobilized enzyme obtained by adsorbing the enzyme to an unused immobilization carrier
  • a DAG-containing oil and fat having a DAG purity substantially equal to that of the produced case is obtained.
  • the difference between the DAG purity when the immobilized enzyme of the present invention is used and the DAG purity when the novel immobilized enzyme is used, that is, the “DAG purity difference” of the DAG-containing fat and oil defined by the following formula (2) is , ⁇ 0.9% or more is preferable, ⁇ 0.7% or more, more preferably ⁇ 0.5% or more.
  • Difference in DAG purity (DAG purity when using the immobilized enzyme of the present invention) ⁇ (DAG purity when using a new immobilized enzyme) (2) Further, the difference between the TAG content when using the immobilized enzyme of the present invention and the TAG content when using the new immobilized enzyme, that is, “TAG in the DAG-containing fat and oil defined by the following formula (3)”
  • the “content difference” is preferably 0.6% or less, and more preferably 0.3% or less.
  • TAG content difference (TAG content when using the immobilized enzyme of the present invention) ⁇ (TAG content when using a new immobilized enzyme) (3)
  • Examples of the method for producing DAG in the present invention include an esterification reaction between glycerin and a fatty acid or a lower alkyl ester thereof.
  • the fatty acid or lower alkyl ester thereof used in the esterification reaction is preferably a linear or branched saturated or unsaturated fatty acid having 4 to 22 carbon atoms, preferably 8 to 18 carbon atoms, such as butyric acid or valeric acid.
  • Caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, undecanoic acid, lauric acid, myristic acid, palmitic acid, zomarinic acid, stearic acid, oleic acid, elaidic acid, linoleic acid, linolenic acid, arachidonic acid, gadren Acid, arachidic acid, behenic acid, erucic acid, eicosapentaenoic acid, docosahexaenoic acid and the like can be used.
  • lower alcohols that form esters with fatty acids include those having 1 to 6 carbon atoms, such as methanol, ethanol, 1-propanol, 2-propanol, n-butanol, 2-butanol, and t-butanol. Two or more of these fatty acids or their lower alkyl esters can be used in combination. A mixture of the above fatty acids, for example, naturally derived fatty acids such as soybean fatty acid can also be used.
  • the reaction temperature for the esterification reaction is not particularly limited, but 20 to 80 ° C., particularly 30 to 70 ° C. is preferable from the viewpoint of reactivity.
  • the reaction time is preferably within 10 hours from the viewpoint of industrial productivity.
  • the DAG-containing fat obtained by the esterification reaction can be made into a product by performing post-treatment.
  • the post-treatment is preferably performed by deoxidation (removing unreacted fatty acid and by-product monoacylglycerol), acid treatment, water washing, and deodorization.
  • the deacidification step refers to a step of removing unreacted fatty acid and by-product monoacylglycerol from the reaction product by distilling the DAG-containing oil obtained by the esterification reaction under reduced pressure.
  • the acid treatment step refers to a step of adding and mixing a chelating agent such as citric acid to the deoxidized oil and further dehydrating under reduced pressure as necessary.
  • the obtained acid-treated oil may be subjected to a decoloring step by contact with an adsorbent from the viewpoint of further improving the hue and flavor.
  • the water washing step refers to a step of performing an operation of adding water to the acid-treated oil and vigorously stirring to perform oil-water separation. Washing with water is preferably repeated a plurality of times (for example, 3 times) to obtain washing oil.
  • the deodorizing step refers to a step of subjecting the washing oil to steam distillation under reduced pressure. Deodorization includes batch type, continuous type, semi-continuous type, etc.
  • a deodorization treatment using these thin film deodorization devices and a tray type deodorization device were used. You may carry out in combination with a deodorizing process.
  • the reaction solution was sampled every 30 minutes, and the AV value, water content, and glyceride composition were analyzed, and changes with time of each composition (FA, GLY, MAG, DAG, TAG) were followed.
  • the immobilized enzyme was recovered by filtration, and then washed with 50 parts of 50 mM acetate buffer (pH 6) for 30 minutes to remove non-immobilized enzyme and protein, followed by filtration to recover the immobilized enzyme. .
  • the enzyme adsorption rate was 99.8%.
  • the recovered immobilized enzyme and 40 parts of rapeseed oil were brought into contact with each other for 16 hours, and the immobilized enzyme subjected to oil treatment by filtration was recovered.
  • the arrival time of 70% yield was 117.7 minutes
  • the DAG purity was 97.0%
  • the TAG content was 2.1%.
  • the results are shown in Table 2.
  • Enzyme activity of the enzyme solution before and after adsorption in the enzyme immobilization operation was measured by reacting with lipase kit S (manufactured by Dainippon Pharmaceutical Co., Ltd.) at 37 ° C. for 15 minutes, and the enzyme adsorption rate was determined from the following formula.
  • Enzyme adsorption rate [%] (activity before adsorption ⁇ activity after adsorption) / activity before adsorption ⁇ 100
  • Example 1 To 10 parts of used immobilized enzyme A (dry basis), 85 parts of n-hexane was added and stirred for 30 minutes. The residual amount of oil after washing was 36.9 parts with respect to 100 parts of the immobilization carrier. Hexane was distilled off under reduced pressure, and contacted with 100 parts of 1N aqueous sodium hydroxide solution at 50 ° C. for 24 hours to remove the remaining enzyme. The aqueous sodium hydroxide solution was removed, washed with 100 parts of distilled water, and neutralized by adding 4 parts of a 10% aqueous acetic acid solution and 100 parts of distilled water.
  • pH equilibration was performed once with 100 parts of 500 mM acetate buffer (pH 6) and twice with 100 parts of 50 mM acetate buffer (pH 6).
  • ethanol substitution was performed with 40 parts of ethanol.
  • a mixed solution of 10 parts of soybean fatty acid and 40 parts of ethanol was added and stirred for 30 minutes.
  • lipase Lipase A-10FG, Nagase ChemteX Corporation
  • an enzyme solution dissolved in 180 parts of 50 mM acetate buffer (pH 6) for 2 hours for immobilization.
  • the immobilized enzyme was recovered by filtration, and then washed with 50 parts of 50 mM acetate buffer (pH 6) for 30 minutes to remove non-immobilized enzyme and protein, followed by filtration to recover the immobilized enzyme. .
  • the enzyme adsorption rate was 97.7%.
  • the recovered immobilized enzyme and 40 parts of rapeseed oil were brought into contact with each other for 16 hours, and the immobilized enzyme subjected to oil treatment by filtration was recovered.
  • Example 2 An immobilized enzyme was prepared in the same manner as in Example 1 except that the contact time with the aqueous sodium hydroxide solution was 2 hours. The enzyme adsorption rate was 95.5%. As a result of measuring the activity of the obtained immobilized enzyme, the arrival time of 70% yield was 66.2 minutes, the DAG purity was 94.7%, the difference in DAG purity was -0.4%, the TAG content was 3 The difference in TAG content was 0.8%. The results are shown in Table 1.
  • Example 3 To 10 parts of used immobilized enzyme A (dry basis), 85 parts of n-hexane was added and stirred for 30 minutes, and hexane was distilled off under reduced pressure. This operation was performed twice, and an immobilized enzyme was prepared in the same manner as in Example 1 using an oil remaining amount of 6.7 parts relative to 100 parts of the immobilized carrier. The enzyme adsorption rate was 96.7%. When the activity of the immobilized enzyme thus obtained was measured, the arrival time of 70% yield was 65.2 minutes, the DAG purity was 96.7%, the difference in DAG purity was 1.6%, and the TAG content was 2. The difference in TAG content was 3% and -1.1%. The results are shown in Table 1.
  • Example 4 To 10 parts of used immobilized enzyme A (dry basis), 85 parts of n-hexane was added and stirred for 30 minutes, and hexane was distilled off under reduced pressure. This operation was performed three times, and an immobilized enzyme was prepared in the same manner as in Example 1 using an oil remaining amount of 2.4 parts with respect to 100 parts of the immobilized carrier. The enzyme adsorption rate was 98.6%. When the activity of the immobilized enzyme thus obtained was measured, the arrival time of 70% yield was 66.8 minutes, the DAG purity was 95.8%, the difference in DAG purity was 0.7%, and the TAG content was 2. The difference of 9% and TAG content was -0.5%. The results are shown in Table 1.
  • Example 5 To 10 parts of used immobilized enzyme B (dry basis), 85 parts of n-hexane was added and stirred for 30 minutes. The remaining amount of oil after washing was 8.7 parts with respect to 100 parts of the immobilization carrier. Hexane was distilled off under reduced pressure, and contacted with 100 parts of 1N aqueous sodium hydroxide solution at 50 ° C. for 24 hours to remove the remaining enzyme. The aqueous sodium hydroxide solution was removed, washed with 100 parts of distilled water, and neutralized by adding 4 parts of a 10% aqueous acetic acid solution and 100 parts of distilled water.
  • pH equilibration was performed once with 100 parts of 500 mM acetate buffer (pH 6) and twice with 100 parts of 50 mM acetate buffer (pH 6), and the carrier was recovered by filtration.
  • 12 parts of lipase (Paratase 20000L, Novozymes Japan Ltd.) was contacted with an enzyme solution dissolved in 180 parts of 50 mM acetate buffer (pH 6) for 2 hours for immobilization. After immobilization, the immobilized enzyme was recovered by filtration, and then washed with 50 parts of 50 mM acetate buffer (pH 6) for 30 minutes to remove non-immobilized enzyme and protein, followed by filtration to recover the immobilized enzyme. .
  • the enzyme adsorption rate was 99.1%.
  • the recovered immobilized enzyme and 40 parts of rapeseed oil were brought into contact with each other for 16 hours, and the immobilized enzyme subjected to oil treatment by filtration was recovered.
  • the arrival time of 70% yield was 86.8 minutes
  • the DAG purity was 97.1%
  • the difference in DAG purity was 0.1%
  • the TAG content was 2.
  • the difference of 1% and TAG content was 0.0%.
  • Table 2 The results are shown in Table 2.
  • Comparative Example 1 The used immobilized enzyme A was contacted with 100 parts of a 1N aqueous sodium hydroxide solution at 50 ° C. for 24 hours without washing with hexane, and the residual enzyme was desorbed. As a result, filtration was impossible and the immobilized enzyme could not be prepared.
  • Comparative Example 2 After washing 10 parts of the used immobilized enzyme A (dry basis) with 30 parts of n-hexane to make the residual oil content 100 parts with respect to 100 parts of the immobilized carrier, 100 parts of 1N sodium hydroxide aqueous solution and Although the residual enzyme was desorbed by contacting at 50 ° C. for 24 hours, the fluidity was poor and filtration was impossible as in Comparative Example 1, and the immobilized enzyme could not be prepared.
  • Example 3 In Example 1, after washing with hexane, ethanol substitution was carried out without desorbing the enzyme by alkali treatment, and an immobilized enzyme was prepared in the same manner as in Example 1. The enzyme adsorption rate was 91.1%. When the activity of the immobilized enzyme thus obtained was measured, the arrival time of 70% yield was 69.5 minutes, the DAG purity was 92.6%, the difference in DAG purity was -2.5%, the TAG content was 5 The difference in TAG content was 1.8%. The results are shown in Table 1.
  • Example 5 After immobilization with hexane, enzyme immobilization was performed without desorbing the enzyme by alkali treatment, and the immobilized enzyme was prepared in the same manner as in Example 5. The enzyme adsorption rate was 93.8%. When the activity of the immobilized enzyme obtained was measured, the arrival time of 70% yield was 103.8 minutes, the DAG purity was 96.0%, the difference in DAG purity was -1.0%, the TAG content was 2 The difference in TAG content was 0.7%. The results are shown in Table 2.
  • the used immobilized lipolytic enzyme was washed with a solvent so that the remaining amount of oil in the immobilized lipolytic enzyme was 50 parts or less with respect to 100 parts of the immobilized carrier, and then alkali-treated.
  • an immobilized lipolytic enzyme having an activity equivalent to that of the newly produced immobilized enzyme can be produced, and if this is used for esterification, the DAG purity is high. It was confirmed that DAG-containing fats and oils can be produced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Fats And Perfumes (AREA)

Abstract

 エステル化反応に使用した使用済み固定化酵素の固定化担体を有効利用し、使用前と同等の性能を有する固定化脂質分解酵素を製造する方法の提供。  エステル化反応に使用した固定化脂質分解酵素と溶剤を混合し、固定化脂質分解酵素中の油分残存量が固定化担体100質量部に対して50質量部以下になるように洗浄し、次いでアルカリ溶液を接触させた後固定化担体を回収し、当該固定化担体に脂質分解酵素を吸着させる固定化脂質分解酵素の製造方法。

Description

固定化酵素の製造方法
 本発明は、固定化酵素を製造する方法に関する。
 グリセリンと脂肪酸を原料としてエステル化反応を行う際に、酵素を効率的に使用するため、無機又は有機の担体に脂質分解酵素を固定化した固定化酵素が用いられている。この固定化酵素は、長期間に渡り反応に使用されるにつれて、その活性が低下するため、ある程度活性が低下した時点で回収し、新たな固定化酵素と交換する必要がある。
 回収された使用済み固定化酵素を有効利用する手段として、これに付着している蛋白などをアルカリを用いることにより全て除去し、担体として再利用する方法がある(特許文献1)。また、エステル交換反応やエステル転移反応に使用した活性の低下した固定化リパーゼを、溶剤又は溶剤とリン脂質を用いて湿潤処理して反応に寄与する水分をコントロールすることにより、残存するリパーゼを再活性化する方法(特許文献2)がある。
 しかし、上記の従来技術のうち、アルカリを用いて酵素を除去する方法は、固定化担体が限定されたものであり、その他の固定化担体を用いた酵素に即応用できるものではない。
 また、活性が低下した固定化酵素を溶剤又は溶剤とリン脂質を用いて湿潤処理する方法は、一部のリパーゼの脱離により活性が低下した固定化酵素を再生するものではなく、あくまでも残存するリパーゼを再活性化する方法である。
特開平1-187086号公報 特開平9-56379号公報
 本発明は、エステル化反応に使用した固定化脂質分解酵素と溶剤を混合し、固定化脂質分解酵素中の油分残存量が固定化担体100質量部に対して50質量部以下になるように洗浄し、次いでアルカリ溶液を接触させた後固定化担体を回収し、当該固定化担体に脂質分解酵素を吸着させる固定化脂質分解酵素の製造方法を提供するものである。
発明の詳細な説明
 本発明は、エステル化反応に使用した使用済み固定化酵素の固定化担体を有効利用し、使用前と同等の性能を有する固定化脂質分解酵素を製造する方法を提供することに関する。
 ここで、固定化脂質分解酵素を用いてジアシルグリセロール(以下、「DAG」と記載する)を製造する場合、上記の従来技術による再生固定化酵素を使用すると、DAG含有油脂のDAG純度が低下することが判明した。そこで、本発明者は、DAGの純度が低下する原因について種々検討したところ、再生した固定化酵素中に活性が低下した酵素が残存していることに原因があることを見出した。すなわち、脂質分解活性が低下しても転移活性が残っているため、1,3-DAGから1,2-DAGへの転位を経てトリアシルグリセロール(以下、「TAG」と記載する)が生成し、DAGの純度が低くなっていたのである。そこでさらに検討したところ、固定化酵素を溶剤で洗浄した後、アルカリ溶液によって処理すれば、エステル化反応に使用された固定化担体から活性が低下した酵素をほぼ完全に脱離できることを見出した。そして、その後、回収した固定化担体に新たな脂質分解酵素を吸着させることによって、目的とする固定化脂質分解酵素を製造することができることを見出した。
 本発明によれば、エステル化反応における使用済み固定化酵素の固定化担体を有効利用し、使用前と同等の活性を有する固定化脂質分解酵素とすることができる。そして、本発明の方法により製造された固定化脂質分解酵素を用いれば、DAG純度の高いDAG含有油脂を製造することができる。
 本発明の製造方法の対象となる固定化酵素(使用済み固定化酵素)は、エステル化反応に使用され、脂質分解活性が低下した固定化脂質分解酵素である。エステル化反応としては、例えば後記に示すグリセリンと脂肪酸又はその低級アルキルエステルとのエステル化反応が挙げられる。
 本発明の製造方法の対象となる固定化酵素における固定化担体としては、セライト、ケイソウ土、カオリナイト、シリカゲル、モレキュラーシーブス、多孔質ガラス、活性炭、炭酸カルシウム、セラミックス等の無機担体、セラミックスパウダー、ポリビニルアルコール、ポリプロピレン、キトサン、イオン交換樹脂、疎水吸着樹脂、キレート樹脂、合成吸着樹脂等の有機高分子等が挙げられるが、特にイオン交換樹脂が好ましい。
 イオン交換樹脂としては、多孔質の陰イオン交換樹脂が好ましい。このような多孔質担体は、大きな表面積を有するため、酵素のより大きな吸着量を得ることができる。樹脂の粒子径は100~1000μmが好ましく、細孔径は10~150nmが好ましい。
 陰イオン交換樹脂については、特許文献1に、疎水性に基づく吸着が強いので担体から酵素が脱離しにくく、使用することにより失活した酵素を脱着して担体を再利用することは困難であることが記載されている。これに対し、本発明は、固定化酵素を溶剤で洗浄した後、アルカリ溶液で処理すれば、酵素が疎水性吸着した担体においても酵素が容易に脱離し、また新しい酵素も吸着するため、担体を再利用できることを見出したものである。
 本発明において、陰イオン交換樹脂の材質としては、フェノールホルムアルデヒド系、ポリスチレン系、アクリルアミド系、ジビニルベンゼン系等が挙げられ、特に本発明の効果を良好に発揮する点からフェノールホルムアルデヒド系樹脂(例えば、Rohmand Hass社製Duolite A-568)が好ましい。
 本発明において、脂質分解酵素としてはリパーゼが挙げられる。リパーゼの種類は、任意に選択することができるが、DAG純度の高いDAG含有油脂を製造する点から、1,3位選択性リパーゼが好ましい。
 リパーゼは、動物由来、植物由来のものはもとより、微生物由来の市販リパーゼを使用することもできる。微生物由来リパーゼとしては、リゾプス(Rhizopus)属、アスペルギルス(Aspergillus)属、ムコール(Mucor)属、リゾムコール(Rhizomucor)属、シュードモナス(Pseudomonas)属、ジオトリケム(Geotrichum)属、ペニシリウム(Penicillium)属、キャンディダ(Candida)属等の起源のものが挙げられる。
 使用済み固定化酵素の洗浄に使用する溶剤としては、n-ヘキサン、アセトン、クロロホルム、エタノール、メタノール、酢酸エチル、アセトニトリル、酢酸、ペンタン、オクタン等が挙げられ、酵素の油分の除去性の点からn-ヘキサン、アセトン、エタノールが好ましく、特に酵素の油分の除去性の点と溶剤の除去性の点からn-ヘキサンが好ましい。
 洗浄方法は、バッチ式混合、連続式接触等が挙げられるが、操作性の点からバッチ式混合が好ましい。洗浄後、固定化酵素から溶剤を濾過・減圧留去等の方法により除去することが好ましい。
 洗浄は、洗浄後の油分付着量が少なくなり、アルカリ処理工程で油分とアルカリとのケン化が低減し、操作性が良くなる点から、洗浄後の固定化脂質分解酵素中の油分残存量が固定化担体100質量部(以下、単に「部」で表す)に対して50部以下になるように行う。洗浄後の固定化脂質分解酵素中の油分残存量は、同様の点から、更に1~50部、特に同様の点及び処理コストの点から10~40部が好ましい。洗浄操作は、一回だけ行ってもよく、数回繰り返し行ってもよい。
 油分残存量は、固定化担体質量に対して残存する油分の質量を測定し、下記式(1)より固定化担体100部に対する質量比として求めることとする。
   油分残存量=(a-b)/b×100(a:固定化酵素質量、b:固定化担体質量)  (1)
 溶剤により洗浄した後、アルカリ溶液を接触させて使用済み固定化酵素から酵素を脱離させる。本発明においてアルカリ溶液に使用するアルカリとしては、例えば水酸化ナトリウム、水酸化カリウム、炭酸カルシウム、炭酸カリウム等が挙げられるが、使用済み酵素の除去性の点から水酸化ナトリウムが好ましい。
 アルカリ溶液との接触方法は、バッチ式混合、連続式接触等が挙げられるが、操作性の点からバッチ式混合が好ましい。接触方法は、静置、攪拌、振とう等が挙げられる。
 使用済み固定化酵素から酵素を脱離させるために使用するアルカリ溶液の温度は、製造した固定化酵素の活性を有効に引き出し、DAG純度の低下を防止する点から、0~70℃が好ましく、30~65℃がより好ましく、特に40~60℃が好ましい。なお、ここでいう「DAG純度」とは、DAG及びTAG中のDAGの質量%(以下、単に「%」で表す)をいい、式で表すと、DAG/(TAG+DAG)×100である。
 また、アルカリ溶液の濃度は、製造した固定化酵素の活性を有効に引き出し、DAG純度の低下を防止する点から、0.25~2規定が好ましく、特に0.8~1.5規定が好ましい。
 アルカリ溶液との接触時間は、製造した固定化酵素の活性を有効に引き出し、DAG純度の低下を防止する点から、2~48時間が好ましく、特に20~30時間が好ましい。
 アルカリ溶液を接触させた後、水洗、pH処理等によりアルカリを除去するのが好ましい。
 新たな脂質分解酵素を固定化する場合、固定化担体に酵素を直接吸着してもよいが、高活性を発現するような吸着状態にするため、酵素吸着前に予め固定化担体を脂溶性脂肪酸又はその誘導体で処理することが好ましい。脂溶性脂肪酸又はその誘導体と固定化担体の接触法としては、水又は有機溶剤中にこれらを直接加えてもよいが、分散性を良くするため、有機溶剤に脂溶性脂肪酸又はその誘導体を一旦分散、溶解させた後、水に分散させた担体に加えてもよい。この有機溶剤としては、クロロホルム、ヘキサン、エタノール等が挙げられる。脂溶性脂肪酸又はその誘導体の使用質量は、固定化担体100部に対して1~500部、特に10~200部が好ましい。接触温度は0~100℃、特に20~60℃が好ましく、接触時間は5分~5時間程度が好ましい。この処理を終えた担体は、ろ過して回収するが、乾燥してもよい。乾燥温度は室温~100℃が好ましく、減圧乾燥を行ってもよい。
 予め担体を処理する脂溶性脂肪酸又はその誘導体のうち、脂溶性脂肪酸としては、炭素数4~24、好ましくは炭素数8~18の飽和又は不飽和の、直鎖又は分岐鎖の、水酸基を有していてもよい脂肪酸が挙げられる。具体的には、カプリン酸、ラウリン酸、ミリスチン酸、オレイン酸、リノール酸、α-リノレン酸、リシノール酸、イソステアリン酸等が挙げられる。また前記脂溶性脂肪酸の誘導体としては、これらの脂溶性脂肪酸と一価若しくは多価アルコール又は糖類とのエステル、リン脂質、及びこれらのエステルにエチレンオキサイドを付加したもの等が挙げられる。具体的には、上記脂肪酸のメチルエステル、エチルエステル、モノグリセライド、ジグリセライド、それらのエチレンオキサイド付加体、ポリグリセリンエステル、ソルビタンエステル、ショ糖エステル等が挙げられる。これら脂溶性脂肪酸及びその誘導体はいずれも常温(20℃)で液状であることが酵素を担体に固定化する工程上好ましい。これら脂溶性脂肪酸又はその誘導体としては、上記2種以上を併用してもよく、菜種脂肪酸、大豆脂肪酸等の天然由来の脂肪酸を用いることもできる。
 酵素の固定化を行う温度は、酵素の特性によって決定することができるが、酵素の失活が起きない0~60℃、特に5~40℃が好ましい。また固定化時に使用する酵素溶液のpHは、酵素の変性が起きない範囲であればよく、温度同様酵素の特性によって決定することができるが、pH3~9が好ましい。このpHを維持するためには緩衝液を使用するが、緩衝液としては、酢酸緩衝液、リン酸緩衝液、トリス塩酸緩衝液等が挙げられる。
 上記酵素溶液中の酵素濃度は、固定化効率の点から酵素の飽和溶解度以下で、かつ十分な濃度であることが望ましい。また、酵素溶液は、必要に応じて不溶部を遠心分離で除去した上澄や、限外濾過等によって精製したものを使用することもできる。また、用いる酵素量は、固定化担体100部に対して5~1000部、特に10~500部が好ましい。
 固定化担体への酵素の吸着率は固定化酵素の活性を高める点、及び酵素コストの点から高いほど好ましい。酵素吸着率は50%以上、更に80%以上、特に92%以上、殊更94~99%が好ましい。なお、ここでいう「酵素吸着率」とは、酵素吸着前の酵素溶液の活性に対する酵素吸着後の酵素溶液(固定化酵素を除いた部分)の活性の残存率をいう。
 本発明においては、脂質分解酵素を固定化担体に吸着固定化した後、乾燥せずに、脂溶性脂肪酸、脂肪酸トリグリセライド又は脂肪酸部分グリセライド等に接触させながら脱水することにより、残存水分量を調整するのが好ましい。
 残存水分量は、保存安定性の点から固定化担体100部に対して1~50部、特に1~30部になるように調整されることが好ましい。
 残存水分量を調整するのに使用される脂溶性脂肪酸としては、菜種油、大豆油、ひまわり油等の植物性の液状油脂若しくはイワシ油、マグロ油、カツオ油等の魚油から生成された脂肪酸が好ましい。なお、使用する脂肪酸、脂肪酸トリグリセライド又は脂肪酸部分グリセライドは、本発明方法により調製された固定化酵素を用いた実際のエステル化反応において、油相基質とするものを選択することが好ましい。
 残存水分量を調整するのに使用される脂肪酸、脂肪酸トリグリセライド又は脂肪酸部分グリセライドの量は、固定化酵素との接触を十分なものとし、かつ過剰量の使用による無駄を回避する点、及び流動性を高め脱水効率を向上させる点から、固定化担体100部に対して20~3000部が好ましいが、100~1000部とすることがより好ましい。
 本発明方法により得られた固定化酵素(以下、「本発明固定化酵素」という)を用いてDAGを製造すれば、高純度のDAG含有油脂(DAG+TAG中のDAGが高比率)を調製することができる。DAG含有油脂のDAG純度は生理機能の点から50%以上が好ましく、さらには65%以上、特に80~100%、殊更93~98%が好ましい。また、DAG含有油脂中のTAG含有量は20%以下が好ましく、更には10%以下、特に5%以下、殊更4%以下が好ましい。
 また、本発明固定化酵素を用いてDAGを製造すれば、未使用の固定化担体に酵素を吸着させて得られた固定化酵素(以下、「新規固定化酵素」という)を用いてDAGを製造した場合とほぼ同等のDAG純度のDAG含有油脂が得られる。本発明固定化酵素を用いた場合のDAG純度と、新規固定化酵素を用いた場合のDAG純度との差、すなわち下記式(2)で定義されるDAG含有油脂の「DAG純度の差」は、-0.9%以上が好ましく、更には-0.7%以上、特に-0.5%以上が好ましい。
   DAG純度の差=(本発明固定化酵素を用いた場合のDAG純度)-(新規固定化酵素を用いた場合のDAG純度)  (2)
 また、本発明固定化酵素を用いた場合のTAG含有量と、新規固定化酵素を用いた場合のTAG含有量との差、すなわち下記式(3)で定義されるDAG含有油脂中の「TAG含有量の差」は、0.6%以下が好ましく、更には0.3%以下が好ましい。
   TAG含有量の差=(本発明固定化酵素を用いた場合のTAG含有量)-(新規固定化酵素を用いた場合のTAG含有量)  (3)
 本発明におけるDAGの製造方法としては、グリセリンと脂肪酸又はその低級アルキルエステルとのエステル化反応が挙げられる。
 ここで、エステル化反応に用いる脂肪酸又はその低級アルキルエステルとしては、直鎖又は分岐鎖の炭素数4~22、好ましくは炭素数8~18の飽和又は不飽和脂肪酸が好ましく、例えば酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、ウンデカン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ゾーマリン酸、ステアリン酸、オレイン酸、エライジン酸、リノール酸、リノレン酸、アラキドン酸、ガドレン酸、アラキン酸、ベヘン酸、エルカ酸、エイコサペンタエン酸、ドコサヘキサエン酸等を用いることができる。また上記脂肪酸とエステルを形成する低級アルコールとしては、炭素数1~6のもの、例えばメタノール、エタノール、1-プロパノール、2-プロパノール、n-ブタノール、2-ブタノール又はt-ブタノールなどが挙げられる。これらの脂肪酸又はその低級アルキルエステルは、2種以上を併用することもできる。また、上記脂肪酸の混合物、例えば大豆脂肪酸などの天然由来の脂肪酸を用いることもできる。
 この反応において、脂肪酸又はその低級アルキルエステルとグリセリンの反応モル比R〔R=脂肪酸又はその低級アルキルエステル(mol)/グリセリン(mol)〕は、1.5~3.0が好ましく、更には1.6~2.8、特に1.8~2.6であるのが好ましい。
 また、エステル化反応の反応温度は、特に限定されないが、20~80℃、特に30~70℃が反応性の点で好ましい。また反応時間は工業的な生産性の観点から10時間以内が好ましい。
 エステル化反応により得られたDAG含有油脂は、後処理を行うことにより製品とすることができる。後処理は、脱酸(未反応の脂肪酸及び副生したモノアシルグリセロールを除去)、酸処理、水洗、脱臭の各工程を行うことが好ましい。脱酸工程は、エステル化反応により得られたDAG含有油脂を減圧蒸留することにより、反応生成物から未反応の脂肪酸及び副生したモノアシルグリセロールを除去する工程をいう。酸処理工程は、前記脱酸油にクエン酸等のキレート剤を添加、混合し、必要に応じて更に減圧脱水する工程をいう。また、得られた酸処理油は、色相、風味を更に良好とする点から、吸着剤との接触による脱色工程を行っても良い。水洗工程は、前記酸処理油に水を添加して強攪拌し、油水分離を行う操作を行う工程をいう。水洗は複数回(例えば3回)繰り返し、水洗油を得るのが好ましい。脱臭工程は、前記水洗油を減圧水蒸気蒸留する工程をいう。脱臭は、バッチ式、連続式、半連続式等が挙げられ、薄膜脱臭装置またはトレイ式脱臭装置の単独で行う方法の他、これら薄膜脱臭装置を用いた脱臭処理とトレイ式脱臭装置を用いた脱臭処理とを組み合わせて行ってもよい。
[固定化酵素の活性測定方法]
 三日月羽根をセットした4つ口フラスコに固定化酵素を4部仕込み、大豆脂肪酸約20部で3回洗浄した。その後、大豆脂肪酸を加え、50℃・400rpm・15分間攪拌した。次にグリセリンを加えて反応を開始し、真空ポンプで減圧にした。エステル化反応は温度50℃・攪拌400rpm・真空度400Paで行い、大豆脂肪酸とグリセリンはFA/GLYモル比を2とし、仕込みの合計量を80部とした。30分毎に反応液をサンプリングし、AV値・水分・グリセリド組成の分析を行い、各組成(FA・GLY・MAG・DAG・TAG)の経時変化を追跡した。収率(DAG+TAG)が70%に到達した時間とDAG純度(DAG質量/(DAG+TAG質量)×100)を経時曲線から読み取り算出した。
[新規固定化酵素Aの調製]
 Duolite A-568(Rohm and Hass社)10部を0.1Nの水酸化ナトリウム水溶液100部中で1時間攪拌した。濾過した後、蒸留水100部で洗浄し、500mM酢酸緩衝液(pH6)100部で1回、50mM酢酸緩衝液(pH6)100部で2回、pH平衡化を行った。濾過後、エタノール40部でエタノール置換を行った。濾過した後、大豆脂肪酸10部とエタノール40部の混合液を加え30分間攪拌した。次に50mM酢酸緩衝液(pH6)50部で30分ずつ4回洗浄し、濾過して担体を回収した。その後、リパーゼ(リリパーゼ A-10FG、ナガセケムテックス株式会社)10部を50mM酢酸緩衝液(pH6)180部に溶解した酵素液と2時間接触させ、固定化を行った。固定化後に濾過して固定化酵素を回収した後、50mM酢酸緩衝液(pH6)50部で30分間洗浄を行い、固定化していない酵素や蛋白を除去し、濾過して固定化酵素を回収した。酵素吸着率は98.0%であった。次に回収した固定化酵素とナタネ油40部とを16時間接触させ、濾過して油処理した固定化酵素を回収した。以上の操作で調製した新規固定化酵素Aについて、前記「固定化酵素の活性測定方法」に従って活性を測定(以下同じ)したところ、収率70%の到達時間は64.1分で、DAG純度は95.1%、TAG含有量3.4%であった。結果を表1に示す。
[新規固定化酵素Bの調製]
 Duolite A-568(Rohm and Hass社)10部を0.1Nの水酸化ナトリウム水溶液100部中で1時間攪拌した。濾過した後、蒸留水100部で洗浄し、500mM酢酸緩衝液(pH6)100部で1回、50mM酢酸緩衝液(pH6)100部で2回、pH平衡化を行い、濾過して担体を回収した。その後、リパーゼ(パラターゼ20000L、ノボザイムズジャパン株式会社)12部を50mM酢酸緩衝液(pH6)180部に溶解した酵素液と2時間接触させ、固定化を行った。固定化後に濾過して固定化酵素を回収した後、50mM酢酸緩衝液(pH6)50部で30分間洗浄を行い、固定化していない酵素や蛋白を除去し、濾過して固定化酵素を回収した。酵素吸着率は99.8%であった。次に回収した固定化酵素とナタネ油40部とを16時間接触させ、濾過して油処理した固定化酵素を回収した。以上の操作で調製した新規固定化酵素Bの活性を測定したところ、収率70%の到達時間は117.7分で、DAG純度は97.0%、TAG含有量2.1%であった。結果を表2に示す。
[使用済み固定化酵素Aの調製]
 前記新規固定化酵素Aを用い、50℃にてエステル化反応時間1000時間相当の操作を行い、活性が低下した残存活性を有する使用済み固定化酵素Aを調製した。このときの油分残存量は固定化担体100部に対して150部であった。使用済み固定化酵素Aの活性を測定したところ、収率70%の到達時間は220分で、DAG純度は92.9%、TAG含有量は5.0%であった。
[使用済み固定化酵素Bの調製]
 前記新規固定化酵素Bを用い、50℃にてエステル化反応時間1000時間相当の操作を行い、活性が低下した残存活性を有する使用済み固定化酵素Bを調製した。このときの油分残存量は固定化担体100部に対して85.3部であった。使用済み固定化酵素Bの活性を測定したところ、収率70%の到達時間は290分で、DAG純度は93.9%、TAG含有量は4.4%であった。
[油分残存量の測定]
 固定化酵素a部に対し10質量倍のヘキサン、アセトンで交互に各3回洗浄後、70℃で15時間放置することにより脱溶剤し、固定化担体のみの質量を秤量し(b)、下記式より固定化担体100部に対する質量比として求めた。
   油分残存量=(a-b)/b×100(a:固定化酵素質量、b:固定化担体質量)
[酵素吸着率の測定]
 酵素固定化操作における吸着前後の酵素溶液の酵素活性を、リパーゼキットS(大日本製薬製)を使用し、37℃・15分反応させ測定し、酵素吸着率は下記式より求めた。
   酵素吸着率[%]=(吸着前の活性-吸着後の活性)/吸着前の活性×100
実施例1
 使用済み固定化酵素A10部(乾燥基準)に対しn-ヘキサン85部を加えて30分間攪拌した。洗浄後の油分残存量は、固定化担体100部に対して36.9部であった。ヘキサンを減圧留去した後、1Nの水酸化ナトリウム水溶液100部と50℃、24時間接触させて、残存酵素の脱離を行った。水酸化ナトリウム水溶液を除去し、蒸留水100部で洗浄後、10%の酢酸水溶液4部と蒸留水100部を加えて中和した。その後、500mM酢酸緩衝液(pH6)100部で1回、50mM酢酸緩衝液(pH6)100部で2回、pH平衡化を行った。濾過後、エタノール40部でエタノール置換を行った。濾過した後、大豆脂肪酸10部とエタノール40部の混合液を加え30分間攪拌した。次に50mM酢酸緩衝液(pH6)50部で30分ずつ4回洗浄し、濾過して担体を回収した。その後、リパーゼ(リリパーゼ A-10FG、ナガセケムテックス株式会社)10部を50mM酢酸緩衝液(pH6)180部に溶解した酵素液と2時間接触させ、固定化を行った。固定化後に濾過して固定化酵素を回収した後、50mM酢酸緩衝液(pH6)50部で30分間洗浄を行い、固定化していない酵素や蛋白を除去し、濾過して固定化酵素を回収した。酵素吸着率は97.7%であった。次に回収した固定化酵素とナタネ油40部とを16時間接触させ、濾過して油処理した固定化酵素を回収した。
 以上の操作で製造した固定化酵素の活性を測定したところ、収率70%の到達時間は64.3分で、DAG純度は95.0%、DAG純度の差は-0.1%、TAG含有量3.5%、TAG含有量の差は0.1%であった。結果を表1に示す。
実施例2
 水酸化ナトリウム水溶液との接触時間が2時間である以外は実施例1と同様に固定化酵素を調製した。酵素吸着率は95.5%であった。得られた固定化酵素の活性を測定したところ、収率70%の到達時間は66.2分で、DAG純度は94.7%、DAG純度の差は-0.4%、TAG含有量3.8%、TAG含有量の差は0.3%であった。結果を表1に示す。
実施例3
 使用済み固定化酵素A10部(乾燥基準)に対しn-ヘキサン85部を加えて30分間攪拌し、ヘキサンを減圧留去した。この操作を2回行い、油分残存量が固定化担体100部に対して6.7部のものを使用して、実施例1と同様に固定化酵素を調製した。酵素吸着率は96.7%であった。得られた固定化酵素の活性を測定したところ、収率70%の到達時間は65.2分で、DAG純度は96.7%、DAG純度の差は1.6%、TAG含有量2.3%、TAG含有量の差は-1.1%であった。結果を表1に示す。
実施例4
 使用済み固定化酵素A10部(乾燥基準)に対しn-ヘキサン85部を加えて30分間攪拌し、ヘキサンを減圧留去した。この操作を3回行い、油分残存量が固定化担体100部に対して2.4部のものを使用して、実施例1と同様に固定化酵素を調製した。酵素吸着率は98.6%であった。得られた固定化酵素の活性を測定したところ、収率70%の到達時間は66.8分で、DAG純度は95.8%、DAG純度の差は0.7%、TAG含有量2.9%、TAG含有量の差は-0.5%であった。結果を表1に示す。
実施例5
 使用済み固定化酵素B10部(乾燥基準)に対しn-ヘキサン85部を加えて30分間攪拌した。洗浄後の油分残存量は、固定化担体100部に対して8.7部であった。ヘキサンを減圧留去した後、1Nの水酸化ナトリウム水溶液100部と50℃、24時間接触させて、残存酵素の脱離を行った。水酸化ナトリウム水溶液を除去し、蒸留水100部で洗浄後、10%の酢酸水溶液4部と蒸留水100部を加えて中和した。その後、500mM酢酸緩衝液(pH6)100部で1回、50mM酢酸緩衝液(pH6)100部で2回、pH平衡化を行い、濾過して担体を回収した。その後、リパーゼ(パラターゼ20000L、ノボザイムズジャパン株式会社)12部を50mM酢酸緩衝液(pH6)180部に溶解した酵素液と2時間接触させ、固定化を行った。固定化後に濾過して固定化酵素を回収した後、50mM酢酸緩衝液(pH6)50部で30分間洗浄を行い、固定化していない酵素や蛋白を除去し、濾過して固定化酵素を回収した。酵素吸着率は99.1%であった。次に回収した固定化酵素とナタネ油40部とを16時間接触させ、濾過して油処理した固定化酵素を回収した。
 得られた固定化酵素の活性を測定したところ、収率70%の到達時間は86.8分で、DAG純度は97.1%、DAG純度の差は0.1%、TAG含有量2.1%、TAG含有量の差は0.0%であった。結果を表2に示す。
比較例1
 前記使用済み固定化酵素Aをヘキサン洗浄を行わずに1Nの水酸化ナトリウム水溶液100部と50℃、24時間接触させて残存酵素の脱離処理を行ったが、濾過する際に液体の流動性が悪くて濾過ができず、固定化酵素が調製できなかった。
比較例2
 前記使用済み固定化酵素A10部(乾燥基準)に対しn-ヘキサン30部で洗浄し、油分残存量を固定化担体100部に対して100部とした後、1Nの水酸化ナトリウム水溶液100部と50℃、24時間接触させて残存酵素の脱離処理を行ったが、比較例1と同様に流動性が悪くて濾過ができず、固定化酵素が調製できなかった。
比較例3
 実施例1において、ヘキサン洗浄後、アルカリ処理による酵素の脱離を行わずにエタノール置換を行い、その他は実施例1と同様に固定化酵素を調製した。酵素吸着率は91.1%であった。得られた固定化酵素の活性を測定したところ、収率70%の到達時間は69.5分で、DAG純度は92.6%、DAG純度の差は-2.5%、TAG含有量5.2%、TAG含有量の差は1.8%であった。結果を表1に示す。
比較例4
 実施例5において、ヘキサン洗浄後、アルカリ処理による酵素の脱離を行わずに酵素固定化を行い、その他は実施例5と同様に固定化酵素を調製した。酵素吸着率は93.8%であった。得られた固定化酵素の活性を測定したところ、収率70%の到達時間は103.8分で、DAG純度は96.0%、DAG純度の差は-1.0%、TAG含有量2.8%、TAG含有量の差は0.7%であった。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1及び2の結果から、使用済み固定化脂質分解酵素を溶剤で洗浄して、固定化脂質分解酵素中の油分残存量を固定化担体100部に対して50部以下とし、次いでアルカリ処理した後に脂質分解酵素を吸着させることにより、新規に製造した固定化酵素と同等の活性を有する固定化脂質分解酵素を製造することができ、これを用いてエステル化反応を行えば、DAG純度の高いDAG含有油脂を製造することができることが確認された。

Claims (5)

  1.  エステル化反応に使用した固定化脂質分解酵素と溶剤を混合し、固定化脂質分解酵素中の油分残存量が固定化担体100質量部に対して50質量部以下になるように洗浄し、次いでアルカリ溶液を接触させた後固定化担体を回収し、当該固定化担体に脂質分解酵素を吸着させる固定化脂質分解酵素の製造方法。
  2.  アルカリ溶液の温度が0~70℃で、濃度が0.25~2規定、接触時間が2~48時間である請求項1記載の固定化脂質分解酵素の製造方法。
  3.  脂質分解酵素が1,3位選択性リパーゼである請求項1又は2記載の固定化脂質分解酵素の製造方法。
  4.  固定化担体が陰イオン交換樹脂である請求項1又は2記載の固定化脂質分解酵素の製造方法。
  5.  請求項1又は2記載の方法により製造された固定化脂質分解酵素を用いて、グリセリンと脂肪酸又はその低級アルキルエステルとを反応させるジアシルグリセロールの製造方法。
PCT/JP2009/001801 2008-04-21 2009-04-20 固定化酵素の製造方法 WO2009130880A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09734871.8A EP2272954B1 (en) 2008-04-21 2009-04-20 Method for production of immobilized enzyme
CN2009801140637A CN102016019B (zh) 2008-04-21 2009-04-20 固定化酶的制造方法
US12/988,063 US20110053229A1 (en) 2008-04-21 2009-04-20 Method for production of immobilized enzyme

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008110202A JP5242230B2 (ja) 2008-04-21 2008-04-21 固定化酵素の製造方法
JP2008-110202 2008-04-21

Publications (1)

Publication Number Publication Date
WO2009130880A1 true WO2009130880A1 (ja) 2009-10-29

Family

ID=41216622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/001801 WO2009130880A1 (ja) 2008-04-21 2009-04-20 固定化酵素の製造方法

Country Status (5)

Country Link
US (1) US20110053229A1 (ja)
EP (1) EP2272954B1 (ja)
JP (1) JP5242230B2 (ja)
CN (1) CN102016019B (ja)
WO (1) WO2009130880A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012034622A (ja) * 2010-08-06 2012-02-23 Kao Corp ジアシルグリセロール高含有油脂の製造方法
CN105754982B (zh) * 2014-12-15 2021-12-07 丰益(上海)生物技术研发中心有限公司 固定化脂肪酶以及固定化脂肪酶的制备方法
CN107828756B (zh) * 2017-10-12 2020-11-27 广东惠尔泰生物科技有限公司 一种Sn-1,3专一性固定化脂肪酶的制备方法
CN108486094A (zh) * 2018-04-20 2018-09-04 中国科学院南海海洋研究所 一种固定化脂肪酶及其制备方法
CN111172145A (zh) * 2020-01-10 2020-05-19 量子高科(中国)生物股份有限公司 固定化酶及其生产功能性低聚糖的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63279794A (ja) * 1987-05-11 1988-11-16 Ajinomoto Co Inc 油脂の改質方法
JPH01187086A (ja) 1988-01-20 1989-07-26 Japanese Res & Dev Assoc Bio Reactor Syst Food Ind 酵素固定化用担体とその酵素固定化方法および酵素脱着方法
JPH0956379A (ja) 1995-08-18 1997-03-04 Fuji Spinning Co Ltd 固定化リパーゼの再生方法
JP2001252090A (ja) * 2000-03-10 2001-09-18 Kao Corp ジグリセリドの製造法
JP2004113238A (ja) * 2002-09-06 2004-04-15 Kao Corp 固定化酵素の再生方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4933284A (en) * 1986-05-07 1990-06-12 Uop Regenerable dialkylaminoalkyl cellulose support matrix for immobilizing biologically active materials
JP2834190B2 (ja) * 1989-07-06 1998-12-09 オルガノ株式会社 失活酵素の脱着方法
WO1995033047A1 (en) * 1994-05-26 1995-12-07 Novo Nordisk A/S Method for reusing a carrier for lipase immobilization
BR0302166A (pt) * 2002-07-02 2004-09-08 Kao Corp Processo para preparação de enzima imobilizada
BR0303436A (pt) * 2002-09-06 2004-09-08 Kao Corp Processo de regenaração de enzima imobilizada
JP4220957B2 (ja) * 2004-11-12 2009-02-04 花王株式会社 固定化酵素の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63279794A (ja) * 1987-05-11 1988-11-16 Ajinomoto Co Inc 油脂の改質方法
JPH01187086A (ja) 1988-01-20 1989-07-26 Japanese Res & Dev Assoc Bio Reactor Syst Food Ind 酵素固定化用担体とその酵素固定化方法および酵素脱着方法
JPH0956379A (ja) 1995-08-18 1997-03-04 Fuji Spinning Co Ltd 固定化リパーゼの再生方法
JP2001252090A (ja) * 2000-03-10 2001-09-18 Kao Corp ジグリセリドの製造法
JP2004113238A (ja) * 2002-09-06 2004-04-15 Kao Corp 固定化酵素の再生方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2272954A4

Also Published As

Publication number Publication date
CN102016019B (zh) 2013-05-08
JP2009254322A (ja) 2009-11-05
US20110053229A1 (en) 2011-03-03
EP2272954B1 (en) 2014-09-03
EP2272954A4 (en) 2013-08-07
CN102016019A (zh) 2011-04-13
JP5242230B2 (ja) 2013-07-24
EP2272954A1 (en) 2011-01-12

Similar Documents

Publication Publication Date Title
JP7213184B2 (ja) グリセリドの形態におけるn-3脂肪酸の酵素的濃縮
JP5242230B2 (ja) 固定化酵素の製造方法
US7141399B2 (en) Process for the production of diglycerides
US20100279375A1 (en) Method for producing immobilized enzyme
JP6715586B2 (ja) 高度不飽和脂肪酸の製造方法
JP5586855B2 (ja) モノアシルグリセロール高含有油脂の製造方法
JP3929890B2 (ja) ジグリセリドの製造方法
JP3893107B2 (ja) 脂肪酸の製造方法
JP2012034622A (ja) ジアシルグリセロール高含有油脂の製造方法
JP4012117B2 (ja) 固定化酵素の製造方法
JP3813585B2 (ja) ジグリセリドの製造方法
JP2021073951A (ja) ジアシルグリセロール高含有油脂の製造方法
JP3813584B2 (ja) ジグリセリドの製造方法
JP5527983B2 (ja) ドコサヘキサエン酸高含有油脂の製造方法
JP2019054738A (ja) 脂肪酸類の製造方法
JP2019094445A (ja) アマニ油の製造方法
JP4768496B2 (ja) 固定化酵素の製造方法
JP6859212B2 (ja) ジアシルグリセロール高含有油脂の製造方法
JP7092460B2 (ja) 構造油脂の製造方法
JP3893106B2 (ja) ジグリセリドの製造方法
JP4616755B2 (ja) 固定化酵素の製造方法
JP2007099958A (ja) 脂肪酸類の製造方法
JP4971018B2 (ja) 分岐脂肪酸を有するジアシルグリセロール含有油脂の製造方法
JP2004041188A (ja) ドコサヘキサエン酸高含有油脂の製法
JP2018068166A (ja) 脂肪酸類の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980114063.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09734871

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009734871

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE