WO2012105022A1 - 電動車両およびその制御方法 - Google Patents

電動車両およびその制御方法 Download PDF

Info

Publication number
WO2012105022A1
WO2012105022A1 PCT/JP2011/052245 JP2011052245W WO2012105022A1 WO 2012105022 A1 WO2012105022 A1 WO 2012105022A1 JP 2011052245 W JP2011052245 W JP 2011052245W WO 2012105022 A1 WO2012105022 A1 WO 2012105022A1
Authority
WO
WIPO (PCT)
Prior art keywords
input voltage
electric vehicle
voltage
system voltage
setting
Prior art date
Application number
PCT/JP2011/052245
Other languages
English (en)
French (fr)
Inventor
啓介 森崎
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to EP11857620.6A priority Critical patent/EP2623365B1/en
Priority to PCT/JP2011/052245 priority patent/WO2012105022A1/ja
Priority to JP2012555646A priority patent/JP5304957B2/ja
Priority to US13/879,969 priority patent/US8725337B2/en
Priority to CN201180051579.9A priority patent/CN103338971B/zh
Publication of WO2012105022A1 publication Critical patent/WO2012105022A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2045Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for optimising the use of energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/40Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for controlling a combination of batteries and fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • B60L2210/14Boost converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/14Acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/32Driving direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/427Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/48Drive Train control parameters related to transmissions
    • B60L2240/486Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/527Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/24Driver interactions by lever actuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/10Temporary overload
    • B60L2260/16Temporary overload of electrical drive trains
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/16Ratio selector position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor

Definitions

  • the present invention relates to an electric vehicle and a control method thereof, and more particularly, to an electric vehicle including a boost converter between a power storage device and a drive device that drives an electric motor, and a control method thereof.
  • Electric vehicles such as hybrid vehicles and electric vehicles have attracted attention as environmentally friendly vehicles. These electric vehicles are equipped with a power storage device, an inverter, and a motor driven by the inverter as a power source for traveling the vehicle.
  • the hybrid vehicle further includes an engine as a power source.
  • a boost converter that boosts a supply voltage (hereinafter also referred to as “system voltage”) to the inverter more than the voltage of the power storage device is provided between the power storage device and the inverter that drives the motor. Vehicle is known.
  • an electric vehicle includes an electric motor that generates a vehicle driving force, a power storage device, a driving device that drives the electric motor, a voltage conversion device, and a control device that controls the voltage conversion device.
  • the voltage conversion device is provided between the drive device and the power storage device, and is configured to boost the input voltage (system voltage) of the drive device to a voltage higher than the voltage of the power storage device.
  • the control device sets the system voltage so that the system voltage is higher during reverse travel than during forward travel when the acceleration request (accelerator opening, required drive force, required output, etc.) to the vehicle is the same. Set.
  • control device sets the system voltage set in accordance with the driver's acceleration request higher during forward travel than during forward travel.
  • the first step includes a step of setting an upper limit of the system voltage for forward traveling.
  • the second step includes a step of setting an upper limit of the system voltage for reverse travel.
  • the electric vehicle further includes an internal combustion engine that generates a forward drive force.
  • the system voltage is set so that the input voltage (system voltage) of the drive device is higher than during forward travel when the magnitude of the acceleration request to the vehicle is the same.
  • An appropriate system voltage is set for each traveling / reverse traveling in consideration of fuel consumption and drivability. Therefore, according to the present invention, in an electric vehicle, drivability during reverse travel can be improved while improving fuel efficiency.
  • FIG. 1 is a block diagram showing an overall configuration of a hybrid vehicle shown as an example of an electric vehicle according to Embodiment 1.
  • FIG. It is a block diagram which shows the powertrain structure of a hybrid vehicle. It is a functional block diagram of ECU regarding the setting of the system voltage. It is the figure which showed the example of a setting of a system voltage. It is the figure which showed the other example of a system voltage setting. It is a flowchart for demonstrating the process sequence regarding the setting process of a system voltage. It is a flowchart for demonstrating the other process sequence regarding the setting process of a system voltage.
  • 6 is a block diagram showing a power train configuration of a hybrid vehicle in a second embodiment.
  • FIG. 10 is a flowchart for illustrating a processing procedure related to a system voltage setting process in the second embodiment.
  • FIG. 1 is a block diagram showing an overall configuration of a hybrid vehicle shown as an example of an electric vehicle according to the first embodiment.
  • hybrid vehicle 100 includes a power storage device 10, an ECU (Electronic Control Unit) 15, a PCU (Power Control Unit) 20, a power output device 30, a transmission gear 40, and front wheels 50L and 50R. And rear wheels 60L and 60R.
  • ECU Electronic Control Unit
  • PCU Power Control Unit
  • front wheels 50L and 50R And rear wheels 60L and 60R.
  • the power storage device 10 is a rechargeable DC power source, and is constituted by, for example, a secondary battery such as nickel metal hydride or lithium ion.
  • the power storage device 10 is disposed, for example, at the rear portion of the rear seat 80 and is electrically connected to the PCU 20 to supply a DC voltage to the PCU 20.
  • the power storage device 10 is charged by receiving the power generated by the power output device 30 from the PCU 20.
  • FIG. 2 is a block diagram showing a power train configuration of the hybrid vehicle 100.
  • hybrid vehicle 100 includes power storage device 10, SMR (System Main Relay) 105, PCU 20, ECU 15, motor generators MG ⁇ b> 1 and MG ⁇ b> 2, engine ENG, and power split device 134.
  • a gear 40 and front wheels 50R and 50L are included.
  • the power split device 134 is coupled to the engine ENG, the motor generator MG1, and the transmission gear 40, and distributes power among them.
  • a planetary gear having three rotating shafts of a sun gear, a planetary carrier, and a ring gear can be used as power split device 134, and these three rotating shafts are connected to the rotating shafts of motor generator MG1, engine ENG, and transmission gear 40, respectively. Is done.
  • the rotation shaft of motor generator MG2 is coupled to the rotation shaft of transmission gear 40. That is, motor generator MG2 and transmission gear 40 have the same rotation shaft, and the rotation shaft is connected to the ring gear of power split device 134.
  • the kinetic energy generated by the engine ENG is distributed to the motor generator MG1 and the transmission gear 40 by the power split device 134.
  • Engine ENG operates as a power source for driving the vehicle forward and driving motor generator MG1.
  • motor generators MG1 and MG2 can function as both a generator and an electric motor
  • motor generator MG1 mainly operates as a generator
  • motor generator MG2 mainly operates as an electric motor.
  • motor generator MG1 receives a part of the output of engine ENG distributed by power split device 134 to generate power.
  • motor generator MG1 receives power supplied from power storage device 10 and operates as an electric motor to crank engine ENG and start it.
  • Motor generator MG2 is driven by at least one of the electric power stored in power storage device 10 and the electric power generated by motor generator MG1.
  • the driving force of motor generator MG2 is transmitted to the driving shafts of front wheels 50R and 50L via transmission gear 40.
  • motor generator MG2 is driven by front wheels 50R and 50L to operate as a generator.
  • the electric power generated by motor generator MG2 is charged into power storage device 10 via PCU 20.
  • the SMR 105 is provided between the power storage device 10 and the PCU 20, and is turned on in response to a command from the ECU 15 when the vehicle is traveling.
  • PCU 20 includes a converter 110, a capacitor 120, motor drive controllers 131 and 132, and a converter / inverter control unit 140.
  • motor generators MG1, MG2 are AC motors
  • motor drive controllers 131, 132 are constituted by inverters.
  • the motor drive controller 131 (132) is also referred to as an “inverter 131 (132)”.
  • Converter 110 boosts voltage VH (system voltage) between positive line 103 and negative line 102 to voltage Vb or higher of power storage device 10 based on control signal Scnv from converter / inverter control unit 140.
  • Converter 110 is formed of, for example, a current reversible boost chopper circuit.
  • Inverters 131 and 132 are provided corresponding to motor generators MG1 and MG2, respectively. Inverters 131 and 132 are connected to converter 110 in parallel with each other, and drive motor generators MG1 and MG2 based on control signals Spwm1 and Spwm2 from converter / inverter control unit 140, respectively.
  • Converter / inverter control unit 140 controls each of converter 110 and motor generators MG1, MG2 based on control commands received from ECU 15 (setting of system voltage VH, torque target of motor generators MG1, MG2, etc.). Scnv, Spwm1, and Spwm2 are generated. Converter / inverter control unit 140 then outputs the generated control signals Scnv, Spwm1, and Spwm2 to converter 110 and inverters 131 and 132, respectively.
  • the ECU 15 is composed of an electronic control unit, and controls vehicle running and power storage by software processing by executing a pre-stored program by a CPU (Central Processing Unit) and / or hardware processing by a dedicated electronic circuit. Various control such as charge / discharge control of 10 and setting of system voltage VH are performed. Then, ECU 15 generates a control command for driving PCU 20 and outputs the generated control command to converter / inverter control unit 140 of PCU 20.
  • a CPU Central Processing Unit
  • FIG. 3 is a functional block diagram of the ECU 15 regarding the setting of the system voltage VH.
  • ECU 15 includes a shift range determination unit 150 and a system voltage control unit 152.
  • the system voltage control unit 152 sets the system voltage VH based on the required driving force of the vehicle.
  • the required driving force is calculated based on the accelerator opening, the vehicle speed, and the like.
  • the system voltage control unit 152 sets the system voltage VH to the shift range other than the R range (D range, etc.). Change the setting. This will be specifically described below.
  • the power loss in the converter 110 and the inverters 131 and 132 can be suppressed by limiting the system voltage VH to a voltage lower than the maximum value (hereinafter also referred to as “boost limit”).
  • boost limit a voltage lower than the maximum value
  • fuel consumption can be improved. Therefore, in the first embodiment, in order to improve the fuel consumption, the pressure increase restriction is performed unless the accelerator pedal is depressed more than a predetermined amount.
  • the pressure increase is uniformly limited regardless of the driving conditions, the vehicle's driving force desired by the driver can be obtained during reverse traveling that requires careful accelerator operation, such as overcoming a step when entering the garage in reverse. There is no possibility.
  • the setting of the system voltage VH is changed when a shift range other than the R range is selected (D range or the like).
  • the system voltage VH is set so that the system voltage VH is higher than during forward travel when the acceleration request (accelerator opening, required drive force, required output, etc.) to the vehicle is the same. That's what it meant.
  • the system voltage control unit 152 outputs the setting of the system voltage VH to the converter / inverter control unit 140 (FIG. 2) of the PCU 20.
  • FIG. 4 is a diagram showing an example of setting the system voltage VH.
  • the horizontal axis represents the required driving force of the vehicle
  • the vertical axis represents the set value of system voltage VH.
  • a curve k1 shows the setting of the system voltage VH for forward travel selected in the shift range other than the R range
  • a curve k2 shows the setting of the system voltage VH for reverse travel selected in the R range.
  • the system voltage VH is set to the lower limit value V1.
  • the setting of the system voltage VH increases as the required driving force increases.
  • the upper limit of the system voltage VH is set to the limit value V2, and the system voltage VH is limited to the limit value V2 or less.
  • the upper limit of the system voltage VH is set to the upper limit value V3, and the boost restriction during forward travel is released.
  • the upper limit setting of the system voltage VH is changed between the R range and other shift ranges (D range, etc.), but the system voltage VH itself is changed to the R range and other shift ranges. (D range etc.) may be changed.
  • FIG. 5 is a diagram showing another setting example of the system voltage VH.
  • curve k3 shows the setting of system voltage VH for forward travel selected during the shift range other than the R range
  • curve k4 represents system voltage VH for reverse travel selected during the R range. Indicates the setting.
  • the setting of the system voltage VH increases as the required driving force increases.
  • the system voltage VH during forward running (curve k3) It is set to a value lower than the system voltage VH during running (curve k4).
  • the system voltage VH is set so as to perform the boost restriction, and during reverse travel where the boost restriction is not performed, the system voltage VH is higher than that during forward travel where the boost restriction is performed. Is set.
  • FIG. 6 is a flowchart for explaining a processing procedure regarding the setting processing of the system voltage VH. The process of this flowchart is called from the main routine and executed every certain time or every time a predetermined condition is satisfied.
  • ECU 15 determines whether or not the shift range is the R range (step S10).
  • the shift range is determined based on a shift position signal SP indicating the position of the shift lever.
  • the ECU 15 sets the system voltage VH for forward travel (step S20). For example, system voltage VH is set based on the driving force of the vehicle according to curve k1 in FIG. 4 and curve k3 in FIG.
  • step S10 when it is determined in step S10 that the shift range is the R range (YES in step S10), ECU 15 sets system voltage VH for reverse travel (step S30).
  • system voltage VH is set based on the vehicle driving force according to curve k2 in FIG. 4 or curve k4 in FIG.
  • the system voltage VH is set based on the driving force of the vehicle. However, the system voltage VH is determined based on other parameters related to acceleration requests to the vehicle, such as the accelerator opening and the required power of the vehicle. May be set.
  • system voltage VH is set such that system voltage VH is higher than during forward travel when the magnitude of the acceleration request to the vehicle is the same. Therefore, an appropriate system voltage VH considering fuel consumption and drivability is set for each forward travel / reverse travel. Therefore, according to this Embodiment 1, the drivability at the time of reverse drive can be improved, improving a fuel consumption.
  • step S110 when it is determined in step S110 that boost restriction can be performed (YES in step S110), ECU 15 determines whether or not the shift range is the R range (step S120).
  • step S130 If it is determined that the shift range is other than the R range (NO in step S120), the ECU 15 performs pressure increase restriction (step S130).
  • the boost limitation may be realized by lowering the upper limit setting of the system voltage VH as shown in FIG. 4, or by lowering the setting of the system voltage VH itself as shown in FIG. It may be realized.
  • step S120 determines that the shift range is the R range (YES in step S120)
  • ECU 15 cancels the pressure increase restriction if the pressure increase restriction is implemented (step S140). That is, system voltage VH is set based on the driving force of the vehicle according to curve k2 in FIG. 4 and curve k4 in FIG.
  • the other functions of the ECU 15A are the same as those of the ECU 15 in the first embodiment.
  • Other configurations of the hybrid vehicle are the same as those of the hybrid vehicle 100 shown in FIG.
  • FIG. 9 is a flowchart for explaining a processing procedure related to the setting processing of the system voltage VH in the second embodiment.
  • the processing of this flowchart is also called from the main routine and executed every certain time or every time a predetermined condition is satisfied.
  • this flowchart includes step S115 instead of step S110 in the flowchart shown in FIG. That is, the ECU 15A determines whether or not the eco mode switch 145 is turned on (step S115).
  • step S115 If it is determined that eco-mode switch 145 is turned on (YES in step S115), ECU 15A proceeds to step S120 and determines whether or not the shift range is the R range. On the other hand, when it is determined in step S115 that eco mode switch 145 is turned off (NO in step S115), ECU 15A proceeds to step S150.
  • the eco mode switch 145 is provided for the user to select low fuel consumption driving.
  • the pressure increase restriction is performed.
  • the setting of the system voltage VH is changed with respect to the forward traveling so as to relax the pressure increase restriction.
  • the series / parallel type hybrid vehicle that outputs the power of the engine ENG to at least one of the drive shaft and the motor generator MG1 has been described as the electric vehicle. It can also be applied to hybrid vehicles of the type.
  • the present invention can also be applied to a so-called series type hybrid vehicle that uses engine ENG only to drive motor generator MG1 and generates the driving force of the vehicle only by motor generator MG2.
  • the present invention is also applicable to an electric vehicle that runs on electric power alone without the engine ENG, a fuel cell vehicle that further includes a fuel cell in addition to the power storage device 10 as a DC power source.
  • motor generator MG2 corresponds to an embodiment of “electric motor” in the present invention
  • inverter 132 corresponds to an embodiment of “drive device” in the present invention
  • Converter 110 corresponds to an embodiment of “voltage conversion device” in the present invention
  • ECUs 15 and 15A correspond to an embodiment of “control device” in the present invention
  • eco mode switch 145 corresponds to an embodiment of “input device” in the present invention
  • engine ENG corresponds to an embodiment of “internal combustion engine” in the present invention.
  • 10 power storage device 15, 15A ECU, 20 PCU, 30 power output device, 40 transmission gear, 50L, 50R front wheel, 60L, 60R rear wheel, 100 electric vehicle, 105 SMR, 110 converter, 120 capacitor, 131, 132 inverter, 134 power split device, 140 converter / inverter control unit, 145 eco mode switch, 150 shift range determination unit, 152 system voltage control unit, MG1, MG2 motor generator, ENG engine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

 S10においてシフトレンジがRレンジ以外であると判定されると(S10にてNO)、ECUは、前進走行用のシステム電圧を設定する(S20)。一方、S10においてシフトレンジがRレンジであると判定されると(S10にてYES)、ECUは、後進走行用のシステム電圧を設定する(S30)。後進走行用のシステム電圧は、車両に対する加速要求の大きさが同じ場合の前進走行用のシステム電圧よりも高くなるように設定される。

Description

電動車両およびその制御方法
 この発明は、電動車両およびその制御方法に関し、特に、蓄電装置と電動機を駆動する駆動装置との間に昇圧コンバータを備える電動車両およびその制御方法に関する。
 環境に配慮した車両として、ハイブリッド車両(Hybrid Vehicle)や電気自動車(Electric Vehicle)等の電動車両が注目されている。これらの電動車両は、蓄電装置とインバータとインバータによって駆動されるモータとを車両走行用の動力源として搭載する。なお、ハイブリッド車両は、動力源としてエンジンをさらに搭載する。
 また、このような電動車両において、蓄電装置とモータを駆動するインバータとの間に、インバータへの供給電圧(以下「システム電圧」とも称する。)を蓄電装置の電圧以上に昇圧する昇圧コンバータを備えた車両が知られている。
 特開2009-131079号公報(特許文献1)は、そのような昇圧コンバータを備える電動車両を開示する。この車両においては、低燃費走行をユーザが指示するためのエコモードスイッチが設けられる。エコモードスイッチがオンされると、システム電圧の上限値を通常上限値から制限上限値に低下させる。これにより、システム電圧が制限され、低燃費走行を行なうことができる(特許文献1参照)。
特開2009-131079号公報 特開2010-119158号公報 特開2010-98876号公報 特開2009-225614号公報
 上記の特開2009-131079号公報に開示される技術は、システム電圧を制限することにより燃費向上を図ることができる点で有用であるが、後進車庫入れの段差乗り越え時など慎重なアクセル操作が要求される後進走行時に、運転者が望む駆動力を得られない可能性がある。
 それゆえに、この発明の目的は、電動車両において、燃費向上を図りつつ後進走行時のドライバビリティを向上することである。
 この発明によれば、電動車両は、車両駆動力を発生する電動機と、蓄電装置と、電動機を駆動する駆動装置と、電圧変換装置と、電圧変換装置を制御する制御装置とを備える。電圧変換装置は、駆動装置と蓄電装置との間に設けられ、駆動装置の入力電圧(システム電圧)を蓄電装置の電圧よりも高い電圧に昇圧するように構成される。そして、制御装置は、後進走行時は、車両に対する加速要求(アクセル開度や要求駆動力、要求出力など)の大きさが同じ場合の前進走行時よりもシステム電圧が高くなるようにシステム電圧を設定する。
 好ましくは、制御装置は、前進走行時は、システム電圧を制限するようにシステム電圧の上限を設定し、後進走行時は、前進走行時におけるシステム電圧の制限を緩和するように前進走行時に対してシステム電圧の上限設定を変更する。
 好ましくは、制御装置は、後進走行時は、前進走行時よりもシステム電圧の上限を高く設定する。
 好ましくは、制御装置は、後進走行時は、運転者の加速要求に従って設定されるシステム電圧を前進走行時よりも高く設定する。
 好ましくは、電動車両は、通常モードおよび節約モードのいずれかを運転者が選択するための入力装置をさらに備える。そして、入力装置によって節約モードが選択された場合、制御装置は、前進走行時は、通常モード時に対してシステム電圧を制限するようにシステム電圧の上限を設定し、後進走行時は、前進走行時におけるシステム電圧の制限を緩和するように前進走行時に対してシステム電圧の上限設定を変更する。
 好ましくは、電動車両は、前進駆動力を発生する内燃機関をさらに備える。
 また、この発明によれば、制御方法は、電動車両の制御方法である。電動車両は、車両駆動力を発生する電動機と、蓄電装置と、電動機を駆動する駆動装置と、電圧変換装置とを備える。電圧変換装置は、駆動装置と蓄電装置との間に設けられ、駆動装置の入力電圧(システム電圧)を蓄電装置の電圧よりも高い電圧に昇圧するように構成される。そして、制御方法は、前進走行用のシステム電圧を設定する第1のステップと、後進走行用のシステム電圧を設定する第2のステップとを含む。
 好ましくは、第1のステップは、前進走行用のシステム電圧の上限を設定するステップを含む。第2のステップは、後進走行用のシステム電圧の上限を設定するステップを含む。
 好ましくは、第1のステップは、システム電圧を制限するように前進走行用のシステム電圧の上限を設定するステップを含む。第2のステップは、前進走行時におけるシステム電圧の制限を緩和するように後進走行用のシステム電圧の上限を設定するステップを含む。
 好ましくは、電動車両は、通常モードおよび節約モードのいずれかを運転者が選択するための入力装置をさらに備える。そして、第1のステップは、入力装置によって節約モードが選択された場合に、通常モード時に対してシステム電圧を制限するように前進走行用のシステム電圧の上限を設定するステップを含む。第2のステップは、入力装置によって節約モードが選択された場合に、前進走行時におけるシステム電圧の制限を緩和するように後進走行用のシステム電圧の上限を設定するステップを含む。
 好ましくは、電動車両は、前進駆動力を発生する内燃機関をさらに備える。
 この発明によれば、後進走行時は、車両に対する加速要求の大きさが同じ場合の前進走行時よりも駆動装置の入力電圧(システム電圧)が高くなるようにシステム電圧が設定されるので、前進走行/後進走行毎に燃費やドライバビリティを考慮した適切なシステム電圧が設定される。したがって、この発明によれば、電動車両において、燃費向上を図りつつ後進走行時のドライバビリティを向上することができる。
実施の形態1による電動車両の一例として示されるハイブリッド車両の全体構成を示すブロック図である。 ハイブリッド車両のパワートレーン構成を示すブロック図である。 システム電圧の設定に関するECUの機能ブロック図である。 システム電圧の設定例を示した図である。 システム電圧の他の設定例を示した図である。 システム電圧の設定処理に関する処理手順を説明するためのフローチャートである。 システム電圧の設定処理に関する他の処理手順を説明するためのフローチャートである。 実施の形態2におけるハイブリッド車両のパワートレーン構成を示すブロック図である。 実施の形態2におけるシステム電圧の設定処理に関する処理手順を説明するためのフローチャートである。
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。
 [実施の形態1]
 図1は、実施の形態1による電動車両の一例として示されるハイブリッド車両の全体構成を示すブロック図である。図1を参照して、ハイブリッド車両100は、蓄電装置10と、ECU(Electronic Control Unit)15と、PCU(Power Control Unit)20と、動力出力装置30と、伝達ギヤ40と、前輪50L,50Rと、後輪60L,60Rとを備える。
 蓄電装置10は、再充電可能な直流電源であり、たとえば、ニッケル水素やリチウムイオン等の二次電池によって構成される。蓄電装置10は、たとえばリアシート80の後方部に配置され、PCU20と電気的に接続されてPCU20へ直流電圧を供給する。また、蓄電装置10は、動力出力装置30によって発電された電力をPCU20から受けて充電される。
 PCU20は、ハイブリッド車両100内で必要となる電力変換器を統括的に示したものである。PCU20は、蓄電装置10から供給される電圧を昇圧するコンバータや、動力出力装置30に含まれるモータジェネレータを駆動するインバータ等を含む。
 ECU15は、運転状況・車両状況を示す各種センサ(図示せず)からの信号を受ける。各種センサからの信号には、シフトレバーの位置を示すシフト位置信号SPや、アクセルペダルの踏込み量に応じたアクセル開度信号、車両速度を示す車速信号等が含まれる。そして、ECU15は、各種センサからの信号に基づいて、ハイブリッド車両100に関する種々の制御を実行する。
 動力出力装置30は、車輪の駆動力源として設けられ、モータジェネレータMG1,MG2およびエンジンを含む。これらは、動力分割装置(図示せず)を介して機械的に連結される。そして、ハイブリッド車両100の走行状況に応じて、動力分割装置を介して上記3者の間で駆動力の配分および結合が行なわれ、その結果として前輪50L,50Rが駆動される。伝達ギヤ40は、動力出力装置30から出力される動力を前輪50L,50Rへ伝達するとともに、前輪50L,50Rから受ける回転力を動力出力装置30へ伝達する。これにより、動力出力装置30は、エンジンおよびモータジェネレータによる動力を、伝達ギヤ40を介して前輪50L,50Rへ伝達して前輪50L,50Rを駆動する。また、動力出力装置30は、前輪50L,50Rによるモータジェネレータの回転力を受けて発電し、その発電した電力をPCU20へ供給する。
 そして、PCU20は、ECU15からの制御指示に従って、蓄電装置10から受ける直流電圧を昇圧するとともに、その昇圧した直流電圧を交流電圧に変換して、動力出力装置30に含まれるモータジェネレータMG1,MG2を駆動する。また、PCU20は、モータジェネレータMG1,MG2の回生動作時には、ECU15からの制御指示に従って、モータジェネレータMG1,MG2の発電した交流電圧を直流電圧に変換して蓄電装置10を充電する。
 図2は、ハイブリッド車両100のパワートレーン構成を示すブロック図である。図2を参照して、ハイブリッド車両100は、蓄電装置10と、SMR(System Main Relay)105と、PCU20と、ECU15と、モータジェネレータMG1,MG2と、エンジンENGと、動力分割装置134と、伝達ギヤ40と、前輪50R,50Lとを含む。
 動力分割装置134は、エンジンENG、モータジェネレータMG1および伝達ギヤ40に結合されてこれらの間で動力を分配する。たとえば、サンギヤ、プラネタリキャリヤおよびリングギヤの3つの回転軸を有する遊星歯車を動力分割装置134として用いることができ、この3つの回転軸がモータジェネレータMG1、エンジンENGおよび伝達ギヤ40の回転軸にそれぞれ接続される。モータジェネレータMG2の回転軸は、伝達ギヤ40の回転軸に連結される。すなわち、モータジェネレータMG2と伝達ギヤ40とは、同一の回転軸を有し、その回転軸が動力分割装置134のリングギヤに接続される。
 エンジンENGが発生する運動エネルギーは、動力分割装置134によってモータジェネレータMG1と伝達ギヤ40とに分配される。そして、エンジンENGは、車両を前進駆動するとともにモータジェネレータMG1を駆動する動力源として動作する。モータジェネレータMG1,MG2は、発電機としても電動機としても機能し得るが、モータジェネレータMG1が、主として発電機として動作し、モータジェネレータMG2が、主として電動機として動作する。詳細には、モータジェネレータMG1は、動力分割装置134によって分配されるエンジンENGの出力の一部を受けて発電する。また、モータジェネレータMG1は、蓄電装置10から電力の供給を受けて電動機として動作し、エンジンENGをクランキングして始動する。
 モータジェネレータMG2は、蓄電装置10に蓄えられた電力およびモータジェネレータMG1の発電した電力の少なくとも一方によって駆動される。そして、モータジェネレータMG2の駆動力は、伝達ギヤ40を介して前輪50R,50Lの駆動軸へ伝達される。また、車両の制動時には、モータジェネレータMG2は、前輪50R,50Lにより駆動されて発電機として動作する。このとき、モータジェネレータMG2により発電された電力は、PCU20を介して蓄電装置10に充電される。
 SMR105は、蓄電装置10とPCU20との間に設けられ、車両の走行時等にECU15からの指令に応じてオンされる。
 PCU20は、コンバータ110と、コンデンサ120と、モータ駆動制御器131,132と、コンバータ/インバータ制御部140とを含む。この実施の形態1では、モータジェネレータMG1,MG2は交流モータであり、モータ駆動制御器131,132はインバータによって構成される。以下では、モータ駆動制御器131(132)を「インバータ131(132)」とも称する。
 コンバータ110は、コンバータ/インバータ制御部140からの制御信号Scnvに基づいて、正極線103および負極線102間の電圧VH(システム電圧)を蓄電装置10の電圧Vb以上に昇圧する。コンバータ110は、たとえば、電流可逆型の昇圧チョッパ回路によって構成される。
 インバータ131,132は、それぞれモータジェネレータMG1,MG2に対応して設けられる。インバータ131,132は、互いに並列してコンバータ110に接続され、コンバータ/インバータ制御部140からの制御信号Spwm1,Spwm2に基づいてモータジェネレータMG1,MG2をそれぞれ駆動する。
 コンバータ/インバータ制御部140は、ECU15から受ける制御指令(システム電圧VHの設定やモータジェネレータMG1,MG2のトルク目標等)に基づいて、コンバータ110およびモータジェネレータMG1,MG2をそれぞれ駆動するための制御信号Scnv,Spwm1,Spwm2を生成する。そして、コンバータ/インバータ制御部140は、その生成された制御信号Scnv,Spwm1,Spwm2をそれぞれコンバータ110およびインバータ131,132へ出力する。
 ECU15は、電子制御ユニットにより構成され、予め記憶されたプログラムをCPU(Central Processing Unit)で実行することによるソフトウェア処理および/または専用の電子回路によるハードウェア処理により、車両の走行制御や、蓄電装置10の充放電制御、システム電圧VHの設定等の各種制御を行なう。そして、ECU15は、PCU20を駆動するための制御指令を生成し、その生成した制御指令をPCU20のコンバータ/インバータ制御部140へ出力する。
 図3は、システム電圧VHの設定に関するECU15の機能ブロック図である。図3を参照して、ECU15は、シフトレンジ判定部150と、システム電圧制御部152とを含む。
 シフトレンジ判定部150は、シフトレバーの位置を示すシフト位置信号SPに基づいてシフトレンジを判定する。なお、シフトレンジには、たとえば、前進走行時に選択されるDレンジ、前進走行時に選択されるRレンジ、非走行時に選択されるNレンジ等が存在する。
 システム電圧制御部152は、車両の要求駆動力に基づいてシステム電圧VHを設定する。なお、要求駆動力は、アクセル開度や車両速度等に基づいて算出される。ここで、システム電圧制御部152は、シフトレンジ判定部150によりシフトレンジがRレンジであると判定されているときは、Rレンジ以外のシフトレンジ時(Dレンジ等)に対してシステム電圧VHの設定を変更する。以下、具体的に説明する。
 システム電圧VHを最大値よりも低い電圧以下に制限する(以下「昇圧制限」とも称する。)ことにより、コンバータ110およびインバータ131,132(図2)における電力損失を抑えることができる。その結果として、燃費向上を図ることができる。そこで、この実施の形態1では、燃費向上を図るために、アクセルペダルが所定量以上踏込まれない限り昇圧制限が実施される。しかしながら、運転状況に拘わらず一律に昇圧制限を実施すると、後進で車庫入れを行なう場合に段差を乗り越えるときなど慎重なアクセル操作が要求される後進走行時に、運転者が望む車両駆動力を得られない可能性がある。そこで、この実施の形態1では、シフトレンジがRレンジである場合は、Rレンジ以外のシフトレンジが選択されているとき(Dレンジ等)に対してシステム電圧VHの設定を変更する。そして、後進走行時は、車両に対する加速要求(アクセル開度や要求駆動力、要求出力など)の大きさが同じ場合の前進走行時よりもシステム電圧VHが高くなるようにシステム電圧VHを設定することとしたものである。
 そして、システム電圧制御部152は、システム電圧VHの設定をPCU20のコンバータ/インバータ制御部140(図2)へ出力する。
 図4は、システム電圧VHの設定例を示した図である。図4を参照して、横軸は車両の要求駆動力を示し、縦軸はシステム電圧VHの設定値を示す。曲線k1は、Rレンジ以外のシフトレンジ時に選択される前進走行用のシステム電圧VHの設定を示し、曲線k2は、Rレンジ時に選択される後進走行用のシステム電圧VHの設定を示す。
 要求駆動力が小さいときは、システム電圧VHは、下限値V1に設定される。要求駆動力が所定値を超えると、要求駆動力が増加するに従ってシステム電圧VHの設定も高くなる。前進走行時(曲線k1)は、システム電圧VHの上限が制限値V2に設定され、システム電圧VHは制限値V2以下に制限される。一方、後進走行時(曲線k2)は、システム電圧VHの上限が上限値V3に設定され、前進走行時における昇圧制限が解除される。
 なお、図4では、システム電圧VHの上限設定をRレンジ時とそれ以外のシフトレンジ(Dレンジ等)とで変更するものとしたが、システム電圧VH自体をRレンジ時とそれ以外のシフトレンジ(Dレンジ等)とで変更してもよい。
 図5は、システム電圧VHの他の設定例を示した図である。図5を参照して、曲線k3は、Rレンジ以外のシフトレンジ時に選択される前進走行用のシステム電圧VHの設定を示し、曲線k4は、Rレンジ時に選択される後進走行用のシステム電圧VHの設定を示す。
 要求駆動力が所定値を超えると要求駆動力の増加に従ってシステム電圧VHの設定も高くなるところ、図に示すように、前進走行時(曲線k3)のシステム電圧VHは、昇圧制限を実施しない後進走行時(曲線k4)のシステム電圧VHよりも低い値に設定される。言い換えると、前進走行時は、昇圧制限を実施するようにシステム電圧VHが設定され、昇圧制限を実施しない後進走行時は、昇圧制限が実施される前進走行時よりも高い値にシステム電圧VHが設定される。
 図6は、システム電圧VHの設定処理に関する処理手順を説明するためのフローチャートである。なお、このフローチャートの処理は、一定時間毎または所定の条件が成立する毎にメインルーチンから呼び出されて実行される。
 図6を参照して、ECU15は、シフトレンジがRレンジであるか否かを判定する(ステップS10)。なお、シフトレンジは、シフトレバーの位置を示すシフト位置信号SPに基づいて判定される。
 シフトレンジがRレンジ以外であると判定されると(ステップS10においてNO)、ECU15は、前進走行用のシステム電圧VHを設定する(ステップS20)。たとえば、図4の曲線k1や図5の曲線k3に従って、車両の走行駆動力に基づいてシステム電圧VHが設定される。
 一方、ステップS10においてシフトレンジがRレンジであると判定されると(ステップS10においてYES)、ECU15は、後進走行用のシステム電圧VHを設定する(ステップS30)。たとえば、図4の曲線k2や図5の曲線k4に従って、車両の走行駆動力に基づいてシステム電圧VHが設定される。
 なお、上記においては、車両の走行駆動力に基づいてシステム電圧VHが設定されるものとしたが、アクセル開度や車両の要求パワー等その他車両に対する加速要求に関連するパラメータに基づいてシステム電圧VHを設定するようにしてもよい。
 以上のように、この実施の形態1によれば、後進走行時は、車両に対する加速要求の大きさが同じ場合の前進走行時よりもシステム電圧VHが高くなるようにシステム電圧VHが設定されるので、前進走行/後進走行毎に燃費やドライバビリティを考慮した適切なシステム電圧VHが設定される。したがって、この実施の形態1によれば、燃費向上を図りつつ後進走行時のドライバビリティを向上することができる。
 [変形例]
 図7は、システム電圧VHの設定処理に関する他の処理手順を説明するためのフローチャートである。なお、このフローチャートの処理も、一定時間毎または所定の条件が成立する毎にメインルーチンから呼び出されて実行される。
 図7を参照して、ステップS110において昇圧制限を実施可能であると判定されると(ステップS110においてYES)、ECU15は、シフトレンジがRレンジであるか否かを判定する(ステップS120)。
 シフトレンジがRレンジ以外であると判定されると(ステップS120においてNO)、ECU15は、昇圧制限を実施する(ステップS130)。なお、昇圧制限については、図4に示したように、システム電圧VHの上限設定を下げることによって実現してもよいし、図5に示したように、システム電圧VH自体の設定を下げることによって実現してもよい。
 一方、ステップS120においてシフトレンジがRレンジであると判定されると(ステップS120においてYES)、ECU15は、昇圧制限が実施されている場合には昇圧制限を解除する(ステップS140)。すなわち、図4の曲線k2や図5の曲線k4に従って、車両の走行駆動力に基づいてシステム電圧VHが設定される。
 以上のように、この変形例によっても、実施の形態1と同様の作用効果を得ることができる。
 [実施の形態2]
 図8は、実施の形態2におけるハイブリッド車両のパワートレーン構成を示すブロック図である。図8を参照して、このハイブリッド車両は、図2に示したハイブリッド車両100の構成において、エコモードスイッチ145をさらに含み、ECU15に代えてECU15Aを含む。
 エコモードスイッチ145は、通常モードおよび節約モードのいずれかを運転者が選択するためのスイッチである。エコモードスイッチ145がオンされると、節約モードが選択される。そして、エコモードスイッチ145がオンされた場合、ECU15Aは、前進走行時は、通常モード時に対してシステム電圧VHを制限するようにシステム電圧VHの上限を設定する。一方、後進走行時は、前進走行時における上記昇圧制限を緩和するように前進走行時に対してシステム電圧VHの上限設定を変更する。すなわち、後進走行時は、前進走行時に実施される昇圧制限が解除される。
 なお、ECU15Aのその他の機能は、実施の形態1におけるECU15と同じである。また、ハイブリッド車両のその他の構成も、図2に示したハイブリッド車両100と同じである。
 図9は、実施の形態2におけるシステム電圧VHの設定処理に関する処理手順を説明するためのフローチャートである。なお、このフローチャートの処理も、一定時間毎または所定の条件が成立する毎にメインルーチンから呼び出されて実行される。
 図9を参照して、このフローチャートは、図7に示したフローチャートにおいて、ステップS110に代えてステップS115を含む。すなわち、ECU15Aは、エコモードスイッチ145がオンされているか否かを判定する(ステップS115)。
 そして、エコモードスイッチ145がオンされていると判定されると(ステップS115においてYES)、ECU15Aは、ステップS120へ処理を移行し、シフトレンジがRレンジであるか否かが判定される。一方、ステップS115においてエコモードスイッチ145はオフされていると判定されると(ステップS115においてNO)、ECU15Aは、ステップS150へ処理を移行する。
 以上のように、この実施の形態2においては、低燃費走行を利用者が選択するためのエコモードスイッチ145が設けられる。そして、エコモードスイッチ145が運転者によりオンされると昇圧制限が実施されるところ、後進走行時は、昇圧制限を緩和するように前進走行時に対してシステム電圧VHの設定が変更される。これにより、エコモードスイッチ145が運転者によりオンされた場合に、低燃費走行と後進走行時のドライバビリティとを考慮した適切なシステム電圧VHを設定可能である。したがって、この実施の形態2によっても、燃費向上を図りつつ後進走行時のドライバビリティを向上することができる。
 なお、上記の各実施の形態においては、電動車両として、エンジンENGの動力を駆動軸およびモータジェネレータMG1の少なくとも一方へ出力するシリーズ/パラレル型のハイブリッド車両について説明したが、この発明は、その他の形式のハイブリッド車両にも適用可能である。たとえば、モータジェネレータMG1を駆動するためにのみエンジンENGを用い、モータジェネレータMG2でのみ車両の駆動力を発生する、いわゆるシリーズ型のハイブリッド車両にもこの発明は適用可能である。
 また、この発明は、エンジンENGを備えずに電力のみで走行する電気自動車や、直流電源として蓄電装置10に加えて燃料電池をさらに備える燃料電池車等にも適用可能である。
 なお、上記において、モータジェネレータMG2は、この発明における「電動機」の一実施例に対応し、インバータ132は、この発明における「駆動装置」の一実施例に対応する。また、コンバータ110は、この発明における「電圧変換装置」の一実施例に対応し、ECU15,15Aは、この発明における「制御装置」の一実施例に対応する。さらに、エコモードスイッチ145は、この発明における「入力装置」の一実施例に対応し、エンジンENGは、この発明における「内燃機関」の一実施例に対応する。
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 10 蓄電装置、15,15A ECU、20 PCU、30 動力出力装置、40 伝達ギヤ、50L,50R 前輪、60L,60R 後輪、100 電動車両、105 SMR、110 コンバータ、120 コンデンサ、131,132 インバータ、134 動力分割装置、140 コンバータ/インバータ制御部、145 エコモードスイッチ、150 シフトレンジ判定部、152 システム電圧制御部、MG1,MG2 モータジェネレータ、ENG エンジン。

Claims (11)

  1.  車両駆動力を発生する電動機(MG2)と、
     蓄電装置(10)と、
     前記電動機を駆動する駆動装置(132)と、
     前記駆動装置と前記蓄電装置との間に設けられ、前記駆動装置の入力電圧を前記蓄電装置の電圧よりも高い電圧に昇圧するように構成された電圧変換装置(110)と、
     前記電圧変換装置を制御する制御装置(15)とを備え、
     前記制御装置は、後進走行時は、車両に対する加速要求の大きさが同じ場合の前進走行時よりも前記入力電圧が高くなるように前記入力電圧を設定する、電動車両。
  2.  前記制御装置は、前進走行時は、前記入力電圧を制限するように前記入力電圧の上限を設定し、後進走行時は、前進走行時における前記入力電圧の制限を緩和するように前進走行時に対して前記入力電圧の上限設定を変更する、請求項1に記載の電動車両。
  3.  前記制御装置は、後進走行時は、前進走行時よりも前記入力電圧の上限を高く設定する、請求項1に記載の電動車両。
  4.  前記制御装置は、後進走行時は、運転者の加速要求に従って設定される前記入力電圧を前進走行時よりも高く設定する、請求項1に記載の電動車両。
  5.  通常モードおよび節約モードのいずれかを運転者が選択するための入力装置(145)をさらに備え、
     前記入力装置によって前記節約モードが選択された場合、前記制御装置は、前進走行時は、前記通常モード時に対して前記入力電圧を制限するように前記入力電圧の上限を設定し、後進走行時は、前進走行時における前記入力電圧の制限を緩和するように前進走行時に対して前記入力電圧の上限設定を変更する、請求項1に記載の電動車両。
  6.  前進駆動力を発生する内燃機関(ENG)をさらに備える、請求項1から請求項5のいずれか1項に記載の電動車両。
  7.  電動車両の制御方法であって、
     前記電動車両(100)は、
     車両駆動力を発生する電動機(MG2)と、
     蓄電装置(10)と、
     前記電動機を駆動する駆動装置(132)と、
     前記駆動装置と前記蓄電装置との間に設けられ、前記駆動装置の入力電圧を前記蓄電装置の電圧よりも高い電圧に昇圧するように構成された電圧変換装置(110)とを備え、
     前記制御方法は、
     前進走行用の前記入力電圧を設定する第1のステップと、
     後進走行用の前記入力電圧を設定する第2のステップとを含む、電動車両の制御方法。
  8.  前記第1のステップは、前進走行用の前記入力電圧の上限を設定するステップを含み、
     前記第2のステップは、後進走行用の前記入力電圧の上限を設定するステップを含む、請求項7に記載の電動車両の制御方法。
  9.  前記第1のステップは、前記入力電圧を制限するように前進走行用の前記入力電圧の上限を設定するステップを含み、
     前記第2のステップは、前進走行時における前記入力電圧の制限を緩和するように後進走行用の前記入力電圧の上限を設定するステップを含む、請求項7に記載の電動車両の制御方法。
  10.  前記電動車両は、通常モードおよび節約モードのいずれかを運転者が選択するための入力装置(145)をさらに備え、
     前記第1のステップは、前記入力装置によって前記節約モードが選択された場合に、前記通常モード時に対して前記入力電圧を制限するように前進走行用の前記入力電圧の上限を設定するステップを含み、
     前記第2のステップは、前記入力装置によって前記節約モードが選択された場合に、前進走行時における前記入力電圧の制限を緩和するように後進走行用の前記入力電圧の上限を設定するステップを含む、請求項7に記載の電動車両の制御方法。
  11.  前記電動車両は、前進駆動力を発生する内燃機関(ENG)をさらに備える、請求項7から請求項10のいずれか1項に記載の電動車両の制御方法。
PCT/JP2011/052245 2011-02-03 2011-02-03 電動車両およびその制御方法 WO2012105022A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP11857620.6A EP2623365B1 (en) 2011-02-03 2011-02-03 Electric vehicle and control method thereof
PCT/JP2011/052245 WO2012105022A1 (ja) 2011-02-03 2011-02-03 電動車両およびその制御方法
JP2012555646A JP5304957B2 (ja) 2011-02-03 2011-02-03 電動車両およびその制御方法
US13/879,969 US8725337B2 (en) 2011-02-03 2011-02-03 Electric powered vehicle and control method thereof
CN201180051579.9A CN103338971B (zh) 2011-02-03 2011-02-03 电动车辆及其控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/052245 WO2012105022A1 (ja) 2011-02-03 2011-02-03 電動車両およびその制御方法

Publications (1)

Publication Number Publication Date
WO2012105022A1 true WO2012105022A1 (ja) 2012-08-09

Family

ID=46602263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/052245 WO2012105022A1 (ja) 2011-02-03 2011-02-03 電動車両およびその制御方法

Country Status (5)

Country Link
US (1) US8725337B2 (ja)
EP (1) EP2623365B1 (ja)
JP (1) JP5304957B2 (ja)
CN (1) CN103338971B (ja)
WO (1) WO2012105022A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015171827A (ja) * 2014-03-11 2015-10-01 トヨタ自動車株式会社 ハイブリッド自動車
JP2017177861A (ja) * 2016-03-28 2017-10-05 株式会社Subaru 車両用制御装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6437937B2 (ja) 2016-02-17 2018-12-12 日立建機株式会社 作業機械

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61147710A (ja) * 1984-12-19 1986-07-05 Yamaha Motor Co Ltd 電気自動車の後進制御装置
JPH0595109U (ja) * 1992-05-29 1993-12-24 三菱自動車工業株式会社 電気自動車用電動機の後退時制御
JPH06276603A (ja) * 1993-03-22 1994-09-30 Toyota Motor Corp 電気自動車の駆動力制御装置
JPH07222310A (ja) * 1994-01-31 1995-08-18 Suzuki Motor Corp 電動車両のモータ駆動制御装置
JP2008295224A (ja) * 2007-05-25 2008-12-04 Mitsuba Corp 電気自動車
JP2009131079A (ja) 2007-11-26 2009-06-11 Toyota Motor Corp 車両用制御装置
JP2009225614A (ja) 2008-03-18 2009-10-01 Toyota Motor Corp 車両の制御装置および制御方法
JP2010098876A (ja) 2008-10-17 2010-04-30 Toyota Motor Corp 車両制御システム
JP2010119158A (ja) 2008-11-11 2010-05-27 Toyota Motor Corp 電動車両、電動車両の制御装置、および電動車両の制御プログラム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0595109A (ja) 1991-10-02 1993-04-16 Hitachi Ltd 可逆的論理回路および演算装置
EP1967406B1 (en) * 2005-12-26 2019-01-09 Toyota Jidosha Kabushiki Kaisha Vehicle controller, vehicle and vehicle control method
JP2010137807A (ja) * 2008-12-15 2010-06-24 Toyota Motor Corp 車両の制御装置および制御方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61147710A (ja) * 1984-12-19 1986-07-05 Yamaha Motor Co Ltd 電気自動車の後進制御装置
JPH0595109U (ja) * 1992-05-29 1993-12-24 三菱自動車工業株式会社 電気自動車用電動機の後退時制御
JPH06276603A (ja) * 1993-03-22 1994-09-30 Toyota Motor Corp 電気自動車の駆動力制御装置
JPH07222310A (ja) * 1994-01-31 1995-08-18 Suzuki Motor Corp 電動車両のモータ駆動制御装置
JP2008295224A (ja) * 2007-05-25 2008-12-04 Mitsuba Corp 電気自動車
JP2009131079A (ja) 2007-11-26 2009-06-11 Toyota Motor Corp 車両用制御装置
JP2009225614A (ja) 2008-03-18 2009-10-01 Toyota Motor Corp 車両の制御装置および制御方法
JP2010098876A (ja) 2008-10-17 2010-04-30 Toyota Motor Corp 車両制御システム
JP2010119158A (ja) 2008-11-11 2010-05-27 Toyota Motor Corp 電動車両、電動車両の制御装置、および電動車両の制御プログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2623365A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015171827A (ja) * 2014-03-11 2015-10-01 トヨタ自動車株式会社 ハイブリッド自動車
JP2017177861A (ja) * 2016-03-28 2017-10-05 株式会社Subaru 車両用制御装置

Also Published As

Publication number Publication date
US20130218390A1 (en) 2013-08-22
EP2623365B1 (en) 2016-06-22
JPWO2012105022A1 (ja) 2014-07-03
EP2623365A1 (en) 2013-08-07
CN103338971B (zh) 2015-02-11
CN103338971A (zh) 2013-10-02
EP2623365A4 (en) 2015-01-14
JP5304957B2 (ja) 2013-10-02
US8725337B2 (en) 2014-05-13

Similar Documents

Publication Publication Date Title
JP4529097B2 (ja) ハイブリッド駆動装置
CN107458370B (zh) 混合动力汽车及用于混合动力汽车的控制方法
JP5943011B2 (ja) ハイブリッド車両
JP5648984B2 (ja) ハイブリッド車両
WO2012098658A1 (ja) ハイブリッド車両およびその制御方法
JP6156303B2 (ja) ハイブリッド車両
JP5729475B2 (ja) 車両および車両の制御方法
JP6213497B2 (ja) ハイブリッド車両
JP5598555B2 (ja) 車両および車両用制御方法
JP2010058579A (ja) ハイブリッド車両
JP5598556B2 (ja) ハイブリッド車両およびその制御方法
JP4466635B2 (ja) 動力出力装置およびその制御方法並びに車両
JP5644868B2 (ja) 車両および車両の制御方法
WO2013035179A1 (ja) 車両および車両の制御方法
JP5895353B2 (ja) ハイブリッド車
JP5304957B2 (ja) 電動車両およびその制御方法
US20140200758A1 (en) Hybrid vehicle
JP2012051515A (ja) ハイブリッド自動車
JP2009126449A (ja) 車両、内燃機関の始動制御装置及び内燃機関の始動方法
JP4345765B2 (ja) 車両およびその制御方法
JP2012224304A (ja) 車両の制振制御装置
JP2012180066A (ja) 電動車両
JP2012162097A (ja) 車両
JP2009292259A (ja) ハイブリッド自動車およびその制御方法
WO2012105019A1 (ja) 車両および車両の制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11857620

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012555646

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13879969

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011857620

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE