WO2009119504A1 - 荷電粒子線用静電レンズ - Google Patents

荷電粒子線用静電レンズ Download PDF

Info

Publication number
WO2009119504A1
WO2009119504A1 PCT/JP2009/055665 JP2009055665W WO2009119504A1 WO 2009119504 A1 WO2009119504 A1 WO 2009119504A1 JP 2009055665 W JP2009055665 W JP 2009055665W WO 2009119504 A1 WO2009119504 A1 WO 2009119504A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
electric field
field region
electrostatic lens
central axis
Prior art date
Application number
PCT/JP2009/055665
Other languages
English (en)
French (fr)
Inventor
彰 小野口
大堀 謙一
松本 浩一
粟田 正吾
聡史 大橋
Original Assignee
株式会社堀場製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社堀場製作所 filed Critical 株式会社堀場製作所
Priority to US12/934,966 priority Critical patent/US8669534B2/en
Priority to CN200980110865.0A priority patent/CN101981650B/zh
Priority to JP2009513498A priority patent/JP5306186B2/ja
Priority to DE112009000768T priority patent/DE112009000768T5/de
Publication of WO2009119504A1 publication Critical patent/WO2009119504A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
    • H01J37/10Lenses
    • H01J37/12Lenses electrostatic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/10Lenses
    • H01J2237/12Lenses electrostatic
    • H01J2237/121Lenses electrostatic characterised by shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes

Definitions

  • the present invention relates to an electrostatic lens for converging charged particles, which is preferably used for an SEM, an ion gun or the like.
  • Patent Documents 1 and 2 magnetic lenses and electrostatic lenses as disclosed in Patent Documents 1 and 2 are known as electron lenses used in SEMs, ion guns, and the like.
  • the aberration can be reduced with the former magnetic lens, it is very difficult to reduce the size and weight due to the limitation of the magnetic pole shape.
  • the latter electrostatic lens has an advantage in miniaturization and weight reduction, it is difficult to reduce the aberration in the deceleration type, and in the acceleration type, a high voltage must be applied to the electrode. Withstand voltage design is not easy.
  • the spherical aberration coefficient of the decelerating electrostatic lens increases when electrons incident in parallel while maintaining the distance r0 from the central axis sequentially pass through the incident side electrode, the intermediate electrode, and the emission side electrode.
  • the electron e travels in a direction away from the central axis m between the incident side electrode v1 and the intermediate electrode v2, and is separated from the central axis m, as shown in FIG. This is because, after the distance r reaches the maximum, the distance r converges while drawing a trajectory like a mountain toward or intersecting the central axis m.
  • the spherical aberration coefficient Cs increases as r increases in the formula for calculating the spherical aberration coefficient Cs defined as in the following expression (1).
  • F is a focal length
  • z is a distance on the central axis
  • V z is a potential on the central axis
  • V z ′ is a derivative of V z with respect to z
  • a symbol is a differential value with respect to z
  • r is a charge.
  • the distance from the particle beam to the central axis is a function of z
  • r ′ represents the differential value of r with respect to z.
  • the spherical aberration coefficient is about 8.3 times the spherical aberration coefficient of the magnetic field type lens, and the lens performance comparable to the magnetic field type lens cannot be obtained.
  • the trajectory of the lens is converged while gradually decreasing the distance from the central axis over the entire range of the lens.
  • the spherical aberration coefficient can be reduced, in order to obtain such characteristics, for example, when focusing 50 kV electrons, it is necessary to apply a voltage (500 kV) about 10 times that to the intermediate electrode. However, it has a problem of exceeding the practical range.
  • the present invention is based on the inventor's earnest research that focusing on the above problems and focusing on the trajectory of the charged particles is very effective in reducing the spherical aberration coefficient and applied voltage of the lens. As a result, this was the first time that it was put into practical use as an objective lens, etc. by eliminating the problems of aberration performance and applied voltage while making the most of the compactness and lightness that are the advantages of electrostatic lenses.
  • the main objective of the present invention is to realize a small, lightweight SEM or the like equipped with an electrostatic lens for charged particle beam, which is provided as an objective lens.
  • the charged particle beam electrostatic lens according to the present invention includes a plurality of electrodes arranged on the central axis, and among the electrodes, a plurality of electrodes provided on the incident side of the charged particles, A first electric field region that reduces the trajectory radius without exceeding the initial trajectory radius that is the trajectory radius at the time of incidence, and a charged particle that has passed through the first electric field region in a direction that proceeds parallel to the central axis.
  • a second electric field region for applying a force and a plurality of electrodes provided on the emission side among the electrodes, so that the trajectory radius of the charged particles does not exceed the initial trajectory radius and A trajectory is bent to form a third electric field region that intersects with the central axis at an angle larger than the trajectory angle with respect to the central axis of the charged particles when exiting the second electric field region.
  • the charged particles draw a trajectory that does not become larger than the distance from the central axis at the time of initial incidence with respect to the electrostatic lens, it is possible to prevent the r in Formula (1) from increasing.
  • the spherical aberration coefficient Cs since the charged particles cross the central axis at a larger angle and are focused by the third electric field region, the lens center (the line drawn in the traveling direction of the charged particle beam at the initial incidence and the tangent of the charged particle beam at the focal point)
  • the focal point which is the distance between the lens center and the focal point, can be shortened by moving the crossing point) to the focal side.
  • the focal length F in the equation (1) can be reduced. From this point, the spherical aberration coefficient Cs can be reduced and the resolution can be improved. Further, if the spherical aberration coefficient is reduced, the chromatic aberration coefficient is naturally reduced, so that the lens performance can be improved. Such an effect is particularly noticeable when a decelerating electrostatic lens configuration described later is used, whereas when an accelerating electrostatic lens configuration is used, the effect of reducing the applied voltage becomes prominent. The practical application can be greatly promoted. From these effects, the charged particle beam electrostatic lens according to the present invention can be applied as an objective lens and the like, so that an extremely small and lightweight apparatus such as an SEM can be realized. become.
  • the charged particles incident in parallel to the central axis travel in substantially parallel to the central axis in the second electric field region.
  • the orbit radius of the charged particles in the second electric field region is about 45 to about 60% of the initial orbit radius. This is because it becomes difficult to focus on a desired position when the ratio is smaller than 45%, and the aberration reduction effect cannot be obtained so much when the ratio exceeds 60%.
  • the shape of the electrodes, the distance between the electrodes, and the applied voltage of the electrodes can be exemplified.
  • an incident side electrode and an emission side electrode having a lower potential than the intermediate electrode are arranged on both sides of the intermediate electrode, and a three-electrode deceleration type electrostatic lens is used.
  • a trajectory control electrode having a higher potential than the incident side electrode is disposed between the intermediate electrode and the incident side electrode.
  • the first electric field region and the second electric field region may be formed by the incident side electrode and the trajectory control electrode
  • the third electric field region may be formed by the trajectory control electrode, the intermediate electrode, and the emission side electrode.
  • the trajectory control electrode has an inner peripheral end that is thicker in the central axis direction than the outer peripheral side, and the intermediate electrode has an inner peripheral end that is thinner in the central axial direction than the outer peripheral side. Then, a parallel electric field that attempts to make the charged particle beam parallel to the central axis, that is, the second electric field region is formed in the space in the inner peripheral end of the orbit control electrode, and this parallel electric field is formed.
  • the influence of the electric field from the intermediate electrode can be reduced as much as possible, so that the second electric field region can be maximized and the accompanying orbital collimation can be facilitated.
  • the diameter of the charged particle passage hole formed in the center of the orbit control electrode may be smaller than the diameter of the passage holes of the other three electrodes.
  • the trajectory control electrode is preferably disposed closer to the incident side electrode than the intermediate position between the incident side electrode and the intermediate electrode. This is because the potential gradient generated between the trajectory control electrode and the intermediate electrode can be reduced to reduce the diverging action.
  • the passage hole of the incident side electrode has a tapered shape whose diameter is small on the incident side and large on the output side.
  • the passage hole of the emission side electrode may have a tapered shape whose hole diameter is large on the incident side and small on the emission side.
  • a first stage electrode and a second stage electrode having a higher potential than the first stage electrode are arranged in order from the incident side of the charged particles, A first electric field region and a second electric field region are formed, and an incident side electrode having a lower potential than the second step electrode is further behind the first step electrode and the second step electrode, and is higher than the incident side electrode.
  • the intermediate electrode is added to these electrodes to form an acceleration type unipotential electrostatic lens.
  • the distance of the charged particle trajectory from the central axis does not become larger (smaller) than the distance from the central axis at the time of initial incidence, and the focal length is also small. Because it can be set, lens aberration reduction, high resolution, or low voltage can be promoted. Compared with magnetic lens, it is practical and has lens performance that is comparable to that of a magnetic lens. An electrostatic lens for charged particle beam can be provided.
  • FIG. 1 is a schematic cross-sectional view of an electronic decelerating electrostatic lens according to an embodiment of the present invention.
  • the figure which shows the equipotential line which the electrode of the Example produces.
  • the figure which shows the equipotential line which the electrode in the model produces.
  • the figure which shows the orbit of the electron in the model The typical structure sectional view of the conventional magnetic field type lens.
  • the typical structure sectional view of the conventional deceleration type electrostatic lens is a schematic cross-sectional view of an electronic decelerating electrostatic lens according to an embodiment of the present invention.
  • FIG. 10 is a schematic cross-sectional view of an accelerating electrostatic lens according to still another embodiment of the present invention.
  • Electrostatic lens for charged particle beam (Deceleration type electrostatic lens for electron beam)
  • e charged particles (electrons) h1... entrance side electrode passage hole h2... intermediate electrode passage hole h3... exit side electrode passage hole h4... trajectory control electrode passage hole m.
  • Axis n ... Intermediate position between incident side electrode and intermediate electrode r ... Orbit radius of electron (distance from central axis) r0... Initial electron orbit radius V1... First electrode (incident side electrode) V2 ⁇ Third electrode (intermediate electrode) V3... Fourth electrode (outgoing side electrode) V4 ... Second electrode (orbit control electrode)
  • the charged particle beam decelerating electrostatic lens A according to the present embodiment is used in an optical system such as a scanning electron microscope (SEM), for example, and has a negative charge at the center as shown in FIG.
  • SEM scanning electron microscope
  • a plurality of (four) generally circular electrodes V1 to V4 each having passage holes h1 to h4 (hereinafter sometimes collectively referred to as passage holes h) for particles e are aligned with their central axis m. Are arranged coaxially apart from each other.
  • Three of the electrodes V1 to V4, that is, the incident side electrode V1, the intermediate electrode V2, and the emission side electrode V3 are configured such that the incidence side electrode V1 and the emission side electrode V3 are set to the reference potential (for example, ground potential), and the intermediate electrode V2 is used. Is a negative potential lower than that to form a decelerating three-electrode unipotential lens, and these three electrodes V1 to V3 are the basic configuration of the electrostatic lens A.
  • a trajectory control electrode V4 having a higher potential than the incident side electrode is disposed between the incident side electrode V1 and the intermediate electrode V2, and the electron This is because the orbit of e is skillfully controlled to reduce the spherical aberration.
  • the electrodes V1 to V4 for applying an electrostatic field will be described.
  • the incident-side electrode V1 is configured such that the diameter of the passage hole h1 penetrating through the center gradually expands from the incident side h1a to the emission side h1b, so that the cross-sectional shape of the inner peripheral portion sharpens the tip V11 that is the inner peripheral edge. It has a tapered shape.
  • the reference potential is applied to the incident side electrode V1.
  • the orbit control electrode V4 has a symmetrical shape in the thickness direction, and has a through hole h4 penetrated in the center.
  • the inner peripheral side is gradually thickened toward the passage hole h4, and the cross-sectional shape in which the inner peripheral edge V41 on the incident side and the inner peripheral edge V42 on the output side are sharpened (hereinafter also referred to as a substantially trapezoidal cross section). It is said.
  • the diameter of the passage hole h4 of the orbit control electrode V4 is made smaller than the diameters of the passage holes h1 to h3 of the other electrodes V1 to V3, and the length of the passage hole h4 in the central axis direction is set.
  • trajectory control electrode V4 is arranged closer to the incident side electrode V1 than the intermediate position n between the incident side electrode V1 and the intermediate electrode V2. A positive potential is applied to the trajectory control electrode V4.
  • the intermediate electrode V2 has a symmetrical shape in the thickness direction, and includes a through hole h2 penetrating in the center. And it is set as the cross-sectional shape which sharpened the inner periphery V21 by making the inner peripheral part side thin gradually toward the passage hole h2. A negative potential is applied to the intermediate electrode V2.
  • the exit-side electrode V3 gradually increases the diameter of the passage hole h3 penetrating in the center from the exit side h3b to the entrance side h3a, so that the cross-sectional shape of the inner peripheral portion sharpens the tip V31 that is the inner peripheral edge. It has a tapered shape.
  • a reference potential equal to that of the incident side electrode V1 is applied to the emission side electrode V3.
  • a third electric field region AR3 is formed by bending and intersecting the central axis m at an angle larger than the traveling angle with respect to the central axis m when the electrons e exit the second electric field region AR2.
  • the electric field in FIG. 3 is obtained from a model (FIG. 2) described later.
  • a second electric field region AR2 (hereinafter also referred to as a collimating electric field), which is a collimating electric field that attempts to make the trajectory of the electrons e parallel to the central axis m. It is formed adjacent to the first electric field region AR1. Then, as is apparent from FIG. 4, the electrons e from the first electric field region AR1 are parallel to the central axis m in the vicinity of the boundary with the second electric field region AR2 or in a region slightly entering the second electric field region AR2. Proceed while being gradually bent in a direction close to. Thereafter, in the central region of the second electric field region AR2, as clearly shown in FIG.
  • the electric field effects from the electric field regions AR1 and AR3 before and behind the second electric field region AR2 are substantially eliminated, and an electric field region having a very small potential gradient is formed. Therefore, in this electric field region, substantially no force acts on the electrons e in both directions of divergence and convergence, and the electrons e travel as they are.
  • the trajectory is substantially parallel to the central axis m at the end of the parallel electric field.
  • the electrons e that have escaped the parallel electric field enter the third electric field region AR3 adjacent to the second electric field region AR2.
  • a decelerating electric field that is slightly oblique and has a diverging action is initially formed between the trajectory control electrode V4 and the intermediate electrode V2.
  • it is focused at the focal point on the central axis m toward the central axis m while drawing a sharp curve under the influence of an oblique acceleration electric field between the intermediate electrode V2 and the emission side electrode V3.
  • the distance (r) from the central axis m of the final stage contributing to convergence is the initial stage of the electron e. Since the distance is smaller than the distance (r0) from the central axis m at the time of incidence, the spherical aberration coefficient Cs can be reduced by preventing r in the equation (1) from exceeding r0.
  • the orbit of the electron e is once parallel or nearly parallel to the central axis m in the parallel electric field, and then the orbit is bent in the convergence direction by the third electric field region AR3, so that the angle is larger than the orbit in the parallel electric field.
  • the lens center is moved to the focal point side as compared with the case where the electron e does not travel the collimated electric field, so that the focal length F can be reduced.
  • reduction of the spherical aberration coefficient Cs can be promoted also in this respect. In this respect, resolution can be improved. If the spherical aberration coefficient is reduced, the chromatic aberration coefficient is naturally reduced, and the lens performance is further improved.
  • the reduction of the aberration coefficient Cs also contributes to the efficient formation of a collimating electric field and the suppression of the divergent electric field formed in the middle of the lens A as much as possible. That is, the shape of each of the electrodes V1 to V4 (the orbital control electrode V4 has a trapezoidal cross section, the inner peripheral ends of the other electrodes V1 to V3 are pointed, the hole diameter is different, etc.)
  • the distance between the control electrode V4 and the intermediate electrode V2 is set to be larger than the distance between the incident side electrode V1 and the trajectory control electrode V4), and depending on the potential setting, for example, the trajectory control electrode V4 Since the influence of the electric field from the incident side electrode V1 and the intermediate electrode V2 on the collimated electric field formed in the space in the inner peripheral edge of the first electrode is reduced as much as possible, the second electric field region AR2 is maximized and accompanying this Efficient orbital collimation of charged particles can be promoted.
  • the present electrostatic lens A it is possible to realize a significant aberration reduction of the lens without causing an increase in size and complexity, and a lens performance that is substantially inferior to a magnetic lens. It is possible to provide a practical electronic decelerating electrostatic lens A having the following.
  • Example> Configuration The configuration shown in FIG. 2 is used, and the potential applied to each electrode is as follows. Acceleration voltage ... 5.0kV Incident side electrode V1... 5.0 kV Orbit control electrode V4 ⁇ ⁇ 15.8kV Intermediate electrode V2 ... -2.47kV Output side electrode V3...
  • the electrons passing through this electric field draw the locus shown in FIG.
  • the spherical aberration coefficient Cs at this time is 6.177 mm.
  • the spherical aberration coefficient value (6.177) of the example can be reduced to about 0.16 times the spherical aberration coefficient value (38.72) of the comparative example. It was clarified that the spherical magnetic coefficient value (4.3) of the magnetic field type lens explained can be greatly approximated. Therefore, it has been confirmed that by controlling the trajectory of the electrons e, the aberration performance of the lens can be improved, and a decelerating electrostatic lens A having a lens performance substantially inferior to that of the magnetic field lens can be provided.
  • the present invention is not limited to the above embodiment.
  • the inner peripheral edge V21 of the intermediate electrode V2 has a sharp shape, it may be a flat peripheral surface extending to the central axis m.
  • the trajectory control electrode V4 is disposed closer to the incident side electrode V1 than the intermediate position n, it may be disposed on the intermediate position n.
  • each electrode is as follows. Acceleration voltage ... 5.0kV Incident side electrode V1... 5.0 kV Orbit control electrode V4 10.0 kV Intermediate electrode V2 ⁇ -1.72kV Output side electrode V3... 5.0 kV Incident side electrode V1 thickness: 1 mm Distance between incident side electrode V1 and orbit control electrode V4: 2 mm Orbit control electrode V4 thickness: 2 mm Distance between orbit control electrode V4 and intermediate electrode V2: 2 mm Intermediate electrode V2 thickness: 2.0 mm Distance between intermediate electrode V2 and emission side electrode V3: 2 mm Distance between centers of incident side electrode V1 and outgoing side electrode V3: 11 mm Hole diameter of orbit control electrode V4: 2 mm Hole diameter of intermediate electrode V2: 6mm
  • the electric field shown in FIG. 6 is formed.
  • the electrons passing through this electric field draw a locus shown in FIG.
  • the spherical aberration coefficient Cs at this time is 21.43 mm.
  • the spherical aberration coefficient value (21.43) of this example can be reduced to about 0.55 times the spherical aberration coefficient value (38.72) of the comparative example, and the magnetic field type lens described in the background art. It was clarified that the spherical aberration coefficient can be approached to (4.3). Therefore, it was confirmed that the lens aberration can be reduced by controlling the trajectory of the electron e, and the decelerating electrostatic lens A having lens performance that is relatively inferior to that of the magnetic field type lens can be provided.
  • charged particles as electrons, an SEM or TEM objective lens, or other charged particles (for example, positive ions or negative ions).
  • positive ions it is possible to apply to each electrode a voltage whose polarity is reversed from that of the above-described embodiment, and use it for a scanning ion microscope or the like.
  • the present invention can also be applied to a microfocus X-ray tube.
  • the present invention can be applied to an acceleration type electrostatic lens.
  • the first stage electrode V5 and the second stage electrode V6 having a higher potential than the first stage electrode V5 are arranged in order from the incident side of the charged particles (electrons), and the first stage electrode V5 is disposed.
  • An electric field region and a second electric field region are formed, and an incident-side electrode V1 having a lower potential than the second-stage electrode is further behind the first-stage electrode and the second-stage electrode, and is higher than the incident-side electrode V1.
  • An intermediate electrode V2 having a potential and an emission-side electrode V3 having a potential lower than that of the intermediate electrode V2 are sequentially arranged to form a three-electrode unipotential acceleration electrostatic lens, and the third electric field is generated by the three-electrode acceleration electrostatic lens.
  • a region may be formed.
  • the electron trajectory is tilted by the first and second stage electrodes V5 and V6 (first and second electric field regions), and the angle of the electrons is preliminarily set in the subsequent three-electrode acceleration electrostatic lens. Therefore, it is possible to reduce the voltage applied to the electrode, which is said to be required to be about five times the acceleration voltage, to at least about 1 ⁇ 2. This solves problems such as withstand voltage and makes this type of accelerating electrostatic lens usable not only for a conventional extraction electrode but also for an objective lens such as an SEM.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electron Tubes For Measurement (AREA)
  • Electron Beam Exposure (AREA)

Abstract

磁界型レンズと比べて比較的遜色のないレンズ性能を有する荷電粒子線用静電レンズを提供するために、荷電粒子の入射側に設けた複数の電極V1、V4によって、荷電粒子の軌道半径を入射時の軌道半径である初期軌道半径を途中で越えることなく縮小させる第1電界領域AR1と、この第1電界領域AR1を通過した荷電粒子に対して、前記中心軸と平行に進む向きに力を与える第2電界領域AR2と、を形成するとともに、出射側に設けた複数の電極V2、V3によって、荷電粒子の軌道半径が前記初期軌道半径を途中で越えることなく、かつ、荷電粒子の軌道を曲げて、前記第2電界領域AR2から該荷電粒子が出たときの中心軸mに対する軌道角度よりも大きい角度で中心軸mと交わらせる第3電界領域AR3を形成するようにした。

Description

荷電粒子線用静電レンズ
 本発明は、SEMやイオン銃などに好適に用いられる荷電粒子収束用の静電レンズに関するものである。
 従来、SEMやイオン銃等に用いられる電子レンズとしては、磁界レンズと特許文献1、2に示されるような静電レンズとが知られている。前者の磁界レンズでは、収差を小さくすることはできるものの、磁極形状の制限から小型化や軽量化が非常に難しい。一方、後者の静電レンズでは、小型化や軽量化において優位性はあるものの、減速型では収差を小さくすることが難しいし、加速型では、電極に高電圧を印加しなければならないことから、耐圧設計が容易ではない。
 例えば、従来の3電極減速型のユニポテンシャル静電レンズの場合、焦点距離Fに対して、球面収差係数C、色収差係数C等が最小であるようなレンズ設計を行うと、C=7.1×Fが得られる。そして、電子の加速電圧V=5kV、焦点距離F=5mm、図9中の各通過孔の半径R=4.54mm、電極間間隔s=中間電極厚みt=2.27mmとすると、レンズ電極電圧-8250Vで、C=35.54mmが得られる。
 この値(C=35.54mm)を、孔径10mm、磁極間隙間5mmの同一焦点距離の強励磁の磁界型レンズのC=4.3mmと比較すれば、減速型静電レンズの球面収差係数は、磁界型レンズの球面収差係数の約8.3倍となる。
 このように、減速型静電レンズの球面収差係数が大きくなるのは、中心軸と距離r0を保って並行に入射した電子が、入射側電極、中間電極、及び出射側電極を順次通過するときにこれらの作用(電場の力)を受け、図9に示すように、電子eは、入射側電極v1と中間電極v2との間で中心軸mから離れる方向に進み、中心軸mからの離間距離rが最大となったのち、中心軸mに向かう若しくは交わるような山のような軌跡を描きながら収束するためである。これは、下式(1)のように定められる球面収差係数Csの算出式において、rが大きくなると球面収差係数Csが大きくなることからも分かる。
Figure JPOXMLDOC01-appb-M000001
  ここで、Fは焦点距離、zは中心軸上の距離、Vは中心軸上の電位、V´はVをzについて微分したもの、´記号はzについての微分値、rは荷電粒子線から中心軸までの距離でzの関数、r´はrのzについての微分値を表す。
特開平10-241616号公報 特開2000-340152号公報
 しかしながら、従来の減速型静電レンズでは、上述したように、球面収差係数は、磁界型レンズの球面収差係数の約8.3倍であり、磁界型レンズと匹敵するレンズ性能を得られない。
 一方、前記中間電極に与える電圧を正電圧とした加速型静電レンズを用いれば、その軌道を、レンズの全範囲に亘って中心軸との距離を漸次小さくしながら収束する軌道として、レンズの球面収差係数を小さくすることもできるが、このような特性を得るには、例えば、50kVの電子をフォーカスする場合では、中間電極にその約10倍の電圧(500kV)を印加する必要があるなど、実用の範囲を超えるといった問題点を有している。
 本発明は、以上の問題点に着目し、荷電粒子の軌道に着目しその制御を行うことが、レンズの球面収差係数や印加電圧の低減に非常に有効であるという、発明者の鋭意研究の結果初めてなされたものであって、静電レンズの利点であるコンパクト性や軽量性を最大限に活かしつつ、収差性能や印加電圧の問題を解消することによって、対物レンズ等としても実用化に供しうる荷電粒子線用静電レンズを提供し、ひいてはそれを対物レンズとして備えた小型、軽量なSEM等の装置を実現化することを、その主たる所期課題とするものである。
 すなわち本発明に係る荷電粒子線用静電レンズは、中心軸上に並び設けた複数の電極を具備してなり、それら電極のうち荷電粒子の入射側に設けた複数の電極によって、荷電粒子の軌道半径を入射時の軌道半径である初期軌道半径を途中で越えることなく縮小させる第1電界領域と、この第1電界領域を通過した荷電粒子に対して、前記中心軸と平行に進む向きに力を与える第2電界領域と、を形成するとともに、前記電極のうち出射側に設けた複数の電極によって、荷電粒子の軌道半径が前記初期軌道半径を途中で越えることなく、かつ、荷電粒子の軌道を曲げて、前記第2電界領域から出たときの該荷電粒子の中心軸に対する軌道角度よりも大きい角度で中心軸と交わらせる第3電界領域を形成したものであることを特徴とする。
 このようなものであれば、荷電粒子が、この静電レンズに対する初期入射時における中心軸からの距離よりも大きくならないような軌道を描くため、前記式(1)におけるrが大きくなることを防いで、球面収差係数Csが大きくなることを防止することができる。また、第3電界領域によって荷電粒子がより大きな角度で中心軸に交わり、フォーカスされるので、レンズセンター(初期入射時における荷電粒子線の進行方向に引いた線と焦点における荷電粒子線の接線との交点)を焦点側に移動させて、レンズセンターと焦点との距離である焦点距離を短くすることができる。このように焦点距離を短くすれば、前記式(1)における焦点距離Fを小さくでき、この点からも球面収差係数Csを小さくすることができるし、分解能向上にも寄与できる。また、この球面収差係数が小さくなれば色収差係数も自ずと小さくなるなど、レンズ性能を向上させることができる。かかる効果は後述する減速型の静電レンズ構成とした場合に特に顕著となる一方、加速型の静電レンズ構成とした場合には、印加電圧の低減効果が顕著となり、加速型静電レンズの実用化を大きく推し進めることができる。そして、こういった効果から、本発明に係る荷電粒子線用静電レンズを対物レンズ等としても適用することが可能となり、ひいては極めて小型で軽量なSEM等の装置を実現化することができるようになる。
 特に減速型のものにおいては、中心軸と平行に入射した荷電粒子が、前記第2電界領域において中心軸と略平行に進行するように構成しておくことが好ましい。
 本発明の望ましい態様としては、前記第2電界領域における荷電粒子の軌道半径が、前記初期軌道半径の約45~約60%となるように構成しているものを挙げることができる。45%よりも小さくなると所望の位置に焦点を結ぶことが難しくなり、60%を超えると収差低減効果をそれほど得られなくなるためである。
 所望の電界領域を得るための設定パラメータとしては、電極の形状、電極間の距離、電極の印加電圧を挙げることができる。
 減速型静電レンズに本発明を適用する場合の好ましい態様としては、中間電極の両側に該中間電極よりも低電位の入射側電極及び出射側電極を配置して3電極減速型静電レンズを形成するとともに、前記中間電極と入射側電極との間に、該入射側電極よりも高電位の軌道制御電極を配置しておく。そして、前記入射側電極及び軌道制御電極によって、前記第1電界領域及び第2電界領域を形成するとともに、前記軌道制御電極、中間電極及び出射側電極によって前記第3電界領域を形成すればよい。なお、入射側電極及び出射側電極の電位を等しく設定した場合は、これら電極に前記中間電極を加えて、減速型ユニポテンシャル静電レンズが形成されることとなる。
 前記軌道制御電極を、その内周端部が外周側よりも中心軸方向に厚肉の形状にするとともに、前記中間電極を、その内周端部が外周側よりも中心軸方向に薄肉の形状にすれば、軌道制御電極の内周端部内の空間に、荷電粒子線を中心軸に対して平行にしようとする平行化電場、すなわち前記第2電界領域が形成され、しかも、この平行化電場に対する中間電極からの電場影響を可及的に低減できるため、その第2電界領域の最大化とそれに伴う荷電粒子の効率的な軌道平行化を促進することができる。
 同様の目的を達成するには、前記軌道制御電極の中央に形成された荷電粒子通過孔の孔径を、他の3つの電極の通過孔の孔径より小径にすることも考えられる。
 第2電界領域を通過した後の、荷電粒子の発散を抑制するには、前記軌道制御電極を、前記入射側電極と前記中間電極との中間位置よりも入射側電極寄りに配置することが好ましい。軌道制御電極と中間電極との間で生じる電位勾配を小さくして発散作用の低減を図れるからである。
 その他、前述した発散作用の低減や、平行化電場の効率的生成などに寄与する工夫としては、前記入射側電極の通過孔を、その孔径が入射側で小さく出射側で大きいテーパ形状のものとしたり、前記出射側電極の通過孔を、その孔径が入射側で大きく出射側で小さいテーパ形状のものとしたりすること等が挙げられる。
 加速型静電レンズに本発明を適用する場合の好ましい態様としては、荷電粒子の入射側から順に第1段電極及び該第1段電極よりも高電位の第2段電極を配置して、前記第1電界領域及び第2電界領域を形成するとともに、これら第1段電極及び第2段電極のさらに後方に、前記第2段電極よりも低電位の入射側電極、この入射側電極よりも高電位の中間電極、この中間電極よりも低電位の出射側電極を順に配置して3電極加速型静電レンズを形成し、この3電極加速型静電レンズによって前記第3電界領域を形成した構成のものを挙げることができる。なお、入射側電極及び出射側電極の電位を等しく設定した場合は、これら電極に前記中間電極を加えて、加速型ユニポテンシャル静電レンズが形成されることとなる。
 このように構成した本発明によれば、荷電粒子の軌道を、その中心軸からの距離が、初期入射時における中心軸からの距離よりも大きくならない(小さくなる)ようにするとともに焦点距離も小さく設定できるので、レンズの収差低減や高分解能化、あるいは低電圧化を促進でき、磁界型レンズと比べて、小型化や軽量化を図りながら、性能面で遜色のないレンズ性能を有する実用的な荷電粒子線用静電レンズを提供することができる。
本発明の一実施形態に係る電子用減速型静電レンズの模式的構成断面図。 同実施形態の効果を検証するためのシミュレーションモデル(実施例)を示す図。 同実施例の電極が生じさせる等電位線を示す図。 同実施例の電子の軌道を示す図。 本発明の他の実施形態に係る電子線用減速型静電レンズの効果を検証するためのシミュレーションモデルを示す図。 同モデルにおける電極が生じさせる等電位線を示す図。 同モデルにおける電子の軌道を示す図。 従来の磁界型レンズの模式的構成断面図。 従来の減速型静電レンズの模式的構成断面図。 従来の減速型静電レンズの効果を検証するためのシミュレーションモデル(比較例)を示す図。 同比較例の電極が生じさせる等電位線を示す図。 同比較例の電子の軌道を示す図。 本発明のさらに他の実施形態に係る加速型静電レンズの模式的構成断面図。
符号の説明
A・・・・・荷電粒子線用静電レンズ(電子線用減速型静電レンズ)
e・・・・・荷電粒子(電子)
h1・・・・入射側電極の通過孔
h2・・・・中間電極の通過孔
h3・・・・出射側電極の通過孔
h4・・・・軌道制御電極の通過孔
m・・・・・中心軸
n・・・・・入射側電極と中間電極との中間位置
r・・・・・電子の軌道半径(中心軸からの距離)
r0・・・・電子の初期軌道半径
V1・・・・第1番目の電極(入射側電極)
V2・・・・第3番目の電極(中間電極)
V3・・・・第4番目の電極(出射側電極)
V4・・・・第2番目の電極(軌道制御電極)
 以下、本発明の荷電粒子線用減速型静電レンズAの一実施形態について、図を参照しつつ説明する。
 本実施形態に係る荷電粒子線用減速型静電レンズAは、例えば走査型電子顕微鏡(SEM)等の光学系に用いられるものであって、図1に示すように、中央に負電荷の荷電粒子たる電子eの通過孔h1~h4(以下、通過孔hと総称することもある)をそれぞれ有する概略円環形状の複数(4つ)の電極V1~V4を、それらの中心軸mを合致させて同軸離間配置したものである。
 これら電極V1~V4のうちの3つ、すなわち、入射側電極V1、中間電極V2、及び出射側電極V3は、入射側電極V1及び出射側電極V3を基準電位(例えばアース電位)、中間電極V2をそれよりも低電位の負電位として、減速型3電極ユニポテンシャルレンズを形成しており、この3つの電極V1~V3が、本静電レンズAの基本構成である。
 しかして、本静電レンズAの特徴は、後に詳述するが、前記入射側電極V1と中間電極V2との間に、入射側電極よりも高電位にした軌道制御電極V4を配置し、電子eの軌道を巧みに制御して球面収差の低減等を図ったことにある。
 そこでまず、静電界を付与するための各電極V1~V4につき、説明する。
 入射側電極V1は、例えば、中央に貫通させた通過孔h1の孔径を入射側h1aから出射側h1bにかけて漸次拡開させることで、内周部の断面形状が、内周縁である先端V11を尖らせたテーパ形状を有するようにしたものである。本実施形態では、前述したように、この入射側電極V1に基準電位を印加している。
 軌道制御電極V4は、その厚み方向に対称な形状を有し、中央に通過孔h4を貫通させたものである。そして、内周部側を、通過孔h4に向かって漸次厚肉となり且つ入射側の内周縁V41及び出射側の内周縁V42をそれぞれ尖らせた断面形状(以下、断面略台形形状とも言う。)としている。また、本実施形態では、この軌道制御電極V4の通過孔h4の孔径を、他の電極V1~V3の通過孔h1~h3の孔径より小径にするとともに、通過孔h4の中心軸方向の長さを、通過孔h1~h3の中心軸方向の長さよりも極めて大きくしている。加えて、軌道制御電極V4を、入射側電極V1と中間電極V2との中間位置nよりも入射側電極V1寄りに配している。そして、この軌道制御電極V4には、正電位を印加している。
 中間電極V2は、その厚み方向に対称な形状を有し、中央に貫通させた通過孔h2を備えるものである。そして、内周部側を、通過孔h2に向かって漸次薄肉にすることで、内周縁V21を尖らせた断面形状としている。そして、この中間電極V2には、負電位を印加している。
 出射側電極V3は、中央に貫通させた通過孔h3の孔径を出射側h3bから入射側h3aにかけて漸次拡開させることで、内周部の断面形状が、内周縁である先端V31を尖らせたテーパ形状を有するようにしたものである。本実施形態では、この出射側電極V3には、入射側電極V1と等しい基準電位を印加している。
 以上のように構成された減速型静電レンズAの動作について説明する。
 まず、各電極V1~V4に電圧を印加すると、例えば図3に示すような等電位線で表される電場が形成される。より具体的には、このうち、入射側の2つの電極、すなわち、入射側電極V1と軌道制御電極V4とによって、入射時の軌道半径である初期軌道半径を途中で越えることなく電子eの軌道半径を縮小させる第1電界領域AR1と、この第1電界領域AR1を通過した電子eに対して、前記中心軸mと平行に進む向きに力を与える第2電界領域AR2が形成される。
 また、前記電極のうち出射側に設けた2つの電極、すなわち中間電極V2と出射側電極V3によって、電子eの軌道半径が前記初期軌道半径を途中で越えることなく、かつ、電子eの軌道を曲げて、該電子eを前記第2電界領域AR2から出たときの中心軸mに対する進行角度よりも大きい角度で中心軸mと交わらせる第3電界領域AR3が形成される。なお、図3の電場は、後述するモデル(図2)から得られるものである。
 この状態で電子eを、中心軸mからの距離(初期軌道半径)がr0の位置から入射側電極V1に、中心軸mと平行に入射する。入射された電子eが通過孔h1を通過して軌道制御電極V4に向かうとき、電子eは、第1電界領域AR1における斜めの加速電界の作用を受けて、軌道が内向きに曲げられ、中心軸mに近づく向き、つまり収束する向きで、軌道制御電極V4の通過孔h4に導入される。なお、ここでは、この軌道制御電極V4の通過孔h4に導入されるときの電子eの軌道半径(r1)が、初期軌道半径(r0)の45~60%となるよう電場を設定している。
 一方、軌道制御電極V4の通過孔h4内には、電子eの軌道を中心軸mに対して平行にしようとする平行化電場である第2電界領域AR2(以下、平行化電場とも言う)が第1電界領域AR1に隣接して形成されている。そして、第1電界領域AR1からの電子eは、図4からも明らかなように、第2電界領域AR2との境界近傍、又は第2電界領域AR2に若干入った領域において、中心軸mにより平行に近い向きに徐々に曲げられながら進む。その後、第2電界領域AR2の中心領域では、やはり図4から明らかなように、その前後の電界領域AR1、AR3からの電界影響が実質的に排除されて、電位勾配の極めて小さな電界領域が形成されるため、この電界領域では、電子eには、発散、収束いずれの方向にも実質的にほとんど力は作用せず、電子eはそのまま進行する。なお、この実施形態では、平行化電場の終端部で、その軌道が中心軸mとほぼ平行になる。
 このようにして平行化電場を抜け出た電子eは、第2電界領域AR2に隣接する第3電界領域AR3に進入する。この第3電界領域AR3における、軌道制御電極V4から中間電極V2までの間には、当初、わずかに斜めで発散作用を有する減速電界が形成されているため、この電子eはその電界からの力を受けて、若干発散した後、中間電極V2から出射側電極V3までの間の斜めの加速電界の影響で、急カーブを描きながら前記中心軸mに向かい、中心軸m上の焦点でフォーカスされる。
 したがってこのような構成によれば、収束に寄与する最終段、すなわち第3電界領域AR3を電子eが通過するときの軌道を、その中心軸mからの距離(r)が、該電子eの初期入射時における中心軸mからの距離(r0)よりも小さくなるようにしているため、前記式(1)におけるrが、r0を超えることを防いで、球面収差係数Csを低減させることができる。
 また、平行化電場で一旦電子eの軌道を中心軸mに平行又は平行に近い状態にした後、その軌道を第3電界領域AR3によって収束方向に曲げ、平行化電場での軌道よりも大きな角度で中心軸mと交わるように構成し、レンズセンターを、電子eが平行化電場を進まない場合と比べて焦点側に移動させるようにしているので、焦点距離Fを小さくでき、式(1)から明らかなように、この点においても球面収差係数Csの低減を促進することができる。なお、この点により分解能向上も図れる。
 そして、この球面収差係数が小さくなれば色収差係数も自ずと小さくなるなど、レンズ性能がより向上することとなる。
 収差係数Csの低減には、平行化電場の効率的な形成や、本レンズAの途中に形成される発散電場の可及的抑制も寄与している。すなわち、前記各電極V1~V4の形状(軌道制御電極V4を断面台形状としたり他の電極V1~V3の内周端を尖らせたりしている点、孔径が違う点など)や間隔(軌道制御電極V4と中間電極V2との間の距離を、入射側電極V1と軌道制御電極V4との間の距離よりも大きく設定している点など)、電位の設定によって、例えば、軌道制御電極V4の内周端部内の空間に形成される平行化電場に対する、入射側電極V1及び中間電極V2からの電場影響を可及的に低減しているため、第2電界領域AR2の最大化とそれに伴う荷電粒子の効率的な軌道平行化を促進することができる。また、第3電界領域AR3の前半に形成される発散電場の電位勾配を小さくしたり、その等電位線の向きを中心軸mにできるだけ直交させるなどしているので、電子eに対する発散作用を低減させることができる。
 このようにして、本静電レンズAによれば、レンズの大幅な収差低減を、大型化や複雑化を招くことなく、実現することができ、磁界型レンズと比べて略遜色のないレンズ性能を有する実用的な電子用減速型静電レンズAを提供することができるようになる。
 以上のように構成した、本実施形態の減速型静電レンズAの効果を検証するために、次に示すような実施例と比較例とを対比したシミュレーションを行った。
 (1)実施例及び比較例について
 シミュレーションに用いた実施例および比較例は、以下に示すようなものである。
 なお、電子eの軌道は、レンズ軸(中心軸m)と距離r0を保って並行に入射するものとした。また、電子の軌道は、Laplaceの方程式から、近軸電子軌道方程式を導き、それをMunroのソフトウエアを使ってコンピュータ計算により求めるようにした。
 <実施例>
 構成:図2に示す構成とし、各電極に印加する電位は以下の条件とする。
 加速電圧 ・・・・・・・ 5.0kV
 入射側電極V1 ・・・・ 5.0kV
 軌道制御電極V4 ・・ 15.8kV
 中間電極V2 ・・・・ -2.47kV
 出射側電極V3 ・・・・ 5.0kV
 入射側電極V1と軌道制御電極V4との間隔:3mm
 軌道制御電極V4の厚み:0.5mm
 軌道制御電極V4と中間電極V2の間隔:5mm
 中間電極V2の厚み:2.0mm
 中間電極V2と出射側電極V3との間隔:2mm
 入射側電極V1と出射側電極V3との中心間距離:13mm
 軌道制御電極V4の孔径:2mm
 中間電極V2の孔径:6mm
 <比較例>
 構成:図10に示す構成とし、各電極に印加する電位は以下の条件とする。
 加速電圧 ・・・・・・・ 5.0kV
 入射側電極V1 ・・・・ 5.0kV
 中間電極V2 ・・・・ -5.555kV
 出射側電極V3 ・・・・ 5.0kV
 入射側電極V1と出射側電極V3との中心間距離U:7.0mm
 各通過孔hの孔径(2R):5mm
 電極間間隔S:2.0mm
 中間電極V2の厚みT:2.0mm
 (2)シミュレーションの結果および考察
 (2-1)実施例のシミュレーション結果
 図2に示す電極配置によれば、図3に示す電場が形成される。
 この電場を通過した電子は、図4に示す軌跡を描く。このときの球面収差係数Csは、6.177mmである。
 (2-2)比較例のシミュレーション結果
 図10に示す電極配置によれば、図11に示す電場が形成される。
 図11に示す電場を通過した電子は、図12に示す軌跡を描く。このときの球面収差係数Csは、38.72mmである。
 (2-3)考察
 実施例の球面収差係数の値(6.177)を、比較例の球面収差係数の値(38.72)の約0.16倍にまで小さくでき、また、背景技術で説明した磁界型レンズの球面収差係数の値(4.3)に大きく近づけられることを明らかにできた。したがって、電子eの軌道を制御することでレンズの収差性能を向上させて、磁界型レンズと比べて略遜色のないレンズ性能を有する減速型静電レンズAを提供できることが確認できた。
 なお、本発明は前記実施形態に限られるものではない。
 以下の説明において前記実施形態に対応するものには同一の符号を付すこととする。
 例えば、中間電極V2の内周縁V21を尖らせた形状としているが、中心軸mに延びる平坦な周面とすることもできる。また、軌道制御電極V4を、前記中間位置nよりも入射側電極V1寄りに配しているが、この中間位置n上に配してもよい。
 これらの効果を確認するために、図5に示す他の実施例のシミュレーションモデルを作成し、上述と同様のシミュレーションを行った。
 各電極に印加する電位は以下の条件とする。
 加速電圧 ・・・・・・・ 5.0kV
 入射側電極V1 ・・・・ 5.0kV
 軌道制御電極V4 ・・ 10.0kV
 中間電極V2 ・・・・ -1.72kV
 出射側電極V3 ・・・・ 5.0kV
 入射側電極V1の厚み:1mm
 入射側電極V1と軌道制御電極V4との間隔:2mm
 軌道制御電極V4の厚み:2mm
 軌道制御電極V4と中間電極V2の間隔:2mm
 中間電極V2の厚み:2.0mm
 中間電極V2と出射側電極V3との間隔:2mm
 入射側電極V1と出射側電極V3との中心間距離:11mm
 軌道制御電極V4の孔径:2mm
 中間電極V2の孔径:6mm
 図5に示す電極配置によれば、図6に示す電場が形成される。
 この電場を通過した電子は、図7に示す軌跡を描く。このときの球面収差係数Csは、21.43mmである。
 この実施例の球面収差係数の値(21.43)を、比較例の球面収差係数の値(38.72)の約0.55倍にまで小さくでき、また、背景技術で説明した磁界型レンズの球面収差係数の値(4.3)に近づけられることを明らかにできた。したがって、電子eの軌道を制御することでレンズの収差を低減させて、磁界型レンズと比べて比較的遜色のないレンズ性能を有する減速型静電レンズAを提供できることが確認できた。
 荷電粒子を電子とし、SEMやTEMの対物レンズとしたり、その他の荷電粒子(例えば、正イオンや負イオン)を用いたりすることもできる。例えば、正イオンの場合には、各電極に上述の実施形態とは正負を逆転した電圧を印加し、走査型イオン顕微鏡などに用いることもできる。また、マイクロフォーカス型のX線管等に適用することもできる。
 さらに、加速型の静電レンズにも本発明を適用することが可能である。この場合、図13に示すように、荷電粒子(電子)の入射側から順に第1段電極V5及び該第1段電極V5よりも高電位の第2段電極V6を配置して、前記第1電界領域及び第2電界領域を形成するとともに、これら第1段電極及び第2段電極のさらに後方に、前記第2段電極よりも低電位の入射側電極V1、この入射側電極V1よりも高電位の中間電極V2、この中間電極V2よりも低電位の出射側電極V3を順に配置して3電極ユニポテンシャル加速型静電レンズを形成し、この3電極加速型静電レンズによって前記第3電界領域を形成すればよい。
 このようなものであれば、第1、第2段電極V5、V6(第1、第2電界領域)によって電子軌道を傾斜させ、後段の3電極加速型静電レンズに、電子を予め角度を付けて入射させることができるので、加速電圧の5倍程度は必要であると言われていた電極への印加電圧を、少なくとも1/2程度にまで減少させることができる。そして、このことにより、絶縁耐圧などの問題を解決して、この種の加速型静電レンズを、従来の引き出し電極のみならず、SEM等の対物レンズに利用可能にできる。
 その他、本発明は前記実施形態に限られず、その趣旨を逸脱しない範囲で種々の変形が可能であるのは言うまでもない。

Claims (11)

  1.  荷電粒子を通過させる通過孔を有した複数の電極を、中心軸上に並び設けたものであって、
     それら電極のうち荷電粒子の入射側に設けた複数の電極によって、荷電粒子の軌道半径を入射時の軌道半径である初期軌道半径を途中で越えることなく縮小させる第1電界領域と、この第1電界領域を通過した荷電粒子に対して、前記中心軸と平行に進む向きに力を与える第2電界領域と、を形成するとともに、
     前記電極のうち出射側に設けた複数の電極によって、荷電粒子の軌道半径が前記初期軌道半径を途中で越えることなく、かつ、荷電粒子の軌道を曲げて、前記第2電界領域から該荷電粒子が出たときの中心軸に対する軌道角度よりも大きい角度で中心軸と交わらせる第3電界領域を形成するようにした荷電粒子用静電レンズ。
  2.  中心軸と平行に入射した荷電粒子が、前記第2電界領域において中心軸と略平行に進行するように構成している請求項1記載の荷電粒子線用静電レンズ。
  3.  前記第2電界領域における荷電粒子の軌道半径が、前記初期軌道半径の45~60%となるように構成している請求項2記載の荷電粒子線用静電レンズ。
  4.  前記各電界領域を、電極の形状、電極間の距離、又は電極の印加電圧の少なくともいずれかを設定して形成している請求項1記載の荷電粒子線用静電レンズ。
  5.  中間電極の両側に該中間電極よりも低電位の入射側電極及び出射側電極を配置して3電極減速型静電レンズを形成するとともに、前記中間電極と入射側電極との間に、該入射側電極よりも高電位の軌道制御電極を配置しておき、
     前記入射側電極及び軌道制御電極によって、前記第1電界領域及び第2電界領域を形成し、前記中間電極及び出射側電極によって前記第3電界領域を形成するようにしている請求項1記載の荷電粒子線用静電レンズ。
  6.  前記軌道制御電極は、内周端部を外周側よりも中心軸方向に厚肉にした形状であり、
     前記中間電極は、内周端部を外周側よりも中心軸方向に薄肉にした形状である請求項5記載の荷電粒子線用静電レンズ。
  7.  前記軌道制御電極の中央に形成された荷電粒子通過孔の孔径を、他の3つの電極の通過孔の孔径より小径にしている請求項5記載の荷電粒子線用静電レンズ。
  8.  前記軌道制御電極を、前記入射側電極と前記中間電極との中間位置よりも入射側電極寄りに配置している請求項5記載の荷電粒子線用静電レンズ。
  9.  前記入射側電極の通過孔は、その孔径が入射側で小さく出射側で大きいテーパ形状を有している請求項5記載の荷電粒子線用静電レンズ。
  10.  前記出射側電極の通過孔は、その孔径が入射側で大きく出射側で小さいテーパ形状を有している請求項5記載の荷電粒子線用静電レンズ。
  11.  荷電粒子の入射側から順に第1段電極及び該第1段電極よりも高電位の第2段電極を配置して、前記第1電界領域及び第2電界領域を形成するとともに、
     これら第1段電極及び第2段電極のさらに後方に、前記第2段電極よりも低電位の入射側電極、この入射側電極よりも高電位の中間電極、この中間電極よりも低電位の出射側電極を順に配置して3電極加速型静電レンズを形成し、この3電極加速型静電レンズによって前記第3電界領域を形成するようにしている請求項1記載の荷電粒子線用静電レンズ。
PCT/JP2009/055665 2008-03-26 2009-03-23 荷電粒子線用静電レンズ WO2009119504A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/934,966 US8669534B2 (en) 2008-03-26 2009-03-23 Electrostatic lens for charged particle radiation
CN200980110865.0A CN101981650B (zh) 2008-03-26 2009-03-23 带电粒子束用静电透镜
JP2009513498A JP5306186B2 (ja) 2008-03-26 2009-03-23 荷電粒子線用静電レンズ
DE112009000768T DE112009000768T5 (de) 2008-03-26 2009-03-23 Elektrostatische Linse für geladene Teilchenstrahlung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-082084 2008-03-26
JP2008082084 2008-03-26

Publications (1)

Publication Number Publication Date
WO2009119504A1 true WO2009119504A1 (ja) 2009-10-01

Family

ID=41113697

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/055665 WO2009119504A1 (ja) 2008-03-26 2009-03-23 荷電粒子線用静電レンズ

Country Status (6)

Country Link
US (1) US8669534B2 (ja)
JP (1) JP5306186B2 (ja)
CN (1) CN101981650B (ja)
DE (1) DE112009000768T5 (ja)
TW (1) TW200952023A (ja)
WO (1) WO2009119504A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102136406A (zh) * 2011-01-28 2011-07-27 北京航空航天大学 电子显微镜的小聚光镜
JP2013008534A (ja) * 2011-06-23 2013-01-10 Canon Inc 荷電粒子線レンズ用電極
EP2672501A1 (en) * 2012-06-07 2013-12-11 Fei Company Focused charged particle column for operation at different beam energies at a target
WO2014185060A1 (ja) * 2013-05-13 2014-11-20 国立大学法人神戸大学 荷電粒子光学レンズ装置及び荷電粒子光学レンズ装置の制御方法
JP2015191740A (ja) * 2014-03-27 2015-11-02 住友重機械イオンテクノロジー株式会社 イオン注入装置、最終エネルギーフィルター、及びイオン注入方法
JP2016508664A (ja) * 2013-11-14 2016-03-22 マッパー・リソグラフィー・アイピー・ビー.ブイ. 多電極電子光学系
JPWO2015045468A1 (ja) * 2013-09-30 2017-03-09 株式会社日立ハイテクノロジーズ 荷電粒子ビーム装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10586625B2 (en) 2012-05-14 2020-03-10 Asml Netherlands B.V. Vacuum chamber arrangement for charged particle beam generator

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11329321A (ja) * 1998-05-14 1999-11-30 Hitachi Ltd タンデム加速静電レンズ

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3286187A (en) * 1961-10-16 1966-11-15 Minnesota Mining & Mfg Ion source utilizing a spherically converging electric field
US5254856A (en) * 1990-06-20 1993-10-19 Hitachi, Ltd. Charged particle beam apparatus having particular electrostatic objective lens and vacuum pump systems
JP3862344B2 (ja) 1997-02-26 2006-12-27 株式会社日立製作所 静電レンズ
JP2000340152A (ja) 1999-05-26 2000-12-08 Nikon Corp 静電レンズ及び写像投影光学装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11329321A (ja) * 1998-05-14 1999-11-30 Hitachi Ltd タンデム加速静電レンズ

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102136406A (zh) * 2011-01-28 2011-07-27 北京航空航天大学 电子显微镜的小聚光镜
CN102136406B (zh) * 2011-01-28 2012-07-04 北京航空航天大学 电子显微镜的小聚光镜
JP2013008534A (ja) * 2011-06-23 2013-01-10 Canon Inc 荷電粒子線レンズ用電極
EP2672501A1 (en) * 2012-06-07 2013-12-11 Fei Company Focused charged particle column for operation at different beam energies at a target
WO2014185060A1 (ja) * 2013-05-13 2014-11-20 国立大学法人神戸大学 荷電粒子光学レンズ装置及び荷電粒子光学レンズ装置の制御方法
JPWO2015045468A1 (ja) * 2013-09-30 2017-03-09 株式会社日立ハイテクノロジーズ 荷電粒子ビーム装置
JP2016508664A (ja) * 2013-11-14 2016-03-22 マッパー・リソグラフィー・アイピー・ビー.ブイ. 多電極電子光学系
KR20160086391A (ko) * 2013-11-14 2016-07-19 마퍼 리쏘그라피 아이피 비.브이. 멀티-전극 전자 광학
KR102368876B1 (ko) * 2013-11-14 2022-03-03 에이에스엠엘 네델란즈 비.브이. 멀티-전극 전자 광학
JP2015191740A (ja) * 2014-03-27 2015-11-02 住友重機械イオンテクノロジー株式会社 イオン注入装置、最終エネルギーフィルター、及びイオン注入方法

Also Published As

Publication number Publication date
TW200952023A (en) 2009-12-16
CN101981650B (zh) 2013-05-01
DE112009000768T5 (de) 2011-02-24
US20130009070A1 (en) 2013-01-10
CN101981650A (zh) 2011-02-23
US8669534B2 (en) 2014-03-11
JP5306186B2 (ja) 2013-10-02
JPWO2009119504A1 (ja) 2011-07-21

Similar Documents

Publication Publication Date Title
JP5306186B2 (ja) 荷電粒子線用静電レンズ
JP6505213B2 (ja) 多重反射飛行時間型分析器
JP5831770B2 (ja) イオンビームの中心線軌跡を中心に静電レンズを制御する方法および装置
JP6128746B2 (ja) イオンビームカラム
CA2860136A1 (en) First and second order focusing using field free regions in time-of-flight
JP4074185B2 (ja) エネルギーフィルタ及び電子顕微鏡
Mandal et al. Simulation study and analysis of a compact einzel lens-deflector for low energy ion beam
JP3151308B2 (ja) 光学鏡筒
JPH06105598B2 (ja) 荷電ビーム用レンズ
JP5069066B2 (ja) 収差補正装置及び収差補正方法
JP6432905B2 (ja) リターディングを用いたエネルギーアナライザ・モノクロメータ
JP6261228B2 (ja) 集束イオンビーム装置、集束イオン/電子ビーム加工観察装置、及び試料加工方法
JPH11260312A (ja) オメガ型エネルギーフィルタ
US8921805B2 (en) Ion beam system and method of operating an ion beam system
JP4691347B2 (ja) イオン注入装置
JP7425897B2 (ja) 収差補正装置及び電子顕微鏡
JP7207712B2 (ja) 荷電粒子ビーム操作装置、荷電粒子ビーム加速装置、及び荷電粒子ビーム操作方法
JPH05128985A (ja) マイクロビーム発生装置
JP5971631B2 (ja) 高電位勾配型単一ギャップ加速管
JP3859434B2 (ja) 電子ビーム描画装置およびパターン描画方法
JP3040272B2 (ja) カラー受像管装置
Waheeb et al. CAD of Ion Mirror as an Aberration Corrector
JP2006134737A (ja) イオンビーム加工装置
JP3040271B2 (ja) カラー受像管装置
WO2009141655A2 (en) Improved particle beam generator

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980110865.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2009513498

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09726099

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12934966

Country of ref document: US

RET De translation (de og part 6b)

Ref document number: 112009000768

Country of ref document: DE

Date of ref document: 20110224

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 09726099

Country of ref document: EP

Kind code of ref document: A1