JP3599426B2 - Biological light measurement device - Google Patents

Biological light measurement device Download PDF

Info

Publication number
JP3599426B2
JP3599426B2 JP16982095A JP16982095A JP3599426B2 JP 3599426 B2 JP3599426 B2 JP 3599426B2 JP 16982095 A JP16982095 A JP 16982095A JP 16982095 A JP16982095 A JP 16982095A JP 3599426 B2 JP3599426 B2 JP 3599426B2
Authority
JP
Japan
Prior art keywords
light
measurement
signal
measurement device
biological
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16982095A
Other languages
Japanese (ja)
Other versions
JPH0919408A (en
Inventor
敦 牧
優一 山下
嘉敏 伊藤
英明 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP16982095A priority Critical patent/JP3599426B2/en
Priority to US08/539,871 priority patent/US5803909A/en
Publication of JPH0919408A publication Critical patent/JPH0919408A/en
Priority to US09/149,155 priority patent/US6128517A/en
Priority to US09/203,610 priority patent/US6282438B1/en
Priority to US09/900,144 priority patent/US7286870B2/en
Application granted granted Critical
Publication of JP3599426B2 publication Critical patent/JP3599426B2/en
Priority to US11/037,282 priority patent/US7440794B2/en
Priority to US11/037,339 priority patent/US7715904B2/en
Priority to US11/037,338 priority patent/US8050744B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、生体光計測装置及びその装置における画像作成方法、すなわち、生体内部の情報を光を用いて測定し、測定結果を画像化する生体光計測装置及び画像作成方法に関する。
【0002】
【従来の技術】
生体内部を簡便かつ生体に害を与えずに測定する装置もしくは方法が臨床医療で望まれている。この要望に対し、光を用いた計測は非常に有効である。その第一の理由は、生体内部の酸素代謝機能は生体中の特定色素(ヘモグロビン、チトクロームaa3、ミオグロビン等)、すなわち、光吸収体の濃度に対応し、この特定色素濃度は光(可視から近赤外領域の波長)吸収量から求められるからである。第二の理由は、光は光ファイバによって扱いが簡便であるからである。第三の理由は、光計測は、安全基準の範囲内での使用により生体に害を与えないことが挙げられる。
【0003】
このような光を用いた生体計測の利点を利用して、可視から近赤外の波長の光を生体に照射し、照射位置から10−50mm程度離れた位置での反射光から生体内部を測定する装置が、例えば、公開特許公報、特開昭63−277038号、特開平5−300887号等に記載されている。また、厚さ100−200mm程度の生体を透過した光から酸素代謝機能のCT画像を計測する装置すなわち光CT装置が、例えば公開特許公報、特開昭60−72542号、特開昭62−231625号に記載されている。
【0004】
【発明が解決しようとする課題】
生体光計測による臨床応用としては、例えば頭部を計測対象とする場合、脳の酸素代謝の活性化状態及び局所的な脳内出血の計測等が挙げられる。また、脳内の酸素代謝に関連して、運動、感覚さらには思考に及ぶ高次脳機能等を計測することも可能である。このような計測においては、非画像よりも画像として計測し表示することにより、その効果は飛躍的に増大する。例えば、局所的な酸素代謝の変化部位の検出等では、画像として計測及び表示することが不可欠である。
【0005】
しかし、従来技術には以下に示す問題点が存在する。まず、前記反射光による計測では画像化のための計測及び表示の方法が提示されていない。そのため、局所的に酸素代謝が変化した場合、変化部位の検出は困難である。また、透過光を用いた光CT装置は、局所的な変化の検出を画像として検出可能であるが、生体透過光強度は反射光強度に比べて数桁小さくなり非常に微弱であり、検出される透過光信号はランダムな雑音成分に埋もれてしまう。そのため、透過光信号を雑音に対して充分大きくなるように計測するためには、高価な微弱光検出器が必要で、かつ、雑音を除去して透過光信号を抽出するために計測時間すなわち計測の積算回数を増加させる必要も生じる。その結果、計測時間が長くなり、被検体へ精神的負担を与えるだけではなく、装置の稼働効率が低下してしまう。
【0006】
従って、本発明の目的は以上の課題を解決し、簡易な検出器を用い、さらに短時間での計測で、生体機能の状態を画像化する生体計測装置及びその装置を用いて計測結果を画像化する方法を実現することである。
【0007】
【課題を解決するための手段】
上記目的を達成するため、本発明の生体計測装置は、被検体に可視から近赤外領域の波長の光を照射する複数の光照射手段と、上記光照射手段から照射され、被検体内部で反射された光を検出する複数の受光手段と、上記受光手段で検出された信号を複数の受光手段毎にかつ経時的に記憶記憶する記憶手段と、上記記憶手段に記憶された信号を用いて複数の計測点の計測対象の信号に変換する演算手段と、上記演算手段の出力を上記測定位置を表す二次元表示面に強度信号として表すトポグラフィ画像として表示する画像作成部を設けた。特に、上記複数の光照射手段のそれぞれは波長のことなる複数の光源と、上記複数の光源の光を互いに異なった周波数で変調する変調器と、変調された複数の光を照射位置に導く導波手段とからなり、上記複数の受光手段のそれぞれは上記波長の異なる複数の光源からの光の強度を分離する分離手段をもつ。
【0008】
上記生体計測装置を用いて、生体内部の機能を計測する場合、上記複数の光照射手段の光照射位置を被検体の測定部に分布して配置し、かつ分布して配置された光照射位置のそれぞれの周辺部に上記複数の受光手段の受光部を複数個配置し、上記複数の受光手段で検出された光信号を上記光の照射位置と検出位置との中点で、かつ生体表面に対する生体内部への垂線上の任意の位置を計測点として設定する。上記計測点及び上記計測点に対応した検出された光信号強度を2次元画像上に表示する。また、トポグラフィ画像として表示する場合に、測定されていない位置の信号を上記計測点の補間信号によって得るようにしてもよい。
上記被体が生体である場合、上記照射位置と検出位置との距離は10から50mm程度が望ましい。
【0009】
【作用】
本発明は計測の位置の情報は光照射手段の被検体への光照射位置及び受光手段の位置によってほぼ一義的に決定されるので、トポグラフィ画像として表示するための信号処理が簡単かつ高速に行える。また、受光手段の位置が光照射位置から10〜50mm程度の近くで、反射光を利用することになり、100から200mm程度の生体を透過した光に比べて検出強度が充分に大きい。そのため、簡易な光検出器で、かつ、短い時間での計測が可能となる。
【0010】
例えば、計測対象(被検体)を頭部とした場合、照射位置と検出位置の距離が少なくとも30mmであれば、検出光は皮膚及び頭蓋骨を通過して脳の表面部、すなわち大脳皮質に到達していることが知られていることが、例えば、パトリック・ダブリュ・マコーミック(Patrick W. McCormick)他による「赤外光の大脳内浸透(Intracerebral penetration of infrared light)」,1992年2月発行のジャーナルオブニューロサージェリ、第76巻、第315−318項(J Neurosurg. ,76, 315 (1992))により報告されている。また、照射及び検出位置の中点から生体表面に対する生体内部への垂線上の位置での情報が、このような位置で検出された光には最も多く含まれていることが、生体中の光伝播特性から知られている。この特性として例えば、シェカオ・フェン(Shechao Feng)他による「多重散乱媒体中での光子移動路分布のモンテカルロシミュレーション(Monte Carlo simulationsof photon path distribution in multiple scattering media)」、1993年エス・ピィ・アイ・イー発行の会議録第1888巻、ランダム媒体及び生体組織における光子移動と画像、第78ー89項(SPIE, Proceedings of photon migration and imaging in random media and tissues, 1888, 78 (1993))により報告されている。
【0011】
本発明の生体光計測装置では、多数位置の測定を行うには、多数の光照射手段と受光手段を必要とするが、後述の実施例に示すように、部分的位置の測定には、効果があり、複数の計測点に対して得られた計測結果を、各計測点ごとに補間する簡単な演算処理で高速にトポグラフィ画像が得られる。
【0012】
【実施例】
以下、本発明の実施例について説明する。
図1は、本発明による生体光計測装置の一実施例の構成を示す。本実施例は、生体光計測装置を、脳機能に伴う血液動態変化(酸化及び還元ヘモグロビン濃度の相対変化量)の計測に適用した例である。脳の特定部位は生体の特定機能(例えば指等身体の一部を動かす等)の制御に関連しており、その特定機能を動作することで、脳の特定部位の血液動態が変化する。上記特定機能が働くような負荷、例えば、指を動かす等を加え、血液動態変化を計測し、脳の部位を表す2次平面画像に等高線図として表示することが本実施例の生体光計測装置を用いて行うことができる。
【0013】
図に示すように、本実施例は、波長の異なる複数の光源2a〜2d(光源2aと2c及び光源2bと2dはそれぞれ可視から近赤外領域の同波長)と、上記複数の光源2a及び2b(2c及び2c)の光ををそれぞれ互いに異なった周波数の発振器1a及び1b(1c及び1d)で強度変調する変調器と、強度変調された光をそれぞれ光ファイバー3a及び3b(32c及び3c)を通して結合する結合器4a(4b)からの光を光ファイバー5a(5b)を介して被検体である被検者6の頭皮上の異なる位置に照射する複数の光照射手段と、上記複数の光照射手段の光照射位置の近くに上記光照射位置から等距離(ここでは30mmとする)の位置に先端が位置するように複数の光検出用光ファイバー7a〜7d及び光検出用光ファイバー7a〜7dのそれぞれに設けられた光検出器8a〜8fからなる複数の受光手段とが設けられてる。6本の光検出用光ファイバー7a〜7fで、生体通過光を光ファイバーに集光し、それぞれ光検出器8a〜8fで生体通過光が光電変換される。上記受光手段は被検体内部で反射された光を検出し電気信号に変換すもので、光検出器8としては光電子増倍管やフォトダイオードに代表される光電変換素子を用いる。
【0014】
光検出器8a〜8fで光電変換された生体通過光強度を表わす電気信号(以下、生体通過光強度信号とする)は、それぞれロックインアンプ9a〜9hに入力される。ここで、光検出器8c及び8dは、光ファイバー5a及び5bの両方から等距離にある光検出光ファイバー7c及び7dで集光される生体通過光強度を検出しているため、光検出器8c及び8dからの信号を2系統に分離し、ロックインアンプ9cと9e及び9dと9fに入力する。ロックインアンプ9a〜9dには発振器1a及び1b、そして、ロックインアンプ9e〜9hには発振器1c及び1dからの強度変調周波数が参照周波数として入力されている。従って、ロックインアンプ9a〜9dからは光源1a及び1bに対する生体通過光強度信号が分離されて出力され、ロックインアンプ9e〜9hからは光源1c及び1dに対する生体通過光強度信号が分離されて出力される。
【0015】
ロックインアンプ9e〜9hの出力である分離された各波長毎の通過光強度信号をアナログ−デジタル変換器10でアナログ−デジタル変換した後に、計算機11の内部又は計算機11の外部にある記憶装置12に格納する。計測中あるいは終了後、計算機11は上記記憶装置に記憶された通過光強度信号を使用して、各検出点の検出信号から求められる酸化及び還元ヘモグロビン濃度の相対変化量を演算し、複数の計測点mの経時情報として記憶装置12に格納する。上記演算については後で詳しく説明する。表示制御部30は上記記憶手段12に記憶された信をCRT等の表示装置13の表示信号に変換し、表示装置13に表示する。上記表示信号は測定位置を被検体の表示平面の座標に変換し、その座標位置の強度信号(酸化又は還元ヘモグロビン濃度の相対変化量)等高線表示する信号とする。
【0016】
本実施例による生体光計測装置を用いることで、生体中の酸化及び還元ヘモグロビン濃度の相対変化量を簡易かつ高速に計測することができる。光入射点(光照射位置)及び光検出点を増やす構成は、光源の強度変調周波数及び光源及び光検出器及びロックインアンプを増やせば良いので拡張は容易である。本生体光計測装置を用いると、分光及び光照射位置は強度変調周波数で分離することが可能であるため、光照射位置を増加した場合でも、各光照射位置での照射光の波長数が計測される吸収体数と同数あれば良く、特に光照射位置毎に照射光の波長を換える必要はない。従って、用いる照射光の波長数が少なく、波長によって異なる散乱の影響による誤差を小さくすることができる。
【0017】
図2は、生体光計測装置を使用した本発明による画像作成方法の一実施例を説明するための図で、上記方法における光入射点、光検出点及び計測点の関係を示す。本実施例の画像作成方法は、被検者の頭部における酸化及び還元ヘモグロビン濃度の相対変化量のトポグラフィ画像を作成する方法で、被検者の右手指の運動機能に関与している左側頭部に各4点の入射及び検出点を設けて生体通過光強度を計測し、右手指の運動と左手指の運動を負荷として与えた場合の測定結果を画像化する方法である。
【0018】
図に示すように、被検者16の左側頭部に光入射点17a〜17dと検出点18a〜18dを配置した。ここで、各光入射点と各検出点の対応関係は、17a−18a、17a−18b、17b−18a、17b−18b、17b−18c、17b−18d、17c−18b、17c−18c、17d−18c、17d−18dの10組ある。また、各対応する光入射点と検出点の距離は30mmである。さらに、各検出点の計測信号から求められる酸化及び還元ヘモグロビン濃度の相対変化量の時間変化は、前記シェカオ・フェン(Shechao Feng)他による「多重散乱媒体中での光子移動路分布のモンテカルロシミュレーション(Monte Carlo simulationsof photon path distribution in multiple scattering media)」、1993年エス・ピィ・アイ・イー発行の会議録第1888巻、ランダム媒体及び生体組織における光子移動と画像、第78−89項(SPIE, Proceedings of photon migration and imaging in random media and tissues, 1888, 78 (1993))に記載されているように、各対応する入射点と検出点の中間の情報を最も多く反映しているので、計測点19a〜19jを各入射点と検出点の対応関係の中心に設定する。計測点19a〜19jの情報を求め、その情報も大きさを図2に示すような二次元平面に等高線、濃淡、色識別図として表示する。
【0019】
次に、本発明による上記各光検出点における計測信号から各ヘモグロビン濃度の相対変化量、すなわち生体の特定機能(例えば指等身体の一部を動かす等)が動作することによる脳の特定部位のモグロビン濃度の変化を求める方法の一実施例についてについて説明する。
図3は、図2の上記実施例における生体光計測装置の検出点18a〜18dの1つの点における計測信号14と計測信号14から求められる予測無負荷信号15の経時変化を表すグラフである。グラフの横軸は計測時間を表わし、縦軸は相対濃度変化量を表わしている。予測無負荷信号15は、計測信号14から、負荷を与えた時間(負荷時間)Ttと負荷後信号が元に戻るまでの時間(緩和時間)T2における信号を除き、負荷前時間T1と負荷後時間T2における計測信号14に対して任意関数を最小二乗法を用いてフィッティングし求たものである。本実施例では、任意関数を5次の線形多項式、各時間はT1=40秒,T2=30秒,Tt=30秒,T3=30秒として処理している。
【0020】
図4は、1つの計測点における酸化及び還元ヘモグロビンの濃度の相対変化量(以下、それぞれΔCoxy(t)信号20及びΔCdeoxy(t)信号21とする)の時間変化を表わすグラフである。グラフの横軸は計測時間を表わし、縦軸は相対濃度変化量を表わしている。また、斜線で示した時間が負荷印加時間(右手指の運動期間)である。上記相対変化量は図2に表示される2波長の計測信号14と予測無負荷信号15から、酸化及び還元ヘモグロビン(HbO,Hb)の濃度の負荷印加による相対変化量を以下の演算処理で求める。
【0021】
波長λにおける予測無負荷信号Str(λ,t)と光源強度I0(λ)の関係は、生体中での光減衰を散乱と吸収に分離することで、以下の(2)式で示される。なお、(2)(3)式は、「光を使った生体計測−光CTへの道」第2回
O plus E 1987年6月号、61頁(8)式からも導出できる。
−Ln{Str(λ,t)/I0(λ)}
=εoxy(λ)・Coxy(t)・d+εdeoxy(λ)・Cdeoxy(t)・d+A(λ)+S(λ)・・・・・(2)
ここで、
εoxy(λ):波長λにおける酸化ヘモグロビンの吸光係数
εdeoxy(λ):波長λにおける還元ヘモグロビンの吸光係数
A(λ):波長λにおけるヘモグロビン以外による吸収による減衰
S(λ):波長λにおける散乱による減衰
Coxy(t):計測時間tにおける酸化ヘモグロビン濃度
Cdeoxy(t):計測時間tにおける還元ヘモグロビン濃度
d:生体内での(注目領域における)実効的光路長
である。
【0022】
また、計測信号Sm(λ,t)と光源強度I0(λ)の関係は、以下の(3)式で示される。
−Ln{Sm(λ,t)/I0(λ)}
=εoxy(λ)・{Coxy(t)+C’oxy(t)+Noxy(t)}・d
+εdeoxy(λ)・{Cdeoxy(t)+C’deoxy(t)+Ndeoxy(t)}・d+A’(λ)+S’(λ)・・・(3)
ここで、
C’oxy(t):計測時間tにおける負荷印加による酸化ヘモグロビン濃度の変化
C’deoxy(t):計測時間tにおける負荷印加による還元ヘモグロビン濃度の変化
Noxy(t):雑音又は計測時間tにおける酸化ヘモグロビン濃度の高周波揺らぎ
Ndeoxy(t):雑音又は計測時間tにおける還元ヘモグロビン濃度の高周波揺らぎ
ここでは、A(λ)及びS(λ)が負荷印加及び負荷非印加の状態で変化しないとすれば、すなわち、負荷により生じる計測信号変化は酸化及び還元ヘモグロビン濃度の変化のみによるとすれば、(2)及び(3)式の差分は以下(4)式で示される。
【0023】
Ln{Str(λ,t)/Sm(λ,t)}=εoxy(λ){C’oxy(t)+Noxy(t)}d
+εdeoxy(λ){C’deoxy(t)+Ndeoxy(t)}d・・・・・(4)
ここで、負荷による酸化及び還元ヘモグロビン濃度相対変化量の時間変化をそれぞれΔCoxy(t)、及びΔCdeoxy(t)で表し、以下の式で定義する。
ΔCoxy(t)={C’oxy(t)+Noxy(t)}d
ΔCdeoxy(t)={C’deoxy(t)+Ndeoxy(t)}d・・・・・・・・・・・・・・・(5)
ここで、普通dを特定することは困難であるため、これらの濃度変化量の次元は濃度と距離dの積となっている。
【0024】
しかし、(5)式で距離dはΔCoxyとΔCdeoxy同様に作用するため、(5)式を各ヘモグロビン濃度の相対変化量とする。計測に二波長用いると、得られる(4)式は、ΔCoxy(t)及びΔCdeoxy(t)に対する二元連立方程式となり、各波長毎の予測無負荷信号Str(λ,t)及び計測信号Sm(λ,t)から、ΔCoxy(t)及びΔCdeoxy(t)が求まる。さらに、負荷時間及び緩和時間以外におけるΔCoxy(t)及びΔCdeoxy(t)が表わすものは、C’oxy(t)=0, C’deoxy(t)=0とおけるので、雑音もしくは生体起因の酸化ヘモグロビン濃度及び還元ヘモグロビンの高周波揺らぎを表わしていることになる。上述の処理によって時間0〜140秒にわたって求めたものが図4のΔCoxy(t)信号20及びΔCdeoxy(t)信号21である。
【0025】
図5及び図6は、それぞれ被検者の左手指及び右手指の運動を負荷として、上記各計測点の酸化ヘモグロビン濃度の相対変化量の時間変化から作成した等高線画像(トポグラフィ画像)を示す。トポグラフィ画像を作成する方法は、負荷印加時間(図4の斜線期間)中の相対変化量ΔCoxy(t)信号20の時間積分値(時間平均値でもよい)を計算機11で計算し、各計測点間の値はX軸方向及びY軸方向に線形に補間して作成したものである。トポグラフィ画像としては、図5及び図6に示すような等高線の他に、白黒濃淡画像、色彩による識別表示してもよい。図5及び図6の画像の比較から、明らかに右手運動時に特定の位置において酸化ヘモグロビン濃度が増加していることがわかる。この様な空間的分布の情報を画像として表示することにより計測結果の認識を迅速かつ容易にしている。また、図5及び図6に示した画像は、負荷印加時間中の濃度相対変化量の時間積分値で作成したが、同一計測時間毎の各計測点の酸化ヘモグロビン濃度の相対変化量によって同様にトポグラフィ画像を作成することも可能である。前記作成した複数のトポグラフィ画像を、計測時間の順に従って表示あるいは動画として表示すれば、酸化ヘモグロビン濃度の相対変化量の時間変化を捉らえることができる。
【0026】
さらに、任意1計測点の酸化ヘモグロビン濃度の相対変化量の時間変化と自他計測点の酸化ヘモグロビン濃度の相対変化量の時間変化の自己及び相互相関関数を計算し、各計測点における相関関数よりトポグラフィ画像を作成することもできる。各計測点における相関関数は、時間ずれτで定義される関数であるから、同一時間ずれτにおける相関関数の値よりトポグラフィを作成し、τの順に従って表示あるいは動画として表示すれば、血液動態変化が伝播していく様子を可視化することができる。
ここでは、酸化ヘモグロビン濃度の相対変化量を代表的に用いて説明しているが、還元ヘモグロビン濃度の相対変化量あるいは酸化及び還元ヘモグロビン濃度の相対変化量の和で計算される総ヘモグロビン濃度相対変化量も同様にトポグラフィを作成することができる。
【0027】
図7は上記記載の方法で作成されたトポグラフィ画像22を、被検者の脳表面画像23と重ねあわせた表示例を示す。トポグラフィ画像22は、生体の機能に関連して変化した脳の血液動態の変化であるため、脳表面画像と重ねあわせて表示することが望ましい。脳表面画像23は3次元MRIあるいは3次元X線CTで計測し表示する。トポグラフィ画像22は、各計測点の座標を脳表面に位置するように座標変換し、座標変換した後の各計測点間の値を補間してトポグラフィ画像を作成する。作成したトポグラフィ画像22と脳表面画像23を重ねあわせて表示する時、重ねたトポグラフィ画像22の色を半透明として、下に位置する脳表面画像が透けて見えるようにする。
【0028】
図8は、計測点座標変換方法を説明する図を示す。3次元MRIあるいは3次元X線CTの形態画像を撮影する際に、生体光計測装置で設定する計測点にマーカーを配置して撮影すると、撮影した形態情報から皮膚及び骨像24と脳像25とマーカー像26を表示することができる。上記撮影像は、3次元的な座標情報を有している。そこで、マーカー像26が示す計測点27を通り、計測点27における皮膚表面もしくはマーカー像26の底面に対して垂線28を計算し、脳像25と交わる点を座標変換した計測点29とする。本実施例で示したように、脳機能の計測の場合には、負荷に相関のある血液動態変化は、主に脳表面(大脳皮質)で生じていることがわかっている。前記理由より、生体の形態情報を用いることで、計測点を座標変換する深さを知ることができる。しかし、計測対象を筋肉等他の生体器官とした場合には、形態情報から座標変換する深さを知ることができない場合がある。前記の様な計測に本方法を用いる場合には、モンテカルロ法による数値計算で、生体内の光伝播をあらかじめ計算し、計測信号に最も大きく寄与する深さを求め、前記求められた深さに計測点を座標変換する。
【0029】
【発明の効果】
本発明では、低コストの光照射手段、光検出器を用い、簡単な演算処理であるため経済的な装置で高速の処理ができ、被定測体の形状を表す平面画像と対応づけた生体機能を画像化ができるので、特に生体の局所定な機能の測定に有効な手段となる。
【図面の簡単な説明】
【図1】本発明による生体光計測装置の一実施例の構成を示すブロック図
【図2】上記生体光計測装置を使用した画像作成方法の一実施例を説明するための図
【図3】上記実施例の一計測点における計測信号と計測信号から求められる予測無負荷信号15の経時変化を表す図
【図4】上記実施例の一計測点におけるヘモグロビン濃度相対変化量の時間変化を示す図
【図5】本発明による生体光計測装置の一実施例におけるトポグラフィ画像を示す図
【図6】本発明による生体光計測装置の一実施例におけるトポグラフィ画像を示す図
【図7】本発明による生体光計測装置の一実施例におけるトポグラフィ画像の表示例を示す図
【図8】本発明による生体光計測装置の他の実施例本発明おける座標変換方法を説明する図
【符号の説明】
1:発振器、2:光源、3:光ファイバー、4:結合器、5:光ファイバー、
6:被検者、7:光検出光ファイバー、8:光検出器、9:ロックインアンプ、
10:アナログ−デジタル変換器、11:計算機、12:記憶装置、
13:表示装置、14:計測信号、15:予測無負荷信号、16:被検者、
17:入射点、18:検出点、19:計測点、20:ΔCoxy(t)信号、
21:ΔCdeoxy(t)信号、22:トポグラフィ画像、
23:脳表面画像、24:皮膚及び骨像、25:脳像、26:マーカー像、
27:計測点、28:垂線、29:座標変換した計測点。
[0001]
[Industrial applications]
The present invention relates to a biological light measurement device and an image creation method in the device, that is, a biological light measurement device that measures information inside a living body using light and images the measurement result, and an image creation method.
[0002]
[Prior art]
An apparatus or method for measuring the inside of a living body simply and without harming the living body is desired in clinical medicine. To meet this demand, measurement using light is very effective. The first reason is that the oxygen metabolism function inside the living body corresponds to the concentration of a specific dye (hemoglobin, cytochrome aa3, myoglobin, etc.) in the living body, that is, the concentration of the light absorber. This is because it is determined from the amount of absorption in the infrared region). The second reason is that light is easily handled by optical fibers. The third reason is that optical measurement does not harm the living body when used within the safety standards.
[0003]
Utilizing the advantages of living body measurement using such light, the living body is irradiated with light of visible to near-infrared wavelength, and the inside of the living body is measured from reflected light at a position about 10 to 50 mm away from the irradiation position. Such devices are described in, for example, JP-A-63-277038 and JP-A-5-30087. Further, an apparatus for measuring a CT image of the oxygen metabolism function from light transmitted through a living body having a thickness of about 100 to 200 mm, that is, an optical CT apparatus is disclosed in, for example, Japanese Patent Application Laid-Open Nos. 60-72542 and 62-231625. No.
[0004]
[Problems to be solved by the invention]
As a clinical application using living body light measurement, for example, when the head is a measurement target, measurement of the activation state of oxygen metabolism in the brain and local cerebral hemorrhage can be mentioned. It is also possible to measure higher brain functions, such as movement, sensation, and thinking, in relation to oxygen metabolism in the brain. In such measurement, by measuring and displaying an image rather than a non-image, the effect is dramatically increased. For example, measurement and display as an image are indispensable for detecting a local oxygen metabolism change site or the like.
[0005]
However, the prior art has the following problems. First, in the measurement using the reflected light, a method for measurement and display for imaging is not proposed. Therefore, when oxygen metabolism is locally changed, it is difficult to detect a changed portion. An optical CT device using transmitted light can detect a local change as an image, but the intensity of transmitted light in a living body is several orders of magnitude smaller than the intensity of reflected light, and is very weak. The transmitted light signal is buried in a random noise component. Therefore, in order to measure the transmitted light signal to be sufficiently large with respect to noise, an expensive weak light detector is required, and the measurement time, that is, the measurement time, is required to remove the noise and extract the transmitted light signal. It is necessary to increase the number of times of integration. As a result, the measurement time becomes longer, which not only imposes a mental burden on the subject, but also lowers the operation efficiency of the apparatus.
[0006]
Therefore, an object of the present invention is to solve the above-mentioned problems, to use a simple detector, and to perform measurement in a shorter time, to image a state of a biological function, and to image a measurement result using the device. Is to realize a method of
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the biological measurement device of the present invention includes a plurality of light irradiating units that irradiate the subject with light having a wavelength in the visible to near-infrared region. A plurality of light receiving means for detecting the reflected light, a memory means for storing the signals detected by the light receiving means for each of the plurality of light receiving means and over time, and a signal stored in the memory means. An arithmetic unit for converting signals of a plurality of measurement points into signals to be measured and an image creating unit for displaying an output of the arithmetic unit on a two-dimensional display surface indicating the measurement position as a topographic image expressed as an intensity signal are provided. In particular, each of the plurality of light irradiation means includes a plurality of light sources having different wavelengths, a modulator for modulating the light of the plurality of light sources at mutually different frequencies, and a light guide for guiding the plurality of modulated lights to an irradiation position. A plurality of light receiving means each having a separating means for separating the intensity of light from the plurality of light sources having different wavelengths.
[0008]
When the function inside the living body is measured using the living body measuring device, the light irradiation positions of the plurality of light irradiation units are distributed and arranged on the measurement unit of the subject, and the light irradiation positions arranged and distributed. Arrange a plurality of light receiving units of the plurality of light receiving means in each peripheral portion of the, at the midpoint between the light irradiation position and the detection position of the light signal detected by the plurality of light receiving means, and with respect to the body surface An arbitrary position on a vertical line into the living body is set as a measurement point. The measurement points and the detected optical signal intensities corresponding to the measurement points are displayed on a two-dimensional image. Further, when displaying as a topography image, a signal at a position that has not been measured may be obtained by an interpolation signal of the measurement point.
When the subject is a living body, the distance between the irradiation position and the detection position is preferably about 10 to 50 mm.
[0009]
[Action]
According to the present invention, since the information on the measurement position is almost uniquely determined by the light irradiation position of the light irradiation unit to the subject and the position of the light receiving unit, signal processing for displaying as a topography image can be performed easily and at high speed. . In addition, the reflected light is used when the position of the light receiving means is about 10 to 50 mm from the light irradiation position, and the detection intensity is sufficiently higher than the light transmitted through the living body of about 100 to 200 mm. Therefore, measurement can be performed with a simple photodetector in a short time.
[0010]
For example, when the measurement target (subject) is the head, if the distance between the irradiation position and the detection position is at least 30 mm, the detection light passes through the skin and the skull and reaches the surface of the brain, that is, the cerebral cortex. For example, a journal published by Patrick W. McCormick et al., "Intracerebral penetration of infrared light," published by February 1992, by Patrick W. McCormick et al. Ob Neurosurgery, Vol. 76, pp. 315-318 (J Neurosurg., 76, 315 (1992)). In addition, it is found that information at a position on a perpendicular line from the midpoint of the irradiation and detection positions to the inside of the living body with respect to the living body surface is most contained in the light detected at such a position. It is known from the propagation characteristics. For example, "Monte Carlo simulations of photon path distribution in multiple scattering media" by Shechao Feng et al., Pp. 93-93, by Shechao Feng et al. Proceedings of photon migration and imaging in random media and issues, 1888, 783, pp. 78-89 (Reported by EIE, Proceedings, Vol. 1888, Photon Movement and Imaging in Random Media and Biological Tissue, 1888, 78 (1993)). ing.
[0011]
In the biological optical measurement device of the present invention, a large number of positions are required to be measured, and a large number of light irradiating units and light receiving units are required. The topography image can be obtained at high speed by a simple calculation process of interpolating the measurement results obtained for a plurality of measurement points for each measurement point.
[0012]
【Example】
Hereinafter, examples of the present invention will be described.
FIG. 1 shows a configuration of an embodiment of a biological light measurement device according to the present invention. The present embodiment is an example in which the biological optical measurement device is applied to the measurement of blood dynamic changes (relative changes in oxidized and reduced hemoglobin concentrations) associated with brain functions. The specific part of the brain is related to the control of a specific function of the living body (for example, moving a part of the body such as a finger), and by operating the specific function, the blood dynamics of the specific part of the brain changes. The biological optical measurement device according to the present embodiment can measure a change in blood dynamics by applying a load that causes the specific function to operate, for example, moving a finger, and display the contour map on a secondary planar image representing a part of the brain. Can be performed.
[0013]
As shown in the figure, in the present embodiment, a plurality of light sources 2a to 2d having different wavelengths (the light sources 2a and 2c and the light sources 2b and 2d have the same wavelength in the visible to near-infrared region), and the plurality of light sources 2a and 2d, respectively. A modulator for intensity-modulating the light of 2b (2c and 2c) with oscillators 1a and 1b (1c and 1d) having different frequencies from each other, and the intensity-modulated light through optical fibers 3a and 3b (32c and 3c), respectively. A plurality of light irradiating means for irradiating the light from the coupler 4a (4b) to be coupled to different positions on the scalp of the subject 6 via the optical fiber 5a (5b); and the plurality of light irradiating means A plurality of light detecting optical fibers 7a to 7d and a light detecting optical fiber such that the tip is located at a position equidistant from the light irradiation position (here, 30 mm) from the light irradiation position. And a plurality of light receiving means comprising photodetectors 8a~8f provided respectively provided with A~7d. The light passing through the living body is condensed on the optical fibers by the six light detecting optical fibers 7a to 7f, and the light passing through the living body is photoelectrically converted by the photodetectors 8a to 8f, respectively. The light receiving means detects light reflected inside the subject and converts the light into an electric signal. As the photodetector 8, a photoelectric conversion element such as a photomultiplier tube or a photodiode is used.
[0014]
Electric signals (hereinafter, referred to as living body passing light intensity signals) representing the living body passing light intensity photoelectrically converted by the photodetectors 8a to 8f are input to the lock-in amplifiers 9a to 9h, respectively. Here, the photodetectors 8c and 8d detect the intensity of light passing through the living body collected by the photodetection optical fibers 7c and 7d equidistant from both the optical fibers 5a and 5b. Are separated into two systems and input to the lock-in amplifiers 9c and 9e and 9d and 9f. The oscillators 1a and 1b are input to the lock-in amplifiers 9a to 9d, and the intensity modulation frequencies from the oscillators 1c and 1d are input to the lock-in amplifiers 9e to 9h as reference frequencies. Accordingly, the bio-passing light intensity signals for the light sources 1a and 1b are separated and output from the lock-in amplifiers 9a to 9d, and the bio-passing light intensity signals for the light sources 1c and 1d are separated and output from the lock-in amplifiers 9e to 9h. Is done.
[0015]
The analog-to-digital converter 10 performs analog-to-digital conversion of the separated transmitted light intensity signals output from the lock-in amplifiers 9e to 9h for each wavelength, and then stores the data in the storage device 12 inside the computer 11 or outside the computer 11. To be stored. During or after the measurement, the computer 11 calculates a relative change amount of the oxidized and reduced hemoglobin concentrations obtained from the detection signals at the respective detection points using the transmitted light intensity signal stored in the storage device, and performs a plurality of measurements. The information is stored in the storage device 12 as the time information of the point m. The above operation will be described later in detail. The display control unit 30 converts the signal stored in the storage unit 12 into a display signal of a display device 13 such as a CRT and displays the signal on the display device 13. The display signal is a signal for converting the measurement position into coordinates on the display plane of the subject and displaying an intensity signal (a relative change in the concentration of oxidized or reduced hemoglobin) at that coordinate position on a contour line.
[0016]
By using the biological optical measurement device according to the present embodiment, the relative change amount of the oxidized and reduced hemoglobin concentrations in the living body can be measured easily and at high speed. The configuration in which the number of light incident points (light irradiation positions) and the number of light detection points are increased can be easily expanded by increasing the intensity modulation frequency of the light source and the number of light sources, photodetectors, and lock-in amplifiers. With this biological optical measurement device, the spectral and light irradiation positions can be separated by the intensity modulation frequency, so even if the light irradiation positions are increased, the number of wavelengths of the irradiation light at each light irradiation position can be measured. It is only necessary to change the wavelength of the irradiation light for each light irradiation position. Therefore, the number of wavelengths of the irradiation light to be used is small, and errors due to the influence of scattering that differs depending on the wavelength can be reduced.
[0017]
FIG. 2 is a diagram for explaining an embodiment of an image creation method according to the present invention using a living body optical measurement device, and shows a relationship between a light incident point, a light detection point, and a measurement point in the above method. The image creating method of the present embodiment is a method of creating a topographic image of the relative change amount of the oxidized and reduced hemoglobin concentrations in the subject's head, and the left temporal region involved in the motor function of the right finger of the subject. This is a method of measuring the light passing through the living body by providing four points of incidence and detection points in the section, and imaging the measurement result when the movement of the right finger and the movement of the left finger are given as loads.
[0018]
As shown in the figure, light incident points 17a to 17d and detection points 18a to 18d are arranged on the left side head of the subject 16. Here, the correspondence between each light incident point and each detection point is as follows: 17a-18a, 17a-18b, 17b-18a, 17b-18b, 17b-18c, 17b-18d, 17c-18b, 17c-18c, 17d- There are 10 sets of 18c, 17d-18d. The distance between each corresponding light incident point and the detection point is 30 mm. Further, the time change of the relative change amount of the oxidized and reduced hemoglobin concentration obtained from the measurement signal at each detection point is described in "Monte Carlo Simulation of Photon Movement Path Distribution in Multiple Scattering Medium" by Shechao Feng et al. Monte Carlo simulations of photon path distribution in multiple scattering media ", Proceedings of SPI, 1993, Vol. 1888, Photon Movement and Images in Random Media and Biological Tissues, No. 78-89 (ceeding). of photon migration and imaging in random media and issues, 1888, 78 (1993)). It is As, since most reflect intermediate information of the incident point and the detection point each corresponding set measurement points 19a~19j the center of the corresponding relationship between the detection point and the point of incidence. The information of the measurement points 19a to 19j is obtained, and the size of the information is displayed as a contour line, light and shade, and a color identification diagram on a two-dimensional plane as shown in FIG.
[0019]
Next, the relative change amount of each hemoglobin concentration from the measurement signal at each light detection point according to the present invention, that is, the specific part of the brain due to the operation of a specific function of a living body (for example, moving a part of the body such as a finger) is operated. An embodiment of a method for obtaining a change in the concentration of moglobin will be described.
FIG. 3 is a graph showing a temporal change of the measurement signal 14 and the predicted no-load signal 15 obtained from the measurement signal 14 at one of the detection points 18a to 18d of the living body light measurement device in the above embodiment of FIG. The horizontal axis of the graph represents the measurement time, and the vertical axis represents the relative density change. The predicted no-load signal 15 is a pre-load time T1 and a post-load time, except for the signal at the load application time (load time) Tt and the time until the post-load signal returns (relaxation time) T2 from the measurement signal 14. This is obtained by fitting an arbitrary function to the measurement signal 14 at the time T2 using the least square method. In this embodiment, the arbitrary function is processed as a fifth-order linear polynomial, and each time is processed as T1 = 40 seconds, T2 = 30 seconds, Tt = 30 seconds, and T3 = 30 seconds.
[0020]
FIG. 4 is a graph showing a time change of a relative change amount of the oxidized and reduced hemoglobin concentrations at one measurement point (hereinafter, referred to as a ΔCoxy (t) signal 20 and a ΔCdeoxy (t) signal 21, respectively). The horizontal axis of the graph represents the measurement time, and the vertical axis represents the relative density change. The time indicated by the hatching is the load application time (the exercise period of the right finger). The relative change amount is calculated from the two-wavelength measurement signal 14 and the predicted no-load signal 15 shown in FIG. 2 by calculating the relative change amount of the oxidized and reduced hemoglobin (HbO 2 , Hb) due to the application of the load by the following calculation processing. Ask.
[0021]
The relationship between the predicted no-load signal Str (λ, t) at the wavelength λ and the light source intensity I0 (λ) is expressed by the following equation (2) by separating light attenuation in a living body into scattering and absorption. Expressions (2) and (3) can also be derived from Expression (8) on page 61, "Biometric Measurement Using Light-Path to Optical CT", 2nd O plus E, June 1987, page 61.
−Ln {Str (λ, t) / I0 (λ)}
= Εoxy (λ) · Coxy (t) · d + εdeoxy (λ) · Cdeoxy (t) · d + A (λ) + S (λ) (2)
here,
εoxy (λ): extinction coefficient of oxyhemoglobin at wavelength λ εdeoxy (λ): extinction coefficient of reduced hemoglobin at wavelength λ A (λ): attenuation due to absorption other than hemoglobin at wavelength λ S (λ): scattering at wavelength λ Attenuation Coxy (t): oxygenated hemoglobin concentration at measurement time t Cdeoxy (t): reduced hemoglobin concentration d at measurement time t: effective optical path length in a living body (in a region of interest).
[0022]
The relationship between the measurement signal Sm (λ, t) and the light source intensity I0 (λ) is represented by the following equation (3).
−Ln {Sm (λ, t) / I0 (λ)}
= Εoxy (λ) · {Coxy (t) + C′oxy (t) + Noxy (t)} · d
+ Εdeoxy (λ) · {Cdeoxy (t) + C′deoxy (t) + Ndeoxy (t)} · d + A ′ (λ) + S ′ (λ) (3)
here,
C'oxy (t): Change in oxidized hemoglobin concentration due to load application at measurement time t C'deoxy (t): Change in reduced hemoglobin concentration due to load application at measurement time t Noxy (t): Noise or oxidation at measurement time t High frequency fluctuation of hemoglobin concentration Ndeoxy (t): High frequency fluctuation of reduced hemoglobin concentration at noise or measurement time t Here, if A (λ) and S (λ) do not change in the state of applying and not applying load, That is, assuming that the change in the measurement signal caused by the load is caused only by the change in the oxidized and reduced hemoglobin concentrations, the difference between the expressions (2) and (3) is expressed by the following expression (4).
[0023]
Ln {Str (λ, t) / Sm (λ, t)} = εoxy (λ) {C′oxy (t) + Noxy (t)} d
+ Εdeoxy (λ) {C'deoxy (t) + Ndeoxy (t)} d (4)
Here, the time change of the relative change amount of the oxidized and reduced hemoglobin concentration due to the load is represented by ΔCoxy (t) and ΔCdeoxy (t), respectively, and is defined by the following equation.
ΔCoxy (t) = {C'oxy (t) + Noxy (t)} d
ΔCdeoxy (t) = {C'deoxy (t) + Ndeoxy (t)} d (5)
Here, since it is usually difficult to specify d, the dimension of these density changes is the product of the density and the distance d.
[0024]
However, in equation (5), the distance d acts in the same way as ΔCoxy and ΔCdeoxy, so equation (5) is used as the relative change of each hemoglobin concentration. If two wavelengths are used for the measurement, the obtained equation (4) is a binary simultaneous equation for ΔCoxy (t) and ΔCdeoxy (t), and the predicted no-load signal Str (λ, t) and the measurement signal Sm ( From λ, t), ΔCoxy (t) and ΔCdeoxy (t) are obtained. Further, the values represented by ΔCoxy (t) and ΔCdeoxy (t) other than the load time and the relaxation time are represented by C′oxy (t) = 0 and C′deoxy (t) = 0, so that noise or biological oxidation This indicates the high-frequency fluctuation of the hemoglobin concentration and the reduced hemoglobin. The ΔCoxy (t) signal 20 and ΔCdeoxy (t) signal 21 shown in FIG.
[0025]
FIGS. 5 and 6 show contour image (topographic image) created from the temporal change of the relative change amount of the oxyhemoglobin concentration at each of the measurement points with the movement of the left finger and the right finger of the subject as loads. A method of creating a topography image is as follows. The computer 11 calculates a time integration value (or a time average value) of the relative change ΔCoxy (t) signal 20 during the load application time (the hatched period in FIG. 4), and calculates each measurement point. The values in between are created by linearly interpolating in the X-axis direction and the Y-axis direction. As the topographic image, in addition to the contour lines as shown in FIGS. From the comparison between the images in FIGS. 5 and 6, it is apparent that the oxyhemoglobin concentration is increased at a specific position during the right hand exercise. By displaying such spatial distribution information as an image, the recognition of the measurement result is made quick and easy. The images shown in FIGS. 5 and 6 were created using the time integrated value of the relative change in concentration during the load application time, and similarly, the images were similarly calculated based on the relative change in the oxyhemoglobin concentration at each measurement point at the same measurement time. It is also possible to create a topographic image. If the plurality of created topography images are displayed or displayed as a moving image in the order of the measurement time, it is possible to grasp the time change of the relative change amount of the oxyhemoglobin concentration.
[0026]
Further, the self- and cross-correlation functions of the time change of the relative change amount of the oxyhemoglobin concentration at one arbitrary measurement point and the time change of the relative change amount of the oxyhemoglobin concentration of the own and other measurement points are calculated, and the correlation function at each measurement point is calculated. Topographic images can also be created. Since the correlation function at each measurement point is a function defined by the time lag τ, if a topography is created from the values of the correlation function at the same time lag τ and displayed in the order of τ or displayed as a moving image, changes in blood dynamics Can be visualized as it propagates.
Here, the relative change in the oxyhemoglobin concentration is described as a representative, but the relative change in the reduced hemoglobin concentration or the total change in the total hemoglobin concentration calculated by the sum of the relative changes in the oxidized and reduced hemoglobin concentrations is described. Quantities can create topography as well.
[0027]
FIG. 7 shows a display example in which the topography image 22 created by the method described above is superimposed on the brain surface image 23 of the subject. Since the topography image 22 is a change in the blood dynamics of the brain that has changed in relation to the function of the living body, it is desirable to display the topography image 22 so as to overlap the brain surface image. The brain surface image 23 is measured and displayed by three-dimensional MRI or three-dimensional X-ray CT. The topography image 22 creates a topography image by performing coordinate transformation so that the coordinates of each measurement point are located on the brain surface, and interpolating values between the measurement points after the coordinate transformation. When the created topography image 22 and the brain surface image 23 are superimposed and displayed, the color of the superimposed topography image 22 is made translucent so that the underlying brain surface image can be seen through.
[0028]
FIG. 8 is a diagram for explaining a measurement point coordinate conversion method. When a morphological image of three-dimensional MRI or three-dimensional X-ray CT is taken, if a marker is placed at a measurement point set by the biological optical measurement device and taken, the skin and bone image 24 and brain image 25 are obtained from the taken morphological information. And the marker image 26 can be displayed. The photographed image has three-dimensional coordinate information. Therefore, a perpendicular 28 is calculated from the measurement point 27 indicated by the marker image 26 to the skin surface or the bottom surface of the marker image 26 at the measurement point 27, and a point that intersects with the brain image 25 is defined as a coordinate-transformed measurement point 29. As shown in the present embodiment, in the case of measuring brain function, it is known that a hemodynamic change correlated with the load occurs mainly on the brain surface (cerebral cortex). For the above reason, it is possible to know the depth at which the measurement point is coordinate-transformed by using the morphological information of the living body. However, if the measurement target is another living organ such as a muscle, it may not be possible to know the depth of the coordinate transformation from the morphological information. When the present method is used for the measurement as described above, the light propagation in the living body is calculated in advance by numerical calculation according to the Monte Carlo method, and the depth that greatly contributes to the measurement signal is obtained. Convert the measurement point to coordinates.
[0029]
【The invention's effect】
The present invention uses a low-cost light irradiating unit and photodetector, and can perform high-speed processing with an economical apparatus because of simple arithmetic processing, and can correspond to a planar image representing the shape of the measured object. Since the function can be imaged, it is an effective means particularly for measuring a predetermined function of a living body.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration of an embodiment of a living body light measuring device according to the present invention. FIG. 2 is a diagram for explaining an embodiment of an image creating method using the above living body light measuring device. FIG. 4 is a diagram illustrating a temporal change of a measurement signal at one measurement point of the above embodiment and a predicted no-load signal 15 obtained from the measurement signal. FIG. 5 is a diagram showing a topographic image in one embodiment of the living body light measuring device according to the present invention; FIG. 6 is a diagram showing a topographic image in one embodiment of the living body light measuring device according to the present invention; FIG. FIG. 8 is a view showing a display example of a topography image in one embodiment of the optical measurement apparatus. FIG. 8 is a view for explaining a coordinate conversion method in another embodiment of the biological light measurement apparatus according to the present invention.
1: oscillator, 2: light source, 3: optical fiber, 4: coupler, 5: optical fiber,
6: subject, 7: photodetection optical fiber, 8: photodetector, 9: lock-in amplifier,
10: analog-digital converter, 11: computer, 12: storage device,
13: display device, 14: measurement signal, 15: predicted no-load signal, 16: subject,
17: incident point, 18: detection point, 19: measurement point, 20: ΔCoxy (t) signal,
21: ΔCdeoxy (t) signal, 22: topography image,
23: brain surface image, 24: skin and bone image, 25: brain image, 26: marker image,
27: measurement point, 28: perpendicular, 29: coordinate-converted measurement point.

Claims (21)

被検体頭部に対し光を照射する複数の光照射手段と、
前記光照射手段から照射され、前記被検体内部で反射された光を検出する複数の受光手段とを有し、
前記複数の光照射手段と前記複数の受光手段とは、それぞれ前記被検体上に格子状に交互に配置されており、
前記受光手段は、前記受光手段に隣接する複数の前記光照射手段から照射された光を検出し、
前記光照射手段から照射された光は、前記光照射手段に隣接する複数の前記受光手段で検出され、
前記受光手段で検出された信号から計測対象の信号の空間分布を算出する演算手段を有することを特徴とする脳の血液動態変化を計測するための生体光計測装置。
A plurality of light irradiating means for irradiating the subject's head with light,
A plurality of light receiving means for detecting light emitted from the light irradiation means and reflected inside the subject,
The plurality of light irradiation units and the plurality of light receiving units are arranged alternately in a grid on the subject, respectively.
The light receiving unit detects light emitted from the plurality of light irradiation units adjacent to the light receiving unit,
Light emitted from the light irradiation means is detected by a plurality of light receiving means adjacent to the light irradiation means,
A biological light measurement device for measuring a change in blood dynamics of the brain, comprising a calculation means for calculating a spatial distribution of a signal to be measured from the signal detected by the light receiving means.
被検体頭部に対し光を照射する複数の光照射手段と、
前記光照射手段から照射され、前記被検体内部で反射された光を検出する複数の受光手段とを有し、
前記複数の光照射手段と前記複数の受光手段とは、それぞれ前記被検体上に格子状に交互に配置されており、
前記受光手段は、前記受光手段からほぼ等距離にあり前記受光手段に隣接する複数の前記光照射手段から照射された光を検出し、
前記受光手段で検出された信号から計測対象の信号の空間分布を算出する演算手段を有することを特徴とする脳の血液動態変化を計測するための生体光計測装置。
A plurality of light irradiating means for irradiating the subject's head with light,
A plurality of light receiving means for detecting light emitted from the light irradiation means and reflected inside the subject,
The plurality of light irradiation units and the plurality of light receiving units are arranged alternately in a grid on the subject, respectively.
The light receiving unit detects light emitted from the plurality of light irradiation units adjacent to the light receiving unit at substantially the same distance from the light receiving unit,
A biological light measurement device for measuring a change in blood dynamics of the brain, comprising a calculation means for calculating a spatial distribution of a signal to be measured from the signal detected by the light receiving means.
前記計測対象の信号の空間分布を表示する画像表示手段を有することを特徴とする請求項1または2に記載の生体光計測装置。The biological light measurement device according to claim 1, further comprising an image display unit that displays a spatial distribution of the measurement target signal. 前記画像表示手段は、前記計測対象の信号を計測時間の順に従って、あるいは動画像として表示することを特徴とする請求項3に記載の生体光計測装置。The biological light measurement device according to claim 3, wherein the image display means displays the signal of the measurement target in the order of measurement time or as a moving image. 前記光照射手段が照射する光を所定の変調周波数で強度変調する変調器と、
前記変調器が変調した光を変調周波数ごとに分離する分離手段とを有することを特徴とする請求項1または2に記載の生体光計測装置。
A modulator that intensity-modulates the light irradiated by the light irradiation unit at a predetermined modulation frequency,
The biological light measurement device according to claim 1, further comprising a separation unit configured to separate light modulated by the modulator for each modulation frequency.
前記変調器は前記光照射手段の位置ごとに、異なる変調周波数で光を強度変調することを特徴とする請求項5記載の脳の血液動態変化を計測するための生体光計測装置。6. The living body light measurement device for measuring a change in cerebral blood dynamics according to claim 5, wherein the modulator intensity-modulates light at a different modulation frequency for each position of the light irradiation unit. 前記光照射手段は波長の異なる複数の光を照射することを特徴とする請求項1または2に記載の生体光計測装置。The biological light measuring device according to claim 1, wherein the light irradiating unit irradiates a plurality of lights having different wavelengths. 前記光照射手段が照射する光の波長の数は、計測対象の吸収体の数と同じであることを特徴とする請求項7記載の生体光計測装置。The biological light measurement device according to claim 7, wherein the number of wavelengths of the light irradiated by the light irradiation unit is the same as the number of absorbers to be measured. 前記光照射手段が照射する光を、波長ごとに異なる変調周波数で強度変調する変調器と、
前記変調器が変調した光を変調周波数ごとに分離する分離手段とを有することを特徴とする請求項7または8に記載の生体光計測装置。
A modulator that irradiates the light irradiated by the light irradiating unit with intensity at a different modulation frequency for each wavelength,
The biological light measurement device according to claim 7, further comprising: a separation unit configured to separate light modulated by the modulator for each modulation frequency.
前記分離手段は前記変調器の変調信号で駆動するロックインアンプで構成されることを特徴とする請求項5、6、または9のいずれか一に記載の生体光計測装置。10. The living body light measurement device according to claim 5, wherein the separation unit is configured by a lock-in amplifier driven by a modulation signal of the modulator. 前記計測対象の信号は、酸化ヘモグロビンまたは還元ヘモグロビン濃度の相対変化量であることを特徴とする請求項1または2に記載の生体光計測装置。The biological light measurement device according to claim 1, wherein the signal to be measured is a relative change amount of the oxyhemoglobin or reduced hemoglobin concentration. 前記画像表示手段は、前記計測対象の信号を酸化ヘモグロビンまたは還元ヘモグロビン濃度の相対変化量の時間積分値または時間平均値として表示することを特徴とする請求項3に記載の生体光計測装置。The biological light measurement device according to claim 3, wherein the image display means displays the signal to be measured as a time integrated value or a time average value of a relative change amount of the oxyhemoglobin or reduced hemoglobin concentration. 前記画像表示手段は、前記計測対象の信号を脳機能に伴う血液動態変化を表す分布として表示することを特徴とする請求項3に記載の生体光計測装置。The bio-optical measurement apparatus according to claim 3, wherein the image display unit displays the signal of the measurement target as a distribution representing a change in blood dynamics associated with a brain function. 前記画像表示手段は、前記計測対象の信号を等高線、または強度信号を表す色の濃淡、または色彩による識別表示により表示することを特徴とする請求項3に記載の生体光計測装置。The biological light measurement device according to claim 3, wherein the image display means displays the signal of the measurement target by a contour line or an identification display based on a shade or color of a color representing an intensity signal. 前記光照射手段が照射する光は、可視から近赤外領域の波長の光であることを特徴とする請求項1または2に記載の生体光計測装置。The biological light measurement device according to claim 1, wherein the light irradiated by the light irradiation unit is light having a wavelength in a visible to near-infrared region. 計測点は前記光照射手段と前記受光手段の略中点であり、
前記演算手段は、複数の前記計測点間における前記計測対象の信号を、前記計測点における前記計測対象の信号から演算処理により補間信号として算出し、
前記画像表示手段は、前記補間信号を表示することを特徴とする請求項3に記載の生体光計測装置。
The measurement point is a substantially middle point between the light irradiation unit and the light receiving unit,
The calculation means calculates the signal of the measurement target between the plurality of measurement points as an interpolation signal by a calculation process from the signal of the measurement target at the measurement point,
4. The living body light measurement device according to claim 3, wherein the image display unit displays the interpolation signal.
前記画像表示手段は、前記計測対象の信号を前記被検体の脳画像上に重ね合わせて表示することを特徴とする請求項3に記載の生体光計測装置。4. The living body light measurement device according to claim 3, wherein the image display unit displays the signal of the measurement target superimposed on a brain image of the subject. 前記脳画像は、三次元MRIまたは三次元X線CTにより計測された画像であることを特徴とする請求項17記載の生体光計測装置。18. The living body optical measurement device according to claim 17, wherein the brain image is an image measured by three-dimensional MRI or three-dimensional X-ray CT. 前記光照射手段は波長の異なる光源および、前記光源から照射された光を照射位置に導く導波手段を有することを特徴とする請求項1または2に記載の生体光計測装置。The biological light measurement device according to claim 1, wherein the light irradiating unit includes a light source having a different wavelength and a waveguide unit that guides light emitted from the light source to an irradiation position. 計測点は前記光照射手段と前記受光手段の略中点であり、
前記演算手段は、第一の前記計測点における前記計測対象の信号強度の時間変化と、第二の前記計測点における前記計測対象の信号強度の時間変化との相互相関関数を求める計算手段を有することを特徴とする請求項3に記載の生体光計測装置。
The measurement point is a substantially middle point between the light irradiation unit and the light receiving unit,
The calculation means has calculation means for calculating a cross-correlation function between a time change of the signal strength of the measurement object at the first measurement point and a time change of the signal strength of the measurement object at the second measurement point. The biological light measurement device according to claim 3, wherein:
前記画像表示手段は、前記相互相関関数の値を表示することを特徴とする請求項20記載の生体光計測装置。21. The biological light measurement device according to claim 20, wherein the image display unit displays a value of the cross-correlation function.
JP16982095A 1994-10-06 1995-07-05 Biological light measurement device Expired - Lifetime JP3599426B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP16982095A JP3599426B2 (en) 1995-07-05 1995-07-05 Biological light measurement device
US08/539,871 US5803909A (en) 1994-10-06 1995-10-06 Optical system for measuring metabolism in a body and imaging method
US09/149,155 US6128517A (en) 1994-10-06 1998-09-08 Optical system for measuring metabolism in a body and imaging method
US09/203,610 US6282438B1 (en) 1994-10-06 1998-12-02 Optical system for measuring metabolism in a body and imaging method
US09/900,144 US7286870B2 (en) 1994-10-06 2001-07-09 Optical system for measuring metabolism in a body and imaging method
US11/037,282 US7440794B2 (en) 1994-10-06 2005-01-19 Optical system for measuring metabolism in a body and imaging method
US11/037,339 US7715904B2 (en) 1994-10-06 2005-01-19 Optical system for measuring metabolism in a body and imaging method
US11/037,338 US8050744B2 (en) 1994-10-06 2005-01-19 Optical system for measuring metabolism in a body and imaging method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16982095A JP3599426B2 (en) 1995-07-05 1995-07-05 Biological light measurement device

Related Child Applications (3)

Application Number Title Priority Date Filing Date
JP2002189452A Division JP3648497B2 (en) 2002-06-28 2002-06-28 Biological light measurement device and image creation method in the device
JP2004190629A Division JP3646729B2 (en) 2004-06-29 2004-06-29 Biological light measurement device
JP2004190630A Division JP3952045B2 (en) 2004-06-29 2004-06-29 Biological light measurement device

Publications (2)

Publication Number Publication Date
JPH0919408A JPH0919408A (en) 1997-01-21
JP3599426B2 true JP3599426B2 (en) 2004-12-08

Family

ID=15893510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16982095A Expired - Lifetime JP3599426B2 (en) 1994-10-06 1995-07-05 Biological light measurement device

Country Status (1)

Country Link
JP (1) JP3599426B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9913607B2 (en) 2014-12-26 2018-03-13 The Yokohama Rubber Co., Ltd. Collision avoidance system and collision avoidance method
US10144349B2 (en) 2014-12-26 2018-12-04 The Yokohama Rubber Co., Ltd. Collision avoidance system and collision avoidance method

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2210703C (en) * 1995-11-17 2001-10-09 Hitachi, Ltd. Optical measurement instrument for living body
JP4055266B2 (en) * 1998-10-13 2008-03-05 株式会社日立製作所 Optical measuring device
JP3977947B2 (en) 1998-12-07 2007-09-19 株式会社日立製作所 Optical measurement method and apparatus
WO2001019252A1 (en) 1999-09-14 2001-03-22 Hitachi Medical Corporation Biological light measuring instrument
JP4603718B2 (en) * 2001-04-26 2010-12-22 株式会社日立メディコ Biological light measurement device
JP4642279B2 (en) * 2001-06-28 2011-03-02 株式会社日立メディコ Biological light measurement device
JP2003322612A (en) * 2002-04-30 2003-11-14 Communication Research Laboratory Brain-activity measuring apparatus and head mounting implement for brain-activity measurement
US7654962B2 (en) * 2003-06-26 2010-02-02 Hoana Medical, Inc. Radiation stress non-invasive blood pressure method
JP4575296B2 (en) * 2003-10-15 2010-11-04 株式会社コーセー Evaluation method inside the target object by transmitted light
JP4403453B2 (en) 2003-11-13 2010-01-27 株式会社島津製作所 Method for converting head surface coordinates into brain surface coordinates, and transcranial brain function measuring device using the converted data
JP4813128B2 (en) * 2005-08-25 2011-11-09 学校法人日本大学 Functional near-infrared spectrometer signal analyzer, functional near-infrared spectrometer, and program
JP4817808B2 (en) * 2005-11-08 2011-11-16 株式会社日立メディコ Biological light measurement device
WO2007135993A1 (en) 2006-05-23 2007-11-29 Hitachi Medical Corporation Biophotonic measurement instrument
JP5248758B2 (en) * 2006-09-08 2013-07-31 株式会社島津製作所 Optical measuring device
JP4876808B2 (en) * 2006-09-14 2012-02-15 株式会社島津製作所 Brain function data controller
US8498695B2 (en) 2006-12-22 2013-07-30 Novadaq Technologies Inc. Imaging system with a single color image sensor for simultaneous fluorescence and color video endoscopy
JP5019968B2 (en) * 2007-06-20 2012-09-05 株式会社日立メディコ Biological light measurement device
JP5126778B2 (en) * 2007-12-18 2013-01-23 株式会社日立メディコ Biological light measurement device
US9173554B2 (en) 2008-03-18 2015-11-03 Novadaq Technologies, Inc. Imaging system for combined full-color reflectance and near-infrared imaging
JP5303184B2 (en) * 2008-05-08 2013-10-02 株式会社日立製作所 Biological light measurement device
CN102170826B (en) * 2008-10-01 2013-07-24 株式会社日立医疗器械 Biological light measurement device and position display method of light irradiation position and light detection position or measurement channel
WO2010050170A1 (en) * 2008-10-30 2010-05-06 株式会社日立製作所 Organism light measuring device
EP2591732B8 (en) 2010-07-06 2016-12-21 Hitachi, Ltd. Biological photometric device and biological photometry method using same
CN107582016B (en) 2011-03-08 2020-04-28 诺瓦达克技术公司 Full-spectrum LED illuminator
JP5382666B2 (en) * 2011-04-21 2014-01-08 学校法人 聖マリアンナ医科大学 Concentration measuring device and concentration measuring method
JP2013122443A (en) * 2011-11-11 2013-06-20 Hideo Ando Biological activity measuring method, biological activity measuring device, method for transfer of biological activity detection signal and method for provision of service using biological activity information
JP5238087B1 (en) 2012-02-20 2013-07-17 浜松ホトニクス株式会社 Concentration measuring device and concentration measuring method
JP2014239871A (en) 2013-05-07 2014-12-25 安東 秀夫 Biological activity detection method, biological activity measuring apparatus, biological activity detection signal transfer method, and providing method of service using biological activity information
US10548518B2 (en) 2014-06-23 2020-02-04 Hitachi, Ltd. Biophotonic measurement device and method
WO2017079844A1 (en) 2015-11-13 2017-05-18 Novadaq Technologies Inc. Systems and methods for illumination and imaging of a target
EP4155716A1 (en) 2016-01-26 2023-03-29 Stryker European Operations Limited Image sensor assembly
CN107088071B (en) 2016-02-17 2021-10-15 松下知识产权经营株式会社 Biological information detection device
USD916294S1 (en) 2016-04-28 2021-04-13 Stryker European Operations Limited Illumination and imaging device
US10869645B2 (en) 2016-06-14 2020-12-22 Stryker European Operations Limited Methods and systems for adaptive imaging for low light signal enhancement in medical visualization
US11140305B2 (en) 2017-02-10 2021-10-05 Stryker European Operations Limited Open-field handheld fluorescence imaging systems and methods
JP6399528B2 (en) * 2017-03-30 2018-10-03 学校法人 聖マリアンナ医科大学 Concentration measuring device and method of operating the concentration measuring device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9913607B2 (en) 2014-12-26 2018-03-13 The Yokohama Rubber Co., Ltd. Collision avoidance system and collision avoidance method
US10144349B2 (en) 2014-12-26 2018-12-04 The Yokohama Rubber Co., Ltd. Collision avoidance system and collision avoidance method

Also Published As

Publication number Publication date
JPH0919408A (en) 1997-01-21

Similar Documents

Publication Publication Date Title
JP3599426B2 (en) Biological light measurement device
US7440794B2 (en) Optical system for measuring metabolism in a body and imaging method
JPH0998972A (en) Measurement equipment of light from living body and image generation method
Scholkmann et al. A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology
JP3142079B2 (en) Optical CT device
US7142906B2 (en) Optical measurement instrument for living body
EP0904011B1 (en) Apparatus for imaging microvascular blood flow
EP2591732B1 (en) Biological photometric device and biological photometry method using same
EP2155043B1 (en) Imaging apparatus and imaging method
JP4097522B2 (en) Biological light measurement device
WO2003002004A1 (en) Biological optical measuring instrument
JP5248758B2 (en) Optical measuring device
JP3648497B2 (en) Biological light measurement device and image creation method in the device
JP3646729B2 (en) Biological light measurement device
JP3304559B2 (en) Optical measurement method and device
JP3952045B2 (en) Biological light measurement device
JP2001198112A (en) Organismic light measuring device
KR101801473B1 (en) Apparatus for brain imaging using bundled light elements
JP6412956B2 (en) Biological light measurement device, analysis device, and method
DE19838606A1 (en) Method for non=invasive measurement of localised cerebral blood flow
Yamamoto et al. Development and application of noninvasive optical topography
JP2002365209A (en) Living-body light measuring apparatus

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040518

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040914

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070924

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120924

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120924

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 9

EXPY Cancellation because of completion of term