WO2009118828A1 - 自動塗装装置 - Google Patents

自動塗装装置 Download PDF

Info

Publication number
WO2009118828A1
WO2009118828A1 PCT/JP2008/055562 JP2008055562W WO2009118828A1 WO 2009118828 A1 WO2009118828 A1 WO 2009118828A1 JP 2008055562 W JP2008055562 W JP 2008055562W WO 2009118828 A1 WO2009118828 A1 WO 2009118828A1
Authority
WO
WIPO (PCT)
Prior art keywords
spray
coating
movement
width
speed
Prior art date
Application number
PCT/JP2008/055562
Other languages
English (en)
French (fr)
Inventor
繁 中島
邦明 飯泉
信久 前田
泉 中島
Original Assignee
有明スチールセンター株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有明スチールセンター株式会社 filed Critical 有明スチールセンター株式会社
Priority to JP2010505069A priority Critical patent/JP4589459B2/ja
Priority to PCT/JP2008/055562 priority patent/WO2009118828A1/ja
Publication of WO2009118828A1 publication Critical patent/WO2009118828A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B13/00Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00
    • B05B13/02Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work
    • B05B13/04Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work the spray heads being moved during spraying operation
    • B05B13/0463Installation or apparatus for applying liquid or other fluent material to moving work of indefinite length
    • B05B13/0468Installation or apparatus for applying liquid or other fluent material to moving work of indefinite length with reciprocating or oscillating spray heads
    • B05B13/0473Installation or apparatus for applying liquid or other fluent material to moving work of indefinite length with reciprocating or oscillating spray heads with spray heads reciprocating along a straight line
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B12/00Arrangements for controlling delivery; Arrangements for controlling the spray area
    • B05B12/08Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means
    • B05B12/12Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means responsive to conditions of ambient medium or target, e.g. humidity, temperature position or movement of the target relative to the spray apparatus
    • B05B12/122Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means responsive to conditions of ambient medium or target, e.g. humidity, temperature position or movement of the target relative to the spray apparatus responsive to presence or shape of target
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B13/00Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00
    • B05B13/02Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work
    • B05B13/04Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work the spray heads being moved during spraying operation
    • B05B13/0447Installation or apparatus for applying liquid or other fluent material to conveyed separate articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B13/00Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00
    • B05B13/02Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work
    • B05B13/04Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work the spray heads being moved during spraying operation
    • B05B13/0405Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work the spray heads being moved during spraying operation with reciprocating or oscillating spray heads
    • B05B13/041Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work the spray heads being moved during spraying operation with reciprocating or oscillating spray heads with spray heads reciprocating along a straight line

Definitions

  • the present invention relates to an automatic coating apparatus for uniformly coating an object to be painted such as steel used for ship building materials in one line direction.
  • an automatic coating apparatus This is a device that automatically recognizes the shape of the object to be transported and automatically turns the spray gun on and off according to the shape of the object to be transported.
  • a detection device in which a large number of sensors are arranged in a transverse direction across the conveying device, a coating device having a spray gun, and a control device that processes information from the detection device and generates a coating signal for turning the spray gun on and off. It is to be prepared.
  • FIG. 1 shows a coating pattern in a case where a coating object is moved by a transport device and sprayed while being moved two and a half times in a direction intersecting the line direction with a spray gun having a pattern width along the line direction. Is.
  • the figure (a) shows the case where spray coating is performed twice during both reciprocations, and the figure (b) shows the case where spray coating is performed only once in one way during reciprocation. ing.
  • a uniform double coating can be performed within the double slanted range S1 shown in FIG. 5A, and a uniform single coating can be performed within the slanted range S2 in FIG. It can be performed.
  • the relationship of the formula (1) is broken, for example, when the synchronization of the conveyance speed x and the reciprocating movement speed y is broken without changing L and P, and y> L ⁇ x / P, As shown in FIG. 3C, excessive overcoating (coating unevenness) locations S3 (three times application location) and S4 (four times application location) for the second application are generated.
  • the conveyance speed x is a parameter that affects the work speed of the painting operation, and the film thickness is determined by the reciprocating movement speed y at the conveyance speed x.
  • the spray pattern width P is set by the tip count of the spray gun and the distance between the gun and the surface to be coated in consideration of the paint viscosity characteristics, the coating pressure, and the like. As described above, when the conveyance speed x, the reciprocating movement speed y, and the spray pattern width P are set according to the coating conditions, in order to perform the above-described uniform coating without uneven coating, the reciprocating movement distance of the spray gun one reciprocating time. L is naturally determined.
  • the moving speed y and the pattern width P are adjusted according to the set conveying speed x of the object to be coated, and the apparatus is created. While the spray gun is reciprocated at a constant moving distance L that is a fixed length at the time, the on / off timing of the spray gun is controlled according to the detected width and position of the object to be coated.
  • the reciprocating speed of the spray has a speed limit limited by the mechanical breakage limit of the driving chain or rod, the reciprocating distance L is actually moved while satisfying the equation (1).
  • the limit of the moving speed causes a speed limit on the conveying speed of the object to be coated, which becomes a bottleneck for improving the work efficiency of the painting work.
  • the transport speed x is changed so that the desired coating thickness can be obtained for each material and shape of the steel or other object to be coated, making it even more difficult to determine the optimum coating conditions.
  • the transport speed x it is possible to change the spray pattern width P by changing the tip of the spray gun, changing the spray discharge pressure, changing the spray reciprocating speed y, etc.
  • this requires a lot of time especially for changing the tip of the spray gun.
  • the reciprocating distance L of the spray gun may be changed accordingly.
  • the reciprocating distance L of the spray gun has a maximum limit depending on the configuration of the apparatus, it is currently impossible to respond flexibly by changing the distance L.
  • the present invention is an example of a problem to deal with such a problem. That is, in an automatic coating apparatus that detects the object to be conveyed and controls the operation of the coating apparatus, it is possible to perform an economical operation while performing homogeneous coating and to suppress a decrease in the life of the apparatus. By improving the maintainability of the equipment by preventing paint clogging, and by virtually changing the reciprocation distance L for executing homogeneous coating, work efficiency can be improved, and the object to be coated It is an object of the present invention to be able to quickly and arbitrarily change the setting for each material and shape, and to easily set and adjust optimum coating conditions.
  • an automatic coating apparatus comprises at least the following configuration.
  • a coating object detection means for detecting a two-dimensional shape and position of a coating object conveyed by the conveying means by disposing a plurality of sensors at predetermined intervals in a direction crossing the line direction; Based on the detection output of the object detection means, at least the spray means and a control means for controlling the operation of the spray movement means, the control means comprises The spray means for setting the movement width of the spray movement means corresponding to the width of the painting object detected by the painting object detection means, and performing homogeneous coating without excessive coating and without unpainted An automatic coating apparatus for controlling an operation timing of the spray moving means.
  • the present invention has such a feature, and controls the operation timing of the spray means and the spray moving means to virtually execute the movement between the reciprocating movement distances L required for performing the homogeneous coating. Therefore, the actual movement width of the spray moving means is set according to the detected width of the object to be coated, and the operating conditions necessary for homogeneous coating are set while operating the spray means within the set movement width. Satisfied.
  • FIG. 2 is an explanatory view illustrating the basic configuration of the automatic coating apparatus according to one embodiment of the present invention.
  • the automatic coating apparatus according to the embodiment of the present invention includes at least a conveying means 10, a spray means 20, a spray moving means 30, a coating object detecting means 40, and a control means 50.
  • the conveyance means 10 can be constituted by, for example, a roller conveyor provided with a conveyance roller 11, a roller drive connecting chain 12, and a roller conveyor drive motor 13, and the conveyance object W is set in one line direction. It is transported at a speed x.
  • the conveyance speed x can be set by the rotation speed of the conveyor drive motor 13.
  • an inverter motor can be used and driven via a frequency control device.
  • the spray unit 20 includes, for example, a spray gun 21 equipped with a replaceable spray tip 21A, a hose 22 for supplying paint and air, a paint jetting unit 23, and the like. Then, the paint is sprayed with the set pattern width P along the line direction.
  • the paint jetting means 23 includes ancillary equipment such as a paint tank, an airless pump, a solenoid valve, a high-pressure compressor, and a control device for controlling the jet of paint.
  • the setting pattern width P can be set with respect to the selected paint viscosity characteristic, coating pressure, and the like, depending on the tip count of the spray gun 21 and the distance between the spray gun 21 and the surface to be coated in the coating object W.
  • the paint is sprayed by turning high-pressure air on and off with an electromagnetic valve and spraying the paint sent by an airless pump.
  • the spray moving means 30 includes, for example, a spray moving chain device 31, a spray moving motor 32, and the like, and spray means at a set moving speed y in a direction (for example, an orthogonal direction) intersecting the line direction of the conveying means 10.
  • (Spray gun 21) is reciprocated.
  • the movement speed y can be set by the rotation speed of the spray movement motor 32, and the position (movement start position and movement stop position) of the spray gun 21 can be controlled by the rotation position control of the spray movement motor 32.
  • As the spray movement motor 32 a servo motor can be adopted, and according to this, accurate and high-speed positioning control of the spray gun 21 can be performed.
  • the coating object detection unit 40 is installed at an upstream position in the line direction away from the installation position of the spray moving unit 30 with respect to the conveyance unit 10, and a plurality of coating object detection units 40 are provided at predetermined intervals in a direction intersecting the line direction (for example, orthogonal direction).
  • One sensor 41 is arranged to detect the two-dimensional shape and position of the coating object W conveyed by the conveying means 10.
  • a proximity sensor is used when the steel material is the coating object W.
  • a sensor driving device 42 that reciprocates the support portion of the sensor 41 along the arrangement direction of the sensors 41 within the sensor interval, and a sensor position detection device 43 that detects the position of the sensor 41 during the reciprocating motion. Can be added.
  • An air cylinder or the like can be used as the sensor driving device 42, and the sensor position detection device 43 can be formed by an encoder or the like incorporated in a wheel portion provided on a support portion of the sensor 41. According to this, the distance moved by the air cylinder can be calculated from the signal from the encoder, and the current position of the sensor 41 that has detected the coating object W can be determined.
  • the coating object detection means 40 can output the position orthogonal to the line direction of the coating object W conveyed across the sensor 41 by the sensor 41 according to the progress of the conveyance. Moreover, the position of the coating object W in the line direction after crossing the sensor 41 can be output by performing the operation detection of the conveying unit 10 by detecting the rotation of the conveying roller 11 together. Thereby, the coating object detection means 40 can detect the two-dimensional shape of the coating object W and the position on the line.
  • the control means 50 controls at least the operation of the spray means 20 and the spray moving means 30 based on the detection output of the coating object detection means 40.
  • the operation of the conveying means 10 and the operation of the sensor driving means 42 can be controlled as necessary, and the accuracy of the detection output of the coating object detection means 40 is improved based on the detection output of the sensor position detection device 43. You can also.
  • control means 50 receives the detection signal from the coating object detection means 40 including the sensor position detection means 43, and controls the operation of the paint ejection means 23, the spray movement motor 32, and the conveyor drive motor 13. Output a signal.
  • the conveyance speed x can be arbitrarily set and controlled according to the type of the painting object W, and the two-dimensional of the painting object W detected by the painting object detection means 40 including the sensor position detection means 43.
  • the movement width of the spray moving means 21, the moving speed y, the movement start or stop timing, the spray start or stop timing of the spray means 20, and the like can be arbitrarily set and controlled.
  • control means 50 determines the spray start / stop timing in the spray means 20 based on the detection result of the two-dimensional shape and position of the coating object W transported at the set transport speed x.
  • the main functions are control, control of timing and position of movement start / stop in the spray moving means 30, or change of setting of the moving speed y.
  • the movement width of the spray movement means 30 corresponding to the width of the painting object W detected by the painting object detection means 40 is set, and there is no excessive overcoating and no unpainted areas.
  • the operation timings of the spray means 20 and the spray moving means 30 are controlled so as to execute homogeneous coating.
  • FIG. 3 is a block diagram showing a functional configuration for the control means 50 to perform such control.
  • the control means 50 sets the conveyance speed x and the movement speed y and receives the change information of the set pattern width P, and sets the coating condition setting means 51 for setting the conditions for performing uniform coating with the set film thickness.
  • the object recognition means 52 for recognizing the two-dimensional shape and position of W, the movement condition setting means 53 for setting the movement width according to the movement start position and movement stop position of the spray movement means 30, and the movement start / stop of the spray movement means 30
  • a movement timing setting means 54 for setting timing and a spray timing setting means 55 for setting spray start / stop timing of the spray means 20 are provided.
  • the movement start timing and movement stop timing of the spray moving means 30 are set, and when the coating object W being conveyed reaches the spray position within the movement width of the spray moving means, The spraying of the means 20 is started and stopped.
  • FIG. 4 is an explanatory diagram for explaining an operation example of the control means 50 having such a function.
  • the double hatched portion indicates the coating range of the uniform two-time coating.
  • L (y / x) of the homogeneous coating pattern S L based on virtual reciprocating distance L obtained as a ⁇ P virtually Set.
  • the coating object recognition means 52 causes the two-dimensional shape and position of the coating object W on the transport means 10 to move. Recognize As for the position of the coating object W on the transport unit 10, a position perpendicular to the line direction is detected by the sensor 41, and a position in the line direction is detected by detecting the operation of the transport unit 10. Specifically, the recognition of the two-dimensional shape data and the position of the painting object W is performed by the painting object W scheduled to pass through the painting range while the spray moving means 30 virtually moves one way with the virtual reciprocation distance L. Recognize the maximum width of. Thereby, the movement width of the spray moving means 30 can be set so as to include the maximum width.
  • the movement condition setting means 53 sets a position Y 0 and a position Y 1 that are the movement width of the spray movement means 30 according to the two-dimensional shape and position of the painting object W recognized by the painting object recognition means 52. . This setting can be performed for each one-way movement of the spray moving means 30 or for each reciprocation. As illustrated, the position Y 0 and the position Y 1 are set so as to include the recognized width Wy of the painting object W. The position Y 0 and the position Y 1 is the target value in the position control of the spray moving motor 32 (servomotor).
  • the position Y 0 and the position Y 1 as the movement width of the spray moving means 30 are set to be wider than the recognized width Wy of the coating object W, and the spray movement is performed.
  • the acceleration distance movement until the means 30 is moved at a constant speed at the set speed y from the stop state is prevented from being applied to the width Wy of the coating object W. That is, as the movement width of the spray moving means 30, the spray moving means 40 moves from the stop state to the width Wy of the coating object W detected by the painting object detection means 40 until it moves at a constant speed of the set moving speed y.
  • the minimum width is set by adding the acceleration (deceleration) distance.
  • the movement timing setting means 54 starts the movement of the spray movement means 30 when the coating object W approaches the spray position where the spray gun 21 is installed by a predetermined distance.
  • the initial position of the spray gun 21 is arbitrary (for example, a reference position in consideration of maintenance), but the movement is started when the coating object W approaches a distance with a margin.
  • the movement of the spray moving means 30 is started when the coating object W enters the spray region 2 ⁇ / b> P while the spray gun 21 at an arbitrary position makes one round trip at the virtual set distance L. Then, first, where it is stopped by operating the spray moving means 30 to move the spray gun 21 to the position Y 1 corresponding to the width end of the coated object W.
  • the moving direction is reversed and the spray moving means 30 is moved at the moving speed y.
  • the movement timing setting means 54 repeats this operation in accordance with the positions Y 0 and Y 1 set for one-way movement or for each reciprocation, and the standby time t1 that matches the virtual reciprocation distance L with the timing for reciprocation at the movement speed y. , T2,..., T6 are set. In the example of FIG.
  • FIG. 4 an example in which the width Wy of the painting object W is constant is shown, so the positions Y 0 and Y 1 are fixed. However, if the width Wy is different along the line direction, the position Y 0 and Y 1 are changed for each movement, and standby times t1, t2,..., T6 are also changed each time.
  • a solid line arrow indicates the moving direction and moving timing at which the spray moving means 30 actually moves the spray gun 21 at the set moving speed y, and a dotted line arrow indicates the length of the standby time.
  • the spray timing setting means 55 confirms that the coating object W falls within the set pattern width P of the spray gun 21 within the movement time set by the movement timing setting means 54, and starts spraying / Set the stop timing. Specifically, after the spray moving means 30 starts moving for the first time, the coating object W further approaches the spray position having the set pattern width P by a predetermined distance, and the spray position is the width of the coating object W. Spraying is started when the end position is entered, and spraying is stopped when the opposite end position is removed.
  • the spray start timing of the spray means 20 is the movement of the spray moving means 30.
  • the spray stop timing of the spray means 20 is set earlier by the amount of the deceleration distance movement from the stop of the movement of the spray moving means 30.
  • FIG. 5 is an explanatory view showing an operation example in the case of performing the uniform one-time coating (the hatched portion indicates the coating range of the uniform one-time coating).
  • the spray moving means 30 is moved from the position Y 0 to the position Y 1 to start and stop spraying with the spray gun 21, and then the spray moving means 30 is operated in the spray stop state to cause the spray gun.
  • stop the spray is returned to the position Y 0 the spray gun 21 by operating the spray moving means 30 in the spray stopped at a predetermined speed, the position Y 1 in by counting the waiting time t12 which is set after stopping the spray moving means 30, to perform the movement and the spray starting spray moving means 30 from the position Y 0 after the waiting time t12 elapses.
  • the standby times t11 and t12 are set in accordance with the timing at which the virtual reciprocating distance L is virtually reciprocated at the moving speed y.
  • the solid line arrows indicate the moving direction and moving timing at which the spray moving means 30 actually moves the spray gun 21 at the set moving speed y
  • the dotted line arrows indicate the length of the standby time of the spray moving means 30. ing.
  • FIG. 6 is an explanatory view showing another example of the operation of the control means 50 in the embodiment of the present invention (the same parts as those in the above-mentioned embodiment are given the same reference numerals, and duplicate explanations are omitted).
  • the double shaded area indicates the coating range of the uniform double coating.
  • the movement condition setting means 53 sets the movement start and stop positions for determining the movement width for each one-way movement or for each reciprocation based on the recognition result of the painting object recognition means 52.
  • the movement condition setting means 53 sets the position Y 01 and the position Y 02 that determine the movement width of the spray movement means 30 according to the two-dimensional shape and position of the painting object W recognized by the painting object recognition means 52. Set. As described above, this is based on the detection result of the coating object detection unit 40, and the maximum value of the width of the coating object W that is scheduled to pass through the coating range while the spray movement unit 30 reciprocates by the virtual reciprocation distance L. And position Y 01 and position Y 02 are set so as to include this width. Since this position is set for each one-way movement of the spray moving means 30, when the width of the coating object W changes, the setting position is positioned as shown in the figure based on the recognition of the painting object recognition means 52. It will be changed to Y 01 and the position Y 03. The standby times t21, t22, t23, and t24 are set in accordance with the change in position.
  • FIG. 7 is an explanatory diagram for explaining the operation flow of the control means 50 in the embodiment of the present invention. An example of the operation flow of the control means 50 for executing the above-described operation example will be described with reference to FIG.
  • the spray moving means 30 moves the position of the spray gun 21 to the spray reference position and then stops (step S01). Thereafter, the standby time count is stopped, and the standby time counter is reset (step S02). In this state, the apparatus enters a standby state and waits for the coating object W to enter a predetermined spray area (step S03: “NO”).
  • step S03 When it is recognized that the coating object W is present in the spray area (step S03: “YES”), in the case of initial movement, the standby time count is stopped in step S02 (step S04: “NO”). Immediately, the spray moving means 30 starts moving (step S07).
  • step S08 “ YES ”
  • step S09 the spray gun 21 is turned on to start spraying (step S09), and spraying is continued until the spray position reaches the end of the coating object W (step S11:“ NO ” ⁇ step S03:“ YES ” ⁇ step S04:“ NO ” ⁇ step S07).
  • step S10 the spray is stopped (step S10).
  • step S11 becomes “YES”
  • step S12 the spray movement is stopped and the waiting time counting is started (S12).
  • step S12 When the standby time has elapsed (step S05: “YES”), the spray movement direction is reversed (step S06), the standby time count is stopped, the standby time counter is reset (S02), and spray movement is started (step S06).
  • step S03 “NO”
  • step S01 the spray moving means 30 is stopped after moving to the spray reference position
  • the reciprocating movement distance L for executing uniform coating without excessive overcoating and without unpainted is virtually arbitrarily changed, and the spray means 20 and the spray moving means are accordingly changed.
  • the moving speed y is adjusted with respect to the set conveying speed x without changing the pattern width P of the spray means 20, and the film thickness control for each coating object W is arbitrarily performed. It can be carried out.
  • the moving speed y of the spray moving means 30 is set to a high speed with a margin higher than the minimum speed at which the waiting time becomes zero, and the film thickness measured after the trial coating is excessive or insufficient with respect to the target film thickness. Make final adjustments to correct for minutes. For example, when the coating film thickness is insufficient by X%, the moving speed y of the spray moving means 30 is adjusted to an arbitrary target film thickness by decelerating by X%.
  • FIG. 8 is an explanatory view showing another embodiment of the present invention, and shows a system configuration capable of coating the upper and lower surfaces of the object to be coated W in the same process (as described above). Common parts are denoted by the same reference numerals, and redundant description is omitted.).
  • the conveying means 10 is sandwiched between the same components to form the painting object W.
  • Spray means 20D for painting the lower surface and spray moving means 30D are provided.
  • the control means 50 can control the spray means 20 and 20D and the spray moving means 30 and 30D separately up and down.
  • the film thickness of the upper and lower surfaces can be individually set with respect to the coating object W of various thicknesses. It becomes possible to.
  • the sensor driving device 42 and the sensor position detecting device 43 shown in FIG. 1 are used.
  • the coating object detection means 40 detects continuous current data (two-dimensional shape data) of the coating object W obtained by reciprocating by the sensor interval while detecting the current position of the sensor 41. Can be output.
  • the width and position information of the painting object W can be sent to the control means 50 more accurately, and the painting object W having a complicated shape and the painting object W having different widths and shapes are conveyed at random. Even in such a case, it is possible to effectively control the timing of automatic painting and to perform spray painting with a minimum reciprocating movement width.
  • the movement width of the spray moving means 30 can be set to the minimum necessary reciprocating movement width (recognized width of the coating object W + acceleration (deceleration) distance of the spray moving means 30). There is no need to make unnecessary movements. Thereby, deterioration of the hose 22 and wear of the rail of the spray moving means 20 can be minimized, and power consumption of the spray moving motor 32 can be saved.
  • the spray moving means 20 When the spraying is stopped at the side end of the object to be coated W, the movement of the spray moving means 20 is also stopped accordingly. Therefore, the quick-drying paint does not solidify at the tip of the spray tip 21A, and the clogging of the spray is reduced. be able to. This improves the maintainability of the spray means 20.
  • the spray moving means 30 Since the condition of the uniform two-time coating (or one-time coating) can be ensured by the timing control that provides the standby time for the spray moving means 30, the spray moving means 30 is constant (that is, painted) even if the conveyance speed x changes. It is possible to achieve complete homogenous twice coating with a constant film thickness. As a result, not only a uniform and constant film thickness can be obtained, but there is no need to change the setup for each type of coating object W, and the working efficiency can be significantly improved.
  • the spray only needs to move by the width of the object to be coated W.
  • the waiting time of the spray moving means 30 is automatically shortened even if the conveyance speed x is increased. As a result, a completely homogeneous coating can be maintained, which leads to a significant productivity increase.
  • (P / x) is a time limit for the spray moving means 30 to make one reciprocation (painting twice).
  • a uniform and constant coating film can be obtained and production can be increased by a factor of 1.5.
  • [ ⁇ (Wy + (D + D) ⁇ 2) ⁇ 2 ⁇ / y] 8/120 is the reciprocating time of the spray moving means 30.
  • the conveyance speed that advances by the set pattern width P during this reciprocation time is x max .
  • the conveyance speed x is set to 6 m / min
  • the moving speed y of the spray moving means 30 is set to 120 m / min
  • the actual width Wy of the coating object W When the distance is 3 m, the waiting time T seconds at the side end (position: 3.25 m) for homogeneous twice coating is obtained by the following equation.
  • the moving speed y remains constant and the waiting time is reduced. Since the coating is automatically extended to 8 seconds, a uniform and constant coating film thickness can always be obtained without being affected by the conveyance speed x.
  • the waiting time of 8 seconds corresponds to a distance of 16 m. If this is compared with a modification of a conventional machine, the reciprocating distance of the spray moving means is extended to 16 m in hardware. In the present invention, it is possible to cope with a real-time response that is impossible with a conventional machine by software.

Abstract

 塗装対象物(W)をライン方向に搬送する搬送手段(10)と、塗装対象物(W)に対して設定パターン幅で塗料をスプレーするスプレー手段(20)と、スプレー手段(20)をライン方向と交差する方向に設定移動速度で往復移動させるスプレー移動手段(30)と、搬送手段(10)によって搬送される塗装対象物(W)の幅及び位置を検知する塗装対象物検知手段(40)と、塗装対象物検知手段(40)の検知出力に基づいて、スプレー手段(20)とスプレー移動手段(30)の作動を制御する制御手段(50)とを備える。制御手段(50)は、塗装対象物検知手段(40)で検知された塗装対象物(W)の幅に対応したスプレー移動手段(30)の移動幅を設定すると共に、余剰重ね塗り無く且つ塗り残しの無い均質塗装を実行するようにスプレー手段(20)及びスプレー移動手段(30)の作動タイミングを制御する。

Description

自動塗装装置
 本発明は、例えば船舶の建材に用いられる鋼材等の塗装対象物を一ライン方向に搬送しながら均質に塗装するための自動塗装装置に関するものである。
 従来、自動塗装装置としては下記特許文献1に記載されるものが知られている。これは、搬送される塗装対象物の形状を自動的に認識しつつその形状に合わせてスプレーガンをオン・オフさせることにより、塗装を自動化するものであって、塗装対象物を搬送する搬送装置、多数個のセンサが搬送装置を横切る横方向に並べられた検知装置、スプレーガンを有する塗装装置、検知装置からの情報を処理してスプレーガンをオン・オフする塗装信号を発生する制御装置を備えるものである。
特開平6-47323号公報
 このような自動塗装装置で、塗装対象物を一ライン方向に搬送しつつ、ライン方向に沿ったパターン幅を有するスプレーガンでライン方向と交差する方向に往復移動しながらスプレー塗装を行う場合に、塗り重ねむらの無い均質塗装を行おうとすると、搬送速度xとスプレーガンの往復移動速度yとパターン幅Pとの間には一定の関係が必要になる。これを図1によって説明する。図1は、塗装対象物を搬送装置で移動しつつ、ライン方向に沿ったパターン幅を有するスプレーガンでライン方向と交差する方向に2往復半移動しながらスプレー塗装する場合の塗装パターンを示したものである。同図(a)は往復時の両方でスプレー塗装して2回塗りを行う場合を示しており、同図(b)は往復時の片道のみでスプレー塗装して1回塗りを行う場合を示している。
 ここで、同図(a),(b)に示すように、余剰重ね塗りが無く且つ塗り残しが無い均質塗装を実行するためには、スプレーガンの一往復の移動距離をLとすると、下記式(1)の関係が必要になる。
Figure JPOXMLDOC01-appb-M000001
 この関係を満足していれば、同図(a)に示す2重斜線の範囲S1で均質な2回塗りを行うことができ、同図(b)の斜線の範囲S2で均質な1回塗りを行うことができる。この式(1)の関係が崩れた場合、例えば、L,Pを変更することなく搬送速度xと往復移動速度yの同調が崩れ、y>L・x/Pとなった場合には、同図(c)に示すように、2回塗りに対しての余剰重ね塗り(塗りむら)箇所S3(3回塗り箇所),S4(4回塗り箇所)が生じることになる。搬送速度xは塗装作業の作業速度に影響するパラメータであり、その搬送速度xでの往復移動速度yによって膜厚が決まることになる。また、スプレーパターン幅Pは、塗料粘性特性や塗装圧力等を考慮して、スプレーガンのチップ番手及びガンと被塗面との距離によって設定される。このように、塗装条件によって搬送速度x,往復移動速度y,スプレーパターン幅Pが設定された場合には、前述した塗りむらのない均質塗装を行うためには、スプレーガンの一往復の移動距離Lは自ずと決定されることになる。
 前述した従来技術の自動塗装装置によって、このような均質塗装を実行する場合には、設定された塗装対象物の搬送速度xに応じて移動速度yやパターン幅Pを調整して、装置の作成時点の固定長となる一定の移動距離Lでスプレーガンを往復移動させながら、検出された塗装対象物の幅や位置に応じてスプレーガンのオン・オフタイミングを制御することになる。
 これによると、スプレーがオフの状態であってもスプレーガンを前述した移動距離Lだけ往復移動させなければならないので、スプレー移動用レールの摩耗、スプレーの移動に伴って屈曲を繰り返す塗料やエア供給用のホースの屈曲劣化、モータの消費電力が、塗装対象物の幅とは無関係に、常に設定される移動距離Lを往復移動することで増加或いは費やされることになり、不経済であると共に装置の寿命を短くする要因にもなる問題があった。
 更に、超速乾性の塗料を用いる場合には、前述の移動距離Lを確保するためにスプレーしていないときにもスプレーガンを移動させると、スプレーの先端で塗料の固形化が速まり、塗料の詰まりの原因になる問題もあった。
 また、スプレーの往復移動速度には、駆動用のチェーンやロッド等の機械的な破壊限界によって制限される速度限界があるので、式(1)を満足して実際に往復移動距離Lを移動させて均質塗装を行おうとすると、この移動速度の限界によって塗装対象物の搬送速度に速度限界が生じることになり、これが塗装作業の作業効率向上のボトルネックになってしまう問題があった。
 実際の作業では、鋼材等の塗装対象物の材質や形状毎に所望の塗装膜厚が得られるように搬送速度xを変更することが行われており、最適な塗装の条件出しは更に困難になる。搬送速度xを大きく変える場合には、スプレーパターン幅Pを変更するためのスプレーガンのチップの交換やスプレー吐出圧力の変更、スプレー往復移動速度yの変更などといった、大幅な段取り替えで対応しているが、これには、特にスプレーガンのチップ交換に多くの時間を要することになる。段取り替え自体の回数を減らすために、流す塗装対象物の種類を予め選別しておくことも考えられるが、その選別作業にも多くの時間を要することになるので、全体的な作業効率の改善にはならない。また、スプレー吐出圧力の変更やスプレーガンチップの変更を行うと、最適なスプレーパターンが得られる吐出圧力の範囲が狭い上に、チップも数段階しか種類が無く、微細且つ連続的な調整ができないため、最適な塗装条件を得るのが困難な問題があった。
 搬送速度xを大きく変える場合に、塗装膜厚を変更することなく、設定された塗装条件で均質塗装を実現するためには、それに応じてスプレーガンの往復移動距離Lを変更すればよいが、実際にはスプレーガンの往復移動距離Lは装置構成によって最大限界があるので、この距離Lの変更によってフレキシブルな対応はできないのが現状である。
 本発明は、このような問題に対処することを課題の一例とするものである。すなわち、搬送されてくる塗装対象物を検知して塗装装置の作動を制御する自動塗装装置において、均質塗装を実行しながら、経済的な作動を行って装置寿命の低下を抑えることができること、スプレーの塗料詰まりを防止して装置のメンテナンス性を向上させること、均質塗装を実行するための往復移動距離Lを仮想的に任意に変更することで、作業効率を向上させることができ、塗装対象物の材質や形状毎の設定変更を速やか且つ任意に行うことができること、これによって最適な塗装条件を簡易に設定調整することができること、等が本発明の目的である。
 このような目的を達成するために、本発明による自動塗装装置は、以下の構成を少なくとも具備するものである。
 塗装対象物を一つのライン方向に向けて設定搬送速度で搬送する搬送手段と、前記搬送手段上の塗装対象物に対して、前記ライン方向に沿った設定パターン幅で塗料をスプレーするスプレー手段と、該スプレー手段を前記ライン方向と交差する方向に設定移動速度で往復移動させるスプレー移動手段と、前記搬送手段に対して、前記スプレー移動手段の設置位置から離れた前記ライン方向上流位置に設置され、前記ライン方向と交差する方向に所定間隔毎に複数個のセンサを配置して、前記搬送手段によって搬送される塗装対象物の二次元形状及び位置を検知する塗装対象物検知手段と、該塗装対象物検知手段の検知出力に基づいて、少なくとも前記スプレー手段と前記スプレー移動手段の作動を制御する制御手段とを備え、前記制御手段は、前記塗装対象物検知手段で検知された塗装対象物の幅に対応した前記スプレー移動手段の移動幅を設定すると共に、余剰重ね塗り無く且つ塗り残しの無い均質塗装を実行するように前記スプレー手段及び前記スプレー移動手段の作動タイミングを制御することを特徴とする自動塗装装置。
 本発明は、このような特徴を有するものであって、スプレー手段とスプレー移動手段の作動タイミングを制御して、均質塗装を行うために必要な往復移動距離L間の移動を仮想的に実行することで、実際のスプレー移動手段の移動幅を検知された塗装対象物の幅に応じて設定し、その設定された移動幅内でスプレー手段の作動を行いながら、均質塗装に必要な動作条件を満足させている。
 これによって、自動塗装装置において、均質塗装を実行しながら、経済的な作動を行って装置寿命の低下を抑えることができる。また、均質塗装を実行しながら、スプレーの塗料詰まりを防止して装置のメンテナンス性を向上させることができる。均質塗装を実行するための往復移動距離Lを仮想的に任意に変更することで、作業効率を向上させることができると共に、塗装対象物の材質や形状毎の設定変更を速やか且つ任意に行うことができる。これによって最適な塗装条件を簡易に設定調整することが可能になる。
均質2回塗り及び1回塗りを説明する説明図である。 本発明の一実施形態に係る自動塗装装置の基本構成を説明する説明図である。 本発明の実施形態における制御手段の具体的な構成例を示したブロック図である。 本発明の実施形態における制御手段の動作例(均質2回塗りの場合)を説明する説明図である。 本発明の実施形態における制御手段の動作例(均質1回塗りの場合)を説明する説明図である。 本発明の実施形態における制御手段の他の動作例を示した説明図である。 本発明の実施形態における制御手段の動作フローを示した説明図である。 本発明の他の実施形態を示した説明図であり、塗装対象物に対して上下両面を同工程で塗装することができるシステム構成を示したものである。
 以下、本発明の実施形態を図面に基づいて説明する。図2は本発明の一実施形態に係る自動塗装装置の基本構成を説明する説明図である。本発明の実施形態に係る自動塗装装置は、搬送手段10、スプレー手段20、スプレー移動手段30、塗装対象物検知手段40、制御手段50を少なくとも備えるものである。
 搬送手段10は、例えば、搬送ローラ11,ローラ駆動連結チェーン12,ローラコンベヤ駆動モータ13を備えるローラコンベヤなどによって構成することができ、塗装対象物Wを一つのライン方向に向けて設定された搬送速度xで搬送するものである。搬送速度xはコンベヤ駆動モータ13の回転速度によって設定することができる。コンベヤ駆動モータ13としては、インバータモータを用い、周波数制御装置を介して駆動することができる。
 スプレー手段20は、例えば、スプレーチップ21Aを交換可能に装備するスプレーガン21、塗料及びエア供給を行うホース22、塗料噴出手段23などを備えるもので、搬送手段10上の塗装対象物Wに対して、ライン方向に沿った設定パターン幅Pで塗料をスプレーするものである。塗料噴出手段23としては、塗料タンク,エアレスポンプ,電磁弁,高圧コンプレッサなどの付帯設備と塗料の噴出を制御する制御機器を具備している。設定パターン幅Pは、選択された塗料粘性特性や塗装圧力等に対して、スプレーガン21のチップ番手及びスプレーガン21と塗装対象物Wにおける被塗面との距離によって設定することができる。塗料の噴出は、電磁弁で高圧エアを入り切りして、エアレスポンプで圧送された塗料を噴霧する。
 スプレー移動手段30は、例えば、スプレー移動チェーン装置31,スプレー移動モータ32などを備えるもので、搬送手段10のライン方向と交差する方向(例えば直交方向)に、設定された移動速度yでスプレー手段(スプレーガン21)を往復移動させるものである。移動速度yはスプレー移動モータ32の回転速度によって設定することができ、また、スプレー移動モータ32の回転位置制御によって、スプレーガン21の位置(移動開始位置及び移動停止位置)を制御することができる。スプレー移動モータ32としては、サーボモータを採用することができ、これによると正確で高速なスプレーガン21の位置決め制御が可能になる。
 塗装対象物検知手段40は、搬送手段10に対して、スプレー移動手段30の設置位置から離れたライン方向上流位置に設置され、ライン方向と交差する方向(例えば直交方向)に所定間隔毎に複数個のセンサ41を配置して、搬送手段10によって搬送される塗装対象物Wの二次元形状と位置を検知するものである。センサ41としては、鋼材を塗装対象物Wとする場合には近接センサを用いる。実施形態の一つとして、センサ41の支持部をセンサ41の配列方向に沿ってセンサ間隔内で往復動させるセンサ駆動装置42、往復動時のセンサ41の位置を検出するセンサ位置検出装置43を付加することができる。センサ駆動装置42としてはエアシリンダなどを用いることができ、センサ位置検出装置43としてはセンサ41の支持部に設けた車輪部分に組み込んだエンコーダなどで形成することができる。これによると、エアシリンダで移動した距離をエンコーダからの信号で算出し、塗装対象物Wを検知したセンサ41の現在位置を割り出すことができる。
 この塗装対象物検知手段40は、センサ41によって、センサ41を横切って搬送される塗装対象物Wのライン方向と直交する位置を搬送の進行に合わせて出力することができる。また、搬送ローラ11の回転検出などによる搬送手段10の動作検出を併せて行うことで、センサ41を横切った後のライン方向での塗装対象物Wの位置を出力することができる。これによって、塗装対象物検知手段40は、塗装対象物Wの二次元形状とライン上の位置を検知することができる。
 制御手段50は、塗装対象物検知手段40の検知出力に基づいて、少なくともスプレー手段20とスプレー移動手段30の作動を制御するものである。必要に応じて、搬送手段10の作動及びセンサ駆動手段42の作動を制御することができ、センサ位置検出装置43の検出出力に基づいて塗装対象物検知手段40の検知出力の精度を向上させることもできる。
 より具体的には、制御手段50は、センサ位置検知手段43を含んだ塗装対象物検知手段40からの検知信号が入力され、塗料噴出手段23,スプレー移動モータ32,コンベヤ駆動モータ13の作動制御信号を出力する。これによって、塗装対象物Wの種類に応じて搬送速度xを任意に設定・制御することができ、センサ位置検知手段43を含む塗装対象物検知手段40によって検知された塗装対象物Wの二次元形状と位置によって、スプレー移動手段21の移動幅,移動速度y,移動開始又は停止タイミング及びスプレー手段20のスプレー開始又は停止タイミングなどを任意に設定・制御することができる。
 本発明の実施形態としては、制御手段50は、設定された搬送速度xで搬送される塗装対象物Wの二次元形状と位置の検知結果に基づいて、スプレー手段20におけるスプレー開始・停止のタイミング制御、スプレー移動手段30における移動開始・停止のタイミング及び位置の制御、或いは移動速度yの設定変更を主要な機能とする。
 制御手段50の一実施形態としては、塗装対象物検知手段40で検知された塗装対象物Wの幅に対応したスプレー移動手段30の移動幅を設定すると共に、余剰重ね塗り無く且つ塗り残しの無い均質塗装を実行するようにスプレー手段20及びスプレー移動手段30の作動タイミングを制御している。
 図3は、制御手段50がこのような制御を行うための機能構成を示したブロック図である。制御手段50は、搬送速度x,移動速度yの設定を行うと共に設定パターン幅Pの変更情報が入力され、設定膜厚での均質塗装を行う条件を設定する塗装条件設定手段51、塗装対象物Wの二次元形状と位置を認識する塗装対象物認識手段52、スプレー移動手段30の移動開始位置と移動停止位置によって移動幅を設定する移動条件設定手段53、スプレー移動手段30の移動開始・停止タイミングを設定する移動タイミング設定手段54、スプレー手段20のスプレー開始・停止タイミングを設定するスプレータイミング設定手段55を備える。これによって、塗装条件によって決まる設定搬送速度x及び設定移動速度yと設定パターン幅PからL=(y/x)・Pとして求められる仮想往復移動距離Lを設定移動速度yで往復移動するタイミングに合わせる待機時間を設けることで、スプレー移動手段30の移動開始タイミングと移動停止タイミングを設定し、スプレー移動手段の移動幅内で、搬送されてくる塗装対象物Wがスプレー位置に到達したところで、スプレー手段20のスプレー開始とスプレー停止を行っている。
 図4は、このような機能を有する制御手段50の動作例を説明する説明図である。ここでは、均質2回塗りを実行する場合の例を説明する(2重斜線部分が均質2回塗りの塗装範囲を示している。)。まず、塗装対象物Wの種類などによって所望の膜厚が決まるので、この膜厚と作業速度から、搬送速度x,移動速度y,パターン幅Pの塗装条件が塗装条件設定手段51に設定・入力される。この塗装条件に基づいて余剰重ね塗り無く且つ塗り残しの無い均質塗装を行うために、L=(y/x)・Pとして求められる仮想往復移動距離Lに基づく均質塗装パターンSを仮想的に設定する。
 塗装対象物検知手段40を塗装対象物Wが横切って、検知信号が制御手段50に入力されると、塗装対象物認識手段52が塗装対象物Wの搬送手段10上での二次元形状と位置を認識する。塗装対象物Wの搬送手段10上での位置は、ライン方向に垂直な位置をセンサ41によって検知し、ライン方向の位置を搬送手段10の作動検出によって検知する。塗装対象物Wの二次元形状データと位置の認識は、具体的には、スプレー移動手段30が仮想往復移動距離Lで仮想的に片道移動する間に塗装範囲を通過する予定の塗装対象物Wの最大幅を認識する。これによって、その最大幅を含むようにスプレー移動手段30の移動幅を設定することができる。
 移動条件設定手段53は、塗装対象物認識手段52で認識された塗装対象物Wの二次元形状と位置に応じて、スプレー移動手段30の移動幅となる位置Yと位置Yを設定する。この設定はスプレー移動手段30の片道移動毎或いは一往復毎に行うことができる。図示のように、認識された塗装対象物Wの幅Wyを含むように位置Yと位置Yが設定される。この位置Yと位置Yはスプレー移動モータ32(サーボモータ)の位置制御における目標値となる。
 特に、均質な塗装を実現するためには、スプレー移動手段30の移動幅となる位置Yと位置Yは認識された塗装対象物Wの幅Wyより広くなるように設定して、スプレー移動手段30を停止状態から設定速度yで等速移動させるまでの加速距離移動分が塗装対象物Wの幅Wyにかからないようにする。すなわち、スプレー移動手段30の移動幅としては、塗装対象物検知手段40で検知された塗装対象物Wの幅Wyに、スプレー移動手段40が停止状態から設定移動速度yの定速度で移動するまでの加速(減速)距離を加算して必要最小限の幅を設定する。
 移動タイミング設定手段54は、塗装対象物Wがスプレーガン21の設置されているスプレー位置に所定の距離だけ近づいた時点でスプレー移動手段30の移動を開始させる。スプレーガン21の初期位置は任意(例えば、メンテナンスを考慮した基準位置)であるが、余裕を持った距離に塗装対象物Wが近づいた時点で移動を開始させる。図4の例では、任意位置にあるスプレーガン21が仮想設定距離Lで一往復する間のスプレー領域2Pに塗装対象物Wが入った時点でスプレー移動手段30の移動を開始する。そして、先ず、塗装対象物Wの幅端に対応する位置Yまでスプレー移動手段30を作動させてスプレーガン21を移動させてそこで停止させる。
 移動後は、仮想往復移動距離Lだけ移動速度yで往復動することを仮想した待機時間t1だけ待機して、待機時間t1の経過後、移動方向を反転して移動速度yでスプレー移動手段30を作動させてスプレーガン21を塗装対象物Wの反対側の幅端に対応する位置Yまで移動させてそこで停止させる。移動タイミング設定手段54は、この動作を片道移動又は一往復毎に設定される位置Y,Yに応じて繰り返し、仮想往復距離Lを移動速度yで往復動するタイミングに合わせた待機時間t1,t2,…,t6を設定する。図4の例では、塗装対象物Wの幅Wyが一定の例を示しているので、位置Y,Yが固定されているが、幅Wyがライン方向に沿って異なる場合には、位置Y,Yが移動毎に変更され、待機時間t1,t2,…,t6もその都度変更される。図4において、実線矢印はスプレー移動手段30が設定移動速度yでスプレーガン21を実際に移動させる移動方向と移動タイミングを示しており、点線矢印は待機時間の長さを示している。
 スプレータイミング設定手段55は、移動タイミング設定手段54で設定される移動時間内で、塗装対象物Wがスプレーガン21の設定パターン幅P内に入ることを確認して、スプレー手段20のスプレー開始・停止タイミングを設定する。具体的には、スプレー移動手段30が最初に移動を開始してから、更に塗装対象物Wが設定パターン幅Pを有するスプレー位置に所定距離だけ近づき、且つ、スプレー位置が塗装対象物Wの幅端位置内に入る時点でスプレーを開始し、反対側の幅端位置を外れる時点でスプレーを停止する。
 移動条件設定手段53が塗装対象物Wの幅Wyより位置Y,位置Y間を加減速分だけ広く設定している場合には、スプレー手段20のスプレー開始タイミングはスプレー移動手段30の移動開始から加速距離移動分の時間だけ遅れて設定されることになり、スプレー手段20のスプレー停止タイミングはスプレー移動手段30の移動停止から減速距離移動分だけ早く設定されることになる。
 図5は、均質1回塗りを行う場合の動作例を示す説明図である(斜線部分が均質1回塗りの塗装範囲を示している。)。前述した各機能を有する制御手段50によって、移動タイミング設定手段54の設定を変更することで、同図に示すような均質1回塗りを実行することができる。図では、スプレー開始後の動作状態を示している。
 この場合には、位置Yから位置Yにスプレー移動手段30を移動させて、スプレーガン21でのスプレー開始及び停止を実行した後、スプレー停止状態でスプレー移動手段30を作動させてスプレーガン21の位置を位置Yに所定の速度で戻し、位置Yでスプレー移動手段30を停止した後に設定された待機時間t11を計時して、その待機時間t11経過後に位置Yからスプレー移動手段30の移動とスプレー開始を実行する。そして、位置Yでスプレー移動手段30を停止させると共に、スプレーを停止して、スプレー停止状態でスプレー移動手段30を作動させてスプレーガン21を位置Yに所定の速度で戻し、位置Yでスプレー移動手段30を停止した後に設定された待機時間t12を計時して、その待機時間t12経過後に位置Yからスプレー移動手段30の移動とスプレー開始を実行する。待機時間t11,t12は、前述したように、仮想往復移動距離Lを移動速度yで仮想的に往復動するタイミングに合わせて設定されるものである。図5において、実線矢印はスプレー移動手段30が設定移動速度yでスプレーガン21を実際に移動させる移動方向と移動タイミングを示しており、点線矢印はスプレー移動手段30の待機時間の長さを示している。
 図6は、本発明の実施形態における制御手段50の他の動作例を示した説明図である(前述した実施形態と共通する部分は同一符号を付して重複説明を省略する。この図においても、2重斜線部分が均質2回塗りの塗装範囲を示している。)。ここでは、塗装対象物Wの幅が一定でない場合の例を、スプレー開始後の動作によって説明する。この場合には、移動条件設定手段53は、塗装対象物認識手段52の認識結果に基づいて、移動幅を決める移動開始及び停止位置を片道移動毎或いは一往復毎に設定する。
 すなわち、移動条件設定手段53は、塗装対象物認識手段52で認識された塗装対象物Wの二次元形状と位置に応じて、スプレー移動手段30の移動幅を決める位置Y01と位置Y02を設定する。これは前述したように、塗装対象物検知手段40の検知結果から、仮想往復移動距離Lだけスプレー移動手段30が往復動する間に塗装範囲を通過する予定の塗装対象物Wの幅の最大値を認識し、この幅を含むように位置Y01と位置Y02が設定される。この位置は、スプレー移動手段30の片道移動毎に設定されるので、塗装対象物Wの幅が変化した場合には、塗装対象物認識手段52の認識に基づいて図示のように設定位置が位置Y01と位置Y03に変更されることになる。この位置の変更に合わせて待機時間t21,t22,t23,t24がそれぞれ設定されることになる。
 図7は、本発明の実施形態における制御手段50の動作フローを説明する説明図である。同図よって、前述した動作例を実行するための制御手段50の動作フロー例を説明する。
 装置の始動或いは一回の塗装作業が終わった後に制御フローがスタートすると、スプレー移動手段30は、スプレーガン21の位置をスプレー基準位置に移動させた後停止させる(ステップS01)。その後、待機時間カウントは停止され、待機時間カウンタはリセットされる(ステップS02)。この状態で装置の待機状態に入り、塗装対象物Wが所定のスプレー領域に入るのを待つ(ステップS03:「NO」)。
 スプレー領域に塗装対象物Wが有ることが認識されると(ステップS03:「YES」)、初動の場合は、ステップS02で待機時間カウントは停止されているので(ステップS04:「NO」)、直ちにスプレー移動手段30が移動開始される(ステップS07)。
 スプレー移動後は、塗装対象物Wがスプレーガン21の設定パターン幅P内(スプレー位置内)に入ることを確認して、スプレー位置内に塗装対象物Wが有る場合には(ステップS08:「YES」)、スプレーガン21をオンしてスプレーを開始し(ステップS09)、スプレー位置が塗装対象物Wの端に達するまでの間スプレーを継続する(ステップS11:「NO」→ステップS03:「YES」→ステップS04:「NO」→ステップS07)。そして、スプレー位置に塗装対象物Wが有ることが確認できない場合に(ステップS08:「NO」)、スプレーを停止する(ステップS10)。その後は、ステップS11は「YES」になるので、スプレー移動が停止され、待機時間カウントが開始される(S12)。
 その後は、設定された待機時間を経過するまで、待機時間カウントが継続され、スプレー移動は停止された状態になる(ステップS03:「YES」→ステップS04:「YES」→ステップS05:「NO」→ステップS12)。待機時間が経過すると(ステップS05:「YES」)、スプレー移動方向が反転され(ステップS06)、待機時間カウントが停止されて待機時間カウンタがリセットされ(S02)、スプレー移動が開始される(ステップS03:「YES」→ステップS04:「NO」→ステップS07)。
 その後は、スプレー位置が塗装対象物Wの端に達するまで移動を継続し、スプレー位置に塗装対象物Wが有ることが確認される範囲でスプレーを開始・継続し、スプレー位置に塗装対象物Wが有ることが確認されなくなったらスプレーを停止して、スプレー移動を停止し、再び待機時間カウントを開始して、待機時間を経過するまでこれを継続する。この制御フローを繰り返し、スプレー領域に塗装対象物Wが有ることが確認できなくなると(ステップS03:「NO」)、スプレー移動手段30をスプレー基準位置に移動後停止させる(ステップS01)。
 このような本発明の実施形態では、余剰重ね塗り無く且つ塗り残しの無い均質塗装を実行するための往復移動距離Lを仮想的に任意に変更し、これに応じてスプレー手段20及びスプレー移動手段30のタイミング制御を行うことで、スプレー手段20のパターン幅Pを変更することなく、設定された搬送速度xに対して移動速度yを調整して塗装対象物W毎の膜厚制御を任意に行うことができる。この際、スプレー移動手段30の移動速度yは、前述した待機時間がゼロになる最低速度よりも余裕を持って高速に設定しておき、試し塗装後に計測した膜厚の目標膜厚に対する過不足分を補正するように、最終調整を行う。例えば、塗装膜厚がX%不足している場合には、スプレー移動手段30の移動速度yをX%減速することによって、任意の目標膜厚に調整する。
 図8は、本発明の他の実施形態を示した説明図であり、塗装対象物Wに対して上下両面を同工程で塗装することができるシステム構成を示したものである(前述した説明と共通箇所は同一符号を付して重複説明を省略する。)。同図に示したシステム構成では、塗装対象物Wの上面を塗装するために設けられるスプレー手段20とスプレー移動手段30に加えて、搬送手段10を挟んで、同じ構成要素で塗装対象物Wの下面を塗装するためのスプレー手段20Dとスプレー移動手段30Dが備えられている。そして、制御手段50は、スプレー手段20,20Dとスプレー移動手段30,30Dを上下個別に制御できるようになっている。
 これによると、同一工程で一定の搬送速度xで搬送される塗装対象物Wに対して、上面側のスプレー移動速度yと下面側のスプレー移動速度y’を別に設定することで、上下面共に均質塗装を実現しながら、それぞれ個別に膜厚を制御することができる。これにより、本来塗装対象物Wの上下面は塗装対象物Wの厚さ分だけスプレー距離が変わってしまい、様々な厚さの塗装対象物Wを扱う際に上下面を均一膜厚に設定することが困難であったが、本発明の実施形態によると、様々な厚さの塗装対象物Wに対して上下面の膜厚を個別に設定できるので、膜厚調整で上下面を均一膜厚にすることが可能になる。
 上述した各実施形態において、塗装対象物Wの幅をより高精度に検知するためには、図1に示したセンサ駆動装置42とセンサ位置検出装置43を用いる。これらを用いることで、塗装対象物検知手段40は、センサ41の現在位置を検出しながら、センサ間隔分だけ往復動して得られる塗装対象物Wの連続的な幅データ(二次元形状データ)を出力することができる。これによって、塗装対象物Wの幅及び位置の情報をより正確に制御手段50に送ることができ、複雑な形状を有する塗装対象物Wや異なる幅や形状を有する塗装対象物Wがランダムに搬送される場合であっても自動塗装のタイミング制御を効果的に行い、最小限の往復移動幅でのスプレー塗装が可能になる。
 以上説明した本発明の実施形態による実用的な作用効果を以下に説明する。先ず、スプレー移動手段30の移動幅を必要最小限の往復移動幅(認識された塗装対象物Wの幅+スプレー移動手段30の加速(減速)距離)に設定できるので、均質塗装を実現する場合にも無駄な移動を行わなくて済む。これによって、ホース22の劣化やスプレー移動手段20のレールの摩耗を最小限に抑えることができ、またスプレー移動モータ32の消費電力を省力化することができる。
 塗装対象物Wの側端でスプレーを停止した際に、これに応じてスプレー移動手段20の移動も停止するので、スプレーチップ21A先端で速乾性の塗料が固化せず、スプレーの詰まりを低減することができる。これによってスプレー手段20のメンテナンス性が向上する。
 スプレー移動手段30に待機時間を設けるタイミング制御で均質2回塗り(又は1回塗り)の条件を担保することができるので、搬送速度xが変化してもスプレー移動手段30は一定(すなわち、塗装膜厚一定)で完全な均質2回塗りを実現することができる。これによって、均一で一定の膜厚が得られるばかりでなく、塗装対象物Wの種類毎の段取り替えが不要になり、作業効率を著しく向上させることができる。
 スプレー移動手段30の移動速度yを変えても、完全な均質2回塗りタイミングで塗装できるため、移動速度yを微調整することによって、塗装膜厚の微調整が可能になる。さらに、同工程で搬送される塗装対象物Wに対して上下面の塗装を独立して調整できるので、塗装条件だしに要する時間を飛躍的に短縮することができる。
 また、これまでの装置では、スプレーの往復移動速度にハード的な限界があるため、幅の広いコンベヤライン程、搬送速度が制限されて、これが生産量のボトルネックになっていたが、本発明の実施形態では、塗装対象物Wの幅分だけスプレーが移動すれば良く、塗装対象物Wの幅が狭い場合には搬送速度xを上げても、スプレー移動手段30の待機時間を自動短縮して完全な均質塗装を維持できることになるので、大幅な生産性の向上につながる。
 以下に、前提となる設定例と実施例を説明する。
[設定例1]
 搬送速度x=6m/分、設定パターン幅P=0.6m、塗装対象物Wの最大幅Wym=5m、スプレー移動手段30の加速(減速)距離D=0.25mとすると、均質2回塗りのためのスプレー移動手段30の移動速度y(m/分)は、式(1)に基づいて次式で求まる。
 y={Wym+(D+D)×2}×2/(P/x)=12/0.1
  =120[m/分]
 ここで、{Wym+(D+D)×2}×2=12mは、移動速度yを一定として換算した場合の均質2回塗り塗装を行うために必要な往復移動距離Lである。したがって、移動速度yを120m/分以上に設定しておけば、往復移動距離Lを{Wym+(D+D)×2}×2=12m以上にして、均質2回塗りができ、これ以上の速度領域を塗装膜厚調整しろとして使用できる。実際のスプレー移動手段30の往復距離は加減速時に速度が低下するので、(Wym+D+D)×2=11mとなる。(P/x)は、スプレー移動手段30が一往復(2回塗り)するタイムリミットである。搬送速度x=6m/分の場合、設定パターン幅P=0.6mを進むのに要する時間は6秒で、その間にスプレー移動手段30は一往復しなければならない。
[設定例2]
 設定例1で、例えば、スプレー移動手段30の移動速度y=120m/分と設定した場合、実際の塗装対象物Wの幅がWy=3mのときには、最大搬送速度xmax[m/分]は、次式で求められる。
 xmax=P/[{(Wy+(D+D)×2)×2}/y]
   =0.6/(8/120)=9[m/分]
 すなわち、この設定では、塗装対象物Wの幅が3mしか無い場合には、搬送速度xを9m/分まで上昇しても、塗装条件を全く変更せずに、6m/分のときと変わり無い均一で一定の塗装膜が得られ、生産を1.5倍にすることができる。ここで、[{(Wy+(D+D)×2)×2}/y]=8/120は、スプレー移動手段30の往復時間である。この往復時間の間に設定パターン幅P分進む搬送速度がxmaxとなる。
[実施例]
 設定例1のように、例えば搬送速度xを6m/分とし、設定例2のように、スプレー移動手段30の移動速度yを120m/分と設定し、実際の塗装対象物Wの幅Wy=3mのとき、均質2回塗りのための側端(位置:3.25m)での待機時間T秒は次式で求められる。
 T=[{(P/x)×y}/2-{(D+D)×2}-F]×2/y×60
  =(6-1-3)×2/120×60=2[秒]
 すなわち、スプレー移動手段30は、本来なら仮想往復移動距離L/2の5.25mの位置まで行って反転しなければならないところを、塗装対象物W側端の3.25mの位置で2秒停止後、反転して再塗装することによって、無駄な動作をせずに、均質2回塗りの均一な塗装膜厚となるタイミングを得ることができる。さらに、本発明の制御を行うと、ショット機の研掃度を上げるために、一時的に搬送速度xを極端に3m/分に落とした場合でも、移動速度yは一定のまま、待機時間を自動的に8秒に延長して塗装するため、搬送速度xに影響を受けずに常に均一で一定の塗装膜厚を得ることができる。8秒の待機時間は、距離にして16mに相当し、これを従来機の改造で例えるならば、スプレー移動手段の往復距離をハード的に16mに延長増設工事したことに相当する。本発明では、従来機では不可能な対応を、ソフトウエアでリアルタイムに対応することができる。

Claims (9)

  1.  塗装対象物を一つのライン方向に向けて設定搬送速度で搬送する搬送手段と、
     前記搬送手段上の塗装対象物に対して、前記ライン方向に沿った設定パターン幅で塗料をスプレーするスプレー手段と、
     該スプレー手段を前記ライン方向と交差する方向に設定移動速度で往復移動させるスプレー移動手段と、
     前記搬送手段に対して、前記スプレー移動手段の設置位置から離れた前記ライン方向上流位置に設置され、前記ライン方向と交差する方向に所定間隔毎に複数個のセンサを配置して、前記搬送手段によって搬送される塗装対象物の二次元形状及び位置を検知する塗装対象物検知手段と、
     該塗装対象物検知手段の検知出力に基づいて、少なくとも前記スプレー手段と前記スプレー移動手段の作動を制御する制御手段とを備え、
     前記制御手段は、前記塗装対象物検知手段で検知された塗装対象物の幅に対応して、スプレーを行うための前記スプレー移動手段の移動幅を設定すると共に、余剰重ね塗り無く且つ塗り残しの無い均質塗装を実行するように前記スプレー手段及び前記スプレー移動手段の作動タイミングを制御することを特徴とする自動塗装装置。
  2.  前記制御手段は、前記スプレー移動手段の往復移動の両方で前記スプレー手段を作動させる均質2回塗りを実行することを特徴とする請求項1に記載された自動塗装装置。
  3.  前記制御手段は、前記スプレー移動手段の往復移動の片道のみで前記スプレー手段を作動させる均質1回塗りを実行することを特徴とする請求項1に記載された自動塗装装置。
  4.  前記制御手段は、塗装条件によって決まる前記設定搬送速度x及び前記設定移動速度yと前記設定パターン幅PからL=(y/x)・Pとして求められる仮想往復移動距離Lを前記設定移動速度yで往復移動するタイミングに合わせる待機時間を設けることで、前記スプレー移動手段の移動開始タイミングと移動停止タイミングを設定することを特徴とする請求項1~3のいずれかに記載された自動塗装装置。
  5.  前記塗装対象物検知手段で検知された塗装対象物の幅を、前記仮想往復移動距離Lを前記スプレー移動手段が往復移動する時間内に塗装範囲を通過する塗装対象物の最大幅とすることを特徴とする請求項1~3のいずれかに記載された自動塗装装置。
  6.  前記スプレー移動手段の移動幅は、前記塗装対象物検知手段で検知された塗装対象物の幅に、前記スプレー移動手段が停止状態から一定速度で移動するまでの加速距離を加算して求められることを特徴とする請求項4に記載された自動塗装装置。
  7.  前記スプレー手段のスプレー開始は、前記スプレー移動手段の移動開始から前記加速距離移動分の時間後に実行されることを特徴とする請求項6に記載された自動塗装装置。
  8.  前記スプレー手段と前記スプレー移動手段は、前記搬送手段を挟んで上下にそれぞれ設けられ、前記制御手段は、前記スプレー手段と前記スプレー移動手段を上下個別に制御することを特徴とする請求項1~3のいずれかに記載された自動塗装装置。
  9.  前記塗装対象物検知手段は、前記センサの現在位置を検出しながら、センサ間隔分だけ往復動して得られる塗装対象物の連続的な幅データを出力することを特徴とする請求項1~3のいずれかに記載された自動塗装装置。
PCT/JP2008/055562 2008-03-25 2008-03-25 自動塗装装置 WO2009118828A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010505069A JP4589459B2 (ja) 2008-03-25 2008-03-25 自動塗装装置
PCT/JP2008/055562 WO2009118828A1 (ja) 2008-03-25 2008-03-25 自動塗装装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/055562 WO2009118828A1 (ja) 2008-03-25 2008-03-25 自動塗装装置

Publications (1)

Publication Number Publication Date
WO2009118828A1 true WO2009118828A1 (ja) 2009-10-01

Family

ID=41113069

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/055562 WO2009118828A1 (ja) 2008-03-25 2008-03-25 自動塗装装置

Country Status (2)

Country Link
JP (1) JP4589459B2 (ja)
WO (1) WO2009118828A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2009133606A1 (ja) * 2008-04-30 2011-08-25 有明スチールセンター株式会社 自動塗装装置
KR20200104228A (ko) 2019-02-26 2020-09-03 수미토모 케미칼 컴퍼니 리미티드 도포 장치 및 코팅 부재의 제조방법
JP7059775B2 (ja) 2018-04-24 2022-04-26 株式会社リコー 自動スプレー塗装装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5443949A (en) * 1977-09-13 1979-04-06 Ransburg Japan Ltd Coating apparatus having stroke automatic control device
JPS58122069A (ja) * 1982-01-13 1983-07-20 Nippon Ranzubaagu Kk 静電塗装装置
JPS58214377A (ja) * 1982-06-04 1983-12-13 Toshiba Corp 塗装用スプレ−ガンの制御方法
JPH04180860A (ja) * 1990-11-14 1992-06-29 Iwata Air Compressor Mfg Co Ltd 塗り合せ自動制御塗装装置
JPH0647323A (ja) * 1992-07-29 1994-02-22 Meiji Kikai Seisakusho:Kk 自動塗装装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02172552A (ja) * 1988-12-23 1990-07-04 Kobe Steel Ltd 塗装装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5443949A (en) * 1977-09-13 1979-04-06 Ransburg Japan Ltd Coating apparatus having stroke automatic control device
JPS58122069A (ja) * 1982-01-13 1983-07-20 Nippon Ranzubaagu Kk 静電塗装装置
JPS58214377A (ja) * 1982-06-04 1983-12-13 Toshiba Corp 塗装用スプレ−ガンの制御方法
JPH04180860A (ja) * 1990-11-14 1992-06-29 Iwata Air Compressor Mfg Co Ltd 塗り合せ自動制御塗装装置
JPH0647323A (ja) * 1992-07-29 1994-02-22 Meiji Kikai Seisakusho:Kk 自動塗装装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2009133606A1 (ja) * 2008-04-30 2011-08-25 有明スチールセンター株式会社 自動塗装装置
JP7059775B2 (ja) 2018-04-24 2022-04-26 株式会社リコー 自動スプレー塗装装置
KR20200104228A (ko) 2019-02-26 2020-09-03 수미토모 케미칼 컴퍼니 리미티드 도포 장치 및 코팅 부재의 제조방법

Also Published As

Publication number Publication date
JP4589459B2 (ja) 2010-12-01
JPWO2009118828A1 (ja) 2011-07-21

Similar Documents

Publication Publication Date Title
CN101934257B (zh) 皮革自动喷涂机和自动喷涂方法
JP4589459B2 (ja) 自動塗装装置
CN110545921B (zh) 用于将遮蔽材料施加至基材的系统
KR100944904B1 (ko) 선체 도장 장치
EP1754545A1 (en) Painting method
JP4022785B2 (ja) 塗布パターンの位置ずれを検知する方法及びその補正方法
JP4562802B2 (ja) 自動塗装装置
WO2005046298A1 (en) Method of conformal coating using noncontact dispensing
KR19980041067U (ko) 스프레이형 연속 자동 코팅장치
JP3361671B2 (ja) コーティング材料をスプレイするための方法及び装置
JP7105140B2 (ja) 塗工装置とそれを用いた塗工方法
CN109395926A (zh) 一种舟皿喷涂机系统
KR100754915B1 (ko) 도장 방법
JP2767077B2 (ja) 塗り合せ自動制御塗装装置
US6703079B2 (en) Method for painting with a bell applicator
JP2018030136A (ja) 異形棒鋼マーキング装置及び異形棒鋼マーキング方法
JPS6197061A (ja) 塗装方法およびスプレイ・ノズル
CN108067383B (zh) 一种硅钢片油漆上片间距控制装置及方法
JP3114913B2 (ja) エアレス自動塗装装置
JPH0753727Y2 (ja) 塗装機
SU889127A1 (ru) Установка дл нанесени покрытий на металлический прокат
CN114789102A (zh) 智能曲面喷涂生产线
JPH0422475A (ja) 自動車車体の側面の塗装方法
JPH04141257A (ja) 自動塗装装置
JPH0671574B2 (ja) 塗装装置の制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08722772

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010505069

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08722772

Country of ref document: EP

Kind code of ref document: A1