WO2009116229A1 - 光記録再生方法、光記録再生装置、プログラム及び光記録媒体 - Google Patents

光記録再生方法、光記録再生装置、プログラム及び光記録媒体 Download PDF

Info

Publication number
WO2009116229A1
WO2009116229A1 PCT/JP2009/000808 JP2009000808W WO2009116229A1 WO 2009116229 A1 WO2009116229 A1 WO 2009116229A1 JP 2009000808 W JP2009000808 W JP 2009000808W WO 2009116229 A1 WO2009116229 A1 WO 2009116229A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical recording
sil
recording medium
gap
servo
Prior art date
Application number
PCT/JP2009/000808
Other languages
English (en)
French (fr)
Inventor
伊藤英一
尾留川正博
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN2009801095843A priority Critical patent/CN101978422B/zh
Priority to JP2010503753A priority patent/JPWO2009116229A1/ja
Priority to US12/922,954 priority patent/US8259541B2/en
Priority to EP09723559A priority patent/EP2256728B1/en
Publication of WO2009116229A1 publication Critical patent/WO2009116229A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0908Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for focusing only
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/095Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following specially adapted for discs, e.g. for compensation of eccentricity or wobble
    • G11B7/0956Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following specially adapted for discs, e.g. for compensation of eccentricity or wobble to compensate for tilt, skew, warp or inclination of the disc, i.e. maintain the optical axis at right angles to the disc
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • G11B7/1374Objective lenses
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1387Means for guiding the beam from the source to the record carrier or from the record carrier to the detector using the near-field effect
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2403Layers; Shape, structure or physical properties thereof
    • G11B7/24035Recording layers
    • G11B7/24038Multiple laminated recording layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • G11B2007/13727Compound lenses, i.e. two or more lenses co-operating to perform a function, e.g. compound objective lens including a solid immersion lens, positive and negative lenses either bonded together or with adjustable spacing

Definitions

  • the present invention relates to an optical recording / reproducing method, an optical recording / reproducing apparatus, a program, and an optical recording medium for optically recording / reproducing a signal using a near field.
  • a light spot focused by an objective lens is used for recording and reproduction of an optical recording medium such as a DVD.
  • the size of the light spot becomes smaller as the wavelength is shorter and the numerical aperture (hereinafter referred to as NA) of the objective lens is larger, and higher density recording and reproduction are possible.
  • NA numerical aperture
  • Many efforts have been made to realize high-density recording and reproduction.
  • an optical system using a solid immersion lens hereinafter referred to as SIL
  • SIL has recently been attracting attention as a method for dramatically increasing the NA of the objective lens.
  • the refractive index on the light incident side which was 1 in the atmosphere, can be increased according to the material of the SIL, and the NA of the objective lens can be greatly increased.
  • the distance between the two (hereinafter referred to as a gap) is kept very small, such as a fraction of a wavelength. There is a need. As a result, a problem not found in the conventional optical system also occurs.
  • the light emitted from the light source 201 is converted into parallel rays by the collimator 202 and passes through a PBS (Polarizing Beam Splitter) 203 and a 1 ⁇ 4 wavelength plate 204. Thereafter, the light is converged on the bottom surface of the SIL by the objective lens including the convex lens 205 and the SIL 206. The light reaches the signal layer of the optical recording medium 207 via the near-field light from the bottom surface of the SIL, is reflected, and passes through the objective lens and the quarter wavelength plate.
  • PBS Polarizing Beam Splitter
  • the light is reflected by the PBS 203 and converged on a PD (Photo Detector) 209 by the converging lens 208.
  • the PD 209 is divided into four areas 209A, 209B, 209C, and 209D.
  • the light focused by the converging lens 208 is adjusted to be positioned near the center of the four regions as the spot 210. Signals from each area are used for various purposes such as information reproduction, focus adjustment, and tilt adjustment.
  • the objective lens can be adjusted in the horizontal, vertical, and tilt directions by the actuator 211, the tilt adjustment unit 212, and the like. Note that this illustrated example is a simplified configuration for easy explanation of the basic configuration of the optical recording / reproducing apparatus. In general, recording / reproducing apparatuses having different light sources and PDs for recording / reproducing and servo control are often used.
  • the PD may be divided into two parts or one that is not divided depending on the application.
  • the PD 209 detects the amount of light reflected from the total reflection area on the bottom surface of the SIL, which changes according to the size of the gap, and the actuator 211 is driven by a gap servo circuit to which a signal corresponding to the amount of reflected light is input.
  • the gap is controlled to be constant.
  • the amount of light reflected from the total reflection region is constant when the gap is sufficiently large.
  • the amount of reflected light has a property that the smaller the gap is, the smaller the gap becomes in the near field region where the gap is about half or less of the wavelength. Therefore, the size of the gap can be estimated from the amount of reflected light.
  • the PD 209 detects the asymmetry of the reflected light generated by the gap that has become uneven due to the tilt, and the tilt adjustment circuit is driven by the tilt servo circuit to appropriately control the tilt.
  • a method using a light source different from the recording / reproducing light and a method using the same light source have been proposed.
  • the tilt servo as described above has the following problems.
  • the following major problems remain when starting the tilt servo.
  • a conventional optical system that does not use SIL it is easy to avoid contact between the objective lens and the optical recording medium even before the tilt servo is started.
  • the gap is very small, so that before the tilt servo is started, the SIL and the surface of the optical recording medium easily collide with each other and damage the SIL. Very likely.
  • the tilt servo technique described in Patent Document 2 requires initial adjustment of tilt while the optical recording medium is stationary. Therefore, there is a problem that it takes a long time to actually access the information layer of the optical recording medium. Further, once the SIL comes into contact with the optical recording medium, the risk of contamination or damage becomes very high. Third, the tilt servo technique described in Patent Document 3 has a problem that adjustment is very difficult because the optical system becomes complicated. Other conventional tilt servo technologies that use different light sources for recording / reproducing light and tilt servo also have problems due to the complexity of the optical system. The present invention has been made in view of the above circumstances.
  • An object of the present invention is that, in optical recording / reproducing using the SIL optical system, the SIL and the optical recording medium collide at the start of the tilt servo, while using a simple optical system that uses part of the recording / reproducing light also for the tilt servo. It provides a method that does not. (Means for solving the problem)
  • the optical recording / reproducing method according to the present invention uses reflected light obtained by reflecting light from the bottom surface of the SIL to the optical recording medium, and provides the surface of the optical recording medium and the bottom surface of the SIL.
  • a gap servo that controls the gap between the focus, a focus servo that controls the distance between the focal point of the light and the bottom surface of the SIL, and the bottom surface of the SIL with respect to the surface of the optical recording medium using the reflected light An optical recording / reproducing method for performing tilt servo for controlling tilt, (A) starting gap servo in a state where the gap is larger than when performing optical recording / reproducing, and moving the focal point from the bottom surface of the SIL to the optical recording medium side; (B) starting the tilt servo; (C) reducing the gap and placing the SIL in a predetermined position; With The steps (A) to (C) are sequentially performed.
  • the movement of the focal point from the bottom surface of the SIL to the optical recording medium side includes, for example, the case where the focal point is not only in the optical recording medium itself but also in the gap between the SIL bottom surface and the recording medium.
  • the predetermined position is, for example, a position for recording / reproduction.
  • the light is, for example, light for recording / reproducing.
  • the order of starting the gap servo in a state where the gap is larger than when performing optical recording / reproducing and moving the focal point from the bottom surface of the SIL to the optical recording medium side is in the order You may go back and forth.
  • the SIL exit surface a section of the recording / reproducing light on the bottom surface of the SIL. Since the asymmetry of the reflected light increases (increase in optical gain), tilt servo can be started stably.
  • the focal point may be moved so as to be close to the signal layer located farthest from the bottom surface of the SIL among the focusable signal layers in the optical recording medium.
  • to move the focal point closer to the signal layer means to bring it as close as possible to the target signal layer. Even when the focal point moves to the signal layer, it is not on the signal layer but close to it. Including the case of moving. Further, at this time, it is preferable to use an initial condition of the focus servo for the movement of the focus. Here, the light can be quickly focused on the farthest signal layer.
  • the focal point is moved so as to be close to the signal layer that is closest to the bottom surface of the SIL, among the focusable signal layers in the optical recording medium. May be.
  • the initial condition of the focus servo may be used for moving the focus.
  • the light can be quickly focused on the nearest signal layer.
  • the circuit gain of the tilt servo may be changed according to the distance between the bottom surface of the SIL and the signal layer of the optical recording medium.
  • the tilt servo can be stabilized by correcting the change amount of the optical gain.
  • the position of the bottom surface of the SIL may be detected using a focus servo in the step (A). This makes it possible to move the focal position to a predetermined position with high accuracy even when the optical system is displaced.
  • the diameter Do of the SIL exit surface of the light is adjusted to be 7 ⁇ m or more and 90 ⁇ m or less.
  • the diameter Do of the SIL exit surface is adjusted to be 7 ⁇ m or more and 90 ⁇ m or less.
  • the optical recording / reproducing apparatus controls the gap between the surface of the optical recording medium and the bottom surface of the SIL using reflected light obtained by reflecting light from the bottom surface of the SIL to the optical recording medium.
  • An optical recording / reproducing apparatus comprising a tilt servo mechanism, (A) starting gap servo in a state where the gap is larger than when performing optical recording / reproducing, and moving the focal point from the bottom surface of the SIL to the optical recording medium side; (B) starting the tilt servo; (C) reducing the gap and placing the SIL in a predetermined position; Run The steps (A) to (C) are sequentially performed.
  • a computer program uses a reflected light obtained by reflecting light from the bottom surface of an SIL to the optical recording medium to control a gap between the surface of the optical recording medium and the bottom surface of the SIL.
  • a focus servo that controls the distance between the focal point of the light and the bottom surface of the SIL, and a tilt servo that controls the tilt of the bottom surface of the SIL with respect to the surface of the optical recording medium using reflected light.
  • An optical recording medium is an optical recording medium capable of optical recording and reproduction using a SIL optical system, and includes a substrate, a protective layer, and at least one signal layer.
  • the signal layer is formed between the substrate and the protective layer, and the distance from the bottom surface of the SIL is in the range of 0.9 ⁇ m to 38 ⁇ m.
  • the signal layer has a pull-in region where the surface inclination ⁇ satisfies ⁇ ⁇ arcsin ( ⁇ / D), where ⁇ is the wavelength of light from the SIL and D is the diameter of the bottom surface or the longest axis of the SIL. .
  • the lead-in area has a width of 20 ⁇ m or more in the radial direction over the circumference of the signal layer.
  • the pull-in area is an area where the focus is pulled in the optical recording medium.
  • the pull-in area may be, for example, a management area in which management information that is first accessed by the recording / reproducing apparatus is stored.
  • the inclination of the surface of the optical recording medium can be reduced within a manufacturable range, and the possibility of collision between the SIL and the optical recording medium can be reduced.
  • the signal layer may be within a range of 3.3 ⁇ m or more and 21 ⁇ m or less from the bottom surface of the SIL.
  • the surface inclination ⁇ of the pull-in region may satisfy ⁇ ⁇ arcsin ( ⁇ / 2D).
  • the pull-in area may be arranged at a position within a radius of 16 mm or more and 43 mm or less, or may be arranged at a position within a radius of 17 mm or more and 25 mm or less.
  • the difference in refractive index between the substrate and the protective layer may be 0.35 or more.
  • the difference in refractive index between the substrate and the intermediate layer may be 0.35 or more.
  • the difference in refractive index may be 0.45 or more.
  • the figure which shows an example of the flow of the optical recording and reproducing method which concerns on 1st Embodiment The figure which shows the structure of the optical recording / reproducing apparatus which concerns on 1st Embodiment, and the area
  • the figure which shows the structural example of an optical recording medium The figure which shows the positional relationship of SIL and the optical recording medium which concern on the optical recording / reproducing method of 1st Embodiment.
  • the figure which shows the stability of the tilt servo which concerns on the optical recording and reproducing method of 1st Embodiment The figure which shows the relationship between the diameter of the output surface and offset amount which concerns on the optical recording / reproducing method of 1st Embodiment.
  • the figure which shows the conventional resin coating method and its subject in intermediate layer formation of an optical recording medium The figure which shows the example of the manufacturing method of the optical recording medium of 2nd Embodiment.
  • the figure which shows the inclination of the surface of the optical recording medium of 2nd Embodiment The figure which shows the relationship between the refractive index difference which concerns on the optical recording medium of 2nd Embodiment, and a reflectance.
  • FIG. 1 is an example of a flowchart of an optical recording / reproducing method according to the present embodiment
  • FIG. 2 is an example of an optical recording / reproducing apparatus according to the present embodiment
  • FIG. 4 is used for the optical recording / reproducing method according to the present embodiment.
  • 1 shows an example of the configuration of an optical recording medium that can be used.
  • the optical recording / reproducing in the present embodiment refers to optical recording and / or reproducing.
  • the light emitted from the light source 201 is converted into parallel rays by the collimator 202 and passes through the PBS 203 and the quarter wavelength plate 204. Thereafter, the light is converged on the bottom surface of the SIL by the objective lens including the convex lens 205 and the SIL 206. The light reaches the signal layer of the optical recording medium 207 via the near-field light from the bottom surface of the SIL, is reflected, and passes through the objective lens and the quarter wavelength plate. Thereafter, the light is reflected by the PBS 203 and converged on the PD 209 by the converging lens 208. As shown in FIG.
  • the PD 209 is divided into four regions 209A, 209B, 209C, and 209D.
  • the light focused by the converging lens 208 is adjusted to be positioned near the center of the four regions as the spot 210. Signals from each area are used for various purposes such as information reproduction, focus adjustment, and tilt adjustment.
  • the objective lens can be adjusted in the horizontal, vertical, and tilt directions by the actuator 211, the tilt adjustment unit 212, and the like.
  • the optical recording / reproducing apparatus for example, devices using conventional techniques can be used for each component such as a lens, an actuator, and a tilt servo circuit.
  • the feature of the optical recording / reproducing method according to the present embodiment lies in the operation method and procedure of functions performed by each of those components, and the feature of the optical recording / reproducing device according to the present embodiment stores the optical recording / reproducing method.
  • the command mechanism 213 for execution.
  • the command mechanism 213 is configured by a memory, an arithmetic device, and the like.
  • the command mechanism 213 calculates an operation to be performed by each component using information stored in the memory and information output from each component as necessary, and determines each component according to the calculation result. Commands such as initial conditions, operation procedures, and operation methods are issued. Although shown as one component in FIG. 2, it may be composed of a plurality of components, and may be distributed among other components such as a tilt servo circuit and a gap servo circuit.
  • This illustrated example is a simplified configuration for easy explanation of the basic configuration of the optical recording / reproducing apparatus according to the present embodiment. For example, even if each component such as a lens, an actuator, and a tilt servo circuit does not have this form, the effect of this embodiment is not impaired as long as it has each basic function. Further, detailed description of methods, devices, and media will be omitted as appropriate for portions where conventional techniques can be used.
  • ⁇ Optical recording and playback method> The operation sequence of the optical recording / reproducing method according to the present embodiment will be described with reference to FIG.
  • the optical recording / reproducing method according to the present embodiment makes it possible to stably shift to the recording / reproducing state without contacting each other even when the SIL and the optical recording medium are relatively inclined. Therefore, each step is performed in the following order until the SIL is moved to a predetermined position during optical recording / reproduction.
  • state A a state in which the following three conditions are met.
  • First condition the gap (distance between the SIL and the optical recording medium) is larger than when optical recording / reproduction is actually performed.
  • Second condition the focal position of the recording / reproducing light is located closer to the optical recording medium than the bottom surface of the SIL.
  • Third condition Gap servo is started. The order in which the operations for satisfying these three conditions are not affected by the effect of the present embodiment. For example, the order of operations shown in FIGS. 1A, 1B, and 1C is used. However, it is preferable in that each operation is performed smoothly. The advantage of creating “state A” before placing the SIL at a predetermined position during optical recording / reproducing will be described.
  • the gap at the time of recording / reproducing is set to a very small value of about ⁇ / 20 in order to increase the propagation efficiency of near-field light as much as possible.
  • the gap in “state A” is maintained at about ⁇ / 2 (see FIG. 3), which is the upper limit at which gap servo can be started.
  • the allowable relative tilt between the SIL and the optical recording medium is about 10 times, and the possibility of contact between the SIL and the optical recording medium is greatly reduced.
  • the optical gain for the gap servo (the ratio of the change of the optical signal detected on the PD 209 to the change amount of the gap or tilt) is small, and the gap servo is stable. Sometimes it is difficult to keep it. In this case, if the gap in “state A” is reduced to about ⁇ / 4, the optical gain is greatly increased from several times to about ten times, and the servo can be stabilized.
  • the tilt servo As for the tilt servo, the larger the gap, the lower the optical gain, making it difficult to operate stably.
  • the focal position of the recording / reproducing light is located on the optical recording medium side with respect to the bottom surface of the SIL, thereby significantly increasing the optical gain. . This increase in optical gain will be described.
  • the tilt servo using the recording / reproducing light uses the asymmetry of the spot 210 on the PD 209 which changes according to the difference between d1 and d2 shown in FIG.
  • the difference between d1 and d2 is proportional to the diameter Do of the exit surface of the recording / reproducing light. That is, the larger the diameter of the exit surface, the larger the optical gain.
  • tilt servo is performed in a state where the focal point is arranged on the bottom surface of the SIL. Therefore, the exit surface is as large as the focal point of the recording / reproducing light.
  • the size of the focal point is proportional to the wavelength ⁇ of the recording / reproducing light and inversely proportional to the NA of the objective lens.
  • the proportionality coefficient varies slightly depending on the design of the optical system, in a general configuration, when a wavelength of 405 nm and NA of 1.65 are used, the size of the focus is about 200 nm.
  • the relative tilt between the SIL and the optical recording medium is kept small by driving the tilt servo, it is brought close to the position where optical recording / reproduction is actually performed without contacting each other (step 5 in FIG. 1). ) Is possible. In a state where the optical recording / reproducing distance is close to, for example, about 20 nm, a sufficient optical gain for tilt servo can be obtained even if Do is small. Accordingly, the focal position can be freely changed and focused on a predetermined signal layer.
  • an optical recording medium as shown in FIG. 4 is used.
  • the recording medium shown in FIG. 4A has a signal layer formed on the surface.
  • a protective layer is formed on one signal layer.
  • the recording medium shown in FIG. 4C has a plurality of signal layers separated by an intermediate layer, one of which is formed on the surface.
  • the recording medium shown in FIG. 4D has a plurality of signal layers separated by an intermediate layer, and a protective layer is formed on the surface.
  • arcsin (2G / D) It is expressed.
  • the relationship between the inclination ⁇ at this time and G and D is shown in FIG. If a wavelength of about 400 nm is used for recording / reproducing light, a gap of 100 nm corresponds to ⁇ / 4 and 200 nm corresponds to ⁇ / 2. From this graph, it can be seen that in order to increase ⁇ , the diameter D of the bottom surface of the SIL should be as small as possible.
  • the diameter Do of the SIL exit surface described above is Do ⁇ D
  • D the diameter of the SIL exit surface described above
  • the preferable range of the diameter D of the bottom surface of the SIL is 10 ⁇ m larger than Do, preferably 17 ⁇ m or more, and more preferably 35 ⁇ m or more.
  • the gap G is preferably larger from the viewpoint of collision avoidance, and is preferably ⁇ / 2 at which the near-field effect starts to appear. However, as described above, the gap G is decreased to about ⁇ / 4 in order to obtain a sufficient optical gain. You may need to do that.
  • the gap G is ⁇ / 2 and ⁇ / 4, the necessary condition of ⁇ for collision avoidance is calculated.
  • G ⁇ / 2
  • G ⁇ / 4
  • ⁇ ⁇ arcsin ( ⁇ / 2D) It becomes.
  • the tilt ⁇ of the surface of the optical recording medium satisfies the following condition even if the tilt is adjusted to substantially zero. It is necessary to satisfy.
  • is an inclination with respect to a plane whose normal is the rotation axis of the optical recording medium.
  • the size of D is preferably 17 ⁇ m or more and 100 ⁇ m or less, and particularly preferably 35 ⁇ m or more and 60 ⁇ m or less, in order to obtain the effect of the present embodiment.
  • the upper limit of Do is determined based on D, and considering the SIL processing and the optical axis adjustment margin of ⁇ 5 ⁇ m, it is preferably 7 ⁇ m or more and 90 ⁇ m or less, and particularly preferably 25 ⁇ m or more and 50 ⁇ m or less. Note that even if D and Do are outside these ranges, the effect of the present embodiment may be reduced, but it is not ineffective at all.
  • state A what is related to the second condition of “state A” will be described.
  • the focal position should be described. From the standpoint of stability of the tilt servo, it is preferable that the offset amount of the focal position is as large as possible. If the diameter Do of the exit surface is set to the above-mentioned preferable range, the effect of this embodiment can be exhibited particularly high. On the other hand, from the viewpoint of convenience after stabilizing the tilt servo, if the focal position is set as follows, the new effect of the present embodiment can be obtained.
  • the offset amount of the focal position is increased as much as possible, the signal layer arranged at the innermost position (the first signal layer in FIGS. 4 (a) and 4 (b), the fourth signal layer in FIGS. 4 (c) and 4 (d)). The focal position is moved to the place closest to the signal layer.
  • the optical recording medium can be focused on all signal layers by the optical recording / reproducing apparatus of the present embodiment, and there may be one signal layer or a plurality of signal layers.
  • the optical recording / reproducing apparatus of the present embodiment stores the initial condition of the focus servo when focusing on the innermost signal layer among the signal layers that can be focused from one side, and uses that condition. To do. Thereby, if the gap is adjusted to the amount of the recording / reproducing state after the tilt servo is started, the focus servo can be started quickly.
  • the above-mentioned focal position is set to the signal layer disposed closest to the signal layer that can be focused from one side (in all cases of FIG. 4).
  • the method of matching to the place closest to the first signal layer for example, when a management area storing management information such as the type of optical information recording medium, recommended usage, and data arrangement is arranged in the front signal layer, optical recording is performed.
  • the playback device first accesses the signal layer in the forefront, there is an effect of shortening the time required for access.
  • the method of focusing first on the nearest signal layer also has an advantage that the number of S-shaped focus signals to be counted is minimized before the first focusing, and therefore, counting errors are unlikely to occur.
  • the optical recording / reproducing apparatus of the present embodiment stores the initial condition of the focus servo when focusing on the foremost signal layer and uses the condition. Accordingly, if the gap is adjusted to the amount of the recording / reproducing state after the tilt servo is started, there is an effect that the focus servo can be started promptly.
  • the optical gain of the tilt servo changes according to the distance from the surface of the focused signal layer. Accordingly, if the electrical circuit gain of the tilt servo circuit is changed so as to cancel it, there is an effect that the tilt servo can be stabilized. At this time, it is preferable to lower the circuit gain because the optical gain increases as the signal layer is focused more deeply.
  • the optical recording / reproducing method and the optical recording / reproducing apparatus according to the present embodiment have been described in detail.
  • optical recording / reproducing method and optical recording / reproducing apparatus have a great effect on all optical recording media that can be recorded / reproduced by the SIL optical system.
  • the optical recording medium of this embodiment has at least the following two features, it can be more suitably used for the optical recording / reproducing method and optical recording / reproducing apparatus of the first embodiment.
  • at least one signal layer is provided at a position where the distance from the emission surface on the optical recording / reproducing side substantially coincides with the offset amount A of a suitable focal position in “state A”.
  • tilt servo can be stably started in a state where the offset amount A of the focal position is adjusted to the depth of the signal layer. Further, in that case, the focus servo can be arranged at substantially the same depth as the signal layer only by changing the gap to the amount of the recording / reproducing state, so that the focus servo can be quickly started.
  • FIG. 8 shows the calculated relationship between the exit surface diameter Do and the focal position offset amount A when ⁇ is 50 degrees, 60 degrees, and 75 degrees.
  • the offset amount A is preferably 0.9 ⁇ m or more and 38 ⁇ m or less, and more preferably 3.3 ⁇ m or more and 21 ⁇ m or less in order to exert the effect of the recording / reproducing method and apparatus of the first embodiment particularly greatly.
  • the optical recording medium of the present embodiment has at least one signal layer at a position where the distance from the emission surface is 0.9 ⁇ m or more and 38 ⁇ m or less, more preferably 3.3 ⁇ m or more and 21 ⁇ m or less. .
  • the optical recording medium of the present embodiment is formed such that the pull-in region where the surface inclination ⁇ satisfies ⁇ ⁇ arcsin ( ⁇ / D) has a width of 20 ⁇ m or more in the radial direction over the entire circumference. ing.
  • the pull-in area has a width of 20 ⁇ m or more in the radial direction over the entire circumference, the optical recording / reproducing apparatus can easily reach the pull-in area without accessing the information of the optical recording medium. .
  • the pull-in area is an area where focus is pulled in the optical recording medium.
  • it may be a management area in which management information that is first accessed by the recording / reproducing apparatus is stored.
  • the optical recording medium of the present embodiment having the above characteristics further exhibits the following effects by having the following characteristics.
  • the optical recording medium of the present embodiment has an identification area in which an identifier that enables identification of the signal layer is recorded in an area located deep in the pull-in area of the signal layer. This makes it possible to identify the signal layer when the focal point is located at or near the signal layer.
  • FIG. 9A and FIG. 9B show an example of the positional relationship between the pull-in area and the identification area, using an example of a cross section of the optical recording medium of the present embodiment.
  • the identification area is formed so as to substantially match or be larger than the drawing area in the radial width of the optical recording medium. As a result, if the focus is pulled in the pull-in area, the information in the identification area can be read reliably.
  • the identifier is preferably recorded as a shape such as a pit row or a meandering groove, and the S / N ratio of the reproduction signal is set larger than the S / N ratio of the reproduction signal of the main data.
  • the basic period of the meandering of the pit row or groove is set to 10 times or more of the shortest pit or mark used for recording main data, it can be read relatively easily.
  • the main data is information that can be used by the user and occupies most of the storage capacity of the optical recording medium.
  • the identification area does not have to be in all signal layers. For example, the identification area is formed only in the innermost signal layer, and when the identifier is read, the focus offset is not further increased. .
  • a management area may be provided in an area located behind the signal layer lead-in area.
  • the management area is an area in which management information such as recommended usage and data arrangement is stored.
  • the positional relationship in the radial direction between the pull-in region and the management region may be the same as the positional relationship between the pull-in region and the identification region.
  • the management area need not be arranged in all layers.
  • the management area is preferably arranged in the signal layer to be focused first from the following points.
  • the management area is arranged in the innermost signal layer, there is an advantage that the access time can be easily shortened in a state where the offset of the focal position in the “state A” is increased.
  • the number of S-shaped focus signals to be counted is minimized before focusing, so that there is also an advantage that miscounting is unlikely to occur.
  • FIGS. 10A and 10B show an example of the optical information recording medium of the present embodiment having a disk shape with a center hole.
  • the substrate 1001 various materials that can form a plane, such as various types of glass, metal, silicon, polycarbonate, olefin, and PMMA, can be used.
  • the substrate 1001 is more preferable as the difference in refractive index between the intermediate layer 1002 and the protective layer 1003 is larger.
  • the higher the refractive index of the protective layer and the intermediate layer the easier it is to increase the recording density. Therefore, in order to increase the difference in refractive index between the protective layer and the intermediate layer and the substrate, it is preferable to use a material having a relatively low refractive index for the substrate. From the viewpoint of manufacturing cost, a plastic material is preferable.
  • polycarbonate, olefin, PMMA, or the like is particularly suitable for the substrate 1001.
  • a concave / convex pattern is formed on the substrate by a method such as injection molding or thermal transfer, and then one or more recording materials are formed thereon using a method such as sputtering, vapor deposition, or spin coating.
  • Layer 1004 is formed.
  • a method for forming the intermediate layer 1002 will be described. First, a liquid resin as an intermediate layer is applied by a method such as spin coating, screen printing, or ink jet printing.
  • the NA of the objective lens becomes much larger, the depth of focus becomes shallower, and the number that is 1 / tens of thousands of the conventional one. It is necessary to keep a very small gap of about 10 nm stably. Therefore, the thickness accuracy of the intermediate layer and the protective layer, which will be described later, must be very high, and it is not easy to achieve this accuracy by applying a liquid resin. In particular, when the thickness variation within one round of the same radius is large, there is a problem that stable recording / reproduction becomes very difficult. From the viewpoint of reducing the thickness fluctuation within one circumference, the spin coating method is most suitable among the coating methods mentioned above, and it is preferable to use this method.
  • the spin coating method has the following new problem when the coating thickness is 10 ⁇ m or less.
  • the coating thickness of the inner peripheral portion tends to be thin.
  • the coating cannot be applied to the center as it is, the tendency becomes remarkable and it is very difficult to achieve a necessary thickness distribution.
  • the resin is dripped at a position close to the central axis by using a cap 1101 as shown in FIG. 11A or a boss 1102 as shown in FIG. This method has been proposed and put into practical use.
  • the optical recording medium of the present embodiment was produced by the following method.
  • a gentle recess 1201 is formed in a donut shape on the inner periphery of the substrate so that the resin can be stored.
  • This structure makes it difficult to reduce the coating thickness of the inner peripheral portion without a cap or boss. The effect became large when the depth 1205 of the depression was 30 times or more the desired coating thickness. Further, it is necessary to continuously change the inclination over the entire region where the resin spreads after the resin is dropped and before the stretching starts. If there is a discontinuous change in inclination at any location, a radial thickness distribution similar to that generated on the end face of the cap or boss is generated. At least the inclination of the outer end 1202 portion of the dent needs to be continuously changed.
  • the inner end 1203 of the dent, etc. there are portions where the inclination changes discontinuously in the portions not covered by the resin. There may be. As a result, the uniformity of the coating thickness was improved as compared with the conventional method.
  • the thickness variation in the radial direction is improved, but the thickness variation in the circumferential direction may exceed 100 nm.
  • This is not a problem for an optical recording medium using a conventional far-field optical system such as a Blu-ray Disc, but is a major problem for an optical recording medium for SIL.
  • coating was performed using a substrate on which a concentric resin stopper 1301 was formed on the center side of the recess 1201. As shown in FIG.
  • the inclination change (gamma) from a hollow to a resin stop is 45 degree
  • the distance between the resin stopper inner end and the resin stopper outer end is preferably 50 ⁇ m or more, more preferably 100 ⁇ m or more.
  • the resin stopper of this embodiment it may be formed in a convex shape as shown in FIG. 14B, or may be formed in a step shape as shown in FIG. Furthermore, as shown in FIGS. 14D and 14E, even if the height of the substrate on the inner peripheral side from the resin stopper inner end 1303 and the height of the substrate on the outer peripheral side from the outer end 1202 of the recess are different. good. Further, as shown in FIG. 14F, even when the inclination is discontinuous at the inner end of the recess and ⁇ is 45 degrees or more, the inner end of the recess is substantially the same as the outer end 1302 of the resin stopper. The effects of the embodiment can be obtained.
  • the shape of the resin stopper in the manufacturing process of the optical recording medium according to the present embodiment is not limited to the shape of the example in the drawing as long as it has the above-described characteristics.
  • the optical information recording medium of the present embodiment described above forms a light-transmitting layer that requires a coating thickness of 10 ⁇ m or less and high-precision thickness uniformity regardless of the use and constituent materials such as an intermediate layer and a protective layer. It has a great effect on the overall spin coating method. Further, even when the depression and the resin stopper are both used alone, their respective effects can be exhibited.
  • the transfer substrate is overlaid on the intermediate layer resin in a vacuum in order to transfer uneven shapes such as pits and grooves.
  • UV irradiation is performed to cure the intermediate layer resin, and then the transfer substrate is peeled off to complete the intermediate layer 1002.
  • the first signal layer is formed in the same manner as the second signal layer.
  • the optical recording medium of this embodiment is completed by applying the protective layer resin using the above-described application method and curing by applying UV irradiation.
  • the case where the optical recording medium of the present embodiment has two signal layers has been described as an example.
  • the optical recording medium of the present embodiment does not limit the number of signal layers, and can be created regardless of the number of signal layers by omitting or repeating some steps of the above manufacturing method. it can.
  • the intermediate layer and the protective layer of the optical recording medium for the SIL optical system are required to have extremely high thickness uniformity that is not conventionally available. Therefore, in order to create an optical recording medium using a liquid resin, it is necessary to use an unprecedented method. Indentations and resin stops in the optical recording medium of this embodiment are good examples for improving thickness uniformity.
  • the reason why it is preferable that the refractive index difference between the intermediate layer and the protective layer and the substrate is larger in the method of manufacturing the optical recording medium of the present embodiment will be described.
  • the following manufacturing advantages can be obtained.
  • the thickness of the intermediate layer and the protective layer is measured using reflection from the recording material and the reflective material of the signal layer. . Therefore, in the conventional optical recording medium, the thickness can be measured only in the measurement range 1005 above the signal layer.
  • the signal layer means the entire area where the recording material or the reflective material is formed, and it is not always necessary that the signal is recorded or recordable by pits, marks, grooves or the like. .
  • the reflection from the boundary between the substrate and the intermediate layer or the substrate and the protective film is increased by increasing the difference in refractive index between the protective layer and the intermediate layer and the substrate.
  • the rate is increasing. Accordingly, it is possible to measure the thickness in a region outside the measurement range 1005 that is more easily affected by factors that vary in the manufacturing process. Specifically, by monitoring an area outside the measurement range 1005, it is possible to grasp the thickness variation caused in the manufacturing process at an earlier stage than in the case of a conventional optical recording medium. As a result, it is possible to manufacture an optical recording medium having a more stable quality than before. Further, in the measurement range 1005, when the thickness change is minute, it is impossible to detect the thickness variation. However, in the optical recording medium of the present embodiment, even if there is a factor outside the measurement range 1005, even if there is a factor outside the measurement range 1005, the factor is detected as a thickness variation. Sometimes you can.
  • FIG. 16 shows the reflectivity from the interface between the substrate and the intermediate layer in contact with the substrate or the protective layer for each refractive index difference when the substrate has a refractive index of 1.5 and 1.6. It is.
  • Each refractive index difference is a refractive index difference between the substrate and an intermediate layer in contact with the substrate or a protective layer. If the reflectance is about 1.0%, the thickness of the optical recording medium can be sufficiently measured. Therefore, it can be seen from the figure that when the refractive index of the substrate is 1.5 to 1.6, the refractive index difference should be about 0.35. Furthermore, if there is a reflectance of about 1.5%, various servos and signal reproduction using a pickup head can be performed.
  • the material of each layer is selected so that the refractive index difference is about 0.45, it is possible to manufacture a very inexpensive read-only medium that does not require the use of a recording material or a reflective material for the signal layer.
  • the substrate has a refractive index of 1.5 or a refractive index of 1. 6 may be used.
  • a material obtained by adding a titania or zirconia filler to an acrylic UV curable resin may be used.
  • Acrylic UV curable resins having a refractive index exceeding 1.8 have been put into practical use, and titania and zirconia fillers having a refractive index of 2.3 or more have been put into practical use. Furthermore, since the added amount of filler can be increased to about 70% in terms of weight percent concentration, a resin having a refractive index of about 2.1 can be sufficiently realized. If these substrate materials are combined with an acrylic UV curable resin, the refractive index difference between them can be increased to about 0.6.
  • the optical recording medium of the present embodiment is only required to realize the above-described difference in refractive index, and even if manufactured using materials other than those exemplified above, the effect corresponding to the difference in refractive index is obtained. Can demonstrate. The method for manufacturing the optical recording medium of the present embodiment has been described above. Finally, the inclination of the surface when the optical recording medium of the present embodiment is actually manufactured by this method is shown, and the arrangement of the lead-in areas of the optical recording medium will be described.
  • FIG. 15 shows the maximum value within one rotation of the surface inclination of the optical recording medium when ten optical recording media of the present embodiment having two signal layers are produced.
  • the two graphs are a value obtained by adding the standard deviation ⁇ to the average value of 10 sheets and a value obtained by adding 3 ⁇ to the average value of 10 sheets.
  • the value obtained by adding ⁇ to the average value of 10 sheets statistically includes 68% of the total production.
  • the values obtained from the trial production results of 10 sheets cannot be statistically sufficiently discussed, but a value obtained by adding ⁇ to the average value of 10 sheets is also sufficient as a standard for manufacturing feasibility.
  • FIG. 15 shows the following two points.
  • the value obtained by adding ⁇ to the average value of 10 sheets is 0.2 degrees or less in a wide region having a radius of 15 mm to 50 mm.
  • 0.2 degrees is a sufficient condition for a recording medium suitable for use in the optical recording / reproducing method of the present embodiment. Therefore, it can be seen from this numerical value that the optical recording medium used in the optical recording / reproducing method of this embodiment can be sufficiently manufactured.
  • the radius where the pull-in region should be arranged can be selected.
  • the pull-in area is preferably arranged at a radius with a small maximum inclination in the circumference.
  • the radius is preferably 150 mm or less, preferably 16 mm or more and 43 mm or less, and the criteria 1502 or less. It can be seen that a radius of 17 mm to 25 mm is more preferable.
  • the criteria used here do not have a special meaning, but are used for convenience to select a radius range in which the maximum inclination in the circumference is relatively small.
  • the effect of the present embodiment can be obtained even if the pull-in area of the present embodiment is arranged at a place other than the above as long as the surface inclination is less than 0.2 degrees.
  • ⁇ Effects of Second Embodiment> According to the optical recording medium of the present embodiment, it is possible to avoid collision between the SIL and the optical recording medium at the start of tilt servo. Further, by using the optical recording / reproducing method and the optical recording / reproducing apparatus according to the first embodiment, collision between the SIL and the optical recording medium can be avoided more reliably.
  • optical recording / reproducing method, optical recording / reproducing apparatus, program, and optical recording medium of the present invention are useful for optical recording / reproducing using the SIL optical system, and are also useful as such optical recording / reproducing optical recording media.

Abstract

 記録再生光をチルトサーボに併用するSIL光学系を用いると、チルトサーボ開始前にSILと光記録媒体とが衝突する可能性が高い。この衝突を回避するため、SILの底面からの光が光記録媒体に反射して得られる反射光を利用して、光記録媒体の表面とSILの底面との間のギャップを制御するギャップサーボと、光の焦点とSILの底面との間の距離を制御するフォーカスサーボと、反射光を利用してSILの底面の光記録媒体の表面に対するチルトを制御するチルトサーボと、を行う光記録再生方法は、次の工程を順に行う。(A)ギャップが光記録再生を行う時よりも大きい状態でギャップサーボを開始し、かつ焦点をSILの底面より光記録媒体側に移動する工程、(B)チルトサーボを開始する工程、(C)ギャップを小さくして前記SILを所定の位置に配置する工程。

Description

光記録再生方法、光記録再生装置、プログラム及び光記録媒体
 本発明は、近接場を利用して光学的に信号の記録・再生を行う光記録再生方法、光記録再生装置、プログラム及び光記録媒体に関するものである。
 DVDなどの光記録媒体の記録や再生には対物レンズで収束された光スポットが用いられる。この光スポットの大きさは、波長が短いほど、また、対物レンズの開口数(以下NA)が大きいほど、小さくなり、より高密度な記録、再生が可能となる。高密度な記録及び再生を実現するため、従来から多くの取り組みがなされてきた。その中でも、対物レンズのNAを飛躍的に高める方法として近年注目されているのが、ソリッド・イマージョン・レンズ(以下、SILと呼ぶ。)を用いた光学系である。SILを用いると、大気中では1であった光の入射側の屈折率をSILの材質に応じて高めることができ、対物レンズのNAを大幅に大きくすることが可能である。
 しかしながら、近接場光を介してSILから光記録媒体へ光を効率よく伝播させるには、両者の間の距離(以下、ギャップと呼ぶ。)を、波長の数分の一以下と非常に小さく保つ必要がある。これにより、従来の光学系にはなかった問題も発生する。
 この問題について述べる前に、SILを用いた記録再生装置について、図2A及び図2Bに示した例を使って説明する。
 図2Aに示すように、光源201から出た光は、コリメータ202により並行光線となり、PBS(Polarizing Beam Splitter)203、1/4波長板204を通過する。その後、光は、凸レンズ205とSIL206とからなる対物レンズによりSILの底面に収束される。光は、SILの底面から近接場光を介して光記録媒体207の信号層に到達し、反射されて、対物レンズ、1/4波長板、を通過する。その後、光は、PBS203で反射されて、収束レンズ208によりPD(Photo Detector)209に収束される。PD209は、図2Bに示すように、209A、209B、209C、209Dの4つの領域に分割されている。収束レンズ208で絞られた光は、スポット210として4つの領域の中心付近に位置するように調整される。各領域からの信号は、情報の再生や、フォーカス調整、チルト調整など種々の目的に使用される。対物レンズは、アクチュエータ211やチルト調整部212などにより、水平、垂直、傾きなどの方向に調整できるようになっている。なお、この図示例は、光記録再生装置の基本構成を説明しやすくするため簡易化した構成である。一般的には、記録再生用とサーボ制御用とでそれぞれ異なる光源やPDを持っている記録再生装置がよく用いられる。PDについても用途に応じて、2分割のものや分割されていないものが使われることもある。
 次に、SIL光学系を採用した場合の問題について述べる。
 まず、SILと光記録媒体との間において、従来の10000分の1程度という非常に小さなギャップを安定的に保つのは、従来の技術では非常に困難である。これに対して有効な手段として、ギャップサーボと呼ばれる技術が提案されている。この方法は特許文献1などに開示されている。この方法は、ギャップの大きさに応じて変化する、SILの底面の全反射領域からの反射光量をPD209で検出し、同反射光量に応じた信号が入力されるギャップサーボ回路によりアクチュエータ211を駆動して、ギャップが一定となるように制御するものである。全反射領域からの反射光量は、図3に示すように、ギャップが十分に大きい場合は一定となる。しかし、反射光量は、ギャップが波長の半分以下程度のニアフィールド領域になると、ギャップが小さくなるほど小さくなる性質がある。したがって、反射光量からギャップの大きさを見積もることができる。
 また、SIL光学系の非常に小さなギャップでは、SILの底面と光記録媒体の表面とが僅かに傾くだけでも容易に接触してしまうという問題もある。これについても、ギャップサーボと同様に、SILの底面の全反射領域からの反射光を利用するチルトサーボ技術が提案されている。この方法は、傾きにより不均一になったギャップにより発生する反射光の非対称性をPD209で検出し、チルトサーボ回路によりチルト調整部を駆動することにより、チルトを適切に制御するものである。このチルトサーボには、記録再生光とは別の光源を用いる方法と、同一光源を用いる方法とが提案されている。製造コストや調整の容易さの観点からは、同一光源を用いる方法が強く望まれているが、後述の課題があり、未だ実用化には至っていない。同一光源を用いる技術としては、例えば、特許文献2、特許文献3などの方法が提案されている。
再公表03/021583号公報 特開2005-259329号公報 特開2006-4596号公報
(発明が解決しようとする課題)
 しかしながら、上記に示したようなチルトサーボは、下記の課題を有する。
 第一に、チルトサーボを開始する前にSIL底面と光記録媒体とが衝突する可能性が高いという課題を有する。上記のチルトサーボを用いれば、チルトがほとんどゼロに近い領域においては、チルトを小さく保つことはできる。しかし、チルトサーボを開始する際に次のような大きな課題が残る。SILを用いない従来の光学系においては、チルトサーボ開始前の状態でも対物レンズと光記録媒体の接触を避けるのは容易である。しかし、SILを用いた光学系ではギャップが非常に小さいため、チルトサーボを開始する前に、SILと光記録媒体の表面とが僅かに傾いているだけで容易に衝突し、SILを損傷させてしまう可能性が非常に高い。
 第二に、特許文献2に記載のチルトサーボ技術は、光記録媒体を静止した状態でチルトの初期調整を行う必要がある。したがって、実際に光記録媒体の情報層へアクセスするまでの時間が長くなってしまうという課題を有している。また、一旦、SILが光記録媒体に接触することにより汚染されたり、損傷したりする危険が非常に高くなる。
 第三に、特許文献3に記載のチルトサーボ技術は、光学系が複雑になるために調整が非常に困難であるという課題を有する。記録再生光とチルトサーボとに異なる光源を用いる、その他の従来のチルトサーボ技術も同様に光学系の複雑さに起因する課題を有する。
 本発明は以上の事情を鑑みて成されたものである。本発明の目的は、SIL光学系を用いた光記録再生において、記録再生光の一部をチルトサーボにも利用する単純な光学系をもちいながらも、チルトサーボ開始時にSILと光記録媒体が衝突することのない方法を提供するものである。
(課題を解決するための手段)
 上記目的を達成するため、本発明に係る光記録再生方法は、SILの底面からの光が光記録媒体に反射して得られる反射光を利用して、光記録媒体の表面とSILの底面との間のギャップを制御するギャップサーボと、光の焦点と前記SILの底面との間の距離を制御するフォーカスサーボと、前記反射光を利用して前記SILの底面の前記光記録媒体の表面に対するチルトを制御するチルトサーボと、を行う光記録再生方法であって、
 (A)前記ギャップが光記録再生を行う時よりも大きい状態でギャップサーボを開始し、かつ焦点をSILの底面より光記録媒体側に移動する工程と、
 (B)前記チルトサーボを開始する工程と、
 (C)前記ギャップを小さくしてSILを所定の位置に配置する工程と、
を備え、
 前記(A)から(C)の工程を順に行う。
 ここで、焦点をSILの底面より光記録媒体側に移動するとは、例えば、その焦点が光記録媒体自体にあるだけでなく、SIL底面と記録媒体との間のギャップにある場合も含む。
 所定の位置とは、例えば、記録再生のための位置である。また、光とは、例えば記録再生用の光である。
 なお、(A)の工程においては、ギャップが光記録再生を行う時よりも大きい状態でギャップサーボを開始することと、焦点をSILの底面より光記録媒体側に移動することとは、順序は前後してもよい。
 ここでは、SILを光記録媒体に最近接させる前にチルトサーボを開始するため、SILと光記録媒体との接触の可能性を最小にすることができる。一方、ギャップが大きくなるほど、SILの底面からの反射光の非対称性が小さくなり(光学ゲインの低下)、チルトサーボの開始は難しくなる。しかし、前記(A)の工程で、焦点をSILの底面よりも光記録媒体側に移動することにより、SILの底面における記録再生光の断面(以下、SILの出射面と呼ぶ。)が広がり、反射光の非対称性が大きくなるため(光学ゲインの増大)、チルトサーボを安定して開始することができる。
 さらに、前記(A)の工程においては、焦点を、光記録媒体における合焦可能な信号層の中でSILの底面から見て最も遠い位置にある信号層に近くなるように移動してもよい。
 ここで、焦点を信号層に近くなるように移動するとは、目的とする信号層にできる限り近づけることをいい、焦点位置が信号層上まで移動する場合も、信号層上ではないがその近くまで移動する場合も含む。
 さらにこのとき、上記焦点の移動には、フォーカスサーボの初期条件を利用するとよい。
 ここでは、光を速やかに最も遠い位置の信号層に合焦させることができる。
 代わりに、前記(A)の工程において、焦点を、光記録媒体における合焦可能な信号層の中で、SILの底面から見て最も近い位置にある信号層に近くなるように移動するようにしてもよい。またこのとき、焦点の移動には、フォーカスサーボの初期条件を利用するとよい。
 ここでは、光を速やかに最も近い位置の信号層に合焦させることができる。
 さらに、同一面側から合焦可能な複数の信号層を有する光記録媒体において、SILの底面と光記録媒体の信号層との距離に応じて、前記チルトサーボの回路ゲインを変化させてもよい。
 ここでは、光学ゲインの変化量を補正して、チルトサーボを安定させることができる。このとき、SILの底面と各信号層との距離が大きいほど、光学ゲインが大きくなるため、回路ゲインを小さくするとよい。
 さらに、本発明の光記録再生方法においては、前記(A)の工程において、フォーカスサーボを用いて、SILの底面の位置を検出してもよい。これにより、光学系のズレが生じた場合にも焦点位置を所定の位置に高精度に移動することを可能とする。
 さらに、本発明の光記録再生方法においては、前記(B)の工程において、前記光のSIL出射面の直径Doが、7μm以上90μm以下になるように調整される。ここでは、SILと光記録媒体との衝突の可能性をより低減する効果を持つ。
 さらに、SIL出射面の直径Doが、25μm以上50μm以下になるように調整することにより、衝突の可能性をさらに低減する効果を持つ。
 本発明に係る光記録再生装置は、SILの底面からの光が光記録媒体に反射して得られる反射光を利用して、光記録媒体の表面と前記SILの底面との間のギャップを制御するギャップサーボ機構と、前記光の焦点と前記SILの底面との間の距離を制御するフォーカスサーボ機構と、前記反射光を利用して前記SILの底面の前記光記録媒体の表面に対するチルトを制御するチルトサーボ機構と、を備える光記録再生装置であって、
 (A)前記ギャップが光記録再生を行う時よりも大きい状態でギャップサーボを開始し、かつ焦点をSILの底面より光記録媒体側に移動する工程と、
 (B)前記チルトサーボを開始する工程と、
 (C)前記ギャップを小さくしてSILを所定の位置に配置する工程と、
を実行し、
 前記(A)から(C)の工程を順に行う。
 本発明に係るコンピュータプログラムは、SILの底面からの光が光記録媒体に反射して得られる反射光を利用して、光記録媒体の表面とSILの底面との間のギャップを制御するギャップサーボと、光の焦点とSILの底面との間の距離を制御するフォーカスサーボと、反射光を利用してSILの底面の光記録媒体の表面に対するチルトを制御するチルトサーボと、をコンピュータに実行させるプログラムであって、
 (A)ギャップが光記録再生を行う時よりも大きい状態でギャップサーボを開始し、かつ焦点位置をSILの底面より光記録媒体側に移動する工程と、
 (B)チルトサーボを開始する工程と、
 (C)ギャップを小さくしてSILを所定の位置に配置する工程と、
 を実行させ、
 前記(A)から(C)の工程を順に実行させる。
 本発明に係る光記録媒体は、SIL光学系を用いて光記録再生が可能な光記録媒体であって、基板と、保護層と、少なくとも一つの信号層とを備える。信号層は、基板と保護層との間に形成され、SILの底面からの距離が0.9μm以上38μm以下の範囲にある。さらに信号層は、λをSILからの光の波長とし、DをSILの底面の直径もしくは最長軸径としたとき、表面の傾きθが、θ<arcsin(λ/D)を満たす引き込み領域を有する。同引き込み領域は、信号層の一周に渡って、半径方向に20μm以上の幅を有する。
 ここで、引き込み領域とは、光記録媒体においてフォーカスの引き込みが行われる領域である。引き込み領域は、例えば、記録再生装置が最初にアクセスする、管理情報が格納された管理領域であってもよい。
 ここでは、光記録媒体の表面の傾きを製造可能な範囲で小さくし、SILと光記録媒体の衝突の可能性を低減することができる。
 さらに、信号層は、SILの底面からの距離が3.3μm以上21μm以下の範囲にあってもよい。
 また、引き込み領域の表面の傾きθが、θ<arcsin(λ/2D)を満たすものであってもよい。
 引き込み領域は、半径16mm以上43mm以下の範囲にある位置に配されていてもよく、あるいは半径17mm以上25mm以下の範囲にある位置に配されていてもよい。
 基板と保護層との屈折率の差は、0.35以上であってもよい。さらに、光記録媒体が複数の信号層と、同信号層間に形成された中間層とを備える場合は、基板と中間層との屈折率の差は、0.35以上であってもよい。
 さらに、上記屈折率の差は、0.45以上であってもよい。
(発明の効果)
 本発明の光記録再生方法、光記録再生装置、プログラム及光記録媒体によれば、SIL光学系を用いた場合にも、チルトサーボ開始時にSILと光記録媒体が衝突することを回避することができる。
第1実施形態に係る光記録再生方法の流れの一例を示す図 第1実施形態に係る光記録再生装置の構成と、同光記録再生装置のPDの領域を示す図 ギャップと全反射光量の関係を示す図 光記録媒体の構成例を示す図 第1実施形態の光記録再生方法に係るSILと光記録媒体の位置関係を示す図 第1実施形態の光記録再生方法に係るギャップと傾きβの関係を示す図 第1実施形態の光記録再生方法に係るチルトサーボの安定性を示す図 第1実施形態の光記録再生方法に係る出射面の直径とオフセット量の関係を示す図 第2実施形態に係る光記録媒体の構成例を示す図 第2実施形態の光記録媒体の構成例を示す図 光記録媒体の中間層形成において従来の樹脂塗布方法とその課題を示す図 第2実施形態の光記録媒体の製造方法の例を示す図 第2実施形態の光記録媒体の製造方法の例を示す図 第2実施形態の光記録媒体の製造工程における窪みの形状例を示す図 第2実施形態の光記録媒体の表面の傾きを示す図 第2実施形態の光記録媒体に係る屈折率差と反射率との関係を示す図
符号の説明
 201  光源
 202  コリメータ
 203  PBS
 204  1/4波長板
 205  凸レンズ
 206  SIL
 207  光記録媒体
 208  収束レンズ
 209  PD
 208  収束レンズ
 210  スポット
 211  アクチュエータ
 212  チルト調整部
 213  指令機構
 1001  基板
 1002  中間層
 1003  保護層
 1004  第二信号層
 1005  測定範囲
 1101  キャップ
 1102  ボス
 1103  キャップ端面
 1104  ボス端面
 1201  窪み
 1202  窪みの外端
 1203  窪みの内端
 1204  滴下領域の内周端
 1205  窪みの深さ
 1301  樹脂止め
 1302  樹脂止め外端
 1303  樹脂止め内端
 1501  クライテリア
 1502  クライテリア
(第1実施形態)
 本発明の第1実施形態に係る記録再生方法及び同方法を実行する記録再生装置ついて、図面を参照しつつ説明する。
 図1は、本実施形態に係る光記録再生方法のフローチャートの一例、図2は、本実施形態に係る光記録再生装置の一例、図4は、本実施形態に係る光記録再生方法に用いることができる光記録媒体の構成例を示したものである。
 なお、本実施形態における光記録再生とは、光学的に記録、再生のいずれか、または両方を行うことである。
<光記録再生装置>
 本実施形態に係る光記録再生方法は、図2に示される光記録再生装置を用いて行われる。 図2(a)に示すように、光源201から出た光は、コリメータ202により並行光線となり、PBS203、1/4波長板204を通過する。その後、光は、凸レンズ205とSIL206とからなる対物レンズによりSILの底面に収束される。光は、SILの底面から近接場光を介して光記録媒体207の信号層に到達し、反射されて、対物レンズ、1/4波長板、を通過する。その後、光は、PBS203で反射されて、収束レンズ208によりPD209に収束される。PD209は、図2(b)に示すように、209A、209B、209C、209Dの4つの領域に分割されている。収束レンズ208で絞られた光は、スポット210として4つの領域の中心付近に位置するように調整される。各領域からの信号は、情報の再生や、フォーカス調整、チルト調整など種々の目的に使用される。対物レンズは、アクチュエータ211やチルト調整部212などにより、水平、垂直、傾きなどの方向に調整できるようになっている。
 この光記録再生装置には、例えば、レンズやアクチュエータ、チルトサーボ回路などの各構成要素に従来の技術を用いたものを用いることができる。本実施形態に係る光記録再生方法の特徴は、それらの各構成要素によってなされる機能の動作方法、手順にあり、本実施形態に係る光記録再生装置の特徴は、上記光記録再生方法を記憶し、実行するための指令機構213にある。
 ここで、指令機構213は、メモリや演算装置などから構成される。指令機構213は、メモリに記憶された情報や必要に応じて各構成要素から出力される情報を用いて、各構成要素が実行すべき動作を演算し、その演算結果に応じて、各構成要素に初期条件や動作手順、動作方法などの指令を出すものである。図2では、一つの部品として示したが、複数の部品から構成されてもよく、チルトサーボ回路やギャップサーボ回路などの他の構成要素の中に分散して配置されていてもよい。
 なお、この図示例は、本実施形態に係る光記録再生装置の基本構成を説明しやすくするために簡易化した構成である。例えば、レンズやアクチュエータ、チルトサーボ回路などの各構成要素は、この形態を有さなくとも、各基本機能を備えたものであるかぎり、本実施形態の効果が損なわれるものではない。また、従来の技術を利用可能な部分については方法、装置、媒体ともに詳細な説明を適宜省略する。
<光記録再生方法>
 図1を用いて、本実施形態に係る光記録再生方法の動作順序について説明する。本実施形態に係る光記録再生方法は、SILと光記録媒体とが相対的に傾いていた場合にも、互いに接触することなく、安定して記録再生状態へ移行することを可能にする。そのために、SILを光記録再生時の所定の位置に移動するまでに、次の順序で各工程を行う。
 まず、次の三つの条件を揃えた状態(以下、「状態A」)を作る。
 第一の条件:ギャップ(SILと光記録媒体との距離)が実際に光記録再生を行う場合よりも大きいこと。
 第二の条件:記録再生光の焦点位置が、SILの底面よりも光記録媒体側に位置していること。
 第三の条件:ギャップサーボが開始されていること。
 これら三つの条件を満たすための動作が行われる順序は、本実施形態の効果に影響はしないが、例えば、図1(a)、図1(b)、図1(c)に示した動作順序が、各動作を円滑に行う点で好ましい。
 SILを光記録再生時の所定の位置に配置する前に、「状態A」を作る利点について説明する。
 この状態では、記録再生時に比べてギャップが大きいので、SILと光記録媒体とが接触する可能性を大幅に下げることができる。一般的に、記録再生を行う際のギャップは近接場光の伝播効率を極力高めるためにλ/20程度と非常に小さく設定される。これに対して、「状態A」におけるギャップは、ギャップサーボ開始可能な上限であるλ/2(図3参照)程度に保たれる。これにより、許容できるSILと光記録媒体との相対的な傾きは10倍程度となり、SILと光記録媒体との接触の可能性は大幅に小さくなる。ただし、ギャップがλ/2の状態では、ギャップサーボのための光学的なゲイン(ギャップやチルトの変化量に対する、PD209上で検出される光信号の変化の割合)が小さく、ギャップサーボを安定的に保つのが困難な場合もある。その場合は、「状態A」でのギャップをλ/4程度まで小さくすると、光学ゲインが数倍から十倍程度と大幅に増大し、サーボを安定化させることができる。
 チルトサーボについても、ギャップが大きいほど、光学ゲインが低くなり、安定的に動作させるのが難しくなる。しかし、「状態A」では、図5(a)に示したように、記録再生光の焦点位置がSILの底面よりも光記録媒体側に位置することにより、光学ゲインの大幅な増大を果たしている。この光学ゲインの増大について説明する。
 記録再生光を利用したチルトサーボは、図5(a)に示すd1とd2の差分に応じて変化する、PD209上のスポット210の非対称性を利用する。ここで、SILと光記録媒体の相対的な傾きβが同じならば、d1とd2の差分は、記録再生光の出射面の直径Doに比例する。つまり、出射面の直径が大きいほど、光学ゲインは大きくなる。
 従来の記録再生方法では、図5(b)に示したようにSILの底面に焦点を配置した状態でチルトサーボを行っていたため、出射面は記録再生光の焦点程度の大きさとなる。焦点の大きさは、記録再生光の波長λに比例し、対物レンズのNAに反比例する。比例係数は光学系の設計により多少変化するが、一般的な構成では、波長405nm、NA1.65を用いた場合、焦点の大きさは200nm前後となる。これに対して本実施形態の記録再生方法における出射面の直径Doは、対物レンズの絞り角をα、焦点位置のSILからのオフセット量をAとすると、
 Do=2・A・tanα
と表される。
 ここで、例えば、Aを1μm、αを60度とすれば、Doは3.5μm程度となる。つまり、Doは、従来の方法の10~20倍と劇的に増大し、ギャップが大きいために下がっていた光学ゲインを補うことができる。その結果、「状態A」でも安定してチルトサーボを行うことが可能となる。
 以上説明したように、「状態A」においては、従来よりもギャップの大きな状態でチルトサーボの駆動が可能となる。
 この「状態A」形成後、まず、チルトサーボを開始する(図1の工程4)。チルトサーボが駆動していることにより、SILと光記録媒体の相対的な傾きが小さく保たれているので、互いに接触することなく、実際に光記録再生を行う位置へ近接させる(図1の工程5)ことが可能となる。光記録再生を行う距離、例えば、20nm程度まで近接させた状態では、Doが小さくても、チルトサーボのための十分な光学ゲインが得られる。したがって、焦点位置を自由に変更し、所定の信号層へ合焦させることができる。
 本実施形態に係る方法及び装置においては、例えば、図4に示したような光記録媒体が使用される。図4(a)に示す記録媒体は、表面に信号層が形成されている。図4(b)に示す記録媒体は、一つの信号層の上に保護層が形成されている。図4(c)で示す記録媒体は、中間層で隔離された複数の信号層を有し、その内の一つが表面に形成されている。図4(d)で示す記録媒体は、中間層で隔離された複数の信号層を有し、表面に保護層が形成されている。図1の工程5の後であれば、例えば、図4(a)、図4(c)の第一信号層に合焦してもチルトサーボを安定的に駆動することが可能である。なお、図4は、本実施形態において使用される光記録媒体の基本構成の例であり、信号層の数や配置の全てを示しているわけではない。
 以下に、「状態A」について、より詳細に説明する。ただし、ここで述べる条件や構成は、本実施形態の効果を最大限に得るためのものである。したがって、本実施形態を以下の条件や構成の範囲に限定するものではない。
 まず、「状態A」の第一条件に関わるものについて説明する。
 先述の通り、本実施形態に係る方法によれば、従来よりもギャップが大きい状態でチルトサーボを開始できるために、SILと光記録媒体との衝突の可能性を小さくすることができる。しかしながら、SILと光記録媒体の相対的な傾きが大きすぎると、「状態A」の条件によるギャップになる時点で既に衝突してしまう場合も考えられる。ここで、SILと光記録媒体の相対的な傾きをβ、SILの底面の直径をD、ギャップの大きさをGとすると、衝突するかどうかの境界条件は、
 β=arcsin(2G/D)
と表される。
 このときの傾きβと、G、Dとの関係を図6に示した。記録再生光に400nm程度の波長を用いるとすると、ギャップ100nmがλ/4、200nmがλ/2に相当する。このグラフから、βを大きくするには、SILの底面の直径Dがなるべく小さい方がよいことが分かる。一方、先述のSIL出射面の直径Doとは、
 Do<D
の関係がある。したがって、チルトサーボを安定化するためにDoを大きくするには、Dが大きい方がよいので、両方の側面からバランスのよい大きさを選ぶ必要がある。
 Doを従来の数十倍~数百倍とすればチルトサーボを安定化させるのに十分な効果を得られると考えられるが、その実際の効果を調べた結果が図7である。これは、NAを1.65、αを60度、λを405nmとする光学系を用いて、焦点のSIL底面からのオフセット量Aを変えた場合に、ギャップG=λ/4、及びG=λ/2のときのチルトサーボの安定性を調べた結果である。Doは、Aとαからの計算値である。
 ここで、安定性の評価は、三段階とし、サーボがかからない場合を不可、かかるが、1分未満で外れてしまう場合を可、1分以上安定している場合を良とした。この結果から、本実施形態の効果を特に大きく発揮するには、出射面の直径Doは、安定したサーボを実現するためには、G=λ/4では7μm以上が好ましく、G=λ/2では25μm以上がより好ましいと言える。これに、SILの加工や光軸調整の余裕を±5μm考慮すると、SILの底面の直径Dの好適な範囲は、Doより10μm大きく、17μm以上が好ましく、35μm以上がより好ましいと言える。
 ギャップGについては、衝突回避の観点からは、もちろん大きい方が良く、近接場効果の現れ始めるλ/2が好ましいが、先述のように、十分な光学ゲインを得るためにλ/4程度まで小さくする必要がある場合もある。
 ギャップGがλ/2である場合とλ/4である場合について、衝突回避のためのβの必要条件を計算すると、
 G=λ/2のとき、β<arcsin(λ/D)
 G=λ/4のとき、β<arcsin(λ/2D)
となる。
 光記録媒体以外の要素に対しては比較的容易にチルトの調整が可能であるが、チルトが実質的にゼロに調整されたとしても、光記録媒体の表面の傾きθは、次の条件を満たす必要がある。ここで、θは、光記録媒体の回転軸を法線とする平面に対する傾きとする。
 G=λ/2のとき、θ<arcsin(λ/D)
 G=λ/4のとき、θ<arcsin(λ/2D)
 あらかじめ、光記録媒体の表面の傾きθがこの条件を満たすことが分かっている領域で本実施形態の記録再生方法を実施すれば、衝突の可能性を極めて低くすることが出来るという効果がある。
 ここで、これらの条件を満たす光記録媒体、本実施形態の光再生記録方法及び装置の実現性について補足する。詳しくは後述するが、本実施形態において用いる光記録媒体の試作を行ったところ、θとして、0.2度程度であれば、十分安定して製造可能であった。この値を許容するためのDを、図6を用いて見積もると、G=λ/2のときは、Dは100μm以下であればよいことが分かる。また、さらにチルトサーボを安定化させることができるG=λ/4のときは、Dはおよそ60μm以下であればよいことが分かる。先述の通り、チルトサーボの光学ゲインを十分に大きくするための条件は、Dが17μm以上、より好ましくは35μmであったので、全体として条件は十分に成り立つことがわかる。
 以上をまとめると、D、Doの大きさについて、本実施形態の効果を特に大きく得るには、Dの大きさは、17μm以上100μm以下が好ましく、35μm以上60μm以下が特に好ましい。Doについては、Dをもとに上限が決まり、SILの加工や光軸調整の余裕を±5μm考慮すると、7μm以上90μm以下が好ましく、25μm以上50μm以下が特に好ましい。なお、D、Doは、これらの範囲外であっても、本実施形態の効果が小さくなることはあっても、効果が全くないものではない。
 次に、「状態A」の第二条件に関わるものについて説明する。まず、焦点位置をSILの底面よりも光記録媒体側にするには、焦点位置を正確に把握しておく必要がある。もっとも簡易な方法として、記録再生装置の製造時に、焦点位置を記憶させておき、記録再生時に読み込む方法がある。しかし、何らかの原因で、記録再生時と製造時とは焦点位置がズレてしまう場合も考えられる。そのような場合に備えて、定期的に、「状態A」を作る過程で、焦点位置がSILの底面を通過させて、その際に得られるフォーカス信号のS字カーブを検出し、製造時とズレがあれば調整するのが好ましい。また、この方法を用いる場合には、焦点位置を記憶させておかなくとも、S字カーブが検出された条件から、その後に移動すべき焦点位置を算出して実行させることも可能である。
 次に、焦点位置をどこにすべきかついて説明する。
 チルトサーボの安定性の側面からは、焦点位置のオフセット量は大きいほど好ましく、出射面の直径Doを先述の好適な範囲とすれば、本実施形態の効果を特に高く発揮することができる。一方、チルトサーボ安定化後の利便性の観点から、焦点位置は、次のように設定すれば、本実施形態の新たな効果を得ることができる。
 焦点位置のオフセット量をできるだけ大きくした場合、最も奥に配置されている信号層(図4(a)、(b)では第一信号層、図4(c)、図4(d)では第四信号層)に最も近いところに焦点位置が移動される。この場合、光記録媒体は、本実施形態の光記録再生装置がすべての信号層に合焦可能であって、信号層が一つであっても、複数であってもよい。このとき、本実施形態の光記録再生装置は、片側から合焦可能な信号層の内、最も奥の信号層に合焦する時のフォーカスサーボの初期条件を記憶しておき、その条件を使用する。これにより、チルトサーボ開始後に、ギャップを記録再生状態の量に調整すれば、速やかにフォーカスサーボを開始することができるという効果がある。
 一方、複数の信号層をもつ光記録媒体を使用する場合に、上記焦点位置を、片側から合焦可能な信号層の内、最も手前に配置されている信号層(図4の全ての場合で第一信号層)に最も近いところに合わせる方法にも利点がある。この方法は、例えば、光情報記録媒体の種別や、推奨される使用法、データの配置などの管理情報が格納された管理領域が、最も手前の信号層に配置されている場合など、光記録再生装置が最も手前の信号層に最初にアクセスする場合に、アクセスまでの所要時間を短縮する効果がある。最も手前の信号層に最初に合焦する方法には、最初の合焦までに、数えるべきフォーカス信号のS字の数が最小になるため、数え間違いが起こりにくいという利点もある。このときに、本実施形態の光記録再生装置は、最も手前の信号層に合焦する時のフォーカスサーボの初期条件を記憶しておき、その条件を使用する。これにより、チルトサーボ開始後、ギャップを記録再生状態の量に調整すれば、速やかにフォーカスサーボを開始することができるという効果がある。
 なお、「状態A」とは直接関係しないが、複数の信号層をもつ光記録媒体を使用する場合、合焦する信号層の表面からの距離に応じて、チルトサーボの光学ゲインが変わる。したがって、それを相殺するように、チルトサーボ回路の電気的な回路ゲインを変更すると、チルトサーボを安定化できるという効果もある。このとき、より奥の信号層に合焦するほど、光学ゲインが大きくなるため、回路ゲインを下げるのが好ましい。
 以上、本実施形態に係る光記録再生方法及び光記録再生装置について、詳細に述べた。
<第1実施形態の効果>
 本実施形態の光記録再生方法及び装置によれば、複数の光源を用いず、簡易な構成を有しながら、チルトサーボ開始時にSILと光記録媒体が衝突することを回避できる。また、複数の信号層を持つ光記録媒体上の情報へのアクセス時間を短縮することができる。
(第2実施形態)
<光記録媒体>
 以下に、本発明の第2実施形態に係る光記録媒体について、説明する。
 上述した第1実施形態に係る光記録再生方法及び光記録再生装置は、SIL光学系で記録再生可能である光記録媒体全般に対して大きな効果を有する。しかし、本実施形態の光記録媒体は、少なくとも次の二つの特徴を併せ持つことで、より好適に第1実施形態の光記録再生方法及び光記録再生装置に用いることができる。
 第一に、光記録再生側の出射面からの距離が「状態A」で好適な焦点位置のオフセット量Aと実質的に一致する位置に、少なくとも一つの信号層を有する。これにより、本実施形態の方法の「状態A」において、焦点位置のオフセット量Aをこの信号層の深さに合わせた状態で、チルトサーボを安定的に開始することができる。さらにその場合、ギャップを記録再生状態の量に変更するだけで、焦点位置を信号層と実質的に同じ深さに配置することができるため、速やかにフォーカスサーボを開始することができる。
 次に、信号層を配置すべき深さについて説明する。先述の通り、本実施形態の記録再生方法及び装置の効果はDoの範囲によるところが大きいが、そのときの焦点位置のオフセット量Aは対物レンズの絞り角αに応じて変化する。ここで、αは、製造上の困難さと実現可能な記録密度との兼ね合いで、50度~75度の間で設計するのが現実的である。
 図8は、αを50度、60度、75度とした場合の出射面の直径Doと焦点位置のオフセット量Aとの関係を計算したものである。この結果から、第1実施形態の記録再生方法及び装置の効果を特に大きく発揮させるには、オフセット量Aは、0.9μm以上38μm以下が好ましく、3.3μm以上21μm以下がより好ましいことがわかる。
 このことから、つまり、本実施形態の光記録媒体は、出射面からの距離が、0.9μm以上38μm以下、より好ましくは3.3μm以上21μm以下となる位置に、少なくとも一つの信号層を有する。これにより、速やかにフォーカスサーボを開始することを可能とし、光記録媒体の情報へアクセス時間を短縮させる効果がある。信号層の位置が上記の範囲から僅かに外れた場合も、本実施形態の効果が全くないわけではない。
 第二に、本実施形態の光記録媒体は、表面の傾きθが、θ<arcsin(λ/D)を満たす引き込み領域が、一周に渡って半径方向に20μm以上の幅を持つように形成されている。これにより、「状態A」において、ギャップがλ/2となるまでSILを近づけても衝突の可能性を非常に小さく保つことができる。ここで、引き込み領域が一周に渡って半径方向に20μm以上の幅を持つことで、光記録再生装置は光記録媒体の情報にアクセスすることなく、容易に引き込み領域に辿り着くことが可能となる。なお、θ<arcsin(λ/2D)を満たすように形成すれば、ギャップがλ/4となるまでSILを近づけても衝突の可能性を非常に小さく保つことができるため、さらに好ましい。
 なお、引き込み領域とは、光記録媒体においてフォーカスの引き込みが行われる領域である。本実施形態においては、例えば、記録再生装置が最初にアクセスする、管理情報が格納された管理領域であってもよい。
 上記の特徴を持つ本実施形態の光記録媒体は、さらに以下の特徴を持つことで更なる効果を発揮する。
 本実施形態の光記録媒体は、信号層の引き込み領域の奥に位置する領域に、その信号層の識別を可能とする識別子が記録されている識別領域を有する。これにより、焦点がその信号層、またはその近傍に位置する際に、その信号層を識別することが可能となる。
 図9(a)及び図9(b)は、本実施形態の光記録媒体の断面の例を用いて、引き込み領域と識別領域の位置関係の一例を示す。識別領域は、光記録媒体の半径方向の幅において、引き込み領域と実質的に一致するか、引き込み領域よりも大きくなるように形成される。これにより、引き込み領域においてフォーカス引き込みがなされれば、識別領域の情報を確実に読むことができる。
 なお、識別子は、ピット列や、溝の蛇行などの形状として記録されているのが好ましく、その再生信号のS/N比を、主データの再生信号のS/N比よりも大きくしておくことで、フォーカスサーボが駆動していない状態でも読み取れるようにしておくとよい。例えば、ピット列や溝の蛇行の基本周期を、主データの記録に使われるピットやマークの内で最短のものの長さの10倍以上とすれば、比較的容易に読み取ることができる。
 ここで、主データとは、ユーザが利用可能な情報で、光記録媒体の記憶容量の大半を占めるものである。
 なお、識別領域は全ての信号層になくとも良く、例えば、最も奥の信号層のみに形成し、その識別子を読み取った場合に、フォーカスオフセットをそれ以上大きくしないようにするなどの利用法もある。
 また、本実施形態の光記録媒体は、信号層の引き込み領域の奥に位置する領域に、管理領域が設けられていてもよい。
 ここで、管理領域とは、推奨される使用法、データの配置などの管理情報が格納された領域である。これにより、引き込み領域でフォーカスサーボを駆動後、半径方向に移動することなく、または、最小限の移動量で、速やかに管理情報にアクセスすることが可能となる。引き込み領域と管理領域との半径方向の位置関係は、引き込み領域と識別領域の位置関係と同様でよい。なお、管理領域は全ての層に配置する必要はない。
 また、管理領域は、最初に合焦されるべき信号層に配置されているのが以下の点で好ましい。管理領域を最も奥の信号層に配置しておけば、「状態A」での焦点位置のオフセットを大きくした状態で、アクセス時間を短縮しやすいという利点がある。一方、最も手前の信号層に配置しておけば、合焦までに、数えるべきフォーカス信号のS字の数が最小になるため、数え間違いが起こりにくいという利点もある。
 以下、本実施形態の光記録媒体の製造方法の例を示す。
 図10(a)及び図10(b)は、中心穴をもつ円盤形状をした本実施形態の光情報記録媒体の例を示したものである。基板1001には、各種ガラスや金属、シリコン、ポリカーボネート、オレフィン、PMMAなど、平面を形成できる種々の材料を用いることができる。ただし、後述の理由から、基板1001は、中間層1002や保護層1003との屈折率の差が大きいほどより好ましい。
 ここで、SIL用の光記録媒体では、保護層や中間層の屈折率は高いほうが記録密度を上げやすい。したがって、保護層や中間層と基板との屈折率差を大きくするために、基板に比較的屈折率の低い材料を用いるのが好ましい。また、製造コストの観点からは、プラスチック材料が好ましい。
 以上の観点から、例えば、基板1001には、ポリカーボネートやオレフィン、PMMAなどを用いることが特に好適である。この基板上に、射出成形や、熱転写などの方法で凹凸パターンを形成し、その上に、スパッタや、蒸着、スピンコートなどの方法を用いて、一層以上の記録材料を形成し、第二信号層1004を形成する。なお、再生専用の光記録媒体を作成する場合は、記録材料の代わりに、反射材料のみを形成してもよい。
 次に、中間層1002の形成方法を説明する。
 まず、スピンコート法や、スクリーン印刷、インクジェット印刷などの方法で、中間層となる液体の樹脂を塗布する。SIL用の光記録媒体では、DVDやBlu-rayDiscなどの従来の光記録媒体に比べ、対物レンズのNAが遥かに大きくなり、焦点深度が浅くなるとともに、従来の数万分の1となる数十nm程度の非常に小さなギャップを安定的に保つ必要がある。したがって、中間層や後述する保護層などの厚み精度を非常に高くしなければならず、液体の樹脂の塗布でこの精度を実現するのは容易ではない。特に同一半径の一周内の厚み変動が大きいと、安定した記録再生が非常に困難になるという課題がある。一周内の厚み変動を小さくするという観点では、先にあげた塗布方法の中では、スピンコート法が最も適しているので、この方法を用いるのが好ましい。
 しかしながら、スピンコート法には、塗布厚みが10μm以下となると以下に述べる新たな課題が発生することがわかった。
 スピンコート法では樹脂を遠心力で延伸するため、内周部分の塗布厚みが薄くなる傾向がある。特に光ディスクのように中心穴のある形状の場合、そのままでは中心に塗布することができないために、その傾向が顕著となり、必要な厚み分布を達成するのが非常に困難である。その対策として、図11(a)に示したようなキャップ1101や、図11(b)に示したようなボス1102などの中心穴を塞ぐものを用いて、中心軸に近い位置により樹脂を滴下する方法が提案、実用化されている。
 ところが、塗布厚みが10μm以下、特に5μm以下となると、キャップ端面1103やボス端面1104のわずかな段差によっても塗布時の樹脂の流れが非常に大きな影響を受け、図11(c)に示したようなそれらの端面を起点とした放射状の厚み変動が大きく発生してしまうことがわかった。この課題を解決すべく、本実施形態の光記録媒体は、以下の方法で作成した。
 まず、図12(a)に示したように、基板の内周部になだらかな窪み1201をドーナツ状に作り、樹脂をためられる構造とする。この構造により、キャップやボスがなくとも内周部分の塗布厚みが薄くなりにくくする。窪みの深さ1205は、所望塗布厚みの30倍以上とすると効果が大きくなった。また、樹脂の滴下後、延伸が始まるまでの間に樹脂が広がる領域全体渡って、傾きが連続的に変化する必要がある。いずれかの場所に不連続な傾きの変化があると、キャップやボスの端面で発生したのと同様な放射状の厚み分布が発生する。少なくとも、窪みの外端1202部分の傾きは連続的に変化させる必要があり、窪みの内部、窪みの内端1203などについては、樹脂に覆われない部分には傾きが不連続に変化する部分があってもよい。これにより従来の方法よりも塗布厚みに均一性は向上した。
 ところが、この方法では、半径方向の厚み変動は改善したが、周方向の厚み変動が、100nmを越えてしまうことがある。これは、Blu-ray Discなどの従来のファーフィールド光学系を利用する光記録媒体では問題とはならないが、SIL用の光記録媒体にとっては大きな課題である。この周内厚み変動について調べた結果、図12(b)に示した、樹脂の滴下領域の内周端1204の形状が大きく影響していることが判明した。
 そこで、図13(a)に示したように窪み1201よりも中心側に同心円状の樹脂止め1301を形成した基板を用いて塗布を行った。図13(b)に示したように、樹脂の滴下領域の内周端を樹脂止め外端1302と同心円状にしたところ、平均3.0μmの塗布を行った場合でも周内の厚み変動を20nm以下と劇的に小さくすることができた。また、図13(a)に示したように、樹脂止め外端から内周側に盛り上がった状態に樹脂を滴下することにより、半径方向の厚み分布についても、内周部が薄くなる傾向を改善することが可能であった。樹脂止めの形状としては、窪みよりも中心側に位置し、傾きが不連続に変化していればよい。また、図14(a)に示したように、窪みから樹脂止めへの傾きの変化γが45度以上であるのが好ましく、90度以上がより好ましい。さらに、樹脂の内周への盛り上がりを積極的に利用するには、樹脂止め内端と樹脂止め外端の距離が50μm以上、より好ましくは100μm以上離れているのが良い。
 なお、これらは、必要な条件ではない。
 本実施形態の樹脂止めの例としては、図14(b)のように凸状に形成されていても良いし、図14(c)のように階段状に形成されていても良い。さらに、図14(d)、図14(e)のように、樹脂止め内端1303よりも内周側の基板と、窪みの外端1202よりも外周側の基板の高さが異なっていても良い。また、図14(f)のように、窪みの内端で傾きを不連続とし、γを45度以上とした場合でも、実質的に窪みの内端が樹脂止め外端1302と同一となり、本実施形態の効果を得ることができる。なお、本実施形態による光記録媒体の製造工程における樹脂止めの形状は、上述の特徴を備えていればよく、図中の例の形状に限定されるものではない。また、上述の本実施形態の光情報記録媒体は、中間層、保護層などの用途や構成材料に関わらず、塗布厚みが10μm以下で高精度な厚み均一性が求められる光透過層を形成するためのスピンコート法全般に大きな効果を持つ。また、窪み、樹脂止め、ともに単独で用いても、それぞれの固有の効果を発揮することができる。
 上記光記録媒体の製造方法では、中間層樹脂を塗布した後、ピットや溝などの凹凸形状を転写するために、真空中で転写基板を中間層樹脂の上に重ねる。次に、UV照射を行い、中間層樹脂を硬化させた後、転写基板を剥離し、中間層1002を完成させる。その後、第二信号層と同様に第一信号層を形成する。次に保護層樹脂を上記の塗布方法を用いて塗布し、UV照射を行って硬化させることで本実施形態の光記録媒体が完成される。
 なお、ここでは、本実施形態の光記録媒体が二つの信号層を持つ場合を例に説明した。しかし、本実施形態の光記録媒体は、信号層の数を制限するものではなく、上記の製造方法の一部の工程を省略、または繰り返すことにより、信号層の数に関わらず作成することができる。
 上述したように、SIL光学系用の光記録媒体の中間層や保護層には従来にない非常に高精度の厚み均一性が求められる。したがって、液体樹脂を使って光記録媒体を作成するには、従来にない方法を用いる必要がある。本実施形態の光記録媒体における窪みや樹脂止めは、厚み均一性を向上させる良い例である。
 これに関連して、本実施形態の光記録媒体の製造方法において、中間層や保護層と基板との屈折率差が大きい方が好ましい理由について説明する。中間層や保護層と基板との屈折率差を大きくすることにより、以下に述べる製造上の利点が得られる。
 製造においては、光記録媒体の個体間の厚み変動量を小さくするために、厚みの変化をモニタリングしながら、適宜、塗布条件を微調整することが重要である。従来の光記録媒体の製造においては、図10(b)に例を示したように、信号層の記録材料や反射材料からの反射を利用して中間層や保護層の厚みを測定していた。したがって、従来の光記録媒体においては、厚みを測定できるのは信号層の上方となる測定範囲1005のみであった。なお、ここにおける信号層とは、記録材料や反射材料が形成されている全領域のことで、必ずしも、ピットやマーク、溝などによって信号が記録されていたり、記録可能であったりする必要はない。
 これに対して、本実施形態の光記録媒体では、保護層や中間層と基板との屈折率の差を大きくすることによって、基板と中間層、または、基板と保護膜との境界からの反射率を高めている。これにより、製造工程において変動する要素の影響をより受けやすい測定範囲1005の外の領域で、厚み測定が可能となる。具体的には、測定範囲1005の外の領域をモニタリングすることにより、従来の光記録媒体の場合よりも、製造工程で生じた厚み変動を早期に把握できる。その結果、従来よりも安定した品質の光記録媒体の製造が可能となる。
 さらに、測定範囲1005の中では厚み変化が微小な場合は、厚み変動の検出が不可能である。しかし、本実施形態の光記録媒体においては、実際に使用する際には問題となるような微小厚み変動についても、測定範囲1005の外に要因がある場合などは、その要因を厚み変動として検知できる場合もある。
 図16は、基板の屈折率が1.5と1.6のときに、屈折率差毎に、基板と、基板に接する中間層、または、保護層との界面からの反射率を示したものである。各屈折率差は、基板と、基板に接する中間層、または、保護層との屈折率差である。反射率は、1.0%程度であれば、光記録媒体の厚み測定は十分可能である。したがって、同図から、基板の屈折率が1.5から1.6の場合、屈折率差は0.35程度あればよいことが分かる。
 さらに、1.5%程度の反射率があれば、ピックアップヘッドを用いた各種サーボや信号の再生も可能となる。したがって、屈折率差が0.45程度となるように各層の材料を選べば、信号層に記録材料や反射材料を用いる必要のない非常に安価な再生専用媒体を製造することも可能となる。
 上記のような屈折率差を実現するには、例えば、厚み測定用の光や記録再生光に波長400nmの光を用いた場合、基板には、屈折率1.5のPMMAや屈折率1.6のポリカーボネートなどを用いればよく、中間層や保護層には、アクリル系UV硬化樹脂にチタニアやジルコニアのフィラーを添加した物を用いればよい。
 アクリル系UV硬化樹脂としては、屈折率1.8を超えるものが実用化されており、チタニアやジルコニアのフィラーは屈折率2.3以上のものが実用化されている。さらにフィラーの添加量は、重量パーセント濃度で70%程度まで高めることが出来るので、屈折率2.1程度の樹脂は十分実現可能である。これらの基板材料と、アクリル系UV硬化樹脂とを組み合わせれば、両者の屈折率差を0.6程度まで大きくすることが可能である。
 なお、本実施形態の光記録媒体は、上記に示した屈折率の差を実現できればよく、上記に例としてあげた材料以外を用いて製造しても、それらの屈折率差に応じた効果を発揮できる。
 以上、本実施形態の光記録媒体の製造方法を説明した。
 最後に、実際にこの方法で本実施形態の光記録媒体を試作した場合の表面の傾きを示し、同光記録媒体の引き込み領域の配置について説明する。
 図15は、二つの信号層を持つ本実施形態の光記録媒体を10枚作製したときの、光記録媒体の表面の傾きの一周内の最大値を示したものである。二本のグラフは、10枚の平均値に標準偏差σを加えた値と、10枚の平均値に3σを加えた値である。10枚の平均値にσを加えた値は、統計的に全生産量の68%が含むことになる。もちろん、10枚の試作結果から求めた値で統計的に十分な議論はできないが、10枚の平均値にσを加えた値でも、製造の実現性の目安としては十分である。
 図15から、以下の二点が分かる。
 第一に、10枚の平均値にσを加えた値は、半径15mmから50mmまでの広い領域で、0.2度以下である。0.2度は、先述の通り、本実施形態の光記録再生方法に用いるのに好適な記録媒体としてための十分条件である。したがって、この数値から、本実施形態の光記録再生方法に用いる光記録媒体は十分に製造可能であることが分かる。
 第二に、周内最大傾きは半径に依存することから、引き込み領域を配置すべき半径を選ぶことができる。もちろん、引き込み領域は、周内最大傾きの小さい半径に配置するのが良い。半径方向の差の見やすい、10枚の平均値に3σを加えた値を使って、比較的傾きの小さい半径を考えると、クライテリア1501以下となる、半径16mm以上43mm以下が好ましく、クライテリア1502以下となる、半径17mm以上25mm以下がより好ましいことが分かる。なお、ここで用いたクライテリア自体は特別な意味を持つものではなく、周内最大傾きが相対的に小さい半径範囲を選ぶために便宜的に用いたものである。また、本実施形態の引き込み領域は、表面の傾きが0.2度より小さい場所であれば、上記以外の場所に配置しても本実施形態の効果を得ることはできる。
<第2実施形態の効果>
 本実施形態の光記録媒体によれば、チルトサーボ開始時にSILと光記録媒体が衝突することを回避できる。また、第1実施形態に係る光記録再生方法及び光記録再生装置とともに用いることによって、SILと光記録媒体との衝突をより確実に回避できる。
 本発明の光記録再生方法、光記録再生装置、プログラム及び光記録媒体は、SIL光学系を用いた光記録再生に有用であり、またかかる光記録再生の光記録媒体として有用である。

Claims (19)

  1.  SILの底面からの光が光記録媒体に反射して得られる反射光を利用して、前記光記録媒体の表面と前記SILの底面との間のギャップを制御するギャップサーボと、前記光の焦点と前記SILの底面との間の距離を制御するフォーカスサーボと、前記反射光を利用して前記SILの底面の前記光記録媒体の表面に対するチルトを制御するチルトサーボと、を行う光記録再生方法であって、
     (A)前記ギャップが光記録再生を行う時よりも大きい状態でギャップサーボを開始し、かつ前記焦点を前記SILの底面より前記光記録媒体側に移動する工程と、
     (B)前記チルトサーボを開始する工程と、
     (C)前記ギャップを小さくして前記SILを所定の位置に配置する工程と、
     を備え、
     前記(A)から(C)の工程を順に行う、
    光記録再生方法。
  2.  前記(A)の工程において、前記焦点を、前記光記録媒体における合焦可能な信号層の中で、前記SILの底面から見て最も遠い位置にある信号層に近くなるように移動する、
    請求項1記載の光記録再生方法。
  3.  前記(A)の工程において、前記焦点を、前記光記録媒体における合焦可能な信号層の中で、前記SILの底面から見て最も近い位置にある信号層に近くなるように移動する、
    請求項1記載の光記録再生方法。
  4.  前記焦点の移動は、フォーカスサーボの初期条件を使用して行われる、
    請求項3又は4記載の光記録再生方法。
  5.  同一面側から合焦可能な複数の信号層を有する前記光記録媒体において、前記SILの底面と前記光記録媒体の信号層との距離に応じて、前記チルトサーボの回路ゲインを変化させる、
    請求項1記載の光記録再生方法。
  6.  前記SILの底面と前記各信号層との距離が大きいほど、前記チルトサーボの回路ゲインを小さくする、
    請求項5記載の光記録再生方法。
  7.  前記(A)の工程において、前記フォーカスサーボを用いて、前記SILの底面の位置を検出する、
    請求項1記載の光記録再生方法。
  8.  前記(B)の工程において、前記光のSIL出射面の直径Doが、7μm以上90μm以下になるように調整する、
    請求項1記載の光記録再生方法。
  9.  前記(B)の工程において、前記光のSIL出射面の直径Doが、25μm以上50μm以下になるように調整する、
    請求項1記載の光記録再生方法。
  10.  SILの底面からの光が光記録媒体に反射して得られる反射光を利用して、前記光記録媒体の表面と前記SILの底面との間のギャップを制御するギャップサーボ機構と、前記光の焦点と前記SILの底面との間の距離を制御するフォーカスサーボ機構と、前記反射光を利用して前記SILの底面の前記光記録媒体の表面に対するチルトを制御するチルトサーボ機構と、を備える光記録再生装置であって、
     (A)前記ギャップが光記録再生を行う時よりも大きい状態でギャップサーボを開始し、かつ前記焦点を前記SILの底面より前記光記録媒体側に移動する工程と、
     (B)前記チルトサーボを開始する工程と、
     (C)前記ギャップを小さくして前記SILを所定の位置に配置する工程と、
     を実行し、
     前記(A)から(C)の工程を順に行う、
    光記録再生装置。
  11.  SILの底面からの光が光記録媒体に反射して得られる反射光を利用して、前記光記録媒体の表面と前記SILの底面との間のギャップを制御するギャップサーボと、前記光の焦点と前記SILの底面との間の距離を制御するフォーカスサーボと、前記反射光を利用して前記SILの底面の前記光記録媒体の表面に対するチルトを制御するチルトサーボと、をコンピュータに実行させるプログラムであって、
     (A)前記ギャップが光記録再生を行う時よりも大きい状態でギャップサーボを開始し、かつ前記焦点位置を前記SILの底面より前記光記録媒体側に移動する工程と、
     (B)前記チルトサーボを開始する工程と、
     (C)前記ギャップを小さくして前記SILを所定の位置に配置する工程と、
     を実行させ、
     前記(A)から(C)の工程を順に実行させる、
    プログラム。
  12.  SIL光学系を用いて光記録再生が可能な光記録媒体であって、
     基板と、
     保護層と、
     前記基板と前記保護層との間に形成され、前記SILの底面からの距離が0.9μm以上38μm以下の範囲にある少なくとも一つの信号層と、
    を備え、
     前記信号層は、λを前記SILからの光の波長とし、Dを前記SILの底面の直径もしくは最長軸径としたとき、表面の傾きθが、θ<arcsin(λ/D)を満たす引き込み領域を有し、
     前記引き込み領域は、前記信号層の一周に渡って、半径方向に20μm以上の幅を有する、
    光記録媒体。
  13.  前記信号層は、前記SILの底面からの距離が3.3μm以上21μm以下の範囲にある、
    請求項12記載の光記録媒体。
  14.  前記引き込み領域の表面の傾きθは、θ<arcsin(λ/2D)を満たす、
    請求項12記載の光記録媒体。
  15.  前記引き込み領域は、半径16mm以上43mm以下の範囲にある位置に配されている、
    請求項12記載の光記録媒体。
  16.  前記引き込み領域は、半径17mm以上25mm以下の範囲にある位置に配されている、
    請求項12記載の光記録媒体。
  17.  前記基板と前記保護層との屈折率の差は、0.35以上である、
    請求項12記載の光記録媒体。
  18.  さらに、
     複数の前記信号層と、
     前記信号層間に形成された中間層と、
    を備え、
     前記基板と前記中間層との屈折率の差は、0.35以上である、
    請求項12記載の光記録媒体。
  19.  前記屈折率の差は、0.45以上である、
    請求項17又は18記載の光記録媒体。
     
PCT/JP2009/000808 2008-03-18 2009-02-24 光記録再生方法、光記録再生装置、プログラム及び光記録媒体 WO2009116229A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2009801095843A CN101978422B (zh) 2008-03-18 2009-02-24 光记录再生方法、光记录再生装置、程序和光记录介质
JP2010503753A JPWO2009116229A1 (ja) 2008-03-18 2009-02-24 光記録再生方法、光記録再生装置、プログラム及び光記録媒体
US12/922,954 US8259541B2 (en) 2008-03-18 2009-02-24 Optical recording/reproduction method, optical recording/reproduction device, program, and optical recording medium
EP09723559A EP2256728B1 (en) 2008-03-18 2009-02-24 Optical recording/reproduction method, optical recording/reproduction device and program

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008069026 2008-03-18
JP2008069025 2008-03-18
JP2008-069026 2008-03-18
JP2008-069025 2008-03-18

Publications (1)

Publication Number Publication Date
WO2009116229A1 true WO2009116229A1 (ja) 2009-09-24

Family

ID=41090644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/000808 WO2009116229A1 (ja) 2008-03-18 2009-02-24 光記録再生方法、光記録再生装置、プログラム及び光記録媒体

Country Status (5)

Country Link
US (1) US8259541B2 (ja)
EP (2) EP2500904A1 (ja)
JP (1) JPWO2009116229A1 (ja)
CN (2) CN101978422B (ja)
WO (1) WO2009116229A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011076562A1 (en) * 2009-12-22 2011-06-30 Thomson Licensing Apparatus for reading from and/or writing to a near-field optical recording medium
EP2362391A1 (en) * 2010-02-23 2011-08-31 Thomson Licensing Apparatus for reading from and/or writing to a near-field optical recording medium
JP2013186919A (ja) * 2012-03-07 2013-09-19 Nippon Hoso Kyokai <Nhk> 光ディスク装置、ギャップサーボ装置及びギャップ引き込み制御方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8040774B2 (en) * 2008-07-10 2011-10-18 Panasonic Corporation Optical disk device and tilt correction method for optical disk device
CN102770918B (zh) * 2010-02-26 2014-12-24 松下电器产业株式会社 光学信息再生装置、光学信息记录装置、光学信息再生方法及光学信息记录方法
TW201133472A (en) * 2010-03-23 2011-10-01 Hon Hai Prec Ind Co Ltd Deviation disc recognizing method and device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0321583A (ja) 1989-06-16 1991-01-30 Hideo Saito 2輪車におけるハンドルバーとブラケットの支着装置
JP2005149657A (ja) * 2003-11-18 2005-06-09 Sharp Corp 光ディスクおよび光ディスク駆動装置
JP2005209318A (ja) * 2004-01-26 2005-08-04 Sony Corp 光ディスク装置及びその制御方法
JP2005259329A (ja) 2004-02-12 2005-09-22 Sony Corp チルト制御方法及び光ディスク装置。
JP2006004596A (ja) 2004-05-18 2006-01-05 Sony Corp 光学ピックアップ装置、光記録再生装置及びギャップ検出方法
WO2006018749A1 (en) * 2004-08-20 2006-02-23 Koninklijke Philips Electronics N.V. Optical scanning device
JP2006302355A (ja) * 2005-04-18 2006-11-02 Ricoh Co Ltd チルト制御回路および光情報処理装置
JP2006302354A (ja) * 2005-04-18 2006-11-02 Ricoh Co Ltd 光軸調整方法
JP2006344351A (ja) * 2005-05-13 2006-12-21 Sony Corp 光記録再生装置、光学ヘッド、光記録再生方法及びスキュー検出方法
JP2008146739A (ja) * 2006-12-08 2008-06-26 Sony Corp 光記録再生方法、光記録再生装置、及び光ヘッド
JP2008305453A (ja) * 2007-06-05 2008-12-18 Canon Inc 光情報記録再生装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW497094B (en) * 1997-08-07 2002-08-01 Hitachi Maxell Optical recording medium and optical recording device
US6506469B2 (en) * 2000-05-26 2003-01-14 Tosoh Corporation Surface-side reproduction type optical recording medium
JP4049098B2 (ja) * 2001-08-31 2008-02-20 ソニー株式会社 光学ピックアップ装置、記録再生装置、ギャップ検出方法及び制御方法
US7859983B2 (en) * 2003-07-15 2010-12-28 Sharp Kabushiki Kaisha Optical disk and optical disk recording and reproducing device
JP2005209246A (ja) * 2004-01-20 2005-08-04 Sony Corp 光ディスク装置及びその制御方法
JP2007534102A (ja) * 2004-04-20 2007-11-22 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 読取り及び/又は書込みのための光データ記憶システム並びにそのようなシステム内での使用のための光データ記憶媒体
US7613082B2 (en) * 2004-05-18 2009-11-03 Sony Corporation Optical pickup device, optical recording and reproducing apparatus and gap detection method
JP4591379B2 (ja) * 2005-05-12 2010-12-01 ソニー株式会社 光記録媒体及び光記録再生方法
CN100440342C (zh) * 2005-05-13 2008-12-03 索尼株式会社 光学记录和重现设备、方法以及光学头和歪斜检测方法
JP4424256B2 (ja) * 2005-05-24 2010-03-03 ソニー株式会社 光ディスク駆動装置、光ディスク装置及びその駆動方法
JP2009535753A (ja) * 2006-04-25 2009-10-01 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 近接場光記録装置と、近接場光記録装置を動作させる方法
WO2008048023A2 (en) * 2006-10-16 2008-04-24 Lg Electronics Inc. Optical pickup unit, apparatus for recording/reproducing data, method for controlling the apparatus, control method, and recording medium
JP2008243282A (ja) * 2007-03-27 2008-10-09 Canon Inc 光情報記録再生装置
JP4345859B2 (ja) * 2007-09-12 2009-10-14 ソニー株式会社 光学ピックアップ装置、光記録再生装置及びギャップの制御方法
KR20090083065A (ko) * 2008-01-29 2009-08-03 삼성전자주식회사 근접장 광 기록/재생장치 및 틸트 제어 방법

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0321583A (ja) 1989-06-16 1991-01-30 Hideo Saito 2輪車におけるハンドルバーとブラケットの支着装置
JP2005149657A (ja) * 2003-11-18 2005-06-09 Sharp Corp 光ディスクおよび光ディスク駆動装置
JP2005209318A (ja) * 2004-01-26 2005-08-04 Sony Corp 光ディスク装置及びその制御方法
JP2005259329A (ja) 2004-02-12 2005-09-22 Sony Corp チルト制御方法及び光ディスク装置。
JP2006004596A (ja) 2004-05-18 2006-01-05 Sony Corp 光学ピックアップ装置、光記録再生装置及びギャップ検出方法
WO2006018749A1 (en) * 2004-08-20 2006-02-23 Koninklijke Philips Electronics N.V. Optical scanning device
JP2006302355A (ja) * 2005-04-18 2006-11-02 Ricoh Co Ltd チルト制御回路および光情報処理装置
JP2006302354A (ja) * 2005-04-18 2006-11-02 Ricoh Co Ltd 光軸調整方法
JP2006344351A (ja) * 2005-05-13 2006-12-21 Sony Corp 光記録再生装置、光学ヘッド、光記録再生方法及びスキュー検出方法
JP2008146739A (ja) * 2006-12-08 2008-06-26 Sony Corp 光記録再生方法、光記録再生装置、及び光ヘッド
JP2008305453A (ja) * 2007-06-05 2008-12-18 Canon Inc 光情報記録再生装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2256728A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011076562A1 (en) * 2009-12-22 2011-06-30 Thomson Licensing Apparatus for reading from and/or writing to a near-field optical recording medium
US8619534B2 (en) 2009-12-22 2013-12-31 Thomson Licensing Apparatus for reading from and/or writing to a near-field optical recording medium
EP2362391A1 (en) * 2010-02-23 2011-08-31 Thomson Licensing Apparatus for reading from and/or writing to a near-field optical recording medium
JP2013186919A (ja) * 2012-03-07 2013-09-19 Nippon Hoso Kyokai <Nhk> 光ディスク装置、ギャップサーボ装置及びギャップ引き込み制御方法

Also Published As

Publication number Publication date
CN102646430A (zh) 2012-08-22
EP2500904A1 (en) 2012-09-19
EP2256728A1 (en) 2010-12-01
JPWO2009116229A1 (ja) 2011-07-21
CN101978422A (zh) 2011-02-16
US8259541B2 (en) 2012-09-04
EP2256728A4 (en) 2011-07-13
US20110007613A1 (en) 2011-01-13
CN101978422B (zh) 2012-09-05
EP2256728B1 (en) 2012-09-05

Similar Documents

Publication Publication Date Title
KR100188488B1 (ko) 광 데이타 저장 시스템, 광 디스크 드라이브 시스템, 광 데이타 저장 디스크 및 광 데이타 디스크
JP5130366B2 (ja) 光記録媒体
WO2009116229A1 (ja) 光記録再生方法、光記録再生装置、プログラム及び光記録媒体
JP2007035276A (ja) 光情報媒体及びその媒体の製造方法
US20120163141A1 (en) Optical disk device, optical pickup, and optical recording medium
WO2012105724A1 (ja) 光情報記録媒体およびその製造方法
JP2011227979A (ja) 光学ピックアップ、光学ドライブ装置、光照射方法
US20090141597A1 (en) Near field optical recording device and a method of operating a near field optical recording device
US20070165510A1 (en) Optical disc apparatus, optical pickup apparatus, and method for reducing astigmatism
US8238210B2 (en) Optical recording medium, optical recording medium driving apparatus, and optical recording medium driving method
US20060002277A1 (en) Optical disc apparatus
JP5307128B2 (ja) 光学的情報記録再生装置、光学的情報記録再生方法、光学的情報記録媒体及びソリッドイマージョンレンズ
WO2011024345A1 (ja) 光記録媒体の製造方法、光記録媒体、光情報装置及び情報再生方法
JP5119080B2 (ja) 光学記録読み取り用ピックアップ用光学素子
JP2003173572A (ja) 光ディスクとその記録再生装置
JP2010118114A (ja) 光情報記録媒体
Verschuren et al. Cover-layer incident Near-Field recording: towards 4-layer discs using dynamic tilt control
CN113412518B (zh) 光盘、其制造方法、光信息装置以及信息处理方法
JP2003091851A (ja) 光記録再生装置
JP2002279694A (ja) 光ディスクおよびその製造方法ならびにその光ディスクに適した光ディスク装置および情報記録再生方法
WO2007080925A1 (ja) 光ピックアップ装置および当該光ピックアップ装置を備えた情報処理装置
JP2005018882A (ja) 光ディスク
JP2007250079A (ja) 光ディスクおよび光ディスクの製造方法
JP2006048878A (ja) 光学記録媒体の製造方法
JP2010182387A (ja) 光学式記録媒体の初期化方法および初期化装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980109584.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09723559

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010503753

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2009723559

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12922954

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE