JP2010107751A - Projector - Google Patents

Projector Download PDF

Info

Publication number
JP2010107751A
JP2010107751A JP2008280025A JP2008280025A JP2010107751A JP 2010107751 A JP2010107751 A JP 2010107751A JP 2008280025 A JP2008280025 A JP 2008280025A JP 2008280025 A JP2008280025 A JP 2008280025A JP 2010107751 A JP2010107751 A JP 2010107751A
Authority
JP
Japan
Prior art keywords
housing
hydraulic fluid
cooler
projector
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008280025A
Other languages
Japanese (ja)
Inventor
Akira Koide
晃 小出
Shigeo Hashizume
滋郎 橋爪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2008280025A priority Critical patent/JP2010107751A/en
Publication of JP2010107751A publication Critical patent/JP2010107751A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a projector which prevents degradation of image quality occurring because an optical axis of the projector is deviated due to heat generation when a screen is made bright by increasing a quantity of light, and in which a cooling system is made compact, so as to prevent portability from being spoiled. <P>SOLUTION: Temperature of a housing rises by heat generated when a laser diode is operated after the laser diode and an optical element are fixed in the housing after their positions and angles are adjusted so that the optical axis of light from each light source may be aligned on the same axial line. In order to prevent the deviation of the aligned optical axis due to distortion of the housing resulting from temperature rise of the housing, cooling structure in a state of floating in the air through a small cavity from the housing is fixed in the housing with heat transfer structure as a supporting beam, and temperature of the cooling structure is made low compared with temperature of the housing, so as to suck a quantity of heat generated from the light source that is a heat generation source fixed on an outer peripheral wall of the housing to the cooling structure and suppress the quantity of heat flowing into the housing to be small. By making the cooling structure and the heat transfer structure thin-plate structure, they are attached in a state of floating through a small gap on the outer wall of the housing, whereby double structure of the housing and a cooling mechanism is obtained. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、帯可能な小型のプロジェクタに関し、特に光源の発熱を効率的に処理する冷却構造に関する。   The present invention relates to a small-sized projector, and more particularly, to a cooling structure that efficiently processes heat generated by a light source.

近年、情報伝送速度の向上により、動画配信などが一般的になり、プレゼンテーションに優れたより大きな動画の配信がなされるようになってきている。また、情報端末の技術も進み、高画質の液晶を搭載した携帯電話などが普及している。しかし、持ち運びを前提とした携帯電話などのモバイル機器では、その持ち運び性を考慮する必要性があるために画面サイズをあまり大きくすることができず、せっかくの動画を生かしきれない。   In recent years, with the improvement of information transmission speed, moving image distribution and the like have become common, and larger moving images that are excellent for presentation have been distributed. In addition, the technology of information terminals has advanced, and mobile phones equipped with high-quality liquid crystal have become widespread. However, in mobile devices such as mobile phones that are assumed to be portable, the screen size cannot be made very large because it is necessary to consider the portability, and it is not possible to make full use of moving images.

そこで、これを解決するものとして、特許文献1には携帯可能なプロジェクタが開示されている。これは、小形の携帯機器でも外部の大きなスクリーンに画像を投影して見ることができるようにすることを目的としている。また、特許文献2では、手に持って使う場合やどこかに置いて使う場合などの使う場面に応じて投影方向を変えられるクラムシェル型のプロジェクタ端末の技術が開示されている。   Therefore, as a solution to this problem, Patent Document 1 discloses a portable projector. This is intended to enable a small portable device to project an image on a large external screen for viewing. Patent Document 2 discloses a clamshell-type projector terminal technology that can change the projection direction according to the usage scene, such as when it is held in hand or when used somewhere.

特開2007-65627号公報JP 2007-65627 A 特開2007-96542号公報JP 2007-96542 A

しかしながら、携帯型のプロジェクタの問題として、光量が少ないことが挙げられる。すなわち、液晶画面の場合は、明るい場所でも画面で動画を楽しむことができるが、プロジェクタ型では投影するスクリーンを暗い場所に設置しないと使えない、という不便さが発生する。このため、投影画面を明るくする必要があるが、光量を大きくすると光源の発熱量が大きくなり、プロジェクタの筐体が熱変形で歪みを起し、筐体に設置されている光学系の光軸のズレなどの弊害が発生し、綺麗な投影画像が得られないという問題がある。   However, a problem with portable projectors is that the amount of light is small. That is, in the case of a liquid crystal screen, a moving image can be enjoyed on a screen even in a bright place, but the projector type inconveniences that it cannot be used unless the screen to be projected is installed in a dark place. For this reason, it is necessary to brighten the projection screen. However, if the amount of light is increased, the amount of heat generated by the light source increases, and the projector housing is distorted due to thermal deformation. The optical axis of the optical system installed in the housing There is a problem that a bad projection such as misalignment occurs and a beautiful projected image cannot be obtained.

また、筐体に放熱フィンなどを装着して温度を積極的に下げる方法もあるが、この場合、発熱部と放熱部(冷却部)での温度差が大きくなって筐体に大きな温度分布が生じ、不均一な熱変形で筐体が歪み、筐体に支えられている光学系の光軸にズレが生じる。   There is also a method of actively lowering the temperature by attaching radiating fins etc. to the case, but in this case, the temperature difference between the heat generating part and the heat radiating part (cooling part) becomes large and the case has a large temperature distribution The case is distorted due to non-uniform thermal deformation, and the optical axis of the optical system supported by the case is displaced.

本発明の目的は、光量を上げて投影画面を明るくした場合でも、光源の発熱により光学系の光軸のズレを防止して高画質のプロジェクタを提供することにある。   An object of the present invention is to provide a high-quality projector by preventing the optical axis of the optical system from being displaced by the heat generated by the light source even when the projection screen is brightened by increasing the amount of light.

本発明の他の目的は、冷却系をコンパクトにすることで、携帯性を損なわないプロジェクタを提供することにある。   Another object of the present invention is to provide a projector that does not impair portability by making the cooling system compact.

本発明は、複数の光源と、各光源からの光を同一軸線に揃えるための光学素子と、上記光学素子を内蔵するとともに上記光源を支える筐体を備え、上記光学素子で同一軸線に揃えた光を走査することにより上記筐体外のスクリーンに投影するプロジェクタにおいて、
上記光源と筐体に介在して光源を支持する熱伝導性の固定部材と、
上記筐体とは断熱された状態に配置される冷却器と、
上記固定部材と上記冷却器を熱的に接続して上記光源で発生する熱を上記固定部材から上記冷却器に熱輸送する伝熱部材を備え、
上記伝熱部材は上記筐体とは断熱された状態に配置されたことを特徴とする。
The present invention includes a plurality of light sources, an optical element for aligning light from each light source on the same axis, and a housing that incorporates the optical element and supports the light source, and the optical elements are aligned on the same axis. In a projector that projects light onto a screen outside the housing by scanning light,
A thermally conductive fixing member that supports the light source by interposing the light source and the housing;
A cooler disposed in a thermally insulated state with the housing;
A heat transfer member that thermally connects the fixing member and the cooler and thermally transports heat generated by the light source from the fixing member to the cooler;
The heat transfer member is disposed in a state of being insulated from the housing.

また、本発明は上記のプロジェクタにおいて、上記冷却器は上記筐体とは空隙を介して筐体に配置され、上記伝熱部材は上記筐体とは空隙を介して筐体に配置されたことを特徴とする。   In the projector according to the aspect of the invention described above, the cooler may be disposed in the housing via a gap from the housing, and the heat transfer member may be disposed in the housing via the gap. It is characterized by.

また、本発明は上記のプロジェクタにおいて、上記光源は固定部材を介して上記筐体の1側部に取付けられ、上記冷却器は上記筐体の他の側部に配置され、上記伝熱部材は上記筐体の上下部に沿って対称に配置されたことを特徴とする。   Further, in the projector according to the aspect of the invention, the light source is attached to one side of the casing via a fixing member, the cooler is disposed on the other side of the casing, and the heat transfer member is It is characterized by being arranged symmetrically along the upper and lower parts of the casing.

また、本発明は上記のプロジェクタにおいて、上記伝熱部材は上記筐体とは空隙を介して筐体の外側に配置され、上記筐体とともに上記光学素子を囲む二重構造を構成することを特徴とする。   In the projector according to the aspect of the invention, the heat transfer member may be disposed outside the housing with a gap from the housing, and may form a double structure surrounding the optical element together with the housing. And

また、本発明は上記のプロジェクタにおいて、上記冷却器は気化熱を利用した冷却器であることを特徴とする。   According to the present invention, in the projector described above, the cooler is a cooler using heat of vaporization.

また、本発明は上記のプロジェクタにおいて、冷却器は作動液保持室、作動液供給用微細流路、作動液蒸発シート、および作動液蒸発シート保持蓋からなり、上記作動液保持室と連なる作動液供給微細流路と作動液保管容器との間がチューブで繋がれており、作動液蒸発シートから作動液が蒸発すると作動液保持室の液量が消費されたことにより発生する負圧により作動液保管容器からチューブを介して作動液保持室へと作動液が吸上げられることを特徴とする。   According to the present invention, in the projector described above, the cooler includes a hydraulic fluid holding chamber, a hydraulic fluid supply fine channel, a hydraulic fluid evaporation sheet, and a hydraulic fluid evaporation sheet holding lid, and is connected to the hydraulic fluid holding chamber. The supply fine flow path and the hydraulic fluid storage container are connected by a tube. When the hydraulic fluid evaporates from the hydraulic fluid evaporation sheet, the hydraulic fluid is discharged by the negative pressure generated when the amount of fluid in the hydraulic fluid holding chamber is consumed. The working fluid is sucked up from the storage container to the working fluid holding chamber through the tube.

また、本発明は上記のプロジェクタにおいて、上記光源としてレーザーダイオードを用いることを特徴とする。   In the projector according to the invention, a laser diode is used as the light source.

本発明では、各光源からの光の光軸を同一軸線上にあうようにレーザーダイオードと光学素子の位置と角度を調整して固定部材を介して筐体に固定した後、レーザーダイオードの稼動時に発生する熱により筐体の温度が上昇して筐体の歪みによる合わせた光軸にズレが発生するのを防ぐために、筐体から僅かな空隙を介して宙に浮いた状態にした冷却器を伝熱部材を支持梁として筐体に固定し、その冷却器の温度を筐体温度に対して低く設定して、筐体外周壁に固定した発熱源である光源から発生した熱量を、固定部材と伝熱部材を経由して冷却器に吸上げ、筐体に流れ込む熱量を少なく抑える。   In the present invention, after adjusting the position and angle of the laser diode and the optical element so that the optical axes of the light from each light source are on the same axis and fixing to the housing via the fixing member, when the laser diode is in operation In order to prevent the temperature of the housing from rising due to the heat generated and causing the optical axis to be displaced due to distortion of the housing, a cooler that has been suspended from the housing through a slight gap The heat transfer member is fixed to the casing as a support beam, the temperature of the cooler is set lower than the casing temperature, and the amount of heat generated from the light source that is a heat source fixed to the outer peripheral wall of the casing is The heat is sucked into the cooler via the heat transfer member, and the amount of heat flowing into the casing is reduced.

また、本発明で用いる冷却器と伝熱部材の冷却系を薄い板状にすることで、筐体外壁に僅かな隙間を介して浮いた状態で筐体を囲んで装着し、光学素子を筐体と冷却系の2重構造で囲んでいる。   In addition, the cooling system of the cooler and the heat transfer member used in the present invention is made into a thin plate shape, so that the casing is mounted on the outer wall of the casing in a state of being floated through a slight gap, and the optical element is mounted. Surrounded by a double structure of body and cooling system.

本発明によれば、プロジェクタのコンパクト性を損なうことなく、明るくかつ高画質な投影画面を得ることができる。   According to the present invention, a bright and high-quality projection screen can be obtained without impairing the compactness of the projector.

即ち、筐体へ流れ込む熱量が少なくなることにより、筐体の温度分布が小さくなり、温度分布による熱変形起因の光軸のズレなどを防止できる。更に、筐体の外周を囲むように冷却系統を外殻状に形成することにより、プロジェクタのサイズをコンパクトにまとめることができる。   That is, since the amount of heat flowing into the housing is reduced, the temperature distribution of the housing is reduced, and the optical axis misalignment caused by thermal deformation due to the temperature distribution can be prevented. Furthermore, the size of the projector can be made compact by forming the cooling system in an outer shell shape so as to surround the outer periphery of the housing.

(実施例1)
本発明第1の実施例を図1を用いて説明する。これは、赤、青、緑の3種類のレーザーダイオード(光源)102、103、104が発する光を特定の波長の光のみ反射し、他の波長は透過させる光学素子(図示せず)を用いることで、同一軸線上に3つの光を揃えて100で示す光として筐体101外に出している。筐体101から外に出た光100は、3つの光の点滅のタイミングとミラー(図示省略)の走査により外部のスクリーンに投影される。
Example 1
A first embodiment of the present invention will be described with reference to FIG. This uses an optical element (not shown) that reflects light emitted from three types of laser diodes (light sources) 102, 103, and 104 of red, blue, and green only at a specific wavelength and transmits other wavelengths. As a result, three lights are aligned on the same axis and are emitted out of the casing 101 as light indicated by 100. The light 100 exiting from the housing 101 is projected onto an external screen by the timing of the blinking of the three lights and the scanning of a mirror (not shown).

発熱源であるレーザーダイオード102、103、104の取付けに際しては、個別の固定部材105、106、107を介在させて各光の光軸が合うように位置決めされて筐体101に固定される。個別の固定部材105、106、107はコ字形を有し、中央辺にレーザーダイオード102、103、104を支持し、両側辺の先端が筐体101に固定される。各個別の固定部材の上下の端面には、対応する個別の伝熱部材108、109、110、111、112、113の一端が固定され、各伝熱部材の他端には、個別の冷却器114の上下端が固定される。   When the laser diodes 102, 103, and 104 that are heat sources are attached, the laser diodes 102, 103, and 104 are positioned so that the optical axes of the respective lights are aligned with each other, and are fixed to the housing 101. The individual fixing members 105, 106, and 107 have a U-shape, support the laser diodes 102, 103, and 104 on the central side, and the tips on both sides are fixed to the housing 101. One end of a corresponding individual heat transfer member 108, 109, 110, 111, 112, 113 is fixed to the upper and lower end faces of each individual fixing member, and an individual cooler is attached to the other end of each heat transfer member. The upper and lower ends of 114 are fixed.

各固定部材と冷却器114は上下端面が筐体より高くなるように寸法設定され、上記伝熱部材は上記筐体101の上下の壁面とは隙間をおいて断熱状態となるように、固定部材と冷却器の間に渡されて固定される。また、別な言い方をすれば、冷却器114は、伝熱部材108、109、110、111、112、113を支持梁として筐体101に固定されている。   Each fixing member and the cooler 114 are dimensioned so that the upper and lower end surfaces are higher than the housing, and the heat transfer member is in a heat insulating state with a gap from the upper and lower wall surfaces of the housing 101. Passed between and cooler and fixed. In other words, the cooler 114 is fixed to the housing 101 with the heat transfer members 108, 109, 110, 111, 112, 113 as support beams.

上記各固定部材は熱伝導性の良い金属材料のSUS(ステンレス鋼)やアルミからなり、対応するレーザーダイオード102、103、104の発光による発熱を吸収し、対応する個別の伝熱部材に熱を伝える。上記伝熱部材も熱伝導性の良い金属材料のアルミや珪素(Si)からなり、対応する固定部材からの熱を冷却器114側に輸送する。この際、伝熱部材は筐体101の上下の壁面とは隙間をおいて断熱状態となっているので、筐体101に熱的に影響を与えることが少ない。   Each of the fixing members is made of SUS (stainless steel) or aluminum having a good thermal conductivity, absorbs heat generated by light emission of the corresponding laser diodes 102, 103, and 104, and heats the corresponding individual heat transfer members. Tell. The heat transfer member is also made of a metal material such as aluminum or silicon (Si) having good heat conductivity, and transports heat from the corresponding fixing member to the cooler 114 side. At this time, since the heat transfer member is in a heat-insulating state with a gap from the upper and lower wall surfaces of the housing 101, it hardly affects the housing 101 thermally.

実際には、レーザーダイオードを稼動した時には、レーザーダイオードの発する熱は筐体へも伝わるが、筐体101へ熱が伝わる熱抵抗より、冷却器114へ熱が伝わる熱抵抗が一桁以上小さくなるように伝熱系を設計することで、レーザーダイオードから発する熱量の大半を冷却器114で消費することが可能となり、筐体へ伝熱される熱量を小さくすることができる。   Actually, when the laser diode is operated, the heat generated by the laser diode is also transmitted to the housing, but the thermal resistance to which the heat is transmitted to the cooler 114 is smaller by one digit or more than the thermal resistance to which the heat is transmitted to the housing 101. By designing the heat transfer system in this manner, most of the heat generated from the laser diode can be consumed by the cooler 114, and the amount of heat transferred to the housing can be reduced.

筐体への伝熱量が小さければ、筐体表面からの放熱との平衡状態における筐体温度は、外気温に対して温度差を生じない。例えば、筐体の表面積を0.0036平方メートルとすると、レーザーダイオードの総発熱量を2Wとして、そのうちの5%が筐体に流れた場合、外気温に対して筐体表面温度は3℃弱の温度上昇となる。この温度上昇は、一日の気温変動よりも小さいものであり、熱による体積膨張の差に起因する光軸ズレは無視できる。なお、筐体101としては熱膨張の少ない金属または合成樹脂の材料が用いられる。   If the amount of heat transfer to the housing is small, the housing temperature in an equilibrium state with the heat radiation from the housing surface does not cause a temperature difference with respect to the outside air temperature. For example, assuming that the surface area of the housing is 0.0036 square meters, if the total heat generation of the laser diode is 2 W and 5% of that flows into the housing, the housing surface temperature is less than 3 ° C with respect to the outside air temperature. The temperature rises. This temperature increase is smaller than the daily temperature fluctuation, and the optical axis shift due to the difference in volume expansion due to heat can be ignored. Note that the housing 101 is made of a metal or a synthetic resin material with little thermal expansion.

また、このように温度上昇を抑えるために冷却器の温度を何度まで下げる必要があるかを計算すると、伝熱部材の断面積を15mm×1mm×6枚として平均伝熱距離を20mmとすると外気温に対して2℃弱低く設定すれば良い。これならば結露なども問題も生じ難いと考えられる。   Moreover, when calculating how many times the temperature of the cooler needs to be lowered in order to suppress the temperature rise, the cross-sectional area of the heat transfer member is 15 mm × 1 mm × 6 and the average heat transfer distance is 20 mm. What is necessary is just to set 2 degreeC lower low with respect to external temperature. If this is the case, condensation and other problems are unlikely to occur.

レーザーダイオードは発光する色(赤、青、緑)によって発熱量が異なり、これはレーザーダイオードの発光効率と人間の色に対する感度に起因する。現在、緑は他の色からの変換を用いているので効率が悪く、人間の感度は緑が感じ易く、赤が感じ難く、青がその中間である。このため、実際に人間の目に均等な色を感じさせるには、レーザーダイオードの青、緑、赤の順に発熱量が大きくなり、これらの異なる熱量は個別の固定部材、伝熱部材を介して、個別の冷却器に伝達される。従って各冷却器は、熱の処理量が異なってくるが、これの対処は後述する。   Laser diodes generate different amounts of heat depending on the colors they emit (red, blue, and green). This is due to the light emission efficiency of laser diodes and the sensitivity to human colors. Currently, green is inefficient because it uses conversion from other colors, and human sensitivity is easy to feel green, red is hard to feel, and blue is in between. For this reason, in order to actually make the human eye feel a uniform color, the amount of heat generated increases in the order of blue, green, and red of the laser diode, and these different amounts of heat are transmitted through individual fixing members and heat transfer members. , Transmitted to a separate cooler. Therefore, each cooler has a different amount of heat, which will be described later.

次に、冷却器を外した状態の筐体101の内部状態を、プロジェクタの筐体断面図の図2で説明する。レーザーダイオード102、103、104をそれぞれ個別の固定部材105、106、107で筐体101の外壁に固定している。レーザーダイオード102、103、104からそれぞれ出力された光は、213、214、215で示され、特定の波長のみ反射する匡体内に設置された光学素子211、212により光路を直角に曲げられる。この時のレーザーダイオード102,103,104と光学素子211,212の位置や角度の調整により、3つの光213,214,215の光軸を揃えられて光100となる。ここで、208、209、210はレーザーダイオードの駆動用の端子である。   Next, the internal state of the housing 101 with the cooler removed will be described with reference to FIG. The laser diodes 102, 103, and 104 are fixed to the outer wall of the housing 101 by individual fixing members 105, 106, and 107, respectively. Lights respectively output from the laser diodes 102, 103, and 104 are indicated by 213, 214, and 215, and their optical paths are bent at right angles by optical elements 211 and 212 installed in a casing that reflects only a specific wavelength. By adjusting the positions and angles of the laser diodes 102, 103, 104 and the optical elements 211, 212 at this time, the optical axes of the three lights 213, 214, 215 are aligned to become the light 100. Here, 208, 209 and 210 are terminals for driving the laser diode.

次に、冷却器を外した状態の第2実施例の筐体101の内部状態を、プロジェクタの筐体断面図の図3で説明する。この実施例はレーザーダイオード302、303、304を筐体101の側面に一列に並べて配置し、個別の固定部材305、306、307を介して筐体101の外壁に固定している。レーザーダイオード302、303、304から出力された光は、314、315、316で示され、特定の波長のみ反射する匡体内に設置された光学素子311、312、313により光路を直角に曲げられる。この時のレーザーダイオードと光学素子の位置や角度の調整により、3つの光314、315、316の光軸を揃えられ、光100となる。ここで、308、309、310はレーザーダイオードの駆動用の端子である。   Next, the internal state of the casing 101 of the second embodiment with the cooler removed will be described with reference to FIG. 3 which is a sectional view of the casing of the projector. In this embodiment, laser diodes 302, 303, and 304 are arranged in a line on the side surface of the casing 101 and fixed to the outer wall of the casing 101 via individual fixing members 305, 306, and 307. Lights output from the laser diodes 302, 303, and 304 are indicated by reference numerals 314, 315, and 316, and their optical paths are bent at right angles by optical elements 311, 312, and 313 installed in a casing that reflects only a specific wavelength. By adjusting the positions and angles of the laser diode and the optical element at this time, the optical axes of the three lights 314, 315, and 316 are aligned, and the light 100 is obtained. Here, 308, 309, and 310 are laser diode drive terminals.

上記構成のみでは、従来技術に示されたように、筐体の中でレーザーダイオードを固定した部分とそれ以外の部分との温度差が大きくなり、同じ材質で構成された一体物の筐体(101)であっても熱変形を起し、光軸にズレが発生する。そして、単純に放熱フィンなどを付与して冷やした場合、ある程度の温度上昇は防げても発熱部と冷却部での温度差が大きくなり、温度分布起因の光軸のズレを抑えることはできない。従って、レーザーダイオード(102、103、104)の発する熱が筐体(101)に伝わり温度が上昇すると、異なる材料で構成される筐体(101)と光学素子(211、212)などが異なる比率で体積膨張することでレーザー光(213,214,215)を同一軸線上にあわせた光軸にズレが発生する。また、筐体を熱伝導率の良いアルミなどで作成しても輝度を向上させるためにレーザーダイオード(202、203、204)の出力を大きくした場合、筐体(101)の中でレーザーダイオード(202、203、204)を固定した部分としていない部分との温度差が大きくなり、同じアルミ材質で構成された一体物の筐体(201)であっても熱変形し、光軸にズレが発生する。   With only the above configuration, as shown in the prior art, the temperature difference between the portion where the laser diode is fixed in the housing and the other portion becomes large, and the housing of an integral body made of the same material ( 101), thermal deformation occurs and deviation occurs in the optical axis. When cooling is performed simply by providing a heat radiation fin or the like, the temperature difference between the heat generating part and the cooling part becomes large even if temperature rise to some extent can be prevented, and the optical axis shift due to the temperature distribution cannot be suppressed. Accordingly, when the heat generated by the laser diodes (102, 103, 104) is transmitted to the housing (101) and the temperature rises, the housing (101) made of different materials and the optical elements (211 and 212) have different ratios. Due to the volume expansion, the laser beam (213, 214, 215) is shifted on the same axis. Further, when the output of the laser diode (202, 203, 204) is increased in order to improve the luminance even if the casing is made of aluminum having good thermal conductivity, the laser diode ( 202, 203, and 204) have a large temperature difference from the non-fixed part, and even the one-piece housing (201) made of the same aluminum material is thermally deformed and the optical axis is displaced. To do.

次に、本発明実施例の冷却に関する構成を、図4の断面図を用いて説明する。   Next, the configuration relating to cooling of the embodiment of the present invention will be described with reference to the cross-sectional view of FIG.

レーザーダイオード402は、筐体401に固定部材403により固定されている。レーザーダイオード402の発熱部402aから発した熱は、レーザーダイオード402内を大矢印のように固定部材403側に移動し、この熱は固定部材403内を中矢印のように流れ、小矢印のように筐体401との接触部から筐体401へと伝わる。冷却していない場合には、筐体401内に設置してある光学素子404へも熱が伝わり、その熱膨張率の違いから筐体401に固定されたレーザーダイオード402と光学素子404の相対位置にズレが発生する。   The laser diode 402 is fixed to the housing 401 by a fixing member 403. The heat generated from the heat generating portion 402a of the laser diode 402 moves to the fixing member 403 side as indicated by a large arrow in the laser diode 402, and this heat flows in the fixing member 403 as indicated by a middle arrow, as indicated by a small arrow. To the housing 401 from the contact portion with the housing 401. When not cooled, heat is transmitted to the optical element 404 installed in the housing 401, and the relative position between the laser diode 402 and the optical element 404 fixed to the housing 401 due to the difference in thermal expansion coefficient. Deviation occurs.

そこで、固定部材403に伝熱部材405、406を熱的に接触固定し、熱を冷却器407側へと輸送する。この時の筐体401の熱伝導率と伝熱部材405、406の熱伝導率を大きく異ならせているので、レーザーダイオード402で発した熱は、ほとんど伝熱部材405、406を経由して冷却器407へと流れる。なお、冷却器407の温度を周辺環境よりも低くすることで各伝熱部材405、406の両端の温度差を大きくし、熱輸送量を増やす方が好ましい。   Therefore, the heat transfer members 405 and 406 are thermally contacted and fixed to the fixing member 403, and the heat is transported to the cooler 407 side. At this time, the heat conductivity of the housing 401 and the heat conductivity of the heat transfer members 405 and 406 are greatly different from each other, so that most of the heat generated by the laser diode 402 is cooled via the heat transfer members 405 and 406. Flow to vessel 407. Note that it is preferable to increase the temperature transport amount by increasing the temperature difference between both ends of the heat transfer members 405 and 406 by lowering the temperature of the cooler 407 than the surrounding environment.

冷却器407は、図5に示すように気化熱を利用している。冷却器407は、ガラス基板505上に単結晶シリコンからなる壁部材509によって微細流路504とこの流路に連通した作動液保持室503が形成され、その上層に繊維状の蒸発シート502とこのシートの上下を支えるシリコン製のメッシュ状蓋基板501が形成される。また、シート502の表面には表面積を増大させる突起506が設けられ、冷却器407の上下端に伝熱部材505と506が熱的に接続されている。507は微細流路504に繋がったチューブ、508はチューブ507に繋がった作動液を蓄える作動液保管容器である。   The cooler 407 uses heat of vaporization as shown in FIG. In the cooler 407, a fine channel 504 and a working fluid holding chamber 503 communicating with the channel are formed on a glass substrate 505 by a wall member 509 made of single crystal silicon, and a fibrous evaporation sheet 502 and this layer are formed on the upper layer. A silicon mesh-like lid substrate 501 that supports the upper and lower sides of the sheet is formed. Further, projections 506 that increase the surface area are provided on the surface of the sheet 502, and heat transfer members 505 and 506 are thermally connected to the upper and lower ends of the cooler 407. Reference numeral 507 denotes a tube connected to the fine flow path 504, and reference numeral 508 denotes a hydraulic fluid storage container that stores the hydraulic fluid connected to the tube 507.

作動液は、基板505上の微細流路基板504を介して作動液保持室503に供給され、そこから毛細管現象により蒸発シート502に吸上げられる。蒸発シート502に吸上げられた作動液は、シート502の表面から蒸発して周囲から気化熱を奪う。このときの蒸発量は突起506の蒸発面積により左右され、冷却器407の冷却能力を決める。   The hydraulic fluid is supplied to the hydraulic fluid holding chamber 503 via the fine flow path substrate 504 on the substrate 505, and is sucked up to the evaporation sheet 502 by capillary action. The hydraulic fluid sucked up by the evaporating sheet 502 evaporates from the surface of the sheet 502 and takes heat of vaporization from the surroundings. The amount of evaporation at this time depends on the evaporation area of the protrusion 506 and determines the cooling capacity of the cooler 407.

蒸発シート502から作動液保持室503の作動液が消費されると、作動液保持室503内が負圧となり、微細流路504に繋がったチューブ507を介して作動液保管容器508から作動液が吸引されて作動液保持室503に供給される。   When the working fluid in the working fluid holding chamber 503 is consumed from the evaporation sheet 502, the inside of the working fluid holding chamber 503 becomes negative pressure, and the working fluid is discharged from the working fluid storage container 508 via the tube 507 connected to the fine flow path 504. Aspirated and supplied to the hydraulic fluid holding chamber 503.

作動液としてフロリナート(商標、住友3M)などを用いた場合、作動液を蒸発させる蒸発シート502の空隙密度(作動液が気化する表面積)を調整することで冷却器の温度を周辺温度に対してどの程度下げるかを調整することになる。また、同じ蒸発シート502を用いた場合でも、シートが外気に接する面積を調整することで、冷却構造の温度を調整できる。   When Fluorinert (Trademark, Sumitomo 3M) or the like is used as the working fluid, the temperature of the cooler is adjusted with respect to the ambient temperature by adjusting the void density (surface area where the working fluid evaporates) of the evaporation sheet 502 that evaporates the working fluid. It will be adjusted how much it is lowered. Even when the same evaporation sheet 502 is used, the temperature of the cooling structure can be adjusted by adjusting the area where the sheet is in contact with the outside air.

なお、フロリナートなどの揮発性の高い作動液を用いないで水(揮発性低い)などを用いた場合には、気化熱により冷却器の温度を周辺環境よりも大幅に下げることができないが、この場合、ペルチェ素子を用いて温度差をつける方法がある。すなわち、図4で示す伝熱部材405、406とレーザーダイオード固定部材403との間の、固定治具403側に冷却面を向けて、伝熱部材405,406側に発熱面を向けて、ペルチェ素子409を挟み込み固定する。   If water (low volatility) is used without using a highly volatile working fluid such as florinate, the temperature of the cooler cannot be lowered significantly from the surrounding environment due to the heat of vaporization. In some cases, there is a method of providing a temperature difference using a Peltier element. That is, between the heat transfer members 405 and 406 and the laser diode fixing member 403 shown in FIG. 4, the cooling surface is directed to the fixing jig 403 side, the heat generating surface is directed to the heat transfer members 405 and 406 side, and the Peltier The element 409 is sandwiched and fixed.

この構成により、固定部材403(低温度)と伝熱部材405,406(高温度)との間に温度差を作ることができるため、伝熱部材の一端から冷却器に熱を輸送して冷却器の温度を周囲温度より高くでき、周囲への放熱量を増大できる。従って、水のような揮発性の低い作動液でも、固定部材からの熱を冷却器に輸送できる。   With this configuration, since a temperature difference can be created between the fixing member 403 (low temperature) and the heat transfer members 405 and 406 (high temperature), the heat is transferred from one end of the heat transfer member to the cooler for cooling. The temperature of the vessel can be made higher than the ambient temperature, and the amount of heat released to the surroundings can be increased. Therefore, even a low-volatility hydraulic fluid such as water can transport heat from the fixed member to the cooler.

なお、前述のように、レーザーダイオードが発光する色(赤、青、緑)によって発熱量が異なり、対応する各冷却器は熱の処理量が異なってくるが、熱の処理量の大きい伝熱系統の伝熱量を上記ペルチェ素子を用いて増大できる。   As described above, the amount of heat generated differs depending on the color emitted by the laser diode (red, blue, green), and each of the corresponding coolers has a different amount of heat treatment. The heat transfer amount of the system can be increased by using the Peltier element.

本発明第1の実施例の外観図である。1 is an external view of a first embodiment of the present invention. 同じく筐体の断面図である。It is sectional drawing of a housing | casing similarly. 本発明第2の実施例の筐体部の断面図である。It is sectional drawing of the housing | casing part of the 2nd Example of this invention. 本発明実施例の冷却に関する構成の断面図である。It is sectional drawing of the structure regarding cooling of an Example of this invention. 同じく冷却器の構造を示す断面図である。It is sectional drawing which similarly shows the structure of a cooler.

符号の説明Explanation of symbols

101、401…筐体、102、103、104…レーザーダイオード(光源)、105、106、107…固定部材、108、109、110、111、112、113…伝熱部材、114…冷却器、208、209、210…レーザーダイオード端子、211、212…光学素子、213、214、215…レーザーダイオード出力光、302、303、304…レーザーダイオード、305、306、307…固定部材、308、309、310…レーザーダイオード端子、311、312、313…光学素子、314、315、316…レーザーダイオード出力光、402…レーザーダイオード、402a…発熱部、403…固定部材、404…光学素子、405、406…伝熱部材、407…冷却器、408…気化熱、409…ペルチェ素子、501…メッシュ状蓋基板、502…蒸発シート、503…作動液保管室、504…微細流路、505…ガラス基板、506…突起、507…チューブ、508…作動液保管容器、509…壁部材。   101, 401 ... casing, 102, 103, 104 ... laser diode (light source), 105, 106, 107 ... fixing member, 108, 109, 110, 111, 112, 113 ... heat transfer member, 114 ... cooler, 208 , 209, 210 ... laser diode terminals, 211, 212 ... optical elements, 213, 214, 215 ... laser diode output light, 302, 303, 304 ... laser diodes, 305, 306, 307 ... fixing members, 308, 309, 310 ... Laser diode terminal, 311, 312, 313 ... Optical element, 314, 315, 316 ... Laser diode output light, 402 ... Laser diode, 402a ... Heat generating part, 403 ... Fixing member, 404 ... Optical element, 405, 406 ... Transmission Thermal member, 407 ... cooler, 408 ... heat of vaporization, 409 ... pel Choi element, 501 ... Mesh-like lid substrate, 502 ... Evaporation sheet, 503 ... Working fluid storage chamber, 504 ... Fine flow path, 505 ... Glass substrate, 506 ... Projection, 507 ... Tube, 508 ... Working fluid storage container, 509 ... Wall member.

Claims (7)

複数の光源と、各光源からの光を同一軸線に揃えるための光学素子と、上記光学素子を内蔵するとともに上記光源を支える筐体を備え、上記光学素子で同一軸線に揃えた光を走査することにより上記筐体外のスクリーンに投影するプロジェクタにおいて、
上記光源と筐体に介在して光源を支持する熱伝導性の固定部材と、
上記筐体とは断熱された状態に配置される冷却器と、
上記固定部材と上記冷却器を熱的に接続して上記光源で発生する熱を上記固定部材から上記冷却器に熱輸送する伝熱部材を備え、
上記伝熱部材は上記筐体とは断熱された状態に配置されたことを特徴とするプロジェクタ。
A plurality of light sources, an optical element for aligning light from each light source on the same axis, and a housing that incorporates the optical element and supports the light source, and scans the light aligned on the same axis by the optical element In the projector that projects onto the screen outside the casing by
A thermally conductive fixing member that supports the light source by interposing the light source and the housing;
A cooler disposed in a thermally insulated state with the housing;
A heat transfer member that thermally connects the fixing member and the cooler and thermally transports heat generated by the light source from the fixing member to the cooler;
The projector according to claim 1, wherein the heat transfer member is disposed in a state of being insulated from the casing.
請求項1記載のプロジェクタにおいて、上記冷却器は上記筐体とは空隙を介して筐体に配置され、上記伝熱部材は上記筐体とは空隙を介して筐体に配置されたことを特徴とするプロジェクタ。   2. The projector according to claim 1, wherein the cooler is disposed in the housing through a gap from the housing, and the heat transfer member is disposed in the housing from the housing through a gap. Projector. 請求項1または2に記載のプロジェクタにおいて、上記光源は固定部材を介して上記筐体の1側部に取付けられ、上記冷却器は上記筐体の他の側部に配置され、上記伝熱部材は上記筐体の上下部に沿って対称に配置されたことを特徴とするプロジェクタ。   3. The projector according to claim 1, wherein the light source is attached to one side of the casing via a fixing member, the cooler is disposed on the other side of the casing, and the heat transfer member Is a projector disposed symmetrically along the upper and lower portions of the casing. 請求項1〜3のいずれかに記載のプロジェクタにおいて、上記伝熱部材は上記筐体とは空隙を介して筐体の外側に配置され、上記筐体とともに上記光学素子を囲む二重構造を構成することを特徴とするプロジェクタ。   4. The projector according to claim 1, wherein the heat transfer member is disposed outside the housing with a gap from the housing, and forms a double structure surrounding the optical element together with the housing. A projector characterized by that. 請求項1〜4のいずれかに記載のプロジェクタにおいて、上記冷却器は気化熱を利用した冷却器であることを特徴とするプロジェクタ。   5. The projector according to claim 1, wherein the cooler is a cooler using heat of vaporization. 請求項5に記載のプロジェクタにおいて、冷却器は作動液保持室、作動液供給用微細流路、作動液蒸発シート、および作動液蒸発シート保持蓋からなり、上記作動液保持室と連なる作動液供給微細流路と作動液保管容器との間がチューブで繋がれており、作動液蒸発シートから作動液が蒸発すると作動液保持室の液量が消費されたことにより発生する負圧により作動液保管容器からチューブを介して作動液保持室へと作動液が吸上げられることを特徴とするプロジェクタ。   6. The projector according to claim 5, wherein the cooler includes a hydraulic fluid holding chamber, a hydraulic fluid supply fine channel, a hydraulic fluid evaporation sheet, and a hydraulic fluid evaporation sheet holding lid, and is connected to the hydraulic fluid holding chamber. The micro flow path and the hydraulic fluid storage container are connected by a tube. When the hydraulic fluid evaporates from the hydraulic fluid evaporation sheet, the hydraulic fluid is stored by the negative pressure generated when the amount of fluid in the hydraulic fluid holding chamber is consumed. A projector characterized in that hydraulic fluid is sucked into a hydraulic fluid holding chamber from a container through a tube. 請求項1〜6のいずれかに記載のプロジェクタにおいて、上記光源としてレーザーダイオードを用いることを特徴とするプロジェクタ。   7. The projector according to claim 1, wherein a laser diode is used as the light source.
JP2008280025A 2008-10-30 2008-10-30 Projector Pending JP2010107751A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008280025A JP2010107751A (en) 2008-10-30 2008-10-30 Projector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008280025A JP2010107751A (en) 2008-10-30 2008-10-30 Projector

Publications (1)

Publication Number Publication Date
JP2010107751A true JP2010107751A (en) 2010-05-13

Family

ID=42297249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008280025A Pending JP2010107751A (en) 2008-10-30 2008-10-30 Projector

Country Status (1)

Country Link
JP (1) JP2010107751A (en)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4636212B1 (en) * 2010-06-14 2011-02-23 パナソニック株式会社 Image display device
JP4720956B1 (en) * 2010-10-01 2011-07-13 パナソニック株式会社 Image display device
JP4817274B1 (en) * 2011-01-18 2011-11-16 パナソニック株式会社 Image display device
JP4880789B1 (en) * 2011-02-22 2012-02-22 パナソニック株式会社 Image display device
JP4891453B1 (en) * 2011-06-27 2012-03-07 パナソニック株式会社 Image display device
JP2012078776A (en) * 2011-03-22 2012-04-19 Panasonic Corp Image display apparatus
EP2477070A1 (en) * 2011-01-18 2012-07-18 Panasonic Corporation Image projection device using laser light sources
JP2013179113A (en) * 2012-02-28 2013-09-09 Hitachi Media Electoronics Co Ltd Laser light source module
EP2784580A1 (en) * 2013-03-29 2014-10-01 Funai Electric Co., Ltd. Projector and head-up display device
WO2015178171A1 (en) * 2014-05-21 2015-11-26 ソニー株式会社 Lighting device and display device
JP2016164922A (en) * 2015-03-06 2016-09-08 株式会社リコー Temperature control device, image display device, and vehicle
JP2017098258A (en) * 2011-03-08 2017-06-01 ノバダック テクノロジーズ インコーポレイテッド Full spectrum led lighting device
WO2018179860A1 (en) * 2017-03-28 2018-10-04 株式会社Qdレーザ Laser module and image projection device
JP2019152709A (en) * 2018-03-01 2019-09-12 セイコーエプソン株式会社 projector
US10627708B2 (en) 2017-12-27 2020-04-21 Seiko Epson Corporation Projector with cooler
US10694152B2 (en) 2006-12-22 2020-06-23 Novadaq Technologies ULC Imaging systems and methods for displaying fluorescence and visible images
US10705414B2 (en) 2017-12-27 2020-07-07 Seiko Epson Corporation Projector having refrigerant generator
US10712643B2 (en) 2017-12-27 2020-07-14 Seiko Epson Corporation Projector with cooling system
US10779734B2 (en) 2008-03-18 2020-09-22 Stryker European Operations Limited Imaging system for combine full-color reflectance and near-infrared imaging
US10869645B2 (en) 2016-06-14 2020-12-22 Stryker European Operations Limited Methods and systems for adaptive imaging for low light signal enhancement in medical visualization
US10890836B1 (en) 2019-07-12 2021-01-12 Seiko Epson Corporation Projector
USD916294S1 (en) 2016-04-28 2021-04-13 Stryker European Operations Limited Illumination and imaging device
US10983425B2 (en) 2019-02-22 2021-04-20 Seiko Epson Corporation Projector
US10980420B2 (en) 2016-01-26 2021-04-20 Stryker European Operations Limited Configurable platform
US10992848B2 (en) 2017-02-10 2021-04-27 Novadaq Technologies ULC Open-field handheld fluorescence imaging systems and methods
US11009784B2 (en) 2019-03-15 2021-05-18 Seiko Epson Corporation Projector having cooler
US11029588B2 (en) 2019-07-19 2021-06-08 Seiko Epson Corporation Projector
US11029587B2 (en) 2019-05-27 2021-06-08 Seiko Epson Corporation Projector
US11131912B2 (en) 2019-09-24 2021-09-28 Seiko Epson Corporation Projector
US11163223B2 (en) 2019-03-15 2021-11-02 Seiko Epson Corporation Projector with cooler
US11163224B2 (en) 2019-10-11 2021-11-02 Seiko Epson Corporation Projector
US11175571B2 (en) 2019-07-10 2021-11-16 Seiko Epson Corporation Projector
US11209724B2 (en) 2019-06-06 2021-12-28 Seiko Epson Corporation Projector including cooling target
US11281082B2 (en) 2019-09-20 2022-03-22 Seiko Epson Corporation Projector
US11300859B2 (en) 2019-06-12 2022-04-12 Seiko Epson Corporation Projector having cooler
US11526071B2 (en) 2019-12-25 2022-12-13 Seiko Epson Corporation Projector
US11930278B2 (en) 2015-11-13 2024-03-12 Stryker Corporation Systems and methods for illumination and imaging of a target

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10694152B2 (en) 2006-12-22 2020-06-23 Novadaq Technologies ULC Imaging systems and methods for displaying fluorescence and visible images
US11770503B2 (en) 2006-12-22 2023-09-26 Stryker European Operations Limited Imaging systems and methods for displaying fluorescence and visible images
US10694151B2 (en) 2006-12-22 2020-06-23 Novadaq Technologies ULC Imaging system with a single color image sensor for simultaneous fluorescence and color video endoscopy
US11025867B2 (en) 2006-12-22 2021-06-01 Stryker European Operations Limited Imaging systems and methods for displaying fluorescence and visible images
US10779734B2 (en) 2008-03-18 2020-09-22 Stryker European Operations Limited Imaging system for combine full-color reflectance and near-infrared imaging
JP2012002839A (en) * 2010-06-14 2012-01-05 Panasonic Corp Image display device
JP4636212B1 (en) * 2010-06-14 2011-02-23 パナソニック株式会社 Image display device
JP2012078564A (en) * 2010-10-01 2012-04-19 Panasonic Corp Image display apparatus
JP4720956B1 (en) * 2010-10-01 2011-07-13 パナソニック株式会社 Image display device
EP2477070A1 (en) * 2011-01-18 2012-07-18 Panasonic Corporation Image projection device using laser light sources
JP4817274B1 (en) * 2011-01-18 2011-11-16 パナソニック株式会社 Image display device
JP4880789B1 (en) * 2011-02-22 2012-02-22 パナソニック株式会社 Image display device
JP2017098258A (en) * 2011-03-08 2017-06-01 ノバダック テクノロジーズ インコーポレイテッド Full spectrum led lighting device
CN107582016A (en) * 2011-03-08 2018-01-16 诺瓦达克技术公司 Full spectrum LED illuminator
JP2012078776A (en) * 2011-03-22 2012-04-19 Panasonic Corp Image display apparatus
JP4891453B1 (en) * 2011-06-27 2012-03-07 パナソニック株式会社 Image display device
JP2013179113A (en) * 2012-02-28 2013-09-09 Hitachi Media Electoronics Co Ltd Laser light source module
EP2784580A1 (en) * 2013-03-29 2014-10-01 Funai Electric Co., Ltd. Projector and head-up display device
WO2015178171A1 (en) * 2014-05-21 2015-11-26 ソニー株式会社 Lighting device and display device
US10228120B2 (en) 2014-05-21 2019-03-12 Sony Corporation Illumination unit and display apparatus
US10612764B2 (en) 2014-05-21 2020-04-07 Sony Corporation Illumination unit and display apparatus
JP2016164922A (en) * 2015-03-06 2016-09-08 株式会社リコー Temperature control device, image display device, and vehicle
US11930278B2 (en) 2015-11-13 2024-03-12 Stryker Corporation Systems and methods for illumination and imaging of a target
US10980420B2 (en) 2016-01-26 2021-04-20 Stryker European Operations Limited Configurable platform
US11298024B2 (en) 2016-01-26 2022-04-12 Stryker European Operations Limited Configurable platform
USD916294S1 (en) 2016-04-28 2021-04-13 Stryker European Operations Limited Illumination and imaging device
US10869645B2 (en) 2016-06-14 2020-12-22 Stryker European Operations Limited Methods and systems for adaptive imaging for low light signal enhancement in medical visualization
US11756674B2 (en) 2016-06-14 2023-09-12 Stryker European Operations Limited Methods and systems for adaptive imaging for low light signal enhancement in medical visualization
US11140305B2 (en) 2017-02-10 2021-10-05 Stryker European Operations Limited Open-field handheld fluorescence imaging systems and methods
US10992848B2 (en) 2017-02-10 2021-04-27 Novadaq Technologies ULC Open-field handheld fluorescence imaging systems and methods
JP2018165784A (en) * 2017-03-28 2018-10-25 株式会社Qdレーザ Laser module and image projection device
WO2018179860A1 (en) * 2017-03-28 2018-10-04 株式会社Qdレーザ Laser module and image projection device
JP7043048B2 (en) 2017-03-28 2022-03-29 株式会社Qdレーザ Laser module and image projection device
US10712643B2 (en) 2017-12-27 2020-07-14 Seiko Epson Corporation Projector with cooling system
US10627708B2 (en) 2017-12-27 2020-04-21 Seiko Epson Corporation Projector with cooler
US10705414B2 (en) 2017-12-27 2020-07-07 Seiko Epson Corporation Projector having refrigerant generator
US10514594B2 (en) 2018-03-01 2019-12-24 Seiko Epson Corporation Projector
JP7031373B2 (en) 2018-03-01 2022-03-08 セイコーエプソン株式会社 projector
JP2019152709A (en) * 2018-03-01 2019-09-12 セイコーエプソン株式会社 projector
US10983425B2 (en) 2019-02-22 2021-04-20 Seiko Epson Corporation Projector
US11009784B2 (en) 2019-03-15 2021-05-18 Seiko Epson Corporation Projector having cooler
US11163223B2 (en) 2019-03-15 2021-11-02 Seiko Epson Corporation Projector with cooler
US11029587B2 (en) 2019-05-27 2021-06-08 Seiko Epson Corporation Projector
US11209724B2 (en) 2019-06-06 2021-12-28 Seiko Epson Corporation Projector including cooling target
US11300859B2 (en) 2019-06-12 2022-04-12 Seiko Epson Corporation Projector having cooler
US11175571B2 (en) 2019-07-10 2021-11-16 Seiko Epson Corporation Projector
US10890836B1 (en) 2019-07-12 2021-01-12 Seiko Epson Corporation Projector
US11029588B2 (en) 2019-07-19 2021-06-08 Seiko Epson Corporation Projector
US11281082B2 (en) 2019-09-20 2022-03-22 Seiko Epson Corporation Projector
US11131912B2 (en) 2019-09-24 2021-09-28 Seiko Epson Corporation Projector
US11163224B2 (en) 2019-10-11 2021-11-02 Seiko Epson Corporation Projector
US11526071B2 (en) 2019-12-25 2022-12-13 Seiko Epson Corporation Projector

Similar Documents

Publication Publication Date Title
JP2010107751A (en) Projector
US8422523B2 (en) Laser light-source apparatus and projector apparatus
JP4561917B2 (en) projector
JP6343917B2 (en) projector
JP4636212B1 (en) Image display device
JP5869913B2 (en) Laser light source module
JP2013164595A (en) Projector
JP4151546B2 (en) projector
JP2011090310A (en) Projection-type video display device
JP2011186350A (en) Illuminator and projection type image display device
JP2010014809A (en) Liquid crystal display element and projector
JP2017227658A (en) Seal structure and projection device
JP4654664B2 (en) Light source device and projection display device
JP2013025212A (en) Projector
JP6774635B2 (en) Electronic device, light source device and projection device
JP2006339569A (en) Laser device and image display apparatus equipped therewith
JP2007041414A (en) Electronic equipment
JP2010256864A (en) Projector
JP2015031769A (en) Electro-optic device and projection type image display apparatus
JP2007041412A (en) Optical element holding body, optical device and projector
JP4761004B1 (en) Image display device
JP2009288469A (en) Projection device
JP4761003B1 (en) Image display device
JP2007114332A (en) Projector and projector system
CN111624837B (en) Projector with a light source