WO2009116472A1 - 載置台構造及び熱処理装置 - Google Patents

載置台構造及び熱処理装置 Download PDF

Info

Publication number
WO2009116472A1
WO2009116472A1 PCT/JP2009/054937 JP2009054937W WO2009116472A1 WO 2009116472 A1 WO2009116472 A1 WO 2009116472A1 JP 2009054937 W JP2009054937 W JP 2009054937W WO 2009116472 A1 WO2009116472 A1 WO 2009116472A1
Authority
WO
WIPO (PCT)
Prior art keywords
mounting table
heat
heat reflecting
table structure
mounting
Prior art date
Application number
PCT/JP2009/054937
Other languages
English (en)
French (fr)
Inventor
大輔 鳥屋
弘彦 山本
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to CN2009801007683A priority Critical patent/CN101903980B/zh
Priority to US12/918,244 priority patent/US20100323313A1/en
Publication of WO2009116472A1 publication Critical patent/WO2009116472A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68792Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by the construction of the shaft
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4586Elements in the interior of the support, e.g. electrodes, heating or cooling devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67103Apparatus for thermal treatment mainly by conduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation

Definitions

  • the present invention relates to a heat treatment apparatus and a mounting table structure for performing a predetermined heat treatment on an object to be processed such as a semiconductor wafer.
  • a desired integrated circuit is obtained by repeatedly performing various processes such as a film forming process, an etching process, a heat treatment, a modification process, and a crystallization process on a target object such as a semiconductor wafer.
  • a necessary processing gas corresponding to the type of the process for example, a film forming gas or a halogen gas in the case of a film forming process, and an ozone gas in the case of a reforming process.
  • an inert gas such as N 2 gas or O 2 gas is introduced into the treatment container.
  • a mounting table with a built-in resistance heater is installed in a processing container that can be evacuated.
  • a semiconductor wafer is placed on the upper surface, and a predetermined processing gas is flowed in a state heated at a predetermined temperature (for example, 100 ° C. to 1000 ° C.), and various heat treatments are performed on the semiconductor wafer under predetermined process conditions.
  • a predetermined temperature for example, 100 ° C. to 1000 ° C.
  • a resistance heater is embedded as a heating element in a ceramic material such as AlN and integrally baked at a high temperature to form a mounting table.
  • the mounting table structure is manufactured by welding the integrated baking side of the mounting table and the support column, for example, by heat diffusion bonding.
  • the mounting table structure integrally formed in this way is provided upright at the bottom of the processing container.
  • quartz glass having heat and corrosion resistance is used instead of the ceramic material.
  • FIG. 10 is a sectional view showing an example of a conventional mounting table structure.
  • This mounting table structure is provided in a processing vessel that can be evacuated.
  • this mounting table structure has a disk-shaped mounting table 2 made of a ceramic material such as AlN. is doing.
  • a cylindrical column 4 made of a ceramic material such as AlN is joined and integrated at the center of the lower surface of the mounting table 2 by, for example, thermal diffusion bonding. Therefore, both are airtightly joined by the thermal diffusion joining portion 6.
  • the size of the mounting table 2 described above is about 350 mm in diameter when the semiconductor wafer size is 300 mm, for example, and the diameter of the column 4 is about 50 to 60 mm.
  • a heating means 8 such as a heater is provided in the mounting table 2 to heat the semiconductor wafer W as a target object on the mounting table 2.
  • the lower end of the support column 4 is in an upright state by being fixed to the container bottom 9 by a fixing block 10. And the connecting terminal 12 with respect to the said heating means 8 is provided in the center part of the lower surface of the said mounting base 2 by making a hole in this.
  • a power supply rod 14 whose upper end is connected to the connection terminal 12 of the heating means 8 is provided, and the lower end side of the power supply rod 14 is interposed through an insulating member 16. And penetrates the bottom of the container downward and is drawn out.
  • the mounting table 2 itself is in a high temperature state.
  • the material constituting the support column 4 is made of a ceramic material having a thermal conductivity that is not so good.
  • the mounting table 2 and the column 4 are joined by thermal diffusion, it is inevitable that a large amount of heat escapes from the center side of the mounting table 2 to the column 4 side through the column 4.
  • FIG. 11 is a temperature distribution diagram showing an example of the temperature distribution on the surface of the mounting table 2.
  • the temperature distribution when the film forming process is performed with the process temperature set at 650 ° C. is shown, and isotherms at intervals of “2 ° C.” are shown. According to this, it can be seen that the temperature at the center of the mounting table 2 is the lowest and a cool spot is generated here, and a maximum temperature difference of about 23 ° C. occurs in the surface of the mounting table 2.
  • the temperature of the mounting table 2 reaches 700 ° C. or more, so the temperature difference becomes considerably large. In addition to this, damage due to the thermal stress due to repeated heating and lowering of the mounting table. Has been promoted.
  • An object of the present invention is to prevent a cool spot from being generated at the center of the mounting table, to prevent the mounting table itself from being damaged, and to achieve in-plane uniformity of heat treatment on the object to be processed.
  • An object of the present invention is to provide a mounting table structure and a heat treatment apparatus that can be enhanced.
  • the present invention provides a mounting table structure for mounting a target object to be heat-treated provided in a processing container of a heat treatment apparatus, and a mounting table for mounting the target object, A cylindrical column that is connected to the center of the lower surface and supports the mounting table, and a heat reflecting unit that is provided in the upper part of the column so as to be close to the lower surface of the mounting table.
  • This is a mounting table structure.
  • the heat reflecting portion is provided in the upper part of the cylindrical column supporting the mounting table so as to be close to the lower surface of the mounting table.
  • the radiant heat radiated from the lower surface of the center portion of the mounting table can be reflected back by the heat reflecting portion.
  • it is possible to prevent the cool spot from being generated at the center of the mounting table, to prevent the mounting table itself from being damaged, and to improve the in-plane uniformity of the heat treatment for the object to be processed. it can.
  • the heat reflecting portion is composed of a single heat reflecting plate or a plurality of heat reflecting plates arranged in a plurality of stages.
  • the heat reflecting plate includes a heat insulating plate and a heat reflecting layer provided on the upper surface side of the heat insulating plate.
  • the heat reflecting plate includes a metal plate or a metal layer.
  • the metal plate is made of one material selected from the group consisting of copper, aluminum, aluminum alloy, gold, and stainless steel.
  • the heat insulating plate is made of a ceramic material.
  • the heat reflecting portion is supported by a support bar that stands up from the bottom of the processing container.
  • the mounting table is provided with a heating means for heating the object to be processed, a power supply rod for supplying power to the heating means is provided in the support column, and the support rod is formed in a pipe shape.
  • the power feeding rod is inserted into the support rod.
  • the mounting table is provided with a mounting table electrode, and a power supply rod for supplying power to the mounting table electrode is provided in the support column, and the support bar is formed in a pipe shape, The power feeding rod is inserted into the support rod.
  • the support rod is made of a metal or a ceramic material.
  • the heat reflecting portion is supported on the inner wall of the support column.
  • the present invention relates to a heat treatment apparatus for performing a predetermined heat treatment on an object to be processed, and a processing container that can be evacuated, and a mounting table provided for mounting the object to be processed in the processing container.
  • a heat treatment apparatus comprising: a heat treatment apparatus.
  • the heat reflecting portion is provided in the upper part of the cylindrical column supporting the mounting table so as to approach the lower surface of the mounting table. Radiant heat radiated from the lower surface of the central portion can be reflected by the heat reflecting portion and returned. As a result, it is possible to prevent the cool spot from being generated at the center of the mounting table, to prevent the mounting table itself from being damaged, and to improve the in-plane uniformity of the heat treatment for the object to be processed. it can.
  • FIG. 1 is a block diagram showing a heat treatment apparatus using a mounting table structure according to the present invention.
  • FIG. 2 is a partially enlarged perspective view schematically showing a part of the mounting table structure.
  • FIG. 3 is a cross-sectional view schematically showing the mounting table structure.
  • FIG. 4 is an enlarged cross-sectional view schematically showing a joint portion between the mounting table and the column.
  • FIG. 5 is an exploded perspective view showing an example of a support rod for supporting the heat reflecting plate.
  • FIG. 6 is a graph showing the relationship between the wavelength of heat rays (light) and the emissivity / absorption rate.
  • FIG. 7 is an enlarged sectional view showing the structure of the first modified embodiment of the heat reflecting portion.
  • FIG. 1 is a block diagram showing a heat treatment apparatus using a mounting table structure according to the present invention.
  • FIG. 2 is a partially enlarged perspective view schematically showing a part of the mounting table structure.
  • FIG. 3 is a cross-sectional view
  • FIG. 8 is a diagram showing a structure of a second modified embodiment of the heat reflecting portion.
  • FIG. 9 is a partial enlarged cross-sectional view showing the structure of the third modified embodiment of the heat reflecting portion.
  • FIG. 10 is a sectional view showing an example of a conventional mounting table structure.
  • FIG. 11 is a temperature distribution diagram showing an example of the temperature distribution on the surface of the mounting table.
  • FIG. 1 is a block diagram showing a heat treatment apparatus using a mounting table structure according to the present invention
  • FIG. 2 is a partially enlarged perspective view schematically showing a part of the mounting table structure
  • FIG. 3 schematically shows the mounting table structure
  • 4 is an enlarged cross-sectional view schematically showing a joint portion between the mounting table and the support column
  • FIG. 5 is an exploded perspective view showing an example of a support bar for supporting the heat reflecting plate.
  • the heat treatment apparatus 20 includes a processing container 22 formed into a cylindrical shape using, for example, an aluminum alloy.
  • a processing container 22 formed into a cylindrical shape using, for example, an aluminum alloy.
  • an exhaust space 24 is provided by being recessed downward in a convex shape, and is formed by a bottomed cylindrical partition wall 26, and the bottom of the partition wall 26 is the bottom of the vessel. It has become a part of.
  • An exhaust port 28 is provided on the side wall of the partition wall 26, and an exhaust pipe 30 having a pressure adjusting valve, a vacuum pump, and the like (not shown) interposed therebetween is connected to the exhaust port 28.
  • the processing vessel is adapted to evacuate 22 to the desired pressure. In some cases, the heat treatment may be performed near atmospheric pressure without using plasma.
  • a loading / unloading port 32 for loading / unloading a semiconductor wafer W as an object to be processed is formed on the side wall of the processing container 22, and a gate valve 34 is provided at the loading / unloading port 32.
  • the gate valve 34 is opened and closed when carrying in / out.
  • a shower head 38 as a gas introducing means is provided through the insulating member 36 in the opening.
  • a seal member 40 made of, for example, an O-ring is interposed between the shower head 38 and the insulating member 36 in order to maintain airtightness in the container.
  • a gas introduction port 42 is provided in the upper part of the shower head 38, and a plurality of gas injection holes 44 are provided in the lower gas injection surface so as to inject a necessary processing gas toward the processing space S. It has become.
  • the inside of the shower head 38 is a single space, but there is also a shower head of a type in which the internal space is divided into a plurality of parts and different gases are separately supplied to the processing space S without being mixed in the shower head 38. is there.
  • the shower head 38 has a function as an upper electrode for plasma generation. Specifically, the shower head 38 is connected to a high frequency power supply 48 for plasma generation via a matching circuit 46. .
  • the frequency of the high frequency power supply 48 is, for example, 13.56 MHz, but is not limited to this frequency.
  • the mounting table structure 50 includes a mounting table 52 formed in a substantially disc shape on which a semiconductor wafer W is directly mounted on a mounting surface which is an upper surface thereof, and the mounting table 52 is supported upright from the bottom of the container. And a heat reflecting portion 56, which is a feature of the present invention and is provided in the upper portion of the column 54.
  • the lifting pin mechanism 58 that pushes up and supports the semiconductor wafer W when it is loaded and unloaded.
  • the lifting pin mechanism 58 has, for example, three (only two are shown in the drawing) lifting pins 60 arranged at equal intervals along the circumferential direction of the mounting table 52, and the lower ends of the lifting pins 60.
  • the part is supported by an arcuate base plate 62, for example.
  • the base plate 62 is connected to an elevating rod 66 that penetrates the bottom of the container and can be moved up and down by an actuator 64, and the through hole at the bottom of the container of the elevating rod 66 maintains the airtightness in the container.
  • a bellows 68 that can be expanded and contracted to allow the lifting rod 66 to move up and down is provided.
  • the mounting table 52 is provided with pin insertion holes 70 corresponding to the above-described lifting pins 60.
  • the lifting pins 60 inserted through the pin insertion holes 70 can be moved up and down on the mounting surface to move the semiconductor wafer W up and down.
  • the entire mounting table 52 and the entire support column 54 are made of a material having no metal contamination and excellent in heat resistance, such as a ceramic material or quartz.
  • the column 54 is formed in a cylindrical shape here, and is airtightly bonded to the center of the lower surface of the mounting table 52 by heat diffusion bonding, welding, or the like.
  • the lower end portion of the support column 54 is connected to a peripheral portion of an opening 74 formed in the bottom portion of the container via a seal member 72 such as an O-ring to maintain airtightness in the container by a bolt (not shown).
  • a seal member 72 such as an O-ring
  • the ceramic material aluminum nitride (AlN), aluminum oxide (Al 2 O 3 ), silicon carbide (SiC), quartz (SiO 2 ), or the like can be used.
  • a chuck electrode 76 of an electrostatic chuck as a mounting table electrode and a heater part 78 as a heating means are embedded.
  • a carbon wire heater can be used as the heater section 78.
  • the chuck electrode 76 is provided immediately below the mounting surface to attract and hold the semiconductor wafer W by electrostatic force, and the heater portion 78 is provided below the chuck electrode 76 to heat the semiconductor wafer W. It has become.
  • the chuck electrode 76 is also used as a lower electrode for plasma.
  • the chuck electrode 76 and the heater portion 78 are made of a refractory metal, a compound thereof, or an alloy of the metal, and examples of the refractory metal include W, Mo, V, Cr, Mn, Nb, Ta. Etc., and Mo or W or an alloy thereof is mainly used.
  • the heater section 78 is electrically separated into a plurality of, for example, two concentric circles, for example, two heating zones, that is, an inner heating zone 80A and an outer heating zone 80B, so that the temperature can be controlled for each zone. It has become. That is, two power supply rods 82A and 82B are connected to the portion of the heater portion 78 corresponding to the inner heating zone 80A, and the portion of the heater portion 78 corresponding to the outer heating zone 80B is connected to the portion of the heater portion 78 corresponding to the outer heating zone 80B. Two power supply rods 82C and 82D are connected to each other, and power control can be performed individually for each zone. Similarly, a power feed rod 82E is connected to the chuck electrode 76 which also serves as a lower electrode.
  • FIG. 2 only two power supply rods 82A and 82B for the heater section 78 in the inner heating zone 80A are shown as representatives.
  • the respective power supply rods 82A to 82E are concentrated in the central portion.
  • FIG. 1 and FIG. 4 each power supply rod 82A to 82E is shown for easy understanding of the contents of the invention. Is expanded in the horizontal direction.
  • the power supply rods 82A to 82E are inserted downward in the cylindrical support column 54 and extend downward from the opening 74 at the bottom of the container.
  • the power supply rods 82A to 82D for the heater section 78 are connected to a heater power supply 86 via lines 84A, 84B, 84C and 84D, respectively.
  • the power supply rod 82E for the chuck electrode 76 is connected to a DC power supply 88 for chuck and a high frequency power supply 90 for bias via a line 84E.
  • the mounting table 52 is also provided with a rod-shaped thermocouple for temperature measurement that is inserted through the column 54.
  • the heat reflection part 56 is provided in the upper part in such a support
  • the heat reflecting portion 56 includes a plurality of heat reflecting plates 92A, 92B, 92C, 92D, and 92E, for example, at a predetermined pitch. It is comprised by arrange
  • the heat reflecting plates 92A to 92E are set to have a diameter slightly smaller than the inner diameter of the support column 54, for example, and have a thickness of about 0.5 to 2.0 mm, thereby reducing the heat capacity itself. .
  • the heat reflecting plates 92A to 92E are arranged in the vertical direction at a pitch of about 1.2 mm, for example.
  • Each of the heat reflecting plates 92A to 92E is made of, for example, a metal plate such as copper, and reflects the radiant heat from the mounting table 52 positioned above it toward the mounting table 52 again.
  • the metal plate one material selected from the group consisting of copper, aluminum, aluminum alloy, gold, and stainless steel can be used.
  • the heat reflecting plates 92A to 92E are supported by support rods 94 standing in the support column 54 from the bottom of the processing vessel 22. Specifically, as shown in FIG. 5, here, there are five support rods 94A, 94B, 94C, 94D, 94E corresponding to the heat reflecting plates 92A to 92E. The heat reflecting plates 92A to 92E are supported by 94A to 94E, respectively.
  • each of the support rods 94A to 94E is formed in a pipe shape (cylindrical shape), and the corresponding heat reflecting plates 92A to 92E to be supported on the upper end portions thereof are fixed by welding or the like.
  • the power feeding rods 82A to 82E are inserted into the pipe-shaped support rods 94A to 94E, respectively.
  • the heat reflecting plates 92A to 92E are formed with insertion holes 96 through which the support rods 94A to 94E or the power feeding rods 82A to 82E are inserted. These insertion holes 96 have a small diameter at a portion where only the power feeding rods 82A to 82E are inserted, and a large diameter at a portion where each of the support rods 94A to 94E is inserted.
  • Each of the heat reflecting plates 92A to 92E is also formed with a thermocouple insertion hole 98 for inserting a rod-shaped thermocouple (not shown) (see FIG. 5). The diameters of the thermocouple insertion holes 98 are all the same.
  • each of the pipe-like support bars 94A to 94E is made of a metal or a ceramic material.
  • each of the power feed bars 82A inserted through them. Sufficient space should be secured so as not to cause a short circuit with -82E.
  • the metal of each of the power supply rods 82A to 82E the same material as that of the heat reflecting plates 92A to 92E can be used.
  • an inert gas such as N 2 is introduced into the cylindrical support 54 formed as described above by the inert gas supply unit 100 to oxidize each metal surface. It comes to prevent.
  • a rare gas such as Ar can be used in addition to the N 2 gas.
  • the unprocessed semiconductor wafer W is loaded into the processing container 22 through the gate valve 34 and the loading / unloading port 32 that are opened by being held by a transfer arm (not shown). After the semiconductor wafer W is transferred to the raised lift pins 60, the lift pins 60 are lowered to place the semiconductor wafer W on the upper surface of the mounting table 52 of the mounting table structure 50. To support.
  • a film forming gas is supplied to the shower head 38 as various processing gases while controlling the flow rate, and this gas is injected from the gas injection holes 44 and introduced into the processing space S.
  • the vacuum pump provided in the exhaust pipe 30 is continuously driven to evacuate the atmosphere in the processing container 22 and the exhaust space 24 and adjust the valve opening of the pressure regulating valve.
  • the atmosphere of the processing space S is maintained at a predetermined process pressure.
  • the temperature of the semiconductor wafer W is maintained at a predetermined process temperature. That is, by applying a voltage from the heater power supply 86 to the heater section 78 of the mounting table 52 via the power supply rods 82A to 82D, the heating heater section 78 is heated, whereby the entire mounting table 52 is heated.
  • the semiconductor wafer W mounted on the mounting table 52 is heated and heated.
  • the temperature of the semiconductor wafer is measured by a thermocouple (not shown) provided on the mounting table 52, and the temperature is controlled based on the measured value.
  • a high frequency power source 48 is driven to apply a high frequency between the shower head 38 as the upper electrode and the mounting table 52 as the lower electrode, thereby generating plasma in the processing space S. Stand up.
  • a voltage is applied to the chuck electrode 76 forming the electrostatic chuck, and the semiconductor wafer W is attracted by electrostatic force.
  • a predetermined plasma process is performed in this state.
  • plasma ions can be attracted by applying a high frequency to the chuck electrode 76 of the mounting table 52 from a high frequency power supply 90 for bias.
  • each of the heat reflecting plates 92A to 92E is very thin and has a small heat capacity, so that the mounting table 52 is not thermally adversely affected.
  • the distance between the lower surface of the mounting table 52 and the heat reflecting plates 92A to 92E is preferably as short as possible.
  • the distance between the lower surface of the mounting table 52 and the uppermost heat reflecting plate 92E is 5 mm. It is better to set within.
  • the number of the heat reflecting plates 92A to 92E is not particularly limited, but is preferably in the range of about 1 to 5 in consideration of the overall heat capacity and the reflection effect of radiant heat.
  • the inside of the cylindrical support 54 is in an atmosphere of an inert gas such as N 2 gas, it is possible to prevent the power feeding rods 82A to 82E from being corroded, as well as the metal plate. It is possible to prevent the heat reflecting plates 92A to 92E from being corroded.
  • an inert gas such as N 2 gas
  • the upper portion of the cylindrical column 54 that supports the mounting table 52 is brought close to the lower surface of the mounting table 52, for example, heat reflection. Since the heat reflecting portion 56 having the plates 92A to 92E is provided, the radiant heat radiated from the lower surface of the central portion of the mounting table 52 can be reflected by the heat reflecting portion 56 and returned. As a result, it is possible to prevent the cool spot from being generated at the central portion of the mounting table 52 and to prevent the mounting table itself from being damaged, and to perform an in-plane heat treatment on the semiconductor wafer W that is the object to be processed. Uniformity can be improved.
  • FIG. 6 is a graph showing the relationship between the wavelength of heat rays (light) and the emissivity / absorption rate.
  • the wavelength of the near-infrared region that forms the radiant heat is in the range of about 0.7 to 4 ⁇ m. Within this range, ceramic materials and plastics have high emissivity and absorptance, whereas metals have relatively low emissivity and absorptance and reflect a large amount of radiant heat. It can be understood that a metal is preferable as the material.
  • the radiant energy E of the mounting table 52 is as follows.
  • T1 Temperature of the mounting table 52
  • T2 Temperature of the heat reflecting portion (heat reflecting plate) 56
  • the amount of heat transferred from the mounting table 52 (radiant energy f ⁇ ) is 4.9 W (watts) when the temperature of the heat reflecting portion is 600 ° C., 9.4 W when the temperature is 500 ° C., It was 12.4W at 400 ° C and 14.4W at 300 ° C. On the other hand, in the conventional mounting table structure, it was 76.1W.
  • the mounting table structure of the present invention compared with the conventional mounting table structure, according to the mounting table structure of the present invention, the amount of heat transfer that escapes from the mounting table 52 to the column 54 side in the entire temperature range of 300 to 600 ° C. is suppressed. You can understand that you can.
  • FIG. 7 is an enlarged sectional view showing the structure of the first modified embodiment of the heat reflecting portion.
  • the same components as those shown in FIGS. 1 to 6 are denoted by the same reference numerals, and the description thereof is omitted.
  • each of the heat reflecting plates 92A to 92E forming the heat reflecting portion 56 is formed of a metal plate, but it may be formed of a heat insulating plate and a heat reflecting layer. That is, as shown in FIG. 7, here, the heat reflecting plate 92A is constituted by a thin heat insulating plate 102 and a heat reflecting layer 104 provided on the upper surface side of the heat insulating plate 102.
  • FIG. 7 representatively shows one heat reflecting plate 92A, but the other heat reflecting plates 92B to 92E have the same configuration.
  • the heat insulating plate 102 for example, a thin plate-shaped ceramic material can be used.
  • a thin metal layer can be used as the heat reflecting layer 104, and the metal layer is selected from the same material as the metal plate described above, for example, a group consisting of copper, aluminum, aluminum alloy, gold, and stainless steel. One material can be used.
  • Such a metal layer can be formed on the surface of the heat insulating plate 102 made of a plate-shaped ceramic material by using, for example, plating or sputtering. According to this, radiant heat can be reflected while suppressing heat conduction from the mounting table 52. Also in this case, the same effect as the embodiment described above with reference to FIGS. 1 to 6 can be exhibited.
  • FIG. 8 is a view showing the structure of the second modified embodiment of the heat reflecting portion.
  • one heat reflecting plate is supported by one support rod.
  • the present invention is not limited to this, and a plurality of heat reflecting plates may be supported by one support rod.
  • the five heat reflecting plates 92A to 92E forming the heat reflecting portion 56 are supported by one pipe-like support bar 94.
  • any one of the five power supply rods 82A to 82E is inserted into the pipe-shaped support rod 94. Also in this case, the same effects as those of the embodiment described above with reference to FIGS. 1 to 6 can be exhibited, and the number of support bars 94 can be reduced.
  • pipe-like (hollow) support rods are used as the support rods 94, 94A to 94E.
  • the present invention is not limited to this, and support rods filled in the interior may be used.
  • the heat reflecting plates 92A to 92E forming the heat reflecting portion 56 are supported by the support rods 94A to 94E.
  • the present invention is not limited to this.
  • a plurality of support pins 110A to 110E made of, for example, ceramic material are inserted in a plurality of stages from the outer surface of the support 54 to the inside.
  • the peripheral portions of the heat reflecting plates 92A to 92E may be placed on and supported by the tip portions of the support pins 110A to 110E. Also in this case, the same effects as those of the embodiment described above with reference to FIGS. 1 to 6 can be exhibited, and the number of support bars 94 can be reduced.
  • a ceramic material can be used for the support rods 94, 94A to 94E, the heat insulating plate 102, and the like.
  • the ceramic material include alumina (Al 2 O 3 ), aluminum nitride (AlN), silicon
  • alumina Al 2 O 3
  • AlN aluminum nitride
  • SiC carbide
  • SiN silicon nitride
  • the film forming process using plasma has been described as an example.
  • the present invention is not limited thereto, and the film forming process by thermal CVD without using plasma, the thermal diffusion process, the reforming process, the crystallization process, The present invention can be applied to all other heat treatments such as etching treatment.
  • the heating means 78 is embedded in the mounting table 52
  • the present invention is not limited to this.
  • a heating lamp is used as the heating means 78 and the heating lamp is opposed to the mounting table 52. You may make it provide in the ceiling part of the container 22.
  • the gas introducing means 38 is not a shower head, but a gas nozzle or the like provided through the side wall of the processing container 22.
  • the semiconductor wafer is described as an example of the object to be processed, but the present invention is not limited to this, and the present invention can be applied to a glass substrate, an LCD substrate, a ceramic material substrate, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

 載置台の中心部にクールスポットが発生することを阻止して、この載置台自体が破損することを防止することができると共に、被処理体に対する熱処理の面内均一性を高めることができる載置台構造を提供する。  熱処理装置の処理容器22内に設けられ、熱処理すべき被処理体である半導体ウエハWを載置するための載置台構造は、前記被処理体を載置するための載置台52と、前記載置台の下面の中心部に連結されて前記載置台を支持する筒体状の支柱54とを備えている。前記支柱内の上部に、前記載置台の下面に接近させて設けた熱反射部56が設けられている。熱反射部56により、載置台54の中心部にクールスポットが発生することを阻止する。

Description

載置台構造及び熱処理装置
 本発明は、半導体ウエハ等の被処理体に所定の熱処理を施す熱処理装置及び載置台構造に関する。
 一般に、半導体集積回路を製造するには、半導体ウエハ等の被処理体に、成膜処理、エッチング処理、熱処理、改質処理、結晶化処理等の各種の処理を繰り返し行なって、所望する集積回路を形成するようになっている。上記したような各種の処理を行なう場合には、その処理の種類に対応して必要な処理ガス、例えば成膜処理の場合には成膜ガスやハロゲンガスを、改質処理の場合にはオゾンガス等を、結晶化処理の場合にはNガス等の不活性ガスやOガス等をそれぞれ処理容器内へ導入する。
 例えば半導体ウエハに対して1枚毎に熱処理を施す枚葉式の熱処理装置を例にとれば、真空引き可能になされた処理容器内に、例えば抵抗加熱ヒータを内蔵した載置台を設置し、この上面に半導体ウエハを載置し、所定の温度(例えば100℃から1000℃)で加熱した状態で所定の処理ガスを流し、所定のプロセス条件下にて半導体ウエハに各種の熱処理を施すようになっている(特許文献1~5)。このため処理容器内の部材については、これらの加熱に対する耐熱性と処理ガスに曝されても腐食されない耐腐食性が要求される。
 ところで、半導体ウエハを載置する載置台構造に関しては、一般的には耐熱性及び耐腐食性を持たせると共に、金属コンタミネーション等の金属汚染を防止する必要がある。このため、例えばAlN等のセラミック材中に発熱体として抵抗加熱ヒータを埋め込んで高温で一体焼成して載置台を形成し、また別工程で同じくセラミック材等を焼成して支柱を形成し、この一体焼成した載置台側と上記支柱とを、例えば熱拡散接合で溶着して一体化して載置台構造を製造している。そして、このように一体成形した載置台構造を処理容器内の底部に起立させて設けるようにしている。また上記セラミック材に代えて耐熱耐腐食性のある石英ガラスを用いる場合もある。
 ここで従来の載置台構造の一例について説明する。図10は従来の載置台構造の一例を示す断面図である。この載置台構造は、真空排気が可能になされた処理容器内に設けられており、図10に示すように、この載置台構造はAlN等のセラミック材よりなる円板状の載置台2を有している。そして、この載置台2の下面の中央部には同じく例えばAlN等のセラミック材よりなる円筒状の支柱4が例えば熱拡散接合にて接合されて一体化されている。従って、両者は熱拡散接合部6により気密に接合されることになる。
 ここで上記載置台2の大きさは、例えば半導体ウエハサイズが300mmの場合には、直径が350mm程度であり、支柱4の直径は50~60mm程度である。上記載置台2内には例えば加熱ヒータ等よりなる加熱手段8が設けられ、載置台2上の被処理体としての半導体ウエハWを加熱するようになっている。
 上記支柱4の下端部は、容器底部9に固定ブロック10により固定されることにより起立状態になっている。そして、上記載置台2の下面の中央部には、これに穴を開けるなどして上記加熱手段8に対する接続端子12が設けられている。そして、上記円筒状の支柱4内には、その上端が上記加熱手段8の接続端子12に接続された給電棒14が設けられており、この給電棒14の下端部側は絶縁部材16を介して容器底部を下方へ貫通して外部へ引き出されている。これにより、この支柱4内へプロセスガス等が侵入することを防止して、上記給電棒14や接続端子12等が上記腐食性のプロセスガスにより腐食されることを防止するようになっている。
特開昭63-278322号公報 特開平07-078766号公報 特開平06-260430号公報 特開2004-356624号公報 特開2006-295138号公報
 ところで、半導体ウエハに対するプロセス時には、載置台2自体は高温状態になる。この場合、支柱4を構成する材料は熱伝導率がそれ程良好ではないセラミック材よりなる。しかしながら載置台2と支柱4とは熱拡散により接合されていることから、この支柱4を伝わって多量の熱が載置台2の中心側から支柱4側へ逃げることは避けられない。
 このため、特に載置台2の昇降温時では載置台2の中心部の温度が低くなってクールスポットが生じるのに対して周辺部の温度が高くなって載置台2の面内で大きな温度差が生じる。この結果、載置台2の中心部に大きな熱応力が集中し、この熱応力により上記載置台2に割れが生じて載置台2を破損する、といった問題があった。
 更には、上記クールスポットの発生により、この載置台2上に載置されている半導体ウエハWに温度分布が発生して半導体ウエハの温度分布の面内均一性が低下してしまい、膜厚などに分布が生じて熱処理の面内均一性が低下してしまう、といった問題もあった。ここで、上記温度分布の一例を示すと、図11は載置台2の表面の温度分布の一例を示す温度分布図である。
 ここではプロセス温度を650℃に設定して成膜処理を行った時の温度分布を示しており、”2℃”間隔の等温線を示している。これによれば、載置台2の中心部の温度が最も低くなってここにクールスポットが発生しており、載置台2の面内で最大23℃程度の温度差が生じていることが判る。
 特に、プロセスの種類にも依存するが、載置台2の温度は700℃以上にも達するので上記温度差はかなり大きくなり、これに加えて、載置台の昇降温の繰り返しにより上記熱応力による破損が促進されてしまう、といった問題があった。
 本発明は、以上のような問題点に着目し、これを有効に解決すべく創案されたものである。本発明の目的は、載置台の中心部にクールスポットが発生することを阻止して、この載置台自体が破損することを防止することができると共に、被処理体に対する熱処理の面内均一性を高めることができる載置台構造及び熱処理装置を提供することにある。
 本発明は、熱処理装置の処理容器内に設けられて、熱処理すべき被処理体を載置するための載置台構造において、前記被処理体を載置するための載置台と、前記載置台の下面の中心部に連結されて前記載置台を支持する筒体状の支柱と、前記支柱内の上部に、前記載置台の下面に接近させて設けた熱反射部と、を備えたことを特徴とする載置台構造である。
 このように、熱処理装置の処理容器内に設けた載置台構造において、載置台を支持する筒体状の支柱内の上部に、載置台の下面に接近させて熱反射部を設けるようにしたので、載置台の中心部の下面から放射される輻射熱を上記熱反射部により反射させて戻すことができる。この結果、載置台の中心部にクールスポットが発生することを阻止して、この載置台自体が破損することを防止することができると共に、被処理体に対する熱処理の面内均一性を高めることができる。
 この場合、例えば、前記熱反射部は、1枚、或いは複数段に亘って配置された複数枚の熱反射板よりなる。
 また例えば、前記熱反射板は、断熱板と、該断熱板の上面側に設けた熱反射層とよりなる。
 また例えば、前記熱反射板は、金属板、或いは金属層を含む。
 また例えば、前記金属板は、銅、アルミニウム、アルミニウム合金、金、ステンレスよりなる群から選択される1の材料よりなる。
 また例えば、前記断熱板は、セラミック材よりなる。
 また例えば、前記熱反射部は、前記処理容器の底部から起立された支持棒により支持されている。
 また例えば、前記載置台には、前記被処理体を加熱する加熱手段が設けられると共に、前記支柱内には前記加熱手段に対して給電を行う給電棒が設けられ、前記支持棒はパイプ状になされており、前記支持棒内に前記給電棒が挿通されている。
 また例えば、前記載置台には、載置台電極が設けられると共に、前記支柱内には前記載置台電極に対して給電を行う給電棒が設けられ、前記支持棒はパイプ状になされており、前記支持棒内に前記給電棒が挿通されている。
 また例えば、前記支持棒は、金属、或いはセラミック材よりなる。
 また例えば、前記熱反射部は、前記支柱の内壁に支持されている。
 本発明は、被処理体に対して所定の熱処理を施すための熱処理装置において、排気可能になされた処理容器と、前記処理容器内で前記被処理体を載置するために設けられた載置台構造と、前記被処理体を加熱するための加熱手段と、前記処理容器内へガスを導入するためのガス導入手段と、を備え、前記載置構造は、前記被処理体を載置するための載置台と、前記載置台の下面の中心部に連結されて前記載置台を支持する筒体状の支柱と、前記支柱内の上部に、前記載置台の下面に接近させて設けた熱反射部と、を備えたことを特徴とする熱処理装置である。
 本発明に係る載置台構造及び熱処理装置によれば、次のように優れた作用効果を発揮することができる。
 熱処理装置の処理容器内に設けた載置台構造において、載置台を支持する筒体状の支柱内の上部に、載置台の下面に接近させて熱反射部を設けるようにしたので、載置台の中心部の下面から放射される輻射熱を上記熱反射部により反射させて戻すことができる。この結果、載置台の中心部にクールスポットが発生することを阻止して、この載置台自体が破損することを防止することができると共に、被処理体に対する熱処理の面内均一性を高めることができる。
図1は本発明に係る載置台構造を用いた熱処理装置を示す構成図である。 図2は載置台構造の一部を模式的に示す部分拡大斜視図である。 図3は載置台構造を模式的に示す断面図である。 図4は載置台と支柱との接合部を模式的に示す拡大断面図である。 図5は熱反射板を支持する支持棒の一例を示す分解斜視図である。 図6は熱線(光)の波長と放射率・吸収率との関係を示すグラフである。 図7は熱反射部の第1の変形実施形態の構造を示す拡大断面図である。 図8は熱反射部の第2の変形実施形態の構造を示す図である。 図9は熱反射部の第3の変形実施形態の構造を示す部分拡大断面図である。 図10は従来の載置台構造の一例を示す断面図である。 図11は載置台の表面の温度分布の一例を示す温度分布図である。
 以下に、本発明に係る載置台構造及び熱処理装置の好適な一実施形態を添付図面に基づいて詳述する。
 図1は本発明に係る載置台構造を用いた熱処理装置を示す構成図、図2は載置台構造の一部を模式的に示す部分拡大斜視図、図3は載置台構造を模式的に示す断面図、図4は載置台と支柱との接合部を模式的に示す拡大断面図、図5は熱反射板を支持する支持棒の一例を示す分解斜視図である。
 ここでは熱処理装置として平行平板型のプラズマ熱処理装置を例にとって説明する。図1に示すように、この熱処理装置20は、例えばアルミニウム合金等により筒体状に成形された処理容器22を有している。この処理容器22の底部の中央部は、更に下方へ凸状に窪ませて設けた排気空間24が有底円筒状の区画壁26により区画形成されており、この区画壁26の底部が容器底部の一部となっている。この区画壁26の側壁には排気口28が設けられており、この排気口28には、図示しない圧力調整弁や真空ポンプ等が途中に介設された排気管30が接続されており、上記処理容器は22を所望の圧力に真空引きできるようになっている。尚、熱処理の態様によっては、プラズマを用いないで大気圧付近で熱処理する場合もある。
 また上記処理容器22の側壁には、被処理体である半導体ウエハWを搬出入する搬出入口32が形成されると共に、この搬出入口32にはゲートバルブ34が設けられており、半導体ウエハWの搬出入時にこのゲートバルブ34を開閉するようになっている。
 また処理容器22の天井は開口され、この開口部には絶縁部材36を介してガス導入手段としてのシャワーヘッド38が設けられる。この際、上記シャワーヘッド38と絶縁部材36との間には、容器内の気密性を維持するために例えばOリング等よりなるシール部材40が介設されている。このシャワーヘッド38の上部にはガス導入口42が設けられると共に、下面のガス噴射面には複数のガス噴射孔44が設けられており、必要な処理ガスを処理空間Sに向けて噴射するようになっている。ここではシャワーヘッド38内は1つの空間になっているが、内部空間を複数に区画し、それぞれ異なるガスをシャワーヘッド38内で混合させることなく別々に処理空間Sへ供給する形式のシャワーヘッドもある。
 また、このシャワーヘッド38は、プラズマ発生用の上部電極としての機能を有し、具体的には、このシャワーヘッド38にはマッチング回路46を介してプラズマ発生用の高周波電源48が接続されている。この高周波電源48の周波数は、例えば13.56MHzであるが、この周波数に限定されない。
 そして、この処理容器22内には、半導体ウエハWを載置するために本発明に係る載置台構造50が設けられている。この載置台構造50は、その上面である載置面に半導体ウエハWを直接的に載置する略円板状に形成された載置台52と、この載置台52を容器底部から起立させて支持する筒体状の支柱54と、上記支柱54内の上部に設けられた本発明の特徴とする熱反射部56とを有している。
 上記載置台52の下方には、半導体ウエハWの搬出入時に、これを下から突き上げて支持する昇降ピン機構58が設けられる。この昇降ピン機構58は、載置台52の周方向に沿って等間隔で配置された例えば3本(図示例では2本のみ記す)の昇降ピン60を有しており、各昇降ピン60の下端部は例えば円弧状のベース板62により支持されている。このベース板62は、容器底部を貫通してアクチュエータ64により上下動可能になされた昇降ロッド66に連結されており、また昇降ロッド66の容器底部の貫通部には容器内の気密性を維持しつつ昇降ロッド66の上下動を許容するために伸縮可能になされたベローズ68が設けられる。
 また上記載置台52には、上記各昇降ピン60に対応させてピン挿通孔70が設けられている。上記昇降ロッド66を上下動させることにより、上記ピン挿通孔70内を挿通された昇降ピン60が、載置面上に出没して半導体ウエハWを上下動できるようになっている。
 そして、上記載置台52の全体及び支柱54の全体は、金属汚染がなく、且つ耐熱性に優れた材料、例えばセラミック材や石英により形成されている。この支柱54は、ここでは円筒体状に形成されており、上記載置台52の下面の中心部に熱拡散接合や溶着等により気密に接合されている。この支柱54の下端部は、容器内の気密性を維持するためにOリング等のシール部材72を介して容器底部に形成した開口74の周辺部分に図示しないボルト等により連結されている。上記セラミック材としては、窒化アルミニウム(AlN)、酸化アルミニウム(Al)、炭化珪素(SiC)、石英(SiO)等を用いることができる。
 そして、上記載置台52には、載置台電極として静電チャックのチャック電極76と加熱手段としての加熱ヒータ部78とがそれぞれ埋め込まれている。上記加熱ヒータ部78としては、例えばカーボンワイヤヒータを用いることができる。上記チャック電極76は、載置面の直下に設けられて半導体ウエハWを静電力により吸着保持し、このチャック電極76の下方に上記加熱ヒータ部78が設けられて半導体ウエハWを加熱するようになっている。
 また、ここでは上記チャック電極76は、プラズマに対する下部電極として兼用されている。上記チャック電極76及び加熱ヒータ部78は、上記の他に高融点金属、またはこれらの化合物、または上記金属の合金よりなり、高融点金属としてはW、Mo、V、Cr、Mn、Nb、Ta等を用いることができ、主としてMoまたはWもしくはこれらの合金が用いられる。
 そして、上記加熱ヒータ部78は、複数、ここでは同心円状に例えば2つの加熱ゾーン、すなわち内側加熱ゾーン80Aと外側加熱ゾーン80Bとに電気的に分離されており、各ゾーン毎に温度制御できるようになっている。すなわち、上記内側加熱ゾーン80Aに対応する上記加熱ヒータ部78の部分には、2本の給電棒82A、82Bが接続され、また上記外側加熱ゾーン80Bに対応する上記加熱ヒータ部78の部分には、2本の給電棒82C、82Dがそれぞれ接続されており、それぞれゾーン毎に個別に電力制御を行うことができるようになっている。また同様に、下部電極を兼ねる上記チャック電極76にも給電棒82Eが接続されている。
 図2では、内側加熱ゾーン80Aの加熱ヒータ部78に対する2本の給電棒82A、82Bのみを代表して記載している。ここで、実際には、各給電棒82A~82Eは中央部に集中させて設けられるが、図1、図3及び図4では、発明内容を理解し易くするために、各給電棒82A~82Eを横方向へ展開して示している。
 そして、上記各給電棒82A~82Eは、円筒状の支柱54内を下方向へ挿通されて、容器底部の開口74から下方へ延びている。そして、上記加熱ヒータ部78用の各給電棒82A~82Dは、それぞれライン84A、84B、84C、84Dを介してヒータ電源86に接続されている。またチャック電極76用の給電棒82Eは、ライン84Eを介してチャック用の直流電源88とバイアス用の高周波電源90とにそれぞれ接続されている。尚、図示されていないが、上記載置台52には、上記支柱54内を挿通させて温度測定用の棒状の熱電対も設けられている。
 そして、このような支柱54内の上部に、上述したように上記載置台52の中央部の下面に接近させて熱反射部56が設けられている。具体的には、図2乃至図4にも示すように、この熱反射部56は、ここでは複数枚、例えば5枚の熱反射板92A、92B、92C、92D、92Eを所定のピッチで複数段に亘って配置することにより構成されている。
 上記熱反射板92A~92Eは、例えば直径が上記支柱54の内径よりも僅かに小さく設定され、また厚さは0.5~2.0mm程度であって、これらの熱容量自体を小さくしている。そして、各熱反射板92A~92Eは、例えば1.2mm程度のピッチで上下方向に配置されている。各熱反射板92A~92Eは、例えば銅等の金属板により形成されており、この上方に位置する載置台52からの輻射熱を再び載置台52に向けて反射するようになっている。上記金属板としては、銅、アルミニウム、アルミニウム合金、金、ステンレスよりなる群から選択される1の材料を用いることができる。
 そして、上記各熱反射板92A~92Eは、上記処理容器22の底部から上記支柱54内に起立された支柱棒94により支持されている。具体的には、図5にも示すように、ここでは上記各熱反射板92A~92Eに対応させて5本の支持棒94A、94B、94C、94D、94Eを有しており、各支持棒94A~94Eにより上記各熱反射板92A~92Eをそれぞれ支持するようになっている。
 上記各支持棒94A~94Eは、ここではパイプ状(円筒状)に成形されており、その上端部に支持すべき対応する熱反射板92A~92Eをそれぞれ溶着等により固定している。そして、パイプ状の上記各支持棒94A~94E内に、上記各給電棒82A~82Eをそれぞれ挿通させている。
 また、上記各熱反射板92A~92Eには、上記各支持棒94A~94E或いは各給電棒82A~82Eを挿通させるための挿通孔96がそれぞれ形成されている。これらの挿通孔96は、給電棒82A~82Eだけを挿通させる部分では直径が小さくなされ、各支持棒94A~94Eを挿通させる部分では直径が大きくなされている。また上記各熱反射板92A~92Eには、図示しない棒状の熱電対を挿通する熱電対用挿通孔98も形成されている(図5参照)。この熱電対用挿通孔98の直径は全て同一寸法になされている。
 ここで、上記パイプ状の各支持棒94A~94Eは、金属、或いはセラミック材よりなり、パイプ状の支持棒94A~94Eが金属よりなる場合には、これらの中に挿通される各給電棒82A~82Eとの間でショートが生じないように十分にスペースを確保する。この各給電棒82A~82Eの金属としては、上記熱反射板92A~92Eと同じ材料を用いることができる。
 そして、図1に戻って、上述のように形成された上記円筒状の支柱54内へは、不活性ガス供給部100によりN等の不活性ガスが導入され、上記各金属表面の酸化を防ぐようになっている。この不活性ガスとしてはNガスの他にAr等の希ガスも用いることができる。
 次に、以上のように構成された熱処理装置20の動作について説明する。
 まず、未処理の半導体ウエハWは、図示しない搬送アームに保持されて開状態となったゲートバルブ34、搬出入口32を介して処理容器22内へ搬入される。この半導体ウエハWは、上昇された昇降ピン60に受け渡された後に、この昇降ピン60を降下させることにより、半導体ウエハWを載置台構造50の載置台52の上面に載置してこれを支持する。
 次に、シャワーヘッド38へ各種の処理ガスとして例えば成膜ガスを、それぞれ流量制御しつつ供給して、このガスをガス噴射孔44より噴射し、処理空間Sへ導入する。そして、図示してないが排気管30に設けた真空ポンプの駆動を継続することにより、処理容器22内や排気空間24内の雰囲気を真空引きし、そして、圧力調整弁の弁開度を調整して処理空間Sの雰囲気を所定のプロセス圧力に維持する。この時、半導体ウエハWの温度は所定のプロセス温度に維持されている。すなわち、載置台52の加熱ヒータ部78にヒータ電源86より給電棒82A~82Dを介して電圧を印加することにより加熱ヒータ部78を加熱し、これにより載置台52の全体が加熱される。
 この結果、載置台52上に載置した半導体ウエハWが昇温加熱される。この時、載置台52に設けた図示しない熱電対では半導体ウエハ温度が測定され、この測定値に基づいて温度制御されることになる。
 またこれと同時にプラズマ処理を行うために、高周波電源48を駆動することにより、上部電極であるシャワーヘッド38と下部電極である載置台52との間に高周波を印加し、処理空間Sにプラズマを立てる。同時に、静電チャックを形成するチャック電極76に電圧を印加し、静電力により半導体ウエハWを吸着する。そして、この状態で所定のプラズマ処理を行う。また、この際に、載置台52のチャック電極76にバイアス用の高周波電源90から高周波を印加することにより、プラズマイオンの引き込みを行うことができる。
 このような状況下において、載置台52の中央部からは、この下面に接続された支柱54を介して熱伝導により熱が逃げる傾向になっている。この場合、従来の載置台構造にあっては、この載置台の中央部に温度が低いクールスポットが発生していたが、本発明の場合には、ここに設けた熱反射部56により輻射熱が反射されるので、載置台52の中央部にクールスポットが発生することを防止することができる。
 すなわち、上記載置台52の中央部の下面に接近させて、上記熱反射部56として例えば金属板よりなる5枚の熱反射板92A~92Eを設けているので、上記載置台52の中央部の下面より放射された輻射熱が複数段に亘って設けた上記5枚の熱反射板92A~92Eにより反射されて再び載置台52に戻り、これを加熱するように作用する。従って、従来の載置台構造とは異なって載置台52の中央部にクールスポットが発生することを防止でき、この結果、載置台52の温度の面内均一性を高めることが可能となる。この場合、上記各熱反射板92A~92Eは非常に薄くなされて熱容量自体が小さくなされているので、上記載置台52に対して熱的に悪影響を与えることもない。
 また、上記載置台52の下面と熱反射板92A~92Eとの間の距離は、できるだけ近い方が好ましく、例えば載置台52の下面と最上段の熱反射板92Eとの間の距離は、5mm以内に設定するのがよい。また、この熱反射板92A~92Eの枚数は特には制限されないが、全体の熱容量と輻射熱の反射効果を考慮すると1~5枚程度の範囲内が好ましい。
 また、この円筒状の支柱54内には、Nガス等の不活性ガスの雰囲気になされているので、上記各給電棒82A~82Eが腐食されることを防止できることは勿論のこと、金属板よりなる各熱反射板92A~92Eも腐食されることを防止することができる。
 このように、熱処理装置20の処理容器22内に設けた載置台構造50において、載置台52を支持する筒体状の支柱54内の上部に、載置台52の下面に接近させて例えば熱反射板92A~92Eを有する熱反射部56を設けるようにしたので、載置台52の中心部の下面から放射される輻射熱を上記熱反射部56により反射させて戻すことができる。この結果、載置台52の中心部にクールスポットが発生することを阻止して、この載置台自体が破損することを防止することができると共に、被処理体である半導体ウエハWに対する熱処理の面内均一性を高めることができる。
<熱反射板92A~92Eの材料の評価>
 ここで上記熱反射板92A~92Eの構成材料について検討を行ったので、その評価結果について説明する。上記熱反射板92A~92Eの材料として金属、セラミック材、プラスチックについて検討を行った。その結果を図6に示す。図6は熱線(光)の波長と放射率・吸収率との関係を示すグラフである。
 図6において、輻射熱を形成する近赤外線の領域の波長は0.7~4μm程度の範囲内である。この範囲内では、セラミック材やプラスチックは放射率や吸収率が高いのに対して、金属は放射率や吸収率が比較的低くて輻射熱を多く反射するので、これにより上記熱反射板92A~92Eの材料として金属が好ましいことが理解できる。
<シミュレーションによる載置台の放射量>
 次に、載置台52から支柱54内に対する熱放射量(熱エネルギー)についてシミュレーションによって評価を行ったので、その評価結果について説明する。
 ここでは載置台52として窒化アルミニウム(AlN)を用い、熱反射部56として1枚の銅製の熱反射板を用いた。載置台52の温度は680℃(=953K)に設定し、熱反射板の温度に関して600℃、500℃、400℃、300℃の4種類の温度について検討した。
 まず、載置台52の放射係数fεは以下のようになる。
     fε=1/((1/ε1)+(1/ε2)-1=0.20
        ε1:載置台52の放射率(=0.9)
        ε2:熱反射板の放射率(=0.2)
 尚、載置台52の有効面積は”0.00180864m”である。
 次に、載置台52の放射エネルギーEは以下のようになる。
     E=fε・σ・(T1-4-T2-4
       σ:ステファンボルツマン定数(=5.67×10-8W/m・K
       T1:載置台52の温度
       T2:熱反射部(熱反射板)56の温度
 上記計算式によれば、載置台52からの熱の移動量(放射エネルギーfε)は、熱反射部の温度が600℃の時は4.9W(ワット)、500℃の時は9.4W、400℃の時は12.4W、300℃の時は14.4Wであった。これに対して、従来の載置台構造では76.1Wであった。
 以上の結果より、従来の載置台構造と比較して、本発明の載置台構造によれば、300~600℃の全ての温度範囲において載置台52から支柱54側へ逃げる熱移動量を抑制することができる、ということを理解することができる。
<熱反射部の変形実施形態>
 次に、上記熱反射部56の変形実施形態について説明する。図7は熱反射部の第1の変形実施形態の構造を示す拡大断面図である。尚、図1乃至図6に示す構成部分と同一構成部分については同一参照符号を付して、その説明を省略する。
 上記実施形態にあっては、熱反射部56を形成する各熱反射板92A~92Eを、それぞれ金属板で形成したが、これを断熱板と熱反射層とにより形成してもよい。すなわち、図7に示すように、ここでは熱反射板92Aを、薄い断熱板102と、この断熱板102の上面側に設けた熱反射層104とにより構成している。
 図7では代表的に1枚の熱反射板92Aについて記載しているが、他の熱反射板92B~92Eについても同様に構成されている。この断熱板102としては、例えば薄い板状のセラミック材を用いることができる。また、上記熱反射層104としては、薄い金属層を用いることができ、この金属層としては先に説明した金属板と同じ材料、例えば銅、アルミニウム、アルミニウム合金、金、ステンレスよりなる群から選択される1の材料を用いることができる。
 このような金属層は、例えばメッキやスパッタリング等を用いて板状のセラミック材よりなる断熱板102の表面に形成することができる。これによれば、載置台52からの熱伝導を抑制しつつ輻射熱を反射することができる。この場合にも、先に図1乃至図6を参照して説明した実施形態と同様な作用効果を発揮することができる。
 また図8は熱反射部の第2の変形実施形態の構造を示す図である。先の実施形態では、1枚の熱反射板を1本の支持棒で支持したが、これに限定されず、1本の支持棒で複数枚の熱反射板を支持させるようにしてもよい。図8に示す場合には、熱反射部56を形成する5枚の熱反射板92A~92Eを1本のパイプ状の支持棒94で支持するようにしている。
 この場合には、このパイプ状の支持棒94内に5本の給電棒82A~82Eの内のいずれか1本の給電棒を挿通させる。この場合にも、先に図1乃至図6を参照して説明した実施形態と同様な作用効果を発揮することができ、更には支持棒94の数を減少させることができる。
 また、以上の各実施形態では、支持棒94、94A~94Eとしてパイプ状(中空状)の支持棒を用いたが、これに限定されず、内部が詰まった支持棒を用いてもよい。また、以上の各実施形態においては、熱反射部56を形成する熱反射板92A~92Eを支持棒94A~94Eにより支持するようにしたが、これに限定されない。
 例えば図9に示す熱反射部の第3の変形実施形態のように、支柱54の外側面より内側に向けて例えばセラミック材製の複数の支持ピン110A~110Eを複数段に亘って挿入し、この支持ピン110A~110Eの先端部に上記各熱反射板92A~92Eの周辺部を載置させて支持するようにしてもよい。この場合にも、先に図1乃至図6を参照して説明した実施形態と同様な作用効果を発揮することができ、更には支持棒94の数を減少させることができる。
 尚、上記各実施形態において支持棒94、94A~94Eや断熱板102等にセラミック材を用いることができるが、このセラミック材としては、アルミナ(Al)、窒化アルミニウム(AlN)、シリコンカーバイト(SiC)、窒化シリコン(SiN)等よりなる群から選択される1の材料用いることができる。
 また上記各実施形態では、プラズマを用いた成膜処理を例にとって説明したが、これに限定されず、プラズマを用いない熱CVDによる成膜処理、熱拡散処理、改質処理、結晶化処理、エッチング処理等の他の全ての熱処理に対して本発明を適用することができる。
 更には、ここでは加熱手段78を載置台52内に埋め込む場合を例にとって説明したが、これに限定されず、例えば加熱手段78として加熱ランプを用い、この加熱ランプを載置台52と対向する処理容器22の天井部に設けるようにしてもよい。この場合には、ガス導入手段38としてはシャワーヘッドではなく、処理容器22の側壁に貫通させて設けたガスノズル等を用いる。
 また、ここでは被処理体として半導体ウエハを例にとって説明したが、これに限定されず、ガラス基板、LCD基板、セラミック材基板等にも本発明を適用することができる。

Claims (12)

  1.  熱処理装置の処理容器内に設けられて、熱処理すべき被処理体を載置するための載置台構造において、
     前記被処理体を載置するための載置台と、
     前記載置台の下面の中心部に連結されて前記載置台を支持する筒体状の支柱と、
     前記支柱内の上部に、前記載置台の下面に接近させて設けた熱反射部と、
    を備えたことを特徴とする載置台構造。
  2.  前記熱反射部は、1枚、或いは複数段に亘って配置された複数枚の熱反射板よりなることを特徴とする請求項1記載の載置台構造。
  3.  各熱反射板は、断熱板と、該断熱板の上面側に設けた熱反射層とよりなることを特徴とする請求項2記載の載置台構造。
  4.  前記熱反射板は、金属板、或いは金属層を含むことを特徴とする請求項3記載の載置台構造。
  5.  前記金属板は、銅、アルミニウム、アルミニウム合金、金、ステンレスよりなる群から選択される1の材料よりなることを特徴とする請求項4記載の載置台構造。
  6.  前記断熱板は、セラミック材よりなることを特徴とする請求項3記載の載置台構造。
  7.  前記熱反射部は、前記処理容器の底部から起立された支持棒により支持されていることを特徴とする請求項1記載の載置台構造。
  8.  前記載置台には、前記被処理体を加熱する加熱手段が設けられ、前記支柱内には前記加熱手段に対して給電を行う給電棒が設けられ、前記支持棒はパイプ状になされており、前記支持棒内に前記給電棒が挿通されていることを特徴とする請求項7記載の載置台構造。
  9.  前記載置台には、載置台電極が設けられ、前記支柱内には前記載置台電極に対して給電を行う給電棒が設けられ、前記支持棒はパイプ状になされており、前記支持棒内に前記給電棒が挿通されていることを特徴とする請求項7記載の載置台構造。
  10.  前記支持棒は、金属、或いはセラミック材よりなることを特徴とする請求項7記載の載置台構造。
  11.  前記熱反射部は、前記支柱の内壁に支持されていることを特徴とする請求項1記載の載置台構造。
  12.  被処理体に対して所定の熱処理を施すための熱処理装置において、
     排気可能になされた処理容器と、
     前記処理容器内で前記被処理体を載置するために設けられた載置台構造と、
     前記被処理体を加熱するための加熱手段と、
     前記処理容器内へガスを導入するためのガス導入手段と、
     を備え、
     前記載置構造は、
     前記被処理体を載置するための載置台と、
     前記載置台の下面の中心部に連結されて前記載置台を支持する筒体状の支柱と、
     前記支柱内の上部に、前記載置台の下面に接近させて設けた熱反射部と、
     を備えたことを特徴とする熱処理装置。
PCT/JP2009/054937 2008-03-21 2009-03-13 載置台構造及び熱処理装置 WO2009116472A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2009801007683A CN101903980B (zh) 2008-03-21 2009-03-13 载置台构造以及热处理装置
US12/918,244 US20100323313A1 (en) 2008-03-21 2009-03-13 Stage structure and heat treatment apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008072725A JP2009231401A (ja) 2008-03-21 2008-03-21 載置台構造及び熱処理装置
JP2008-072725 2008-03-21

Publications (1)

Publication Number Publication Date
WO2009116472A1 true WO2009116472A1 (ja) 2009-09-24

Family

ID=41090875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/054937 WO2009116472A1 (ja) 2008-03-21 2009-03-13 載置台構造及び熱処理装置

Country Status (6)

Country Link
US (1) US20100323313A1 (ja)
JP (1) JP2009231401A (ja)
KR (1) KR20100126256A (ja)
CN (1) CN101903980B (ja)
TW (1) TW200952111A (ja)
WO (1) WO2009116472A1 (ja)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT506430A1 (de) * 2008-01-23 2009-09-15 3S Swiss Solar Systems Ag Distanzelement für plattenfírmige elemente
US8274017B2 (en) * 2009-12-18 2012-09-25 Applied Materials, Inc. Multifunctional heater/chiller pedestal for wide range wafer temperature control
JP5730521B2 (ja) * 2010-09-08 2015-06-10 株式会社日立ハイテクノロジーズ 熱処理装置
US20120244684A1 (en) * 2011-03-24 2012-09-27 Kunihiko Suzuki Film-forming apparatus and method
DE102011077891B3 (de) * 2011-06-21 2012-12-06 J. Eberspächer GmbH & Co. KG Verdampferbaugruppe, insbesondere für ein Fahrzeugheizgerät
JP5973731B2 (ja) 2012-01-13 2016-08-23 東京エレクトロン株式会社 プラズマ処理装置及びヒータの温度制御方法
US8980767B2 (en) * 2012-01-13 2015-03-17 Applied Materials, Inc. Methods and apparatus for processing a substrate
US9088085B2 (en) * 2012-09-21 2015-07-21 Novellus Systems, Inc. High temperature electrode connections
US9422978B2 (en) 2013-06-22 2016-08-23 Kla-Tencor Corporation Gas bearing assembly for an EUV light source
US10431435B2 (en) * 2014-08-01 2019-10-01 Applied Materials, Inc. Wafer carrier with independent isolated heater zones
CN104195528A (zh) * 2014-09-05 2014-12-10 厦门大学 一种耦合高频振动的微型等离子增强化学气相沉积装置
WO2016195984A1 (en) * 2015-06-05 2016-12-08 Applied Materials, Inc. Improved apparatus for decreasing substrate temperature non-uniformity
WO2017003646A1 (en) * 2015-06-29 2017-01-05 Varian Semiconductor Equipment Associates, Inc. Thermal shield for electrostatic chuck
JP6318139B2 (ja) * 2015-12-25 2018-04-25 株式会社日立国際電気 基板処理装置、半導体装置の製造方法及びプログラム
JP6368732B2 (ja) * 2016-03-29 2018-08-01 株式会社日立国際電気 基板処理装置、半導体装置の製造方法及びプログラム
JP6704834B2 (ja) * 2016-10-28 2020-06-03 日本特殊陶業株式会社 加熱装置
JP6858656B2 (ja) * 2017-06-26 2021-04-14 東京エレクトロン株式会社 給電部材及び基板処理装置
JP6818891B2 (ja) * 2017-07-27 2021-01-20 京セラ株式会社 試料保持具
KR102608957B1 (ko) * 2018-08-27 2023-12-01 삼성전자주식회사 플라즈마 처리 장치
DE102019117756A1 (de) * 2018-12-28 2020-07-02 Füller Glastechnologie Vertriebs-Gmbh Vorrichtung zum Halten eines Glas-Vorformlings
KR20200135666A (ko) 2019-05-24 2020-12-03 삼성전자주식회사 기판 처리 장치
CN110265323B (zh) * 2019-05-31 2021-09-03 拓荆科技股份有限公司 具有接点阵列的晶圆加热座
CN113122826B (zh) * 2020-01-16 2023-11-07 中国电子科技集团公司第四十八研究所 一种pecvd设备加热装置
US20220127723A1 (en) * 2020-10-23 2022-04-28 Applied Materials, Inc. High heat loss heater and electrostatic chuck for semiconductor processing

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01110724A (ja) * 1987-07-31 1989-04-27 Tokyo Electron Ltd 加熱炉
JPH03148816A (ja) * 1989-11-06 1991-06-25 Fujitsu Ltd 有機金属気相成長装置
JPH0722501A (ja) * 1993-06-29 1995-01-24 Tokyo Electron Ltd 処理装置
JPH10326788A (ja) * 1997-05-26 1998-12-08 Kokusai Electric Co Ltd ヒータユニット及び基板処理装置
JP2004022688A (ja) * 2002-06-14 2004-01-22 Epiquest:Kk SiCウエハー酸化装置
WO2007055381A1 (ja) * 2005-11-14 2007-05-18 Tokyo Electron Limited 成膜装置および成膜装置用の載置台

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960001160B1 (ko) * 1987-07-31 1996-01-19 도오교오 에레구토론 가부시끼가이샤 가열로(加熱爐)
JP3148816B2 (ja) * 1991-03-04 2001-03-26 東芝ライテック株式会社 照明器具
US6046439A (en) * 1996-06-17 2000-04-04 Mattson Technology, Inc. System and method for thermal processing of a semiconductor substrate
US7506386B1 (en) * 2001-08-10 2009-03-24 Taph, Llc Portable water heater
KR100744860B1 (ko) * 2003-04-07 2007-08-01 동경 엘렉트론 주식회사 탑재대 구조체 및 이 탑재대 구조체를 갖는 열처리 장치
KR20050031785A (ko) * 2003-09-30 2005-04-06 삼성전자주식회사 전기조리기
JP5025109B2 (ja) * 2005-08-26 2012-09-12 東京エレクトロン株式会社 基板載置機構、基板処理装置、および基板載置機構の製造方法
JP5347214B2 (ja) * 2006-06-12 2013-11-20 東京エレクトロン株式会社 載置台構造及び熱処理装置
JP4913695B2 (ja) * 2007-09-20 2012-04-11 東京エレクトロン株式会社 基板処理装置及びそれに用いる基板載置台
JP5014080B2 (ja) * 2007-11-19 2012-08-29 コバレントマテリアル株式会社 面状ヒータ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01110724A (ja) * 1987-07-31 1989-04-27 Tokyo Electron Ltd 加熱炉
JPH03148816A (ja) * 1989-11-06 1991-06-25 Fujitsu Ltd 有機金属気相成長装置
JPH0722501A (ja) * 1993-06-29 1995-01-24 Tokyo Electron Ltd 処理装置
JPH10326788A (ja) * 1997-05-26 1998-12-08 Kokusai Electric Co Ltd ヒータユニット及び基板処理装置
JP2004022688A (ja) * 2002-06-14 2004-01-22 Epiquest:Kk SiCウエハー酸化装置
WO2007055381A1 (ja) * 2005-11-14 2007-05-18 Tokyo Electron Limited 成膜装置および成膜装置用の載置台

Also Published As

Publication number Publication date
TW200952111A (en) 2009-12-16
JP2009231401A (ja) 2009-10-08
KR20100126256A (ko) 2010-12-01
CN101903980A (zh) 2010-12-01
CN101903980B (zh) 2012-10-10
US20100323313A1 (en) 2010-12-23

Similar Documents

Publication Publication Date Title
WO2009116472A1 (ja) 載置台構造及び熱処理装置
JP5239988B2 (ja) 載置台構造及び処理装置
JP5358956B2 (ja) 載置台装置、処理装置、温度制御方法及び記憶媒体
JP4450106B1 (ja) 載置台構造及び処理装置
JP5029257B2 (ja) 載置台構造及び処理装置
KR101063104B1 (ko) 탑재대 구조 및 열처리 장치
US5462603A (en) Semiconductor processing apparatus
KR100856153B1 (ko) 기판 탑재 기구 및 기판 처리 장치
JP2007335425A (ja) 載置台構造及び熱処理装置
JP2011061040A (ja) 載置台構造及び処理装置
WO2011099481A1 (ja) 載置台構造及び処理装置
JP2003306772A (ja) 処理装置および処理方法ならびに載置部材
JP2009182139A (ja) 載置台構造及び処理装置
JP2011054838A (ja) 載置台構造及び処理装置
JP2007141895A (ja) 載置台構造及び成膜装置
JP4853432B2 (ja) 載置台構造及び処理装置
WO2012011488A1 (ja) 載置台構造及び処理装置
JP2004095770A (ja) 処理装置
KR100974102B1 (ko) 탑재대 구조, 탑재대 구조의 제조 방법 및 열처리 장치
JP2010232220A (ja) 載置台構造、この製造方法及び処理装置
JP2007081391A (ja) 載置台構造、載置台構造の製造方法及び熱処理装置
JP2007019546A (ja) 処理装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980100768.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09721202

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107003734

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12918244

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09721202

Country of ref document: EP

Kind code of ref document: A1