WO2009113226A1 - 無線受信装置 - Google Patents

無線受信装置 Download PDF

Info

Publication number
WO2009113226A1
WO2009113226A1 PCT/JP2009/000180 JP2009000180W WO2009113226A1 WO 2009113226 A1 WO2009113226 A1 WO 2009113226A1 JP 2009000180 W JP2009000180 W JP 2009000180W WO 2009113226 A1 WO2009113226 A1 WO 2009113226A1
Authority
WO
WIPO (PCT)
Prior art keywords
level
multipath
reception
amplitude
determination unit
Prior art date
Application number
PCT/JP2009/000180
Other languages
English (en)
French (fr)
Inventor
田浦賢一
松田有史
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2010502700A priority Critical patent/JP4812898B2/ja
Priority to CN2009801086242A priority patent/CN101960724B/zh
Priority to DE112009000388T priority patent/DE112009000388B4/de
Priority to US12/811,657 priority patent/US8126490B2/en
Publication of WO2009113226A1 publication Critical patent/WO2009113226A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/1027Means associated with receiver for limiting or suppressing noise or interference assessing signal quality or detecting noise/interference for the received signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/1081Reduction of multipath noise
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/10Frequency-modulated carrier systems, i.e. using frequency-shift keying
    • H04L27/14Demodulator circuits; Receiver circuits

Definitions

  • the present invention relates to a radio receiving apparatus suitable for use in, for example, an in-vehicle FM radio receiver, which receives, for example, an FM (Frequency Modulation) modulated carrier wave and demodulates it using digital signal processing.
  • an FM (Frequency Modulation) modulated carrier wave and demodulates it using digital signal processing.
  • radio waves transmitted from broadcast stations or base stations are reflected and diffracted by obstacles such as buildings and terrain, and receive the same radio waves (delayed waves) from multiple paths.
  • Deterioration of reception quality due to multipath noise is a problem.
  • an in-vehicle FM radio receiver is mounted on a vehicle and involves movement, the reception status accompanying the occurrence of multipath changes from moment to moment. For this reason, appropriate control is performed according to the reception status, and multipath noise Suppressing is an important design matter.
  • FIG. 13 shows an example of the internal configuration of a conventional typical FM radio receiver.
  • an FM wave received by an antenna 1 is amplified by a high frequency amplifier 2 (RF), and then frequency-converted by a frequency converter 3 (MIX), and an adjacent channel wave or the like by an intermediate frequency filter 5 (BPF).
  • BPF intermediate frequency filter 5
  • Unnecessary components are removed.
  • the FM wave that has passed through the intermediate frequency filter 5 is limited in amplitude by the limiter intermediate frequency amplifier 6 (IF-AGC), and then the high frequency component of the intermediate frequency is removed by the pre-filter 7 (LPF), and the analog / digital conversion is performed. It is converted into a digital signal by the device 8 (A / D).
  • the FM wave converted to the digital signal is demodulated by the FM demodulator 9, converted to an analog audio signal by the digital / analog converter 10 (D / A), and output to the speaker 12 via the audio amplifier 11. Is done.
  • the high frequency component on the audio signal increases and becomes annoying noise sound (distortion).
  • the high frequency component is detected by the frequency characteristic setting unit 23 (HCC) against the noise of the high frequency component. Is attenuated.
  • the stereo pilot signal is affected by distortion, which causes a problem called stereo distortion in which stereo separation is not performed correctly. This stereo distortion is converted into a monaural signal by the separation setting unit 22 (SRC). Therefore, appropriate control is performed according to the reception status to suppress multipath noise.
  • the separation setting unit 22 and the frequency characteristic setting unit 23 are controlled according to the noise generation state. Further, in order to suppress the occurrence of multipath noise itself, an operation restriction is provided for amplitude correction in the FM demodulator 9.
  • a reception condition based on the reception electric field level and the modulation signal level is used as a control parameter for limiting the amplitude correction operation, and the reception condition is determined by the reception condition determination unit 20 from the outputs of the reception electric field level detection unit 18 and the modulation signal level detection unit 19. The above-described operation restriction level is controlled according to the reception status.
  • the multipath noise is suppressed by providing an operation restriction on the amplitude correction in the FM demodulator, and as a control parameter for the amplitude correction operation restriction.
  • the reception situation based on at least one or both of the reception electric field level and the modulation signal level is used.
  • the above-described control parameter does not take into account the occurrence of multipath, and therefore, for example, in a strong multipath occurrence, the amplitude correction operation restriction level is insufficient and multipath distortion occurs. In a weak multipath occurrence situation, the amplitude correction operation restriction level becomes excessive, and there is a problem that audio distortion occurs.
  • the present invention has been made to solve the above-described problems, and further improves the reception quality by performing appropriate control according to the reception status in consideration of the occurrence status of multipath and suppressing multipath noise.
  • An object of the present invention is to provide a radio receiving apparatus that improves the above.
  • a wireless receiver includes an amplitude detector that detects an amplitude level of a received radio wave, and monitors an amplitude level output from the amplitude detector to A multipath occurrence status detection unit that detects the degree, a multipath occurrence status determination unit that determines the operation restriction level of the amplitude correction based on the degree of the multipath occurrence status detected by the multipath occurrence status detection unit, The reception status determination unit that determines the reception status of the radio wave based on one or both of the reception electric field level and the modulation signal level, and the multipath occurrence status determination unit based on the reception status determination result output from the reception status determination unit And a limit level determination unit that adjusts the output amplitude correction operation limit level. And it performs suppression of Sunoizu.
  • the reception quality can be further improved by performing appropriate control according to the reception status in consideration of the occurrence status of the multipath and suppressing the multipath noise.
  • FIG. 1 is a block diagram showing an internal configuration of a radio reception apparatus according to Embodiment 1 of the present invention.
  • an FM radio receiver is illustrated as the wireless receiver.
  • the FM radio receiver includes an antenna 1, a high frequency amplifier 2 (RF), a frequency converter 3 (MIX), a local oscillator 4 (LO), and an intermediate frequency filter 5 (BPF). ), Limiter intermediate frequency amplifier 6 (IF-AGC), prefilter 7 (LPF), analog-to-digital converter 8 (A / D), FM demodulator 9, and digital-to-analog converter 10 ( D / A), audio amplifier 11, speaker 12, amplitude detection unit 13, multipath generation status detection unit 14, multipath generation status determination unit 15, bandpass filter 16 (BPF), multipath Reduction unit 17, received electric field level detection unit 18, modulation signal level detection unit 19, reception status determination unit 20, limit level determination unit 21, separation setting unit 22 (SRC), frequency characteristic setting Part 23 (HCC), the constructed.
  • RF high frequency amplifier 2
  • MIX frequency converter 3
  • LO local oscillator 4
  • BPF intermediate frequency filter 5
  • IF-AGC Limiter intermediate frequency amplifier 6
  • LPF prefilter 7
  • a / D analog-to-digital converter 8
  • the FM radio receiver that is the radio receiving apparatus according to the first embodiment of the present invention has a multipath occurrence state in the configuration of the conventional FM radio receiver.
  • a detection unit 14, a multipath occurrence status determination unit 15, and a restriction level determination unit 21 are added. That is, the multipath occurrence status detection unit 14 monitors the amplitude level output from the amplitude detection unit 13 to detect the degree of multipath occurrence status and outputs the detected level to the multipath occurrence status determination unit 15.
  • the situation determination unit 15 determines the amplitude correction operation restriction level based on the degree of the multipath occurrence situation detected by the multipath occurrence situation detection unit 14 and outputs the result to the restriction level determination unit 21.
  • the reception status of the radio wave is input to the restriction level determination unit 21 from the reception status determination unit 20 according to one or both of the reception electric field level and the modulation signal level.
  • the restriction level determination unit 21 adjusts the amplitude correction operation restriction level output by the multipath generation state determination unit 15 based on the reception state determination result output from the reception state determination unit 20 and supplies the result to the FM demodulator 9.
  • an operation restriction is provided for amplitude correction of the FM demodulator 9 to suppress multipath noise.
  • the multipath occurrence status detection unit 14, the multipath occurrence status determination unit 15, and the restriction level determination unit 21 described above are specifically a separation setting unit 22 (SRC), a frequency characteristic setting unit 23 (HCC). ), And a DSP (Digital Signal Processor), an MPU (Micro Processor Unit), or a combination thereof. That is, based on a program built in the DSP or MPU or recorded in an external memory, the multipath generation status detection unit 14 operates in cooperation with a peripheral LSI (FM demodulator 9 or the like).
  • LSI FM demodulator 9 or the like
  • FIG. 2 is a diagram illustrating an example of an internal configuration of the multipath occurrence state detection unit 14 illustrated in FIG.
  • the multipath occurrence state detection unit 14 includes smoothing processing units 141 and 142, an inverse number calculation unit 143, and a multiplication unit 144.
  • the amplitude level detected by the amplitude detection unit 13 shown in FIG. 1 is input to the smoothing processing units 141 and 142.
  • the smoothing processing unit 141 a slow time constant is set in the direction in which the amplitude level decreases, and conversely, an early time constant is set in the direction in which the amplitude level increases.
  • the smoothing processing unit 141 can detect the high level of the amplitude without following the instantaneous drop.
  • a fast time constant is set for the direction in which the amplitude level decreases, and conversely, a slow time constant is set for the direction in which the amplitude level increases.
  • the reciprocal calculation unit 143 and the multiplication unit 144 multiply the reciprocal of the output of the smoothing processing unit 141 by the output of the smoothing processing unit 142. This normalizes the drop in amplitude.
  • the multiplication output by the multiplication unit 144 becomes small when the amplitude drop is large, and conversely becomes large when the amplitude drop is small. Therefore, it can be seen that a strong multipath occurrence situation is obtained in the direction in which the multiplication output is reduced, and a weak multipath occurrence situation is provided in the direction in which the multiplication output is increased.
  • the detection of the multipath occurrence state is performed by detecting and normalizing an instantaneous drop in the carrier wave amplitude level. As a result, it is possible to determine strong multipath when the detection value is large and weak multipath when the detection value is small.
  • FIG. 3 is a diagram illustrating an example of an internal configuration of the multipath occurrence state determination unit 15 illustrated in FIG. As shown in FIG. 3, the multipath occurrence status determination unit 15 includes an addition unit 151 and a multiplication unit 152.
  • the multipath occurrence status detected by the multipath occurrence status detection unit 14 shown in FIGS. 1 and 2 is offset by the addition unit 151 and multiplied by the slope by the multiplication unit 152, as shown in FIG.
  • the limit level determination unit 21 outputs the amplitude correction operation limit level.
  • FIG. 4 shows an example of the operation of the multipath occurrence status determination unit 15 described above.
  • FIG. 4 is a graph in which the output of the multipath occurrence status detection unit 14 is plotted on the horizontal axis and the output of the multipath occurrence status determination unit 15 is plotted on the vertical axis, and the multipath occurrence status determination unit 15 is plotted on the graph.
  • the operation of is schematically shown.
  • the multipath occurrence situation is small, that is, when the degree of multipath occurrence is strong, the multipath occurrence situation judgment unit 15 is operated so that the multipath occurrence situation judgment output becomes large.
  • the multipath occurrence status determination unit 15 is operated so that the multipath occurrence status determination output becomes small.
  • a large multipath occurrence status determination output indicates a high multipath suppression effect
  • a small multipath generation status determination output indicates a low multipath suppression effect.
  • FIG. 5 is a diagram illustrating an example of an internal configuration of the reception status determination unit 20 illustrated in FIG. As shown in FIG. 5, the reception situation determination unit 20 includes reception electric field comparison units 201 and 203, modulation signal comparison units 202 and 204, and determination units 205 and 206.
  • the received electric field comparison unit 201 compares at least one preset threshold value with an input received electric field level, and the received electric field level at that time has any relationship with the threshold value. Is output to the determination unit 205.
  • the modulation signal comparison unit 202 compares at least one preset threshold value and the input modulation signal level, and what relationship the modulation signal level at that time has to the threshold value? Is output to the determination unit 205.
  • the received electric field comparison unit 203 compares at least one preset threshold value with the input received electric field level, and determines whether the received electric field level at that time is related to the threshold value. This is output to the unit 206.
  • the modulation signal comparison unit 204 compares at least one preset threshold value with the input modulation signal level, and what relationship the modulation signal level at that time has to the threshold value? Is output to the determination unit 206.
  • FIG. 6 is a diagram schematically showing an example of operations (operation a) of the reception electric field comparison unit 201, the modulation signal comparison unit 202, and the determination unit 205 in the reception status determination unit 20 described above.
  • the modulation signal level and the reception electric field level are determined in three stages. That is, M1 and M2 thresholds are provided for the modulation signal level and divided into three from low modulation to high modulation, and S1 and S2 thresholds are provided for the reception electric field level, and three from weak electric field to strong electric field. It is divided into two.
  • the numbers 1 to 3 are the restriction levels, respectively.
  • the restriction level 1 is the lowest setting.
  • the determination unit 205 outputs restriction levels 1 to 3 determined by the received electric field level and the modulation signal level to the restriction level determination unit 21 as the reception status determination result # 1.
  • FIG. 7 is a diagram schematically illustrating an example of operations (operation b) of the reception electric field comparison unit 203, the modulation signal comparison unit 204, and the determination unit 206 in the reception status determination unit 20 described above.
  • operation b operations of the reception electric field comparison unit 203, the modulation signal comparison unit 204, and the determination unit 206 in the reception status determination unit 20 described above.
  • the modulation signal level and the reception electric field level are determined in three stages. That is, M3 and M4 thresholds are provided for the modulation signal level, and divided into three from low modulation to high modulation, and S3 and S4 thresholds are provided for the reception electric field level, and three from weak electric field to strong electric field. It is divided into.
  • alphabets A to C are coefficients input to the restriction level determination unit 21, respectively, and the coefficient A is set to the lowest.
  • the determination unit 206 outputs restriction levels A to C determined by the modulation signal level and the reception electric field level to the restriction level determination unit 21 as reception status determination result # 2.
  • FIG. 8 is a diagram illustrating an example of an internal configuration of the restriction level determination unit 21 illustrated in FIG. As illustrated in FIG. 8, the restriction level determination unit 21 includes a multiplication unit 211 and an addition unit 212.
  • the multiplication unit 211 multiplies the determination output output from the multipath occurrence status determination unit 15 illustrated in FIG. 1 by the reception status determination result # 2 output from the reception status determination unit 20 (determination unit 206). And output to the adder 212.
  • the addition unit 212 adds the reception status determination result # 1 output from the reception status determination unit 20 (determination unit 205) to the multiplication result obtained by the multiplication unit 211, and uses this addition result as the amplitude correction coefficient limit level determination result (amplitude). (Correction operation restriction level) is output to the FM demodulator 9.
  • FIG. 9 is a block diagram showing the FM demodulator 9 and its peripheral circuit configuration when the multipath generation situation is used as the amplitude correction operation restriction control parameter.
  • the operation of the radio reception apparatus (FM radio receiver) according to Embodiment 1 of the present invention will be described in detail with reference to FIG.
  • the operation principle of FM demodulation by the FM demodulator 9 will be briefly described.
  • the amplitude of the output signal changes in response to the frequency change of the input FM signal (condition # 1), and the amplitude of the output signal is the amplitude of the input FM signal.
  • the FM demodulator 9 that satisfies the two conditions of not responding to the change (condition # 2) is required. There are various other conditions required for the FM demodulator 9, but these are omitted for the sake of simplicity.
  • the FM demodulator 9 includes an FM demodulator 91, an amplitude corrector 92, a correction coefficient calculator 93, and a limit level controller 94.
  • the FM demodulator 91 demodulates the input signal (FM signal) and outputs the demodulated signal to the amplitude corrector 92. This output satisfies the above condition # 1, but does not satisfy the condition # 2. That is, the output of the FM demodulator 91 includes the amplitude change response component of the input signal.
  • the amplitude correction unit 92 removes this amplitude change response component from the output of the FM demodulation unit 91.
  • the correction coefficient calculation unit 93 detects the amplitude of the input signal, generates an amplitude correction coefficient proportional to the inverse of the amplitude, and outputs it to the amplitude correction unit 92.
  • the amplitude correcting unit 92 multiplies the output signal of the FM demodulating unit 91 by the correction coefficient that is the output of the correction coefficient calculating unit 93 to remove the amplitude change response component from the output signal, and the above condition # 1 and condition # 2 is output to the reception electric field level detection unit 18, the modulation signal level detection unit 19, the BPF 16, and the SRC 22 shown in FIG.
  • the restriction level control unit 94 includes a restriction level switching unit 941 and a restriction level switching control unit 942.
  • the limit level switching unit 941 compares the amplitude detected by the amplitude detection unit 13 with a reference value under the control of the limit level switching control unit 942, for example, when the output of the amplitude detection unit 13 is larger than the reference value. Then, the output of the amplitude detector 13 is output as it is to the correction coefficient calculator 93. Conversely, when the output is small, the determination result by the limit level determination unit 21 is output.
  • the operation of the FM demodulator 9 when the output of the amplitude detector 13 is directly input to the correction coefficient calculator 93 is the same as the conventional operation.
  • the output from the multipath occurrence situation determination unit 15 is large, and when the modulation signal level and the reception electric field level are low, the reception situation judgment results # 1 and # 2 are large.
  • the amplitude correction coefficient limit level determination result output by the limit level determination unit 21 is large, and the multipath noise suppression effect is large.
  • the multipath occurrence situation determination output is small, and when the modulation signal level and the reception electric field level are high, the reception situation judgment results # 1 and # 2 are small, respectively. Since the amplitude correction coefficient limit level determination result output by the limit level determination unit 21 is small, the multipath noise suppression effect is small.
  • the limit level control unit 94 limit level switching unit 941 of the FM demodulator 9 causes the multipath occurrence state determination unit 15 to perform the correction coefficient calculation unit 93.
  • the multipath noise is effectively reduced when the multipath occurrence is large, and the sound distortion is caused by the excessive amplitude correction operation restriction when the multipath occurrence is small. Can be prevented.
  • FIG. FIG. 10 is a block diagram showing the FM demodulator 9 and its peripheral circuit configuration when the multipath generation situation and the received electric field level are used as the amplitude correction operation restriction control parameters.
  • the operation of the radio reception apparatus (FM radio receiver) according to Embodiment 2 of the present invention will be described in detail with reference to FIG.
  • the output of the limit level determination unit 21 that determines the amplitude correction operation limit level based on this is supplied to the limit level control unit 94 (the limit level switching control unit 942) of the FM demodulator 9. That is, when the reception electric field level is low, the frequency of occurrence of multipath noise is high, and conversely, when the reception electric field is high, the frequency of occurrence of multipath noise is low.
  • the output of the limit level determination unit 21 increases the multipath generation and increases the amplitude correction operation limit in the direction in which the reception electric field level decreases, and reduces the multipath generation and the reception electric field. It is possible to operate so that the amplitude correction operation limit is weakened in the direction in which the level increases.
  • the multipath occurrence state and the received electric field level are detected as the amplitude correction operation restriction control parameters, and the multipath occurrence due to the lack of the amplitude correction operation restriction level is used. It is possible to suppress the occurrence of sound distortion due to insufficient removal of path noise and excessive amplitude correction operation restriction level. That is, when the output of the amplitude detection unit 13 is smaller than the reference value, the limit level control unit 94 (limit level switching unit 941) of the FM demodulator 9 determines the determination result by the limit level determination unit 21 for the correction coefficient calculation unit 93.
  • the amplitude correction operation limit In the direction where the multipath generation is large and the reception electric field level is low, the amplitude correction operation limit is strengthened, and the multipath generation is small and the reception electric field level is high. On the other hand, the amplitude correction operation limit can be weakened. Therefore, multipath noise is effectively reduced, and the amplitude correction operation limit is weakened in the direction in which multipath generation is small and the received electric field level is high, and sound distortion occurs due to excessive amplitude correction operation limit. Can be prevented.
  • FIG. 11 is a block diagram showing the FM demodulator 9 and its peripheral circuit configuration when the multipath generation situation and the modulation signal level are used as the amplitude correction operation restriction control parameters.
  • the operation of the radio reception apparatus (FM radio receiver) according to the third embodiment of the present invention will be described in detail with reference to FIG.
  • the output of the limit level determination unit 21 that adjusts the amplitude correction operation limit level based on this is supplied to the limit level control unit 94 (the limit level switching control unit 942) of the FM demodulator 9. That is, when the modulation signal level is low, multipath noise tends to be noticeable, and a sense of discomfort such as audio distortion due to amplitude correction operation restriction tends to be less noticeable.
  • the output of the limit level determination unit 21 increases the amplitude correction operation limit in a direction in which multipath generation is large and the modulation signal level is low, and multipath generation is small and the modulation signal level is low.
  • the amplitude correction operation limit can be weakened in the direction in which the value increases.
  • the multipath occurrence state and the modulation signal level are detected as the amplitude correction operation restriction control parameters, and these are used so that the amplitude correction operation restriction level is insufficient. It is possible to suppress the occurrence of audio distortion due to insufficient removal of multipath noise and excessive amplitude correction operation restriction levels. That is, when the output of the amplitude detection unit 13 is smaller than the reference value, the limit level control unit 94 (limit level switching unit 941) of the FM demodulator 9 determines the determination result by the limit level determination unit 21 for the correction coefficient calculation unit 93.
  • the multipath generation is large, the amplitude correction operation limit is strengthened in the direction where the modulation signal level is low, multipath noise is effectively reduced, and the multipath generation is small and modulation is performed.
  • weakening the amplitude correction operation limit in the direction in which the signal level increases it is possible to prevent the adverse effect that the audio distortion occurs due to the excessive amplitude correction operation limit.
  • FIG. 12 is a block diagram showing an FM demodulator 9 and its peripheral circuit configuration when a multipath occurrence state, a received electric field level, and a modulated signal level are used as amplitude correction operation restriction control parameters.
  • the operation of the radio receiving apparatus (FM radio receiver) according to the fourth embodiment of the present invention will be described below with reference to FIG.
  • the difference in configuration from the first embodiment shown in FIG. 9 is not only the multipath occurrence status by the multipath occurrence status determination unit 15 but also the multipath occurrence status and the reception detected by the reception electric field level detection unit 18. Based on the electric field level and the modulation signal level detected by the modulation signal level detector 19, the output of the limit level determination unit 21 that adjusts the amplitude correction operation limit level of the FM demodulator 9 is used as the limit level of the FM demodulator 9. This is because it is supplied to the control unit 94 (the limit level switching control unit 942).
  • the frequency of occurrence of multipath noise when the reception electric field level is low, the frequency of occurrence of multipath noise is high, and conversely, when the reception electric field is high, the frequency of occurrence of multipath noise is low.
  • the modulation signal level when the modulation signal level is low, multipath noise tends to be noticeable, and a sense of incongruity such as audio distortion due to an amplitude correction operation restriction tends to be less noticeable.
  • the modulation signal level is high, multipath noise is not noticeable, and a sense of incongruity such as voice distortion due to the amplitude correction operation restriction tends to be noticeable.
  • the output of the limit level determination unit 21 increases the multipath generation in a direction in which multipath generation is large, the reception electric field level is low, and the modulation signal level is low. Is small, the reception electric field level is high, and the modulation signal level is high, the amplitude correction operation restriction can be weakened.
  • the amplitude correction operation restriction control parameters As described above, according to the fourth embodiment, as the amplitude correction operation restriction control parameters, the multipath generation status, the reception electric field level, and the modulation signal level are detected, and these are used to perform the amplitude correction operation. Insufficient removal of multipath noise due to insufficient limit levels and generation of audio distortion due to excessive amplitude correction operation limit levels can be suppressed. That is, when the output of the amplitude detection unit 13 is smaller than the reference value, the limit level control unit 94 (limit level switching unit 941) of the FM demodulator 9 determines the determination result by the limit level determination unit 21 for the correction coefficient calculation unit 93.
  • the output of the limit level determination unit 21 increases the amplitude correction operation limit in the direction in which multipath generation is large, the reception electric field level is low, and the modulation signal level is low. Noise can be effectively reduced. Also, sound distortion occurs due to excessive amplitude correction operation limit by weakening the amplitude correction operation limit in the direction where the multipath generation is small, the reception electric field level is high, and the modulation signal level is high. It can prevent the harmful effect of doing.
  • the reception quality is further improved by performing appropriate control according to the reception status in consideration of the occurrence status of multipath and suppressing multipath noise. Can be measured. For this reason, in particular, a remarkable effect can be obtained when used in a vehicle-mounted FM radio receiver in which the reception situation changes every moment because it is mounted on a vehicle.
  • the FM radio receiver is illustrated as the radio receiving apparatus according to the first to fourth embodiments of the present invention.
  • the radio receiver is not limited to the FM radio receiver.
  • the present invention can be applied to all wireless reception devices that receive radio waves that are broadcast or transmitted via a station.
  • the functions of the multipath occurrence status detection unit 14, the multipath occurrence status determination unit 15, and the restriction level determination unit 21 illustrated in FIG. 1 may be realized entirely by software, or at least part of the functions may be implemented by hardware. It may be realized with.
  • the data processing in the limit level determination unit 21 that determines the amplitude correction operation limit level based on the multipath generation status detected by the multipath generation status detection unit 14 is realized on a computer by one or more programs. Alternatively, at least a part of it may be realized by hardware.
  • the radio reception apparatus detects the amplitude level of the received radio wave in order to suppress multipath noise by performing appropriate control according to the reception situation in consideration of the occurrence of multipath.
  • An amplitude detection unit that monitors the amplitude level output from the amplitude detection unit and detects the degree of multipath occurrence, and the multipath detection detected by the multipath occurrence detection unit
  • Multipath generation status determination unit that determines the operation restriction level of the amplitude correction based on the degree of path generation status, and reception status determination that determines the reception status of the radio wave based on one or both of the received electric field level and the modulation signal level
  • the amplitude correction operation control output by the multipath occurrence status determination unit based on the reception status determination result output from the reception status determination unit.
  • a limit level determination unit that adjusts the level, and is configured to limit operation of the amplitude correction of the demodulator, so that it is mounted on a radio reception device such as a radio, a television, or a mobile phone, particularly in a vehicle. It is suitable for use in an in-vehicle FM radio receiver or the like whose reception status changes every moment with movement.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Noise Elimination (AREA)
  • Circuits Of Receivers In General (AREA)

Abstract

 無線受信装置(FMラジオ受信機)は、受信した電波の振幅レベルを検出する振幅検出部13と、振幅レベルを監視してマルチパスの発生状況の程度を検出するマルチパス発生状況検出部14と、マルチパス発生状況の程度に基づき振幅補正の動作制限レベルの判定を行うマルチパス発生状況判定部15と、電波の受信状況を判定する受信状況判定部20と、受信状況判定部20から出力される受信状況判定結果に基づきマルチパス発生状況判定部15により出力される振幅補正動作制限レベルの調整を行う制限レベル判定部21とを備え、FM復調器9の振幅補正に動作制限を設けてマルチパスノイズの抑制を行なう。

Description

無線受信装置
 この発明は、例えば、FM(Frequency Modulation)変調された搬送波を受信し、デジタル信号処理を用いて復調する、特に、車載用FMラジオ受信機に用いて好適な、無線受信装置に関するものである。
 ラジオ、テレビ、あるいは携帯電話等の無線受信装置において、放送局あるいは基地局から送信された電波が、建物や地形等の障害によって反射、回折し、複数の経路から同じ電波(遅延波)を受信するマルチパスノイズによる受信品質の劣化が問題となる。
 特に、車載用FMラジオ受信機は、車両に搭載され移動を伴うため、マルチパス発生を伴う受信状況が時々刻々と変化し、このため、受信状況に応じて適切な制御を行い、マルチパスノイズを抑制することが重要設計事項になる。
 上記した受信状況に応じて適切な制御を行い、マルチパスノイズを抑制する方法については従来から多数の出願がなされている。例えば、マルチパスが発生すると、音声信号上の高周波成分が増加して耳障りなノイズ音(歪)となるが、この高周波成分のノイズに対し高周波成分を減衰させる方法が知られている。また、マルチパスが発生すると、ステレオパイロット信号が歪みの影響を受けて、ステレオ分離が正しく行われないステレオ歪みと呼ばれる弊害が発生するが、このステレオ歪みに対してはモノラル信号化する方法が知られている(いずれも特許文献1参照)。
特開2003-69436号公報(段落[0006]~[0007])
 図13に従来の代表的なFMラジオ受信機の内部構成の一例が示されている。図13において、アンテナ1で受信されたFM波は、高周波増幅器2(RF)で増幅された後、周波数変換器3(MIX)で周波数変換され、中間周波フィルタ5(BPF)で隣接チャンネル波などの不要成分が除去される。中間周波フィルタ5を通過したFM波は、リミッタ中間周波数増幅器6(IF-AGC)で増幅振幅制限された後、前置フィルタ7(LPF)で中間周波数の高周波成分が除去され、アナログ・デジタル変換器8(A/D)でデジタル信号に変換される。そして、デジタル信号に変換されたFM波はFM復調器9で復調された後、デジタル・アナログ変換器10(D/A)でアナログ音声信号に変換され、音声増幅器11を介してスピーカ12へ出力される。
 上記構成において、マルチパスが発生すると、音声信号上の高周波成分が増加して耳障りなノイズ音(歪)となるが、この高周波成分のノイズに対し、周波数特性設定部23(HCC)により高周波成分を減衰させている。また、ステレオパイロット信号が歪みの影響を受けて、ステレオ分離が正しく行われないステレオ歪みと呼ばれる弊害が発生するが、このステレオ歪みに対してはセパレーション設定部22(SRC)においてモノラル信号化することにより受信状況に応じて適切な制御を行い、マルチパスノイズを抑制している。
 そのため、帯域通過フィルタ16(BPF)の出力に基づいて、セパレーション設定部22と周波数特性設定部23をノイズの発生状況に合わせて制御している。また、マルチパスノイズの発生そのものを抑制するために、FM復調器9における振幅補正に動作制限を設けている。
 この振幅補正動作制限の制御用パラメータとして、受信電界レベルと変調信号レベルに基づく受信状況を用い、受信電界レベル検出部18と変調信号レベル検出部19の出力から、受信状況判定部20によって受信状況を判定し、この受信状況に応じて上記した動作制限レベルの制御を行っている。
 上記したように、従来のFMラジオ受信機によれば、FM復調器における振幅補正に動作制限を設けることでマルチパスノイズの抑制を行なっており、また、この振幅補正動作制限の制御用パラメータとして、受信電界レベル、変調信号レベルの少なくとも一方、もしくは両方に基づく受信状況を用いていた。
 しかしながら、上記した制御用パラメータにマルチパスの発生状況が加味されておらず、したがって、例えば、強いマルチパス発生状況においては振幅補正動作制限レベルが不足してマルチパス歪みが発生し、逆に、弱いマルチパス発生状況においては振幅補正動作制限レベルが過大となり、音声歪みが発生するという問題があった。
 この発明は上記した課題を解決するためになされたものであり、マルチパスの発生状況を加味して受信状況に応じた適切な制御を行い、マルチパスノイズを抑制することにより、一層の受信品質の向上をはかる無線受信装置を提供することを目的とする。
 上記した課題を解決するためにこの発明の無線受信装置は、受信した電波の振幅レベルを検出する振幅検出部と、前記振幅検出部により出力される振幅レベルを監視してマルチパスの発生状況の程度を検出するマルチパス発生状況検出部と、前記マルチパス発生状況検出部により検出されたマルチパス発生状況の程度に基づき前記振幅補正の動作制限レベルの判定を行うマルチパス発生状況判定部と、受信電界レベルと変調信号レベルの一方、もしくは両方により前記電波の受信状況を判定する受信状況判定部と、前記受信状況判定部から出力される受信状況判定結果に基づき前記マルチパス発生状況判定部により出力される振幅補正動作制限レベルの調整を行う制限レベル判定部と、を備え、復調器の振幅補正に動作制限を設けてマルチパスノイズの抑制を行なうものである。
 この発明の無線受信装置によれば、マルチパスの発生状況を加味して受信状況に応じた適切な制御を行い、マルチパスノイズを抑制することにより、一層の受信品質の向上がはかれる。
この発明の実施の形態1に係る無線受信装置の内部構成を示すブロック図である。 この発明の実施の形態1に係る無線受信装置が有するマルチパス発生状況検出部の内部構成を示すブロック図である。 この発明の実施の形態1に係る無線受信装置が有するマルチパス発生状況判定部の内部構成を示すブロック図である。 この発明の実施の形態1に係る無線受信装置が有するマルチパス発生状況判定部の動作を説明するために示した図である。 この発明の実施の形態1に係る無線受信装置が有する受信状況判定部の内部構成を示すブロック図である。 この発明の実施の形態1に係る無線受信装置が有する受信状況判定部の動作(動作a)を説明するために示した図である。 この発明の実施の形態1に係る無線受信装置が有する受信状況判定部の動作(動作b)を説明するために示した図である。 この発明の実施の形態1に係る無線受信装置が有する制限レベル判定部の内部構成を示すブロック図である。 この発明の実施の形態1に係る無線受信装置の動作を説明するために示したFM復調器ならびにその周辺の回路構成を示すブロック図である。 この発明の実施の形態2に係る無線受信装置の動作を説明するために示したFM復調器ならびにその周辺の回路構成を示すブロック図である。 この発明の実施の形態3に係る無線受信装置の動作を説明するために示したFM復調器ならびにその周辺の回路構成を示すブロック図である。 この発明の実施の形態4に係る無線受信装置の動作を説明するために示したFM復調器ならびにその周辺の回路構成を示すブロック図である。 従来のFMラジオ受信機の内部構成の一例を示すブロック図である。
 以下、この発明をより詳細に説明するために、この発明を実施するための最良の形態について、添付の図面にしたがって説明する。
実施の形態1.
 図1は、この発明の実施の形態1に係る無線受信装置の内部構成を示すブロック図である。ここでは、無線受信装置として、FMラジオ受信機が例示されている。
 図1に示されるように、FMラジオ受信機は、アンテナ1と、高周波増幅器2(RF)と、周波数変換器3(MIX)と、局部発信器4(LO)と、中間周波フィルタ5(BPF)と、リミッタ中間周波数増幅器6(IF-AGC)と、前置フィルタ7(LPF)と、アナログ・デジタル変換器8(A/D)と、FM復調器9と、デジタル・アナログ変換器10(D/A)と、音声増幅器11と、スピーカ12と、振幅検出部13と、マルチパス発生状況検出部14と、マルチパス発生状況判定部15と、帯域通過フィルタ16(BPF)と、マルチパス低減部17と、受信電界レベル検出部18と、変調信号レベル検出部19と、受信状況判定部20と、制限レベル判定部21と、セパレーション設定部22(SRC)と、周波数特性設定部23(HCC)と、により構成される。
 図13に示す従来例と対比して明確なように、この発明の実施の形態1に係る無線受信装置であるFMラジオ受信機は、従来のFMラジオ受信機が有する構成に、マルチパス発生状況検出部14と、マルチパス発生状況判定部15と、制限レベル判定部21とを付加したものである。
 すなわち、マルチパス発生状況検出部14は、振幅検出部13により出力される振幅レベルを監視してマルチパスの発生状況の程度を検出してマルチパス発生状況判定部15へ出力し、マルチパス発生状況判定部15は、マルチパス発生状況検出部14により検出されたマルチパス発生状況の程度に基づき振幅補正動作制限レベルの判定を行い、制限レベル判定部21へ出力する。制限レベル判定部21へは、他に、受信状況判定部20から、受信電界レベルと変調信号レベルの一方、もしくは両方により前記電波の受信状況が入力されている。制限レベル判定部21は、受信状況判定部20から出力される受信状況判定結果に基づきマルチパス発生状況判定部15により出力される振幅補正動作制限レベルの調整を行ってFM復調器9に供給し、FM復調器9の振幅補正に動作制限を設けてマルチパスノイズの抑制を行なう。
 なお、上記したマルチパス発生状況検出部14と、マルチパス発生状況判定部15と、制限レベル判定部21とは、具体的には、セパレーション設定部22(SRC)、周波数特性設定部23(HCC)とともに、DSP(Digital Signal Processor)、もしくはMPU(Micro Processor Unit)、あるいはその組み合わせにより実現される。すなわち、DSPもしくはMPUに内蔵された、もしくは外付けのメモリに記録されたプログラムに基づき、周辺のLSI(FM復調器9等)と協働して動作することにより、マルチパス発生状況検出部14、マルチパス発生状況判定部15、制限レベル判定部21が有する上記した機能を実現するものである。以下にその詳細を説明する。
 図2は、図1に示すマルチパス発生状況検出部14の内部構成の一例を示す図である。図2に示されるように、マルチパス発生状況検出部14は、平滑処理部141,142と、逆数演算部143と、乗算部144により構成される。
 上記構成において、図1に示す振幅検出部13で検出された振幅レベルは、平滑処理部141,142に入力される。マルチパスが発生した場合、この振幅レベルに瞬時の落ち込みが発生することは周知の通りである。
 平滑処理部141では、振幅レベルが小さくなる方向に対しては遅い時定数を、逆に、振幅レベルが大きくなる方向に対しては早い時定数を設定している。これによって、平滑処理部141では、瞬時の落ち込みには追随せず、振幅のハイレベルを検出することができる。一方、平滑処理部142では、振幅レベルが小さくなる方向に対しては早い時定数を、逆に振幅レベルが大きくなる方向に対しては遅い時定数を設定している。これによって、瞬時の落ち込みに追随し、振幅のローレベルを検出することができる。
 逆数演算部143、乗算部144では、平滑処理部141の出力の逆数と、平滑処理部142の出力を乗算している。これによって、振幅の落ち込みを正規化している。
 乗算部144による乗算出力は、振幅の落ち込みが大きい場合には小さくなり、逆に振幅の落ち込みが小さい場合には大きくなる。そのため、乗算出力が小さくなる方向で強いマルチパス発生状況、逆に乗算出力が大きくなる方向では弱いマルチパス発生状況であることが分かる。このように、マルチパス発生状況の検出は、搬送波振幅レベルの瞬時の落ち込みを検出し、正規化することによって行う。このことにより、検出値が大きい場合には強いマルチパス、検出値が小さい場合には弱いマルチパスといった判定が可能である。
 図3は、図1に示すマルチパス発生状況判定部15の内部構成の一例を示す図である。図3に示されるように、マルチパス発生状況判定部15は、加算部151と、乗算部152により構成される。
 上記構成において、図1、図2に示すマルチパス発生状況検出部14で検出されたマルチパス発生状況は、加算部151によってオフセットが加えられ、乗算部152によって傾きが乗算され、図1に示す制限レベル判定部21に、振幅補正動作制限レベルとして出力される。このオフセットと傾きをパラメータとして設定することにより、検出されたマルチパス発生状況に対する振幅補正動作制限レベルの調整が可能である。
 図4に、上記したマルチパス発生状況判定部15の動作の一例が示されている。図4は、横軸にマルチパス発生状況検出部14の出力を、縦軸にマルチパス発生状況判定部15の出力をそれぞれ目盛ったグラフであり、このグラフ上にマルチパス発生状況判定部15の動作が模式的に示されている。
 ここでは、マルチパス発生状況が小さい、すなわち、マルチパス発生の程度が強い場合にはマルチパス発生状況判定出力が大となるようにマルチパス発生状況判定部15を動作させている。逆に、マルチパス発生状況が大きい、すなわち、マルチパスの程度が弱い場合にはマルチパス発生状況判定出力が小となるように、マルチパス発生状況判定部15を動作させている。ここで、マルチパス発生状況判定出力が大であるということはマルチパス抑圧効果が高く、マルチパス発生状況判定出力が小であるということはマルチパス抑圧効果が低いことを示している。
 図5は、図1に示す受信状況判定部20の内部構成の一例を示す図である。図5に示されるように、受信状況判定部20は、受信電界比較部201,203と、変調信号比較部202,204と、判定部205,206とにより構成される。
 上記構成において、受信電界比較部201は、予め設定された少なくとも1段階以上の閾値と、入力される受信電界レベルとを比較し、その時点での受信電界レベルが閾値に対して如何なる関係にあるかについて判定部205に出力している。また、変調信号比較部202では、同じく予め設定された少なくとも1段階以上の閾値と、入力される変調信号レベルとを比較し、その時点での変調信号レベルが閾値に対して如何なる関係にあるかについて判定部205に出力している。
 一方、受信電界比較部203では、予め設定された少なくとも1段階以上の閾値と入力される受信電界レベルとを比較し、その時点での受信電界レベルが閾値に対して如何なる関係にあるかについて判定部206に出力している。また、変調信号比較部204では、同じく予め設定された少なくとも1段階以上の閾値と、入力される変調信号レベルとを比較し、その時点での変調信号レベルが閾値に対して如何なる関係にあるかについて判定部206に出力している。
 図6は、上記した受信状況判定部20における、受信電界比較部201と変調信号比較部202と判定部205の動作(動作a)の一例をグラフ上に模式的に示した図である。
 ここでは、簡単化のために、変調信号レベル、受信電界レベルともに3段階での判定を行うものとして説明する。すなわち、変調信号レベルに対してM1、M2の閾値を設け、低変調から高変調まで3つに区分し、受信電界レベルに対してもS1、S2の閾値を設け、弱電界から強電界まで3つに区分している。図6中、1~3の数字はそれぞれ制限レベルであり、制限レベル1が最も低い設定であり、このときマルチパスノイズの抑圧効果は最も小さく、制限レベル3が最も高い設定であり、このときマルチパスノイズの抑圧効果は最も大きい。判定部205は、受信電界レベルと変調信号レベルによって決まる制限レベル1~3を受信状況判定結果#1として制限レベル判定部21へ出力する。
 図7は、上記した受信状況判定部20における、受信電界比較部203と変調信号比較部204と判定部206の動作(動作b)の一例をグラフ上に模式的に示した図である。
 ここでは、簡単化のために、変調信号レベル、受信電界レベルともに3段階での判定を行うものとして説明する。すなわち、変調信号レベルに対しM3、M4の閾値を設け、低変調から高変調まで3つに区分し、受信電界レベルに対してもS3、S4の閾値を設け、弱電界から強電界まで3つに区分している。図7中、A~Cの英記号はそれぞれ制限レベル判定部21に入力される係数であり、係数Aが最も低い設定であり、このときマルチパスノイズの抑圧効果は最も小さく、係数Cが最も高い設定であり、このときマルチパスノイズの抑圧効果は最も大きい。判定部206は、変調信号レベルと、受信電界レベルとによって決まる制限レベルA~Cを受信状況判定結果#2として制限レベル判定部21へ出力する。
 図8は、図1に示す制限レベル判定部21の内部構成の一例を示す図である。図8に示されるように、制限レベル判定部21は、乗算部211と、加算部212とにより構成されている。
 上記構成において、乗算部211は、図1に示すマルチパス発生状況判定部15から出力される判定出力に、受信状況判定部20(判定部206)から出力される受信状況判定結果#2を乗算して加算部212に出力する。加算部212は、乗算部211による乗算結果に、受信状況判定部20(判定部205)から出力される受信状況判定結果#1を加算し、この加算結果を振幅補正係数制限レベル判定結果(振幅補正動作制限レベル)として、FM復調器9へ出力している。
 図9は、振幅補正動作制限制御用パラメータとしてマルチパス発生状況を用いた場合のFM復調器9ならびにその周辺の回路構成を示すブロック図である。
 以下、この発明の実施の形態1に係る無線受信装置(FMラジオ受信機)の動作について、図9を参照しながら詳細に説明する。
 ここでは、FM復調器9によるFM復調の動作原理から簡単に説明する。FM波から復調信号を取り出すためには、出力信号の振幅が入力されたFM信号の周波数変化に応答して変化することと(条件#1)、出力信号の振幅が入力されたFM信号の振幅変化に応答しないこと(条件#2)、の2つの条件を満足するFM復調器9が必要になる。なお、これら以外にもFM復調器9に求められる条件は種々存在するが、簡単化のために省略する。
 図9に示されるように、FM復調器9は、FM復調部91と、振幅補正部92と、補正係数演算部93と、制限レベル制御部94とにより構成される。
 FM復調部91は、入力信号(FM信号)を復調して振幅補正部92へ出力するが、この出力は、上記の条件#1を満たすが条件#2を満たさない。すなわち、FM復調部91の出力には入力信号の振幅変化応答成分が含まれる。振幅補正部92は、この振幅変化応答成分をFM復調部91の出力から取り除く。また、補正係数演算部93は、入力信号の振幅を検出し、この振幅の逆数に比例する振幅補正係数を生成して振幅補正部92へ出力する。振幅補正部92では、FM復調部91の出力信号と補正係数演算部93の出力である補正係数とを乗算することで、出力信号から振幅変化応答成分を取り除き、上記した条件#1と条件#2を満たす復調された音声信号を、図1に示す受信電界レベル検出部18、変調信号レベル検出部19、BPF16、ならびにSRC22へ出力する。
 制限レベル制御部94は、制限レベル切替部941と、制限レベル切替制御部942とにより構成される。
 制限レベル切替部941は、制限レベル切替制御部942による制御の下、振幅検出部13により検出された振幅を基準値と比較して、例えば、振幅検出部13の出力が基準値より大きい場合は、振幅検出部13出力をそのまま補正係数演算部93へ出力し、逆に小さい場合は、制限レベル判定部21による判定結果を出力するように動作する。なお、振幅検出部13の出力がそのまま補正係数演算部93へ入力される場合におけるFM復調器9の動作は従来の動作と同様である。
 ところで、強いマルチパス状況下ではマルチパス発生状況判定部15による出力が大きくなり、且つ、変調信号レベル、受信電界レベルが低い場合には受信状況判定結果#1、#2がそれぞれ大きくなるため、結果的に、制限レベル判定部21により出力される振幅補正係数制限レベル判定結果は大きくなり、マルチパスノイズ抑制効果は大きい。
 逆に、弱いマルチパス状況下ではマルチパス発生状況判定出力が小さくなり、且つ変調信号レベル、受信電界レベルが高い場合には受信状況判定結果#1、#2がそれぞれ小さくなり、結果的に、制限レベル判定部21により出力される振幅補正係数制限レベル判定結果が小さくなるため、マルチパスノイズ抑制効果は小さい。
 上記したように実施の形態1によれば、振幅補正動作制限制御用パラメータとして、マルチパス発生状況を用いることで、振幅補正動作制限レベルの不足によるマルチパスノイズの除去漏れ、振幅補正動作制限レベルの過大による音声歪みの発生をそれぞれ抑えることができる。
 すなわち、振幅検出部13の出力が基準値より小さい場合、FM復調器9の制限レベル制御部94(制限レベル切替部941)が、補正係数演算部93に対してマルチパス発生状況判定部15による判定結果を出力することで、マルチパス発生が大の際にはマルチパスノイズを効果的に低減し、マルチパス発生が小の際には振幅補正動作制限の過大により音声歪みが発生するという弊害を防ぐことができる。
実施の形態2.
 図10は、振幅補正動作制限制御用パラメータとしてマルチパス発生状況と受信電界レベルを用いた場合のFM復調器9ならびにその周辺の回路構成を示すブロック図である。
 以下、この発明の実施の形態2に係る無線受信装置(FMラジオ受信機)の動作について、図10を参照しながら詳細に説明する。
 図9に示す実施の形態1との構成上の差異は、マルチパス発生状況判定部15によるマルチパス発生状況のみならず、このマルチパス発生状況と受信電界レベル検出部18による受信電界レベルとに基づき振幅補正動作制限レベルを判定する制限レベル判定部21の出力を、FM復調器9の制限レベル制御部94(の制限レベル切替制御部942)に供給したことにある。
 すなわち、受信電界レベルが低い場合にはマルチパスノイズの発生頻度が高くなり、逆に受信電界が高い場合にはマルチパスノイズの発生頻度は低くなる。このため、制限レベル判定部21の出力により、マルチパス発生が大であり、且つ、受信電界レベルが低くなる方向に対しては振幅補正動作制限を強め、また、マルチパス発生が小且つ受信電界レベルが高くなる方向に対しては振幅補正動作制限を弱めるように動作させることが可能である。
 上記したように、実施の形態2によれば、振幅補正動作制限制御用パラメータとして、マルチパス発生状況と受信電界レベルとを検出し、これらを用いることで、振幅補正動作制限レベルの不足によるマルチパスノイズの除去不足、振幅補正動作制限レベルの過大による音声歪みの発生をそれぞれ抑えることができる。
 すなわち、振幅検出部13の出力が基準値より小さい場合、FM復調器9の制限レベル制御部94(制限レベル切替部941)が、補正係数演算部93に対して制限レベル判定部21による判定結果を出力することで、マルチパス発生が大であり、且つ、受信電界レベルが低くなる方向に対しては振幅補正動作制限を強め、また、マルチパス発生が小且つ受信電界レベルが高くなる方向に対しては振幅補正動作制限を弱めることができる。したがって、マルチパスノイズを効果的に低減し、また、マルチパス発生が小且つ受信電界レベルが高くなる方向に対しては振幅補正動作制限を弱め、振幅補正動作制限の過大により音声歪みが発生するという弊害を防ぐことができる。
実施の形態3.
 図11は、振幅補正動作制限制御用パラメータとしてマルチパス発生状況と変調信号レベルを用いた場合のFM復調器9ならびにその周辺の回路構成を示すブロック図である。
 以下、この発明の実施の形態3に係る無線受信装置(FMラジオ受信機)の動作について、図11を参照しながら詳細に説明する。
 図9に示す実施の形態1との構成上の差異は、マルチパス発生状況判定部15によるマルチパス発生状況のみならず、このマルチパス発生状況と変調信号レベル検出部19による変調信号レベルとに基づき振幅補正動作制限レベルを調整する制限レベル判定部21の出力を、FM復調器9の制限レベル制御部94(の制限レベル切替制御部942)に供給したことにある。
 すなわち、変調信号レベルが低い場合にはマルチパスノイズは目立ちやすく、振幅補正動作制限による音声歪等の違和感は目立ちにくい傾向にある。逆に、変調信号レベルが高い場合にはマルチパスノイズは目立ちにくく、振幅補正動作制限による音声歪み等の違和感は目立ちやすい傾向にある。このため、制限レベル判定部21の出力により、マルチパス発生が大で、且つ、変調信号レベルが低くなる方向に対しては振幅補正動作制限を強め、また、マルチパス発生が小且つ変調信号レベルが高くなる方向に対しては振幅補正動作制限を弱めることができる。
 上記したように、実施の形態3によれば、振幅補正動作制限制御用パラメータとして、マルチパス発生状況と、変調信号レベルとを検出し、これらを用いることで、振幅補正動作制限レベルの不足によるマルチパスノイズの除去不足、振幅補正動作制限レベルの過大による音声歪みの発生をそれぞれ抑えることができる。
 すなわち、振幅検出部13の出力が基準値より小さい場合、FM復調器9の制限レベル制御部94(制限レベル切替部941)が、補正係数演算部93に対して制限レベル判定部21による判定結果を出力することで、マルチパス発生が大で、変調信号レベルが低くなる方向に対しては振幅補正動作制限を強めてマルチパスノイズを効果的に低減し、また、マルチパス発生が小且つ変調信号レベルが高くなる方向に対しては振幅補正動作制限を弱めることにより、振幅補正動作制限の過大により音声歪みが発生するという弊害を防ぐことができる。
実施の形態4.
 図12は、振幅補正動作制限制御用パラメータとして、マルチパス発生状況と受信電界レベルと変調信号レベルとを用いた場合のFM復調器9、ならびにその周辺の回路構成を示すブロック図である。
 以下、この発明の実施の形態4に係る無線受信装置(FMラジオ受信機)の動作について、図12を参照しながら説明する。
 図9に示す実施の形態1との構成上の差異は、マルチパス発生状況判定部15によるマルチパス発生状況のみならず、このマルチパス発生状況と、受信電界レベル検出部18により検出される受信電界レベルと、変調信号レベル検出部19により検出される変調信号レベルとに基づき、FM復調器9の振幅補正動作制限レベルを調整する制限レベル判定部21の出力を、FM復調器9の制限レベル制御部94(の制限レベル切替制御部942)に供給したことにある。
 上記したように、受信電界レベルが低い場合にはマルチパスノイズの発生頻度が高くなり、逆に受信電界が高い場合にはマルチパスノイズの発生頻度は低くなる。また、変調信号レベルが低い場合にはマルチパスノイズは目立ちやすく、振幅補正動作制限による音声歪み等の違和感は目立ちにくい傾向にある。逆に、変調信号レベルが高い場合にはマルチパスノイズは目立ちにくく、振幅補正動作制限による音声歪み等の違和感は目立ちやすい傾向にある。
 このため、制限レベル判定部21の出力により、マルチパス発生が大で、且つ、受信電界レベルが低く、変調信号レベルが低くなる方向に対しては振幅補正動作制限を強め、また、マルチパス発生が小で、且つ、受信電界レベルが高く、変調信号レベルが高くなる方向に対しては、振幅補正動作制限を弱めることができる。
 上記したように、実施の形態4によれば、振幅補正動作制限制御用パラメータとして、マルチパス発生状況と、受信電界レベルと、変調信号レベルとを検出し、これらを用いることで、振幅補正動作制限レベルの不足によるマルチパスノイズの除去不足、振幅補正動作制限レベルの過大による音声歪みの発生をそれぞれ抑えることができる。
 すなわち、振幅検出部13の出力が基準値より小さい場合、FM復調器9の制限レベル制御部94(制限レベル切替部941)が、補正係数演算部93に対して制限レベル判定部21による判定結果を出力することで、制限レベル判定部21の出力により、マルチパス発生が大で、且つ、受信電界レベルが低く、変調信号レベルが低くなる方向に対しては振幅補正動作制限を強め、マルチパスノイズを効果的に低減することができる。また、マルチパス発生が小で、且つ、受信電界レベルが高く、且つ、変調信号レベルが高くなる方向に対しては振幅補正動作制限を弱めることにより、振幅補正動作制限の過大により音声歪みが発生するという弊害を防ぐことができる。
 以上説明のようにこの発明の無線受信装置によれば、マルチパスの発生状況を加味して受信状況に応じた適切な制御を行い、マルチパスノイズを抑制することにより、一層の受信品質の向上をはかることができる。このため、特に、車両に搭載されるため移動を伴い、受信状況が時々刻々と変化する車載用FMラジオ受信機に用いて顕著な効果が得られる。
 なお、上記したこの発明の実施の形態1~4に係る無線受信装置として、FMラジオ受信機のみ例示したが、FMラジオ受信機に制限されることなく、テレビや携帯電話等、放送局や基地局を介して放送もしくは送信される電波を受信する全ての無線受信装置について応用が可能である。
 また、図1に示す、マルチパス発生状況検出部14、マルチパス発生状況判定部15、制限レベル判定部21が有する機能は、全てをソフトウェアによって実現しても、あるいはその少なくとも一部をハードウェアで実現してもよい。
 例えば、マルチパス発生状況検出部14で検出されたマルチパスの発生状況に基づき、振幅補正動作制限レベルを判定する制限レベル判定部21におけるデータ処理は、1または複数のプログラムによりコンピュータ上で実現してもよく、また、その少なくとも一部をハードウェアで実現してもよい。
 以上のように、この発明にかかる無線受信装置は、マルチパスの発生状況を加味して受信状況に応じた適切な制御を行い、マルチパスノイズを抑制するため、受信した電波の振幅レベルを検出する振幅検出部と、前記振幅検出部により出力される振幅レベルを監視してマルチパスの発生状況の程度を検出するマルチパス発生状況検出部と、前記マルチパス発生状況検出部により検出されたマルチパス発生状況の程度に基づき前記振幅補正の動作制限レベルの判定を行うマルチパス発生状況判定部と、受信電界レベルと変調信号レベルの一方、もしくは両方により前記電波の受信状況を判定する受信状況判定部と、前記受信状況判定部から出力される受信状況判定結果に基づき前記マルチパス発生状況判定部により出力される振幅補正動作制限レベルの調整を行う制限レベル判定部とを備え、復調器の振幅補正に動作制限を設けるように構成したので、ラジオ、テレビ、あるいは携帯電話等の無線受信装置、特に、車両に搭載されるため移動を伴い、受信状況が時々刻々と変化する車載用FMラジオ受信機などに用いるのに適している。

Claims (6)

  1.  復調器の振幅補正に動作制限を設けてマルチパスノイズの抑制を行なう無線受信装置であって、
     受信した電波の振幅レベルを検出する振幅検出部と、
     前記振幅検出部により出力される振幅レベルを監視してマルチパスの発生状況の程度を検出するマルチパス発生状況検出部と、
     前記マルチパス発生状況検出部により検出されたマルチパス発生状況の程度に基づき前記振幅補正の動作制限レベルの判定を行うマルチパス発生状況判定部と、
     受信電界レベルと変調信号レベルの一方、もしくは両方により前記電波の受信状況を判定する受信状況判定部と、
     前記受信状況判定部から出力される受信状況判定結果に基づき前記マルチパス発生状況判定部により出力される振幅補正動作制限レベルの調整を行う制限レベル判定部と、
     を備えたことを特徴とする無線受信装置。
  2.  前記マルチパス発生状況検出部は、
     前記振幅レベルの瞬時の落ち込みを検出し、正規化して得られる検出レベルの大小によりマルチパス発生の程度を判定して前記マルチパスの発生状況を検出することを特徴とする請求項1記載の無線受信装置。
  3.  前記マルチパス発生状況判定部は、
     前記振幅補正の動作制限レベルを判定する際、前記マルチパス発生状況検出部により検出されるマルチパス発生の程度が強い場合に判定出力を大きい方向に、マルチパス発生の程度が弱い場合に判定出力を小さい方向に設定することを特徴とする請求項1記載の無線受信装置。
  4.  前記受信電界レベルに基づき受信状況を検出する受信電界レベル検出部を備え、
     前記制限レベル判定部は、
     前記マルチパス発生状況検出部で検出されたマルチパスの発生状況と、前記受信電界レベル検出部で検出された受信電界レベルとに基づき、前記振幅補正動作制限レベルの調整を行うことを特徴とする請求項1記載の無線受信装置。
  5.  前記復調器の変調信号レベルに基づき受信状況を検出する変調信号レベル検出部を備え、
     前記制限レベル判定部は、
     前記マルチパス発生状況検出部で検出されたマルチパスの発生状況と、前記変調信号レベル判定部で検出された変調信号レベルに基づき、前記振幅補正動作制限レベルの調整を行うことを特徴とする請求項1記載の無線受信装置。
  6.  前記受信電界レベルに基づき受信状況を検出する受信電界レベル検出部と、
     前記変調信号レベルに基づき受信状況を検出する変調信号レベル検出部を備え、
     前記制限レベル判定部は、
     前記マルチパス発生状況検出部で検出されたマルチパスの発生状況と、前記受信電界レベル検出部で検出された受信電界レベルと、前記変調信号レベル検出部で検出された変調信号レベルとに基づき、前記振幅補正動作制限レベルの調整を行うことを特徴とする請求項1記載の無線受信装置。
PCT/JP2009/000180 2008-03-11 2009-01-20 無線受信装置 WO2009113226A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010502700A JP4812898B2 (ja) 2008-03-11 2009-01-20 無線受信装置
CN2009801086242A CN101960724B (zh) 2008-03-11 2009-01-20 无线接收装置
DE112009000388T DE112009000388B4 (de) 2008-03-11 2009-01-20 Funkempfänger
US12/811,657 US8126490B2 (en) 2008-03-11 2009-01-20 Radio receiver

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-061268 2008-03-11
JP2008061268 2008-03-11

Publications (1)

Publication Number Publication Date
WO2009113226A1 true WO2009113226A1 (ja) 2009-09-17

Family

ID=41064900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/000180 WO2009113226A1 (ja) 2008-03-11 2009-01-20 無線受信装置

Country Status (5)

Country Link
US (1) US8126490B2 (ja)
JP (1) JP4812898B2 (ja)
CN (1) CN101960724B (ja)
DE (1) DE112009000388B4 (ja)
WO (1) WO2009113226A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014045409A (ja) * 2012-08-28 2014-03-13 Sony Corp 受信装置及び受信方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002335129A (ja) * 2001-05-07 2002-11-22 Mitsubishi Electric Corp Fm復調器および受信機
JP2003069436A (ja) * 2001-06-13 2003-03-07 Fms Audio Sdn Bhd 車載用fmチューナの妨害検出・判定回路及び自動チューニングプログラム
JP3733937B2 (ja) * 2002-08-22 2006-01-11 三菱電機株式会社 Fm復調器及びfm受信装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8201056A (nl) * 1982-03-15 1983-10-03 Philips Nv Fm-ontvanger voor de ontvangst van fm-signalen met zenderkarakterisering.
NL8203384A (nl) * 1982-08-31 1984-03-16 Philips Nv Fm-stereo-ontvanger.
US4751734A (en) * 1987-06-01 1988-06-14 Broadcast Technology Partners Receiver for FM stereophonic broadcasting system utilizing circuits for reducing effects of multipath
JP2770475B2 (ja) * 1989-09-21 1998-07-02 ヤマハ株式会社 受信装置
EP1081870A1 (en) * 1999-09-03 2001-03-07 Sony International (Europe) GmbH Detection of noise in a frequency demodulated FM-audio broadcast signal
JP4205509B2 (ja) * 2003-08-19 2009-01-07 パイオニア株式会社 マルチパスひずみ除去フィルタ
JP4230470B2 (ja) * 2005-03-31 2009-02-25 富士通テン株式会社 軽減装置および方法、ならびに受信装置
JP4693462B2 (ja) * 2005-03-31 2011-06-01 富士通テン株式会社 ダイバシティ受信装置および方法
JP5195234B2 (ja) * 2008-09-29 2013-05-08 ソニー株式会社 受信装置及び受信方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002335129A (ja) * 2001-05-07 2002-11-22 Mitsubishi Electric Corp Fm復調器および受信機
JP2003069436A (ja) * 2001-06-13 2003-03-07 Fms Audio Sdn Bhd 車載用fmチューナの妨害検出・判定回路及び自動チューニングプログラム
JP3733937B2 (ja) * 2002-08-22 2006-01-11 三菱電機株式会社 Fm復調器及びfm受信装置

Also Published As

Publication number Publication date
US8126490B2 (en) 2012-02-28
US20110009082A1 (en) 2011-01-13
JPWO2009113226A1 (ja) 2011-07-21
CN101960724B (zh) 2013-07-24
DE112009000388T5 (de) 2010-12-09
DE112009000388B4 (de) 2012-12-20
CN101960724A (zh) 2011-01-26
JP4812898B2 (ja) 2011-11-09

Similar Documents

Publication Publication Date Title
US7440737B2 (en) Noise blanker control
JP5180226B2 (ja) 信号干渉を決定論的に削減するための手法
US7542748B2 (en) Signal processing circuit comprising an attenuating unit, a detecting unit, and an attenuation rate setting unit
JPWO2007000882A1 (ja) 妨害波検出装置および妨害波除去装置
WO2006106788A1 (ja) 軽減装置および方法、ならびに受信装置
KR20130018153A (ko) 음성 신호 처리 회로
JP2009278525A (ja) アンテナダイバーシティ受信装置とそのアンテナ切替制御方法
US8019308B2 (en) Receiving apparatus
WO2012017627A1 (ja) 高周波受信装置及び無線受信機
US8676140B2 (en) Efficient scheme for automatic gain control in communication systems
US20050124310A1 (en) Receiver
JP4812898B2 (ja) 無線受信装置
JP4845838B2 (ja) ノイズ抑制装置
JPH0879203A (ja) 雑音抑圧装置
JP5687116B2 (ja) Fmラジオ復調システム
JP2013093813A (ja) 車載用受信装置
JP4732231B2 (ja) ミュート回路
US10789970B2 (en) Receiving device and receiving method
US20120201387A1 (en) Fm radio receiving apparatus
JP3733937B2 (ja) Fm復調器及びfm受信装置
JP5885571B2 (ja) ディジタル放送の受信装置
JP6521826B2 (ja) 無線受信装置
JP2006324711A (ja) デジタル放送受信機
JP3570378B2 (ja) 雑音除去装置およびオーディオ装置
JP2006253886A (ja) 受信装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980108624.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09719261

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010502700

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12811657

Country of ref document: US

RET De translation (de og part 6b)

Ref document number: 112009000388

Country of ref document: DE

Date of ref document: 20101209

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 09719261

Country of ref document: EP

Kind code of ref document: A1