US20100087741A1 - Method for identifying malignancies in barrett's esophagus using white light endoscopy - Google Patents
Method for identifying malignancies in barrett's esophagus using white light endoscopy Download PDFInfo
- Publication number
- US20100087741A1 US20100087741A1 US12/572,473 US57247309A US2010087741A1 US 20100087741 A1 US20100087741 A1 US 20100087741A1 US 57247309 A US57247309 A US 57247309A US 2010087741 A1 US2010087741 A1 US 2010087741A1
- Authority
- US
- United States
- Prior art keywords
- tissue
- esophagus
- barrett
- light
- dysplasia
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 27
- 206010028980 Neoplasm Diseases 0.000 title claims description 23
- 230000036210 malignancy Effects 0.000 title claims description 4
- 208000023514 Barrett esophagus Diseases 0.000 title abstract description 46
- 208000023665 Barrett oesophagus Diseases 0.000 title abstract description 46
- 238000001839 endoscopy Methods 0.000 title description 15
- 239000008280 blood Substances 0.000 claims abstract description 20
- 210000004369 blood Anatomy 0.000 claims abstract description 20
- 238000005259 measurement Methods 0.000 claims abstract description 15
- 244000208734 Pisonia aculeata Species 0.000 claims abstract description 6
- 239000000523 sample Substances 0.000 claims description 15
- 201000011510 cancer Diseases 0.000 claims description 12
- 238000010521 absorption reaction Methods 0.000 claims description 10
- 238000005286 illumination Methods 0.000 claims description 10
- 238000005070 sampling Methods 0.000 claims description 5
- 238000001055 reflectance spectroscopy Methods 0.000 claims description 3
- 238000001429 visible spectrum Methods 0.000 claims 1
- 206010058314 Dysplasia Diseases 0.000 abstract description 27
- 230000002757 inflammatory effect Effects 0.000 abstract description 10
- 230000003595 spectral effect Effects 0.000 abstract description 10
- 210000003238 esophagus Anatomy 0.000 abstract description 9
- 238000006213 oxygenation reaction Methods 0.000 abstract description 9
- 238000013459 approach Methods 0.000 abstract description 8
- 230000004899 motility Effects 0.000 abstract description 3
- 230000006872 improvement Effects 0.000 abstract description 2
- 230000009467 reduction Effects 0.000 abstract description 2
- 210000001519 tissue Anatomy 0.000 description 35
- 230000006870 function Effects 0.000 description 30
- 238000001228 spectrum Methods 0.000 description 17
- 239000000835 fiber Substances 0.000 description 16
- 238000004458 analytical method Methods 0.000 description 13
- 238000003384 imaging method Methods 0.000 description 11
- 230000003211 malignant effect Effects 0.000 description 9
- 230000035945 sensitivity Effects 0.000 description 9
- 238000000985 reflectance spectrum Methods 0.000 description 8
- 238000010186 staining Methods 0.000 description 7
- 108010054147 Hemoglobins Proteins 0.000 description 6
- 102000001554 Hemoglobins Human genes 0.000 description 6
- 238000001574 biopsy Methods 0.000 description 6
- 210000000981 epithelium Anatomy 0.000 description 6
- 238000012549 training Methods 0.000 description 6
- 238000001514 detection method Methods 0.000 description 5
- 239000000975 dye Substances 0.000 description 5
- 230000003902 lesion Effects 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 4
- 230000002496 gastric effect Effects 0.000 description 4
- 230000004054 inflammatory process Effects 0.000 description 4
- 238000012014 optical coherence tomography Methods 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 208000000461 Esophageal Neoplasms Diseases 0.000 description 3
- 206010061218 Inflammation Diseases 0.000 description 3
- 230000036770 blood supply Effects 0.000 description 3
- 238000002046 chromoendoscopy Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 238000001727 in vivo Methods 0.000 description 3
- 235000015097 nutrients Nutrition 0.000 description 3
- 238000012216 screening Methods 0.000 description 3
- 238000004611 spectroscopical analysis Methods 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 201000009030 Carcinoma Diseases 0.000 description 2
- 102000008186 Collagen Human genes 0.000 description 2
- 108010035532 Collagen Proteins 0.000 description 2
- 206010054949 Metaplasia Diseases 0.000 description 2
- 238000001069 Raman spectroscopy Methods 0.000 description 2
- 239000002671 adjuvant Substances 0.000 description 2
- 230000033115 angiogenesis Effects 0.000 description 2
- 238000000149 argon plasma sintering Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 229920001436 collagen Polymers 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 201000004101 esophageal cancer Diseases 0.000 description 2
- 238000002181 esophagogastroduodenoscopy Methods 0.000 description 2
- 238000000799 fluorescence microscopy Methods 0.000 description 2
- 208000021302 gastroesophageal reflux disease Diseases 0.000 description 2
- 238000007477 logistic regression Methods 0.000 description 2
- 206010061289 metastatic neoplasm Diseases 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 210000004876 tela submucosa Anatomy 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- RNAMYOYQYRYFQY-UHFFFAOYSA-N 2-(4,4-difluoropiperidin-1-yl)-6-methoxy-n-(1-propan-2-ylpiperidin-4-yl)-7-(3-pyrrolidin-1-ylpropoxy)quinazolin-4-amine Chemical compound N1=C(N2CCC(F)(F)CC2)N=C2C=C(OCCCN3CCCC3)C(OC)=CC2=C1NC1CCN(C(C)C)CC1 RNAMYOYQYRYFQY-UHFFFAOYSA-N 0.000 description 1
- 208000009458 Carcinoma in Situ Diseases 0.000 description 1
- 208000017897 Carcinoma of esophagus Diseases 0.000 description 1
- 206010030154 Oesophageal candidiasis Diseases 0.000 description 1
- 206010030155 Oesophageal carcinoma Diseases 0.000 description 1
- 206010030172 Oesophageal haemorrhage Diseases 0.000 description 1
- 108010064719 Oxyhemoglobins Proteins 0.000 description 1
- 208000005392 Spasm Diseases 0.000 description 1
- 210000001015 abdomen Anatomy 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 229940069428 antacid Drugs 0.000 description 1
- 239000003159 antacid agent Substances 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 230000008081 blood perfusion Effects 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 230000005773 cancer-related death Effects 0.000 description 1
- 231100000504 carcinogenesis Toxicity 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 238000000701 chemical imaging Methods 0.000 description 1
- 230000002113 chemopreventative effect Effects 0.000 description 1
- 238000002052 colonoscopy Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 238000011393 cytotoxic chemotherapy Methods 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 230000002074 deregulated effect Effects 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 210000002919 epithelial cell Anatomy 0.000 description 1
- 201000005655 esophageal candidiasis Diseases 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000000556 factor analysis Methods 0.000 description 1
- 238000001506 fluorescence spectroscopy Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000002895 hyperchromatic effect Effects 0.000 description 1
- 201000004933 in situ carcinoma Diseases 0.000 description 1
- 208000024312 invasive carcinoma Diseases 0.000 description 1
- 230000005865 ionizing radiation Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 230000015689 metaplastic ossification Effects 0.000 description 1
- 230000001394 metastastic effect Effects 0.000 description 1
- 230000004089 microcirculation Effects 0.000 description 1
- 210000004088 microvessel Anatomy 0.000 description 1
- 230000000394 mitotic effect Effects 0.000 description 1
- 230000004660 morphological change Effects 0.000 description 1
- 210000004877 mucosa Anatomy 0.000 description 1
- 210000004400 mucous membrane Anatomy 0.000 description 1
- 238000000491 multivariate analysis Methods 0.000 description 1
- 230000003387 muscular Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 210000003463 organelle Anatomy 0.000 description 1
- 230000008855 peristalsis Effects 0.000 description 1
- 229940109328 photofrin Drugs 0.000 description 1
- 230000002165 photosensitisation Effects 0.000 description 1
- 239000003504 photosensitizing agent Substances 0.000 description 1
- 238000010837 poor prognosis Methods 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000001959 radiotherapy Methods 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 210000005166 vasculature Anatomy 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0059—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
- A61B5/0075—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by spectroscopy, i.e. measuring spectra, e.g. Raman spectroscopy, infrared absorption spectroscopy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0059—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
- A61B5/0071—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by measuring fluorescence emission
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0059—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
- A61B5/0082—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
- A61B5/0084—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for introduction into the body, e.g. by catheters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/42—Detecting, measuring or recording for evaluating the gastrointestinal, the endocrine or the exocrine systems
- A61B5/4222—Evaluating particular parts, e.g. particular organs
- A61B5/4233—Evaluating particular parts, e.g. particular organs oesophagus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/04—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
- A61B1/043—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances for fluorescence imaging
Definitions
- the invention relates to white light endoscopy to guide the biopsy collection, and more particularly to detecting an intrinsic optical signature of early cancer lesions in Barrett's esophagus (BE) using diffuse reflectance spectroscopy, without staining or dying to enhance malignant/non-malignant contrast.
- BE Barrett's esophagus
- Gastrointestinal (GI) malignancies continue to be the second leading cause of cancer-related deaths in the United States (24%).
- GI malignancies belongs to esophagus cancer (10% or 12000-14000 per year based on 2000-2003 statistics).
- People from the Western hemisphere tend to develop esophageal cancer based on prior metaplastic mucosal transformation often called as Barrett's esophagus (BE).
- Barrett's esophagus is a cancer risk factor and frequently linked to the preexisting gastro-esophageal reflux disease (GERD).
- GSD gastro-esophageal reflux disease
- Narrow band imaging and near-infrared multimodal endoscopy methods were reported just within last two years and still required to prove its sensitivity and specificity abilities.
- the narrow band imaging is based on recognizing the irregular pit pattern epithelium islands within areas of intestinal metaplasia. This approach can be significantly affected by human factor and heavily relies upon extensive training of the endoscopist performing the examination.
- the developed method uses a diffuse reflectance collected within visible range at wide field illumination and point measurement. A set of at least four distinctive wavelength ranges has been found to facilitate the malignant/non-malignant contrast.
- the discriminating algorithm is based on a linear polynomial function B4 providing 77% of sensitivity and 81% of specificity based on the results obtained from the clinical study on 32 patients including 7 with displasia found.
- An optimal result discriminate function B4 is based on diffuse reflectance Rd measured at 4 wavelengths—485 ⁇ 5, 513 ⁇ 5, 598 ⁇ 2, 629 ⁇ 5 nm.
- the discriminate function found is directly proportional to oxygenation SO 2 and inversely proportional to local blood fraction volume T HB .
- B4 values computed from the dysplastic data are significantly lower than that of the BE or BE with inflammatory component (BEI).
- BEI inflammatory component
- the discrimination between BE without inflammation background and dysplasia is more distinct than that of BE with inflammatory component (BEI) versus dysplasia.
- the discrimination between BE and dysplasia can be slightly improved by 2-2.5% in terms of Area under ROC curve (AUC) by adding into the discriminate function another wavelength: 501 ⁇ 5 nm. At the same time, if one of the four wavelengths found for the B4 function is excluded, the discrimination BE versus Dysplasia will be drastically reduced from 77% to 61% (in terms of AUC).
- AUC Area under ROC curve
- FIG. 1 shows the illumination geometry for diffuse reflectance imaging
- FIG. 2 shows a shadow effect during endoscopic diffuse reflectance measurements
- FIG. 3 shows the dependence between specificity/sensitivity provided by the discriminate function B and the number of wavelengths participating in the discriminate function.
- An adjuvant screening technique is described which is compatible with conventional white light endoscopy to guide the biopsy collection in Barrett's esophagus (BE) in real time.
- BE Barrett's esophagus
- An understanding of the blood microcirculation in tumors is important for their detection, diagnosis and treatment. Relatively high values of blood supply in tumors are associated with increased metabolism and aggressiveness. Increase of blood supply provides a growing cancerous tissue with additional nutrients via growth of new vasculature through a mechanism called angiogenesis. Typical development of epithelial-originating cancers occurs in several sequential stages—low grade dysplasia or pre-cancer, high grade dysplasia, carcinoma in situ, invasive cancer, and finally metastatic spread beyond the primary location. Metastatic disease has poor prognosis; thus, early detection of cancer may improve patient survival.
- the goal of the study was to create an adjuvant screening technique compatible with conventional white light endoscopy to guide the biopsy collection in Barrett's esophagus in real time.
- the current objectives of the study focus on finding the intrinsic optical signature of early cancer lesions in BE not using any additional staining or dyes to enhance malignant/non-malignant contrast.
- the main assumption is that in case of dysplastic tissue the higher oxygen/nutrients demand and possible leakage of premature tumor local blood micro-vessels would lead to higher local concentration of blood.
- the working hypothesis presumes also that the local distribution of blood will be altered in dysplastic lesions that may lead to reduced efficiency of oxygen/nutrients supply and ultimately to reduced blood oxygenation level depending on development phase of dysplasia.
- the measured signal on the probe is composed by specular reflection and diffuse reflection of the tissue.
- Specular (Fresnel) reflection is caused by mismatch of index of refraction on the air/tissue border. This reflectance is particularly important for normal (or close to normal) position of endoscope. In this case the specular coefficient of reflection can be as large as 2-4%. In other geometries specular reflection is minimal and can be ignored.
- the nuclei of the epithelial cells have higher refractive index than the surrounding cytoplasm, and hence act as light scatterers.
- the size of the nuclei in the normal epithelium is 4-7 ⁇ m, which conditions strongly forward scattering with anisotropy factor in 0.98-0.99 range.
- the nuclei become pleomorphic, crowded, hyperchromatic and occupy almost the whole cell (diameter 10-20 ⁇ m).
- the submucosa is composed almost entirely of a dense network of larger collagen fibers.
- the significant diameter of these fibers (several microns) conditions strongly forward scattering. Large blood vessels cause significant absorption of light in this layer.
- the fraction of the incident light that is not absorbed or backscattered in the previous two layers enters muscularis propia where it gets further strongly absorbed by blood and scattered.
- ⁇ a / ⁇ s >1, with light propagation dominated by absorption. In this case the absorption is significant and the signal in this range will be quite sensitive to the blood content.
- ⁇ a is here the coefficient of absorption and, and ⁇ s is the reduced coefficient of scattering.
- the imaging illumination geometry setup is shown in FIG. 1 where 1 represents the endoscope; 2 the fiber probe; 3 the incident (tissue) surface; x 1 the distance between the endoscope tip and tissue surface; ⁇ the incline angle of the collecting fiber and normal to the incident surface; x 2 the distance between the diffuse reflectance probe tip and tissue surface; d the diffuse reflectance interrogating depth; Sa the diffuse reflectance collection area on the incident surface; Si the area illuminated by the endoscope light source on the incident surface; ⁇ 1 the NA of the endoscope's light guide; ⁇ 2 the NA of the collecting probe; and ⁇ the twisting angle.
- a xenon lamp (Olympus) from the endoscopic light source and fiberoptic spectrometer (MedSpecLab, MSL-CS1-USB-VR®), and reflectance probe (0.6 mm diameter fiber bundle including 200 micron central emission silica fiber surrounded by six 200 micron silica collection fibers) were used to measure the diffuse reflectance spectra at the clinical study.
- the surrounding fibers of the reflection probe were arranged in a vertical row to form a “spectral slit” entering the spectrometer.
- the angle of incidence of the source fiber(s) on the surface ( ⁇ ) was 35-45°.
- the distance x 1 was set at 1 cm for imaging illumination geometry.
- x 2 varied from 0 to 5 mm.
- S i was greater than S a by at least an order of magnitude.
- NA of the endoscope's light guide is 0.57 and NA of the collecting probe is 0.22.
- the reflectance measurements depend on the location of the fiber probe in relation to the tissue due to the complex measurement geometry and high motility GI environment. As illustrated in FIG. 2 , when the probe is located just above the surface of the tissue, some surface regions may be shadowed by the tip of the fiber. These differences in geometry may initiate changes in the shape of reflectance spectra and camouflage the specific spectral signature of dysplasia.
- the light flux remitted from the esophagus is affected by changes in geometry due to movement from peristalsis/spasm or pulse/breathing, peculiarities of the tissue, interpatient variability and human factor related to the particular endoscopist manner of examination.
- the amplitude of reflected signal depends on the endoscope-probe-tissue distances and angle. Different distances from the tissue lead to different illumination of the surface and different sampling areas and as a result to different levels of the measured signal.
- the endoscope with the source of light is held at a certain distance to the surface (10-15 mm), while the fiber can be dragged back and forth through the biopsy channel of the endoscope.
- the distance x 2 0 ⁇ x 2 ⁇ x 1
- Fluctuation of x 2 may result in profound changes in measured spectra, whereas the spectra collected are stable within certain ranges of x 1 and ⁇ , and are not significantly affected by ⁇ .
- even subtle variations of x 2 may significantly impact the shape and amplitude of the reflected spectra.
- the parameter x 2 is the most critical for reproducibility of diffuse reflectance spectra acquired in esophagus and should be carefully controlled.
- Pullback routine comprises lifting up the optical probe from the tissue surface up to 4-5 mm above while the spectral data is being acquired all the way up.
- data collection at a single pullback routine provides acquisition of 20-30 spectra.
- the spectra collected which are free from the shadowing effects are extracted from the entire data set. Usually, these are the spectra collected within 2-5 mm above the tissue in terms of (“above” spectra).
- the extraction algorithm is based on grouping and normalizing the spectra according by the spectral integral 620-630 nm.
- Red range is expected to be the worst ⁇ W to discriminate cancerous from noncancerous due to its weak absorption of blood. Hence, this range is used as a denominator to reduce interpatient variance and geometrical conditions differences.
- the pullback routine allows significantly reducing the spectral data variance within 460-630 nm.
- Statistical methods can be employed, including discriminate function analysis (DA), logistic regression, principal components analysis, and factor analysis. Although principal components analysis and logistic regression have some advantages over DA, Discriminant Analysis was selected due to its transparent physical interpretation for ultimate implementation into clinical technique using minimal number of wavelengths.
- DA discriminate function analysis
- logistic regression principal components analysis
- factor analysis factor analysis
- DA Discriminant Analysis
- MDA multiple Discriminant Analysis
- a single data point (case) consists in the exemplary embodiment of the pre-processed spectrum for a single tissue site.
- the independent variables are the light intensities measured at each wavelength from 450 nm-630 nm resolved by 1 nm.
- Data were grouped by a clinical pathologist into normal esophagus (NE), Barrett's Esophagus (BE), Barrett's Esophagus with inflammatory component (BEI), low-grade dysplasia (LGD), high-grade dysplasia (HGD), and invasive carcinoma (CA).
- NE and CA were excluded from our consideration according to the main objective of the study: discriminating early cancer lesions at Barrett's esophagus.
- DA is closely related to a multivariate analysis of variance (MANOVA). Discriminant Analysis is merely an inverse of a one-way MANOVA. The levels of the independent variable (or factor) for Manova become the categories of the dependent variable for Discriminant Analysis, and the dependent variables of MANOVA become the predictors for Discriminant Analysis. Based on the user-supplied group classifications for each spectrum, DA (MDA) seeks to produce a set of linear combinations that maximizes the differences between the values of the dependent variables in different groups. Each linear combination is embodied by a discriminate function of length N with coefficients c k,n . After applying a discriminate function to a given reflectance spectrum S( ⁇ ), the result is a canonical variable (score) y. Such as the number of discriminate functions is lesser of M-1 (where M is a number of groups) and the number of independent variables N, it is possible to generate min (N,M-1) canonical variables y k for each reflectance spectrum.
- the study population included patients referred to St. Michael's Hospital Endoscopy Unit for esophagogastroduodenoscopy (EGD). All patients recruited for the autofluorescence study were patients who required endoscopy as clinically indicated for diagnosis, surveillance or treatment. Normal subjects, or persons not otherwise requiring endoscopy, were not recruited for the purposes of the study. Patients were informed of the study and received an explanation of study procedures by the principal investigator (PI). Informed consent was obtained from all subjects prior to endoscopy.
- ETD esophagogastroduodenoscopy
- Ionizing radiation therapy to the chest or abdomen within the past six months.
- NE normal esophagus
- BE normal esophagus with inflammatory component
- BEI Barrett's esophagus
- BEI Barrett's esophagus with inflammatory process
- LGD Low Grade Dysplasia
- HFD High Grade Dysplasia
- LGD and HGD groups have been merged into one “D” group (group 1) due to limited number of cancerous spots collected.
- the developed method uses a diffuse reflectance collected within visible range at wide field illumination and point measurement not using any additional staining or dyes.
- a set of four distinctive wavelength ranges (which include the three wavelengths listed in Table 1) has been found to facilitate the malignant/non-malignant contrast.
- the discriminating algorithm is based on a linear polynomial function B4 providing 77% of sensitivity and 81% of specificity based on the results obtained from the clinical study on 32 patients including 7 with displasia found.
- a result discriminate function B4 is based on diffuse reflectance Rd measured at 4 wavelengths—485 ⁇ 5, 513 ⁇ 5, 598 ⁇ 2, 629 ⁇ 5 nm
- the discriminate function found is directly proportional to oxygenation of SO 2 and inversely proportional to local blood fraction volume THB.
- B4 values computed from the dysplastic data are significantly lower than that of the BE or BE with inflammatory component (BEI).
- BEI inflammatory component
- the discrimination between BE without inflammation background and dysplasia is more distinct than that of BE with inflammatory component (BEI) versus dysplasia.
- FIG. 3 shows the dependence between specificity/sensitivity provided by the discriminate function B and number of wavelength participating in the discrimination function.
- the line is just a guide for the eye.
- the set of four wavelengths provides the highest specificity/sensitivity because the most substantial difference is between discriminating power of three (485, 598, 629 nm) and four wavelengths (485, 513, 598, 629 nm).
- the wavelengths and discriminate functions obtained on a training dataset are shown in Table 2. It is noteworthy to point to the value of the constant C in Table 2 which is an offset parameter used to center groups (dysplasia vs. non-dysplasia) and reflects the influence of random factors upon the discriminate function.
- the threshold should be 0. However, it was found that a more balanced separation (for averaged per spot spectra) can be attained by setting the threshold to ⁇ 0.8, which is possible when using the LDA method.
- C is always much lower (at least by a factor of 5) than any of the contribution coefficients of the corresponding wavelength set.
- the discrimination between BE and dysplasia can be slightly improved by 2-2.5% in terms of Area under ROC curve (AUC) by adding into the discriminate function another wavelength: 501 ⁇ 5 nm, as evident from Table 2.
- AUC Area under ROC curve
- the local blood perfusion condition anticipated for a tumor is a combination of high hemoglobin concentration and low blood oxygenation. Therefore, a lower value of B4 is expected within the tumor compared to the adjacent normal tissue. For instance for tumors of the lungs, the local blood fraction is increased by a factor of 2.3, while blood oxygenation drops from 0.92 to 0.49. Considering this case as an example, B4 can be expected to provide a contrast between normal tissue and tumor as 1:0.22.
- B4 is inversely highly dependent on both total hemoglobin and oxygenation. The higher the B4 parameter, the lower is both local concentration of total hemoglobin and blood oxygenation.
- the T HB and SO 2 peculiarities determined via the green range have not been identified as statistically relevant criteria to provide a contrast between dysplastic and metaplastic tissues at Barrett's esophagus while the usage of Blue (485 and 513 nm) and Red (598 and 629 nm) bands facilitate a significant sensitivity and specificity despite the fact that the spectral signature of hemoglobin/oxyhemoglobin within 530-580 nm is much more obvious. This result is unexpected and could not be predicted from the theoretical standpoint based on hemoglobin absorption spectra.
- the blue/red optimal discrimination can be based on peculiarities of the diffuse reflectance sampling depth in Barrett's esophagus related, in turn, to data specificity of displastic optical signature.
- the blue and red discriminating wavelengths found do not interfere with most of the green band reserved for the autofluorescence acquisition. Hence, one can assume that the correlation between reflectance and fluorescence data should not be high. If the latter assumption is correct, then both the sensitivity and specificity provided by the diffuse reflectance can be improved by the autofluorescence data when both reflectance and fluorescence are used simultaneously. Hence, the two techniques are spectrally compatible and potentially provide complementary information.
- the method of the invention is not limited to Barrett's esophagus, but can also be applied in vivo in other organs and tissues.
- a combined spectral imaging method incorporating the method of the invention can be used to guide the random biopsy at Barrett's metaplastic transformation to improve early cancer diagnostics in the esophagus.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Surgery (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Animal Behavior & Ethology (AREA)
- Pathology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Endocrinology (AREA)
- Gastroenterology & Hepatology (AREA)
- Physiology (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
- This application claims priority to U.S. Provisional Application Ser. No. 61/102,091, filed Oct. 2, 2008, the entire content of which is incorporated herein by reference.
- The invention relates to white light endoscopy to guide the biopsy collection, and more particularly to detecting an intrinsic optical signature of early cancer lesions in Barrett's esophagus (BE) using diffuse reflectance spectroscopy, without staining or dying to enhance malignant/non-malignant contrast.
- Gastrointestinal (GI) malignancies continue to be the second leading cause of cancer-related deaths in the United States (24%). One of the highest shares in GI malignancies belongs to esophagus cancer (10% or 12000-14000 per year based on 2000-2003 statistics). People from the Western hemisphere tend to develop esophageal cancer based on prior metaplastic mucosal transformation often called as Barrett's esophagus (BE). Barrett's esophagus is a cancer risk factor and frequently linked to the preexisting gastro-esophageal reflux disease (GERD). Patients with Barrett's esophagus have a 30-125 fold higher risk of developing cancer of the esophagus than the general population.
- Several diagnostic methods exist that do not use any external dyes, such as autofluorescence spectroscopy and imaging, narrow band imaging, Raman spectroscopy, Optical Coherence Tomography and Doppler Optical Coherence Tomography, Laser Scattering Spectroscopy, confocal endoscopy, Infrared Endoscopy. Other methods that use external dyes and staining in vivo include chromo-endoscopy, magnification chromo-endoscopy, and fluorescence imaging of ALA-5 staining.
- Recently developed methods are either small field of view and, consequently, very time consuming (Raman spectroscopy, Optical Coherence Tomography, Doppler Optical Coherence Tomography, Laser Scattering Spectroscopy, confocal endoscopy) or require application of external dyes (chromo-endoscopy, fluorescence imaging of ALA-5 staining) Narrow band imaging and near-infrared multimodal endoscopy methods were reported just within last two years and still required to prove its sensitivity and specificity abilities. The narrow band imaging is based on recognizing the irregular pit pattern epithelium islands within areas of intestinal metaplasia. This approach can be significantly affected by human factor and heavily relies upon extensive training of the endoscopist performing the examination.
- Accordingly, there is a need for a clinically recognized real-time, large field-of-view screening method to discriminate dysplasia from metaplasia in Barrett's Esophagus.
- The developed method uses a diffuse reflectance collected within visible range at wide field illumination and point measurement. A set of at least four distinctive wavelength ranges has been found to facilitate the malignant/non-malignant contrast. The discriminating algorithm is based on a linear polynomial function B4 providing 77% of sensitivity and 81% of specificity based on the results obtained from the clinical study on 32 patients including 7 with displasia found.
- An optimal result discriminate function B4 is based on diffuse reflectance Rd measured at 4 wavelengths—485±5, 513±5, 598±2, 629±5 nm.
-
B4=−14.32+626.88*Rd 485−721.31*Rd 513+253.76*Rd 598+75.16*Rd 629 - The discriminate function found is directly proportional to oxygenation SO2 and inversely proportional to local blood fraction volume THB. B4 values computed from the dysplastic data are significantly lower than that of the BE or BE with inflammatory component (BEI). The discrimination between BE without inflammation background and dysplasia is more distinct than that of BE with inflammatory component (BEI) versus dysplasia.
- The discrimination between BE and dysplasia can be slightly improved by 2-2.5% in terms of Area under ROC curve (AUC) by adding into the discriminate function another wavelength: 501±5 nm. At the same time, if one of the four wavelengths found for the B4 function is excluded, the discrimination BE versus Dysplasia will be drastically reduced from 77% to 61% (in terms of AUC).
-
FIG. 1 shows the illumination geometry for diffuse reflectance imaging; -
FIG. 2 shows a shadow effect during endoscopic diffuse reflectance measurements; and -
FIG. 3 shows the dependence between specificity/sensitivity provided by the discriminate function B and the number of wavelengths participating in the discriminate function. - An adjuvant screening technique is described which is compatible with conventional white light endoscopy to guide the biopsy collection in Barrett's esophagus (BE) in real time. By systematic analysis of the diffuse reflectance spectra, we have found a specific algorithm, that provides statistically-significant discrimination between BE and dysplasia, with or without the presence of an inflammatory component.
- An understanding of the blood microcirculation in tumors is important for their detection, diagnosis and treatment. Relatively high values of blood supply in tumors are associated with increased metabolism and aggressiveness. Increase of blood supply provides a growing cancerous tissue with additional nutrients via growth of new vasculature through a mechanism called angiogenesis. Typical development of epithelial-originating cancers occurs in several sequential stages—low grade dysplasia or pre-cancer, high grade dysplasia, carcinoma in situ, invasive cancer, and finally metastatic spread beyond the primary location. Metastatic disease has poor prognosis; thus, early detection of cancer may improve patient survival.
- The role of angiogenesis in the early stages of cancer development is still unclear, with recent publications proposing contradictory theories. However, it is assumed that, even in low grade dysplasia, deregulated mitotic processes require an increase in blood supply. This leads, in turn, to an increase in both vascular density and local hemoglobin concentration or fractional blood volume within the malignant lesion.
- The goal of the study was to create an adjuvant screening technique compatible with conventional white light endoscopy to guide the biopsy collection in Barrett's esophagus in real time. The current objectives of the study focus on finding the intrinsic optical signature of early cancer lesions in BE not using any additional staining or dyes to enhance malignant/non-malignant contrast. The main assumption is that in case of dysplastic tissue the higher oxygen/nutrients demand and possible leakage of premature tumor local blood micro-vessels would lead to higher local concentration of blood. The working hypothesis presumes also that the local distribution of blood will be altered in dysplastic lesions that may lead to reduced efficiency of oxygen/nutrients supply and ultimately to reduced blood oxygenation level depending on development phase of dysplasia.
- In general case of endoscopic measurements, the measured signal on the probe is composed by specular reflection and diffuse reflection of the tissue.
- Specular (Fresnel) reflection is caused by mismatch of index of refraction on the air/tissue border. This reflectance is particularly important for normal (or close to normal) position of endoscope. In this case the specular coefficient of reflection can be as large as 2-4%. In other geometries specular reflection is minimal and can be ignored.
- Light not reflected on the surface of the tissue first interacts with epithelium layer. The nuclei of the epithelial cells have higher refractive index than the surrounding cytoplasm, and hence act as light scatterers.
- The size of the nuclei in the normal epithelium is 4-7 μm, which conditions strongly forward scattering with anisotropy factor in 0.98-0.99 range. In dysplastic epithelium the nuclei become pleomorphic, crowded, hyperchromatic and occupy almost the whole cell (diameter 10-20 μm). These morphological changes in nuclei during dysplastic transformation and corresponding peculiarities of the epithelial scattering were used in polarized light scattering spectroscopy and field-based light scattering spectroscopy to separate between normal and dysplastic epithelium.
- Such as there are no significant absorbers in the epithelium layer, thus, even despite its thickness (200 μm), most of light propagates through the layer and penetrates into the lamina propria. The scattering in this layer is caused mainly by fine collagen fibrils and subcellular organelles (<1 μm, which conditions strong backscattering). The absorption in this layer is mainly caused by the presence of capillaries, which supply blood circulation.
- After significant scattering and absorption in mucosa layer the remaining part of the light penetrates in the submucosa. The submucosa is composed almost entirely of a dense network of larger collagen fibers. The significant diameter of these fibers (several microns) conditions strongly forward scattering. Large blood vessels cause significant absorption of light in this layer.
- The fraction of the incident light that is not absorbed or backscattered in the previous two layers enters muscularis propia where it gets further strongly absorbed by blood and scattered.
- Finally, light transmitted through the thick muscular layer into deeper tissues is confined mainly to the red range of the spectra and does not significantly affect the reflected flow. Simple 2-layer models of the esophageal wall have shown that in the infra-red range (650-750 nm) the absorption of blood is negligible. Taking into account that own absorption of tissue in this region is still less than the reduced coefficient of scattering, one can expect scattering-dominated light propagation regime in the tissue. In this case, the coefficient of reflection will be close to 0.5 (in the absence of absorption half of light penetrates into deeper tissues where it will be finally absorbed, another half will emerge on the surface of the tissue). Thus, the signal in this range is not sensitive to the blood content, and one can use this region to normalize spectra to take into account the conditions of the measurement.
- For blue and green ranges, μa/μs>1, with light propagation dominated by absorption. In this case the absorption is significant and the signal in this range will be quite sensitive to the blood content. μa is here the coefficient of absorption and, and μs is the reduced coefficient of scattering.
- Two geometries are commonly used during diffuse reflectance spectroscopy in vivo:
- (1) A point-illumination—point-detection geometry: the sampling light is delivered through a single optical fiber to the tissue and the reflectance signal is detected by a radially displaced pick-up fiber.
- (2) A wide-field illumination and point-detection geometry or imaging illumination geometry: the light from the source is delivered through the endoscope's light guides illuminating a large area of the tissue surface, and a single pick-up fiber or a bundle of pick-up fibers approach the tissue via the biopsy channel of the endoscope.
- Preliminary considerations have show that the imaging illumination geometry can make diffuse reflectance more compatible with endoscopic imaging than the “point illumination—point detection geometry.” The imaging illumination geometry setup is shown in
FIG. 1 where 1 represents the endoscope; 2 the fiber probe; 3 the incident (tissue) surface; x1 the distance between the endoscope tip and tissue surface; θ the incline angle of the collecting fiber and normal to the incident surface; x2 the distance between the diffuse reflectance probe tip and tissue surface; d the diffuse reflectance interrogating depth; Sa the diffuse reflectance collection area on the incident surface; Si the area illuminated by the endoscope light source on the incident surface; φ1 the NA of the endoscope's light guide; φ2 the NA of the collecting probe; and τ the twisting angle. - A xenon lamp (Olympus) from the endoscopic light source and fiberoptic spectrometer (MedSpecLab, MSL-CS1-USB-VR®), and reflectance probe (0.6 mm diameter fiber bundle including 200 micron central emission silica fiber surrounded by six 200 micron silica collection fibers) were used to measure the diffuse reflectance spectra at the clinical study. The surrounding fibers of the reflection probe were arranged in a vertical row to form a “spectral slit” entering the spectrometer.
- The angle of incidence of the source fiber(s) on the surface (θ) was 35-45°. The distance x1 was set at 1 cm for imaging illumination geometry. x2 varied from 0 to 5 mm. Si was greater than Sa by at least an order of magnitude. NA of the endoscope's light guide is 0.57 and NA of the collecting probe is 0.22.
- It has been observed that the reflectance measurements depend on the location of the fiber probe in relation to the tissue due to the complex measurement geometry and high motility GI environment. As illustrated in
FIG. 2 , when the probe is located just above the surface of the tissue, some surface regions may be shadowed by the tip of the fiber. These differences in geometry may initiate changes in the shape of reflectance spectra and camouflage the specific spectral signature of dysplasia. The light flux remitted from the esophagus is affected by changes in geometry due to movement from peristalsis/spasm or pulse/breathing, peculiarities of the tissue, interpatient variability and human factor related to the particular endoscopist manner of examination. In particular, the amplitude of reflected signal depends on the endoscope-probe-tissue distances and angle. Different distances from the tissue lead to different illumination of the surface and different sampling areas and as a result to different levels of the measured signal. - The endoscope with the source of light is held at a certain distance to the surface (10-15 mm), while the fiber can be dragged back and forth through the biopsy channel of the endoscope. Apparently, there is an obvious geometrical limitation on the distance x2: 0<x2<x1
- It will be assumed that the endoscope (with radius of source of light—R) is positioned normally to the tissue on the height, while the fiber with radius r can be positioned at any height x2 (0<x2<x1) above the tissue. In
FIG. 2 ,reference symbol 3 indicates the shadow on the incident (tissue) surface;reference symbol 4 the endoscopic light source aperture; 2R the distance between the light guides (centers) on the endoscope tip; and r the reflectance probe radius. Otherwise, the reference symbols ofFIG. 1 apply also toFIG. 2 . The shadow disappears at x2 0=x1*r/R which for the exemplary experimental geometry (r=0.3 mm, R=5 mm, x1=10-15 mm) x2 0 can be estimated as 0.6-0.9 mm, i.e. the shadow disappears within the first mm of x2. Fluctuation of x2 may result in profound changes in measured spectra, whereas the spectra collected are stable within certain ranges of x1 and θ, and are not significantly affected by τ. At the same time, even subtle variations of x2 may significantly impact the shape and amplitude of the reflected spectra. Thus, the parameter x2 is the most critical for reproducibility of diffuse reflectance spectra acquired in esophagus and should be carefully controlled. - A special measurement approach has been developed in order to take into account x2. This approach, that is termed “pullback routine,” comprises lifting up the optical probe from the tissue surface up to 4-5 mm above while the spectral data is being acquired all the way up. As a rule, data collection at a single pullback routine provides acquisition of 20-30 spectra. Between three and four pull back routines are carried out from every tissue spot. The spectra collected which are free from the shadowing effects are extracted from the entire data set. Usually, these are the spectra collected within 2-5 mm above the tissue in terms of (“above” spectra). The extraction algorithm is based on grouping and normalizing the spectra according by the spectral integral 620-630 nm. Red range is expected to be the worst λW to discriminate cancerous from noncancerous due to its weak absorption of blood. Hence, this range is used as a denominator to reduce interpatient variance and geometrical conditions differences. The pullback routine allows significantly reducing the spectral data variance within 460-630 nm.
- A method will now be described for classifying tissues into two distinct classes—dysplastic and non-dysplastic based on their reflectance spectra. The study focuses on separation of Barrett's esophagus spots vs. dysplastic tissue.
- Statistical methods can be employed, including discriminate function analysis (DA), logistic regression, principal components analysis, and factor analysis. Although principal components analysis and logistic regression have some advantages over DA, Discriminant Analysis was selected due to its transparent physical interpretation for ultimate implementation into clinical technique using minimal number of wavelengths.
- Discriminant Analysis (DA) and multiple Discriminant Analysis (MDA) are used to separate two (DA) or more (MDA) groups of data, where each data point is characterized by a set of independent variables. A single data point (case) consists in the exemplary embodiment of the pre-processed spectrum for a single tissue site. The independent variables are the light intensities measured at each wavelength from 450 nm-630 nm resolved by 1 nm. Data were grouped by a clinical pathologist into normal esophagus (NE), Barrett's Esophagus (BE), Barrett's Esophagus with inflammatory component (BEI), low-grade dysplasia (LGD), high-grade dysplasia (HGD), and invasive carcinoma (CA). NE and CA were excluded from our consideration according to the main objective of the study: discriminating early cancer lesions at Barrett's esophagus.
- DA (MDA) is closely related to a multivariate analysis of variance (MANOVA). Discriminant Analysis is merely an inverse of a one-way MANOVA. The levels of the independent variable (or factor) for Manova become the categories of the dependent variable for Discriminant Analysis, and the dependent variables of MANOVA become the predictors for Discriminant Analysis. Based on the user-supplied group classifications for each spectrum, DA (MDA) seeks to produce a set of linear combinations that maximizes the differences between the values of the dependent variables in different groups. Each linear combination is embodied by a discriminate function of length N with coefficients ck,n. After applying a discriminate function to a given reflectance spectrum S(λ), the result is a canonical variable (score) y. Such as the number of discriminate functions is lesser of M-1 (where M is a number of groups) and the number of independent variables N, it is possible to generate min (N,M-1) canonical variables yk for each reflectance spectrum.
-
- If the data groups are significantly different in terms of their spectral shape, the resulting canonical variables will tend to cluster in distinct regions for each group. If only two groups are used in the analysis (e.g., BE/BEI vs. LGD/HGD) then only one canonical variable (k=1) will be required to distinguish the groups.
- By examining the discriminate function coefficients cn, it is possible to determine which wavelength regions are the most relevant for providing contrast between the data groups. Regions with largest coefficients correspond to the most specific data, whereas small coefficients are less significant.
- The ability of the Discriminant Analysis to extract discriminate functions suitable for producing accurate classifications is enhanced by adequate sample size and homoscedasticity (homogeneity of variances). The variance of each independent variable has to be similar between the sample groups. Validity of this assumption can be seen in Table 1 where the data on standard deviation within BE+BEI (group 0) and LGD+HGD (group 1) is summarized for the three selected wavelengths 485, 513, and 598 nm.
-
TABLE 1 Wavelength Group 485 nm 513 nm 598 nm 0 (BE + BEI) 0.0078 0.0087 0.0104 1 (LGD + HGD) 0.0072 0.0076 0.0083 - The study population included patients referred to St. Michael's Hospital Endoscopy Unit for esophagogastroduodenoscopy (EGD). All patients recruited for the autofluorescence study were patients who required endoscopy as clinically indicated for diagnosis, surveillance or treatment. Normal subjects, or persons not otherwise requiring endoscopy, were not recruited for the purposes of the study. Patients were informed of the study and received an explanation of study procedures by the principal investigator (PI). Informed consent was obtained from all subjects prior to endoscopy.
- All adult patients booked for diagnostic, surveillance or therapeutic EGD or colonoscopy who consented to participate in this study and did not have one or more of the following exclusion criteria below, were included.
- Age<18 years; unable or unwilling to give informed consent were not included.
- Ionizing radiation therapy to the chest or abdomen within the past six months.
- Dye-staining of the esophagus within the past 7 days.
- Significant esophageal bleeding of any etiology.
- Concurrent esophageal candidiasis.
- Patients who are receiving or have received cytotoxic chemotherapy or chemopreventive drugs for cancer within three months.
- Patients who have received fluorescent photosensitizing drugs (such as PHOTOFRIN®) within three months.
- Patients who have used sucralfates or liquid antacids within 24 hours prior.
- The study included 32 patients in total over a 3-year enrolment period (2004-2006).
- We have collected 5 histological groups—normal esophagus (NE), normal esophagus with inflammatory component (NEI), Barrett's esophagus (BE), Barrett's esophagus with inflammatory process (BEI), Low Grade Dysplasia (LGD), High Grade Dysplasia (HGD). Only last four groups were taken for analysis to find out cancerous/noncancerous discrimination.
- BE (group 0)−28 spots (791 (training)+518 (test) 1309 spectra)
- BEI (group 2)−20 spots (244 (training)+439 (test) 683 spectra)
- LGD—9 spots (181 (training)+86 (test) 267 spectra)
- HGD−7 spots (86 (training)+234 (test) 320 spectra)
- LGD and HGD groups have been merged into one “D” group (group 1) due to limited number of cancerous spots collected.
- The developed method uses a diffuse reflectance collected within visible range at wide field illumination and point measurement not using any additional staining or dyes. A set of four distinctive wavelength ranges (which include the three wavelengths listed in Table 1) has been found to facilitate the malignant/non-malignant contrast. The discriminating algorithm is based on a linear polynomial function B4 providing 77% of sensitivity and 81% of specificity based on the results obtained from the clinical study on 32 patients including 7 with displasia found.
- A result discriminate function B4 is based on diffuse reflectance Rd measured at 4 wavelengths—485±5, 513±5, 598±2, 629±5 nm
-
B4==14.32+626.88*Rd 485−721.31*Rd 513+253.76*Rd 598+75.16*Rd 629 - The discriminate function found is directly proportional to oxygenation of SO2 and inversely proportional to local blood fraction volume THB. B4 values computed from the dysplastic data are significantly lower than that of the BE or BE with inflammatory component (BEI). A useful threshold value for distinguishing between dysplasia and nondysplasia (BE+BEI) was found to be B4thres=−0.8, with values of B4<−0.8 classified as dysplasia and B4>−0.8 classified as non-dysplastic tissue. The discrimination between BE without inflammation background and dysplasia is more distinct than that of BE with inflammatory component (BEI) versus dysplasia.
- The minimum number of wavelengths required to provide the highest specificity/sensitivity has been found to be four, as shown in
FIG. 3 and described with reference to Table 2 below.FIG. 3 shows the dependence between specificity/sensitivity provided by the discriminate function B and number of wavelength participating in the discrimination function. The line is just a guide for the eye. The set of four wavelengths provides the highest specificity/sensitivity because the most substantial difference is between discriminating power of three (485, 598, 629 nm) and four wavelengths (485, 513, 598, 629 nm). -
TABLE 2 Function Function Function Function Function Function Wavelength B1 B2 B3 B4 B5 B6 Constant (C) −1.33469 −6.0054 −9.7687057 −14.3225 −12.8803 −16.0918 485 135.2218 145.2608 36.1187989 626.8844 901.9895 1027.081 629 40.8738 57.8663474 75.15688 67.68892 82.73592 598 98.794127 253.7611 241.0908 373.5058 513 −721.309 −424.382 76.29472 501 −545.793 −1017.41 590 −309.954 - The wavelengths and discriminate functions obtained on a training dataset are shown in Table 2. It is noteworthy to point to the value of the constant C in Table 2 which is an offset parameter used to center groups (dysplasia vs. non-dysplasia) and reflects the influence of random factors upon the discriminate function. By design, the threshold should be 0. However, it was found that a more balanced separation (for averaged per spot spectra) can be attained by setting the threshold to −0.8, which is possible when using the LDA method.
- C is always much lower (at least by a factor of 5) than any of the contribution coefficients of the corresponding wavelength set.
- The discrimination between BE and dysplasia can be slightly improved by 2-2.5% in terms of Area under ROC curve (AUC) by adding into the discriminate function another wavelength: 501±5 nm, as evident from Table 2. However, it should be noted that if one of the four wavelengths found for the B4 function is excluded, the discrimination BE versus Dysplasia will be dramatically reduced from 77% to 61% (in terms of AUC).
- The local blood perfusion condition anticipated for a tumor is a combination of high hemoglobin concentration and low blood oxygenation. Therefore, a lower value of B4 is expected within the tumor compared to the adjacent normal tissue. For instance for tumors of the lungs, the local blood fraction is increased by a factor of 2.3, while blood oxygenation drops from 0.92 to 0.49. Considering this case as an example, B4 can be expected to provide a contrast between normal tissue and tumor as 1:0.22.
- B4 is inversely highly dependent on both total hemoglobin and oxygenation. The higher the B4 parameter, the lower is both local concentration of total hemoglobin and blood oxygenation.
- In conclusion, a statistically significant difference has been found between dysplasia and Barrett's esophagus (both with and without inflammatory component) by using a discriminate function using 485, 513, 598, and 629 nm with a tolerance range ±5 nm. The discriminate function found depends both on local blood fraction volume THB and oxygenation SO2. The discrimination between BE without inflammation background and dysplasia is more distinct than that of BE with inflammatory component (BEI) versus dysplasia. The THB and SO2 peculiarities determined via the green range have not been identified as statistically relevant criteria to provide a contrast between dysplastic and metaplastic tissues at Barrett's esophagus while the usage of Blue (485 and 513 nm) and Red (598 and 629 nm) bands facilitate a significant sensitivity and specificity despite the fact that the spectral signature of hemoglobin/oxyhemoglobin within 530-580 nm is much more obvious. This result is unexpected and could not be predicted from the theoretical standpoint based on hemoglobin absorption spectra. The blue/red optimal discrimination can be based on peculiarities of the diffuse reflectance sampling depth in Barrett's esophagus related, in turn, to data specificity of displastic optical signature. The results have shown that the procedure design at diffuse reflectance spectra collection is important. An original pull back approach of spectral data acquisition has been developed to take into account tissue motility in esophagus and measurement geometry peculiarities. The pull back approach provided a significant improvement of measurement reproducibility and reduction of data deviation by 75-100%. This, in turn, led to a better discrimination between different histological groups during the study.
- The studies reported herein improve the diagnostic accuracy of autofluorescence endoscopy in Barrett's esophagus. Hence, one possible implementation would be to combine 4-channel reflectance imaging with autofluorescence endoscopy. It is important to note that the algorithm developed here exploits a different spectral range from that used currently in autofluorescence endoscopy systems that use primarily the green (˜490-570 nm) range for the autofluorescence emission with the recent technology (Onco-LIFE®).
- The blue and red discriminating wavelengths found do not interfere with most of the green band reserved for the autofluorescence acquisition. Hence, one can assume that the correlation between reflectance and fluorescence data should not be high. If the latter assumption is correct, then both the sensitivity and specificity provided by the diffuse reflectance can be improved by the autofluorescence data when both reflectance and fluorescence are used simultaneously. Hence, the two techniques are spectrally compatible and potentially provide complementary information.
- The method of the invention is not limited to Barrett's esophagus, but can also be applied in vivo in other organs and tissues. A combined spectral imaging method incorporating the method of the invention can be used to guide the random biopsy at Barrett's metaplastic transformation to improve early cancer diagnostics in the esophagus.
- While the invention is receptive to various modifications, and alternative forms, specific examples thereof have been shown in the drawings and are herein described in detail. It should be understood, however, that the invention is not limited to the particular forms or methods disclosed, but to the contrary, the invention is meant to cover all modifications, equivalents, and alternatives falling with the spirit and scope of the appended claims.
Claims (6)
B4=−14.32+626.88*Rd 485−721.31*Rd 513+253.76*Rd 598+75.16*Rd 629
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/572,473 US20100087741A1 (en) | 2008-10-02 | 2009-10-02 | Method for identifying malignancies in barrett's esophagus using white light endoscopy |
US13/625,867 US9295392B2 (en) | 2008-10-02 | 2012-09-24 | Method for identifying malignancies in barrett's esophagus using white light endoscopy |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10209108P | 2008-10-02 | 2008-10-02 | |
US12/572,473 US20100087741A1 (en) | 2008-10-02 | 2009-10-02 | Method for identifying malignancies in barrett's esophagus using white light endoscopy |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/625,867 Continuation US9295392B2 (en) | 2008-10-02 | 2012-09-24 | Method for identifying malignancies in barrett's esophagus using white light endoscopy |
Publications (1)
Publication Number | Publication Date |
---|---|
US20100087741A1 true US20100087741A1 (en) | 2010-04-08 |
Family
ID=42076311
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/572,473 Abandoned US20100087741A1 (en) | 2008-10-02 | 2009-10-02 | Method for identifying malignancies in barrett's esophagus using white light endoscopy |
US13/625,867 Active US9295392B2 (en) | 2008-10-02 | 2012-09-24 | Method for identifying malignancies in barrett's esophagus using white light endoscopy |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/625,867 Active US9295392B2 (en) | 2008-10-02 | 2012-09-24 | Method for identifying malignancies in barrett's esophagus using white light endoscopy |
Country Status (1)
Country | Link |
---|---|
US (2) | US20100087741A1 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9412155B2 (en) | 2012-12-31 | 2016-08-09 | Karl Storz Imaging, Inc. | Video system with dynamic contrast and detail enhancement |
US9642532B2 (en) | 2008-03-18 | 2017-05-09 | Novadaq Technologies Inc. | Imaging system for combined full-color reflectance and near-infrared imaging |
US9814378B2 (en) | 2011-03-08 | 2017-11-14 | Novadaq Technologies Inc. | Full spectrum LED illuminator having a mechanical enclosure and heatsink |
US10694151B2 (en) | 2006-12-22 | 2020-06-23 | Novadaq Technologies ULC | Imaging system with a single color image sensor for simultaneous fluorescence and color video endoscopy |
US10869645B2 (en) | 2016-06-14 | 2020-12-22 | Stryker European Operations Limited | Methods and systems for adaptive imaging for low light signal enhancement in medical visualization |
USD916294S1 (en) | 2016-04-28 | 2021-04-13 | Stryker European Operations Limited | Illumination and imaging device |
US10980420B2 (en) | 2016-01-26 | 2021-04-20 | Stryker European Operations Limited | Configurable platform |
US10992848B2 (en) | 2017-02-10 | 2021-04-27 | Novadaq Technologies ULC | Open-field handheld fluorescence imaging systems and methods |
US11930278B2 (en) | 2015-11-13 | 2024-03-12 | Stryker Corporation | Systems and methods for illumination and imaging of a target |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12239409B2 (en) | 2022-02-28 | 2025-03-04 | Visionsense Ltd. | Fluorescence imaging camera assembly for open surgery |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070177152A1 (en) * | 2006-02-01 | 2007-08-02 | The General Hospital Corporation | Methods and systems for monitoring and obtaining information of at least one portion of a sample using conformal laser therapy procedures, and providing electromagnetic radiation thereto |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6091984A (en) * | 1997-10-10 | 2000-07-18 | Massachusetts Institute Of Technology | Measuring tissue morphology |
US6697652B2 (en) * | 2001-01-19 | 2004-02-24 | Massachusetts Institute Of Technology | Fluorescence, reflectance and light scattering spectroscopy for measuring tissue |
-
2009
- 2009-10-02 US US12/572,473 patent/US20100087741A1/en not_active Abandoned
-
2012
- 2012-09-24 US US13/625,867 patent/US9295392B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070177152A1 (en) * | 2006-02-01 | 2007-08-02 | The General Hospital Corporation | Methods and systems for monitoring and obtaining information of at least one portion of a sample using conformal laser therapy procedures, and providing electromagnetic radiation thereto |
Non-Patent Citations (3)
Title |
---|
Dawson et al., "Theoretical and Experimental Stduy of Light Absorption and Scattering by In Vivo Skin," 1980, The Institute of Physics, pgs. 695-709 * |
Georgakoudi et al., "Chapter 31: Quantitative Characterization of Biological Tissue Using Optical Spectroscopy." Copyrighted 2003 by CRC Press LLC., pages 1-33 * |
Georgakoudi et al., "Characterization of Dysplastic Tissue Morphology and Biochemistry in Barrett's Esophagus using Diffuse Reflectance and Light Scattering Spectroscopy," 2005, pgs. 100-105 * |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11025867B2 (en) | 2006-12-22 | 2021-06-01 | Stryker European Operations Limited | Imaging systems and methods for displaying fluorescence and visible images |
US10694151B2 (en) | 2006-12-22 | 2020-06-23 | Novadaq Technologies ULC | Imaging system with a single color image sensor for simultaneous fluorescence and color video endoscopy |
US10694152B2 (en) | 2006-12-22 | 2020-06-23 | Novadaq Technologies ULC | Imaging systems and methods for displaying fluorescence and visible images |
US11770503B2 (en) | 2006-12-22 | 2023-09-26 | Stryker European Operations Limited | Imaging systems and methods for displaying fluorescence and visible images |
US9642532B2 (en) | 2008-03-18 | 2017-05-09 | Novadaq Technologies Inc. | Imaging system for combined full-color reflectance and near-infrared imaging |
US10779734B2 (en) | 2008-03-18 | 2020-09-22 | Stryker European Operations Limited | Imaging system for combine full-color reflectance and near-infrared imaging |
US9814378B2 (en) | 2011-03-08 | 2017-11-14 | Novadaq Technologies Inc. | Full spectrum LED illuminator having a mechanical enclosure and heatsink |
US9412155B2 (en) | 2012-12-31 | 2016-08-09 | Karl Storz Imaging, Inc. | Video system with dynamic contrast and detail enhancement |
US11930278B2 (en) | 2015-11-13 | 2024-03-12 | Stryker Corporation | Systems and methods for illumination and imaging of a target |
US10980420B2 (en) | 2016-01-26 | 2021-04-20 | Stryker European Operations Limited | Configurable platform |
US11298024B2 (en) | 2016-01-26 | 2022-04-12 | Stryker European Operations Limited | Configurable platform |
USD977480S1 (en) | 2016-04-28 | 2023-02-07 | Stryker European Operations Limited | Device for illumination and imaging of a target |
USD916294S1 (en) | 2016-04-28 | 2021-04-13 | Stryker European Operations Limited | Illumination and imaging device |
USD1065550S1 (en) | 2016-04-28 | 2025-03-04 | Stryker Corporation | Device for illumination and imaging of a target |
US11756674B2 (en) | 2016-06-14 | 2023-09-12 | Stryker European Operations Limited | Methods and systems for adaptive imaging for low light signal enhancement in medical visualization |
US10869645B2 (en) | 2016-06-14 | 2020-12-22 | Stryker European Operations Limited | Methods and systems for adaptive imaging for low light signal enhancement in medical visualization |
US10992848B2 (en) | 2017-02-10 | 2021-04-27 | Novadaq Technologies ULC | Open-field handheld fluorescence imaging systems and methods |
US11140305B2 (en) | 2017-02-10 | 2021-10-05 | Stryker European Operations Limited | Open-field handheld fluorescence imaging systems and methods |
US12028600B2 (en) | 2017-02-10 | 2024-07-02 | Stryker Corporation | Open-field handheld fluorescence imaging systems and methods |
Also Published As
Publication number | Publication date |
---|---|
US20130178748A1 (en) | 2013-07-11 |
US9295392B2 (en) | 2016-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9295392B2 (en) | Method for identifying malignancies in barrett's esophagus using white light endoscopy | |
Evans et al. | Optical coherence tomography to identify intramucosal carcinoma and high-grade dysplasia in Barrett’s esophagus | |
US6697652B2 (en) | Fluorescence, reflectance and light scattering spectroscopy for measuring tissue | |
Kiyotoki et al. | New method for detection of gastric cancer by hyperspectral imaging: a pilot study | |
Georgakoudi et al. | Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett's esophagus | |
Bergholt et al. | In vivo diagnosis of esophageal cancer using image-guided Raman endoscopy and biomolecular modeling | |
Muldoon et al. | Noninvasive imaging of oral neoplasia with a high‐resolution fiber‐optic microendoscope | |
Kallaway et al. | Advances in the clinical application of Raman spectroscopy for cancer diagnostics | |
Koenig et al. | Spectroscopic measurement of diffuse reflectance for enhanced detection of bladder carcinoma | |
US8326404B2 (en) | Multimodal detection of tissue abnormalities based on raman and background fluorescence spectroscopy | |
Douplik et al. | Diffuse reflectance spectroscopy in Barrett’s Esophagus: developing a large field‐of‐view screening method discriminating dysplasia from metaplasia | |
Krafft et al. | Diagnosis and screening of cancer tissues by fiber-optic probe Raman spectroscopy | |
Upile et al. | Elastic scattering spectroscopy in assessing skin lesions: an “in vivo” study | |
Shirkavand et al. | Application of optical spectroscopy in diagnosing and monitoring breast cancers: A technical review | |
Drakaki et al. | Laser-induced fluorescence and reflectance spectroscopy for the discrimination of basal cell carcinoma from the surrounding normal skin tissue | |
Ottaviani et al. | The diagnostic performance parameters of narrow band imaging: a preclinical and clinical study | |
Mallia et al. | Clinical grading of oral mucosa by curve‐fitting of corrected autofluorescence using diffuse reflectance spectra | |
Borisova et al. | Light-Induced fluorescence techniques for gastrointestinal tumour detection | |
Barr et al. | Endoscopic screening and surveillance for Barrett's esophagus–clinical implications | |
Song | Optical spectroscopy for the detection of dysplasia in Barrett’s esophagus | |
Wallace et al. | Enhanced gastrointestinal diagnosis: light-scattering spectroscopy and optical coherence tomography | |
Ioffe et al. | Early endoscopic photodynamic diagnosis of colonic lesions | |
Gahlen et al. | Spectrometry supports fluorescence staging laparoscopy after intraperitoneal aminolaevulinic acid lavage for gastrointestinal tumours | |
Song et al. | Optical detection and eradication of dysplastic Barrett's esophagus | |
Sahu et al. | Role of narrow band imaging in detecting recurrence in patients of squamous cell carcinoma larynx and hypopharynx who underwent radiotherapy/chemo-radiotherapy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: NOVADAQ TECHNOLOGIES INC., CANADA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DOUPLIK, ALEXANDRE;ADLER, DESMOND C;WILSON, BRIAN;AND OTHERS;SIGNING DATES FROM 20130716 TO 20141204;REEL/FRAME:034380/0633 |
|
AS | Assignment |
Owner name: NOVADAQ CORP., CANADA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MIDCAP FUNDING IV TRUST (AS SUCCESSOR AGENT TO MIDCAP FINANCIAL TRUST);REEL/FRAME:043786/0344 Effective date: 20170901 Owner name: NOVADAQ TECHNOLOGIES INC., CANADA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MIDCAP FUNDING IV TRUST (AS SUCCESSOR AGENT TO MIDCAP FINANCIAL TRUST);REEL/FRAME:043786/0344 Effective date: 20170901 Owner name: NOVADAQ CORP., CANADA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MIDCAP FINANCIAL TRUST;REEL/FRAME:043788/0799 Effective date: 20170901 Owner name: NOVADAQ TECHNOLOGIES INC., CANADA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MIDCAP FINANCIAL TRUST;REEL/FRAME:043788/0799 Effective date: 20170901 |