JP2002365209A - Living-body light measuring apparatus - Google Patents

Living-body light measuring apparatus

Info

Publication number
JP2002365209A
JP2002365209A JP2001173396A JP2001173396A JP2002365209A JP 2002365209 A JP2002365209 A JP 2002365209A JP 2001173396 A JP2001173396 A JP 2001173396A JP 2001173396 A JP2001173396 A JP 2001173396A JP 2002365209 A JP2002365209 A JP 2002365209A
Authority
JP
Japan
Prior art keywords
light
irradiation
condensing
intensity
transmitted light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001173396A
Other languages
Japanese (ja)
Inventor
Masafumi Kiguchi
雅史 木口
Naoki Tanaka
尚樹 田中
Atsushi Maki
敦 牧
Takeshi Yamamoto
剛 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001173396A priority Critical patent/JP2002365209A/en
Publication of JP2002365209A publication Critical patent/JP2002365209A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a living-body light measuring apparatus whose detection sensitivity is high in the deep part of a living body. SOLUTION: A subject 7 is irradiated, via irradiation optical fibers 5-1, 5-2, with beams of light from light sources 1-1, 1-3 (at a wavelength of λ1) and light sources 1-2, 1-4 (at a wavelength of λ2), the beams of light are condensed by condensation optical fibers 8-1, 8-2 so as to be photoelectrically converted and amplified by detectors 9-1, 9-2. Output signals from the detectors 9-1, 9-2 are distributed into two, they are input to phase detectors 10-1, 10-2, 10-3, 10-4, intensities of beams of transmitted light at each wavelength from the fibers 8-1, 8-2 in positions facing the fibers 5-1, 5-2 are separated, a mutual time correlation is computed at each wavelength so as to be processed, and a computed result is displayed on a display device 15.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は生体光計測装置に関
し、特に生体内部の光吸収物質の濃度変化を、光を用い
て無侵襲に計測および画像化する生体光計測装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a biological optical measurement device, and more particularly to a biological optical measurement device for non-invasively measuring and imaging a change in concentration of a light absorbing substance in a living body using light.

【0002】[0002]

【従来の技術】生体内部を簡便かつ無侵襲に測定する装
置が臨床医療で望まれており、この要望に対し、生体光
計測は非常に有効である。その第1の理由は、生体内部
の酸素代謝機能は生体中の特定色素(ヘモグロビン、チ
トクロ−ムaa3、ミオグロビン等)すなわち光吸収物
質の濃度に対応し、この色素濃度は光(可視から近赤外
領域の波長)吸収量から求められるからである。また、
光計測が有効である第2、第3の理由として、光は光フ
ァイバによって扱いが簡便であり、さらに安全基準の範
囲内での使用により生体に害を与えないことが挙げられ
る。
2. Description of the Related Art An apparatus for simply and non-invasively measuring the inside of a living body is desired in clinical medicine, and living body optical measurement is very effective for this demand. The first reason is that the oxygen metabolism function in the living body corresponds to the concentration of a specific dye (hemoglobin, cytochrome aa3, myoglobin, etc.) in the living body, that is, the concentration of a light absorbing substance. This is because it is determined from the amount of absorption in the outer region). Also,
The second and third reasons why optical measurement is effective are that light is easy to handle with an optical fiber and that it does not harm the living body when used within the safety standards.

【0003】上記光計測の利点を利用して、可視から近
赤外の波長の光を生体に照射し、照射位置から10〜5
0mm程度離れた位置での反射光から生体内部を測定す
る生体光計測装置が、たとえば、特開昭63−2770
38号公報および特開平5−300887号公報に記載
されている。さらに、後述する本発明が解決しようとし
ている課題と同じ課題を解決しようとする発明が特開平
9−135825号公報に記載されている。
[0003] Taking advantage of the above-mentioned optical measurement, the living body is irradiated with light having a wavelength from visible to near-infrared, and 10 to 5 light is applied from the irradiation position.
A biological light measuring device for measuring the inside of a living body from reflected light at a position separated by about 0 mm is disclosed in, for example, Japanese Patent Application Laid-Open No. 63-2770.
38 and JP-A-5-300887. Further, an invention for solving the same problem as the problem to be solved by the present invention to be described later is described in JP-A-9-135825.

【0004】[0004]

【発明が解決しようとする課題】光を用いた生体計測で
は、生体の強い光散乱特性(散乱係数=約1.0[1/
mm]程度)により、照射された光は生体内で大きく拡
がるため、計測量には生体内部の広範囲な吸収物質濃度
が含まれてしまう。特に、検出感度の空間特性は、光照
射および検出位置に近い生体の浅部の感度が生体の深部
の感度に比して大きい点に問題がある。そのため、生体
深部の吸収物質濃度変化を精度よく計測することは困難
である。たとえば、生体脳の血行動態変化を頭皮上から
計測する場合、上記の理由により皮膚や頭骨部の血行動
態変化が計測値に大きく反映するという問題がある。そ
のため、生体深部の吸収物質の濃度変化を高い精度で計
測することは困難である。
In living body measurement using light, strong light scattering characteristics of a living body (scattering coefficient = about 1.0 [1 /
mm]), the irradiated light is greatly spread in the living body, so that the measured amount includes a wide range of the concentration of the absorbing substance in the living body. In particular, the spatial characteristic of the detection sensitivity has a problem in that the sensitivity of a shallow portion of the living body near the light irradiation and detection position is larger than the sensitivity of a deep portion of the living body. For this reason, it is difficult to accurately measure a change in the concentration of an absorbent substance in a deep part of a living body. For example, when measuring the hemodynamic change of the living brain from above the scalp, there is a problem that the hemodynamic change of the skin or the skull greatly reflects on the measured value for the above-described reason. For this reason, it is difficult to measure the concentration change of the absorbent substance in the deep part of the living body with high accuracy.

【0005】上記の問題を解決するための従来技術とし
て特開平9−135825号公報に記載の発明がある。
この従来技術では複数の検出器からの信号を乗算する方
法をとっているが、生体浅部の異なる位置の血行動態変
化がある程度相関を有する場合には、単純な乗算や積算
だけではその影響を完全には除ききれない。
As a prior art for solving the above problem, there is an invention described in Japanese Patent Application Laid-Open No. Hei 9-135825.
This conventional technique employs a method of multiplying signals from a plurality of detectors.However, when hemodynamic changes at different positions in a shallow part of a living body have a certain degree of correlation, simple multiplication and integration alone can reduce the effect. It cannot be completely removed.

【0006】本発明の目的は、生体浅部の血行動態変化
の影響をより一層除去し、生体深部での吸収物質の濃度
変化を、より高い精度で計測する生体光計測装置を提供
することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a living body optical measurement device for measuring the change in the concentration of an absorbing substance in a deep part of a living body with higher accuracy by further eliminating the influence of a change in hemodynamics in a shallow part of the living body. is there.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明の装置は、複数の照射部から照射された照射
光を、被検体を透過した透過光として被検体の複数の検
出位置で集光し、それぞれの照射部から発せられた照射
光のそれぞれの光路が重なるような配置とし、各検出器
からの信号の相互時間相関を演算する手段を備えたこと
を特徴とする。
In order to achieve the above object, an apparatus according to the present invention uses irradiation light radiated from a plurality of irradiation units as transmitted light transmitted through the object to detect a plurality of detection positions of the object. And a means for calculating a mutual time correlation of signals from the detectors so that the respective optical paths of irradiation light emitted from the respective irradiation units overlap.

【0008】また、本発明の装置は強度変調周波数を有
する透過光または所定の強度変調周波数を有する所定の
波長の透過光を光電変換により上記所定の強度変調周波
数を有する透過光強度信号に変換する光電変換部と透過
光強度信号が入力される位相検波部とを有し、位相検波
部に光照射位置の所定の波長の光に与えた強度変調周波
数に対応する信号を入力し、位相検波部からの出力信号
を、所定の強度変調周波数をもつ透過光の強度として検
出する手段を備える。
Further, the apparatus of the present invention converts transmitted light having an intensity modulation frequency or transmitted light having a predetermined wavelength having a predetermined intensity modulation frequency into a transmitted light intensity signal having the predetermined intensity modulation frequency by photoelectric conversion. A photoelectric conversion unit and a phase detection unit to which a transmitted light intensity signal is input; a signal corresponding to an intensity modulation frequency given to light having a predetermined wavelength at a light irradiation position is input to the phase detection unit; For detecting the output signal from the controller as the intensity of transmitted light having a predetermined intensity modulation frequency.

【0009】あるいは、本発明の装置は透過光強度信号
が入力されるアナログ−デジタル変換部を有し、透過光
強度信号をアナログ−デジタル変換部に入力してフーリ
エ変換して周波数空間の生体透過光強度信号を求め、光
照射位置の所定の波長毎または所定の光照射位置ごとに
与えられた強度変調周波数に対応する信号をアナログ−
デジタル変換部に入力してフーリエ変換することにより
所定の参照周波数を求め、所定の参照周波数と等しい周
波数における上記周波数空間の生体透過光強度信号を、
所定の強度変調周波数をもつ透過光の強度として演算す
る手段を備える。
Alternatively, the apparatus of the present invention has an analog-to-digital converter to which a transmitted light intensity signal is input, and inputs the transmitted light intensity signal to an analog-to-digital converter to perform Fourier transform to transmit the transmitted light intensity signal to a living body in a frequency space. A light intensity signal is obtained, and a signal corresponding to an intensity modulation frequency given for each predetermined wavelength of the light irradiation position or for each predetermined light irradiation position is analog-converted.
A predetermined reference frequency is obtained by performing a Fourier transform by inputting to the digital conversion unit, and a living body transmitted light intensity signal of the frequency space at a frequency equal to the predetermined reference frequency,
Means are provided for calculating the intensity of transmitted light having a predetermined intensity modulation frequency.

【0010】また、本発明の装置において上記照射部と
集光部とは、所定領域のほぼ中心を通る直線と被検体の
表面とが交わる点を中心とする少なくとも1つの円上で
あり、所定の直径を有する円上に等間隔に配置され、円
の中心が点対称中心となるような点対称位置に照射部と
集光部とが配置され、光照射位置のそれぞれからの複数
の波長毎の透過光強度を複数の集光位置ごとに検出し、
光照射位置のそれぞれからの複数の波長毎の透過光強度
から集光位置と点対称位置にある照射位置からの波長毎
の透過光強度を選択し、同一円上で上記集光部から90
度の位置に配置された第2の集光部において当該第2の
集光位置と点対称位置にある第2の照射位置からの同一
波長の透過光強度との間で相互時間相関を算する。
[0010] In the apparatus of the present invention, the irradiating section and the condensing section are on at least one circle centered on a point where a straight line passing substantially through the center of the predetermined area and the surface of the subject intersect. The irradiation unit and the light condensing unit are arranged at equal intervals on a circle having a diameter of, and the center of the circle is a point symmetric center, and a plurality of wavelengths from each of the light irradiation positions are arranged. Detects the transmitted light intensity of
From the transmitted light intensity for each of the plurality of wavelengths from each of the light irradiation positions, the transmitted light intensity for each of the wavelengths from the irradiation position that is symmetrical with the light condensing position is selected.
A second time correlation is calculated between the second light-collecting position and the transmitted light intensity of the same wavelength from the second irradiation position at the point-symmetric position in the second light-collecting unit arranged at the position of the degree. .

【0011】図4は、第1の照射部101と第1の集光
部111、および第2の照射部102と第2の集光部1
12を、円100上に配置した場合の光路の概念図であ
る。上記2組の透過光信号は、それぞれの光路が重なる
所定領域の情報を共通に含み、その他にそれぞれの光路
が重ならない領域の情報をそれぞれに含んでいる。以
降、光路が重なる領域140を領域A、光路が重ならな
い領域131、132をそれぞれ領域B1、B2と呼ぶ
ことにする。
FIG. 4 shows the first irradiating section 101 and the first condensing section 111, and the second irradiating section 102 and the second condensing section 1.
12 is a conceptual diagram of an optical path when 12 is arranged on a circle 100. FIG. The two sets of transmitted light signals commonly include information of a predetermined area where the optical paths overlap, and additionally include information of an area where the optical paths do not overlap. Hereinafter, the region 140 where the optical paths overlap is referred to as a region A, and the regions 131 and 132 where the optical paths do not overlap are referred to as regions B1 and B2, respectively.

【0012】領域B1とB2の活動がお互いに無相関
で、かつ領域Aの活動との間にも相関が無い場合には、
この2組の透過光信号の乗算や積算により、領域Aの活
動に起因する情報を抽出できる。しかし、領域Aの活動
と領域B1およびB2の活動との間に相関がある場合
は、単純な乗算や積算では領域B1、B2の影響を除き
きることはできない。
If the activities of areas B1 and B2 are uncorrelated with each other and have no correlation with the activities of area A,
The information resulting from the activity in the area A can be extracted by multiplying or integrating the two sets of transmitted light signals. However, when there is a correlation between the activity in the region A and the activity in the regions B1 and B2, the effects of the regions B1 and B2 cannot be eliminated by simple multiplication or integration.

【0013】領域B1と領域B2の間の相互相関時間T
B1B2、および領域Aと領域B1またはB2の間の相
互相関時間(それぞれTAB1、TAB2とする)と比
較して領域Aの自己相関時間TAが異なれば、相関時間
の違いを用いてこれらを分離することができる。
The cross-correlation time T between the area B1 and the area B2
If the autocorrelation time TA of the region A is different from B1B2 and the cross-correlation time between the region A and the region B1 or B2 (referred to as TAB1 and TAB2, respectively), these are separated using the difference in the correlation time. be able to.

【0014】たとえば、外部刺激に起因する脳深部の情
報を観測する場合には、外部刺激時間がほぼTAに相当
するため、外部刺激を与え続ける時間を制御することに
より、TAをTB1B2やTAB1やTAB2より大き
くすることができる。上記2組の透過光信号をそれぞれ
f1(t)、f2(t)とすると、数1を満たすような
時間τについて数2で示す時間相関G(τ)を演算す
る。
For example, when observing information in the deep brain caused by an external stimulus, since the external stimulus time substantially corresponds to TA, the TA is controlled by controlling the time during which the external stimulus is continued to be applied to TB1B2, TAB1 or TAB1. It can be larger than TAB2. Assuming that the two sets of transmitted light signals are f1 (t) and f2 (t), a time correlation G (τ) shown in Expression 2 is calculated for a time τ satisfying Expression 1.

【0015】[0015]

【数1】 (Equation 1)

【数2】 ここで積算時間ti、tfは、良好なS/N比を実現で
きる観測時間とするが、領域B1、B2の影響を排除す
るには、τよりも十分長くとることが望ましく、領域A
の活動の時間変化を観察するためには、TAよりも短く
とることが必要となる。なお、通常の相関係数は相関度
合を表現するために規格化するが、ここでは領域の吸収
係数変化に依存するG(τ)の大きさを求めるために規
格化しない。
(Equation 2) Here, the integration times ti and tf are observation times at which a good S / N ratio can be realized. However, in order to eliminate the influence of the regions B1 and B2, it is desirable that the integration times be sufficiently longer than τ.
In order to observe the time change of the activity, it is necessary to make it shorter than TA. Note that the normal correlation coefficient is normalized to express the degree of correlation, but is not normalized here to obtain the magnitude of G (τ) depending on the change in the absorption coefficient of the region.

【0016】領域B1とB2の相互相関係数TB1B2
は、領域を離すことにより小さくなるため、上記同一円
上で最も互いの距離が大きくなる位置、つまり円上で互
いのなす角が90度の位置に配置した2組の照射部−集
光部組からの透過信号について相関演算を行う。90度
の位置にある2組の照射部−集光部組を1つの演算グル
ープと見なし、1つの領域Aについて複数の演算グルー
プを上記同一円上に配置し、それぞれのグループからの
相関演算結果の平均を算すれば、領域B1,B2の影響
をより一層低減できる。
The cross-correlation coefficient TB1B2 between the areas B1 and B2
Are smaller by separating the regions, so that two positions of the irradiating part and the condensing part are arranged at the position where the mutual distance is the largest on the same circle, that is, at the position where the angle between each other is 90 degrees on the circle. A correlation operation is performed on the transmitted signals from the set. The two irradiation unit-condenser units at the position of 90 degrees are regarded as one operation group, and a plurality of operation groups are arranged on the same circle for one area A, and the correlation operation result from each group is obtained. Is calculated, the influence of the regions B1 and B2 can be further reduced.

【0017】さらに、直径が小さい上記円上に設置され
た集光部で集光された透過光を被検体の浅部の情報と
し、直径が大きい円上に設置された集光部で集光された
透過光を被検体の深部の情報として、透過光を演算処理
する。
Further, the transmitted light condensed by the condensing portion provided on the circle having a small diameter is used as information on the shallow portion of the subject, and condensed by the condensing portion provided on a circle having a large diameter. The transmitted light is subjected to arithmetic processing using the transmitted light as information on the deep part of the subject.

【0018】[0018]

【発明の実施の形態】本発明に基づく実施の形態を示
す。本実施の形態では、生体中の酸化および還元ヘモグ
ロビンの濃度変化計測を目的として照射波長として2波
長用い、光照射位置および光検出位置を2カ所設定した
場合について説明するが、それぞれ波長数、光照射位置
および光検出位置を増やすことは容易である。また、波
長数を増加させることにより、酸化および還元ヘモグロ
ビン濃度の変化に加えて、チトクロームやミオグロビン
等他の光吸収物質濃度の変化を計測することができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment according to the present invention will be described. In the present embodiment, two wavelengths are used as irradiation wavelengths for the purpose of measuring changes in the concentrations of oxidized and reduced hemoglobin in a living body, and two light irradiation positions and two light detection positions are described. It is easy to increase the irradiation position and the light detection position. In addition, by increasing the number of wavelengths, it is possible to measure a change in the concentration of other light absorbing substances such as cytochrome and myoglobin in addition to a change in the concentration of oxidized and reduced hemoglobin.

【0019】図1に、本発明による装置構成を示す。特
定波長の光が、光源1−1、1−2、1−3、1−4よ
り発せられ、それぞれ光ファイバ2−1、2−2、2−
3、2−4に入射される。ここで、光源1−1、1−3
からの波長はλ1であり、光源1−2、1−4からの波
長はλ2で、400nmから2400nmの範囲から選
択する。特に、生体中の血行動態を計測する場合には、
700nmから1100nmの範囲から、波長差が50
nm以内となるように選択することが望ましい。
FIG. 1 shows an apparatus configuration according to the present invention. Light of a specific wavelength is emitted from the light sources 1-1, 1-2, 1-3, 1-4, and the optical fibers 2-1, 2-2, 2-, respectively.
3, 2-4. Here, the light sources 1-1, 1-3
Is λ1, and the wavelength from the light sources 1-2 and 1-4 is λ2, which is selected from the range of 400 nm to 2400 nm. In particular, when measuring hemodynamics in a living body,
From the range of 700 nm to 1100 nm, the wavelength difference is 50
It is desirable to select so as to be within nm.

【0020】また、光源1−1、1−2、1−3、1−
4はそれぞれ光源駆動回路4−1、4−2、4−3、4
−4により100Hzから10MHzの間の異なる周波
数f1、f2、f3、f4で強度変調されている。各光
源駆動回路4−1、4−2、4−3、4−4からの周波
数信号は参照周波数信号として、それぞれ、位相検波器
10−1、10−2、10−3、10−4に入力されて
いる。
The light sources 1-1, 1-2, 1-3, 1-
4 is a light source drive circuit 4-1, 4-2, 4-3, 4
-4, the intensity is modulated at different frequencies f1, f2, f3, f4 between 100 Hz and 10 MHz. The frequency signals from the respective light source driving circuits 4-1, 4-2, 4-3, and 4-4 are used as reference frequency signals, respectively, for the phase detectors 10-1, 10-2, 10-3, and 10-4. Has been entered.

【0021】光ファイバ2−1、2−2は光方向性結合
器3−1と接続し、光ファイバ2−3、2−4は光方向
性結合器3−2と接続しており、光源1−1、1−2か
らの光は混合されて照射用光ファイバ5−1に入射さ
れ、光源1−3、1−4からの光は混合されて照射用光
ファイバ5−2に入射される。照射用光ファイバ5−
1、5−2、および集光用光ファイバ8−1、8−2は
光ファイバホルダー6で固定されている。
The optical fibers 2-1 and 2-2 are connected to the optical directional coupler 3-1, and the optical fibers 2-3 and 2-4 are connected to the optical directional coupler 3-2. Light from the light sources 1-1 and 1-2 is mixed and incident on the irradiation optical fiber 5-1. Light from the light sources 1-3 and 1-4 is mixed and incident on the irradiation optical fiber 5-2. You. Irradiation optical fiber 5-
1, 5-2 and the condensing optical fibers 8-1 and 8-2 are fixed by an optical fiber holder 6.

【0022】照射用光ファイバ5−1、5−2から被検
者7に光を照射し、集光用光ファイバ8−1、8−2で
生体透過光を集光する。ここで、照射用光ファイバ5−
1、5−2と集光用光ファイバ8−1、8−2は、光フ
ァイバホルダー6の円上に等間隔に配置され、照射用光
ファイバ5−1、5−2に対向した位置に集光用光ファ
イバ8−1、8−2が配置される。光ファイバホルダー
6は、遮光性を高めるため黒色の材料もしくは黒色の材
料で被覆し、中空構造とすることが望ましい。また、照
射用光ファイバ5−1、5−2および集光用光ファイバ
8−1、8−2も黒色材料で被検者接触面以外を被覆す
ることが望ましい。さらに、照射用光ファイバ5−1、
5−2および集光用光ファイバ8−1、8−2の被検者
接触面には、接触による痛みを軽減する目的で、たとえ
ばビニール樹脂などのような照射波長に対して透過性の
よい材料で被覆する。
The subject 7 is irradiated with light from the irradiation optical fibers 5-1 and 5-2, and the light transmitted through the living body is collected by the collection optical fibers 8-1 and 8-2. Here, the irradiation optical fiber 5-
The optical fibers 1 and 5-2 and the condensing optical fibers 8-1 and 8-2 are arranged at equal intervals on the circle of the optical fiber holder 6, and are located at positions opposed to the irradiation optical fibers 5-1 and 5-2. The light collecting optical fibers 8-1 and 8-2 are arranged. The optical fiber holder 6 is desirably coated with a black material or a black material to enhance the light blocking effect, and has a hollow structure. It is also desirable that the irradiation optical fibers 5-1 and 5-2 and the condensing optical fibers 8-1 and 8-2 be covered with a black material on the surface other than the subject contact surface. Further, the irradiation optical fiber 5-1,
For the purpose of reducing the pain due to the contact, the 5-2 and the light-condensing optical fibers 8-1 and 8-2 have good transparency to the irradiation wavelength such as vinyl resin for the purpose of reducing the pain caused by the contact. Cover with material.

【0023】集光用光ファイバ8−1、8−2で集光さ
れた生体透過光は、それぞれ光検出器9−1、9−2に
入射され、各集光位置における生体透過光が光電変換お
よび増幅される。光検出器9−1、9−2には、光電子
増倍管やアバランシェフォトダイオードを用いる。光検
出器9−1からの出力信号は2つに分配された後、位相
検波器10−1、10−2に入力し、光検出器9−2か
らの出力信号は2つに分配された後、位相検波器10−
3、10−4に入力する。
The light transmitted through the living body condensed by the condensing optical fibers 8-1 and 8-2 is incident on the photodetectors 9-1 and 9-2, respectively. Converted and amplified. A photomultiplier or an avalanche photodiode is used for the photodetectors 9-1 and 9-2. After the output signal from the photodetector 9-1 is divided into two, it is input to the phase detectors 10-1 and 10-2, and the output signal from the photodetector 9-2 is divided into two. Later, the phase detector 10-
Input to 3, 10-4.

【0024】各位相検波器に入力した信号には照射した
全波長の生体透過光が混合しているが、位相検波器10
−1、10−2、10−3、10−4には、それぞれ光
源駆動回路4−1、4−2、4−3、4−4から参照周
波数が入力されているので、位相検波器10−1では光
源1−1からの生体透過光強度を、位相検波器10−2
では光源1−2からの生体透過光強度を、位相検波器1
0−3では光源1−3からの生体透過光強度を、位相検
波器10−4では光源1−4からの生体透過光強度を分
離検出し、演算装置14に取り込む。
The signals input to the respective phase detectors are mixed with the irradiated light transmitted through the living body of all wavelengths.
-1, 10-2, 10-3, and 10-4 are input with reference frequencies from the light source driving circuits 4-1, 4-2, 4-3, and 4-4, respectively. -1, the intensity of light transmitted through the living body from the light source 1-1 is compared with the phase detector 10-2.
Then, the intensity of light transmitted through the living body from the light source 1-2 is measured by the phase detector 1
At 0-3, the transmitted light intensity of the living body from the light source 1-3 is detected separately, and at the phase detector 10-4, the transmitted light intensity of the living body from the light source 1-4 is separately detected.

【0025】演算装置14は、アナログ−デジタル変換
機能と、時系列データを蓄積するメモリーを有し、数2
に記述される時間相関係数G(τ)を計算する。つま
り、波長λ1については位相検波器10−1の時系列信
号をf1(t)とし位相検波器10−3の時系列信号を
f2(t)とし、蓄積したこれらの時系列データを用い
て、あらかじめソフトウェア的に指定したτの値を用い
て、G(τ)を計算する。同様にλ2についても位相検
波器10−2と10−4の信号データを用いて計算を行
う。ここでは、ti=−0.5秒、tf=0秒、τ=
0.2秒とした。つまり、データ取得の度に、0.5秒
前からデータ取得時までのデータを用いてG(τ)を計
算し、G(τ)の時間変化を逐次得て、その平方根の値
を表示装置15に表示している。取り込まれた時系列デ
ータを全て記憶しておけば後にτを変更して計算しなお
すことも可能である。
The arithmetic unit 14 has an analog-digital conversion function and a memory for storing time-series data.
Is calculated. That is, for the wavelength λ1, the time series signal of the phase detector 10-1 is f1 (t), the time series signal of the phase detector 10-3 is f2 (t), and these accumulated time series data are used. G (τ) is calculated using the value of τ specified in advance by software. Similarly, the calculation of λ2 is performed using the signal data of the phase detectors 10-2 and 10-4. Here, ti = −0.5 seconds, tf = 0 seconds, τ =
0.2 seconds. That is, every time data is acquired, G (τ) is calculated using data from 0.5 seconds before to the time of data acquisition, a time change of G (τ) is sequentially obtained, and the value of the square root is displayed on the display device. 15. If all the fetched time-series data is stored, it is also possible to change τ later and recalculate.

【0026】さらに、演算装置14では、取り込まれた
2波長の透過光強度の時系列信号より、酸化ヘモグロビ
ン濃度の変化、還元ヘモグロビン濃度の変化および血液
量を表す酸化ヘモグロビン濃度の変化と還元ヘモグロビ
ン濃度の変化の和を演算し、時系列グラフとして表示装
置15に表示する。
Further, in the arithmetic unit 14, the change in oxyhemoglobin concentration, the change in reduced hemoglobin concentration, the change in oxyhemoglobin concentration representing blood volume and the change in oxyhemoglobin concentration, Is calculated and displayed on the display device 15 as a time series graph.

【0027】以上、1つの円上に照射用光ファイバ2本
と集光用光ファイバ2本を配置した場合について説明を
行った。以下、照射用光ファイバ数および集光用光ファ
イバ数を多数配置する場合の実施の形態を示す。
The case where two irradiation optical fibers and two light collecting optical fibers are arranged on one circle has been described above. Hereinafter, an embodiment in which a large number of irradiation optical fibers and a large number of light collecting optical fibers are arranged will be described.

【0028】図2に照射用光ファイバおよび集光用光フ
ァイバ配置の第1例を示す。本配置例では2重の同心円
上に、照射用光ファイバおよび集光用光ファイバを各4
本ずつ上記各同心円上に配置する例を示すが、照射用光
ファイバおよび集光用光ファイバを同心円上に多重化し
て設けることにより、種々の深さの所定位置での測定感
度を高めることができる。
FIG. 2 shows a first example of the arrangement of the irradiation optical fiber and the condensing optical fiber. In this arrangement example, four irradiation optical fibers and four condensing optical fibers are arranged on a double concentric circle.
Although an example of arranging the optical fibers and the converging optical fibers on the concentric circles is shown in each of the above examples in which the optical fibers for irradiation and the optical fibers for condensing are arranged on the concentric circles, it is possible to increase the measurement sensitivity at predetermined positions of various depths. it can.

【0029】照射用光ファイバ5−1、5−2、5−
3、5−4は同心円17−1の上に配置し、各照射用光
ファイバに対向する位置に、集光用光ファイバ8−1、
8−2、8−3、8−4を配置する。照射用光ファイバ
5−11、5−12、5−13、5−14は上記同心円
17−1の内部に設けた同心円17−2の上に複数配置
し、各照射用光ファイバの対向(180度)位置に、集
光用光ファイバ8−11、8−12、8−13、8−1
4を配置する。このような配置位置の固定は、たとえば
特開平9−135825に記載の光ファイバホルダーを
用いて行う。
Irradiation optical fibers 5-1, 5-2, 5-
3, 5-4 are arranged on the concentric circle 17-1, and the condensing optical fibers 8-1,
8-2, 8-3, and 8-4 are arranged. A plurality of irradiation optical fibers 5-11, 5-12, 5-13, and 5-14 are arranged on a concentric circle 17-2 provided inside the concentric circle 17-1, and the opposing optical fibers (180 Degree) position, the condensing optical fibers 8-11, 8-12, 8-13, 8-1
4 is arranged. The fixing of such an arrangement position is performed using an optical fiber holder described in, for example, Japanese Patent Application Laid-Open No. 9-135825.

【0030】同心円17−1の上で検出された生体透過
光強度を用いて演算した結果を深部の情報として割り当
てて生体内部のヘモグロビン濃度変化を演算し、同心円
17−2の上で検出された生体透過光強度を用いて演算
した結果を浅部の情報として割り当てて生体内部のヘモ
グロビン濃度の変化を演算することができる。また、同
心円17−2の上で検出された生体透過光強度から計算
されるヘモグロビン濃度変化に感度分布から推定される
所定の重み係数を乗じ、同心円17−1の上で検出した
生体透過光強度から計算されるヘモグロビン濃度の変化
から減算することで、所定の深さの深部の相対感度をさ
らに向上することも可能である。
A change in hemoglobin concentration inside the living body is calculated by assigning the result calculated using the intensity of the transmitted light from the living body detected on the concentric circle 17-1 as information on the deep part, and is detected on the concentric circle 17-2. A change in hemoglobin concentration inside the living body can be calculated by assigning a result calculated using the intensity of light transmitted through the living body as information of a shallow portion. Further, the change in hemoglobin concentration calculated from the intensity of the transmitted light of the living body detected on the concentric circle 17-2 is multiplied by a predetermined weighting factor estimated from the sensitivity distribution, and the intensity of the transmitted light of the living body detected on the concentric circle 17-1 is multiplied. By subtracting from the change in hemoglobin concentration calculated from the above, it is possible to further improve the relative sensitivity of a deep portion at a predetermined depth.

【0031】図3に照射用光ファイバおよび集光用光フ
ァイバ配置の第2例を示す。本配置例では、本発明に基
づき生体の様々な位置での計測を行う場合の効率的な配
置例を示している。本例では1つの円上に2組の照射用
光ファイバと集光用光ファイバを単位として配置した例
を示す。計測領域の拡張を行う場合には、図3に示すよ
うに正方格子頂点上に照射用光ファイバおよび集光用光
ファイバを配置し、各格子の対角線方向には相互に照射
用光ファイバと集光用光ファイバが位置するように配置
する。
FIG. 3 shows a second example of the arrangement of the irradiation optical fiber and the condensing optical fiber. In this arrangement example, an efficient arrangement example in a case where measurement is performed at various positions of a living body based on the present invention is shown. In this example, an example is shown in which two sets of irradiation optical fibers and light collecting optical fibers are arranged on a single circle. To extend the measurement area, as shown in FIG. 3, an irradiation optical fiber and a converging optical fiber are arranged on the square lattice apex, and the irradiation optical fiber and the converging optical fiber are mutually diagonal to each lattice. It is arranged so that the optical fiber for light is located.

【0032】ここでは、計測位置を9か所、即ち円18
−1から円18−9までの9個設定した場合、図3のよ
うに、照射用光ファイバ5−1から照射用光ファイバ5
−12までと、集光用光ファイバ8−1から集光用光フ
ァイバ8−12までを正方格子頂点上に配置する。この
配置により、異なる円の交差点に配置した照射用光ファ
イバと集光用光ファイバは、円交差数と同数の計測位置
に関して機能するため、より少ない本数の光ファイバ
で、多数の計測位置での計測が可能となる。さらに広い
領域の計測を行うため、計測位置を増加させることは容
易である。このような計測領域の広域化によって得られ
た結果より生体深部の血行動態の画像を得ることができ
る。
Here, nine measurement positions, that is, a circle 18
In the case where nine pieces from -1 to 18-18 are set, as shown in FIG.
-12 and the optical fibers 8-1 to 8-12 for focusing are arranged on the vertices of the square lattice. With this arrangement, the irradiation optical fiber and the condensing optical fiber arranged at the intersections of different circles function with respect to the same number of measurement positions as the number of circular intersections. Measurement becomes possible. Since a wider area is measured, it is easy to increase the measurement position. An image of hemodynamics in a deep part of a living body can be obtained from the result obtained by widening the measurement area.

【0033】本実施例では、波長805nmの照射光を
用い、透過光の強度から、酸化ヘモグロビン濃度変化、
還元ヘモグロビン濃度変化および酸化ヘモグロビン濃度
変化と還元ヘモグロビン濃度変化との和から演算される
総ヘモグロビン濃度変化を求め、総ヘモグロビン濃度変
化の時間変化を表示したが、透過光の強度から、総ヘモ
グロビン濃度変化を求めてもよく、照射光は700nm
から1100nmの範囲から少なくとも2波長の照射光
であってもよい。
In this embodiment, irradiation light having a wavelength of 805 nm is used.
The change in total hemoglobin concentration calculated from the sum of the change in reduced hemoglobin concentration and the change in oxyhemoglobin concentration and the change in reduced hemoglobin concentration was determined, and the time change of the total hemoglobin concentration change was displayed. And the irradiation light is 700 nm
Irradiation light of at least two wavelengths from the range of 1 to 1100 nm may be used.

【0034】[0034]

【発明の効果】本発明によって、生体の所定の深さの吸
収物質濃度変化を精度よく計測することができる。
According to the present invention, a change in the concentration of an absorbent at a predetermined depth in a living body can be accurately measured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る光計測装置の構成を示すブロック
図。
FIG. 1 is a block diagram showing a configuration of an optical measurement device according to the present invention.

【図2】本発明に係る光計測装置における照射用光ファ
イバおよび集光用光ファイバの配置例を示す説明図。
FIG. 2 is an explanatory view showing an arrangement example of an irradiation optical fiber and a condensing optical fiber in the optical measurement device according to the present invention.

【図3】本発明に係る光計測装置における照射用光ファ
イバおよび集光用光ファイバの別の配置例を示す説明
図。
FIG. 3 is an explanatory view showing another arrangement example of the irradiation optical fiber and the condensing optical fiber in the optical measurement device according to the present invention.

【図4】本発明に係る光計測装置の観察領域を示す概念
図。
FIG. 4 is a conceptual diagram showing an observation area of the optical measurement device according to the present invention.

【符号の説明】[Explanation of symbols]

1−1,1−2,1−3,1−4…光源、2−1,2−
2,2−3,2−4…光ファイバ、3−1,3−2…光
方向性結合器、4−1,4−2,4−3,4−4…光源
駆動回路、5−1,5−2,5−3,5−4,5−5,
5−6,5−7,5−8,5−11,5−12,5−1
3,5−14…照射用光ファイバ、6…光ファイバホル
ダー、7…被検者、8−1,8−2,8−3,8−4,
8−5,8−6,8−7,8−8,8−11,8−1
2,8−13,8−14…集光用光ファイバ、9−1,
9−2…光検出器、10−1,10−2,10−3,1
0−4…位相検波器、14…演算装置、15…表示装
置、17−1,17−2…同心円、18−1,18−
2,18−3,18−4,18−5,18−6,18−
7,18−8,18−9…円、100…円、101,1
02…照射部、111,112…集光部、131…領域
B1、132…領域B2、140…領域A。
1-1, 1-2, 1-3, 1-4 ... light source, 2-1 and 2-
2, 2-3, 2-4: optical fiber, 3-1, 3-2: optical directional coupler, 4-1, 4-2, 4-3, 4-4: light source drive circuit, 5-1 , 5-2,5-3,5-4,5-5
5-6, 5-7, 5-8, 5-11, 5-12, 5-1
3, 5-14: irradiation optical fiber, 6: optical fiber holder, 7: subject, 8-1, 8-2, 8-3, 8-4,
8-5,8-6,8-7,8-8,8-11,8-1
2,8-13,8-14 ... concentrating optical fiber, 9-1,
9-2 Photodetector, 10-1, 10-2, 10-3, 1
0-4: phase detector, 14: arithmetic device, 15: display device, 17-1, 17-2: concentric circles, 18-1, 18-
2,18-3,18-4,18-5,18-6,18-
7, 18-8, 18-9: circle, 100: circle, 101, 1
02: irradiating section, 111, 112: condensing section, 131: area B1, 132 ... area B2, 140 ... area A.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 牧 敦 埼玉県比企郡鳩山町赤沼2520番地 株式会 社日立製作所基礎研究所内 (72)発明者 山本 剛 埼玉県比企郡鳩山町赤沼2520番地 株式会 社日立製作所基礎研究所内 Fターム(参考) 2G059 AA06 BB12 BB13 EE01 GG03 HH01 HH02 JJ17 KK02 KK03 MM09  ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Atsushi Maki 2520 Akanuma, Hatoyama-cho, Hiki-gun, Saitama Pref.Hitachi, Ltd. F-term in Hitachi Basic Research Laboratory (reference) 2G059 AA06 BB12 BB13 EE01 GG03 HH01 HH02 JJ17 KK02 KK03 MM09

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】複数の波長の照射光を被検体の複数の照射
位置に照射する複数の照射部を有する光照射手段と、上
記被検体を透過した透過光を上記被検体の複数の検出位
置で集光する複数の集光部であり、それぞれの上記照射
部から発せられた上記照射光のそれぞれの光路が重なる
ように上記透過光を集光する複数の集光部を有する集光
手段と、上記透過光から上記複数の光照射位置ごとにか
つ上記波長ごとに上記透過光の光強度を検出する検出手
段と、上記透過光の強度を演算処理する演算処理手段と
を有し、上記光照射手段は、上記照射位置ごとに照射さ
れる上記照射光に波長ごとに異なる周波数の強度変調を
与える変調部を有し、上記演算処理手段は、上記透過光
の中から所定の強度変調周波数の光を検出または上記透
過光の中から所定の強度変調周波数の光の強度を演算す
る検出演算手段を有し、特に上記検出位置ごとに検出演
算された信号の相互時間相関を演算することを特徴とす
る生体光計測装置。
A light irradiating means having a plurality of irradiating units for irradiating irradiation light of a plurality of wavelengths to a plurality of irradiation positions of a subject; and transmitting light transmitted through the subject to a plurality of detection positions of the subject. A plurality of condensing portions for condensing the light, and a condensing means having a plurality of condensing portions for condensing the transmitted light so that respective optical paths of the irradiation light emitted from the respective irradiation portions overlap each other. Detecting means for detecting the light intensity of the transmitted light from the transmitted light for each of the plurality of light irradiation positions and for each of the wavelengths; and arithmetic processing means for calculating the intensity of the transmitted light; The irradiating means has a modulating unit for applying intensity modulation of a different frequency for each wavelength to the irradiating light irradiated for each of the irradiating positions, and the arithmetic processing means has a predetermined intensity modulating frequency of the transmitted light from the transmitting light. Detect light or select from the above transmitted light Has a detection means for calculating the intensity of light intensity modulation frequencies, the biological light measuring device, in particular characterized by calculating the cross-time correlation detection calculation signal for each of the detection positions.
【請求項2】上記演算処理手段において、上記相互時間
相関演算を行う際に用いる相関時間パラメータを、上記
被検体の所定領域の自己相関時間より短く、かつ上記透
過光が通過する上記被検体の上記所定領域以外の領域と
上記所定領域との間の相互相関時間より長く設定するこ
とを特徴とする請求項1に記載の生体光計測装置。
2. The method according to claim 1, wherein the arithmetic processing means sets a correlation time parameter used for performing the cross-time correlation calculation shorter than an auto-correlation time of a predetermined area of the subject, and of the subject through which the transmitted light passes. The living body light measurement device according to claim 1, wherein the biological light measurement device is set to be longer than a cross-correlation time between an area other than the predetermined area and the predetermined area.
【請求項3】上記照射部と上記集光部とは、上記被検体
の上記所定領域のほぼ中心を通る直線と上記被検体の表
面とが交わる点を中心とする少なくとも1つの円上であ
り、所定の直径を有する円上に等間隔に配置され、上記
円の中心が点対称中心となるような点対称位置に上記照
射部と上記集光部とが配置され、上記検出手段は、上記
光照射位置のそれぞれからの上記複数の波長毎の上記透
過光強度を上記複数の集光位置ごとに検出し、上記演算
処理手段は、上記光照射位置のそれぞれからの上記複数
の波長毎の上記透過光強度から上記集光位置と点対称位
置にある上記照射位置からの波長毎の透過光強度を選択
し、上記選択した集光位置と同一円上で90度の位置に
ある第2の集光位置で検出された、上記第2の集光位置
と点対称位置にある第2の照射位置からの所定波長を有
する透過光強度を選択し、上記選択した2つの透過光強
度の間の相互時間相関を演算することを特徴とする請求
項1または2に記載の生体光計測装置。
3. The irradiating section and the condensing section are on at least one circle centered on a point at which a straight line passing substantially through the center of the predetermined region of the subject and the surface of the subject intersect. Are arranged at equal intervals on a circle having a predetermined diameter, the irradiating unit and the condensing unit are arranged at point-symmetric positions such that the center of the circle becomes the center of point symmetry, and the detecting means The transmitted light intensity for each of the plurality of wavelengths from each of the light irradiation positions is detected for each of the plurality of condensing positions, and the arithmetic processing unit performs the processing for each of the plurality of wavelengths from each of the light irradiation positions. From the transmitted light intensity, the transmitted light intensity for each wavelength from the irradiation position which is point-symmetrical to the light-collecting position is selected, and the second light-collecting position located at 90 ° on the same circle as the selected light-collecting position is selected. It is located at a point symmetrical position with respect to the second focusing position detected at the light position. The biological light according to claim 1 or 2, wherein a transmitted light intensity having a predetermined wavelength from the second irradiation position is selected, and a mutual time correlation between the selected two transmitted light intensities is calculated. Measuring device.
JP2001173396A 2001-06-08 2001-06-08 Living-body light measuring apparatus Pending JP2002365209A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001173396A JP2002365209A (en) 2001-06-08 2001-06-08 Living-body light measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001173396A JP2002365209A (en) 2001-06-08 2001-06-08 Living-body light measuring apparatus

Publications (1)

Publication Number Publication Date
JP2002365209A true JP2002365209A (en) 2002-12-18

Family

ID=19014861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001173396A Pending JP2002365209A (en) 2001-06-08 2001-06-08 Living-body light measuring apparatus

Country Status (1)

Country Link
JP (1) JP2002365209A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101069153B1 (en) 2008-11-20 2011-09-30 서울대학교산학협력단 Optical Brain Response Monitoring Device For Closed-loop Deep Brain Stimulation
JP2013533774A (en) * 2010-07-09 2013-08-29 セント ヴィンセンツ ホスピタル(メルボルン)リミテッド Non-invasive measurement of blood oxygen saturation
JP2016064113A (en) * 2014-04-28 2016-04-28 株式会社東芝 Ultrasonic diagnostic apparatus and biological light measurement device
CN109596525A (en) * 2018-10-23 2019-04-09 浙江亨达光学有限公司 A kind of method for real-time measurement and instrument detecting tissue activity

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101069153B1 (en) 2008-11-20 2011-09-30 서울대학교산학협력단 Optical Brain Response Monitoring Device For Closed-loop Deep Brain Stimulation
JP2013533774A (en) * 2010-07-09 2013-08-29 セント ヴィンセンツ ホスピタル(メルボルン)リミテッド Non-invasive measurement of blood oxygen saturation
JP2017023820A (en) * 2010-07-09 2017-02-02 セント ヴィンセンツ ホスピタル(メルボルン)リミテッド Non-invasive measurement of blood oxygen saturation
US9717446B2 (en) 2010-07-09 2017-08-01 St. Vincent's Hospital (Melbourne) Limited Non-invasive measurement of blood oxygen saturation
JP2016064113A (en) * 2014-04-28 2016-04-28 株式会社東芝 Ultrasonic diagnostic apparatus and biological light measurement device
CN109596525A (en) * 2018-10-23 2019-04-09 浙江亨达光学有限公司 A kind of method for real-time measurement and instrument detecting tissue activity
CN109596525B (en) * 2018-10-23 2021-08-03 浙江亨达光学有限公司 Real-time measuring method and instrument for detecting tissue activity

Similar Documents

Publication Publication Date Title
Scholkmann et al. A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology
US6282438B1 (en) Optical system for measuring metabolism in a body and imaging method
JP3599426B2 (en) Biological light measurement device
JP6596430B2 (en) Near infrared and diffusion correlation spectroscopy devices and methods
Humeau et al. Laser Doppler perfusion monitoring and imaging: novel approaches
JP3433498B2 (en) Method and apparatus for measuring internal information of scattering medium
JP3107914B2 (en) Apparatus and method for measuring absorption information inside scattering absorber
Liu et al. Fast and sensitive diffuse correlation spectroscopy with highly parallelized single photon detection
US7774047B2 (en) Optical measurement instrument for living body
KR100490461B1 (en) Stethoscope
JP3588880B2 (en) Biological light measurement device
JPH11506202A (en) Method for minimizing scatter and improving tissue sampling in non-invasive examination and imaging
Dunaev et al. Substantiation of medical and technical requirements for noninvasive spectrophotometric diagnostic devices
JP3928051B2 (en) Psychological state evaluation device
CN101677765A (en) Biological information imaging apparatus, biological information analyzing method, and biological information imaging method
JPH0998972A (en) Measurement equipment of light from living body and image generation method
CN102908164A (en) Apparatus and method for acquiring information on subject
US20080144004A1 (en) Optical Spectrophotometer
CN104146714A (en) Organizer local oxyhemoglobin saturation variation topology imaging device and method
JP3359756B2 (en) Biological light measurement device
JP2002365209A (en) Living-body light measuring apparatus
JP3801172B2 (en) Biological light measurement device
JPH07120384A (en) Method and apparatus for optical measurement
CN108882922A (en) Optical measurement instrument for living body and biological light measuring method
JP6412956B2 (en) Biological light measurement device, analysis device, and method