WO2009117483A1 - Imaging system for combined full-color reflectance and near-infrared imaging - Google Patents

Imaging system for combined full-color reflectance and near-infrared imaging Download PDF

Info

Publication number
WO2009117483A1
WO2009117483A1 PCT/US2009/037506 US2009037506W WO2009117483A1 WO 2009117483 A1 WO2009117483 A1 WO 2009117483A1 US 2009037506 W US2009037506 W US 2009037506W WO 2009117483 A1 WO2009117483 A1 WO 2009117483A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
nir
red
reflectance
green
Prior art date
Application number
PCT/US2009/037506
Other languages
French (fr)
Inventor
John Fengler
Paul Westwick
Arthur E. Bailey
Paul Cottle
Original Assignee
Novadaq Technologies Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP09721252.6A priority Critical patent/EP2268194B1/en
Application filed by Novadaq Technologies Inc. filed Critical Novadaq Technologies Inc.
Priority to BRPI0906187-8A priority patent/BRPI0906187A2/en
Priority to KR1020107023035A priority patent/KR101517264B1/en
Priority to EP16186321.2A priority patent/EP3117765B1/en
Priority to US12/933,512 priority patent/US9173554B2/en
Priority to JP2011500921A priority patent/JP5231625B2/en
Priority to CN2009801178437A priority patent/CN102036599B/en
Priority to MX2010010292A priority patent/MX2010010292A/en
Priority to RU2010142292/14A priority patent/RU2510235C2/en
Publication of WO2009117483A1 publication Critical patent/WO2009117483A1/en
Priority to HK11111641.7A priority patent/HK1157169A1/en
Priority to US14/873,842 priority patent/US9642532B2/en
Priority to US15/584,405 priority patent/US10779734B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • A61B5/0084Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for introduction into the body, e.g. by catheters
    • A61B5/0086Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for introduction into the body, e.g. by catheters using infrared radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00043Operational features of endoscopes provided with output arrangements
    • A61B1/00045Display arrangement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00043Operational features of endoscopes provided with output arrangements
    • A61B1/00045Display arrangement
    • A61B1/0005Display arrangement combining images e.g. side-by-side, superimposed or tiled
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00186Optical arrangements with imaging filters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/042Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances characterised by a proximal camera, e.g. a CCD camera
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/043Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances for fluorescence imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/045Control thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/046Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances for infrared imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0638Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements providing two or more wavelengths
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0646Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements with illumination filters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0655Control therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0062Arrangements for scanning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0071Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by measuring fluorescence emission
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/41Detecting, measuring or recording for evaluating the immune or lymphatic systems
    • A61B5/414Evaluating particular organs or parts of the immune or lymphatic systems
    • A61B5/418Evaluating particular organs or parts of the immune or lymphatic systems lymph vessels, ducts or nodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/742Details of notification to user or communication with user or patient ; user input means using visual displays
    • A61B5/7425Displaying combinations of multiple images regardless of image source, e.g. displaying a reference anatomical image with a live image
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • G02B27/1013Beam splitting or combining systems for splitting or combining different wavelengths for colour or multispectral image sensors, e.g. splitting an image into monochromatic image components on respective sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
    • H04N23/11Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths for generating image signals from visible and infrared light wavelengths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/20Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from infrared radiation only
    • H04N23/21Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from infrared radiation only from near infrared [NIR] radiation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/30Transforming light or analogous information into electric information
    • H04N5/33Transforming infrared radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00009Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00043Operational features of endoscopes provided with output arrangements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0661Endoscope light sources
    • A61B1/0669Endoscope light sources at proximal end of an endoscope
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0075Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by spectroscopy, i.e. measuring spectra, e.g. Raman spectroscopy, infrared absorption spectroscopy
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10048Infrared image

Definitions

  • the invention is directed to medical imaging, in particular to a system and method for obtaining visible light images and near infrared light images from an area under observation, such as living tissue, and in particular for use in endoscopy.
  • NIR imaging has been described in the literature for various clinical applications.
  • a contrast agent e.g. indocyanine green
  • Such contrast agents may be conjugated to targeting molecules (e.g. antibodies) for disease detection.
  • the contrast agents may be introduced into tissue intravenously or subcutaneously to image tissue structure and function (e.g. flow of blood/lymph/bile in vessels) that is not easily seen with standard visible light imaging technology.
  • endoscopic NIR imaging devices typically include multiple imaging modes as a practical feature.
  • endoscopists utilize visible spectrum color for both visualization and navigation
  • an endoscopic imaging device that offers NIR imaging typically provides a concurrent color image.
  • concurrent imaging devices can be realized, for example, as follows:
  • One conventional configuration utilizes spectral separation of the visible and the NIR light, with full color and NIR image signals acquired using separate sensors for the different color (e.g. red, Attorney Docket No. N001-7069WO0
  • Such multi-modality color and NIR imaging devices provide dedicated sensors or sensor pixels for each of the two imaging modes. Disadvantageously, this increases the number of image sensors in multi-sensor implementations or compromises image resolution when on the same sensor, specific sensor pixels are dedicated for NIR imaging while others are utilized for color imaging.
  • Another conventional configuration utilizes a single monochrome image sensor for sequential imaging of the visible and NIR light.
  • the object is hereby sequentially illuminated with light in the red, green, blue and NIR spectral bands, with separate image frames being acquired for each spectral band and composite color and NIR images being generated from the acquired image frames.
  • this approach where image frames are acquired sequentially at different times, can generate objectionable motion artifacts (i.e. color fringing and "rainbow effects") in the composite color and NIR images.
  • fps 15 frames/second
  • fps for example to 90 fps, or even 180 fps.
  • high frame rates are difficult to implement for high definition images (e.g. 2 million pixels), or images having a large dynamic range (> 10 bits), thus limiting image size and/or resolution.
  • a method for acquisition of NIR images and full-color images includes the steps of illuminating an area under observation with continuous blue/green light, and illuminating the area under observation with red light and NIR light, wherein at least one of the red light and NIR light are switched on and off periodically.
  • the blue, green, red and NIR light returning from the area under observation is directed to one or more sensors which are configured to separately detect the blue light, the green light, and the combined red light /NIR light.
  • the red light spectral component and the NIR light spectral component are determined separately from image signals of the combined red light /NIR light, in synchronism with the switched red and NIR light.
  • a full-color reflectance image of the area under observation is rendered and displayed from the blue, green, and red light and an NIR image is likewise rendered and displayed from the NIR light.
  • an imaging system for acquisition of NIR and full-color images includes a light source providing visible light and NIR light to an area under observation, a camera having one or more image sensors configured to separately detect blue and green light, and combined red and NIR light returned from the area under observation, and a controller in signal communication with the light source and the camera.
  • the controller is configured to control the light source to continuously illuminate tissue with blue/green light and to illuminate the area under observation with red light and NIR light, wherein at least one of the red Attorney Docket No. N001-7069WO0
  • NIR light and NIR light are switched on and off periodically in synchronism with the acquisition of the red and NIR images in the camera.
  • the controller is further configured to determine from sensor signals representing the combined red light and NIR light separately the red light spectral component and the NIR light spectral component.
  • the imaging system further includes a display receiving image signals corresponding to the blue light, the green light, and the separately determined red light spectral component and rendering therefrom a full- color visible light image of the area under observation.
  • the display also receives the separately determined NIR light spectral component and renders therefrom an NIR image of the area under observation.
  • the video imaging system may use a three-sensor color camera configured to continuously image the blue and green wavebands and intermittently image the red waveband, thus providing continuous, high quality luma information and a sufficiently continuous complete chroma to produce high quality video images of the area under observation, such as living tissue.
  • the red image sensor can be time-multiplexed to acquire both red and NIR images (i.e. the red image sensor alternately, and in rapid succession, images both red light for the color information required for the color image and NIR light for image information required for the NIR image).
  • Such time-multiplexing may be coupled to (and synchronized with) the illumination source used to provide the NIR illumination (excitation for fluorescence) and the red light for color imaging.
  • Image processing is then utilized to separate and process the resulting image signals appropriately.
  • Embodiments of the invention may include one or more of the following features.
  • the area under observation may be alternatingly illuminated with red light and NIR light, wherein the duration of red light may be different from, preferably longer than, the duration of illumination with NIR light.
  • the illumination may be switched at video field or frame rates.
  • Fields captured by the image sensor and lacking the red light spectral component or the NIR light spectral component may be interpolated from temporally adjacent image fields that include a corresponding red light spectral component or NIR light spectral component.
  • the NIR light spectral component obtained in the absence of red light may be subtracted from the combined red light /NIR light to obtain the separate red light spectral component. This is advantageous in particular when the detected NIR signal has an intensity comparable to that of the red signal.
  • the light source may include an illuminator emitting a substantially constant intensity of visible light and NIR light over a continuous spectral range, and a plurality of movable filters disposed between the illuminator and the area under observation for transmitting temporally continuous blue/green light and temporally discontinuous red light and NIR light.
  • the light source may include an illuminator emitting a substantially constant intensity of visible light and NIR light over a continuous spectral range, first dichroic means for separating the visible light and NIR light into blue/green and red light and NIR light, shutter means for transforming the separated red light and NIR light into temporally discontinuous red light and discontinuous Attorney Docket No. N001-7069WO0
  • NIR light and second dichroic means for combining the blue/green light, the temporally discontinuous red light and the temporally discontinuous NIR light for transmission to the area under observation.
  • the light source may include a first illuminator emitting a substantially constant intensity of green and blue light, a second illuminator producing switched red light, a third illuminator producing switched NIR excitation light, and dichroic means for combining the switched red light and the switched NIR light with the green and blue light for transmission to the area under observation.
  • the switched red light and the NIR light may be produced by interrupting a continuous intensity light beam of the red light and the NIR light by a shutter or chopper.
  • the switched red light and the NIR light may be produced by electrically switching the second illuminator and the third illuminator on and off.
  • the image sensors may employ an interlaced scan or a progressive scan.
  • the imaging system may include an endoscope.
  • FIG. 1 shows an endoscopic system according to one embodiment of the invention
  • FIGS. 2a-2d show various exemplary embodiments of a multimode light source to be used with the endoscopic system of FIG. 1 ;
  • FIG. 3a shows an exemplary dichroic prism employed by a 3-sensor color camera
  • FIG. 3b shows the optical transmission ranges for the spectral components separated by the dichroic prism of FIG. 3a;
  • FIG. 3c shows the optical transmission range of a notch filter that blocks excitation light from entering the camera
  • FIG. 4 shows a timing diagram of a first embodiment for continuous illumination with green/blue light and alternating illumination with red/NIR light;
  • FIG. 5 shows a timing diagram of a second embodiment for continuous illumination with green/blue light and alternating illumination with red/NIR light;
  • FIG. 6 shows a timing diagram of a third embodiment for continuous illumination with green/blue/NIR light and alternating illumination with red light
  • FIG. 7 shows an exemplary CMOS sensor having stacked imaging layers and the corresponding spectral sensitivity of these layers.
  • Color video images are generally obtained with three-sensor color cameras where separate red, green and blue image sensors provide simultaneous contiguous arrays of red, green and blue pixel information.
  • Full color video images are generated by combining the image information from all three sensors. Color fidelity (i.e. a true color rendition) is extremely important in medical imaging applications and all three sensors are used to provide complete color information.
  • Luma refers to the brightness information in the image and it is this information that provides the spatial detail that enables the viewer to recognize shapes.
  • the spatial and temporal resolution of luma is consequently crucial to the perception of video image quality.
  • Chroma refers to the color information in the video image. It is a property of human vision that fine detail variations in the chroma of image features are not easily perceived and that such variations are consequently less critical than fine detail variations in luma, in an overall assessment of image quality. It is for this reason that video encoding of chroma information is often sub-sampled.
  • NIR light tends to be scattered in tissue causing NIR image features to be diffusely, rather than sharply defined.
  • the NIR image highlights areas of interest (i.e. the areas in which the contrast agent is localized), but does not provide the overall visualization or navigational information, it is desirable for a
  • NIR endoscopic imaging device to provide a continuous color image and either a superimposed or side-by-side display of the NIR image information. In such a display the NIR light would also contribute less to the spatial information presented to observer.
  • FIG. 1 shows schematically an exemplary embodiment of a NIR endoscopic imaging system 10 which includes a multimode light source 1 1 that provides both visible and NIR illumination, connected to an endoscope 12 by way of an illumination guide, for example a fiber optic cable 17, suitable for transmission of both color and NIR illumination, a color camera 13, illustrated here as having three different sensors 34, 36, 38 (see FIG. 3a) for blue, green and red/NIR imaging, respectively, mounted to the endoscope image guide, and a camera controller 14 connected to the camera 13 and the light source 1 1 for controlling and synchronizing illumination and image acquisition. Controller 14 can also process the acquired visible and NIR images for display on a monitor 15 connected to the controller 14, for example, by Attorney Docket No. N001-7069WO0
  • Images can be acquired in real time at selectable frame rates, such as video rates.
  • FIGS. 2a-2d show schematic diagrams of exemplary embodiments of various light sources 1 1 .
  • the illustrated light sources are constructed to supply in normal color imaging mode visible illumination light yielding a substantially continuous spectral distribution.
  • the light source maybe an arc lamp, a halogen lamp, one or more solid state sources (e.g. LEDs, semiconductor lasers) or any combination thereof and may be spectrally filtered or shaped (e.g. with bandpass filters, IR filters, etc.).
  • the continuous spectrum may be produced as primary colors (RGB) either concurrently or sequentially, for example, using a rotating filter wheel.
  • RGB primary colors
  • light sources to be used with the system of the invention and described in detail below are configured to provide continuous, uninterrupted illumination in the blue and green parts of the visible spectrum and discontinuous red and/or NIR light.
  • the blue and green parts of the visible spectrum may be optically filtered from the emission produced by a continuous source or produced directly by a narrow-band source (e.g. blue and green LEDs).
  • the red and NIR light may also be produced by an arc lamp, a halogen lamp, a solid state source (e.g., red and NIR LEDs or lasers), or any combination thereof.
  • a light source 1 1 a includes an illuminator 202 producing visible and NIR light emission, a collimating lens 204, a filter wheel or reciprocating filter holder 208 that alternatingly transmits red and NIR light and continuously transmits green and blue light.
  • electro-optic or acousto-optic filter may be used.
  • the filtered light is focused by lens 206 onto light guide 17.
  • FIG. 2b Another embodiment of a light source 1 1 b is schematically illustrated in FIG. 2b.
  • the light source 1 1 b includes an illuminator 202 producing visible and NIR light emission and a collimating lens 204.
  • a dichroic mirror 212 transmits green/blue light and reflects red/NIR light to another dichroic mirror 214 which transmits NIR light to NIR mirror 215 and reflects red light, or vice versa.
  • the green/blue light can be further bandpass-filtered by filter 213.
  • the reflected red and NIR light is chopped, for example, by chopper wheels 219a, 219b (which can be combined into a single chopper wheel) to produce temporally discontinuous illumination, which is then reflected by mirrors 216, 217 and combined with the green/blue light by dichroic mirror 218.
  • the combined light is then focused by lens 206 onto light guide 17, as before.
  • an illuminator 202a produces green and blue light emission which is collimated by a collimating lens 204a.
  • separate illuminators 202b, 202c produce respective red and NIR light emissions which are collimated by corresponding collimating lenses 204b and 204c.
  • the red and NIR light is chopped, for example, by chopper wheels 219a, 219b (which may also be combined into a single chopper wheel) to produce temporally discontinuous illumination, which is then combined with the green/blue illumination by dichroic mirrors 222, 228.
  • the combined light is then focused by lens 206 onto light guide 17, as before.
  • an illuminator 202a produces green and blue light emission which is collimated by a collimating lens 204a, as before.
  • the separate illuminators 202d, 202e are here switched electrically to produce red and NIR light emissions with controlled timing.
  • the red and NIR light sources 202d, 202e may be solid state light sources, such as LEDs or semiconductor lasers, which can be rapidly turned on and off with suitable, preferably electronic, switches. As described above with reference to FIG.
  • the red and NIR illumination is collimated by corresponding collimating lenses 204b and 204c and combined with the green/blue illumination by dichroic mirrors 222, 228.
  • the combined light is then focused by lens 206 onto light guide 17, as before.
  • the alternating red and NIR illumination is synchronized with the image acquisition of the three-sensor camera such that red and NIR images are acquired by the camera synchronously with the red and NIR illumination of the endoscope.
  • FIG. 3a shows in more detail the three-sensor camera 13 of FIG. 1 , in particular the optical beam splitter used to direct red/NIR, green, and blue light to the three different image sensors 34, 36 and 38, respectively.
  • the camera preferably also includes an excitation band blocking filter 32.
  • the beam splitter may be made, for example, of a plurality of dichroic prisms, cube splitters, plate splitters or pellicle splitters.
  • FIG. 3b shows the spectral composition of the light received from the endoscope according to FIG. 3a.
  • Fig 3c illustrates the spectral composition of the light transmitted through the excitation band blocking filter 32 Attorney Docket No. N001-7069WO0
  • this filter 32 implemented as a notch filter 31 which blocks transmission of excitation light, while transmitting the other wavelengths in the visible and NIR spectral range.
  • the transmission characteristic of this filter 32 may be designed to also block undesired NIR wavelengths interfering with the visible spectrum that may degrade the color image.
  • FIG. 4 shows a timing diagram for a first exemplary embodiment of a simultaneous color and NIR imaging mode using, for example, a three-sensor camera.
  • the camera sensors utilize an interlaced read-out format which represents an advantageous combination of spatial and temporal resolution for smooth display of motion.
  • Any of the light sources illustrated in FIGS. 2a - 2d can be used with this embodiment.
  • the light source provides continuous blue/green illumination and alternating red and NIR illumination.
  • Half-frames are alternatingly exposed on the image sensors, i.e., a first field (half-frame) with even lines alternating with a second field (half-frame) with odd lines.
  • a first field half-frame
  • the signal is outputted to a video monitor and may be displayed as two separate, simultaneous views (one color and one fluorescence) or as combined color and fluorescence image signals (e.g. by assigning the fluorescence signal a color that contrasts with the naturally occurring colors in the tissue).
  • FIG. 5 shows a timing diagram for a second exemplary embodiment of a simultaneous color and NIR imaging mode.
  • the camera sensors utilize a progressive scan sensor read-out format wherein a complete frame (G/B/R alternating with G/B/NIR) is read out during each field period.
  • G/B/R alternating with G/B/NIR
  • Any of the light sources illustrated in FIGS. 2a - 2d can be used with this embodiment.
  • the light source provides continuous blue/green illumination and alternating red and NIR illumination.
  • one field period (16.7 ms) provides NIR illumination, followed by one field period (16.7 ms) of red illumination.
  • the sample or tissue is illuminated with full-spectrum color (RGB) during one field period (16.7 ms) and with GB and NIR during a third field period.
  • RGB full-spectrum color
  • NIR full-spectrum color
  • a full visible spectrum color image is available at every pixel, in every other frame.
  • the blue and green information is acquired directly, whereas the red information is interpolated between adjacent frames.
  • no spatial interpolation is required.
  • Further image processing and display can be implemented in a manner similar to that described in previous embodiments.
  • FIG. 6 shows a timing diagram for a third exemplary embodiment, wherein both the green/blue illumination and the NIR illumination are continuous, while only the red illumination is modulated.
  • half-frames are alternatingly exposed on the image sensors, i.e., a first field (half- frame) with even lines alternating with a second field (half-frame) with odd lines.
  • one field period (16.7 ms) provides (NIR+GB) illumination (red illumination switched off), followed by two field periods (33.3 ms) of (NIR+RGB).
  • the NIR image signal is small compared to the red reflected signal, it will not significantly affect the overall visible (RGB) image, so that the color image may be generated by conventional color image processing without correction. Otherwise the NIR contribution obtained in the red image channel when the red illumination is switched off may be subtracted from the (NIR+R) image data by spatial and temporal interpolation to obtain the red image signal, as shown in the second to last lien in the timing diagram of FIG. 6.
  • sensors with a progressive scan image sensor readout similar to those illustrated in FIG. 5 could be used with RGB and (RGB+IR) image acquisition in alternate frames.
  • the green/blue illumination as well as the red illumination are continuous, whereas the NIR illumination is modulated.
  • This timing scheme can be best applied if the red and NIR image signals have approximately the same magnitude.
  • the light source provides uninterrupted illumination with full visible spectrum and intermittent illumination with NIR light.
  • the timing diagram is essentially the same as that depicted in FIG. 6, with the NIR and the red illumination interchanged.
  • the intermittent NIR illumination is synchronized to coincide with every 3 rd field with interlaced cameras Attorney Docket No. N001-7069WO0
  • the red image sensor will acquire a (R+NIR) image signal.
  • the NIR image signal can be extracted from the (R+NIR) image signal by interpolation of the red signal value from the appropriate preceding and subsequent "red only" image fields and subtracting the red image signal from the (R+NIR) signal. Since the red and NIR image signals are of similar magnitude, such interpolation and subtraction will provide a reasonably accurate NIR image signal value.
  • the color image is processed by using the acquired and interpolated values for the red image signal in combination with the blue and green image signals. The resulting color and NIR image information can then be displayed or recorded as described before.
  • the NIR endoscopic imaging system can also be operated such that the light sources provides continuous illumination with either the full visible spectrum or the NIR spectrum and the camera acquires the corresponding color image or NIR (absorbance or fluorescence) image in a continuous fashion to provide high spatial resolution.
  • the resulting video image of either individual illumination/imaging mode - color or NIR - can be subsequently displayed and/or recorded.
  • CMOS technology and commercially available from Foveon, Inc., San Jose, CA, may be used. Such sensor is schematically illustrated in FIG. 7. It will be understood that this sensor design can be extended to four colors by adding an NIR-sensitive layer. The red, green, blue and NIR images are hereby acquired at different depths in the image sensor. With a 4-layer sensor, multiplexing of the red and NIR illumination would be unnecessary. However, with a 3-layer sensor, the red and NIR illumination would still need to be multiplexed, as described above for a 3-sensor conventional camera. An appropriate barrier filter to block the NIR excitation light would also be required for fluorescence imaging applications.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Optics & Photonics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Vascular Medicine (AREA)
  • Immunology (AREA)
  • Toxicology (AREA)
  • Endoscopes (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Color Television Image Signal Generators (AREA)
  • Closed-Circuit Television Systems (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

An imaging system for acquisition of NIR and full-color images includes a light source providing visible light and NIR light to an area under observation, such as living tissue, a camera having one or more image sensors configured to separately detect blue reflectance light, green reflectance light, and combined red reflectance light /detected NIR light returned from the area under observation. A controller in signal communication with the light source and the camera is configured to control the light source to continuously illuminate area under observation with temporally continuous blue/green illumination light and with red illumination light and NIR excitation light. At least one of the red illumination light and NIR excitation light are switched on and off periodically in synchronism with the acquisition of red and NIR light images in the camera.

Description

Attorney Docket No. N001-7069WO0
IMAGING SYSTEM FOR COMBINED FULL-COLOR REFLECTANCE AND NEAR-INFRARED IMAGING
Field of the invention
[0001] The invention is directed to medical imaging, in particular to a system and method for obtaining visible light images and near infrared light images from an area under observation, such as living tissue, and in particular for use in endoscopy.
Background of the Invention
[0002] Near-infrared (NIR) imaging has been described in the literature for various clinical applications. Typically such an imaging modality utilizes a contrast agent (e.g. indocyanine green) that absorbs and/or fluoresces in the NIR. Such contrast agents may be conjugated to targeting molecules (e.g. antibodies) for disease detection. The contrast agents may be introduced into tissue intravenously or subcutaneously to image tissue structure and function (e.g. flow of blood/lymph/bile in vessels) that is not easily seen with standard visible light imaging technology.
[0003] Independently of the clinical application, endoscopic NIR imaging devices typically include multiple imaging modes as a practical feature. For example, endoscopists utilize visible spectrum color for both visualization and navigation, and an endoscopic imaging device that offers NIR imaging typically provides a concurrent color image. Such concurrent imaging devices can be realized, for example, as follows:
— One conventional configuration utilizes spectral separation of the visible and the NIR light, with full color and NIR image signals acquired using separate sensors for the different color (e.g. red, Attorney Docket No. N001-7069WO0
green, and blue) and NIR spectral bands or a single color sensor with an integrated filter with filter elements transparent to the different spectral bands (e.g. red, green, blue and NIR). Thus, such multi-modality color and NIR imaging devices provide dedicated sensors or sensor pixels for each of the two imaging modes. Disadvantageously, this increases the number of image sensors in multi-sensor implementations or compromises image resolution when on the same sensor, specific sensor pixels are dedicated for NIR imaging while others are utilized for color imaging.
— Another conventional configuration utilizes a single monochrome image sensor for sequential imaging of the visible and NIR light. The object is hereby sequentially illuminated with light in the red, green, blue and NIR spectral bands, with separate image frames being acquired for each spectral band and composite color and NIR images being generated from the acquired image frames. However, this approach, where image frames are acquired sequentially at different times, can generate objectionable motion artifacts (i.e. color fringing and "rainbow effects") in the composite color and NIR images. These artifacts can be mitigated by increasing the acquisition or frame rate to more than, for example, 15 frames/second (fps), for example to 90 fps, or even 180 fps. Because of the high data transfer rate, high frame rates are difficult to implement for high definition images (e.g. 2 million pixels), or images having a large dynamic range (> 10 bits), thus limiting image size and/or resolution.
[0004] It would therefore be desirable to provide a system and a method for simultaneous acquisition of full-color visible light and NIR light images, which obviates the aforementioned disadvantages and Attorney Docket No. N001-7069WO0
does not compromise image resolution and/or introduce objectionable motion artifacts.
Summary of the Invention
[0005] According to one aspect of the invention, a method for acquisition of NIR images and full-color images includes the steps of illuminating an area under observation with continuous blue/green light, and illuminating the area under observation with red light and NIR light, wherein at least one of the red light and NIR light are switched on and off periodically. The blue, green, red and NIR light returning from the area under observation is directed to one or more sensors which are configured to separately detect the blue light, the green light, and the combined red light /NIR light. The red light spectral component and the NIR light spectral component are determined separately from image signals of the combined red light /NIR light, in synchronism with the switched red and NIR light. A full-color reflectance image of the area under observation is rendered and displayed from the blue, green, and red light and an NIR image is likewise rendered and displayed from the NIR light.
[0006] According to another aspect of the invention, an imaging system for acquisition of NIR and full-color images includes a light source providing visible light and NIR light to an area under observation, a camera having one or more image sensors configured to separately detect blue and green light, and combined red and NIR light returned from the area under observation, and a controller in signal communication with the light source and the camera. The controller is configured to control the light source to continuously illuminate tissue with blue/green light and to illuminate the area under observation with red light and NIR light, wherein at least one of the red Attorney Docket No. N001-7069WO0
light and NIR light are switched on and off periodically in synchronism with the acquisition of the red and NIR images in the camera.
[0007] The controller is further configured to determine from sensor signals representing the combined red light and NIR light separately the red light spectral component and the NIR light spectral component. The imaging system further includes a display receiving image signals corresponding to the blue light, the green light, and the separately determined red light spectral component and rendering therefrom a full- color visible light image of the area under observation. The display also receives the separately determined NIR light spectral component and renders therefrom an NIR image of the area under observation.
[0008] The video imaging system may use a three-sensor color camera configured to continuously image the blue and green wavebands and intermittently image the red waveband, thus providing continuous, high quality luma information and a sufficiently continuous complete chroma to produce high quality video images of the area under observation, such as living tissue. In such a configuration, the red image sensor can be time-multiplexed to acquire both red and NIR images (i.e. the red image sensor alternately, and in rapid succession, images both red light for the color information required for the color image and NIR light for image information required for the NIR image). Such time-multiplexing may be coupled to (and synchronized with) the illumination source used to provide the NIR illumination (excitation for fluorescence) and the red light for color imaging. Image processing is then utilized to separate and process the resulting image signals appropriately. Attorney Docket No. N001-7069WO0
[0009] Embodiments of the invention may include one or more of the following features. The area under observation may be alternatingly illuminated with red light and NIR light, wherein the duration of red light may be different from, preferably longer than, the duration of illumination with NIR light. The illumination may be switched at video field or frame rates.
[0010] Fields captured by the image sensor and lacking the red light spectral component or the NIR light spectral component may be interpolated from temporally adjacent image fields that include a corresponding red light spectral component or NIR light spectral component. In one embodiment, the NIR light spectral component obtained in the absence of red light may be subtracted from the combined red light /NIR light to obtain the separate red light spectral component. This is advantageous in particular when the detected NIR signal has an intensity comparable to that of the red signal.
[0011] In one embodiment, the light source may include an illuminator emitting a substantially constant intensity of visible light and NIR light over a continuous spectral range, and a plurality of movable filters disposed between the illuminator and the area under observation for transmitting temporally continuous blue/green light and temporally discontinuous red light and NIR light.
[0012] In another embodiment, the light source may include an illuminator emitting a substantially constant intensity of visible light and NIR light over a continuous spectral range, first dichroic means for separating the visible light and NIR light into blue/green and red light and NIR light, shutter means for transforming the separated red light and NIR light into temporally discontinuous red light and discontinuous Attorney Docket No. N001-7069WO0
NIR light, and second dichroic means for combining the blue/green light, the temporally discontinuous red light and the temporally discontinuous NIR light for transmission to the area under observation.
[0013] In yet another embodiment, the light source may include a first illuminator emitting a substantially constant intensity of green and blue light, a second illuminator producing switched red light, a third illuminator producing switched NIR excitation light, and dichroic means for combining the switched red light and the switched NIR light with the green and blue light for transmission to the area under observation. The switched red light and the NIR light may be produced by interrupting a continuous intensity light beam of the red light and the NIR light by a shutter or chopper. Alternatively, the switched red light and the NIR light may be produced by electrically switching the second illuminator and the third illuminator on and off.
[0014] The image sensors may employ an interlaced scan or a progressive scan.
[0015] The imaging system may include an endoscope.
Brief Description of the Drawings
[0016] The following figures depict certain illustrative embodiments of the invention which are to be understood as illustrative of the invention and not as limiting in any way. Attorney Docket No. N001-7069WO0
[0017] FIG. 1 shows an endoscopic system according to one embodiment of the invention;
[0018] FIGS. 2a-2d show various exemplary embodiments of a multimode light source to be used with the endoscopic system of FIG. 1 ;
[0019] FIG. 3a shows an exemplary dichroic prism employed by a 3-sensor color camera;
[0020] FIG. 3b shows the optical transmission ranges for the spectral components separated by the dichroic prism of FIG. 3a;
[0021] FIG. 3c shows the optical transmission range of a notch filter that blocks excitation light from entering the camera;
[0022] FIG. 4 shows a timing diagram of a first embodiment for continuous illumination with green/blue light and alternating illumination with red/NIR light;
[0023] FIG. 5 shows a timing diagram of a second embodiment for continuous illumination with green/blue light and alternating illumination with red/NIR light;
[0024] FIG. 6 shows a timing diagram of a third embodiment for continuous illumination with green/blue/NIR light and alternating illumination with red light; and
[0025] FIG. 7 shows an exemplary CMOS sensor having stacked imaging layers and the corresponding spectral sensitivity of these layers. Attorney Docket No. N001-7069WO0
Description of Certain Illustrated Embodiments
[0026] Color video images are generally obtained with three-sensor color cameras where separate red, green and blue image sensors provide simultaneous contiguous arrays of red, green and blue pixel information. Full color video images are generated by combining the image information from all three sensors. Color fidelity (i.e. a true color rendition) is extremely important in medical imaging applications and all three sensors are used to provide complete color information.
[0027] To understand the relative importance of color and spatial information in video images of human tissue, however, it is useful to consider information in such video images in terms of luma and chroma. Luma refers to the brightness information in the image and it is this information that provides the spatial detail that enables the viewer to recognize shapes. The spatial and temporal resolution of luma is consequently crucial to the perception of video image quality. Chroma refers to the color information in the video image. It is a property of human vision that fine detail variations in the chroma of image features are not easily perceived and that such variations are consequently less critical than fine detail variations in luma, in an overall assessment of image quality. It is for this reason that video encoding of chroma information is often sub-sampled.
[0028] In video images of human tissue obtained with visible light, the structural details of the tissue are largely contained in the blue and green wavelength regions of the imaged light. Blue and green light tends to be reflected from the tissue surface, whereas red light tends to be highly scattered within the tissue. As a consequence, there is very little fine structural detail in the red light that reaches the red image sensor. It is also known from color science that human vision receives Attorney Docket No. N001-7069WO0
most of the spatial information from the green portion of the visible spectrum - i.e. green light information contributes disproportionately to the luma. The standard formula for calculating luma from gamma- corrected color components is Y' = 0.2126 R' + 0.7152 G' + 0.0722 B'. For this reason, spatial and/or temporal interpolation of the red component of video images of human tissue does not significantly affect perception of fine detail in those images.
Similarly to red light, NIR light tends to be scattered in tissue causing NIR image features to be diffusely, rather than sharply defined.
Furthermore, because the NIR image highlights areas of interest (i.e. the areas in which the contrast agent is localized), but does not provide the overall visualization or navigational information, it is desirable for a
NIR endoscopic imaging device to provide a continuous color image and either a superimposed or side-by-side display of the NIR image information. In such a display the NIR light would also contribute less to the spatial information presented to observer.
[0029] FIG. 1 shows schematically an exemplary embodiment of a NIR endoscopic imaging system 10 which includes a multimode light source 1 1 that provides both visible and NIR illumination, connected to an endoscope 12 by way of an illumination guide, for example a fiber optic cable 17, suitable for transmission of both color and NIR illumination, a color camera 13, illustrated here as having three different sensors 34, 36, 38 (see FIG. 3a) for blue, green and red/NIR imaging, respectively, mounted to the endoscope image guide, and a camera controller 14 connected to the camera 13 and the light source 1 1 for controlling and synchronizing illumination and image acquisition. Controller 14 can also process the acquired visible and NIR images for display on a monitor 15 connected to the controller 14, for example, by Attorney Docket No. N001-7069WO0
a cable 19. Images can be acquired in real time at selectable frame rates, such as video rates.
[0030] FIGS. 2a-2d show schematic diagrams of exemplary embodiments of various light sources 1 1 . The illustrated light sources are constructed to supply in normal color imaging mode visible illumination light yielding a substantially continuous spectral distribution. The light source maybe an arc lamp, a halogen lamp, one or more solid state sources (e.g. LEDs, semiconductor lasers) or any combination thereof and may be spectrally filtered or shaped (e.g. with bandpass filters, IR filters, etc.). The continuous spectrum may be produced as primary colors (RGB) either concurrently or sequentially, for example, using a rotating filter wheel.
[0031] In systems according to the present invention, light sources to be used with the system of the invention and described in detail below are configured to provide continuous, uninterrupted illumination in the blue and green parts of the visible spectrum and discontinuous red and/or NIR light. The blue and green parts of the visible spectrum may be optically filtered from the emission produced by a continuous source or produced directly by a narrow-band source (e.g. blue and green LEDs). The red and NIR light may also be produced by an arc lamp, a halogen lamp, a solid state source (e.g., red and NIR LEDs or lasers), or any combination thereof.
[0032] Turning now to FIG. 2a, in one embodiment a light source 1 1 a includes an illuminator 202 producing visible and NIR light emission, a collimating lens 204, a filter wheel or reciprocating filter holder 208 that alternatingly transmits red and NIR light and continuously transmits green and blue light. Alternatively, a tunable Attorney Docket No. N001-7069WO0
electro-optic or acousto-optic filter may be used. The filtered light is focused by lens 206 onto light guide 17.
[0033] Another embodiment of a light source 1 1 b is schematically illustrated in FIG. 2b. The light source 1 1 b includes an illuminator 202 producing visible and NIR light emission and a collimating lens 204. A dichroic mirror 212 transmits green/blue light and reflects red/NIR light to another dichroic mirror 214 which transmits NIR light to NIR mirror 215 and reflects red light, or vice versa. The green/blue light can be further bandpass-filtered by filter 213. The reflected red and NIR light is chopped, for example, by chopper wheels 219a, 219b (which can be combined into a single chopper wheel) to produce temporally discontinuous illumination, which is then reflected by mirrors 216, 217 and combined with the green/blue light by dichroic mirror 218. The combined light is then focused by lens 206 onto light guide 17, as before.
[0034] In another embodiment of a light source 1 1 c schematically illustrated in FIG. 2c, an illuminator 202a produces green and blue light emission which is collimated by a collimating lens 204a. Likewise, separate illuminators 202b, 202c produce respective red and NIR light emissions which are collimated by corresponding collimating lenses 204b and 204c. As in the embodiment of FIG. 2b, the red and NIR light is chopped, for example, by chopper wheels 219a, 219b (which may also be combined into a single chopper wheel) to produce temporally discontinuous illumination, which is then combined with the green/blue illumination by dichroic mirrors 222, 228. The combined light is then focused by lens 206 onto light guide 17, as before. Attorney Docket No. N001-7069WO0
[0035] In yet another embodiment of a light source 1 1 d schematically illustrated in FIG. 2d, an illuminator 202a produces green and blue light emission which is collimated by a collimating lens 204a, as before. However, unlike in the embodiment of FIG. 2c, the separate illuminators 202d, 202e are here switched electrically to produce red and NIR light emissions with controlled timing. For example, the red and NIR light sources 202d, 202e may be solid state light sources, such as LEDs or semiconductor lasers, which can be rapidly turned on and off with suitable, preferably electronic, switches. As described above with reference to FIG. 2c, the red and NIR illumination is collimated by corresponding collimating lenses 204b and 204c and combined with the green/blue illumination by dichroic mirrors 222, 228. The combined light is then focused by lens 206 onto light guide 17, as before.
[0036] The alternating red and NIR illumination is synchronized with the image acquisition of the three-sensor camera such that red and NIR images are acquired by the camera synchronously with the red and NIR illumination of the endoscope.
[0037] FIG. 3a shows in more detail the three-sensor camera 13 of FIG. 1 , in particular the optical beam splitter used to direct red/NIR, green, and blue light to the three different image sensors 34, 36 and 38, respectively. For NIR fluorescence applications, the camera preferably also includes an excitation band blocking filter 32. The beam splitter may be made, for example, of a plurality of dichroic prisms, cube splitters, plate splitters or pellicle splitters. FIG. 3b shows the spectral composition of the light received from the endoscope according to FIG. 3a. Fig 3c illustrates the spectral composition of the light transmitted through the excitation band blocking filter 32 Attorney Docket No. N001-7069WO0
implemented as a notch filter 31 which blocks transmission of excitation light, while transmitting the other wavelengths in the visible and NIR spectral range. The transmission characteristic of this filter 32 may be designed to also block undesired NIR wavelengths interfering with the visible spectrum that may degrade the color image.
[0038] FIG. 4 shows a timing diagram for a first exemplary embodiment of a simultaneous color and NIR imaging mode using, for example, a three-sensor camera. In this embodiment, the camera sensors utilize an interlaced read-out format which represents an advantageous combination of spatial and temporal resolution for smooth display of motion. Any of the light sources illustrated in FIGS. 2a - 2d can be used with this embodiment. The light source provides continuous blue/green illumination and alternating red and NIR illumination. Half-frames are alternatingly exposed on the image sensors, i.e., a first field (half-frame) with even lines alternating with a second field (half-frame) with odd lines. In the timing diagram of FIG. 4 depicting a full frame rate of 30 fps, one field period (16.7 ms) provides NIR illumination, followed by two field periods (33.3 ms) of red illumination. Stated differently, the sample or tissue is illuminated with full-spectrum color (RGB) during two field periods (33.3 ms) and with GB and NIR during a third field period. For reconstructing the full-color visible image, the missing red information is interpolated between the fields adjacent to the field with the NIR illumination. The blue and green image information is always available, thereby providing optimum and continuous luma information. The NIR image is generated from every sixth field in each half frame, wherein the missing lines are spatially interpolated. When the fluorescence field is displayed, the image is updated every three fields, with the displayed image interpolated between even and odd lines. Attorney Docket No. N001-7069WO0
[0039] In all the figures, the term "IR" is used instead of or interchangeably with "NIR."
[0040] Once the color and NIR image data have been processed, the signal is outputted to a video monitor and may be displayed as two separate, simultaneous views (one color and one fluorescence) or as combined color and fluorescence image signals (e.g. by assigning the fluorescence signal a color that contrasts with the naturally occurring colors in the tissue).
[0041] FIG. 5 shows a timing diagram for a second exemplary embodiment of a simultaneous color and NIR imaging mode. In this embodiment, the camera sensors utilize a progressive scan sensor read-out format wherein a complete frame (G/B/R alternating with G/B/NIR) is read out during each field period. Any of the light sources illustrated in FIGS. 2a - 2d can be used with this embodiment. The light source provides continuous blue/green illumination and alternating red and NIR illumination. In the timing diagram of FIG. 5, one field period (16.7 ms) provides NIR illumination, followed by one field period (16.7 ms) of red illumination. Stated differently, the sample or tissue is illuminated with full-spectrum color (RGB) during one field period (16.7 ms) and with GB and NIR during a third field period. In this case, a full visible spectrum color image is available at every pixel, in every other frame. In the alternate frames, the blue and green information is acquired directly, whereas the red information is interpolated between adjacent frames. Unlike with the embodiment of FIG. 4, no spatial interpolation is required. Further image processing and display can be implemented in a manner similar to that described in previous embodiments. Attorney Docket No. N001-7069WO0
[0042] FIG. 6 shows a timing diagram for a third exemplary embodiment, wherein both the green/blue illumination and the NIR illumination are continuous, while only the red illumination is modulated. Like in the embodiment of FIG. 4, half-frames are alternatingly exposed on the image sensors, i.e., a first field (half- frame) with even lines alternating with a second field (half-frame) with odd lines. In the timing diagram of FIG. 6 depicting a full frame rate of 30 fps, one field period (16.7 ms) provides (NIR+GB) illumination (red illumination switched off), followed by two field periods (33.3 ms) of (NIR+RGB). If the NIR image signal is small compared to the red reflected signal, it will not significantly affect the overall visible (RGB) image, so that the color image may be generated by conventional color image processing without correction. Otherwise the NIR contribution obtained in the red image channel when the red illumination is switched off may be subtracted from the (NIR+R) image data by spatial and temporal interpolation to obtain the red image signal, as shown in the second to last lien in the timing diagram of FIG. 6. Alternatively, sensors with a progressive scan image sensor readout similar to those illustrated in FIG. 5 could be used with RGB and (RGB+IR) image acquisition in alternate frames.
[0043] In yet another exemplary embodiment (not illustrated in the drawings), the green/blue illumination as well as the red illumination are continuous, whereas the NIR illumination is modulated. This timing scheme can be best applied if the red and NIR image signals have approximately the same magnitude. In this embodiment, the light source provides uninterrupted illumination with full visible spectrum and intermittent illumination with NIR light. The timing diagram is essentially the same as that depicted in FIG. 6, with the NIR and the red illumination interchanged. The intermittent NIR illumination is synchronized to coincide with every 3rd field with interlaced cameras Attorney Docket No. N001-7069WO0
and with every other field in progressive scan cameras. For every field in which NIR illumination is provided, the red image sensor will acquire a (R+NIR) image signal. The NIR image signal can be extracted from the (R+NIR) image signal by interpolation of the red signal value from the appropriate preceding and subsequent "red only" image fields and subtracting the red image signal from the (R+NIR) signal. Since the red and NIR image signals are of similar magnitude, such interpolation and subtraction will provide a reasonably accurate NIR image signal value. The color image is processed by using the acquired and interpolated values for the red image signal in combination with the blue and green image signals. The resulting color and NIR image information can then be displayed or recorded as described before.
[0044] In any of the aforementioned embodiments, the NIR endoscopic imaging system can also be operated such that the light sources provides continuous illumination with either the full visible spectrum or the NIR spectrum and the camera acquires the corresponding color image or NIR (absorbance or fluorescence) image in a continuous fashion to provide high spatial resolution. The resulting video image of either individual illumination/imaging mode - color or NIR - can be subsequently displayed and/or recorded.
[0045] By implementing color and NIR imaging as described in the aforementioned embodiments, it is possible to acquire and display full- color visible light and NIR light images at video rates without compromising image resolution and/or introducing objectionable motion artifacts. Furthermore, should any residual color fringing occur as a consequence of sharp edges moving rapidly across the visual field (e.g. with the discontinuous acquisition of red or NIR images), these Attorney Docket No. N001-7069WO0
relatively minor effects can be mitigated by temporal interpolation of the missing (red/NIR) video fields with minimum additional processing time.
[0046] While the invention has been disclosed in connection with the preferred embodiments shown and described in detail, various modifications and improvements thereon will become readily apparent to those skilled in the art. For example, instead of using separate image sensors for G/B and R/NIR, or a single color sensor for RGB images and NIR fluorescence images, a single direct three-color RGB sensor image sensor with a stacked pixel design implemented in
CMOS technology and commercially available from Foveon, Inc., San Jose, CA, may be used. Such sensor is schematically illustrated in FIG. 7. It will be understood that this sensor design can be extended to four colors by adding an NIR-sensitive layer. The red, green, blue and NIR images are hereby acquired at different depths in the image sensor. With a 4-layer sensor, multiplexing of the red and NIR illumination would be unnecessary. However, with a 3-layer sensor, the red and NIR illumination would still need to be multiplexed, as described above for a 3-sensor conventional camera. An appropriate barrier filter to block the NIR excitation light would also be required for fluorescence imaging applications.
[0047] While the invention has been illustrated and described in connection with currently preferred embodiments shown and described in detail, it is not intended to be limited to the details shown since various modifications and structural changes may be made without departing in any way from the spirit and scope of the present invention. The embodiments were chosen and described in order to explain the principles of the invention and practical application to thereby enable a person skilled in the art to best utilize the invention and various Attorney Docket No. N001-7069WO0
embodiments with various modifications as are suited to the particular use contemplated.
[0048] What is claimed as new and desired to be protected by Letters Patent is set forth in the appended claims and includes equivalents of the elements recited therein:

Claims

Attorney Docket No. N001-7069WO0CLAIMSWhat is claimed is:
1. A method for acquisition of NIR and full-color images, comprising the steps of: continuously illuminating an area under observation with blue/green light, illuminating the area under observation with red light and NIR light, wherein at least one of the red light and NIR light are switched on and off periodically, directing blue and green reflectance light and combined red reflectance light / detected NIR light to one or more sensors configured to separately detect the blue reflectance light, the green reflectance light, and the red reflectance light / detected NIR light, wherein the red reflectance light / detected NIR light is detected in synchronism with the switched red light and NIR light, determining from image signals of the combined red reflectance light /detected NIR light separately the red reflectance light spectral component and the detected NIR light spectral component, displaying a full-color image of the area under observation from the blue and green reflectance light and the separately determined red light spectral component, and displaying an NIR image from the detected NIR light spectral component.
2. The method of claim 1 , wherein the area under observation is alternatingly illuminated with red light and NIR light. Attorney Docket No. N001-7069WO0
3. The method of claim 2, wherein a time duration of red light illumination is different from a time duration of NIR light illumination.
4. The method of claim 3, wherein the time duration of red light illumination is longer than the time duration of NIR light illumination.
5. The method of claim 2, wherein a time duration of red light illumination is substantially identical to a time duration of NIR light illumination.
6. The method of claim 1 , wherein the area under observation is continuously illuminated with red light and periodically illuminated with NIR light.
7. The method of claim 1 , wherein the area under observation is continuously illuminated with NIR light and periodically illuminated with red light.
8. The method of claim 1 , wherein the red light or NIR light, or both, are switched at video rates.
9. The method of claim 2, wherein image fields lacking the red reflectance light spectral component or the detected NIR light spectral component are interpolated from temporally adjacent image fields that include a corresponding red reflectance light spectral component or detected NIR light spectral component.
10. The method of claim 7, wherein the NIR light spectral component obtained in the absence of red light illumination is subtracted from the combined red reflectance light /detected NIR light to obtain the separate red reflectance light spectral component.
1 1 . The method of claim 1 , wherein spatial information of the area under observation is primarily derived from the blue reflectance light and the green reflectance light.
12. The method of claim 1 , wherein the detected NIR light is fluorescence light. Attorney Docket No. N001-7069WO0
13. An imaging system for acquisition of NIR images and full- color images comprising: a light source providing visible light and NIR light to an area under observation, a camera having one or more image sensors configured to separately detect blue reflectance light, green reflectance light, and combined red reflectance light /detected NIR light returned from the area under observation, a controller in signal communication with the light source and the camera for continuously illuminating area under observation with blue/green light, illuminating the area under observation with red light and NIR light, wherein at least one of the red light and NIR light are switched on and off periodically, and determining from the combined red reflectance light /detected NIR light separately the red reflectance light spectral component and the detected NIR light spectral component in synchronism with the switched red and NIR light, and a display receiving image signals corresponding to the blue reflectance light, the green reflectance light, and the separately determined red reflectance light spectral component and rendering therefrom a full-color reflectance image of the area under observation, the display further receiving the separately determined NIR fluorescence light spectral component and rendering therefrom an NIR image of the area under observation.
14. The imaging system of claim 13, wherein the area under observation is alternatingly illuminated by the light source with red light and NIR light. Attorney Docket No. N001-7069WO0
15. The imaging system of claim 13, wherein the light source comprises an illuminator emitting a substantially constant intensity of visible light and NIR light over a continuous spectral range, and a plurality of filters disposed between the illuminator and the area under observation for transmitting temporally continuous blue/green light and temporally discontinuous red light and discontinuous NIR light.
16. The imaging system of claim 13, wherein the light source comprises an illuminator emitting a substantially constant intensity of visible light and NIR light over a continuous spectral range, first dichroic means for separating the visible light and NIR light into blue/green and red light and NIR light, shutter means for transforming the separated red light and NIR light into temporally discontinuous red light and discontinuous NIR light, and second dichroic means for combining the blue/green light, the temporally discontinuous red light and the temporally discontinuous NIR light for transmission to the area under observation.
17. The imaging system of claim 13, wherein the light source comprises a first illuminator emitting a substantially constant intensity of green and blue light, a second illuminator producing switched red light, a third illuminator producing switched NIR light, and dichroic means for combining the switched red light and the switched NIR light with the green and blue light for transmission to the area under observation.
18. The imaging system of claim 17, wherein the switched red light and the NIR light are produced by interrupting a continuous Attorney Docket No. N001-7069WO0
intensity light beam of the red light and the NIR light by a shutter or chopper.
19. The imaging system of claim 17, wherein the switched red light and the NIR light are produced by electrically switching the second illuminator and the third illuminator on and off.
20. The imaging system of claim 13, wherein the image sensors employ an interlaced scan.
21 . The imaging system of claim 13, wherein the image sensors employ a progressive scan.
22. The imaging system of claim 13, further comprising a dichroic prism assembly spectrally separating the blue reflectance light, the green reflectance light and the combined red reflectance light/ detected NIR light returned from the area under observation and directing the separated light to different exit faces of the dichroic prism assembly, wherein the one or more image sensors comprise three image sensors, each mounted on a different exit face.
23. The imaging system of claim 13, wherein the one or more image sensors comprise a single image sensor having pixels, each pixel responsive to one of the blue reflectance light, the green reflectance light and the combined red reflectance light/ detected NIR light returned from the area under observation.
24. The imaging system of claim 23, wherein the single image sensor comprises a mosaic blue/green/red-NIR filter array disposed before the sensor pixels.
25. The imaging system of claim 13, wherein the one or more image sensors comprise a single image sensor having a plurality of stacked layers, each layer having pixels responsive to one of the blue reflectance light, the green reflectance light and the combined red reflectance light/ detected NIR light returned from the area under observation.
26. The imaging system of claim 13, wherein the imaging system is configured as an endoscope. Attorney Docket No. N001-7069WO0
27. The imaging system of claim 13, wherein the detectedht is fluorescence light.
PCT/US2009/037506 2008-03-18 2009-03-18 Imaging system for combined full-color reflectance and near-infrared imaging WO2009117483A1 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
JP2011500921A JP5231625B2 (en) 2008-03-18 2009-03-18 Imaging system for acquiring NIR and full color images and method of operation thereof
BRPI0906187-8A BRPI0906187A2 (en) 2008-03-18 2009-03-18 image representation method and system for the acquisition of nir images and full color images
KR1020107023035A KR101517264B1 (en) 2008-03-18 2009-03-18 Imaging system for combined full-color reflectance and near-infrared imaging
EP16186321.2A EP3117765B1 (en) 2008-03-18 2009-03-18 Imaging system for combined full-colour reflectance and near-infrared imaging
US12/933,512 US9173554B2 (en) 2008-03-18 2009-03-18 Imaging system for combined full-color reflectance and near-infrared imaging
EP09721252.6A EP2268194B1 (en) 2008-03-18 2009-03-18 Imaging system for combined full-color reflectance and near-infrared imaging
CN2009801178437A CN102036599B (en) 2008-03-18 2009-03-18 Imaging system for combined full-color reflectance and near-infrared imaging
MX2010010292A MX2010010292A (en) 2008-03-18 2009-03-18 Imaging system for combined full-color reflectance and near-infrared imaging.
RU2010142292/14A RU2510235C2 (en) 2008-03-18 2009-03-18 Imaging system for combined full-colour reflectance and near-infrared imaging
HK11111641.7A HK1157169A1 (en) 2008-03-18 2011-10-27 Imaging system for combined full-color reflectance and near-infrared imaging
US14/873,842 US9642532B2 (en) 2008-03-18 2015-10-02 Imaging system for combined full-color reflectance and near-infrared imaging
US15/584,405 US10779734B2 (en) 2008-03-18 2017-05-02 Imaging system for combine full-color reflectance and near-infrared imaging

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US3751408P 2008-03-18 2008-03-18
US61/037,514 2008-03-18

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/933,512 A-371-Of-International US9173554B2 (en) 2008-03-18 2009-03-18 Imaging system for combined full-color reflectance and near-infrared imaging
US14/873,842 Continuation US9642532B2 (en) 2008-03-18 2015-10-02 Imaging system for combined full-color reflectance and near-infrared imaging

Publications (1)

Publication Number Publication Date
WO2009117483A1 true WO2009117483A1 (en) 2009-09-24

Family

ID=41091235

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2009/037506 WO2009117483A1 (en) 2008-03-18 2009-03-18 Imaging system for combined full-color reflectance and near-infrared imaging

Country Status (10)

Country Link
US (3) US9173554B2 (en)
EP (2) EP2268194B1 (en)
JP (4) JP5231625B2 (en)
KR (1) KR101517264B1 (en)
CN (1) CN102036599B (en)
BR (1) BRPI0906187A2 (en)
HK (1) HK1157169A1 (en)
MX (1) MX2010010292A (en)
RU (1) RU2510235C2 (en)
WO (1) WO2009117483A1 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2263516A1 (en) * 2009-06-17 2010-12-22 Karl Storz GmbH & Co. KG Method and device for controlling a multi-colour display of an image from a medical object
JP2012125502A (en) * 2010-12-17 2012-07-05 Hoya Corp Endoscope processor
RU2564903C2 (en) * 2011-04-25 2015-10-10 Анатолий Александрович Ковалев Method for combined exposure to multi-frequency laser exposures
JP2016178995A (en) * 2015-03-23 2016-10-13 パナソニックIpマネジメント株式会社 Endoscope and endoscope system
JP2017029763A (en) * 2016-09-27 2017-02-09 パナソニックIpマネジメント株式会社 Endoscope and endoscope system
JP6132251B1 (en) * 2016-05-19 2017-05-24 パナソニックIpマネジメント株式会社 Endoscope and endoscope system
JP6168436B1 (en) * 2016-09-21 2017-07-26 パナソニックIpマネジメント株式会社 Endoscope and endoscope system
US9775499B2 (en) 2008-04-26 2017-10-03 Intuitive Surgical Operations, Inc. Augmented visualization for a surgical robot using a captured visible image combined with a fluorescence image and a captured visible image
WO2018176493A1 (en) * 2017-04-01 2018-10-04 SZ DJI Technology Co., Ltd. Low-profile multi-band hyperspectral imaging for machine vision
US10122975B2 (en) 2016-05-19 2018-11-06 Panasonic Intellectual Property Management Co., Ltd. Endoscope and endoscope system
JP2018171507A (en) * 2018-07-19 2018-11-08 パナソニックIpマネジメント株式会社 Four-color prism
JP2018196740A (en) * 2018-07-19 2018-12-13 パナソニックIpマネジメント株式会社 Optical device and endoscope
CN109788888A (en) * 2016-10-07 2019-05-21 索尼奥林巴斯医疗解决方案公司 Medical imaging apparatus and Medical viewing system
US10516836B2 (en) 2015-01-22 2019-12-24 Olympus Corporation Imaging device
WO2020026882A1 (en) * 2018-08-02 2020-02-06 Sony Corporation Imaging apparatus, signal processing apparatus, signal processing method, and program
WO2020112726A1 (en) * 2018-11-30 2020-06-04 Intuitive Surgical Operations, Inc. Medical imaging systems and methods
AU2019202450B2 (en) * 2013-04-23 2020-08-13 Cedars-Sinai Medical Center Systems and methods for recording simultaneously visible light image and infrared light image from fluorophores
US10803578B2 (en) 2013-04-23 2020-10-13 Cedars-Sinai Medical Center Systems and methods for recording simultaneously visible light image and infrared light image from fluorophores
JP2021013753A (en) * 2020-10-19 2021-02-12 パナソニックi−PROセンシングソリューションズ株式会社 Medical optical microscope
US11895393B1 (en) 2021-06-23 2024-02-06 Verily Life Sciences Llc Use of intermediate frames to capture and adjust low frame-rate, single-light source images

Families Citing this family (140)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7403812B2 (en) 2001-05-17 2008-07-22 Xenogen Corporation Method and apparatus for determining target depth, brightness and size within a body region
US20070122344A1 (en) 2005-09-02 2007-05-31 University Of Rochester Medical Center Office Of Technology Transfer Intraoperative determination of nerve location
US20080161744A1 (en) 2006-09-07 2008-07-03 University Of Rochester Medical Center Pre-And Intra-Operative Localization of Penile Sentinel Nodes
US8498695B2 (en) 2006-12-22 2013-07-30 Novadaq Technologies Inc. Imaging system with a single color image sensor for simultaneous fluorescence and color video endoscopy
US8406860B2 (en) 2008-01-25 2013-03-26 Novadaq Technologies Inc. Method for evaluating blush in myocardial tissue
RU2510235C2 (en) 2008-03-18 2014-03-27 Новадак Текнолоджиз Инк. Imaging system for combined full-colour reflectance and near-infrared imaging
US10219742B2 (en) 2008-04-14 2019-03-05 Novadaq Technologies ULC Locating and analyzing perforator flaps for plastic and reconstructive surgery
ES2671710T3 (en) 2008-05-02 2018-06-08 Novadaq Technologies ULC Methods for the production and use of erythrocytes loaded with substances for the observation and treatment of microvascular hemodynamics
TR201901658T4 (en) 2008-05-20 2019-02-21 Univ Health Network EQUIPMENT AND METHOD FOR FLUORESCENT-BASED IMAGING AND MONITORING
WO2009158662A2 (en) * 2008-06-26 2009-12-30 Global Rainmakers, Inc. Method of reducing visibility of illimination while acquiring high quality imagery
JP2010051538A (en) * 2008-08-28 2010-03-11 Panasonic Corp Imaging apparatus
US10492671B2 (en) 2009-05-08 2019-12-03 Novadaq Technologies ULC Near infra red fluorescence imaging for visualization of blood vessels during endoscopic harvest
US10524645B2 (en) 2009-06-18 2020-01-07 Endochoice, Inc. Method and system for eliminating image motion blur in a multiple viewing elements endoscope
US10130246B2 (en) 2009-06-18 2018-11-20 Endochoice, Inc. Systems and methods for regulating temperature and illumination intensity at the distal tip of an endoscope
US9474440B2 (en) 2009-06-18 2016-10-25 Endochoice, Inc. Endoscope tip position visual indicator and heat management system
JP5507376B2 (en) * 2010-07-28 2014-05-28 三洋電機株式会社 Imaging device
US8996086B2 (en) 2010-09-17 2015-03-31 OptimumTechnologies, Inc. Digital mapping system and method
US10663714B2 (en) 2010-10-28 2020-05-26 Endochoice, Inc. Optical system for an endoscope
US9706908B2 (en) 2010-10-28 2017-07-18 Endochoice, Inc. Image capture and video processing systems and methods for multiple viewing element endoscopes
US20130258112A1 (en) * 2010-12-21 2013-10-03 Zamir Recognition Systems Ltd. Visible light and ir hybrid digital camera
US10517464B2 (en) 2011-02-07 2019-12-31 Endochoice, Inc. Multi-element cover for a multi-camera endoscope
WO2012120380A1 (en) 2011-03-08 2012-09-13 Novadaq Technologies Inc. Full spectrum led illuminator
US9795285B2 (en) * 2011-07-07 2017-10-24 Boston Scientific Scimed, Inc. Imaging system for endoscope
US8684914B2 (en) * 2011-08-12 2014-04-01 Intuitive Surgical Operations, Inc. Image capture unit and an imaging pipeline with enhanced color performance in a surgical instrument and method
US8764633B2 (en) 2011-08-12 2014-07-01 Intuitive Surgical Operations, Inc. Feature differentiation image capture unit and method in a surgical instrument
US8734328B2 (en) 2011-08-12 2014-05-27 Intuitive Surgical Operations, Inc. Increased resolution and dynamic range image capture unit in a surgical instrument and method
US8672838B2 (en) 2011-08-12 2014-03-18 Intuitive Surgical Operations, Inc. Image capture unit in a surgical instrument
US8784301B2 (en) 2011-08-12 2014-07-22 Intuitive Surgical Operations, Inc. Image capture unit and method with an extended depth of field
WO2013069691A1 (en) * 2011-11-11 2013-05-16 オリンパスメディカルシステムズ株式会社 Color signal transfer apparatus, wireless image transfer system, and transmitting apparatus
RU2616653C2 (en) * 2012-06-05 2017-04-18 Хайпермед Имэджинг, Инк. Methods and device for coaxial image forming with multiple wavelengths
US10278585B2 (en) 2012-06-21 2019-05-07 Novadaq Technologies ULC Quantification and analysis of angiography and perfusion
JP6157135B2 (en) * 2013-02-07 2017-07-05 オリンパス株式会社 Light source imaging device
US9094567B2 (en) * 2013-03-14 2015-07-28 James Olson Multi-channel camera system
US9531964B2 (en) 2013-03-14 2016-12-27 Drs Network & Imaging Systems, Llc Methods and system for producing a temperature map of a scene
EP2967299B1 (en) * 2013-03-15 2022-11-30 Stryker Corporation Endoscopic light source and imaging system
WO2014144492A1 (en) 2013-03-15 2014-09-18 Drs Rsta, Inc. Method of shutterless non-uniformity correction for infrared imagers
US10595714B2 (en) 2013-03-28 2020-03-24 Endochoice, Inc. Multi-jet controller for an endoscope
US9636003B2 (en) 2013-06-28 2017-05-02 Endochoice, Inc. Multi-jet distributor for an endoscope
US20140307055A1 (en) * 2013-04-15 2014-10-16 Microsoft Corporation Intensity-modulated light pattern for active stereo
CN105358043B (en) 2013-05-07 2018-12-21 恩多巧爱思股份有限公司 The white balance shell being used together with more observation element endoscopes
US9949623B2 (en) 2013-05-17 2018-04-24 Endochoice, Inc. Endoscope control unit with braking system
CN104780825B (en) * 2013-05-29 2016-09-21 奥林巴斯株式会社 Endoscopic system
US10165972B2 (en) 2013-07-12 2019-01-01 Inthesmart Co., Ltd. Apparatus and method for detecting NIR fluorescence at sentinel lymph node
KR101514204B1 (en) 2013-07-12 2015-04-23 한국전기연구원 Apparatus and method for detecting NIR fluorescence at Sentinel Lymph Node
US10064541B2 (en) 2013-08-12 2018-09-04 Endochoice, Inc. Endoscope connector cover detection and warning system
US9943218B2 (en) 2013-10-01 2018-04-17 Endochoice, Inc. Endoscope having a supply cable attached thereto
US9615037B2 (en) 2013-11-08 2017-04-04 Drs Network & Imaging Systems, Llc Method and system for output of dual video stream via a single parallel digital video interface
US9332235B2 (en) * 2013-12-10 2016-05-03 Visera Technologies Company Limited Imaging capture apparatus having plurality of image sensors generating respective image signals based on emitted light areas
US9968242B2 (en) 2013-12-18 2018-05-15 Endochoice, Inc. Suction control unit for an endoscope having two working channels
WO2015112747A2 (en) 2014-01-22 2015-07-30 Endochoice, Inc. Image capture and video processing systems and methods for multiple viewing element endoscopes
JP5968944B2 (en) 2014-03-31 2016-08-10 富士フイルム株式会社 Endoscope system, processor device, light source device, operation method of endoscope system, operation method of processor device, operation method of light source device
CN106132276B (en) * 2014-04-08 2018-08-07 奥林巴斯株式会社 Fluirescence observation endoscopic system
US11234581B2 (en) 2014-05-02 2022-02-01 Endochoice, Inc. Elevator for directing medical tool
JP6254907B2 (en) * 2014-05-30 2017-12-27 株式会社モリタ製作所 Laser light guide system
US20150356944A1 (en) * 2014-06-09 2015-12-10 Optoma Corporation Method for controlling scene and electronic apparatus using the same
WO2016014581A1 (en) 2014-07-21 2016-01-28 Endochoice, Inc. Multi-focal, multi-camera endoscope systems
CN106714670A (en) 2014-07-24 2017-05-24 大学健康网络 Collection and analysis of data for diagnostic purposes
EP3185744B1 (en) 2014-08-29 2024-10-23 EndoChoice, Inc. Systems and methods for varying stiffness of an endoscopic insertion tube
WO2016049756A1 (en) * 2014-09-29 2016-04-07 Novadaq Technologies Inc. Imaging a target fluorophore in a biological material in the presence of autofluorescence
EP3915467A1 (en) 2014-10-09 2021-12-01 Novadaq Technologies ULC Quantification of absolute blood flow in tissue using fluorescence-mediated photoplethysmography
JP2018506317A (en) * 2014-12-18 2018-03-08 エンドチョイス インコーポレイテッドEndochoice, Inc. Multiple view element endoscope system that synchronizes the motion of multiple sensors
WO2016100173A1 (en) 2014-12-18 2016-06-23 Endochoice, Inc. System and method for processing video images generated by a multiple viewing elements endoscope
US10271713B2 (en) 2015-01-05 2019-04-30 Endochoice, Inc. Tubed manifold of a multiple viewing elements endoscope
WO2016117049A1 (en) * 2015-01-21 2016-07-28 オリンパス株式会社 Endoscope device
US10376181B2 (en) 2015-02-17 2019-08-13 Endochoice, Inc. System for detecting the location of an endoscopic device during a medical procedure
US10078207B2 (en) 2015-03-18 2018-09-18 Endochoice, Inc. Systems and methods for image magnification using relative movement between an image sensor and a lens assembly
US11206987B2 (en) * 2015-04-03 2021-12-28 Suzhou Caring Medical Co., Ltd. Method and apparatus for concurrent imaging at visible and infrared wavelengths
US10401611B2 (en) 2015-04-27 2019-09-03 Endochoice, Inc. Endoscope with integrated measurement of distance to objects of interest
JP6561571B2 (en) * 2015-05-12 2019-08-21 ソニー株式会社 Medical imaging apparatus, imaging method, and imaging apparatus
WO2016187124A1 (en) 2015-05-17 2016-11-24 Endochoice, Inc. Endoscopic image enhancement using contrast limited adaptive histogram equalization (clahe) implemented in a processor
JP6451494B2 (en) * 2015-05-19 2019-01-16 株式会社島津製作所 Imaging device
EP3319515B1 (en) * 2015-07-06 2020-03-18 Scinovia Corp. Fluorescence based flow imaging and measurements
US10598914B2 (en) * 2015-07-14 2020-03-24 Massachusetts Institute Of Technology Enhancement of video-rate fluorescence imagery collected in the second near-infrared optical window
US10579891B2 (en) 2015-08-10 2020-03-03 AI Biomed Corp Optical overlay device
CN107405053B (en) * 2015-10-22 2019-08-02 奥林巴斯株式会社 Endoscopic system
US20170119474A1 (en) 2015-10-28 2017-05-04 Endochoice, Inc. Device and Method for Tracking the Position of an Endoscope within a Patient's Body
CN113648067A (en) 2015-11-13 2021-11-16 史赛克欧洲运营有限公司 System and method for illumination and imaging of an object
CN113425225B (en) 2015-11-24 2024-09-17 安多卓思公司 Disposable air/water valve and suction valve for an endoscope
WO2017126388A1 (en) * 2016-01-19 2017-07-27 ソニー・オリンパスメディカルソリューションズ株式会社 Medical light source device and medical observation system
US10980420B2 (en) 2016-01-26 2021-04-20 Stryker European Operations Limited Configurable platform
CN109068951A (en) 2016-02-24 2018-12-21 安多卓思公司 For using the circuit board assemblies of more observation element endoscopes of cmos sensor
US10292570B2 (en) 2016-03-14 2019-05-21 Endochoice, Inc. System and method for guiding and tracking a region of interest using an endoscope
JP6522539B2 (en) * 2016-03-18 2019-05-29 富士フイルム株式会社 Endoscope system and method of operating the same
US10690904B2 (en) 2016-04-12 2020-06-23 Stryker Corporation Multiple imaging modality light source
USD916294S1 (en) 2016-04-28 2021-04-13 Stryker European Operations Limited Illumination and imaging device
JP6626783B2 (en) * 2016-06-02 2019-12-25 Hoya株式会社 Image processing apparatus and electronic endoscope system
EP3469420A4 (en) 2016-06-14 2020-02-12 Novadaq Technologies ULC Methods and systems for adaptive imaging for low light signal enhancement in medical visualization
WO2017214734A1 (en) 2016-06-16 2017-12-21 Novadaq Technologies Inc. Closed cavity adjustable sensor mount systems and methods
US10993605B2 (en) 2016-06-21 2021-05-04 Endochoice, Inc. Endoscope system with multiple connection interfaces to interface with different video data signal sources
US10278586B2 (en) 2016-06-23 2019-05-07 Li-Cor, Inc. Complementary color flashing for multichannel image presentation
JP6751763B2 (en) * 2016-07-25 2020-09-09 オリンパス株式会社 Image processing equipment, image processing methods and programs
US11911003B2 (en) 2016-09-09 2024-02-27 Intuitive Surgical Operations, Inc. Simultaneous white light and hyperspectral light imaging systems
MX2019005456A (en) * 2016-11-10 2019-08-12 Ericsson Telefon Ab L M Resource segmentation to improve delivery performance.
CN106595860B (en) * 2016-11-27 2018-12-14 苏州国科美润达医疗技术有限公司 Multi-optical spectrum imaging system
NL2017973B1 (en) * 2016-12-09 2018-06-19 Quest Photonic Devices B V Dichroic prism assembly with four or five channels
EP4413946A3 (en) * 2017-02-06 2024-10-23 Intuitive Surgical Operations, Inc. System and method for extracting multiple feeds from a rolling-shutter sensor
JP6931705B2 (en) 2017-02-10 2021-09-08 ノバダック テクノロジーズ ユーエルシー Open Field Handheld Fluorescence Imaging Systems and Methods
NL2018494B1 (en) * 2017-03-09 2018-09-21 Quest Photonic Devices B V Method and apparatus using a medical imaging head for fluorescent imaging
US11259892B2 (en) * 2017-03-10 2022-03-01 Asensus Surgical Us, Inc. Instrument for optical tissue interrogation
US20200397266A1 (en) * 2017-03-10 2020-12-24 Transenterix Surgical, Inc. Apparatus and method for enhanced tissue visualization
JP7219208B2 (en) * 2017-03-10 2023-02-07 ソニー・オリンパスメディカルソリューションズ株式会社 Endoscope device
JP6939000B2 (en) * 2017-03-23 2021-09-22 株式会社Jvcケンウッド Imaging device and imaging method
JP6388240B2 (en) * 2017-04-06 2018-09-12 パナソニックIpマネジメント株式会社 Optical device
EP3616002A4 (en) 2017-04-24 2021-01-13 Ramot at Tel-Aviv University Ltd. Multi-frequency infrared imaging based on frequency conversion
EP3632291A4 (en) * 2017-05-22 2020-06-10 Sony Corporation Observation system and light source control apparatus
WO2018225122A1 (en) * 2017-06-05 2018-12-13 オリンパス株式会社 Endoscope device
EP3682202A4 (en) * 2017-09-15 2021-07-14 Kent Imaging Hybrid visible and near infrared imaging with an rgb color filter array sensor
KR101998592B1 (en) * 2017-09-20 2019-07-10 인더스마트 주식회사 Apparatus and method for detecting near-infrared fluorescence
JP6834907B2 (en) * 2017-10-25 2021-02-24 トヨタ自動車株式会社 Imaging method
EP3751325B1 (en) 2018-03-28 2024-04-10 Sony Group Corporation Optical system for rigid scope, imaging device, and endoscopic system
KR102190398B1 (en) 2018-05-29 2020-12-11 한국전기연구원 System and method for providing visible ray image and near-infrared ray image, using a single color camera and capable of those images simultaneously
CN109124586A (en) * 2018-08-15 2019-01-04 南京航空航天大学 A kind of multi-mode fluorescence endoscopic Real Time Image System
CN109363768A (en) * 2018-10-10 2019-02-22 南京诺源医疗器械有限公司 785nm wavelength light source near-infrared fluorescence imaging surgery guides system
CN109222910A (en) * 2018-10-10 2019-01-18 南京诺源医疗器械有限公司 Fluorescence detection device
WO2020096894A1 (en) * 2018-11-05 2020-05-14 Medivators Inc. Endoscope fluorescence inspection device
WO2020163286A1 (en) * 2019-02-04 2020-08-13 Massachusetts Institute Of Technology Systems and methods for lymph nodes and vessels imaging
JP7080195B2 (en) * 2019-02-19 2022-06-03 富士フイルム株式会社 Endoscope system
EP3931550A4 (en) * 2019-02-26 2022-11-23 Al Biomed Corp. Tissue detection system and methods for use thereof
US11540883B2 (en) * 2019-03-08 2023-01-03 Thomas Jefferson University Virtual reality training for medical events
CN109864691A (en) * 2019-04-04 2019-06-11 济南显微智能科技有限公司 A kind of double tracer fluorescence endoscopes
CN111528770B (en) * 2019-06-20 2021-01-12 深圳迈瑞生物医疗电子股份有限公司 Endoscope imaging system, image processing method, and readable storage medium
US11931009B2 (en) 2019-06-20 2024-03-19 Cilag Gmbh International Offset illumination of a scene using multiple emitters in a hyperspectral imaging system
US11589819B2 (en) * 2019-06-20 2023-02-28 Cilag Gmbh International Offset illumination of a scene using multiple emitters in a laser mapping imaging system
US11892403B2 (en) * 2019-06-20 2024-02-06 Cilag Gmbh International Image synchronization without input clock and data transmission clock in a pulsed fluorescence imaging system
US11895397B2 (en) * 2019-06-20 2024-02-06 Cilag Gmbh International Image synchronization without input clock and data transmission clock in a pulsed fluorescence imaging system
EP3997710A4 (en) 2019-07-10 2023-07-12 Stryker Corporation Systems and methods for persistent ureter visualization
EP3779554B1 (en) * 2019-08-14 2024-01-17 Leica Instruments (Singapore) Pte. Ltd. Optical beam splitter assembly, camera head, and microscope assembly
CN110672551B (en) * 2019-09-10 2021-11-19 中国科学院上海技术物理研究所 Micro-area image spectrum analysis method for important biological resources
CN110547752A (en) * 2019-09-16 2019-12-10 北京数字精准医疗科技有限公司 Endoscope system, mixed light source, video acquisition device and image processor
US10986321B1 (en) 2019-12-10 2021-04-20 Arthrex, Inc. Method and device for color correction of two or more self-illuminated camera systems
KR20220164759A (en) * 2020-04-06 2022-12-13 보스톤 싸이엔티픽 싸이메드 인코포레이티드 Image Processing Systems and Methods of Using The Same
WO2022066601A1 (en) * 2020-09-25 2022-03-31 Boston Scientific Scimed, Inc. Color extrapolation from monochrome image sensor
TW202213978A (en) * 2020-09-28 2022-04-01 大陸商廣州印芯半導體技術有限公司 Image sensing device and image sensing method
JP7551465B2 (en) * 2020-11-18 2024-09-17 ソニー・オリンパスメディカルソリューションズ株式会社 Medical image processing device and medical observation system
WO2022147421A1 (en) 2020-12-30 2022-07-07 Stryker Corporation Contrast enhancement for medical imaging
CN114397255B (en) * 2021-11-12 2023-09-01 中国科学院西安光学精密机械研究所 Wide-spectrum high-resolution video spectrum imaging system and method
CN114125319A (en) * 2021-11-30 2022-03-01 维沃移动通信有限公司 Image sensor, camera module, image processing method and device and electronic equipment
US20230421912A1 (en) 2022-06-23 2023-12-28 Stryker Corporation Systems and methods for multi-spectral imaging with a non-mechanical adjustable aperture
US20240125703A1 (en) 2022-09-16 2024-04-18 Stryker Corporation Systems and methods for quantifying user observed visualization of fluorescence imaging agents
WO2024137338A1 (en) 2022-12-21 2024-06-27 Stryker Corporation Systems and methods for ambient light compensation in medical imaging

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6596996B1 (en) * 2001-07-24 2003-07-22 The Board Of Regents For Oklahoma State University Optical spectral reflectance sensor and controller
US20040225222A1 (en) * 2003-05-08 2004-11-11 Haishan Zeng Real-time contemporaneous multimodal imaging and spectroscopy uses thereof
US20050171440A1 (en) * 1994-10-06 2005-08-04 Atsushi Maki Optical system for measuring metabolism in a body and imaging method
US7253894B2 (en) * 2000-12-19 2007-08-07 Perceptronix Medical, Inc. Image detection apparatus for fluorescence and reflectance imaging and spectroscopy and for contemporaneous measurements of electromagnetic radiation with multiple measuring devices

Family Cites Families (437)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1290744A (en) 1916-04-12 1919-01-07 Electric Boat Co Periscope.
US2453336A (en) 1945-03-31 1948-11-09 Eastman Kodak Co Periscope lens system
US2857523A (en) 1955-06-16 1958-10-21 Corso Leonard Fluoroscopic device
US3215029A (en) 1960-11-23 1965-11-02 American Optical Corp Fiber optical image transfer devices and method of making the same
DE1797250A1 (en) 1968-09-04 1971-08-05 Rotter Johann Dr Optical device with at least one imaging optical element for the reproduction of documents of any size and for the enlarged viewing of small documents
US3582178A (en) 1969-06-09 1971-06-01 American Optical Corp Dual viewing teaching microscope with universal reticle projection unit
US3749494A (en) 1970-10-26 1973-07-31 Ranging Inc Gun sighting and ranging mechanism
US3790248A (en) 1971-09-07 1974-02-05 A Kellow Target sighting systems
US4115812A (en) 1973-11-26 1978-09-19 Hitachi, Ltd. Automatic gain control circuit
US3931593A (en) 1974-04-22 1976-01-06 Gte Sylvania Incorporated Laser beam control device
JPS5231625B2 (en) 1974-07-04 1977-08-16
US3970373A (en) 1975-02-06 1976-07-20 The United States Of America As Represented By The Secretary Of The Air Force Mirror steering system
US3971068A (en) 1975-08-22 1976-07-20 The United States Of America As Represented By The Secretary Of The Navy Image processing system
FR2326715A1 (en) 1975-10-01 1977-04-29 France Etat PANORAMIC SIGHT FOR DAY AND NIGHT SIGHTING
US4066330A (en) 1976-06-14 1978-01-03 Karl Storz Endoscopy-America, Inc. Coupler for joining optical devices
US4037866A (en) 1976-07-26 1977-07-26 Price Edward E Contact lens applicator
US4597630A (en) 1977-04-22 1986-07-01 Grumman Corporation Self-derived reference beam holography using a dove prism
DE2746076C2 (en) 1977-10-13 1984-07-12 Fa. Carl Zeiss, 7920 Heidenheim Panoramic periscope for daytime and thermal imaging
US4149190A (en) 1977-10-17 1979-04-10 Xerox Corporation Automatic gain control for video amplifier
JPS5641684Y2 (en) 1977-11-24 1981-09-30
US4200801A (en) 1979-03-28 1980-04-29 The United States Of America As Represented By The United States Department Of Energy Portable spotter for fluorescent contaminants on surfaces
JPS55168306U (en) 1979-05-23 1980-12-03
JPS56134894A (en) 1980-03-24 1981-10-21 Sony Corp White balance regulating circuit
FR2521727A2 (en) 1981-03-25 1983-08-19 Cilas DEVICE FOR MEASURING THE STATE OF OXYDO-REDUCTION OF A LIVING ORGAN IN SITU
US4378571A (en) 1981-07-06 1983-03-29 Xerox Corporation Serial analog video processor for charge coupled device imagers
DE3133641A1 (en) 1981-08-26 1983-03-10 Philips Patentverwaltung Gmbh, 2000 Hamburg IR VISOR
JPS5940830A (en) 1982-08-31 1984-03-06 浜松ホトニクス株式会社 Apparatus for diagnosis of cancer using laser beam pulse
US4532918A (en) 1983-10-07 1985-08-06 Welch Allyn Inc. Endoscope signal level control
US4611888A (en) 1983-10-17 1986-09-16 Mp Video, Inc. Coupler for surgical endoscope and video camera
JPS60167576A (en) 1984-01-31 1985-08-30 Canon Inc Image pickup device
JPS60213534A (en) 1984-04-06 1985-10-25 Makoto Okamura Monitor
JPS60237419A (en) 1984-05-09 1985-11-26 Olympus Optical Co Ltd Length measuring optical adapter for endoscope
US4742388A (en) 1984-05-18 1988-05-03 Fuji Photo Optical Company, Ltd. Color video endoscope system with electronic color filtering
JPS60246733A (en) 1984-05-21 1985-12-06 熊谷 博彰 Optical photographing apparatus of organism tissue
JPH0820230B2 (en) 1984-06-08 1996-03-04 オリンパス光学工業株式会社 Measuring endoscope
SE455646B (en) 1984-10-22 1988-07-25 Radians Innova Ab FLUORESCENT DEVICE
US4651200A (en) 1985-02-04 1987-03-17 National Biomedical Research Foundation Split-image, multi-power microscopic image display system and method
US4895145A (en) 1985-05-28 1990-01-23 Surgical Laser Technologies, Inc. Two-piece disposable laser delivery system
US4717952A (en) * 1985-06-14 1988-01-05 Canon Kabushiki Kaisha Medical television system
JPS61159936A (en) 1985-07-02 1986-07-19 熊谷 博彰 Spectral image pick-up apparatus of biological tissue
US5134662A (en) 1985-11-04 1992-07-28 Cell Analysis Systems, Inc. Dual color camera microscope and methodology for cell staining and analysis
US4930516B1 (en) 1985-11-13 1998-08-04 Laser Diagnostic Instr Inc Method for detecting cancerous tissue using visible native luminescence
JPS62247232A (en) 1986-04-21 1987-10-28 Agency Of Ind Science & Technol Fluorescence measuring apparatus
US4856495A (en) 1986-09-25 1989-08-15 Olympus Optical Co., Ltd. Endoscope apparatus
JPH07122694B2 (en) 1986-10-16 1995-12-25 オリンパス光学工業株式会社 Illumination device for microscope
JPS63122421A (en) 1986-11-12 1988-05-26 株式会社東芝 Endoscope apparatus
US5255087A (en) 1986-11-29 1993-10-19 Olympus Optical Co., Ltd. Imaging apparatus and endoscope apparatus using the same
US4799104A (en) 1986-12-19 1989-01-17 Olympus Optical Co., Ltd. Video signal processor for endoscope
DE3743920A1 (en) 1986-12-26 1988-07-14 Olympus Optical Co ENDOSCOPE DEVICE
FR2611337B1 (en) 1987-02-20 1989-05-26 Thomson Semiconducteurs AUTOMATIC VIDEO GAIN CONTROL DEVICE
US4806005A (en) 1987-03-31 1989-02-21 Schneider Richard T Spotting system for binoculars and telescopes
JPH0642882B2 (en) 1987-04-20 1994-06-08 富士写真フイルム株式会社 Desired image signal range determination method
US4954897A (en) 1987-05-22 1990-09-04 Nikon Corporation Electronic still camera system with automatic gain control of image signal amplifier before image signal recording
US4930883A (en) 1987-07-06 1990-06-05 Salzman Ronald H Photovisual star diagonal
US5001556A (en) 1987-09-30 1991-03-19 Olympus Optical Co., Ltd. Endoscope apparatus for processing a picture image of an object based on a selected wavelength range
JPH0796005B2 (en) 1987-10-27 1995-10-18 オリンパス光学工業株式会社 Endoscope device
JPH01135349A (en) 1987-11-19 1989-05-29 Maaketsuto Bureinzu:Kk Contact lens attaching and detaching instrument
JP2693978B2 (en) 1988-02-26 1997-12-24 オリンパス光学工業株式会社 Electronic endoscope device
JP2594627B2 (en) 1988-02-26 1997-03-26 オリンパス光学工業株式会社 Electronic endoscope device
JPH0820610B2 (en) 1988-08-10 1996-03-04 富士写真光機株式会社 Light source
JPH0276722U (en) 1988-12-01 1990-06-12
WO1990006718A1 (en) 1988-12-21 1990-06-28 Massachusetts Institute Of Technology A method for laser induced fluorescence of tissue
JP3217343B2 (en) * 1989-03-23 2001-10-09 オリンパス光学工業株式会社 Image processing device
DE3903019A1 (en) 1989-02-02 1990-08-09 Hell Rudolf Dr Ing Gmbh OPTICAL COLOR DIVIDER ARRANGEMENT
DE3908366A1 (en) 1989-03-15 1990-09-20 Wolf Gmbh Richard DEVICE FOR LIGHTING ENDOSCOPES
JP2542089B2 (en) 1989-03-16 1996-10-09 オリンパス光学工業株式会社 Light source device for endoscope
JP2516007Y2 (en) 1989-03-17 1996-11-06 株式会社トプコン Surgical microscope
US5421337A (en) 1989-04-14 1995-06-06 Massachusetts Institute Of Technology Spectral diagnosis of diseased tissue
JPH07105871B2 (en) 1989-06-30 1995-11-13 キヤノン株式会社 Image reader
JP2810717B2 (en) 1989-09-08 1998-10-15 オリンパス光学工業株式会社 Endoscope for fluorescence observation
JPH0397442A (en) 1989-09-08 1991-04-23 Olympus Optical Co Ltd Endoscope device for fluorescent observation
JP2810715B2 (en) 1989-09-08 1998-10-15 オリンパス光学工業株式会社 Endoscope device for fluorescence observation
US5264961A (en) 1989-10-10 1993-11-23 Unisys Corporation Techniques for trapping beams of infra-red energy
US5420628A (en) 1990-01-16 1995-05-30 Research Development Foundation Video densitometer with determination of color composition
DE4015346A1 (en) 1990-05-12 1991-11-14 Wegmann & Co FIGHTING VEHICLE, IN PARTICULAR FIGHTING TANK, WITH A HAT ARRANGED IN THE ARMORED HOUSING OF THE VEHICLE
FR2665544B1 (en) 1990-07-31 1993-07-30 Thomson Trt Defense DAY-NIGHT OBSERVATION DEVICE.
US5041852A (en) 1990-10-18 1991-08-20 Fjui Photo Film Co., Ltd. Camera shake correction system
US5205280A (en) 1990-12-21 1993-04-27 Mp Video, Inc. Quick-release endoscopic coupling assembly
FR2671405B1 (en) 1991-01-04 1994-07-08 Inst Nat Sante Rech Med DEVICE FOR MEASURING THE PH OF A TARGET, METHOD OF USING SAID DEVICE AND ITS APPLICATIONS.
US5121220A (en) 1991-02-20 1992-06-09 Jason Empire, Inc. Ocular turret telescope system
JP3084295B2 (en) 1991-02-27 2000-09-04 シスメックス株式会社 Flow image cytometer
CA2042075C (en) 1991-05-08 2001-01-23 Branko Palcic Endoscopic imaging system
JP3324780B2 (en) 1991-05-16 2002-09-17 オリンパス光学工業株式会社 UV microscope
US5225883A (en) 1991-06-05 1993-07-06 The Babcock & Wilcox Company Video temperature monitor
US5769792A (en) 1991-07-03 1998-06-23 Xillix Technologies Corp. Endoscopic imaging system for diseased tissue
US5208651A (en) 1991-07-16 1993-05-04 The Regents Of The University Of California Apparatus and method for measuring fluorescence intensities at a plurality of wavelengths and lifetimes
US5485203A (en) 1991-08-12 1996-01-16 Olympus Optical Co., Ltd. Color misregistration easing system which corrects on a pixel or block basis only when necessary
WO1993004648A1 (en) 1991-09-03 1993-03-18 William Frank Clymer A contact lens applicator
US5377686A (en) 1991-10-11 1995-01-03 The University Of Connecticut Apparatus for detecting leakage from vascular tissue
JPH05115435A (en) 1991-10-25 1993-05-14 Olympus Optical Co Ltd Solid-state image pickup device
KR950005050Y1 (en) 1991-12-05 1995-06-21 삼성전자 주식회사 Analog circuit for disital camera
US5214503A (en) 1992-01-31 1993-05-25 The United States Of America As Represented By The Secretary Of The Army Color night vision camera system
US5278642A (en) 1992-02-26 1994-01-11 Welch Allyn, Inc. Color imaging system
US5408263A (en) 1992-06-16 1995-04-18 Olympus Optical Co., Ltd. Electronic endoscope apparatus
DE4220633C1 (en) 1992-06-24 1994-02-03 Wolf Gmbh Richard Device for supplying light to endoscopes
US5535052A (en) 1992-07-24 1996-07-09 Carl-Zeiss-Stiftung Laser microscope
US5295017A (en) 1992-08-27 1994-03-15 Bio-Rad Laboratories, Inc. Sample masking using wavelength-selective material
US5379756A (en) 1992-09-11 1995-01-10 Welch Allyn, Inc. Replaceable lens assembly for video laparoscope
JP3236085B2 (en) 1992-10-15 2001-12-04 浜松ホトニクス株式会社 Endoscope device
US5410363A (en) 1992-12-08 1995-04-25 Lightwave Communications, Inc. Automatic gain control device for transmitting video signals between two locations by use of a known reference pulse during vertical blanking period so as to control the gain of the video signals at the second location
WO1994013191A1 (en) 1992-12-09 1994-06-23 Shahriar Mokhtarzad Electronic video endoscope with non-synchronous exposure
US5536236A (en) 1993-02-12 1996-07-16 Olympus Optical Co., Ltd. Covered endoscope system
US5490015A (en) 1993-03-04 1996-02-06 Olympus Optical Co., Ltd. Actuator apparatus
JP3247486B2 (en) 1993-04-26 2002-01-15 ローム株式会社 Laser beam printer
US5424841A (en) 1993-05-28 1995-06-13 Molecular Dynamics Apparatus for measuring spatial distribution of fluorescence on a substrate
US5365057A (en) 1993-07-02 1994-11-15 Litton Systems, Inc. Light-weight night vision device
US5371355A (en) 1993-07-30 1994-12-06 Litton Systems, Inc. Night vision device with separable modular image intensifier assembly
WO1995011624A2 (en) 1993-10-29 1995-05-04 Feld Michael S A raman endoscope
JP3487933B2 (en) 1993-12-03 2004-01-19 オリンパス株式会社 Fluorescence observation device
JPH07222712A (en) 1994-02-10 1995-08-22 Olympus Optical Co Ltd Fluorescent endoscope system
JP3285265B2 (en) 1993-12-03 2002-05-27 オリンパス光学工業株式会社 Fluorescence observation device
JP3283128B2 (en) 1993-12-03 2002-05-20 オリンパス光学工業株式会社 Fluorescence observation endoscope device
US5749830A (en) 1993-12-03 1998-05-12 Olympus Optical Co., Ltd. Fluorescent endoscope apparatus
JPH07155291A (en) 1993-12-03 1995-06-20 Olympus Optical Co Ltd Fluorescence observation apparatus
JP3194660B2 (en) 1993-12-03 2001-07-30 オリンパス光学工業株式会社 Fluorescence observation device
JPH07155290A (en) 1993-12-03 1995-06-20 Olympus Optical Co Ltd Endoscope apparatus
JPH07218862A (en) 1994-02-04 1995-08-18 Canon Inc Spatial optical transmission equipment
JP3123587B2 (en) 1994-03-09 2001-01-15 日本電信電話株式会社 Moving object region extraction method using background subtraction
JPH07250804A (en) 1994-03-15 1995-10-03 Olympus Optical Co Ltd Fluorescence observer
US5512036A (en) 1994-03-15 1996-04-30 Welch Allyn, Inc. Dental imaging system
JPH07250812A (en) 1994-03-15 1995-10-03 Olympus Optical Co Ltd Fluorescence diagnosing apparatus
US5667472A (en) 1994-03-18 1997-09-16 Clarus Medical Systems, Inc. Surgical instrument and method for use with a viewing system
FR2717365B1 (en) 1994-03-21 1996-05-15 Rech Biolog Et Infrared fluorescence endoscopic or fibroscopic imaging device.
US5590660A (en) 1994-03-28 1997-01-07 Xillix Technologies Corp. Apparatus and method for imaging diseased tissue using integrated autofluorescence
JP3368569B2 (en) 1994-06-13 2003-01-20 オリンパス光学工業株式会社 Cover-type endoscope
US5729382A (en) 1994-07-08 1998-03-17 Olympus Optical Co., Ltd. Large exit-pupil stereoscopic microscope
US5647840A (en) 1994-09-14 1997-07-15 Circon Corporation Endoscope having a distally heated distal lens
JP3467130B2 (en) 1994-09-21 2003-11-17 ペンタックス株式会社 Electronic endoscope device for fluorescence diagnosis
JP3501388B2 (en) 1994-09-21 2004-03-02 ペンタックス株式会社 Video processor of electronic endoscope for fluorescence diagnosis
DE19535114B4 (en) 1994-09-21 2013-09-05 Hoya Corp. Endoscope system with fluorescence diagnosis
JP3490807B2 (en) 1994-09-21 2004-01-26 ペンタックス株式会社 Electronic endoscope device for fluorescence diagnosis
JP3467131B2 (en) 1994-09-21 2003-11-17 ペンタックス株式会社 Electronic endoscope device for fluorescence diagnosis
DE19532897A1 (en) 1994-09-27 1996-03-28 Zeiss Carl Fa Camera exposure control by image photometry in photographic microscope
JP3599426B2 (en) * 1995-07-05 2004-12-08 株式会社日立製作所 Biological light measurement device
JP3730672B2 (en) 1994-10-20 2006-01-05 オリンパス株式会社 Electronic endoscope device
JP3556294B2 (en) 1994-11-01 2004-08-18 オリンパス株式会社 Endoscope
JPH08224208A (en) 1995-02-22 1996-09-03 Olympus Optical Co Ltd Fluorescence observing endoscope device
JPH08224240A (en) 1995-02-22 1996-09-03 Olympus Optical Co Ltd Fluorescent diagnosing device
JP3560671B2 (en) 1995-02-23 2004-09-02 オリンパス株式会社 Fluorescence observation device
JPH08224210A (en) 1995-02-23 1996-09-03 Olympus Optical Co Ltd Fluorescence observing device
JP3411737B2 (en) 1995-03-03 2003-06-03 ペンタックス株式会社 Biological fluorescence diagnostic equipment
US5697373A (en) 1995-03-14 1997-12-16 Board Of Regents, The University Of Texas System Optical method and apparatus for the diagnosis of cervical precancers using raman and fluorescence spectroscopies
US6258576B1 (en) 1996-06-19 2001-07-10 Board Of Regents, The University Of Texas System Diagnostic method and apparatus for cervical squamous intraepithelial lesions in vitro and in vivo using fluorescence spectroscopy
US7236815B2 (en) 1995-03-14 2007-06-26 The Board Of Regents Of The University Of Texas System Method for probabilistically classifying tissue in vitro and in vivo using fluorescence spectroscopy
JPH08252218A (en) 1995-03-16 1996-10-01 Olympus Optical Co Ltd Fluorescent observing endoscope device
US5822021A (en) 1996-05-14 1998-10-13 Colorlink, Inc. Color shutter liquid crystal display system
US5999240A (en) 1995-05-23 1999-12-07 Colorlink, Inc. Optical retarder stack pair for transforming input light into polarization states having saturated color spectra
US5713364A (en) 1995-08-01 1998-02-03 Medispectra, Inc. Spectral volume microprobe analysis of materials
US5840017A (en) 1995-08-03 1998-11-24 Asahi Kogaku Kogyo Kabushiki Kaisha Endoscope system
DE29620732U1 (en) 1995-09-26 1997-04-24 Karl Storz Gmbh & Co, 78532 Tuttlingen Device for photodynamic diagnosis
JP3435268B2 (en) 1995-11-09 2003-08-11 ペンタックス株式会社 Fluorescence observation endoscope device
EP0774865A3 (en) 1995-11-17 2000-06-07 SANYO ELECTRIC Co., Ltd. Video camera with high speed mode
JPH09179539A (en) 1995-12-27 1997-07-11 Brother Ind Ltd Color adjustment device
DE19703596C2 (en) 1996-01-31 2000-12-14 Asahi Optical Co Ltd Scanner and polygon mirror cover
US5647368A (en) 1996-02-28 1997-07-15 Xillix Technologies Corp. Imaging system for detecting diseased tissue using native fluorsecence in the gastrointestinal and respiratory tract
JP3796635B2 (en) 1996-03-06 2006-07-12 富士写真フイルム株式会社 Fluorescence detection device
US6571119B2 (en) 1996-03-06 2003-05-27 Fuji Photo Film Co., Ltd. Fluorescence detecting apparatus
US6004263A (en) 1996-03-13 1999-12-21 Hihon Kohden Corporation Endoscope with detachable operation unit and insertion unit
DE19612536A1 (en) 1996-03-29 1997-10-02 Freitag Lutz Dr Arrangement and method for diagnosing malignant tissue by fluorescence observation
US6147705A (en) 1996-08-20 2000-11-14 Welch Allyn Inc. Apparatus and method for video colposcope with electronic green filter
DE19640700C2 (en) 1996-10-02 2002-08-14 Wolf Gmbh Richard Device for the photodynamic endoscopic diagnosis of tumor tissue
US5695049A (en) 1996-10-10 1997-12-09 Johnson & Johnson Vision Products, Inc. Contact lens package with insertion feature
JPH10127563A (en) 1996-10-30 1998-05-19 Olympus Optical Co Ltd Endoscope unit
JP3713347B2 (en) 1996-11-25 2005-11-09 オリンパス株式会社 Fluorescence endoscope device
JP3962122B2 (en) * 1996-11-20 2007-08-22 オリンパス株式会社 Endoscope device
US6293911B1 (en) 1996-11-20 2001-09-25 Olympus Optical Co., Ltd. Fluorescent endoscope system enabling simultaneous normal light observation and fluorescence observation in infrared spectrum
US7179222B2 (en) * 1996-11-20 2007-02-20 Olympus Corporation Fluorescent endoscope system enabling simultaneous achievement of normal light observation based on reflected light and fluorescence observation based on light with wavelengths in infrared spectrum
CA2192036A1 (en) 1996-12-04 1998-06-04 Harvey Lui Fluorescence scope system for dermatologic diagnosis
US5772355A (en) 1996-12-19 1998-06-30 Precision Optics Corporation Quick attach/release adapter mechanism
JP3771985B2 (en) 1997-01-20 2006-05-10 オリンパス株式会社 Fluorescence observation endoscope device
JP3771344B2 (en) 1997-02-13 2006-04-26 富士写真フイルム株式会社 Fluorescent electron endoscope
JPH10225426A (en) 1997-02-17 1998-08-25 Olympus Optical Co Ltd Fluorescence observing device
JPH10243915A (en) 1997-03-04 1998-09-14 Olympus Optical Co Ltd Fluorescent observation device
US6059720A (en) 1997-03-07 2000-05-09 Asahi Kogaku Kogyo Kabushiki Kaisha Endoscope system with amplification of fluorescent image
JPH10243920A (en) 1997-03-07 1998-09-14 Olympus Optical Co Ltd Fluorescent observation endoscope device
JPH10258034A (en) 1997-03-19 1998-09-29 Olympus Optical Co Ltd Photographing apparatus for endoscope
DE19713275A1 (en) 1997-03-29 1998-10-01 Storz Karl Gmbh & Co Endoscope with length compensation under thermal stress
US5852498A (en) 1997-04-04 1998-12-22 Kairos Scientific Inc. Optical instrument having a variable optical filter
US6008889A (en) 1997-04-16 1999-12-28 Zeng; Haishan Spectrometer system for diagnosis of skin disease
JPH10295633A (en) 1997-04-25 1998-11-10 Olympus Optical Co Ltd Endoscope observing device
JP3417795B2 (en) 1997-04-30 2003-06-16 ペンタックス株式会社 Fluorescence diagnostic equipment
JPH10308114A (en) 1997-05-06 1998-11-17 Olympus Optical Co Ltd Light source equipment
JP3923595B2 (en) 1997-05-13 2007-06-06 オリンパス株式会社 Fluorescence observation equipment
JPH10309281A (en) 1997-05-13 1998-11-24 Olympus Optical Co Ltd Fluorescent diagnostic device
JPH10321005A (en) 1997-05-16 1998-12-04 Canon Inc Lighting system and projecting apparatus using it
JPH10328129A (en) 1997-06-02 1998-12-15 Olympus Optical Co Ltd Fluorescent observing device
US5986271A (en) 1997-07-03 1999-11-16 Lazarev; Victor Fluorescence imaging system
JPH1132986A (en) 1997-07-16 1999-02-09 Olympus Optical Co Ltd Endoscope system
US5984861A (en) 1997-09-29 1999-11-16 Boston Scientific Corporation Endofluorescence imaging module for an endoscope
US6059719A (en) 1997-08-06 2000-05-09 Olympus Optical Co., Ltd. Endoscope system
JP4009350B2 (en) 1997-08-06 2007-11-14 オリンパス株式会社 Endoscope system
JP4098402B2 (en) 1998-05-28 2008-06-11 オリンパス株式会社 Fluorescent imaging device
US6422994B1 (en) 1997-09-24 2002-07-23 Olympus Optical Co., Ltd. Fluorescent diagnostic system and method providing color discrimination enhancement
JPH11104059A (en) 1997-10-02 1999-04-20 Olympus Optical Co Ltd Fluorescent observation device
JPH1189789A (en) 1997-09-24 1999-04-06 Olympus Optical Co Ltd Fluorescent image device
JPH11104060A (en) 1997-10-03 1999-04-20 Olympus Optical Co Ltd Fluorescent observation device
JPH11113839A (en) 1997-10-14 1999-04-27 Olympus Optical Co Ltd Endoscope device
JPH11104061A (en) 1997-10-02 1999-04-20 Olympus Optical Co Ltd Trans-endoscopic fluorescent observation device
JP3853931B2 (en) 1997-10-02 2006-12-06 オリンパス株式会社 Endoscope
US6091984A (en) 1997-10-10 2000-07-18 Massachusetts Institute Of Technology Measuring tissue morphology
JPH11155812A (en) 1997-12-02 1999-06-15 Olympus Optical Co Ltd Fluorescent observation device
DE19800312A1 (en) 1998-01-07 1999-07-08 Wolf Gmbh Richard Diagnostic device for imaging of fluorescent biological tissue areas
US6364829B1 (en) 1999-01-26 2002-04-02 Newton Laboratories, Inc. Autofluorescence imaging system for endoscopy
DE69938493T2 (en) 1998-01-26 2009-05-20 Massachusetts Institute Of Technology, Cambridge ENDOSCOPE FOR DETECTING FLUORESCENCE IMAGES
US6181414B1 (en) 1998-02-06 2001-01-30 Morphometrix Technologies Inc Infrared spectroscopy for medical imaging
DE19804797A1 (en) 1998-02-07 1999-08-12 Storz Karl Gmbh & Co Device for endoscopic fluorescence diagnosis of tissue
US5973315A (en) 1998-02-18 1999-10-26 Litton Systems, Inc. Multi-functional day/night observation, ranging, and sighting device with active optical target acquisition and method of its operation
JPH11244220A (en) 1998-03-03 1999-09-14 Fuji Photo Film Co Ltd Fluorescent endoscope
US6462770B1 (en) 1998-04-20 2002-10-08 Xillix Technologies Corp. Imaging system with automatic gain control for reflectance and fluorescence endoscopy
DE19821401C2 (en) 1998-05-13 2000-05-18 Storz Endoskop Gmbh Schaffhaus Endoscope for inspection of an observation room
EP0959372A3 (en) 1998-05-22 2000-07-19 Rohm And Haas Company Light pipe composition
JP3394447B2 (en) 1998-05-29 2003-04-07 富士写真フイルム株式会社 Fluorescent endoscope
US6529239B1 (en) 1998-06-01 2003-03-04 Fairchild Imaging, Inc. Image sensor with stripes of cyan filter material perpendicular to stripes of yellow filter material
US6110106A (en) 1998-06-24 2000-08-29 Biomax Technologies, Inc. Endoscopes and methods relating to direct viewing of a target tissue
US6332092B1 (en) 1998-07-08 2001-12-18 Lifespex, Incorporated Optical probe having and methods for uniform light irradiation and/or light collection over a volume
FR2785132B1 (en) 1998-10-27 2000-12-22 Tokendo Sarl DISTAL COLOR CCD SENSOR VIDEOENDOSCOPIC PROBE
US6134050A (en) 1998-11-25 2000-10-17 Advanced Laser Technologies, Inc. Laser beam mixer
NZ529432A (en) 1999-01-26 2005-07-29 Newton Lab Inc Autofluorescence imaging system for endoscopy
US6718541B2 (en) * 1999-02-17 2004-04-06 Elbrus International Limited Register economy heuristic for a cycle driven multiple issue instruction scheduler
JP3720617B2 (en) 1999-03-03 2005-11-30 オリンパス株式会社 Endoscope device
JP3309276B2 (en) 1999-03-17 2002-07-29 エーカポット・パンナチェート Fluorescent endoscope system
USD446524S1 (en) 1999-05-25 2001-08-14 Psc Scanning, Inc. Handheld data reader
JP2000354583A (en) 1999-06-15 2000-12-26 Olympus Optical Co Ltd Endoscope fluoroscopic apparatus
JP2001078205A (en) * 1999-09-01 2001-03-23 Hamamatsu Photonics Kk Very weak light color image pickup device
US6890298B2 (en) 1999-10-14 2005-05-10 Karl Storz Gmbh & Co. Kg Video laryngoscope with detachable light and image guides
US6652452B1 (en) 1999-10-25 2003-11-25 Advanced Medical Electronics Corporation Infrared endoscope with sensor array at the distal tip
EP1101438B1 (en) 1999-11-18 2006-10-18 Fuji Photo Film Co., Ltd. Method and apparatus for acquiring fluorescence images
EP1232387A4 (en) 1999-11-19 2008-10-22 Jobin Yvon Inc Compact spectrofluorometer
EP1237464B1 (en) 1999-12-08 2005-07-20 X-Rite Incorporated Optical measurement device
US6603552B1 (en) 1999-12-22 2003-08-05 Xillix Technologies Corp. Portable system for detecting skin abnormalities based on characteristic autofluorescence
US20020138008A1 (en) * 2000-01-13 2002-09-26 Kazuhiro Tsujita Method and apparatus for displaying fluorescence images and method and apparatus for acquiring endoscope images
JP3297033B2 (en) 2000-02-02 2002-07-02 オリンパス光学工業株式会社 Endoscope
DE10008710C2 (en) 2000-02-24 2002-01-10 Loh Optikmaschinen Ag Device for centering clamping of optical lenses for their edge processing
AU2001259435A1 (en) * 2000-05-03 2001-11-12 Stephen T Flock Optical imaging of subsurface anatomical structures and biomolecules
JP2002000560A (en) * 2000-06-16 2002-01-08 Matsushita Electric Ind Co Ltd Photographing device
EP1301118B1 (en) 2000-07-14 2006-09-06 Xillix Technologies Corp. Compact fluorescence endoscopy video system
JP2002049302A (en) 2000-08-03 2002-02-15 Yamaha Corp Playing practice device
JP2002051969A (en) * 2000-08-08 2002-02-19 Asahi Optical Co Ltd Electronic endoscope device
US20020076480A1 (en) 2000-12-15 2002-06-20 Yung-Chieh Hsieh Low cost step tunable light source
US6786865B2 (en) 2001-01-17 2004-09-07 Innon Holdings, Llc Endoscope valve assembly and method
US6697652B2 (en) 2001-01-19 2004-02-24 Massachusetts Institute Of Technology Fluorescence, reflectance and light scattering spectroscopy for measuring tissue
JP2002244122A (en) 2001-02-22 2002-08-28 Sharp Corp Display device
JP2002336190A (en) 2001-03-12 2002-11-26 Olympus Optical Co Ltd Endoscope
US6600947B2 (en) 2001-03-16 2003-07-29 Nymox Corporation Method of detecting amyloid-containing lesions by autofluorescence
JP4716595B2 (en) 2001-04-04 2011-07-06 オリンパス株式会社 Endoscope apparatus and method for assembling endoscope optical adapter
JP4569030B2 (en) 2001-04-23 2010-10-27 東ソー株式会社 Fluorescence detection method and apparatus capable of measurement under external light
JP2003010101A (en) 2001-04-27 2003-01-14 Fuji Photo Film Co Ltd Imaging method and device of endoscope system
US7123756B2 (en) 2001-04-27 2006-10-17 Fuji Photo Film Co., Ltd. Method and apparatus for standardized fluorescence image generation
DE10121450A1 (en) 2001-04-27 2002-11-21 Storz Endoskop Gmbh Schaffhaus Optical instrument, in particular an endoscope, with an exchangeable head
JP3731814B2 (en) 2001-05-07 2006-01-05 富士写真フイルム株式会社 Fluorescent image display device
US6960165B2 (en) 2001-05-16 2005-11-01 Olympus Corporation Endoscope with a single image pick-up element for fluorescent and normal-light images
US7172553B2 (en) 2001-05-16 2007-02-06 Olympus Corporation Endoscope system using normal light and fluorescence
JP3985466B2 (en) 2001-06-07 2007-10-03 フジノン株式会社 Endoscope lens device
DE10129743C2 (en) 2001-06-20 2003-05-08 Daimler Chrysler Ag Vehicle headlight, with a number of electronic lighting elements as the light source
US7050086B2 (en) 2001-06-26 2006-05-23 Pentax Corporation Electronic endoscope system with color-balance alteration process
US20030117491A1 (en) 2001-07-26 2003-06-26 Dov Avni Apparatus and method for controlling illumination in an in-vivo imaging device
US20060184039A1 (en) 2001-07-26 2006-08-17 Dov Avni Apparatus and method for light control in an in-vivo imaging device
JP5259033B2 (en) 2001-08-03 2013-08-07 オリンパス株式会社 Endoscope system
USD456809S1 (en) 2001-08-20 2002-05-07 Symbol Technologies, Inc. Optical scanner
US6883713B2 (en) 2001-08-28 2005-04-26 Symbol Technologies, Inc. Hand-held bar code reader with eyelet or hook
US6921920B2 (en) 2001-08-31 2005-07-26 Smith & Nephew, Inc. Solid-state light source
US20030080193A1 (en) 2001-10-31 2003-05-01 Ryan William J. Portable authentication fluorescence scanner employing single and multiple illumination sources
US20060241496A1 (en) 2002-01-15 2006-10-26 Xillix Technologies Corp. Filter for use with imaging endoscopes
US20050154319A1 (en) 2002-01-15 2005-07-14 Xillix Technologies Corporation Fluorescence endoscopy video systems with no moving parts in the camera
US6899675B2 (en) 2002-01-15 2005-05-31 Xillix Technologies Corp. Fluorescence endoscopy video systems with no moving parts in the camera
DE20202078U1 (en) 2002-02-12 2002-06-06 Olympus Winter & Ibe Gmbh, 22045 Hamburg Fluorescence endoscope with switched short pass filter
EP1485011B1 (en) * 2002-03-12 2013-02-13 Beth Israel Deaconess Medical Center Medical imaging systems
US8140147B2 (en) 2002-04-04 2012-03-20 Veralight, Inc. Determination of a measure of a glycation end-product or disease state using a flexible probe to determine tissue fluorescence of various sites
US7219843B2 (en) 2002-06-04 2007-05-22 Hand Held Products, Inc. Optical reader having a plurality of imaging modules
JP4054222B2 (en) * 2002-06-05 2008-02-27 オリンパス株式会社 Light source device for endoscope device
JP3869324B2 (en) 2002-06-26 2007-01-17 オリンパス株式会社 Image processing device for fluorescence observation
US8285015B2 (en) * 2002-07-05 2012-10-09 Lawrence Livermore Natioonal Security, LLC Simultaneous acquisition of differing image types
US7257437B2 (en) * 2002-07-05 2007-08-14 The Regents Of The University Of California Autofluorescence detection and imaging of bladder cancer realized through a cystoscope
US7023543B2 (en) 2002-08-01 2006-04-04 Cunningham David W Method for controlling the luminous flux spectrum of a lighting fixture
JP4285641B2 (en) * 2002-08-30 2009-06-24 富士フイルム株式会社 Imaging device
CN100353234C (en) 2002-08-30 2007-12-05 三菱化学株式会社 Color liquid crystal display devices
JP2004163902A (en) 2002-08-30 2004-06-10 Mitsubishi Chemicals Corp Color liquid crystal display device and photosensitive color resin composition
JP4061156B2 (en) 2002-09-02 2008-03-12 オリンパス株式会社 Optical unit assembling method and optical unit assembling apparatus
KR20050072152A (en) 2002-12-02 2005-07-08 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Illumination system using a plurality of light sources
WO2004054439A2 (en) 2002-12-13 2004-07-01 Ietmed Ltd. Optical examination method and apparatus particularly useful for real-time discrimination of tumors from normal tissues during surgery
US7147162B2 (en) 2003-01-09 2006-12-12 Hand Held Products, Inc. Housing for an optical reader
JP4320184B2 (en) 2003-02-10 2009-08-26 Hoya株式会社 Objective lens unit and method of assembling the objective lens unit
JP4023329B2 (en) 2003-02-13 2007-12-19 松下電工株式会社 Optical filter and lighting apparatus using the same
JP2004289545A (en) * 2003-03-24 2004-10-14 Victor Co Of Japan Ltd Color separation optical system and image pickup device using the same
CA2519959A1 (en) 2003-03-25 2004-10-14 Precision Optics Corporation, Inc. Optical device with lens positioning and method of making the same
JP4041421B2 (en) 2003-03-25 2008-01-30 独立行政法人理化学研究所 Raman probe and Raman scattering measuring apparatus using the same
JP2004292722A (en) 2003-03-28 2004-10-21 Mitsubishi Chemicals Corp Coating liquid for die coater
US6958862B1 (en) * 2003-04-21 2005-10-25 Foveon, Inc. Use of a lenslet array with a vertically stacked pixel array
US7637430B2 (en) 2003-05-12 2009-12-29 Hand Held Products, Inc. Picture taking optical reader
US7697975B2 (en) * 2003-06-03 2010-04-13 British Colombia Cancer Agency Methods and apparatus for fluorescence imaging using multiple excitation-emission pairs and simultaneous multi-channel image detection
JP2005010315A (en) 2003-06-17 2005-01-13 Scalar Corp Optical element filter and optical element filter set
US20050027166A1 (en) 2003-06-17 2005-02-03 Shinya Matsumoto Endoscope system for fluorescent observation
JP4009560B2 (en) * 2003-06-19 2007-11-14 オリンパス株式会社 Endoscope apparatus and signal processing apparatus
JP4198086B2 (en) 2003-06-25 2008-12-17 オリンパス株式会社 Fluorescence observation equipment
JP4388318B2 (en) * 2003-06-27 2009-12-24 オリンパス株式会社 Image processing device
JP2005058618A (en) 2003-08-19 2005-03-10 Pentax Corp Endoscope and cap
JP4394395B2 (en) 2003-08-19 2010-01-06 Hoya株式会社 Endoscope system
JP4475897B2 (en) 2003-08-19 2010-06-09 Hoya株式会社 Endoscope system and endoscope
JP4420638B2 (en) 2003-09-08 2010-02-24 Hoya株式会社 Endoscope
JP4394402B2 (en) 2003-09-11 2010-01-06 Hoya株式会社 Endoscope system
AU2003272531A1 (en) 2003-09-15 2005-04-27 Beth Israel Deaconess Medical Center Medical imaging systems
US20050234302A1 (en) 2003-09-26 2005-10-20 Mackinnon Nicholas B Apparatus and methods relating to color imaging endoscope systems
US7920908B2 (en) 2003-10-16 2011-04-05 David Hattery Multispectral imaging for quantitative contrast of functional and structural features of layers inside optically dense media such as tissue
JP4294440B2 (en) 2003-10-30 2009-07-15 オリンパス株式会社 Image processing device
JP4241335B2 (en) 2003-11-19 2009-03-18 京都電機器株式会社 Linear lighting device
US7329887B2 (en) 2003-12-02 2008-02-12 3M Innovative Properties Company Solid state light device
JP4524099B2 (en) 2003-12-19 2010-08-11 オリンパス株式会社 Endoscope device
JP2005292404A (en) 2004-03-31 2005-10-20 Canon Inc Accessory device
JP4695849B2 (en) * 2004-04-07 2011-06-08 富士フイルム株式会社 Imaging sensor
US7724440B2 (en) 2004-04-23 2010-05-25 Light Prescriptions Innovators, Llc Combining outputs of different light sources
EP1765141A1 (en) 2004-05-13 2007-03-28 Stryker Gi Ltd Disposable set for use with an endoscope
WO2005124299A1 (en) 2004-06-15 2005-12-29 Olympus Corporation Lighting unit, and image pickup device
JP5066781B2 (en) 2004-06-18 2012-11-07 株式会社日立製作所 Video display device
JP4611674B2 (en) 2004-06-29 2011-01-12 Hoya株式会社 Electronic endoscope system
US7213958B2 (en) 2004-06-30 2007-05-08 3M Innovative Properties Company Phosphor based illumination system having light guide and an interference reflector
EP1850731A2 (en) 2004-08-12 2007-11-07 Elop Electro-Optical Industries Ltd. Integrated retinal imager and method
US7450310B2 (en) 2005-05-03 2008-11-11 Optical Research Associates Head mounted display devices
JP4558417B2 (en) 2004-09-01 2010-10-06 有限会社シマテック Lighting control device
US8602971B2 (en) 2004-09-24 2013-12-10 Vivid Medical. Inc. Opto-Electronic illumination and vision module for endoscopy
JP4817632B2 (en) 2004-09-27 2011-11-16 京セラ株式会社 LED fiber light source device and endoscope using the same
US7798955B2 (en) 2004-10-26 2010-09-21 Olympus Corporation Image generating device for generating a fluorescence image
US20060094109A1 (en) 2004-11-02 2006-05-04 Immunivest Corporation Device and method for analytical cell imaging
JP4598182B2 (en) 2005-01-05 2010-12-15 Hoya株式会社 Electronic endoscope system
US20080021274A1 (en) 2005-01-05 2008-01-24 Avantis Medical Systems, Inc. Endoscopic medical device with locking mechanism and method
US20060215406A1 (en) 2005-02-18 2006-09-28 William Thrailkill Medical diagnostic instrument with highly efficient, tunable light emitting diode light source
US7850599B2 (en) 2005-03-04 2010-12-14 Fujinon Corporation Endoscope apparatus
US20060217594A1 (en) 2005-03-24 2006-09-28 Ferguson Gary W Endoscopy device with removable tip
JP2006296635A (en) 2005-04-19 2006-11-02 Olympus Corp Endoscope apparatus
US7648457B2 (en) 2005-05-13 2010-01-19 Ethicon Endo-Surgery, Inc. Method of positioning a device on an endoscope
US7333270B1 (en) 2005-06-10 2008-02-19 Omnitech Partners Dual band night vision device
USD524987S1 (en) 2005-07-11 2006-07-11 Eveready Battery Company, Inc. Razor handle
USD524985S1 (en) 2005-07-11 2006-07-11 Eveready Battery Company, Inc. Razor
JP4855728B2 (en) 2005-07-27 2012-01-18 オリンパスメディカルシステムズ株式会社 Illumination device and observation device
RU2290855C1 (en) * 2005-08-10 2007-01-10 Виктор Борисович Лощёнов Method and device for carrying out fluorescent endoscopy
US20070041195A1 (en) 2005-08-16 2007-02-22 Excel Cell Electronic Co., Ltd. Light emitting assembly
JP2007072392A (en) 2005-09-09 2007-03-22 Victor Co Of Japan Ltd Projection display apparatus
JP4799109B2 (en) 2005-09-29 2011-10-26 富士フイルム株式会社 Electronic endoscope device
CA2625291A1 (en) 2005-10-11 2007-04-19 Merck Patent Gesellschaft Mit Beschraenkter Haftung Egfr dependent modulation of chemokine expression and influence on therapy and diagnosis of tumors and side effects thereof
US7420151B2 (en) 2005-10-17 2008-09-02 Novadaq Technologies Inc. Device for short wavelength visible reflectance endoscopy using broadband illumination
US7777191B2 (en) 2005-10-20 2010-08-17 The Board Of Trustees Of The Leland Stanford Junior University Method and system of adaptive exposure for a camera
US7360934B2 (en) 2005-10-24 2008-04-22 Sumitomo Electric Industries, Ltd. Light supply unit, illumination unit, and illumination system
US20070177275A1 (en) 2006-01-04 2007-08-02 Optical Research Associates Personal Display Using an Off-Axis Illuminator
JP5680829B2 (en) 2006-02-01 2015-03-04 ザ ジェネラル ホスピタル コーポレイション A device that irradiates a sample with multiple electromagnetic radiations
JP4818753B2 (en) * 2006-02-28 2011-11-16 オリンパス株式会社 Endoscope system
JP4591395B2 (en) * 2006-03-31 2010-12-01 アイシン・エィ・ダブリュ株式会社 Navigation system
US8003739B2 (en) 2007-10-17 2011-08-23 Fina Technology, Inc. Multi-component catalyst systems and polymerization processes for forming in-situ heterophasic copolymers and/or varying the xylene solubles content of polyolefins
EP2051603B1 (en) 2006-07-28 2019-09-11 Novadaq Technologies ULC System and method for deposition and removal of an optical element on an endoscope objective
JP2008043396A (en) * 2006-08-11 2008-02-28 Olympus Corp Endoscope system
JP4396684B2 (en) 2006-10-04 2010-01-13 ソニー株式会社 Method for manufacturing solid-state imaging device
ITPD20060452A1 (en) 2006-12-15 2008-06-16 Optical Electronic Solutions Srl OPTICAL IMAGE DUPLICATOR
US8498695B2 (en) 2006-12-22 2013-07-30 Novadaq Technologies Inc. Imaging system with a single color image sensor for simultaneous fluorescence and color video endoscopy
JP2008161550A (en) * 2006-12-28 2008-07-17 Olympus Corp Endoscope system
US20080177140A1 (en) * 2007-01-23 2008-07-24 Xillix Technologies Corp. Cameras for fluorescence and reflectance imaging
US8439267B2 (en) 2007-03-05 2013-05-14 Hand Held Products, Inc. Secure wireless indicia reader
US7682027B2 (en) 2007-04-09 2010-03-23 Alcon, Inc. Multi-LED ophthalmic illuminator
US7787121B2 (en) * 2007-07-18 2010-08-31 Fujifilm Corporation Imaging apparatus
US9125552B2 (en) 2007-07-31 2015-09-08 Ethicon Endo-Surgery, Inc. Optical scanning module and means for attaching the module to medical instruments for introducing the module into the anatomy
US8098375B2 (en) 2007-08-06 2012-01-17 Lumencor, Inc. Light emitting diode illumination system
JP5000429B2 (en) * 2007-08-23 2012-08-15 オリンパスメディカルシステムズ株式会社 Light source device
WO2009033021A2 (en) 2007-09-05 2009-03-12 Chroma Technology Corporation Light source with wavelength converting phosphor
JP5329177B2 (en) 2007-11-07 2013-10-30 富士フイルム株式会社 Imaging system and program
US7667180B2 (en) 2007-11-07 2010-02-23 Fujifilm Corporation Image capturing system, image capturing method, and recording medium
US20090124854A1 (en) 2007-11-09 2009-05-14 Fujifilm Corporation Image capturing device and image capturing system
EP2057935B1 (en) 2007-11-09 2016-01-06 FUJIFILM Corporation Image capturing system, image capturing method, and program
JP2009118898A (en) 2007-11-12 2009-06-04 Hoya Corp Endoscope processor and endoscope system
US20100308116A1 (en) 2007-11-19 2010-12-09 Datalogic Scanning Group S.R.L. Data collection apparatus and portable data collection device
USD603408S1 (en) 2007-12-14 2009-11-03 Hand Held Products, Inc. Optical reading device
US7929151B2 (en) * 2008-01-11 2011-04-19 Carestream Health, Inc. Intra-oral camera for diagnostic and cosmetic imaging
USD606544S1 (en) 2008-02-01 2009-12-22 Datalogic Scanning Group S.R.L. Coded information reader
USD599799S1 (en) 2008-02-01 2009-09-08 Datalogic Scanning Group S.R.L. Coded information reader
US20090218405A1 (en) 2008-02-29 2009-09-03 Symbol Technologies, Inc. Imaging System for Reading Mobile Device Indicia
RU2510235C2 (en) * 2008-03-18 2014-03-27 Новадак Текнолоджиз Инк. Imaging system for combined full-colour reflectance and near-infrared imaging
JP2009259703A (en) 2008-04-18 2009-11-05 Olympus Corp Lighting device, and image acquisition apparatus
CN102026668A (en) 2008-05-14 2011-04-20 诺瓦达克技术公司 Imaging methods and compositions comprising fluorescent dyes associated with viral components for nerve imaging
US7710561B2 (en) 2008-05-23 2010-05-04 Richard Stefan Roth Transspectral illumination
US8662399B2 (en) 2008-05-28 2014-03-04 Datalogic Scanning Group S.R.L. Recharge cradle for a coded information reader and reading system comprising it
EP2241244A1 (en) 2008-06-04 2010-10-20 Fujifilm Corporation Illumination device for use in endoscope
JP5216429B2 (en) 2008-06-13 2013-06-19 富士フイルム株式会社 Light source device and endoscope device
US8167210B2 (en) 2008-09-17 2012-05-01 Symbol Technologies, Inc. System for increasing imaging quality
US20100087741A1 (en) 2008-10-02 2010-04-08 Novadaq Technologies Inc. Method for identifying malignancies in barrett's esophagus using white light endoscopy
EP2350583B1 (en) 2008-10-06 2019-08-14 Novadaq Technologies ULC Compensating optical coupler for visible and nir imaging
JP2010107751A (en) 2008-10-30 2010-05-13 Hitachi Ltd Projector
CN101726980A (en) 2008-10-30 2010-06-09 鸿富锦精密工业(深圳)有限公司 Projector
JP2010117442A (en) 2008-11-11 2010-05-27 Hoya Corp Fiber-optic scanning endoscope, fiber-optic scanning endoscope processor, and fiber-optic scanning endoscope device
EP3456238B1 (en) 2008-11-18 2020-05-13 United States Endoscopy Group, Inc. Method of attaching devices to endoscopes using an adapter
US8448867B2 (en) 2008-12-19 2013-05-28 Symbol Technologies, Inc. Illumination apparatus for an imaging-based bar code system
JP5342869B2 (en) * 2008-12-22 2013-11-13 Hoya株式会社 Endoscope apparatus, endoscope illumination apparatus, image forming apparatus, operation method of endoscope illumination apparatus, and operation method of image formation apparatus
WO2010093956A1 (en) 2009-02-13 2010-08-19 PerkinElmer LED Solutions, Inc. Led illumination device
US8830339B2 (en) 2009-04-15 2014-09-09 Qualcomm Incorporated Auto-triggered fast frame rate digital video recording
US7903352B2 (en) 2009-04-30 2011-03-08 Durell & Gitelis, Inc. Lens mounting system for use in lens relay systems
JP5645385B2 (en) 2009-09-29 2014-12-24 富士フイルム株式会社 Endoscopic light projecting unit and endoscopic device equipped with the same
KR101172745B1 (en) 2010-01-29 2012-08-14 한국전기연구원 Combined apparatus for detection of multi-spectrum optical imaging coming out of organic body and light therapy
JP2011169819A (en) 2010-02-19 2011-09-01 Aisin Seiki Co Ltd Bio-device inspection apparatus
JP2011199798A (en) 2010-03-24 2011-10-06 Sony Corp Physical information obtaining apparatus, solid-state imaging apparatus, and physical information obtaining method
CN102947839B (en) 2010-05-28 2016-02-24 数据逻辑Adc公司 The data reader of multiple operating mode
RU99592U1 (en) 2010-06-18 2010-11-20 Общество с ограниченной ответственностью "РоСАТ ЦЕНТР" LED SPOTLIGHT
US8261991B2 (en) 2010-07-12 2012-09-11 Symbol Technologies, Inc. High performance image capture reader with low resolution image sensor
JP5404560B2 (en) 2010-08-20 2014-02-05 株式会社東芝 projector
US9254090B2 (en) 2010-10-22 2016-02-09 Intuitive Surgical Operations, Inc. Tissue contrast imaging systems
US9515512B2 (en) 2010-12-16 2016-12-06 Datalogic ADC, Inc. Wireless data reader at checkstand
CN201974160U (en) 2011-01-20 2011-09-14 沈阳同联集团高新技术有限公司 Device for measuring three-dimensional shape of structured light
US8157177B1 (en) 2011-01-31 2012-04-17 Hand Held Products, Inc. Indicia reading system with improved battery charging
JP5715436B2 (en) 2011-02-21 2015-05-07 キヤノン株式会社 Imaging apparatus and control method thereof
WO2012120380A1 (en) 2011-03-08 2012-09-13 Novadaq Technologies Inc. Full spectrum led illuminator
WO2012159214A1 (en) 2011-05-25 2012-11-29 Obzerv Technologies Inc. Active imaging device having field of view and field of illumination with corresponding rectangular aspect ratios
USD653811S1 (en) 2011-05-26 2012-02-07 Home Skinovations Ltd. Depilatory device
JP5355799B2 (en) 2011-06-07 2013-11-27 オリンパスメディカルシステムズ株式会社 Endoscope apparatus and method for operating endoscope apparatus
JP2013070030A (en) 2011-09-06 2013-04-18 Sony Corp Imaging device, electronic apparatus, and information processor
US9294691B2 (en) 2011-09-06 2016-03-22 Sony Corporation Imaging device, imaging apparatus, manufacturing apparatus and manufacturing method
USD682277S1 (en) 2011-12-30 2013-05-14 Datalogic Ip Tech S.R.L. Coded information reader
USD677258S1 (en) 2012-01-10 2013-03-05 Datalogic ADC, Inc. Handheld data reader
FR2989876B1 (en) 2012-04-25 2014-04-18 Fluoptics FLUORESCENCE IMAGING SYSTEM FOR AN OPERATIVE BLOCK
JP5996287B2 (en) 2012-06-12 2016-09-21 オリンパス株式会社 Imaging device, microscope device, endoscope device
USD692004S1 (en) 2012-08-31 2013-10-22 Megaviz Limited Barcode scanner and radio frequency identification reader combo
US20140071328A1 (en) 2012-09-07 2014-03-13 Lockheed Martin Corporation System and method for matching a camera aspect ratio and size to an illumination aspect ratio and size
JP5687676B2 (en) 2012-10-23 2015-03-18 オリンパス株式会社 Imaging apparatus and image generation method
JP2014123941A (en) 2012-11-21 2014-07-03 Canon Inc Illuminating device and image reader
US10517483B2 (en) 2012-12-05 2019-12-31 Accuvein, Inc. System for detecting fluorescence and projecting a representative image
USD723563S1 (en) 2012-12-21 2015-03-03 Datalogic Ip Tech S.R.L. Reader of coded information
JP6150583B2 (en) 2013-03-27 2017-06-21 オリンパス株式会社 Image processing apparatus, endoscope apparatus, program, and operation method of image processing apparatus
JP6198426B2 (en) 2013-03-29 2017-09-20 浜松ホトニクス株式会社 Fluorescence observation apparatus and fluorescence observation method
US9407838B2 (en) 2013-04-23 2016-08-02 Cedars-Sinai Medical Center Systems and methods for recording simultaneously visible light image and infrared light image from fluorophores
CN111329450A (en) 2013-04-23 2020-06-26 雪松-西奈医学中心 System and method for simultaneous recording of visible and infrared light images from fluorophores
USD726186S1 (en) 2013-10-25 2015-04-07 Symbol Technologies, Inc. Scanner
USD734339S1 (en) 2013-12-05 2015-07-14 Hand Held Products, Inc. Indicia scanner
USD826234S1 (en) 2016-04-11 2018-08-21 Hand Held Products, Inc. Indicia scanner
USD719574S1 (en) 2014-01-09 2014-12-16 Datalogic Ip Tech S.R.L. Portable terminal
EP3940371B1 (en) 2014-06-05 2023-08-30 Universität Heidelberg Method and imaging apparatus for acquisition of fluorescence and reflectance images
KR101834393B1 (en) 2014-08-08 2018-04-13 포토내이션 리미티드 An optical system for an image acquisition device
EP3915467A1 (en) 2014-10-09 2021-12-01 Novadaq Technologies ULC Quantification of absolute blood flow in tissue using fluorescence-mediated photoplethysmography
USD791137S1 (en) 2015-07-22 2017-07-04 Hand Held Products, Inc. Scanner
CA171347S (en) 2015-09-21 2017-01-06 Brita Gmbh Top reservoir for pitcher
CN113648067A (en) 2015-11-13 2021-11-16 史赛克欧洲运营有限公司 System and method for illumination and imaging of an object
US10980420B2 (en) 2016-01-26 2021-04-20 Stryker European Operations Limited Configurable platform
EP3469420A4 (en) 2016-06-14 2020-02-12 Novadaq Technologies ULC Methods and systems for adaptive imaging for low light signal enhancement in medical visualization
USD835284S1 (en) 2017-04-28 2018-12-04 Masimo Corporation Medical monitoring device
USD835285S1 (en) 2017-04-28 2018-12-04 Masimo Corporation Medical monitoring device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050171440A1 (en) * 1994-10-06 2005-08-04 Atsushi Maki Optical system for measuring metabolism in a body and imaging method
US7253894B2 (en) * 2000-12-19 2007-08-07 Perceptronix Medical, Inc. Image detection apparatus for fluorescence and reflectance imaging and spectroscopy and for contemporaneous measurements of electromagnetic radiation with multiple measuring devices
US6596996B1 (en) * 2001-07-24 2003-07-22 The Board Of Regents For Oklahoma State University Optical spectral reflectance sensor and controller
US20040225222A1 (en) * 2003-05-08 2004-11-11 Haishan Zeng Real-time contemporaneous multimodal imaging and spectroscopy uses thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2268194A4 *

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9775499B2 (en) 2008-04-26 2017-10-03 Intuitive Surgical Operations, Inc. Augmented visualization for a surgical robot using a captured visible image combined with a fluorescence image and a captured visible image
US10524644B2 (en) 2008-04-26 2020-01-07 Intuitive Surgical Operations, Inc. Augmented visualization for a surgical robot using a captured visible image combined with a fluorescence image and a captured visible image
US8520919B2 (en) 2009-06-17 2013-08-27 Karl Storz Gmbh & Co. Kg Apparatus and method for controlling a multi-color output of an image of a medical object
EP2263516A1 (en) * 2009-06-17 2010-12-22 Karl Storz GmbH & Co. KG Method and device for controlling a multi-colour display of an image from a medical object
JP2012125502A (en) * 2010-12-17 2012-07-05 Hoya Corp Endoscope processor
RU2564903C2 (en) * 2011-04-25 2015-10-10 Анатолий Александрович Ковалев Method for combined exposure to multi-frequency laser exposures
US11195276B2 (en) 2013-04-23 2021-12-07 Cedars-Sinai Medical Center Systems and methods for recording simultaneously visible light image and infrared light image from fluorophores
US10803578B2 (en) 2013-04-23 2020-10-13 Cedars-Sinai Medical Center Systems and methods for recording simultaneously visible light image and infrared light image from fluorophores
AU2019202450B2 (en) * 2013-04-23 2020-08-13 Cedars-Sinai Medical Center Systems and methods for recording simultaneously visible light image and infrared light image from fluorophores
US10516836B2 (en) 2015-01-22 2019-12-24 Olympus Corporation Imaging device
US10182218B2 (en) 2015-03-23 2019-01-15 Panasonic Intellectual Property Management Co., Ltd. Endoscope and endoscopic system
US10038883B2 (en) 2015-03-23 2018-07-31 Panasonic Intellectual Property Management Co., Ltd. Endoscope and endoscopic system
US10609351B2 (en) 2015-03-23 2020-03-31 Panasonic I-Pro Sensing Solutions Co., Ltd. Endoscope and endoscopic system
JP2016178995A (en) * 2015-03-23 2016-10-13 パナソニックIpマネジメント株式会社 Endoscope and endoscope system
US10412355B2 (en) 2015-03-23 2019-09-10 Panasonic Intellectual Property Management Co., Ltd. Endoscope and endoscopic system
JP2017205354A (en) * 2016-05-19 2017-11-24 パナソニックIpマネジメント株式会社 Endoscope and endoscope system
US10122975B2 (en) 2016-05-19 2018-11-06 Panasonic Intellectual Property Management Co., Ltd. Endoscope and endoscope system
US10560671B2 (en) 2016-05-19 2020-02-11 Panasonic I-Pro Sensing Solutions Co., Ltd. Medical camera
JP6132251B1 (en) * 2016-05-19 2017-05-24 パナソニックIpマネジメント株式会社 Endoscope and endoscope system
US10244213B2 (en) 2016-05-19 2019-03-26 Panasonic Intellectual Property Management Co., Ltd. Endoscope and endoscope system
US10271024B1 (en) 2016-05-19 2019-04-23 Panasonic Intellectual Property Management Co., Ltd. Four color separation prism
JP2018047064A (en) * 2016-09-21 2018-03-29 パナソニックIpマネジメント株式会社 Endoscope and endoscope system
JP6168436B1 (en) * 2016-09-21 2017-07-26 パナソニックIpマネジメント株式会社 Endoscope and endoscope system
JP2017029763A (en) * 2016-09-27 2017-02-09 パナソニックIpマネジメント株式会社 Endoscope and endoscope system
EP3508109B1 (en) * 2016-10-07 2024-02-14 Sony Olympus Medical Solutions Inc. Medical imaging apparatus and medical observation system
CN109788888B (en) * 2016-10-07 2022-07-08 索尼奥林巴斯医疗解决方案公司 Medical imaging apparatus and medical observation system
US11298006B2 (en) * 2016-10-07 2022-04-12 Sony Olympus Medical Solutions Inc. Medical imaging apparatus and medical observation system
CN109788888A (en) * 2016-10-07 2019-05-21 索尼奥林巴斯医疗解决方案公司 Medical imaging apparatus and Medical viewing system
US10962858B2 (en) 2017-04-01 2021-03-30 SZ DJI Technology Co., Ltd. Low-profile multi-band hyperspectral imaging for machine vision
WO2018176493A1 (en) * 2017-04-01 2018-10-04 SZ DJI Technology Co., Ltd. Low-profile multi-band hyperspectral imaging for machine vision
JP2018171507A (en) * 2018-07-19 2018-11-08 パナソニックIpマネジメント株式会社 Four-color prism
JP2018196740A (en) * 2018-07-19 2018-12-13 パナソニックIpマネジメント株式会社 Optical device and endoscope
WO2020026882A1 (en) * 2018-08-02 2020-02-06 Sony Corporation Imaging apparatus, signal processing apparatus, signal processing method, and program
US11953376B2 (en) 2018-08-02 2024-04-09 Sony Group Corporation Imaging apparatus, signal processing apparatus, signal processing method, and program
CN113164054A (en) * 2018-11-30 2021-07-23 直观外科手术操作公司 Medical imaging system and method
WO2020112726A1 (en) * 2018-11-30 2020-06-04 Intuitive Surgical Operations, Inc. Medical imaging systems and methods
US12035997B2 (en) 2018-11-30 2024-07-16 Intuitive Surgical Operations, Inc. Medical imaging systems and methods
JP2021013753A (en) * 2020-10-19 2021-02-12 パナソニックi−PROセンシングソリューションズ株式会社 Medical optical microscope
JP7041226B2 (en) 2020-10-19 2022-03-23 パナソニックi-PROセンシングソリューションズ株式会社 Medical optical microscope
US11895393B1 (en) 2021-06-23 2024-02-06 Verily Life Sciences Llc Use of intermediate frames to capture and adjust low frame-rate, single-light source images

Also Published As

Publication number Publication date
EP2268194B1 (en) 2016-08-31
EP3117765A1 (en) 2017-01-18
EP3117765B1 (en) 2021-10-27
US20110063427A1 (en) 2011-03-17
HK1157169A1 (en) 2012-06-29
BRPI0906187A2 (en) 2020-07-14
US20170273567A1 (en) 2017-09-28
CN102036599A (en) 2011-04-27
US9173554B2 (en) 2015-11-03
EP2268194A1 (en) 2011-01-05
US10779734B2 (en) 2020-09-22
EP2268194A4 (en) 2014-08-20
RU2510235C2 (en) 2014-03-27
MX2010010292A (en) 2011-01-25
JP5231625B2 (en) 2013-07-10
CN102036599B (en) 2013-06-19
US9642532B2 (en) 2017-05-09
JP2017136373A (en) 2017-08-10
JP2011528918A (en) 2011-12-01
JP6334755B2 (en) 2018-05-30
RU2010142292A (en) 2012-04-27
JP6088629B2 (en) 2017-03-01
KR20100129768A (en) 2010-12-09
JP5852979B2 (en) 2016-02-03
KR101517264B1 (en) 2015-05-04
JP2016064150A (en) 2016-04-28
US20160100763A1 (en) 2016-04-14
JP2013163027A (en) 2013-08-22

Similar Documents

Publication Publication Date Title
US10779734B2 (en) Imaging system for combine full-color reflectance and near-infrared imaging
JP5698878B2 (en) Endoscope device
US9998678B2 (en) Camera for acquiring optical properties and spatial structure properties
US9271635B2 (en) Fluorescence endoscope apparatus
JP5925169B2 (en) Endoscope system, operating method thereof, and light source device for endoscope
JP7219208B2 (en) Endoscope device
JP2011528918A5 (en)
RU2011128383A (en) EQUIPMENT FOR INFRARED OBSERVATION OF ANATOMIC STRUCTURES AND METHOD OF PROCESSING SIGNALS FROM Mentioned STRUCTURES
JP5740559B2 (en) Image processing apparatus and endoscope
US8596784B2 (en) Opthalmology photographing apparatus

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980117843.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09721252

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 6532/DELNP/2010

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: MX/A/2010/010292

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011500921

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20107023035

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2009721252

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009721252

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010142292

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 12933512

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0906187

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20100917