WO2009116216A1 - 車両の制御装置および制御方法 - Google Patents

車両の制御装置および制御方法 Download PDF

Info

Publication number
WO2009116216A1
WO2009116216A1 PCT/JP2008/073321 JP2008073321W WO2009116216A1 WO 2009116216 A1 WO2009116216 A1 WO 2009116216A1 JP 2008073321 W JP2008073321 W JP 2008073321W WO 2009116216 A1 WO2009116216 A1 WO 2009116216A1
Authority
WO
WIPO (PCT)
Prior art keywords
command value
vhcom
voltage
torque
trqcom
Prior art date
Application number
PCT/JP2008/073321
Other languages
English (en)
French (fr)
Inventor
隼史 山川
秀人 花田
和仁 林
将圭 洲濱
俊哉 橋本
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to EP08873416.5A priority Critical patent/EP2273666B1/en
Priority to CN2008801281594A priority patent/CN101978593B/zh
Priority to US12/922,963 priority patent/US8395277B2/en
Publication of WO2009116216A1 publication Critical patent/WO2009116216A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/18Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0003Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/08Arrangements for controlling the speed or torque of a single motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2201/00Indexing scheme relating to controlling arrangements characterised by the converter used
    • H02P2201/07DC-DC step-up or step-down converter inserted between the power supply and the inverter supplying the motor, e.g. to control voltage source fluctuations, to vary the motor speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to vehicle control, and more particularly to vehicle control including a converter that boosts and outputs electric power of a power storage device and an inverter that converts electric power output from the converter and outputs the electric power to a vehicle drive motor. .
  • Patent Document 1 discloses a control device that can improve fuel efficiency without degrading the running performance of a vehicle.
  • a control device disclosed in Japanese Patent Laid-Open No. 2007-89262 includes a boost converter that boosts and outputs a voltage from a DC power supply, and converts DC power output from the boost converter into AC power to be used as a vehicle drive motor.
  • a vehicle including an inverter for output is controlled.
  • the control device appropriately switches the target value of the output voltage of the boost converter according to the driving mode requested by the driver.
  • the control device controls the step-up converter by setting a constant voltage value higher than the voltage corresponding to the required output of the motor as a target value when the responsiveness priority mode is selected.
  • the control device controls the boost converter by setting a target value based on the required driving torque of the motor. As a result, fuel efficiency can be improved without degrading the running performance of the vehicle.
  • the output voltage of the boost converter (hereinafter also referred to as system voltage) is set to a lower value than when the responsiveness priority mode is selected. If limited, if a large torque is required instantaneously due to overtaking or the like, the torque may be insufficient. When the system voltage is increased in order to eliminate this torque shortage, the motor output torque may not be controlled according to the torque command value when the rectangular wave voltage control of the inverter is being performed.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a converter that boosts and outputs electric power of a power storage device, and a vehicle driving motor that converts electric power output from the converter.
  • a vehicle including an inverter that outputs to a motor, a control device and a control method that can cause a motor to output torque according to a command value when increasing the output voltage of the converter.
  • a control device operates by a power storage device, a converter that variably boosts and outputs the voltage of the power storage device, an inverter that converts and outputs power output from the converter, and power that is output from the inverter And a vehicle equipped with a motor for controlling the vehicle.
  • the control device supplies a rectangular wave voltage to the motor based on a first control unit that controls the output voltage of the converter based on the voltage command value, and a torque command value that instructs the output torque of the motor and the voltage command value.
  • the voltage command value is increased with the second control unit that controls the inverter, the voltage command value and the torque are set so that the difference between the torque command value and the actual output torque of the motor is smaller than a predetermined value.
  • a third control unit that controls the command value.
  • the third control unit increases the voltage command value at a first increase rate that is small enough to make the difference between the torque command value and the actual output torque smaller than a predetermined value. While the voltage command value is increasing, the torque command value is increased at a second increase rate corresponding to the first increase rate.
  • the second increase rate is a torque command value that matches the timing at which the voltage command value reaches the boost upper limit value of the converter with the timing at which the torque command value reaches the torque upper limit value according to the boost upper limit value. It is an increase rate.
  • the third control unit increases the torque command value after increasing the voltage command value to the boost upper limit value of the converter.
  • the third control unit alternately increases the voltage command value and the torque command value in a stepwise manner.
  • the third control unit increases the increase in the voltage command value and the increase in the torque command value at the respective maximum increase rates.
  • the second control unit supplies the rectangular wave voltage to the motor once within one cycle of the electrical angle determined based on the rotational position of the motor.
  • the control device further includes a rotational speed detection unit that detects the rotational speed of the motor per unit time.
  • the third control unit increases the voltage command value according to the rotation speed so that the increase amount of the output voltage from the start to the end of the supply of one rectangular wave voltage becomes a constant value regardless of the rotation speed. Change the rate.
  • the second control unit corrects the supply time of one rectangular wave voltage based on the increase amount of the output voltage.
  • control device further includes a voltage detection unit for detecting the output voltage.
  • the second control unit determines the supply time of the Nth rectangular wave voltage based on the output voltage detected by the voltage detection unit at the start of the torque command value and the N ⁇ 1th rectangular wave voltage supply. Set based on and.
  • the control device includes an acceleration request detection unit that detects the degree of acceleration requested by the driver of the vehicle, a limit unit that limits the voltage command value to a limit value lower than the boost upper limit value of the converter, and a limit unit.
  • the voltage command value is limited, if the request level detected by the acceleration request detection unit is larger than a predetermined level, the voltage command value further includes a release unit that releases the limit of the voltage command value by the limit unit.
  • the third control unit increases the voltage command value and the torque command value when the restriction is released by the release unit.
  • the control device includes an acceleration request detection unit that detects a degree of acceleration requested by a driver of the vehicle, a current detection unit that detects a current input to the motor, and a rotational position detection that detects the rotational position of the motor.
  • the actual output torque of the motor based on the current detected by the current detector and the rotational position detected by the rotational position detector.
  • the degree is greater than a predetermined degree, and the output torque estimated by the estimation unit is based on the rotational speed and the limit value detected by the rotational speed detection unit.
  • the third control unit increases the voltage command value and the torque command value when the restriction of the voltage command value is released by the release unit.
  • control device further includes a mode detection unit that detects which of the normal mode and the saving mode is selected by the driver of the vehicle.
  • the limiting unit limits the voltage command value to the limiting value when the mode detecting unit detects that the saving mode is selected.
  • the torque command value that indicates the output torque of the motor and the motor in consideration of the fact that the inverter is controlled by the rectangular wave voltage control.
  • the voltage command value and the torque command value are controlled so that the difference from the actual output torque becomes smaller than a predetermined value.
  • the deviation between the voltage command value in the rectangular wave voltage control and the output voltage of the inverter is suppressed to a minimum, so that torque deviation can be suppressed.
  • FIG. 1 is an overall configuration diagram of a motor drive system according to a first embodiment of the present invention. It is a figure which shows the relationship between a motor rotation speed, a system voltage, and the torque upper limit of an AC motor. It is a figure explaining the control system used with a motor drive system. It is a flowchart explaining the selection method of a control system. It is a figure explaining the switching of the control system corresponding to a motor condition. It is a functional block diagram of a control device concerning the 1st example of the present invention. It is a figure which shows an example of the waveform of the rectangular wave pulse by rectangular wave voltage control. It is a flowchart (the 1) which shows the control structure of the control apparatus which concerns on 1st Example of this invention.
  • FIG. 3 is a diagram (part 1) illustrating an output voltage of an inverter and a voltage command value in a rectangular wave pulse. It is a flowchart which shows the control structure of the control apparatus which concerns on 2nd Example of this invention. It is a timing chart of the system voltage command value and torque command value which are controlled by the control device concerning the 2nd example of the present invention.
  • FIG. 6 is a diagram (part 2) illustrating an output voltage of an inverter and a voltage command value in a rectangular wave pulse. It is a flowchart which shows the control structure of the control apparatus which concerns on the 4th Example of this invention. It is a flowchart which shows the control structure of the control apparatus which concerns on the 5th Example of this invention.
  • a vehicle motor drive system 100 including a control device according to an embodiment of the present invention will be described with reference to FIG.
  • the vehicle to which the present invention can be applied is an electric vehicle driven by a motor used in the motor drive system 100, or a hybrid vehicle equipped with an engine as a drive source in addition to the motor used in the motor drive system 100.
  • This motor drive system 100 includes a DC voltage generator 10 #, a smoothing capacitor C0, an inverter 14, an AC motor M1, and a control device 3000.
  • AC motor M1 is a drive motor that generates torque for driving the drive wheels of the vehicle.
  • AC motor M1 may be configured to have a function of a generator driven by an engine, or may be configured to have both functions of an electric motor and a generator.
  • AC motor M1 may operate as an electric motor for the engine, and may be incorporated in a hybrid vehicle so that the engine can be started, for example.
  • DC voltage generation unit 10 # includes a DC power supply B configured to be chargeable, system relays SR1 and SR2, a smoothing capacitor C1, and a converter 12.
  • DC power supply B is configured to include a secondary battery such as nickel metal hydride or lithium ion. Or you may comprise the direct-current power supply B with electrical storage apparatuses, such as an electric double layer capacitor.
  • the DC voltage Vb output from the DC power source B is detected by the voltage sensor 10.
  • Voltage sensor 10 outputs detected DC voltage Vb to control device 3000.
  • the system relay SR1 is connected between the positive terminal of the DC power source B and the positive electrode line 6, and the system relay SR2 is connected between the negative terminal of the DC power source B and the negative electrode line 5.
  • System relays SR1 and SR2 are turned on / off by a signal SE from control device 3000. More specifically, system relays SR1 and SR2 are turned on by H (logic high) level signal SE from control device 3000 and are turned off by L (logic low) level signal SE from control device 3000. Smoothing capacitor C ⁇ b> 1 is connected between positive electrode line 6 and negative electrode line 5.
  • Converter 12 includes a reactor L1, power semiconductor switching elements Q1, Q2, and diodes D1, D2.
  • the power semiconductor switching elements Q1 and Q2 are connected in series between the positive electrode line 7 and the negative electrode line 5. On / off of power semiconductor switching elements Q1 and Q2 is controlled by switching control signals S1 and S2 from control device 3000.
  • an IGBT Insulated Gate Bipolar Transistor
  • a power MOS Metal Oxide Semiconductor
  • a power bipolar transistor or the like is used as a power semiconductor switching element (hereinafter simply referred to as “switching element”).
  • switching element a power semiconductor switching element
  • Anti-parallel diodes D1 and D2 are arranged for switching elements Q1 and Q2, respectively.
  • Reactor L1 is connected between the connection node of switching elements Q1 and Q2 and positive electrode line 6. Further, the smoothing capacitor C 0 is connected between the positive electrode line 7 and the negative electrode line 5.
  • the inverter 14 is provided in parallel between the positive electrode line 7 and the negative electrode line 5, and includes a U-phase arm 15, a V-phase arm 16, and a W-phase arm 17.
  • Each phase arm includes a switching element connected in series between positive electrode line 7 and negative electrode line 5.
  • U-phase arm 15 includes switching elements Q3 and Q4.
  • V-phase arm 16 includes switching elements Q5 and Q6.
  • W-phase arm 17 includes switching elements Q7 and Q8.
  • Antiparallel diodes D3 to D8 are connected to switching elements Q3 to Q8, respectively. Switching elements Q3 to Q8 are turned on / off by switching control signals S3 to S8 from control device 3000.
  • each phase arm is connected to each phase end of each phase coil of AC motor M1.
  • AC motor M1 is a three-phase permanent magnet motor, and is configured by commonly connecting one end of three coils of U, V, and W phases to a neutral point. Further, the other end of each phase coil is connected to the midpoint of the switching elements of each phase arm 15-17.
  • the converter 12 boosts the DC voltage Vb supplied from the DC power supply B (this DC voltage corresponding to the input voltage to the inverter 14 is hereinafter also referred to as “system voltage”) VH to the inverter 14.
  • system voltage DC voltage corresponding to the input voltage to the inverter 14
  • an ON period of switching element Q1 and an ON period of Q2 are alternately provided, and the step-up ratio is equal to the ratio of these ON periods. It will be a response.
  • converter 12 steps down DC voltage (system voltage) VH supplied from inverter 14 via smoothing capacitor C0 and charges DC power supply B. More specifically, in response to switching control signals S1 and S2 from control device 3000, a period in which only switching element Q1 is turned on and a period in which both switching elements Q1 and Q2 are turned off are alternately provided, The step-down ratio is in accordance with the duty ratio during the ON period. Instead of the period in which both switching elements Q1, Q2 are turned off, a period in which only switching element Q2 is turned on may be provided in accordance with the on period of antiparallel diode D2. In this case, in principle, switching elements Q1, Q2 are repeatedly turned on / off in a complementary manner.
  • Smoothing capacitor C0 smoothes the DC voltage from converter 12 and supplies the smoothed DC voltage to inverter 14.
  • Voltage sensor 13 detects the voltage across smoothing capacitor C 0, that is, the system voltage, and outputs the detected value VH to control device 3000.
  • the inverter 14 performs the switching operation of the switching elements Q3 to Q8 in response to the switching control signals S3 to S8 from the control device 3000.
  • the inverter 14 is supplied with a DC voltage VH from the smoothing capacitor C0.
  • inverter 14 converts AC voltage into AC voltage and outputs positive torque by switching operation of switching elements Q3 to Q8.
  • the motor M1 is driven.
  • inverter 14 converts the DC voltage to the AC voltage so that the torque becomes zero by the switching operation of switching elements Q3 to Q8.
  • the AC motor M1 is driven.
  • AC motor M1 is driven to generate zero or positive torque designated by torque command value Trqcom.
  • torque command value Trqcom of AC motor M1 is set negative (Trqcom ⁇ 0).
  • the inverter 14 converts the AC voltage generated by the AC motor M1 into the DC voltage VH by the switching operation of the switching elements Q3 to Q8, and converts the converted DC voltage (system voltage) VH to the smoothing capacitor C0. To be supplied to the converter 12.
  • regenerative braking here refers to braking that involves regenerative power generation when the driver who operates the vehicle performs a foot brake operation, or regenerative braking by turning off the accelerator pedal while driving, although the foot brake is not operated. This includes decelerating (or stopping acceleration) the vehicle while generating electricity.
  • the current sensor 24 detects the motor current flowing through the AC motor M1, and outputs the detected motor current to the control device 3000. Since the sum of instantaneous values of the three-phase currents iu, iv, and iw is zero, the current sensor 24 has a motor current for two phases (for example, a V-phase current iv and a W-phase current iw) as shown in FIG. It is sufficient to arrange it so as to detect.
  • the rotation angle sensor (resolver) 25 detects the rotation angle ⁇ of the rotor of the AC motor M1 and the rotation number (motor rotation number) N of the AC motor M1 per unit time, and outputs a signal representing the detection result to the control device 3000. To do.
  • the accelerator opening sensor 26 detects an accelerator opening ACC indicating an operation amount of an accelerator pedal (not shown), and outputs the detected accelerator opening ACC to the control device 3000.
  • the eco switch 27 detects which of the normal mode and the saving mode is selected by the driver, and outputs a signal representing the detection result to the control device 3000.
  • the normal mode is a mode in which the steering response of the vehicle is more important than the improvement of energy efficiency.
  • the saving mode is a mode in which improvement in energy efficiency is more important than vehicle response.
  • Control device 3000 calculates torque command value Trqcom based on accelerator opening ACC.
  • Control device 3000 is based on battery voltage Vb from voltage sensor 10, system voltage VH from voltage sensor 13, motor currents iv and iw from current sensor 24, rotation angle ⁇ from resolver 25, and detection result of eco switch 27.
  • the operations of converter 12 and inverter 14 are controlled so that AC motor M1 outputs a torque according to torque command value Trqcom.
  • Control device 3000 generates switching control signals S1 to S8 for controlling converter 12 and inverter 14 as described above, and outputs them to converter 12 and inverter 14.
  • Control device 3000 feedback-controls output voltage (system voltage) VH of smoothing capacitor C0 during boost operation of converter 12, and generates switching control signals S1 and S2 such that system voltage VH becomes system voltage command value VHcom. .
  • the control device 3000 switches the system voltage command value VHcom according to the detection result of the eco switch 27 (whether the mode is the normal mode or the saving mode).
  • control device 3000 sets system voltage command value VHcom to boost upper limit value VH (MAX) (for example, about 650 volts) of converter 12. As a result, the system voltage VH becomes VH (MAX).
  • VH boost upper limit value
  • MAX for example, about 650 volts
  • control device 3000 limits the system voltage VH. Specifically, control device 3000 sets system voltage command value VHcom to a voltage value VH (1) (for example, about 500 volts) lower than VH (MAX). As a result, system voltage VH becomes VH (1), and power loss in converter 12 in the saving mode is reduced as compared with that in the normal mode.
  • VH voltage value
  • the induced voltage increases as the rotational speed and output torque increase, and the required voltage increases.
  • the maximum value of the necessary motor voltage (induced voltage) is determined by the system voltage VH. Therefore, the lower the system voltage VH and the higher the motor rotation speed N, the smaller the torque upper limit value of AC motor M1.
  • FIG. 3 is a diagram for explaining a control method of the inverter 14 used in the motor drive system 100. Note that the numerical value of the modulation factor described in FIG. 3 is an example and is not limited to this.
  • the motor drive system 100 switches between three control modes for voltage conversion in the inverter 14.
  • the three control modes are control modes of sine wave PWM control, overmodulation PWM control, and rectangular wave voltage control.
  • the sine wave PWM control is used as a general PWM control method, and on / off of a switching element in each phase arm is compared with a voltage between a sine wave voltage command value and a carrier wave (typically a triangular wave). Control according to. As a result, for a set of a high level period corresponding to the on period of the upper arm element and a low level period corresponding to the on period of the lower arm element, the duty is set so that the fundamental wave component becomes a sine wave within a certain period. The ratio is controlled. As is well known, in the sine wave PWM control, the fundamental wave component amplitude can be increased only up to 0.61 times the inverter input voltage.
  • an AC motor is applied to one pulse of a rectangular wave with a ratio of the high level period to the low level period of 1: 1 corresponding to the case where the PWM duty is maintained at the maximum value within the above-mentioned fixed period. To do. As a result, the modulation rate is increased to 0.78.
  • the overmodulation PWM control is to perform the same PWM control as the sine wave PWM control after distorting so as to reduce the amplitude of the carrier wave.
  • the modulation factor can be increased to a range of 0.61 to 0.78 by distorting the fundamental wave component.
  • both the sinusoidal PWM control and the overmodulation PWM control which are normal PWM control methods, are classified into PWM control methods.
  • FIG. 4 is a flowchart illustrating a method for selecting a control method for the inverter 14.
  • control device 3000 calculates torque command value Trqcom of AC motor M1 based on accelerator opening ACC (step 10, hereinafter, step is abbreviated as S), and motor rotation speed N (S12), and based on the torque command value Trqcom and the motor rotation speed N, the motor control is applied by applying either the rectangular wave voltage control method or the PWM control method (sine wave PWM control method / overmodulation PWM control method). Is selected (S14).
  • control device 3000 has an intersection (hereinafter also referred to as a command operation point) between torque command value Trqcom and motor rotation speed N on the map shown in FIG. It is determined which of the area A2 and the high rotational speed area A3 belongs. Control device 3000 selects sine wave PWM control to reduce the torque fluctuation when the command operating point belongs to low rotation speed range A1, and overmodulation PWM control when the command operating point belongs to medium rotation speed range A2. When the command operating point belongs to the high rotation speed range A3, rectangular wave voltage control is selected.
  • the output of the AC motor M1 can be improved by selecting overmodulation PWM control and rectangular wave voltage control. In this way, which of the control modes shown in FIG. 2 is used is determined within the range of the realizable modulation rate.
  • the inverter 14 is based on the intersection (hereinafter also referred to as the actual operating point) of the estimated torque Trq of the AC motor M1 and the motor rotation speed N on the map shown in FIG.
  • the control method may be selected.
  • the torque estimated value Trq will be described in detail later.
  • control device 3000 uses system voltage VH in the saving mode based on accelerator opening ACC and the actual operating point even when saving mode is selected. Remove the restriction.
  • control device 3000 lifts the system voltage command value VHcom by releasing the restriction on the system voltage VH, the control device 3000 controls the system voltage command value VHcom and the torque command value Trqcom so as to increase in cooperation with each other (cooperation). Control.
  • FIG. 6 shows a functional block diagram of the control device 3000 when the converter 12 is controlled while controlling the inverter 14 by the rectangular voltage control method in the saving mode.
  • the control device 3000 includes a coordinate conversion unit 3100, a torque estimation unit 3200, a rectangular voltage control unit 3300, a system voltage control unit 3400, and a cooperative control unit 3500.
  • the coordinate conversion unit 3100 performs d conversion based on the rotation angle ⁇ detected by the resolver 25 (3 phase ⁇ 2 phase) based on the V phase current iv and the W phase current iw detected by the current sensor 24.
  • An axial current Id and a q-axis current Iq are calculated.
  • Torque estimation unit 3200 estimates the actual output torque of AC motor M1 as estimated torque value Trq using d-axis current Id and q-axis Iq obtained by coordinate conversion unit 3100.
  • Torque estimator 3200 includes, for example, a torque calculation map that outputs estimated torque value Trq with d-axis current Id and q-axis current Iq as arguments.
  • the estimated torque value Trq is a value calculated based on the detection values of the resolver 25 and the current sensor 24, and is a value very close to the actual output torque of the AC motor M1.
  • Rectangular voltage control unit 3300 includes a torque command value calculation unit 3310, a rectangular wave generation unit 3320, and a signal generation unit 3330.
  • the torque command value calculation unit 3310 normally calculates the torque command value Trqcom according to the accelerator opening degree ACC, but when a signal from the cooperative control unit 3500 is input, cooperative control is performed in addition to the accelerator opening degree ACC. Torque command value Trqcom is calculated according to the signal from unit 3500.
  • the rectangular wave generating unit 3320 generates a voltage command value for each phase based on the torque command value Trqcom, the torque estimation value Trq, the rotation angle ⁇ (motor rotation speed N), and the system voltage command value VHcom (system voltage VH). (Square wave pulse) Vu, Vv, and Vw are generated.
  • the rectangular wave generating unit 3320 performs feedback control of the torque command value Trqcom using the estimated torque value Trq, thereby causing a torque detachment phenomenon (a phenomenon in which the difference between the actual output torque of the AC motor M1 and the torque command value Trqcom is greatly different). ).
  • a rectangular wave pulse is set according to the voltage command value VHcom (system voltage VH).
  • the signal generator 3330 generates switching control signals S3 to S8 according to the phase voltage command values Vu, Vv, Vw.
  • inverter 14 performs a switching operation in accordance with switching control signals S3 to S8, a voltage commanded by a rectangular wave pulse is applied as each phase voltage of the motor.
  • the output torque of AC motor M1 becomes a value according to torque command value Trqcom.
  • FIG. 7 shows an example of a waveform of a rectangular wave pulse for the switching element Q3 of the U-phase arm 15.
  • the voltage command value VON (N) when the switching element Q3 is turned on for the Nth time is the (N-1) th rectangular wave when the switching element Q3 is turned on (ie, the (N-1) th time) It is set to a value corresponding to the system voltage command value VHcom (or system voltage VH) at the rising edge of the pulse).
  • the ON period TON (N) when the switching element Q3 is turned on for the Nth time is equal to the system voltage command value VHcom (or system voltage VH) and the torque command when the switching element Q3 is turned on for the (N-1) th time.
  • the length is set according to the value Trqcom.
  • the horizontal axis in FIG. 7 is an electrical angle corresponding to a change in time, and the electrical angle is determined based on the rotation angle ⁇ of the rotor. Further, in the rectangular wave voltage control, switching is performed only once per electrical cycle. Therefore, the switching period T (the time from the rising edge of the rectangular wave pulse to the next rising edge) and the ON period TON become longer as the change speed (motor rotation speed N) of the rotor rotation angle ⁇ is lower.
  • system voltage control unit 3400 includes a system voltage command value calculation unit 3410 and a signal generation unit 3420.
  • the system voltage command value calculation unit 3410 normally limits the system voltage command value VHcom to VH (1) in the saving mode, but the actual operation obtained from the accelerator opening ACC, the estimated torque value Trq, and the motor rotation speed N. Based on the point, the restriction on the system voltage VH is released, and the system voltage command value VHcom is increased from VH (1) to VH (MAX).
  • the signal generator 3420 generates switching control signals S1 and S2 according to the system voltage command value VHcom.
  • converter 12 performs a switching operation in accordance with switching control signals S1 and S2, system voltage VH becomes a voltage commanded by system voltage command value VHcom.
  • the cooperative control unit 3500 When the system voltage command value calculation unit 3410 increases the system voltage command value VHcom from VH (1) to VH (MAX), the cooperative control unit 3500, when the control method of the inverter 14 is rectangular wave voltage control, The system voltage command value VHcom and the torque command value Trqcom are controlled to increase in a coordinated manner.
  • This program is repeatedly executed at a predetermined cycle time when the system voltage VH is limited to VH (1) in the saving mode.
  • control device 3000 detects accelerator opening ACC.
  • control device 3000 determines whether or not accelerator opening degree ACC is larger than a threshold value.
  • This threshold is a value for determining whether or not the driver is urgently requesting acceleration (torque increase) of the vehicle. For example, when the accelerator is fully opened, the value is about 85%. It is. If larger than the threshold value (YES in S102), the process proceeds to S104. Otherwise (NO in S102), the process proceeds to S114.
  • control device 3000 detects V-phase current iv and W-phase current iw from current sensor 24.
  • control device 3000 detects the rotation angle ⁇ of the rotor of AC motor M1.
  • control device 3000 calculates torque estimated value Trq based on V-phase current iv, W-phase current iw, and rotation angle ⁇ . This process corresponds to the torque estimation unit 3200 in the functional block diagram described above.
  • control device 3000 detects motor rotation speed N.
  • control device 3000 sets the actual operating point, which is the intersection of estimated torque value Trq and motor rotational speed N, on the map shown in FIG. 2 to the torque upper limit value in the saving mode (solid line in FIG. 2). Determine whether it has been reached. In other words, control device 3000 determines whether or not the torque upper limit value in the saving mode when torque estimation value Trq is at motor rotation speed N has been reached. Note that the estimated torque value Trq is extremely close to the actual output torque of AC motor M1, as described above.
  • the process proceeds to S200. Otherwise (NO in S112), the process proceeds to S114.
  • control device 3000 cancels the limitation of system voltage VH and increases system voltage command value VHcom so as to increase system voltage VH from VH (1) to VH (MAX). This process will be described in detail with reference to FIG.
  • control device 3000 maintains system voltage command value VHcom at VH (1) so as to maintain the limit of system voltage VH.
  • control device 3000 performs an increase process of system voltage command value VHcom in S200 of FIG. 8.
  • control device 3000 performs cooperative control of system voltage command value VHcom and torque command value Trqcom.
  • control device 3000 causes the system to operate at a sufficiently small constant increase rate (increase amount per unit time) that can suppress torque deviation even when torque command value Trqcom is increased simultaneously with system voltage command value VHcom.
  • the voltage command value VHcom is increased.
  • control device 3000 determines that torque command value Trqcom reaches the torque upper limit value (dotted line in FIG. 2) in the normal mode at a constant increase rate when system voltage command value VHcom reaches VH (MAX).
  • the command value Trqcom is increased.
  • control device 3000 The operation of the control device 3000 according to the present embodiment based on the above-described structure and flowchart will be described with reference to FIGS.
  • the command operating point at time t (1) is a region exceeding the torque upper limit value in the saving mode as a result of the torque command value Trqcom being increased in accordance with the increase in the accelerator opening ACC. include.
  • the actual operating point at time t (1) is included in a region not exceeding the torque upper limit value in the saving mode, and reaches the torque upper limit value in the saving mode at the subsequent time t (2). That is, the estimated torque value Trq is a value very close to the actual output torque of AC motor M1 and rises with a delay from torque command value Trqcom. The torque upper limit value in the saving mode is reached at. Therefore, until the time t (2), even if the system voltage VH is limited to VH (1), the actual increase in output torque is not limited.
  • the system voltage command value VHcom is increased at a sufficiently small constant increase rate that can suppress the torque deviation (S202).
  • shift amount of the output voltage of the inverter 14 and the voltage command value VON in a rectangular wave pulse becomes small.
  • the torque command value Trqcom is increased at a constant increasing rate at which the torque command value Trqcom reaches the torque upper limit value (dotted line in FIG. 2) in the normal mode at the timing when the system voltage command value VHcom reaches VH (MAX). (S204).
  • the deviation between the voltage command value VON and the output voltage of the inverter 14 in the rectangular wave pulse can be minimized, and torque deviation can be suppressed.
  • the driver does not feel uncomfortable due to a sudden increase in torque.
  • the inverter when the system voltage is increased by releasing the restriction on the system voltage in the saving mode, the inverter is controlled by the rectangular wave voltage control.
  • the system voltage command value VHcom is increased at a sufficiently small constant increase rate capable of suppressing the torque deviation
  • the torque command value Trqcom is increased at a constant increase rate corresponding to the increase rate of the system voltage command value VHcom. Therefore, the deviation between the voltage command value in the rectangular wave pulse and the output voltage of the inverter is minimized. As a result, torque deviation can be suppressed.
  • the accelerator opening ACC is larger than the threshold value (YES in S102), and the actual operating point is the torque upper limit value in the saving mode.
  • the condition for releasing the restriction on the system voltage is not limited to this.
  • the restriction on the system voltage VH may be canceled when the accelerator opening degree ACC becomes larger than the threshold value. Good.
  • control device performs the process of increasing the system voltage command value VHcom (cooperative control of the system voltage command value VHcom and the torque command value Trqcom).
  • the processing (S200 in FIG. 8 and the processing in FIG. 9) is performed by a different method.
  • the other processes are the same as those in the first embodiment. Therefore, the detailed description here about the same control block diagram and flowchart as those of the control device of the first embodiment will not be repeated.
  • control device 3000 performs a process of increasing system voltage command value VHcom (cooperative control of system voltage command value VHcom and torque command value Trqcom). Will be described.
  • control device 3000 fixes torque command value Trqcom.
  • control device 3000 increases system voltage command value VHcom at the maximum rate.
  • control device 3000 determines whether or not system voltage command value VHcom has reached VH (MAX). If VH (MAX) is reached (YES in S1206), the process proceeds to S1208. Otherwise (NO in S1206), the process returns to S1204.
  • control device 3000 fixes system voltage command value VHcom to VH (MAX).
  • control device 3000 increases torque command value Trqcom at the maximum rate.
  • the maximum rate here is a maximum rate for increasing the torque command value Trqcom, and is a value different from the maximum rate of the system voltage command value VHcom.
  • control device 3000 determines whether or not torque command value Trqcom has reached the torque upper limit value in the normal mode (dotted line in FIG. 2). If the torque upper limit value in the normal mode is reached (YES in S1212), the process proceeds to S1214. Otherwise (NO in S1212), the process returns to S1210.
  • control device 3000 fixes torque command value Trqcom to the torque upper limit value in the normal mode.
  • the torque command value Trqcom and the system voltage command value VHcom are determined because the inverter is controlled by the rectangular wave voltage control when canceling the system voltage limit in the saving mode.
  • the torque is increased at the maximum rate at the same time, there is a possibility that a torque loss phenomenon occurs.
  • torque command value Trqcom is fixed to the torque upper limit value in the normal mode (S1214).
  • the inverter when the system voltage is increased by releasing the restriction on the system voltage in the saving mode, the inverter is controlled by the rectangular wave voltage control.
  • the system voltage command value VHcom is increased at the maximum rate while the torque command value Trqcom is fixed. Therefore, system voltage VH can be increased to VH (MAX) at an early stage, and torque deviation while system voltage VH is increasing can be suppressed.
  • torque command value Trqcom is increased at the maximum rate while system voltage command value VHcom is fixed at VH (MAX). Therefore, the output torque of the motor can be increased to the torque upper limit value in the normal mode at an early stage, and torque deviation while the output torque of the motor is increasing can be suppressed.
  • the control apparatus according to the third embodiment of the present invention will be described below.
  • the control device according to the present embodiment performs the process of increasing the system voltage command value VHcom (cooperative control of the system voltage command value VHcom and the torque command value Trqcom) by the control device according to the first embodiment.
  • the processing (S200 in FIG. 8 and the processing in FIG. 9) is performed by a different method.
  • the other processes are the same as those in the first embodiment. Therefore, the detailed description here about the same control block diagram and flowchart as those of the control device of the first embodiment will not be repeated.
  • control device 3000 performs a process of increasing system voltage command value VHcom (cooperative control of system voltage command value VHcom and torque command value Trqcom). Will be described.
  • control device 3000 fixes torque command value Trqcom.
  • control device 3000 increases system voltage command value VHcom to a predetermined voltage value VH (A) at the maximum rate. This VH (A) is higher than VH (1) and lower than VH (MAX).
  • control device 3000 fixes system voltage command value VHcom to VH (A).
  • control device 3000 increases torque command value Trqcom to Trq (A) at the maximum rate. This Trq (A) is larger than the torque upper limit value in the saving mode and smaller than the torque upper limit value in the normal mode. In S2210, control device 3000 fixes torque command value Trqcom to Trq (A).
  • control device 3000 increases system voltage command value VHcom to a predetermined voltage value VH (B) at the maximum rate. This VH (B) is higher than VH (A) and lower than VH (MAX). At S2214, control device 3000 fixes system voltage command value VHcom to VH (B).
  • control device 3000 increases torque command value Trqcom to Trq (B) at the maximum rate. This Trq (B) is larger than Trq (A) and smaller than the torque upper limit value in the normal mode. In S2218, control device 3000 fixes torque command value Trqcom to Trq (B).
  • control device 3000 increases system voltage command value VHcom to VH (MAX) at the maximum rate.
  • control device 3000 fixes system voltage command value VHcom to VH (MAX).
  • control device 3000 increases torque command value Trqcom to the torque upper limit value in the normal mode at the maximum rate.
  • control device 3000 fixes torque command value Trqcom to the torque upper limit value in the normal mode.
  • the inverter when the system voltage is increased by releasing the restriction on the system voltage in the saving mode, the inverter is controlled by the rectangular wave voltage control.
  • the system voltage command value VHcom and the torque command value Trqcom are alternately increased at respective maximum rates in a stepwise manner. Therefore, it is possible to suppress the time until the output torque of the motor starts increasing and suppress the driver from feeling uncomfortable (feeling of harshness) while suppressing the torque deviation.
  • the control apparatus according to the fourth embodiment of the present invention will be described below.
  • the control device according to the present embodiment performs the process of increasing the system voltage command value VHcom (cooperative control of the system voltage command value VHcom and the torque command value Trqcom) by the control device according to the first embodiment.
  • the processing (S200 in FIG. 8 and the processing in FIG. 9) is performed by a different method.
  • the other processes are the same as those in the first embodiment. Therefore, the detailed description here about the same control block diagram and flowchart as those of the control device of the first embodiment will not be repeated.
  • the rectangular wave voltage control can be switched only once per electrical cycle. Therefore, the on-period TON of the rectangular wave pulse differs depending on the motor rotation speed N. That is, as shown in FIG. 17, the ON period TON becomes longer when the motor speed N is low (see FIG. 17B) than when it is high (see FIG. 17A). . Therefore, when the increase rate of the system voltage command value VHcom is the same, the difference between the voltage command value VON in the rectangular wave pulse and the actual output voltage of the inverter 14 is lower at the time of low rotation than at the time of high rotation. It gets bigger.
  • the difference between the voltage command value VON of the rectangular wave pulse and the actual output voltage of the inverter 14 (the system voltage from the start to the end of the on-period TON of one rectangular wave pulse).
  • the increase rate of the system voltage command value VHcom is changed in accordance with the motor rotation speed N so that the increase amount of VH becomes a constant value regardless of the motor rotation speed N.
  • control device 3000 performs a process of increasing system voltage command value VHcom (cooperative control of system voltage command value VHcom and torque command value Trqcom). Will be described.
  • control device 3000 detects motor rotation speed N.
  • control device 3000 calculates a value obtained by dividing a predetermined value by motor rotation speed N as an increase rate of system voltage command value VHcom.
  • the predetermined value is a value corresponding to the increase amount of the system voltage VH in the ON period TON of one rectangular wave pulse, and is set to a value that can suppress the torque deviation by feedback control. That is, control device 3000 responds to motor rotation speed N so that the increase amount of system voltage VH in the ON period TON of one rectangular wave pulse becomes an increase amount (that is, a predetermined value) that can suppress the torque deviation.
  • An increase rate of the system voltage command value VHcom is calculated.
  • control device 3000 increases system voltage command value VHcom at the calculated increase rate.
  • control device 3000 performs a correction process for the ON period TON of the rectangular wave pulse. Specifically, the control device 3000 sets the ON period TON (N) of the Nth rectangular wave pulse to a predetermined value / 2 (that is, the average increase amount of the system voltage VH in the ON period TON of one rectangular wave pulse). Value).
  • control device 3000 determines whether or not system voltage command value VHcom has reached VH (MAX). If VH (MAX) is reached (YES in S3210), the process proceeds to S3212. Otherwise (NO in S3210), the process returns to S3202.
  • control device 3000 increases torque command value Trqcom to the torque upper limit value in the normal mode at the maximum rate.
  • the inverter when the system voltage is increased by releasing the restriction on the system voltage in the saving mode, the inverter is controlled by the rectangular wave voltage control.
  • the system voltage command value VHcom is increased at an increasing rate at which the increase amount of the system voltage VH in the wave pulse ON period TON is constant (predetermined value) regardless of the motor rotation speed N (S3202 to S3206).
  • the predetermined value is set to a value that can suppress the torque deviation by feedback control. For this reason, even if the motor rotation speed is low, it is possible to suppress the torque deviation.
  • the on-period TON (N) of the rectangular wave pulse is corrected with the average value of the increase amount of the system voltage VH in the on-period TON of one rectangular wave pulse (S3208). Thereby, torque detachment can be suppressed more appropriately.
  • control device according to a fifth embodiment of the present invention will be described.
  • the control device according to the present embodiment further includes a control structure shown in the flowchart of FIG. 19 described below in addition to the control device according to the first embodiment described above.
  • the other processes are the same as those in the first embodiment. Therefore, the detailed description here about the same control block diagram and flowchart as those of the control device of the first embodiment will not be repeated.
  • a control structure of a program executed by the control device 3000 according to the present embodiment will be described with reference to FIG.
  • This program is repeatedly executed at a predetermined cycle time when the restriction on the system voltage VH is released and maintained at VH (MAX) in the saving mode.
  • VH system voltage
  • MAX VH
  • control device 3000 determines that the actual operating point, which is the intersection of estimated torque value Trq and motor speed N, on the map shown in FIG. 2 is the torque upper limit value in the saving mode (solid line in FIG. 2). It is determined whether it is included in the low area. If it is included in a region lower than the torque upper limit value in the saving mode (YES in S1100), the process proceeds to S1102. Otherwise (NO in S1100), the process proceeds to S1104.
  • control device 3000 lowers system voltage command value VHcom from VH (MAX) to VH (1) so as to limit system voltage VH to VH (1).
  • control device 3000 maintains system voltage VH at VH (MAX).
  • the actual operating point is irrespective of the accelerator opening ACC. Is included in a region lower than the torque upper limit value in the saving mode (S1100), whether the system voltage VH is maintained at VH (MAX) (S1104) or reduced to VH (1) ( S1102) is determined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

 蓄電装置の電力を昇圧して出力するコンバータ(12)と、コンバータ(12)から出力される電力を変換して車両駆動用の交流モータ(M1)に出力するインバータ(14)とを備えた車両において、矩形電圧制御部(3300)は、トルク指令値(Trqcom)などに基づく矩形波電圧制御によってインバータ(14)を制御することにより、交流モータ(M1)の出力トルクを制御する。システム電圧制御部(3400)は、コンバータ(12)の出力電圧であるシステム電圧(VH)を制御する。システム電圧制御部(3400)は、アクセル開度などに基づいてシステム電圧指令値(VHcom)の制限を解除して増加させる。協調制御部(3500)は、システム電圧指令値(VHcom)を増加させる際、インバータ(14)の矩形波電圧制御中であると、システム電圧指令値(VHcom)とトルク指令値(Trqcom)とを協調させて増加させる。

Description

車両の制御装置および制御方法
 本発明は、車両の制御に関し、特に、蓄電装置の電力を昇圧して出力するコンバータと、コンバータから出力される電力を変換して車両駆動用モータに出力するインバータとを備えた車両の制御に関する。
 最近、環境に配慮した自動車として、ハイブリッド自動車(Hybrid Vehicle)および電気自動車(Electric Vehicle)が実用化されている。このようなハイブリッド自動車または電気自動車においては、車両を適切に走行させつつエネルギ効率を向上させるために、モータに対する負荷に応じた電力をモータに供給することが求められる。たとえば特開2007-89262号公報(特許文献1)には、車両の走行性能を低下させることなく、燃費の向上が可能な制御装置が開示されている。
 特開2007-89262号公報に開示された制御装置は、直流電源からの電圧を昇圧して出力する昇圧コンバータと、昇圧コンバータから出力された直流電力を交流電力に変換して車両駆動用モータに出力するインバータとを備えた車両を制御する。制御装置は、運転者の要求する走行モードに応じて昇圧コンバータの出力電圧の目標値を適宜切換える。制御装置は、応答性重視モードの選択時には、モータの要求出力に応じた電圧よりも高い一定の電圧値を目標値に設定して昇圧コンバータを制御する。一方、燃費重視モードの選択時には、制御装置は、モータの駆動要求トルクに基づいて目標値を設定して昇圧コンバータを制御する。そのため、車両の走行性能を低下させることなく、燃費の向上が可能となる。
 特開2007-89262号公報に開示された制御装置によると、運転者が燃費重視モードを選択した時には、昇圧コンバータの出力電圧がモータの駆動要求トルクに基づいて設定された値に制御される。このときの昇圧コンバータの出力電圧は、応答性重視モード選択時よりも低い。そのため、昇圧コンバータでの損失を軽減できる。これにより、車両の走行性能を重視した走行モードを可能とするとともに、燃費を向上させることができる。
特開2007-89262号公報 国際公開第2003/015254号パンフレット
 ところで、特開2007-89262号公報に開示された制御装置のように、燃費重視モード選択時に昇圧コンバータの出力電圧(以下、システム電圧とも記載する)を応答性重視モード選択時よりも低い値に制限すると、追い越し等で瞬間的に大きなトルクが必要になった場合、トルク不足となる可能性がある。このトルク不足を解消するためにシステム電圧を増加させる場合、インバータの矩形波電圧制御中であると、モータの出力トルクをトルク指令値どおりに制御できなくなる場合がある。
 すなわち、インバータの矩形波電圧制御時は、電気1周期に1回のスイッチングしか行なわれず、1回のスイッチング期間がPWM(Pulse Width Modulation)制御時に比べて長くなる。そのため、矩形波電圧制御中にシステム電圧を増加させると、PWM制御のようにシステム電圧の変動をスイッチング期間に反映させることが難しく、インバータからモータに出力される電圧が矩形波電圧制御による指令電圧値どおりの値とならない場合がある。このような状態で、トルク指令値を増加させると、モータの出力トルクをトルク指令値どおりに制御できなくなる場合がある。
 本発明は、前述の課題を解決するためになされたものであって、その目的は、蓄電装置の電力を昇圧して出力するコンバータと、コンバータから出力される電力を変換して車両駆動用モータに出力するインバータとを備えた車両において、コンバータの出力電圧を増加させる際に、指令値どおりのトルクをモータに出力させることができる制御装置および制御方法を提供することである。
 この発明に係る制御装置は、蓄電装置と、蓄電装置の電圧を可変に昇圧して出力するコンバータと、コンバータから出力される電力を変換して出力するインバータと、インバータから出力される電力によって作動するモータとを備えた車両を制御する。この制御装置は、電圧指令値に基づいてコンバータの出力電圧を制御する第1制御部と、モータの出力トルクを指示するトルク指令値と電圧指令値とに基づく矩形波電圧をモータに供給するように、インバータを制御する第2制御部と、電圧指令値を増加させる際、トルク指令値とモータの実際の出力トルクとの差が予め定められた値より小さくなるように、電圧指令値とトルク指令値とを制御する第3制御部とを含む。
 好ましくは、第3制御部は、トルク指令値と実際の出力トルクとの差を予め定められた値より小さくすることが可能な程度に小さな第1の増加率で電圧指令値を増加させるとともに、電圧指令値の増加中に第1の増加率に応じた第2の増加率でトルク指令値を増加させる。
 さらに好ましくは、第2の増加率は、電圧指令値がコンバータの昇圧上限値に達するタイミングと、トルク指令値が昇圧上限値に応じたトルク上限値に達するタイミングとを一致させる、トルク指令値の増加率である。
 さらに好ましくは、第3制御部は、電圧指令値をコンバータの昇圧上限値まで増加させた後に、トルク指令値を増加させる。
 さらに好ましくは、第3制御部は、電圧指令値の増加とトルク指令値の増加とを段階的に交互に行なう。
 さらに好ましくは、第3制御部は、電圧指令値の増加およびトルク指令値の増加を、それぞれの最大増加率で増加させる。
 さらに好ましくは、第2制御部は、モータの回転位置に基づいて定まる電気角の1周期内に1回、矩形波電圧をモータに供給する。制御装置は、モータの単位時間あたりの回転数を検出する回転数検出部をさらに含む。第3制御部は、1回の矩形波電圧の供給の開始時から終了時までの出力電圧の増加量が回転数に関わらず一定値となるように、回転数に応じて電圧指令値の増加率を変更する。
 さらに好ましくは、第2制御部は、出力電圧の増加量に基づいて、1回の矩形波電圧の供給時間を補正する。
 さらに好ましくは、制御装置は、出力電圧を検出する電圧検出部をさらに含む。Nを自然数とするとき、第2制御部は、N回目の矩形波電圧の供給時間を、トルク指令値とN-1回目の矩形波電圧の供給の開始時に電圧検出部によって検出された出力電圧とに基づいて設定する。
 さらに好ましくは、制御装置は、車両の運転者による加速の要求度合いを検出する加速要求検出部と、コンバータの昇圧上限値よりも低い制限値に電圧指令値を制限する制限部と、制限部によって電圧指令値が制限されている場合に、加速要求検出部によって検出された要求度合いが予め定められた度合いよりも大きいと、制限部による電圧指令値の制限を解除する解除部とをさらに含む。第3制御部は、解除部によって制限を解除した場合に、電圧指令値とトルク指令値とを増加させる。
 さらに好ましくは、制御装置は、車両の運転者による加速の要求度合いを検出する加速要求検出部と、モータに入力される電流を検出する電流検出部と、モータの回転位置を検出する回転位置検出部と、モータの単位時間あたりの回転数を検出する回転数検出部と、電流検出部によって検出された電流および回転位置検出部によって検出された回転位置に基づいて、モータの実際の出力トルクを推定する推定部と、コンバータの昇圧上限値よりも低い制限値に電圧指令値を制限する制限部と、制限部によって電圧指令値が制限されている場合に、加速要求検出部によって検出された要求度合いが予め定められた度合いよりも大きく、かつ推定部によって推定された出力トルクが回転数検出部によって検出された回転数と制限値とに基づいて定まるトルク上限値に達したときに、制限部による電圧指令値の制限を解除する解除部とをさらに含む。第3制御部は、解除部によって電圧指令値の制限を解除した場合に、電圧指令値とトルク指令値とを増加させる。
 さらに好ましくは、制御装置は、通常モードおよび節約モードのいずれの運転モードが車両の運転者により選択されているかを検出するモード検出部をさらに含む。制限部は、モード検出部によって節約モードが選択されていることが検出された場合に、電圧指令値を制限値に制限する。
 本発明によれば、コンバータの出力電圧を指示する電圧指令値を増加させる際、インバータが矩形波電圧制御で制御されていることを考慮して、モータの出力トルクを指示するトルク指令値とモータの実際の出力トルクとの差が予め定められた値より小さくなるように、電圧指令値とトルク指令値とを制御する。これにより、矩形波電圧制御における電圧指令値とインバータの出力電圧とのずれが最小限に抑えられるのでトルク外れを抑制することができる。
本発明の第1の実施例に従うモータ駆動システムの全体構成図である。 モータ回転数、システム電圧、および交流モータのトルク上限値の関係を示す図である。 モータ駆動システムで用いられる制御方式を説明する図である。 制御方式の選択手法を説明するフローチャートである。 モータ条件に対応した制御方式の切換えを説明する図である。 本発明の第1の実施例に係る制御装置の機能ブロック図である。 矩形波電圧制御による矩形波パルスの波形の一例を示す図である。 本発明の第1の実施例に係る制御装置の制御構造を示すフローチャート(その1)である。 本発明の第1の実施例に係る制御装置の制御構造を示すフローチャート(その2)である。 本発明の第1の実施例に係る制御装置で制御されるシステム電圧指令値およびトルク指令値のタイミングチャートである。 トルク推定値とモータ回転数とで求まる実動作点の動きを示す図である。 インバータの出力電圧と矩形波パルスにおける電圧指令値とを示す図(その1)である。 本発明の第2の実施例に係る制御装置の制御構造を示すフローチャートである。 本発明の第2の実施例に係る制御装置で制御されるシステム電圧指令値およびトルク指令値のタイミングチャートである。 本発明の第3の実施例に係る制御装置の制御構造を示すフローチャートである。 本発明の第3の実施例に係る制御装置で制御されるシステム電圧指令値およびトルク指令値のタイミングチャートである。 インバータの出力電圧と矩形波パルスにおける電圧指令値とを示す図(その2)である。 本発明の第4の実施例に係る制御装置の制御構造を示すフローチャートである。 本発明の第5の実施例に係る制御装置の制御構造を示すフローチャートである。
符号の説明
 5 負極線、6,7 正極線、10,13 電圧センサ、12 コンバータ、14 インバータ、15 U相アーム、16 V相アーム、17 W相アーム、24 電流センサ、25 レゾルバ、26 アクセル開度センサ、27 エコスイッチ、100 モータ駆動システム、3000 制御装置、3100 座標変換部、3200 トルク推定部、3300 矩形電圧制御部、3310 トルク指令値算出部、3320 矩形波発生部、3330 信号発生部、3400 システム電圧制御部、3410 システム電圧指令値算出部、3420 信号発生部、3500 協調制御部、B 直流電源、C0,C1 平滑コンデンサ、D1~D3 逆並列ダイオード、L1 リアクトル、M1 交流モータ、Q1~Q8 スイッチング素子、SR1,SR2 システムリレー。
 以下、図面を参照しつつ、本発明の実施例について説明する。以下の説明では、同一の部品には同一の符号を付してある。それらの名称および機能も同じである。したがって、それらについての詳細な説明は繰返さない。
 <第1の実施例>
 図1を参照して、本発明の実施例に係る制御装置を備えた車両のモータ駆動システム100について説明する。なお、本発明が適用できる車両は、モータ駆動システム100に用いられるモータで駆動する電気自動車、あるいは、モータ駆動システム100に用いられるモータに加えて、エンジンを駆動源として備えるハイブリッド自動車などである。
 このモータ駆動システム100は、直流電圧発生部10♯と、平滑コンデンサC0と、インバータ14と、交流モータM1と、制御装置3000とを備える。
 交流モータM1は、車両の駆動輪を駆動するためのトルクを発生する駆動用電動機である。あるいは、この交流モータM1は、エンジンにて駆動される発電機の機能を持つように構成されてもよく、電動機および発電機の機能を併せ持つように構成されてもよい。さらに、交流モータM1は、エンジンに対して電動機として動作し、たとえば、エンジン始動を行ない得るようなものとしてハイブリッド自動車に組み込まれるようにしてもよい。
 直流電圧発生部10♯は、充電可能に構成された直流電源Bと、システムリレーSR1,SR2と、平滑コンデンサC1と、コンバータ12とを含む。
 直流電源Bは、たとえばニッケル水素またはリチウムイオン等の二次電池を含んで構成される。あるいは、電気二重層キャパシタ等の蓄電装置により直流電源Bを構成してもよい。直流電源Bが出力する直流電圧Vbは、電圧センサ10によって検出される。電圧センサ10は、検出した直流電圧Vbを制御装置3000へ出力する。
 システムリレーSR1は、直流電源Bの正極端子および正極線6の間に接続され、システムリレーSR2は、直流電源Bの負極端子および負極線5の間に接続される。システムリレーSR1,SR2は、制御装置3000からの信号SEによりオン/オフされる。より具体的には、システムリレーSR1,SR2は、制御装置3000からのH(論理ハイ)レベルの信号SEによりオンされ、制御装置3000からのL(論理ロー)レベルの信号SEによりオフされる。平滑コンデンサC1は、正極線6および負極線5の間に接続される。
 コンバータ12は、リアクトルL1と、電力用半導体スイッチング素子Q1,Q2と、ダイオードD1,D2とを含む。
 電力用半導体スイッチング素子Q1およびQ2は、正極線7および負極線5の間に直列に接続される。電力用半導体スイッチング素子Q1およびQ2のオン/オフは、制御装置3000からのスイッチング制御信号S1およびS2によって制御される。
 この発明の実施例において、電力用半導体スイッチング素子(以下、単に「スイッチング素子」と称する)としては、IGBT(Insulated Gate Bipolar Transistor)、電力用MOS(Metal Oxide Semiconductor)トランジスタあるいは、電力用バイポーラトランジスタ等を用いることができる。スイッチング素子Q1,Q2に対しては、逆並列ダイオードD1,D2がそれぞれ配置されている。
 リアクトルL1は、スイッチング素子Q1およびQ2の接続ノードと正極線6の間に接続される。また、平滑コンデンサC0は、正極線7および負極線5の間に接続される。
 インバータ14は、正極線7および負極線5の間に並列に設けられ、U相アーム15と、V相アーム16と、W相アーム17とを含む。各相アームは、正極線7および負極線5の間に直列接続されたスイッチング素子を含む。たとえば、U相アーム15は、スイッチング素子Q3,Q4を含む。V相アーム16は、スイッチング素子Q5,Q6を含む。W相アーム17は、スイッチング素子Q7,Q8を含む。また、スイッチング素子Q3~Q8に対して、逆並列ダイオードD3~D8がそれぞれ接続されている。スイッチング素子Q3~Q8のオン/オフは、制御装置3000からのスイッチング制御信号S3~S8によって制御される。
 各相アームの中間点は、交流モータM1の各相コイルの各相端に接続されている。代表的には、交流モータM1は、3相の永久磁石モータであり、U,V,W相の3つのコイルの一端が中性点に共通接続されて構成される。さらに、各相コイルの他端は、各相アーム15~17のスイッチング素子の中間点と接続されている。
 コンバータ12は、昇圧動作時には、直流電源Bから供給された直流電圧Vbを昇圧した直流電圧(インバータ14への入力電圧に相当するこの直流電圧を、以下「システム電圧」とも称する)VHをインバータ14へ供給する。より具体的には、制御装置3000からのスイッチング制御信号S1,S2に応答して、スイッチング素子Q1のオン期間およびQ2のオン期間が交互に設けられ、昇圧比は、これらのオン期間の比に応じたものとなる。
 また、コンバータ12は、降圧動作時には、平滑コンデンサC0を経由してインバータ14から供給された直流電圧(システム電圧)VHを降圧して直流電源Bを充電する。より具体的には、制御装置3000からのスイッチング制御信号S1,S2に応答して、スイッチング素子Q1のみがオンする期間と、スイッチング素子Q1,Q2の両方がオフする期間とが交互に設けられ、降圧比は上記オン期間のデューティ比に応じたものとなる。なお、スイッチング素子Q1,Q2の両方がオフする期間の代わりに、逆並列ダイオードD2のオン期間に合わせてスイッチング素子Q2のみをオンさせる期間を設けても良い。この場合には、原則としてスイッチング素子Q1,Q2は相補的にオン/オフを繰返す。
 平滑コンデンサC0は、コンバータ12からの直流電圧を平滑化し、その平滑化した直流電圧をインバータ14へ供給する。電圧センサ13は、平滑コンデンサC0の両端の電圧、すなわち、システム電圧を検出し、その検出値VHを制御装置3000へ出力する。
 インバータ14は、制御装置3000からのスイッチング制御信号S3~S8に応答して、スイッチング素子Q3~Q8のスイッチング動作を行なう。インバータ14には平滑コンデンサC0から直流電圧VHが供給される。
 インバータ14は、交流モータM1のトルク指令値が正(Trqcom>0)の場合には、スイッチング素子Q3~Q8のスイッチング動作により直流電圧を交流電圧に変換して正のトルクを出力するように交流モータM1を駆動する。
 また、インバータ14は、交流モータM1のトルク指令値が零の場合(Trqcom=0)には、スイッチング素子Q3~Q8のスイッチング動作により、直流電圧を交流電圧に変換してトルクが零になるように交流モータM1を駆動する。
 このような制御により、交流モータM1は、トルク指令値Trqcomによって指定された零または正のトルクを発生するように駆動される。
 さらに、モータ駆動システム100が搭載された車両の回生制動時には、交流モータM1のトルク指令値Trqcomは負に設定される(Trqcom<0)。この場合には、インバータ14は、スイッチング素子Q3~Q8のスイッチング動作により、交流モータM1が発電した交流電圧を直流電圧VHに変換し、その変換した直流電圧(システム電圧)VHを平滑コンデンサC0を経由してコンバータ12へ供給する。
 なお、ここで言う回生制動とは、車両を運転する運転者によるフットブレーキ操作があった場合の回生発電を伴う制動や、フットブレーキを操作しないものの、走行中にアクセルペダルをオフすることで回生発電をさせながら車両を減速(または加速の中止)させることを含む。
 電流センサ24は、交流モータM1に流れるモータ電流を検出し、その検出したモータ電流を制御装置3000へ出力する。なお、三相電流iu,iv,iwの瞬時値の和は零であるので、図1に示すように電流センサ24は2相分のモータ電流(たとえば、V相電流ivおよびW相電流iw)を検出するように配置すれば足りる。
 回転角センサ(レゾルバ)25は、交流モータM1のロータの回転角θおよび交流モータM1の単位時間あたりの回転数(モータ回転数)Nを検出し、検出結果を表わす信号を制御装置3000へ出力する。
 アクセル開度センサ26は、アクセルペダル(図示せず)の操作量を示すアクセル開度ACCを検出し、その検出したアクセル開度ACCを制御装置3000へ出力する。
 エコスイッチ27は、運転者によって通常モードおよび節約モードのいずれの運転モードが選択されているかを検出し、その検出結果を表わす信号を制御装置3000へ出力する。なお、通常モードとは、エネルギ効率の向上よりも車両の操縦応答性を重視したモードである。節約モードとは、車両の操縦応答性よりもエネルギ効率の向上を重視したモードである。運転者がこれらの運転モードをエコスイッチ27によって切り換えることにより、車両の走行性能を低下させることなく、エネルギ効率の向上を図ることが可能となる。
 制御装置3000は、アクセル開度ACCに基づいてトルク指令値Trqcomを算出する。制御装置3000は、電圧センサ10からのバッテリ電圧Vb、電圧センサ13からのシステム電圧VH、電流センサ24からのモータ電流iv,iw、レゾルバ25からの回転角θ、エコスイッチ27の検出結果に基づいて、交流モータM1がトルク指令値Trqcomに従ったトルクを出力するように、コンバータ12およびインバータ14の動作を制御する。
 制御装置3000は、コンバータ12およびインバータ14を上記のように制御するためのスイッチング制御信号S1~S8を生成して、コンバータ12およびインバータ14へ出力する。
 制御装置3000は、コンバータ12の昇圧動作時には、平滑コンデンサC0の出力電圧(システム電圧)VHをフィードバック制御し、システム電圧VHがシステム電圧指令値VHcomとなるようにスイッチング制御信号S1,S2を生成する。
 制御装置3000は、このシステム電圧指令値VHcomを、エコスイッチ27の検出結果(通常モードか、それとも節約モードか)に応じて切り換える。
 通常モードが選択されている場合、制御装置3000は、システム電圧指令値VHcomを、コンバータ12の昇圧上限値VH(MAX)(たとえば650ボルト程度)に設定する。これにより、システム電圧VHがVH(MAX)となる。
 一方、節約モードが選択されている場合、制御装置3000は、システム電圧VHを制限する。具体的には、制御装置3000は、システム電圧指令値VHcomを、VH(MAX)よりも低い電圧値VH(1)(たとえば500ボルト程度)に設定する。これにより、システム電圧VHがVH(1)となり、節約モード時のコンバータ12における電力損失が通常モード時よりも低減される。
 図2を参照して、モータ回転数N、システム電圧VH、および交流モータM1のトルク上限値(出力可能な最大トルク)の関係について説明する。
 交流モータM1では、回転数や出力トルクが増加すると誘起電圧が高くなり、その必要電圧が高くなる。このモータ必要電圧(誘起電圧)の最大値はシステム電圧VHで決まる。したがって、システム電圧VHが低いほど、またモータ回転数Nが高いほど、交流モータM1のトルク上限値は小さくなる。
 節約モード時(システム電圧VH=VH(1))の交流モータM1のトルク上限値は、図2の実線に示すように、N<N(1)の範囲では最大値で一定であるが、N>N(1)の範囲ではモータ回転数Nが大きくなるほど低下する。
 通常モード時(システム電圧VH=VH(MAX))の交流モータM1のトルク上限値は、図2の一点鎖線に示すように、N<N(2)(N(2)>N(1))の範囲では節約モード時と同じ最大値となり、N>N(2)の範囲でモータ回転数Nが大きくなるほど低下する。
 そして、システム電圧VHをVH(1)からVH(MAX)に昇圧すると、交流モータM1のトルク上限値が、図2の実線に示す値から図2の点線に示す値に増加する。システム電圧VHをVH(MAX)からVH(1)に降圧すると、交流モータM1のトルク上限値が、図2の点線に示す値から図2の実線に示す値に低下する。
 図3~図5を参照して、制御装置3000によって制御される、インバータ14における電力変換について説明する。
 図3は、モータ駆動システム100で用いられるインバータ14の制御方式を説明する図である。なお、図3で説明する変調率の数値は一例であって、これに限定されるものではない。
 図3に示すように、モータ駆動システム100では、インバータ14における電圧変換について3つの制御モードを切換えて使用する。具体的には、3つの制御モードは、正弦波PWM制御、過変調PWM制御および矩形波電圧制御の各制御モードである。
 正弦波PWM制御は、一般的なPWM制御方式として用いられるものであり、各相アームにおけるスイッチング素子のオン/オフを、正弦波状の電圧指令値と搬送波(代表的には三角波)との電圧比較に従って制御する。この結果、上アーム素子のオン期間に対応するハイレベル期間と、下アーム素子のオン期間に対応するローレベル期間との集合について、一定期間内でその基本波成分が正弦波となるようにデューティ比が制御される。周知のように、正弦波PWM制御では、この基本波成分振幅をインバータ入力電圧の0.61倍までしか高めることができない。
 一方、矩形波電圧制御では、上記一定期間内で、PWMデューティを最大値に維持した場合に相当する、ハイレベル期間およびローレベル期間の比が1:1の矩形波1パルス分を交流モータ印加する。これにより、変調率は0.78まで高められる。
 過変調PWM制御は、搬送波の振幅を縮小するようにを歪ませた上で上記正弦波PWM制御と同様のPWM制御を行なうものである。この結果、基本波成分を歪ませることによって、変調率を0.61~0.78の範囲まで高めることができる。本実施例では、通常のPWM制御方式である正弦波PWM制御および、過変調PWM制御の両者をPWM制御方式に分類する。
 図4は、インバータ14の制御方式の選択手法を説明するフローチャートである。図4のフローチャートに示されるように、制御装置3000は、アクセル開度ACCに基づいて交流モータM1のトルク指令値Trqcomを算出し(ステップ10、以下、ステップをSと略す)、モータ回転数Nを検出し(S12)、トルク指令値Trqcomおよびモータ回転数Nに基づいて、矩形波電圧制御方式およびPWM制御方式(正弦波PWM制御方式/過変調PWM制御方式)のいずれを適用してモータ制御を行なうかを選択する(S14)。
 具体的には、制御装置3000は、図5に示すマップ上でのトルク指令値Trqcomとモータ回転数Nとの交点(以下、指令動作点ともいう)が、低回転数域A1、中回転数域A2、高回転数域A3のいずれの領域に属するかを判断する。制御装置3000は、指令動作点が低回転数域A1に属する場合はトルク変動を小さくするために正弦波PWM制御を選択し、指令動作点が中回転数域A2に属する場合は過変調PWM制御を選択し、指令動作点が高回転数域A3に属する場合は矩形波電圧制御を選択する。
 特に、過変調PWM制御および矩形波電圧制御を選択することにより、交流モータM1の出力向上が実現される。このように、図2に示した制御モードのいずれを用いるかについては、実現可能な変調率の範囲内で決定される。
 図5から明らかなように、システム電圧VHをVH(1)からVH(MAX)に昇圧する場合は、指令動作点が高回転数域A3に属するため、インバータ14の制御方式としては、矩形波電圧制御が選択される。
 なお、前述した指令動作点に代えて、図5に示すマップ上での交流モータM1のトルク推定値Trqとモータ回転数Nとの交点(以下、実動作点ともいう)に基づいて、インバータ14の制御方式の選択を行なうようにしてもよい。トルク推定値Trqについては後に詳述する。
 以上のような構成を有するモータ駆動システム100において、制御装置3000は、節約モードが選択されている場合であっても、アクセル開度ACCおよび実動作点に基づいて節約モード時におけるシステム電圧VHの制限を解除する。
 さらに、制御装置3000は、システム電圧VHの制限を解除してシステム電圧指令値VHcomを昇圧する際、システム電圧指令値VHcomとトルク指令値Trqcomとを、互いに協調させて増加するように制御(協調制御)する。
 図6に、節約モード時に矩形電圧制御方式でインバータ14を制御しつつコンバータ12を制御する場合の制御装置3000の機能ブロック図を示す。
 制御装置3000は、座標変換部3100と、トルク推定部3200と、矩形電圧制御部3300と、システム電圧制御部3400と、協調制御部3500とを含む。
 座標変換部3100は、レゾルバ25によって検出される回転角θを用いた座標変換(3相→2相)により、電流センサ24によって検出されたV相電流ivおよびW相電流iwを基に、d軸電流Idおよびq軸電流Iqを算出する。
 トルク推定部3200は、座標変換部3100によって求められたd軸電流Idおよびq軸Iqを用いて、交流モータM1の実際の出力トルクを、トルク推定値Trqとして推定する。トルク推定部3200は、たとえば、d軸電流Idおよびq軸電流Iqを引数としてトルク推定値Trqを出力するトルク算出マップにより構成される。なお、トルク推定値Trqは、レゾルバ25および電流センサ24の検出値に基づいて算出される値であり、交流モータM1の実際の出力トルクに極めて近い値である。
 矩形電圧制御部3300は、トルク指令値算出部3310と、矩形波発生部3320と、信号発生部3330とを含む。
 トルク指令値算出部3310は、通常はアクセル開度ACCに応じてトルク指令値Trqcomを算出するが、協調制御部3500からの信号が入力される場合には、アクセル開度ACCに加えて協調制御部3500からの信号に応じてトルク指令値Trqcomを算出する。
 矩形波発生部3320は、トルク指令値Trqcomと、トルク推定値Trqと、回転角θ(モータ回転数N)と、システム電圧指令値VHcom(システム電圧VH)とに基づいて、各相電圧指令値(矩形波パルス)Vu,Vv,Vwを発生する。矩形波発生部3320は、トルク推定値Trqを用いてトルク指令値Trqcomをフィードバック制御することによりトルク外れ現象(交流モータM1の実際の出力トルクとトルク指令値Trqcomとの差が大きく異なってしまう現象)を抑制する。具体的には、矩形波発生部3320は、トルク指令値Trqcomに対するトルク推定値Trqの偏差ΔTrq(ΔTrq=Trqcom-Trq)に基づいて制御偏差を求め、求められた制御偏差、回転角θおよびシステム電圧指令値VHcom(システム電圧VH)とに応じて矩形波パルスを設定する。
 信号発生部3330は、各相電圧指令値Vu,Vv,Vwに従ってスイッチング制御信号S3~S8を発生する。インバータ14がスイッチング制御信号S3~S8に従ったスイッチング動作を行なうことにより、矩形波パルスで指令された電圧がモータの各相電圧として印加される。これにより、交流モータM1の出力トルクが、トルク指令値Trqcomに応じた値となる。
 図7に、U相アーム15のスイッチング素子Q3に対する矩形波パルスの波形の一例を示す。スイッチング素子Q3をN回目(Nは自然数)にオンする場合の電圧指令値VON(N)は、(N-1)回目にスイッチング素子Q3をオンした時点(すなわち(N-1)回目の矩形波パルスの立ち上がり時点)のシステム電圧指令値VHcom(あるいはシステム電圧VH)に応じた値に設定される。また、スイッチング素子Q3をN回目にオンする場合のオン期間TON(N)は、(N-1)回目にスイッチング素子Q3をオンした時点のシステム電圧指令値VHcom(あるいはシステム電圧VH)とトルク指令値Trqcomとに応じた長さに設定される。
 なお、図7の横軸は、時間の変化に対応する電気角であり、電気角は、ロータの回転角θに基づいて定まる。また、矩形波電圧制御では電気1周期に1回のスイッチングしか行なわれない。したがって、スイッチング周期T(矩形波パルスの立ち上がりから次の立ち上がりまでの時間)およびオン期間TONは、ロータの回転角θの変化速度(モータ回転数N)が低いほどを長くなる。
 再び図6を参照して、システム電圧制御部3400は、システム電圧指令値算出部3410と、信号発生部3420とを含む。
 システム電圧指令値算出部3410は、節約モード時において、通常はシステム電圧指令値VHcomをVH(1)に制限するが、アクセル開度ACCと、トルク推定値Trqおよびモータ回転数Nから求まる実動作点とに基づいて、システム電圧VHの制限を解除して、システム電圧指令値VHcomをVH(1)からVH(MAX)に増加させる。
 信号発生部3420は、システム電圧指令値VHcomに従ってスイッチング制御信号S1,S2を発生する。コンバータ12がスイッチング制御信号S1,S2に従ったスイッチング動作を行なうことにより、システム電圧VHが、システム電圧指令値VHcomで指令された電圧となる。
 協調制御部3500は、システム電圧指令値算出部3410にてシステム電圧指令値VHcomをVH(1)からVH(MAX)に増加させる際、インバータ14の制御方式が矩形波電圧制御である場合には、システム電圧指令値VHcomとトルク指令値Trqcomとを協調させて増加させるように制御する。
 なお、本実施例においては、システム電圧指令値VHcomをVH(1)からVH(MAX)に増加させる場合、前述したようにインバータ14の制御方式が必ず矩形波電圧制御となるため、協調制御部3500による制御が必ず実行されることになる。
 図8を参照して、制御装置3000が実行するプログラムの制御構造について説明する。このプログラムは、節約モード時においてシステム電圧VHがVH(1)に制限されている場合に、予め定められたサイクルタイムで繰り返し実行される。
 S100にて、制御装置3000は、アクセル開度ACCを検出する。S102にて、制御装置3000は、アクセル開度ACCがしきい値より大きいか否かを判断する。このしきい値は、運転者が車両の加速(トルク増加)を緊急に要求しているか否かを判断するための値であって、たとえば、アクセル全開時を100%とすると85%程度の値である。しきい値より大きいと(S102にてYES)、処理はS104に移される。そうでないと(S102にてNO)、処理はS114に移される。
 S104にて、制御装置3000は、電流センサ24からのV相電流ivおよびW相電流iwを検出する。S106にて、制御装置3000は、交流モータM1のロータの回転角θを検出する。
 S108にて、制御装置3000は、V相電流iv、W相電流iw、および回転角θに基づいて、トルク推定値Trqを算出する。この処理は、前述した機能ブロック図におけるトルク推定部3200に相当する。S110にて、制御装置3000は、モータ回転数Nを検出する。
 S112にて、制御装置3000は、図2に示すマップ上で、トルク推定値Trqとモータ回転数Nとの交点である実動作点が、節約モード時のトルク上限値(図2の実線)に達したか否かを判断する。言い換えれば、制御装置3000は、トルク推定値Trqがモータ回転数Nのときの節約モード時のトルク上限値に達したか否かを判断する。なお、トルク推定値Trqは、前述したように、交流モータM1の実際の出力トルクに極めて近い値である。実動作点が節約モード時のトルク上限値に達すると(S112にてYES)、処理はS200に移される。そうでないと(S112にてNO)、処理はS114に移される。
 S200にて、制御装置3000は、システム電圧VHの制限を解除して、システム電圧VHをVH(1)からVH(MAX)まで上昇させるように、システム電圧指令値VHcomの増加処理を行なう。なお、この処理については、図9にて詳細に説明する。
 S114にて、制御装置3000は、システム電圧VHの制限を維持するように、システム電圧指令値VHcomをVH(1)に維持する。
 図9を参照して、制御装置3000が図8のS200にてシステム電圧指令値VHcomの増加処理を行なう場合に実行するプログラムの制御構造について説明する。なお、制御装置3000は、この増加処理において、システム電圧指令値VHcomとトルク指令値Trqcomとの協調制御を行なう。
 S202にて、制御装置3000は、トルク指令値Trqcomをシステム電圧指令値VHcomと同時に増加させた場合においてもトルク外れを抑制可能な十分小さな一定の増加レート(単位時間あたりの増加量)で、システム電圧指令値VHcomを増加させる。
 S204にて、制御装置3000は、システム電圧指令値VHcomがVH(MAX)に達するタイミングでトルク指令値Trqcomが通常モード時のトルク上限値(図2の点線)に達する一定の増加レートで、トルク指令値Trqcomを増加させる。
 以上のような構造およびフローチャートに基づく、本実施例に係る制御装置3000の動作について、図10~図12を参照しつつ説明する。
 以下の説明では、節約モード時にシステム電圧VHがVH(1)に制限されている状態で運転者が車両を走行させている場合を想定する。
 図10に示すように、時刻t(1)にて、運転者がアクセルペダルを強く踏み込んでアクセル開度ACCがしきい値に達すると(S102にてYES)、V相電流iv、W相電流iw、およびロータの回転角θに基づいて、トルク推定値Trqが算出される(S104~S108)。
 そして、図2に示すマップ上で、トルク推定値Trqとモータ回転数Nとで求まる実動作点が節約モード時のトルク上限値に達したか否かが判断される(S112)。
 このとき、図11に示すように、時刻t(1)の指令動作点は、アクセル開度ACCの増加に応じてトルク指令値Trqcomも増加される結果、節約モード時のトルク上限値を超える領域に含まれる。
 しかし、時刻t(1)の実動作点は、節約モード時のトルク上限値を超えない領域に含まれ、その後の時刻t(2)で節約モード時のトルク上限値に達する。すなわち、トルク推定値Trqは交流モータM1の実際の出力トルクに極めて近い値であり、トルク指令値Trqcomに対して遅れて上昇するため、時刻t(1)ではなく、その後の時刻t(2)において節約モード時のトルク上限値に達する。したがって、時刻t(2)までは、システム電圧VHをVH(1)に制限したままであっても実際の出力トルクの上昇が制限されることはない。
 そこで、図10に示すように、指令動作点ではなく実動作点が節約モード時のトルク上限値に達するまでは(S112にてNO)、システム電圧VHの制限が維持される(S114)。これにより、時刻t(1)でシステム電圧VHの制限を解除する場合(図10の一点鎖線参照)に比べて、運転者が要求する駆動力を発生させつつ、コンバータ12における電力損失を低減することができる。
 そして、時刻t(2)で実動作点が節約モード時のトルク上限値に達すると(S112にてYES)、システム電圧VHの制限が解除される(S200)。
 時刻t(2)でシステム電圧VHの制限が解除された後、システム電圧指令値VHcomをVH(1)からVH(MAX)に増加させる場合、前述したようにインバータ14の制御方式が必ず矩形波電圧制御となる。
 矩形波電圧制御では、前述したように、電気1周期に1回のスイッチングしか行なわれず、1回のオン期間TONがPWM制御よりも長くなる。
 このような矩形波電圧制御中にシステム電圧VHを昇圧させると、1回のオン期間TON中は、システム電圧VH(平滑コンデンサC0の出力電圧)の増加量が平滑コンデンサC0を経由してそのままインバータ14に入力される。そのため、図12に示すように、インバータ14の出力電圧(インバータ14から交流モータM1に出力される電圧)と矩形波パルスにおける電圧指令値VONとにずれが生じる。このずれ量は、システム電圧指令値VHcomの増加レートが大きいほど、また矩形波パルスのオン期間TONが長いほど大きくなる。
 このような状態で、トルク指令値Trqcomとシステム電圧指令値VHcomとを同時に大きな変化量(たとえば最大レート)で増加させた場合には、フィードバック制御によってトルク推定値Trqをトルク指令値Trqcomに追従させることができなくなって、トルク外れ現象が生じるおそれがある。
 そこで、図10に示すように、システム電圧指令値VHcomが、トルク外れを抑制可能な十分小さな一定の増加レートで増加される(S202)。これにより、インバータ14の出力電圧と矩形波パルスにおける電圧指令値VONとのずれ量が小さくなる。
 さらに、トルク指令値Trqcomが、システム電圧指令値VHcomがVH(MAX)に達するタイミングでトルク指令値Trqcomが通常モード時のトルク上限値(図2の点線)に達する一定の増加レートで増加される(S204)。
 これにより、矩形波パルスにおける電圧指令値VONとインバータ14の出力電圧とのずれが最小限に抑えられ、トルク外れを抑制することができる。また、トルクの急激な増加によって運転者に違和感を与えることもない。
 以上のように、本実施例に係る制御装置によれば、節約モード時のシステム電圧の制限を解除してシステム電圧を増加させる際、インバータが矩形波電圧制御で制御されていることを考慮して、トルク外れを抑制可能な十分小さな一定の増加レートでシステム電圧指令値VHcomを増加するとともに、トルク指令値Trqcomを、システム電圧指令値VHcomの増加レートに応じた一定の増加レートで増加する。そのため、矩形波パルスにおける電圧指令値とインバータの出力電圧とのずれが最小限に抑えられる。その結果、トルク外れを抑制することができる。
 なお、本実施例においては、システム電圧の制限解除(S200)の条件として、アクセル開度ACCがしきい値より大きく(S102にてYES)、かつ実動作点が節約モード時のトルク上限値に達した(S112にてYES)という条件について説明したが、システム電圧の制限解除の条件はこれに限定されない。たとえば、実動作点が節約モード時のトルク上限値に達したか否かに関わらず、アクセル開度ACCがしきい値より大きくなった時点で、システム電圧VHの制限を解除するようにしてもよい。これにより、運転者がトルク増加を緊急に要求している場合に、コンバータにおける電力損失の低減よりもトルク増加を優先して、システム電圧の制限解除およびシステム電圧の増加を早期に開始することができる。
 <第2の実施例>
 以下、本発明の第2の実施例に係る制御装置について説明する。なお、本実施例に係る制御装置は、システム電圧指令値VHcomの増加処理(システム電圧指令値VHcomとトルク指令値Trqcomとの協調制御)を、前述の第1の実施例に係る制御装置が行なう処理(図8のS200および図9の処理)とは別の方法で行なうものである。それ以外の処理は、前述の第1の実施例と同じである。したがって、前述の第1の実施例の制御装置と同じ制御ブロック図およびフローチャートについてのここでの詳細な説明は繰返さない。
 図13を参照して、本実施例に係る制御装置3000がシステム電圧指令値VHcomの増加処理(システム電圧指令値VHcomとトルク指令値Trqcomとの協調制御)を行なう場合に実行するプログラムの制御構造について説明する。
 S1202にて、制御装置3000は、トルク指令値Trqcomを固定する。S1204にて、制御装置3000は、システム電圧指令値VHcomを最大レートで増加させる。
 S1206にて、制御装置3000は、システム電圧指令値VHcomがVH(MAX)に達したか否かを判断する。VH(MAX)に達すると(S1206にてYES)、処理はS1208に移される。そうでないと(S1206にてNO)、処理はS1204に戻される。
 S1208にて、制御装置3000は、システム電圧指令値VHcomをVH(MAX)に固定する。
 S1210にて、制御装置3000は、トルク指令値Trqcomを最大レートで増加させる。なお、ここでいう最大レートとは、あくまでトルク指令値Trqcomを増加させるための最大レートであって、システム電圧指令値VHcomの最大レートとは異なる値である。
 S1212にて、制御装置3000は、トルク指令値Trqcomが通常モード時のトルク上限値(図2の点線)に達したか否かを判断する。通常モード時のトルク上限値に達すると(S1212にてYES)、処理はS1214に移される。そうでないと(S1212にてNO)、処理はS1210に戻される。
 S1214にて、制御装置3000は、トルク指令値Trqcomを通常モード時のトルク上限値に固定する。
 以上のような構造フローチャートに基づく、本実施例に係る制御装置3000で制御されるシステム電圧指令値VHcomおよびトルク指令値Trqcomの時間変化について、図14を参照しつつ説明する。
 前述の第1の実施例でも述べたように、節約モード時のシステム電圧の制限を解除する際、インバータが矩形波電圧制御で制御されているため、トルク指令値Trqcomとシステム電圧指令値VHcomとを同時に最大レートで増加させた場合にはトルク外れ現象が生じるおそれがある。
 そこで、図14に示すように、時刻t(4)で、実動作点が節約モード時のトルク上限値に達すると(S112にてYES)、トルク指令値Trqcomが固定され(S1202)、システム電圧指令値VHcomが最大レートで増加される(S1204)。
 時刻t(5)で、システム電圧指令値VHcomがVH(MAX)に達すると(S1206にてYES)、システム電圧指令値VHcomがVH(MAX)に固定され(S1208)、トルク指令値Trqcomが最大レートで増加される(S1210)。
 時刻t(6)で、トルク指令値Trqcomが通常モード時のトルク上限値に達すると(S1212にてYES)、トルク指令値Trqcomが通常モード時のトルク上限値に固定される(S1214)。
 以上のようにして、本実施例に係る制御装置によると、節約モード時のシステム電圧の制限を解除してシステム電圧を増加させる際、インバータが矩形波電圧制御で制御されていることを考慮して、まずトルク指令値Trqcomを固定した状態でシステム電圧指令値VHcomを最大レートで増加させる。そのため、システム電圧VHを早期にVH(MAX)に増加させることができるとともに、システム電圧VHの増加中におけるトルク外れを抑制することができる。システム電圧指令値VHcomがVH(MAX)に達すると、システム電圧指令値VHcomをVH(MAX)に固定した状態でトルク指令値Trqcomを最大レートで増加させる。そのため、モータの出力トルクを早期に通常モード時のトルク上限値にまで増加させることができるとともに、モータの出力トルクの増加中のトルク外れを抑制することができる。
 <第3の実施例>
 以下、本発明の第3の実施例に係る制御装置について説明する。なお、本実施例に係る制御装置は、システム電圧指令値VHcomの増加処理(システム電圧指令値VHcomとトルク指令値Trqcomとの協調制御)を、前述の第1の実施例に係る制御装置が行なう処理(図8のS200および図9の処理)とは別の方法で行なうものである。それ以外の処理は、前述の第1の実施例と同じである。したがって、前述の第1の実施例の制御装置と同じ制御ブロック図およびフローチャートについてのここでの詳細な説明は繰返さない。
 図15を参照して、本実施例に係る制御装置3000がシステム電圧指令値VHcomの増加処理(システム電圧指令値VHcomとトルク指令値Trqcomとの協調制御)を行なう場合に実行するプログラムの制御構造について説明する。
 S2202にて、制御装置3000は、トルク指令値Trqcomを固定する。S2204にて、制御装置3000は、システム電圧指令値VHcomを最大レートで予め定められた電圧値VH(A)まで増加させる。このVH(A)は、VH(1)よりも高く、かつVH(MAX)よりも低い値である。S2206にて、制御装置3000は、システム電圧指令値VHcomをVH(A)に固定する。
 S2208にて、制御装置3000は、トルク指令値Trqcomを最大レートでTrq(A)まで増加させる。このTrq(A)は、節約モード時のトルク上限値より大きく、かつ通常モード時のトルク上限値より小さい値である。S2210にて、制御装置3000は、トルク指令値TrqcomをTrq(A)に固定する。
 S2212にて、制御装置3000は、システム電圧指令値VHcomを最大レートで予め定められた電圧値VH(B)まで増加させる。このVH(B)は、VH(A)よりも高く、かつVH(MAX)よりも低い値である。S2214にて、制御装置3000は、システム電圧指令値VHcomをVH(B)に固定する。
 S2216にて、制御装置3000は、トルク指令値Trqcomを最大レートでTrq(B)まで増加させる。このTrq(B)は、Trq(A)よりも大きく、かつ通常モード時のトルク上限値よりも小さい値である。S2218にて、制御装置3000は、トルク指令値TrqcomをTrq(B)に固定する。
 S2220にて、制御装置3000は、システム電圧指令値VHcomを最大レートでVH(MAX)まで増加させる。S2222にて、制御装置3000は、システム電圧指令値VHcomをVH(MAX)に固定する。
 S2224にて、制御装置3000は、トルク指令値Trqcomを最大レートで通常モード時のトルク上限値まで増加させる。S2226にて、制御装置3000は、トルク指令値Trqcomを通常モード時のトルク上限値に固定する。
 以上のような構造フローチャートに基づく、本実施例に係る制御装置3000で制御されるシステム電圧指令値VHcomおよびトルク指令値Trqcomの時間変化について、図16を参照しつつ説明する。
 図16に示すように、時刻t(7)で、実動作点が節約モード時のトルク上限値に達すると(S112にてYES)、トルク指令値Trqcomが固定され(S2202)、システム電圧指令値VHcomが最大レートでVH(A)まで増加される(S2204)。
 システム電圧指令値VHcomがVH(A)に達する時刻t(8)以降は、システム電圧指令値VHcomがVH(A)に固定され(S2206)、トルク指令値Trqcomが最大レートでTrq(A)まで増加される(S2208)。
 このように、システム電圧指令値VHcomがVH(MAX)より小さいVH(A)に達した時点で、システム電圧指令値VHcomを一旦VH(A)に固定しつつ、トルク指令値Trqcomを増加される。そのため、たとえば、システム電圧指令値VHcomをVH(MAX)まで増加させた後にトルク指令値Trqcomを増加させる場合に比べて、交流モータM1の出力トルクが増加し始めるまでの時間を短縮することができる。そのため、トルク外れを抑制しつつ、運転者に違和感(もたつき感)を与えることを抑制することができる。
 トルク指令値TrqcomがTrq(A)に達する時刻t(9)以降は、トルク指令値TrqcomがTrq(A)に固定され(S1210)、システム電圧指令値VHcomが最大レートでVH(B)まで増加される(S2212)。
 システム電圧指令値VHcomがVH(B)に達する時刻t(10)以降は、システム電圧指令値VHcomがVH(B)に固定され(S2214)、トルク指令値Trqcomが最大レートでTrq(B)まで増加される(S2216)。
 トルク指令値TrqcomがTrq(B)に達する時刻t(11)以降は、トルク指令値TrqcomがTrq(B)に固定され(S1218)、システム電圧指令値VHcomが最大レートでVH(MAX)まで増加される(S2220)。
 システム電圧指令値VHcomがVH(MAX)に達する時刻t(12)以降は、システム電圧指令値VHcomがVH(MAX)に固定され(S2222)、トルク指令値Trqcomが最大レートで増加される(S22224)。トルク指令値Trqcomが通常モード時のトルク上限値に達した時刻t(13)で、トルク指令値Trqcomが固定される(S2226)。
 以上のようにして、本実施例に係る制御装置によると、節約モード時のシステム電圧の制限を解除してシステム電圧を増加させる際、インバータが矩形波電圧制御で制御されていることを考慮して、システム電圧指令値VHcomとトルク指令値Trqcomとを、段階的に交互に、それぞれの最大レートで増加させる。そのため、トルク外れを抑制しつつ、モータの出力トルクが増加し始めるまでの時間を短縮して運転者に違和感(もたつき感)を与えることを抑制することができる。
 <第4の実施例>
 以下、本発明の第4の実施例に係る制御装置について説明する。なお、本実施例に係る制御装置は、システム電圧指令値VHcomの増加処理(システム電圧指令値VHcomとトルク指令値Trqcomとの協調制御)を、前述の第1の実施例に係る制御装置が行なう処理(図8のS200および図9の処理)とは別の方法で行なうものである。それ以外の処理は、前述の第1の実施例と同じである。したがって、前述の第1の実施例の制御装置と同じ制御ブロック図およびフローチャートについてのここでの詳細な説明は繰返さない。
 前述の第1の実施例で述べたように、矩形波電圧制御では電気1周期に1回のスイッチングしか行なわれない。したがって、モータ回転数Nによって矩形波パルスのオン期間TONが異なる。すなわち、図17に示すように、モータ回転数Nの低回転時(図17(B)参照)は、高回転時(図17(A)参照)に比べて、オン期間TONが長くなってしまう。そのため、システム電圧指令値VHcomの増加レートが同じである場合には、高回転時よりも低回転時の方が、矩形波パルスにおける電圧指令値VONとインバータ14の実際の出力電圧との差が大きくなってしまう。
 そこで、本実施例においては、矩形波パルスの電圧指令値VONとインバータ14の実際の出力電圧との差(1回の矩形波パルスのオン期間TONにおける立ち上げ開始時から終了時までのシステム電圧VHの増加量)がモータ回転数Nに関わらず一定値となるように、モータ回転数Nに応じてシステム電圧指令値VHcomの増加レートを変更する。
 図18を参照して、本実施例に係る制御装置3000がシステム電圧指令値VHcomの増加処理(システム電圧指令値VHcomとトルク指令値Trqcomとの協調制御)を行なう場合に実行するプログラムの制御構造について説明する。
 S3202にて、制御装置3000は、モータ回転数Nを検出する。S3204にて、制御装置3000は、所定値をモータ回転数Nで除算した値を、システム電圧指令値VHcomの増加レートとして算出する。なお、この所定値は、1回の矩形波パルスのオン期間TONにおけるシステム電圧VHの増加量に相当する値であって、フィードバック制御によってトルク外れを抑制可能な値に設定される。すなわち、制御装置3000は、1回の矩形波パルスのオン期間TONにおけるシステム電圧VHの増加量がトルク外れを抑制可能な増加量(すなわち所定値)になるように、モータ回転数Nに応じてシステム電圧指令値VHcomの増加レートを算出する。
 S3206にて、制御装置3000は、算出された増加レートでシステム電圧指令値VHcomを増加させる。
 S3208にて、制御装置3000は、矩形波パルスのオン期間TONの補正処理を行なう。具体的には、制御装置3000は、N回目の矩形波パルスのオン期間TON(N)を、所定値/2(すなわち1回の矩形波パルスのオン期間TONにおけるシステム電圧VHの増加量の平均値)で補正する。
 S3210にて、制御装置3000は、システム電圧指令値VHcomがVH(MAX)に達したか否かを判断する。VH(MAX)に達すると(S3210にてYES)、処理はS3212に移される。そうでないと(S3210にてNO)、処理はS3202に戻される。
 S3212にて、制御装置3000は、トルク指令値Trqcomを通常モード時のトルク上限値に最大レートで増加する。
 以上のような構造フローチャートに基づく、本実施例に係る制御装置3000で制御されるシステム電圧指令値VHcomおよびトルク指令値Trqcomの時間変化について説明する。
 本実施例に係る制御装置によると、節約モード時のシステム電圧の制限を解除してシステム電圧を増加させる際、インバータが矩形波電圧制御で制御されていることを考慮して、1回の矩形波パルスのオン期間TONにおけるシステム電圧VHの増加量がモータ回転数Nに関わらず一定(所定値)となる増加レートで、システム電圧指令値VHcomが増加される(S3202~S3206)。そして、この所定値は、フィードバック制御によってトルク外れを抑制可能な値に設定される。そのため、モータ回転数が低い場合であっても、トルク外れを抑制することができる。
 さらに、矩形波パルスのオン期間TON(N)が、1回の矩形波パルスのオン期間TONにおけるシステム電圧VHの増加量の平均値で補正される(S3208)。これにより、トルク外れをより適切に抑制することができる。
 <第5の実施例>
 以下、本発明の第5の実施例に係る制御装置について説明する。なお、本実施例に係る制御装置は、前述の第1の実施例に係る制御装置に加えて、以下に説明する図19のフローチャートに示す制御構造をさらに備える。それ以外の処理は、前述の第1の実施例と同じである。したがって、前述の第1の実施例の制御装置と同じ制御ブロック図およびフローチャートについてのここでの詳細な説明は繰返さない。
 図19を参照して、本実施例に係る制御装置3000が実行するプログラムの制御構造について説明する。このプログラムは、節約モード時においてシステム電圧VHの制限が解除されてVH(MAX)に維持されている場合に、予め定められたサイクルタイムで繰り返し実行される。なお、図19に示したフローチャートの中で、前述の図8に示したフローチャートと同じ処理については同じステップ番号を付してある。それらについて処理も同じである。したがって、それらについての詳細な説明はここでは繰返さない。
 S1100にて、制御装置3000は、図2に示すマップ上で、トルク推定値Trqとモータ回転数Nとの交点である実動作点が、節約モード時のトルク上限値(図2の実線)より低い領域に含まれるか否かを判断する。節約モード時のトルク上限値より低い領域に含まれると(S1100にてYES)、処理はS1102に移される。そうでないと(S1100にてNO)、処理はS1104に移される。
 S1102にて、制御装置3000は、システム電圧VHをVH(1)に制限するように、システム電圧指令値VHcomをVH(MAX)からVH(1)に降圧させる。
 S1104にて、制御装置3000は、システム電圧VHをVH(MAX)に維持する。
 本実施例に係る制御装置によると、節約モード時においてシステム電圧VHの制限が解除されてシステム電圧VHがVH(MAX)に維持されている場合に、アクセル開度ACCに関係なく、実動作点が節約モード時のトルク上限値より低い領域に含まれるか否か(S1100)に基づいて、システム電圧VHをVH(MAX)に維持する(S1104)か、それともVH(1)に降圧するか(S1102)が判断される。
 すなわち、アクセル開度ACCがしきい値より大きい場合であっても、実動作点が節約モード時のトルク上限値より低い領域に含まれるようになった時点(S1100にてYES)で、システム電圧VHがVH(1)に降圧される。そのため、アクセル開度ACCがしきい値より大きい場合にシステム電圧VHをVH(MAX)に維持する場合に比べて、コンバータ12における電力損失を低減することができる。
 今回開示された実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。

Claims (24)

  1.  蓄電装置(B)と、前記蓄電装置(B)の電圧を可変に昇圧して出力するコンバータ(12)と、前記コンバータ(12)から出力される電力を変換して出力するインバータ(14)と、前記インバータ(14)から出力される電力によって作動するモータ(M1)とを備えた車両の制御装置であって、
     電圧指令値(VHcom)に基づいて前記コンバータ(12)の出力電圧(VH)を制御する第1制御部(3400)と、
     前記モータ(M1)の出力トルクを指示するトルク指令値(Trqcom)と前記電圧指令値(VHcom)とに基づく矩形波電圧を前記モータ(M1)に供給するように、前記インバータ(14)を制御する第2制御部(3300)と、
     前記電圧指令値(VHcom)を増加させる際、前記トルク指令値(Trqcom)と前記モータ(M1)の実際の出力トルク(Trq)との差が予め定められた値より小さくなるように、前記電圧指令値(VHcom)と前記トルク指令値(Trqcom)とを制御する第3制御部(3500)とを含む、制御装置。
  2.  前記第3制御部(3500)は、前記トルク指令値(Trqcom)と前記実際の出力トルク(Trq)との差を前記予め定められた値より小さくすることが可能な程度に小さな第1の増加率で前記電圧指令値(VHcom)を増加させるとともに、前記電圧指令値(VHcom)の増加中に前記第1の増加率に応じた第2の増加率で前記トルク指令値(Trqcom)を増加させる、請求の範囲第1項に記載の制御装置。
  3.  前記第2の増加率は、前記電圧指令値(VHcom)が前記コンバータ(12)の昇圧上限値(VH(MAX))に達するタイミングと、前記トルク指令値(Trqcom)が前記昇圧上限値(VH(MAX))に応じたトルク上限値に達するタイミングとを一致させる、前記トルク指令値(Trqcom)の増加率である、請求の範囲第2項に記載の制御装置。
  4.  前記第3制御部(3500)は、前記電圧指令値(VHcom)を前記コンバータ(12)の昇圧上限値(VH(MAX))まで増加させた後に、前記トルク指令値(Trqcom)を増加させる、請求の範囲第1項に記載の制御装置。
  5.  前記第3制御部(3500)は、前記電圧指令値(VHcom)の増加と前記トルク指令値(Trqcom)の増加とを段階的に交互に行なう、請求の範囲第1項に記載の制御装置。
  6.  前記第3制御部(3500)は、前記電圧指令値(VHcom)の増加および前記トルク指令値(Trqcom)の増加を、それぞれの最大増加率で増加させる、請求の範囲第4または5項に記載の制御装置。
  7.  前記第2制御部(3300)は、前記モータ(M1)の回転位置に基づいて定まる電気角の1周期内に1回、前記矩形波電圧を前記モータ(M1)に供給し、
     前記制御装置は、前記モータ(M1)の単位時間あたりの回転数を検出する回転数検出部(25)をさらに含み、
     前記第3制御部(3500)は、1回の前記矩形波電圧の供給の開始時から終了時までの前記出力電圧(VH)の増加量が前記回転数に関わらず一定値となるように、前記回転数に応じて前記電圧指令値(VHcom)の増加率を変更する、請求の範囲第1項に記載の制御装置。
  8.  前記第2制御部(3300)は、前記出力電圧(VH)の増加量に基づいて、1回の前記矩形波電圧の供給時間を補正する、請求の範囲第7項に記載の制御装置。
  9.  前記制御装置は、前記出力電圧(VH)を検出する電圧検出部(13)をさらに含み、
     Nを自然数とするとき、前記第2制御部(3300)は、N回目の前記矩形波電圧の供給時間を、前記トルク指令値(Trqcom)とN-1回目の前記矩形波電圧の供給の開始時に前記電圧検出部(13)によって検出された前記出力電圧(VH)とに基づいて設定する、請求の範囲第1項に記載の制御装置。
  10.  前記制御装置は、
     前記車両の運転者による加速の要求度合いを検出する加速要求検出部(26)と、
     前記コンバータ(12)の昇圧上限値(VH(MAX))よりも低い制限値(VH(1))に前記電圧指令値(VHcom)を制限する制限部(3000)と、
     前記制限部(3000)によって前記電圧指令値(VHcom)が制限されている場合に、前記加速要求検出部(26)によって検出された前記要求度合いが予め定められた度合いよりも大きいと、前記制限部(3000)による前記電圧指令値(VHcom)の制限を解除する解除部(3000)とをさらに含み、
     前記第3制御部(3500)は、前記解除部(3000)によって前記制限を解除した場合に、前記電圧指令値(VHcom)と前記トルク指令値(Trqcom)とを増加させる、請求の範囲第1項に記載の制御装置。
  11.  前記制御装置は、
     前記車両の運転者による加速の要求度合いを検出する加速要求検出部(26)と、
     前記モータ(M1)に入力される電流を検出する電流検出部(24)と、
     前記モータ(M1)の回転位置を検出する回転位置検出部(25)と、
     前記モータ(M1)の単位時間あたりの回転数を検出する回転数検出部(25)と、
     前記電流検出部(24)によって検出された電流および前記回転位置検出部(25)によって検出された回転位置に基づいて、前記モータ(M1)の実際の出力トルク(Trq)を推定する推定部(3200)と、
     前記コンバータ(12)の昇圧上限値(VH(MAX))よりも低い制限値(VH(1))に前記電圧指令値(VHcom)を制限する制限部(3000)と、
     前記制限部(3000)によって前記電圧指令値(VHcom)が制限されている場合に、前記加速要求検出部(26)によって検出された前記要求度合いが予め定められた度合いよりも大きく、かつ前記推定部(3200)によって推定された前記出力トルク(Trq)が前記回転数検出部(25)によって検出された前記回転数と前記制限値(VH(1))とに基づいて定まるトルク上限値に達したときに、前記制限部(3000)による前記電圧指令値(VHcom)の制限を解除する解除部(3000)とをさらに含み、
     前記第3制御部(3500)は、前記解除部(3000)によって前記電圧指令値(VHcom)の制限を解除した場合に、前記電圧指令値(VHcom)と前記トルク指令値(Trqcom)とを増加させる、請求の範囲第1項に記載の制御装置。
  12.  前記制御装置は、通常モードおよび節約モードのいずれの運転モードが前記車両の運転者により選択されているかを検出するモード検出部(27)をさらに含み、
     前記制限部(3000)は、前記モード検出部(27)によって前記節約モードが選択されていることが検出された場合に、前記電圧指令値(VHcom)を前記制限値(VH(1))に制限する、請求の範囲第10または11項に記載の制御装置。
  13.  蓄電装置(B)と、前記蓄電装置(B)の電圧を可変に昇圧して出力するコンバータ(12)と、前記コンバータ(12)から出力される電力を変換して出力するインバータ(14)と、前記インバータ(14)から出力される電力によって作動するモータ(M1)とを備えた車両を制御する制御装置が行なう制御方法であって、
     電圧指令値(VHcom)に基づいて前記コンバータ(12)の出力電圧(VH)を制御するステップと、
     前記モータ(M1)の出力トルク(Trq)を指示するトルク指令値(Trqcom)と前記電圧指令値(VHcom)とに基づく矩形波電圧を前記モータ(M1)に供給するように、前記インバータ(14)を制御するステップと、
     前記電圧指令値(VHcom)を増加させる際、前記トルク指令値(Trqcom)と前記モータ(M1)の実際の出力トルク(Trq)との差が予め定められた値より小さくなるように、前記電圧指令値(VHcom)と前記トルク指令値(Trqcom)とを制御するステップとを含む、制御方法。
  14.  前記電圧指令値(VHcom)と前記トルク指令値(Trqcom)とを制御するステップは、前記トルク指令値(Trqcom)と前記実際の出力トルク(Trq)との差を前記予め定められた値より小さくすることが可能な程度に小さな第1の増加率で前記電圧指令値(VHcom)を増加させるとともに、前記電圧指令値(VHcom)の増加中に前記第1の増加率に応じた第2の増加率で前記トルク指令値(Trqcom)を増加させる、請求の範囲第13項に記載の制御方法。
  15.  前記第2の増加率は、前記電圧指令値(VHcom)が前記コンバータ(12)の昇圧上限値(VH(MAX))に達するタイミングと、前記トルク指令値(Trqcom)が前記昇圧上限値(VH(MAX))に応じたトルク上限値に達するタイミングとを一致させる、前記トルク指令値(Trqcom)の増加率である、請求の範囲第14項に記載の制御方法。
  16.  前記電圧指令値(VHcom)と前記トルク指令値(Trqcom)とを制御するステップは、前記電圧指令値(VHcom)を前記コンバータ(12)の昇圧上限値(VH(MAX))まで増加させた後に、前記トルク指令値(Trqcom)を増加させる、請求の範囲第13項に記載の制御方法。
  17.  前記電圧指令値(VHcom)と前記トルク指令値(Trqcom)とを制御するステップは、前記電圧指令値(VHcom)の増加と前記トルク指令値(Trqcom)の増加とを段階的に交互に行なう、請求の範囲第13項に記載の制御方法。
  18.  前記電圧指令値(VHcom)と前記トルク指令値(Trqcom)とを制御するステップは、前記電圧指令値(VHcom)の増加および前記トルク指令値(Trqcom)の増加を、それぞれの最大増加率で増加させる、請求の範囲第16または17項に記載の制御方法。
  19.  前記インバータ(14)を制御するステップは、前記モータ(M1)の回転位置に基づいて定まる電気角の1周期内に1回、前記矩形波電圧を前記モータ(M1)に供給し、
     前記制御方法は、前記モータ(M1)の単位時間あたりの回転数を検出するステップをさらに含み、
     前記電圧指令値(VHcom)と前記トルク指令値(Trqcom)とを制御するステップは、1回の前記矩形波電圧の供給の開始時から終了時までの前記出力電圧(VH)の増加量が前記回転数に関わらず一定値となるように、前記回転数に応じて前記電圧指令値(VHcom)の増加率を変更する、請求の範囲第13項に記載の制御方法。
  20.  前記インバータ(14)を制御するステップは、前記出力電圧(VH)の増加量に基づいて、1回の前記矩形波電圧の供給時間を補正する、請求の範囲第19項に記載の制御方法。
  21.  前記制御方法は、前記出力電圧(VH)を検出するステップをさらに含み、
     Nを自然数とするとき、前記インバータ(14)を制御するステップは、N回目の前記矩形波電圧の供給時間を、前記トルク指令値(Trqcom)とN-1回目の前記矩形波電圧の供給の開始時に前記出力電圧(VH)を検出するステップで検出された前記出力電圧(VH)とに基づいて設定する、請求の範囲第13項に記載の制御方法。
  22.  前記制御方法は、
     前記車両の運転者による加速の要求度合いを検出するステップと、
     前記コンバータ(12)の昇圧上限値(VH(MAX))よりも低い制限値(VH(1))に前記電圧指令値(VHcom)を制限するステップと、
     前記電圧指令値(VHcom)を制限するステップで前記電圧指令値(VHcom)が制限されている場合に、前記加速の要求度合いを検出するステップで検出された前記要求度合いが予め定められた度合いよりも大きいと、前記電圧指令値(VHcom)を制限するステップでの前記電圧指令値(VHcom)の制限を解除するステップとをさらに含み、
     前記電圧指令値(VHcom)と前記トルク指令値(Trqcom)とを制御するステップは、前記電圧指令値(VHcom)の制限を解除するステップで前記制限を解除した場合に、前記電圧指令値(VHcom)と前記トルク指令値(Trqcom)とを増加させる、請求の範囲第13項に記載の制御方法。
  23.  前記制御方法は、
     前記車両の運転者による加速の要求度合いを検出するステップと、
     前記モータ(M1)に入力される電流を検出するステップと、
     前記モータ(M1)の回転位置を検出するステップと、
     前記モータ(M1)の単位時間あたりの回転数を検出するステップと、
     前記電流を検出するステップで検出された電流および前記回転位置を検出するステップで検出された回転位置に基づいて、前記モータ(M1)の実際の出力トルク(Trq)を推定するステップと、
     前記コンバータ(12)の昇圧上限値(VH(MAX))よりも低い制限値(VH(1))に前記電圧指令値(VHcom)を制限するステップと、
     前記電圧指令値(VHcom)を制限するステップで前記電圧指令値(VHcom)が制限されている場合に、前記加速の要求度合いを検出するステップで検出された前記要求度合いが予め定められた度合いよりも大きく、かつ前記出力トルク(Trq)を推定するステップで推定された前記出力トルク(Trq)が前記回転数を検出するステップで検出された前記回転数と前記制限値(VH(1))とに基づいて定まるトルク上限値に達したときに、前記電圧指令値(VHcom)を制限するステップでの前記電圧指令値(VHcom)の制限を解除するステップとをさらに含み、
     前記電圧指令値(VHcom)と前記トルク指令値(Trqcom)とを制御するステップは、前記電圧指令値(VHcom)の制限を解除するステップで前記制限を解除した場合に、前記電圧指令値(VHcom)と前記トルク指令値(Trqcom)とを増加させる、請求の範囲第13項に記載の制御方法。
  24.  前記制御方法は、通常モードおよび節約モードのいずれの運転モードが前記車両の運転者により選択されているかを検出するステップをさらに含み、
     前記電圧指令値(VHcom)の制限を解除するステップは、前記節約モードが選択されていることが検出された場合に、前記電圧指令値(VHcom)を前記制限値(VH(1))に制限する、請求の範囲第22または23項に記載の制御方法。
PCT/JP2008/073321 2008-03-18 2008-12-22 車両の制御装置および制御方法 WO2009116216A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP08873416.5A EP2273666B1 (en) 2008-03-18 2008-12-22 Device and method for controlling vehicle
CN2008801281594A CN101978593B (zh) 2008-03-18 2008-12-22 车辆的控制装置以及控制方法
US12/922,963 US8395277B2 (en) 2008-03-18 2008-12-22 Control device and control method for vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008069572A JP4424427B2 (ja) 2008-03-18 2008-03-18 車両の制御装置および制御方法
JP2008-069572 2008-03-18

Publications (1)

Publication Number Publication Date
WO2009116216A1 true WO2009116216A1 (ja) 2009-09-24

Family

ID=41090632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/073321 WO2009116216A1 (ja) 2008-03-18 2008-12-22 車両の制御装置および制御方法

Country Status (5)

Country Link
US (1) US8395277B2 (ja)
EP (1) EP2273666B1 (ja)
JP (1) JP4424427B2 (ja)
CN (1) CN101978593B (ja)
WO (1) WO2009116216A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102336149A (zh) * 2010-06-22 2012-02-01 株式会社万都 电子控制单元和车辆控制方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4939127B2 (ja) * 2006-06-30 2012-05-23 株式会社豊田中央研究所 交流電動機の駆動制御装置及び駆動制御方法
JP5587297B2 (ja) * 2008-05-20 2014-09-10 中国石油化工股▲ふん▼有限公司 含酸劣質原油改質触媒、その製造方法、およびその応用
FR2963510B1 (fr) * 2010-08-02 2012-10-05 Alstom Transport Sa Chaine de traction pour un vehicule de transport, notamment ferroviaire, et procede de commande d'une telle chaine
JP5301516B2 (ja) * 2010-10-19 2013-09-25 三菱電機株式会社 車両用電流制限装置
WO2012105022A1 (ja) 2011-02-03 2012-08-09 トヨタ自動車株式会社 電動車両およびその制御方法
JP5626469B2 (ja) * 2011-07-14 2014-11-19 トヨタ自動車株式会社 車両の駆動装置および車両の駆動方法
JP5893876B2 (ja) * 2011-09-13 2016-03-23 トヨタ自動車株式会社 モータ制御システム
CN104247250B (zh) * 2012-04-11 2016-11-09 三菱电机株式会社 车辆的发电控制装置及其控制方法
JP5960008B2 (ja) * 2012-09-21 2016-08-02 日立オートモティブシステムズ株式会社 ブラシレスモータの駆動装置
TWI509941B (zh) * 2013-06-05 2015-11-21 Universal Scient Ind Shanghai 電壓調節器、其運作方法以及電壓調節系統
JP5873517B2 (ja) * 2014-03-19 2016-03-01 富士重工業株式会社 バッテリ電圧の制御装置及びバッテリ電圧の制御方法
JP6259312B2 (ja) * 2014-02-21 2018-01-10 株式会社Subaru 昇圧コンバータの制御装置及び昇圧コンバータの制御方法
KR101704185B1 (ko) * 2015-04-14 2017-02-07 현대자동차주식회사 하이브리드 차량의 직류변환장치 제어 시스템 및 방법
JP7121248B2 (ja) * 2017-09-14 2022-08-18 シンフォニアテクノロジー株式会社 同期電動機の制御装置及び制御方法
CN108322129B (zh) * 2018-03-19 2020-12-29 安徽江淮汽车集团股份有限公司 一种bsg电机的启停控制方法及系统
JP7070330B2 (ja) * 2018-10-26 2022-05-18 株式会社デンソー 回転電機の制御装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003015254A1 (fr) 2001-08-02 2003-02-20 Toyota Jidosha Kabushiki Kaisha Appareil de commande d'entrainement de moteur
JP2005051894A (ja) * 2003-07-31 2005-02-24 Toyota Motor Corp 負荷駆動装置
WO2005081395A1 (ja) * 2004-02-19 2005-09-01 Toyota Jidosha Kabushiki Kaisha モータ駆動装置
JP2007089262A (ja) 2005-09-20 2007-04-05 Toyota Motor Corp 車両用電源装置
JP2007202386A (ja) * 2005-12-26 2007-08-09 Denso Corp 電気自動車の制御装置
JP2007252181A (ja) * 2006-02-15 2007-09-27 Denso Corp 電気自動車の制御装置
JP2007306658A (ja) * 2006-05-09 2007-11-22 Toyota Motor Corp モータ駆動装置
JP2007325351A (ja) * 2006-05-30 2007-12-13 Toyota Motor Corp 電動機駆動制御システム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003015254A1 (fr) 2001-08-02 2003-02-20 Toyota Jidosha Kabushiki Kaisha Appareil de commande d'entrainement de moteur
JP2005051894A (ja) * 2003-07-31 2005-02-24 Toyota Motor Corp 負荷駆動装置
WO2005081395A1 (ja) * 2004-02-19 2005-09-01 Toyota Jidosha Kabushiki Kaisha モータ駆動装置
JP2007089262A (ja) 2005-09-20 2007-04-05 Toyota Motor Corp 車両用電源装置
JP2007202386A (ja) * 2005-12-26 2007-08-09 Denso Corp 電気自動車の制御装置
JP2007252181A (ja) * 2006-02-15 2007-09-27 Denso Corp 電気自動車の制御装置
JP2007306658A (ja) * 2006-05-09 2007-11-22 Toyota Motor Corp モータ駆動装置
JP2007325351A (ja) * 2006-05-30 2007-12-13 Toyota Motor Corp 電動機駆動制御システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2273666A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102336149A (zh) * 2010-06-22 2012-02-01 株式会社万都 电子控制单元和车辆控制方法

Also Published As

Publication number Publication date
CN101978593B (zh) 2013-02-13
US8395277B2 (en) 2013-03-12
EP2273666A4 (en) 2018-01-10
JP4424427B2 (ja) 2010-03-03
US20110006598A1 (en) 2011-01-13
EP2273666A1 (en) 2011-01-12
CN101978593A (zh) 2011-02-16
JP2009225614A (ja) 2009-10-01
EP2273666B1 (en) 2019-01-23

Similar Documents

Publication Publication Date Title
JP4424427B2 (ja) 車両の制御装置および制御方法
US8796960B2 (en) Control device for motor drive system and vehicle incorporating the same
US8639405B2 (en) Electric motor drive system for an electric vehicle
JP6248596B2 (ja) ハイブリッド車両のモータ制御装置
JP5633639B2 (ja) 電動機の制御装置およびそれを備える電動車両、ならびに電動機の制御方法
WO2010086974A1 (ja) 交流電動機の制御装置
WO2010082368A1 (ja) 交流電動機の制御装置および電動車両
JP2007166874A (ja) 電圧変換装置
JP5482574B2 (ja) 交流電動機の制御システム
JP2010161907A (ja) モータ駆動制御システムの制御装置
JP2006320039A (ja) モータ駆動システムの制御装置
JP5281370B2 (ja) 交流電動機の制御装置
JP2011067010A (ja) 車両のモータ駆動装置
JP5696607B2 (ja) 交流電動機の制御装置および制御方法
JP7415579B2 (ja) 車両の駆動制御システム
JP2012090490A (ja) モータ駆動制御システムの制御装置およびそれを搭載する車両
JP2010220306A (ja) モータの制御装置
JP2009171641A (ja) モータ駆動装置
JP2004080998A (ja) 永久磁石型同期モータの駆動制御装置及び方法
JP2010166707A (ja) 交流電動機の制御装置
JP2013017324A (ja) 電源システムおよびその制御方法
JP2010088240A (ja) 交流電動機の制御システム
JP5768542B2 (ja) 交流電動機の制御装置および制御方法
JP5780022B2 (ja) 交流電動機の制御装置および制御方法
JP5884297B2 (ja) モータ駆動制御システムおよびそれを搭載する車両、ならびにモータ駆動制御システムの制御方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880128159.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08873416

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12922963

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008873416

Country of ref document: EP