WO2009110606A1 - 相同組換え方法およびクローニング方法並びにキット - Google Patents

相同組換え方法およびクローニング方法並びにキット Download PDF

Info

Publication number
WO2009110606A1
WO2009110606A1 PCT/JP2009/054325 JP2009054325W WO2009110606A1 WO 2009110606 A1 WO2009110606 A1 WO 2009110606A1 JP 2009054325 W JP2009054325 W JP 2009054325W WO 2009110606 A1 WO2009110606 A1 WO 2009110606A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
homologous recombination
vector
homologous
primer
Prior art date
Application number
PCT/JP2009/054325
Other languages
English (en)
French (fr)
Inventor
正治 磯部
信幸 黒澤
Original Assignee
国立大学法人富山大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人富山大学 filed Critical 国立大学法人富山大学
Priority to US12/921,367 priority Critical patent/US8841094B2/en
Priority to JP2010501983A priority patent/JP5628664B2/ja
Priority to CN2009801088267A priority patent/CN102007212B/zh
Priority to KR1020107022275A priority patent/KR101524332B1/ko
Priority to EP09717816.4A priority patent/EP2251423B1/en
Priority to CA2717618A priority patent/CA2717618A1/en
Priority to AU2009220532A priority patent/AU2009220532B2/en
Publication of WO2009110606A1 publication Critical patent/WO2009110606A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/66General methods for inserting a gene into a vector to form a recombinant vector using cleavage and ligation; Use of non-functional linkers or adaptors, e.g. linkers containing the sequence for a restriction endonuclease
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1034Isolating an individual clone by screening libraries
    • C12N15/1082Preparation or screening gene libraries by chromosomal integration of polynucleotide sequences, HR-, site-specific-recombination, transposons, viral vectors

Definitions

  • the present invention relates to gene homologous recombination methods, target gene cloning methods, and kits used in these methods.
  • DNA cloning refers to a technique for producing a large amount of the same gene population by binding a target gene to a vector having a self-replicating ability such as a plasmid, phage, or cosmid and introducing it into a host such as E. coli.
  • a vector having a self-replicating ability such as a plasmid, phage, or cosmid
  • the target gene amplified by the polymerase chain reaction (PCR) method is ligated to a vector having a replication origin and an antibiotic selective marker using DNA ligase. After introduction into the cells, the cells are cloned by examining antibiotic resistance.
  • the target gene is first cloned into an insertion vector by ordinary genetic manipulation, a specific recombination sequence such as attL, attR, attB, and attP present in the insertion vector, and an enzyme called clonase that recognizes the sequence.
  • the homologous recombination reaction used enables the transfer of genes to various expression vectors having similar specific recombination sequences.
  • this technique is effective for rapid subcloning and expression verification of a large number of genes, it is necessary to first clone the target DNA fragment into an insertion vector by a conventional cloning method, and to carry out a specific recombination sequence. It is not suitable for cloning any DNA fragment.
  • homologous recombination may occur when DNA fragments having the same sequence in several hundred bases or more exist.
  • the length of homologous DNA is 40-50 or less, genetic recombination by Escherichia coli itself is very unlikely, and the phage-derived recombination enzyme Red (Red ⁇ / ⁇ ) or RecE / T system is introduced. Only when this is done, recombination between homologous genes can occur.
  • Non-patent Document 1 Zhang et al., 1998, Nature Genetics, 20, 123-128, Zhang et al., 2000, Nature Biotechnology 18, 1314-1317
  • Patent Document 1 Japanese Translation of PCT Publication No. 2002-503448 (corresponding WO99 / 29837) The entire description of Patent Document 1 and Non-Patent Document 1 is specifically incorporated herein by reference.
  • a sequence homologous region having a length of 50 bases is located at both ends of the inserted DNA.
  • a method is used in which cleavage is performed with a restriction enzyme so that the sequence homologous region is located at both ends, and the homologous recombinase (recombinase) is introduced into E. coli.
  • the inserted DNA is prepared as, for example, a PCR product, but is not specific when the specificity of primer binding to the template during PCR is low or when there are multiple sequences similar to the primer sequence in the template.
  • the region sandwiched between the sequence homologous regions at both ends may not be the target region to be cloned.
  • sequence homologous region present in the primer is used for cloning in the same manner as the target gene.
  • an object of the present invention is to provide a homologous recombination method used in a gene cloning method using homologous recombination, which can selectively homologously recombine the target gene.
  • a further object of the present invention is to provide a method for cloning a target gene comprising amplifying a recombinant DNA molecule obtained by using a method capable of selectively homologous recombination of the target gene.
  • the homologous recombination region present at both ends of the linearized vector and the homologous region present in the amplification primer sequence are the same.
  • the sequence inside the primer sequence for amplification existing only in the target gene is added to the vector side.
  • the present invention is as follows. [1] a PCR product containing a target gene sequence having amplification primer sequences P1 and P2 at both ends; Homology consisting of homologous recombination regions VP1 and VP2 consisting of base sequences homologous to the primer sequences P1 and P2 for amplification of this PCR product, and consisting of base sequences homologous to part T1 inside P1 A linearized vector having a recombination region VT1 on the terminal side of VP1 and / or a homologous recombination region VT2 consisting of a base sequence homologous to a partial sequence T2 inside P2 on the terminal side of VP2.
  • T1 and T2 have a base sequence specific to the target gene
  • the PCR product is subjected to homologous recombination reaction and inserted into the vector
  • a homologous recombination method comprising obtaining a recombinant DNA molecule in which a target PCR product is specifically inserted into a vector.
  • the first round of PCR was performed using amplification primers containing the T1 sequence and amplification primers containing the P3 sequence (however, the P3 sequence) Is not homologous to the homologous recombination regions VT1, VP1, VT2, and VP2 of the vector)
  • an amplification primer containing the P1 sequence and an amplification primer containing the P2 sequence are used.
  • the method according to any one of [1] to [3], wherein the method is performed.
  • the 3 ′ end region of the amplification primer containing the P1 sequence and the 5 ′ end region of the amplification primer containing the T1 sequence have a partially overlapping sequence, and contain the P2 sequence And the amplification primer containing the P3 sequence may or may not have a partially overlapping sequence.
  • the homologous recombination regions VP1 + VT1 and VP2 + VT2 of the vector are independently 11 bases or more.
  • the target gene is an antibody gene or a T cell receptor gene, comprising a sequence derived from a constant region and a variable region of the antibody gene or T cell receptor gene, and a homologous recombination region VP1 of the vector.
  • One of + VT1 and VP2 + VT2 is the method according to any one of [1] to [8], which is a sequence derived from a constant region of an antibody gene or a T cell receptor gene.
  • a line for use in a homologous recombination method including obtaining a recombinant DNA molecule by specifically inserting a PCR product containing a target gene sequence having amplification primer sequences P1 and P2 at both ends into a vector
  • a kit comprising the vector,
  • the linearized vector has homologous regions VP1 and VP2 consisting of base sequences homologous to the PCR product amplification primer sequences P1 and P2, and bases homologous to a part of the sequence T1 inside P1.
  • the kit which is a vector.
  • the kit according to [14], wherein the homologous recombination method is the method according to any one of [1] to [12].
  • the target DNA fragment is purified (non-target DNA fragment).
  • the target DNA fragment can be efficiently introduced into the vector without removing the target DNA, and the target DNA fragment can be efficiently cloned by using the vector into which the target DNA fragment has been introduced.
  • a target DNA fragment and a non-target DNA fragment are mixed.
  • the target DNA fragment without purifying the target DNA fragment (removing the non-target DNA fragment), the target DNA fragment can be obtained with a higher probability (selectivity) than the method using the above internal sequence-dependent homologous recombination reaction.
  • the target DNA fragment can be further efficiently cloned by using a vector into which the target DNA fragment has been introduced.
  • the homologous recombination method of the present invention comprises: A PCR product containing a sequence of a target gene having amplification primer sequences P1 and P2 at both ends; Homology consisting of homologous recombination regions VP1 and VP2 consisting of base sequences homologous to the primer sequences P1 and P2 for amplification of this PCR product, and consisting of base sequences homologous to part T1 inside P1
  • the PCR product is subjected to homologous recombination reaction and inserted into the vector, It includes obtaining a recombinant DNA molecule in which the PCR product of interest is specifically inserted into a vector.
  • a normal homologous recombination method (ET recombination reaction) is a PCR product [target DNA fragment (1) and non-target DNA fragment (2) having amplification primer sequences P1 and P2 at both ends. And a vector (II) having a homologous recombination region VP1 and VP2 consisting of a part or all of the amplification primer sequence located at or near the end of the PCR product. Insert into the vector by replacement.
  • target DNA fragments (1) and non-target DNA fragments (2) are mixed, they will be integrated into the vector with the same probability unless there are special conditions such as extreme differences in the length of the DNA fragments. It is. As shown in FIG. 1, the target DNA fragment (1) and the non-target DNA fragment (2) are incorporated into the vector (II) with the same probability.
  • the target DNA fragment (1) and the non-target DNA fragment (2) are mixed, the target DNA fragment (1) is purified in advance (non-target DNA fragment (2) is removed) and then subjected to homologous recombination reaction.
  • the homologous recombination region of the linearized vector contains the amplification primer sequence (located at or near the end of at least one end of the PCR product) P1 (and P2) and the target DNA fragment. It consists of a base sequence VP1 + VT1 (and VP2 + VT2) that is homologous to the sequence T1 (and T2) present inside the amplification primer sequence.
  • the sequence T1 (and T2) inside the primer sequence for amplification located at one end of the PCR product is a template-derived sequence.
  • a part of the homologous recombination region of the vector is derived from the amplification primer sequence P1 (and P2), and the remaining part is derived from a part T1 (and T2) of the sequence of the target gene.
  • the amplification primer sequence portion is common, but the sequence portion of the target gene is different, It is not recognized as a homologous recombination region and is not homologous recombination. Therefore, a PCR product containing the target gene sequence of interest can be specifically homologously recombined into a vector.
  • the method of the present invention can also be referred to as an internal sequence-dependent homologous recombination reaction method.
  • the target DNA fragment (1) has a homologous recombination region derived from a part of the sequence of the target gene, partly derived from the primer sequence for amplification at both ends. Has P1 + T1 and P2 + T2.
  • the homologous recombination regions VP1 + VT1 and VP2 + VT2 possessed by the linearized vector (I) also partially correspond to sequences derived from the primer sequence for amplification, and the remaining portion is part of the sequence of the target gene. This corresponds to the sequence derived from the part.
  • the inner sequence (internal sequence) T1 and T2 of the primer sequence for amplification located at the end of the PCR product is at least one of the target DNA as long as it is a template-derived sequence, that is, a template-specific (unique) sequence.
  • the effect of improving the selectivity (specificity) of the homologous recombination of the fragment is obtained, and the specificity of the homologous recombination of the PCR product containing the target gene sequence to the vector is greatly improved.
  • the remaining one internal sequence may not be a template-specific (inherent) sequence.
  • both T1 and T2 are template-specific (unique) sequences because the effect of improving the selectivity of homologous recombination of the target DNA fragment is high.
  • the linearized vector is also digested with 5 ′ ⁇ 3 ′ exonuclease, and as a result, a structure in which the 3 ′ end of the vector protrudes is formed (second state from the left in FIG. 2).
  • the 3 'protruding end of the vector is derived from the internal sequence.
  • the nucleotide molecules constituting the DNA are linked by phosphodiester bonds via phosphate, and intracellular DNA-degrading enzymes have the activity of cleaving phosphodiester bonds.
  • DNA in which the phosphodiester is converted to S (phosphorothioate) or 2′4′-BNA (Bridged Nucleic Acid) is resistant to DNA degrading enzymes.
  • oligo primers that are resistant to these DNA degrading enzymes are called nuclease resistant oligo primers.
  • a typical example of a nuclease resistant oligo primer is an S-modified (phosphorothioated) oligo primer, but the nuclease resistant oligo primer is not intended to be limited to an S-modified oligo primer.
  • the S-modified DNA fragment amplified by the PCR reaction using the S-modified oligo DNA (SP1, SP2) as a primer has a S-modified sequence on the 5 ′ side thereof, and therefore is particularly digested with 5 ′ ⁇ 3 ′ exonuclease. It becomes difficult.
  • the S-modified DNA fragment is not digested by 5 ′ ⁇ 3 ′ exonuclease because the 5 ′ side is S-modified (left of FIG. 3). From the second state). As a result, a 3 ′ protruding end derived from the complementary sequence of the primer cannot be formed, and homologous recombination from the S-modified DNA fragment to the vector does not occur (routes A and C, recombination does not occur).
  • the 5 ′ side of the DNA fragment is derived from the S-oligo DNA, it becomes resistant to 5 ′ ⁇ 3 ′ exonuclease digestion. For this reason, the homologous recombination reaction from a DNA fragment to a vector side is suppressed.
  • the 5 ′ end of the linearized vector is digested with 5 ′ ⁇ 3 ′ exonuclease, and the internal sequence of the 3 ′ end that has become a single strand can undergo homologous recombination reaction only with the target DNA fragment. it can. As a result, only the target DNA fragment is selectively introduced into the vector even if the target DNA is one fifth of the non-target DNA.
  • a PCR product obtained using S-oligo DNA SP1, SP2
  • S-oligo DNA SP1, SP2
  • A, B, and C in FIG. of these pathway C is a reaction pathway into which non-target DNA fragments are incorporated.
  • the oligo primer used in this reaction is not particularly limited as long as the 5 ′ side is resistant to a DNA degrading enzyme by at least one base. It can also be an oligo primer having 32′4′-BNA on the 5 ′ side.
  • the homologous recombination reaction in the present invention may be an In-Fusion method other than the ET recombination method [Red (Red ⁇ / ⁇ ) or RecE / T system].
  • the ET recombination method is a homologous recombination reaction carried out in cells using a 3 ′ protruding end formed by 5 ′ ⁇ 3 ′ exonuclease digestion with RecE or Red ⁇ (Non-patent Document 1, Patent Document 1). See).
  • the present invention can be carried out using either RecE or Red ⁇ .
  • the homologous recombination reaction itself can be performed by a conventional method.
  • the In-Fusion method is a homologous recombination reaction performed in vitro using a 5 ′ protruding end formed by 3 ′ ⁇ 5 ′ exonuclease digestion of vaccinia virus DNA polymerase. This reaction requires a homologous region of about 15 bp between the DNA fragment end and the linear vector end. When the 3 ′ ⁇ 5 ′ exonuclease digestion of vaccinia virus DNA polymerase reaches the stage of digesting the internal sequence, the target DNA fragment is incorporated into the vector.
  • the principle of the In-Fusion method is described in the following paper. In the implementation, the homologous recombination reagent sold by Takara Bio / Clontech can be used as it is. Nucleic Acids Research, 2007, Vol. 35, No. 1 143-151 Michael et.al. Duplex strand joining reactions catalyzed by vaccinia virus DNA polymerase
  • Vaccinia virus DNA polymerase digests the DNA fragment and the 3 'end of the vector. As a result, a complementary region appears between the DNA fragment and the linearized vector. When the complementary strand regions are annealed with each other, the DNA fragment is inserted into the vector.
  • the homologous recombination reaction of the present invention is shown as A in FIG.
  • a complementary strand region appears between the target DNA fragment (1) and the linearized vector (I). To do.
  • a recombination reaction takes place.
  • the non-target DNA fragment (2) a complementary strand region is formed through the primer sequence, but there is an internal sequence of the vector that has no homology with the non-target DNA fragment (2). Therefore, no recombination reaction takes place.
  • the target gene used in the method of the present invention is not particularly limited.
  • the target gene can be, for example, an antibody gene, and the sequence inside the primer sequence for amplification located at one end of the PCR product containing the antibody gene can be a sequence derived from the constant region of the antibody gene.
  • the target gene has a constant primer region such as a T cell receptor gene or a splicing variant and an inner sequence adjacent thereto, but can also be a DNA having a variable site inside.
  • the PCR product was prepared by two rounds of PCR.
  • an amplification primer containing the T1 sequence and an amplification primer containing the P3 sequence were used. (It has no homology with the homologous recombination regions VT1, VP1, VT2, and VP2 possessed by).
  • the second PCR is performed using an amplification primer containing the P1 sequence and an amplification primer containing the P2 sequence. Can be.
  • the positional relationship of each sequence is shown in FIG.
  • the P3 sequence is not directly involved in homologous recombination and is used as a primer used for the first time when performing nested PCR.
  • the 3 ′ end region of the amplification primer containing the P1 sequence and the 5 ′ end region of the amplification primer containing the T1 sequence have partially overlapping sequences, and the amplification primer and P3 sequence containing the P2 sequence
  • the amplification primer containing may or may not have a partially overlapping sequence.
  • Primer B shown in FIG. 6 corresponds to primer T1 in FIGS. 2 and 5
  • primers D and C correspond to sequences P1 and P2 in FIGS.
  • Primer A corresponds to primer P3 shown in FIG.
  • PCR product See FIG. 6 (immunoglobulin variable region amplification method) of cDNA synthesis method using magnetic beads. First using an immunoglobulin cDNA (synthesized on magnetic beads) with poly dG added to the 3 ′ end as a template, primers A (immunoglobulin gene constant region) and B (for binding to poly dG) Perform PCR.
  • a solution diluted about 100 times is used as a template for the second PCR.
  • the primers used are D and C.
  • D is designed so that the 3 'side sequence overlaps with the 5' side of primer B used in the first PCR, and the 3 'end region of D is bound to this region.
  • Primer C is a primer designed to be located in the constant region and inside primer A used in the first PCR. However, the primer C may have a sequence that partially overlaps with the primer A, but may have a sequence that does not overlap with the primer A.
  • a DNA fragment containing an immunoglobulin constant region is amplified by the first PCR, a DNA fragment containing an immunoglobulin constant region can be further amplified by using primers C and D. This is one of PCR methods called 5′RACE-PCR (rapid amplification of cDNAend).
  • Primer D + B sequence is an artificial sequence synthesized by primers B and D in two PCR reactions, and has no unique (unique) sequence to the template sequence. This site becomes one of the sequences for homologous recombination of the vector.
  • primer D specifically binds to the 3 ′ end region of the DNA fragment amplified by the first PCR (because it has the primer B sequence), and primer C is the primer A It also binds to the inner immunoglobulin constant region.
  • primer C is the primer A It also binds to the inner immunoglobulin constant region.
  • specific amplification is performed.
  • the D + B sequence always exists on one side of the PCR product.
  • a nonspecific PCR product may be synthesized as a result of binding of the used primer to a non-target DNA having a similar base sequence.
  • primer D binds nonspecifically to another DNA fragment, the sequence of primer D is present at the terminal of the synthesized DNA fragment, but the sequence of primer B does not exist inside it. .
  • a DNA fragment having such a sequence does not have a primer D + B sequence, it is not subject to internal sequence-dependent homologous recombination (FIG. 7, vector introduction method using homologous recombination of immunoglobulin variable regions) reference). Therefore, the sequence of primer B that does not overlap with primer D acts as an internal sequence, as shown in FIG. 5, and improves the homologous recombination selectivity of the target DNA fragment.
  • this DNA fragment has a constant region sequence corresponding to + ⁇ shown in FIG. do not do.
  • the sequence corresponding to + ⁇ is a sequence unique to the immunoglobulin chain that is the target DNA. Therefore, a DNA fragment that does not have + ⁇ as a homologous region is not subject to homologous recombination and is not inserted into the vector (FIG. 7, vector introduction method using homologous recombination of immunoglobulin variable regions) reference).
  • primer C specifically binds to the constant region of the immunoglobulin gene that is the target gene and DNA is amplified, the sequence of primer C + ⁇ appears at the end of the DAN fragment. This sequence is subject to homologous recombination with the vector (FIG. 7).
  • the method of the present invention is a method in which a non-specifically amplified PCR product is not introduced into a vector, but only a specifically amplified PCR product is automatically introduced into the vector.
  • a target specific amplification product in order to introduce a target specific amplification product into a vector, it is necessary to separate and purify the specific amplification product using a gel electrophoresis method or a spin column method after the PCR reaction.
  • gene sequence analysis of the obtained plasmid must also be performed, which requires labor and cost.
  • the PCR product was prepared by the second round of PCR.
  • amplification was performed using primers for T1 and P3.
  • P1 was used.
  • the amplification primer containing the P1 sequence and the amplification primer containing the T1 sequence have partially overlapping sequences in 5′RACE-PCR.
  • the amplification primer containing the P2 sequence and the amplification primer containing the P3 sequence may have partially overlapping sequences, but may not have them.
  • Each amplification primer sequence can be, for example, 10 bases or more, preferably in the range of 14 to 35 bases in consideration of PCR priming performance.
  • the homologous recombination region derived from the primer sequences P1 and P2 can be, for example, 10 bases or more, preferably in the range of 14 to 35 bases.
  • the internal sequences T1 and T2 inside the primer sequence for amplification which is a base sequence homologous to a partial sequence of the homologous recombination region, are in the range of 1 base or more, preferably in the range of 5 to 1000 bases. Furthermore, the total P1 + T1 and P2 + T2 with the primer sequence for amplification can be independently in the range of 11 bases or more, preferably in the range of 25 to 1000 bases.
  • the present invention includes a method for cloning a target gene, which comprises amplifying a recombinant DNA molecule (recombinant vector) in which a target PCR product is specifically inserted into a vector by the method of the present invention.
  • a recombinant DNA molecule recombinant vector
  • Conventional methods can be used to amplify the recombinant DNA molecule.
  • a recombinant DNA molecule (recombinant vector) that has been incorporated and amplified in an expression vector can be expressed in a cell or the like to obtain a protein, and further used for functional analysis of the obtained protein.
  • the target gene is an antibody gene, it can be determined whether the isolated antibody (protein) binds to the target antigen.
  • the target gene contained in the amplified recombinant DNA molecule is excised from the vector by, for example, restriction enzyme treatment and purified if necessary. Separation and purification of the target gene can be performed by conventional methods. Examples of the separation and purification of the target gene include gel extraction and column purification. The separated and purified target gene can be used for, for example, determination of a base sequence, incorporation into an expression vector, and functional analysis of the target gene.
  • the present invention is used for a homologous recombination method including obtaining a recombinant DNA molecule in which a PCR product containing a sequence of a target gene having amplification primer sequences P1 and P2 at both ends is specifically inserted into a vector. It also relates to a kit comprising a linearized vector.
  • the linearized vector included in this kit has homologous regions VP1 and VP2 consisting of base sequences homologous to the primer sequences P1 and P2 for amplification of PCR products, and a partial sequence T1 inside P1.
  • Homologous recombination region VT1 consisting of a homologous base sequence is located on the end side of VP1 and / or homologous recombination region VT2 consisting of a base sequence homologous to part of sequence T2 inside P2 is located on the end side of VP2. It has a linearized vector. This linearized vector is the same as that described in the homologous recombination method.
  • the kit can also contain, for example, instructions for using the kit and reagents for use in homologous recombination reactions.
  • the reagent and the like for use in the homologous recombination reaction include a reagent for In-Fusion method, such as a reagent for red (Red ⁇ / ⁇ ) or RecE / T system.
  • the homologous recombination method that can be carried out using the kit of the present invention is, for example, the above-mentioned homologous recombination method of the present invention, but is not intended to limit the use to other methods.
  • the recombinant DNA molecule obtained using the kit of the present invention can be used in a method for cloning a target gene including amplifying a recombinant having the recombinant DNA molecule.
  • Example 1 The advantages of the internal sequence-dependent homologous recombination method when target DNA fragments and non-target DNA fragments coexist are shown in the following experiments 1 to 4.
  • the DNA fragment (1) is the target DNA for homologous recombination, and there is a sequence derived from the primer (a) sequence for PCR at the end, and a sequence derived from the poly dG / dC sequence on the inside (target DNA side) Exists. At the other end, there is a sequence derived from the primer (b) sequence, and there is a sequence derived from a human immunoglobulin gamma (Ig ⁇ ) chain constant region on the inner side (target DNA side) (the above DNA fragment I base). Array reference).
  • the DNA fragment (2) is non-target DNA, a sequence derived from the primer (a) sequence for PCR is present at the end, and a sequence derived from the primer (b) sequence is present at the other end (DNA) (See fragment II base sequence).
  • the linear vector (I) has a primer (a) -derived sequence and a poly dG / dC sequence inside as a homologous recombination region, and the other end has a primer (b) -derived sequence and an immunoglobulin gamma inside. It has a sequence derived from the (Ig ⁇ ) chain constant region (see vector I sequence).
  • the linear vector (II) has only the sequence derived from the primer (a) and the sequence derived from the primer (b) as homologous recombination regions (see Vector II sequence).
  • Primer (b) (derived from human Ig ⁇ chain constant region) 5'-AGCCGGGAAGGTGTGCACGCCGCTG-3 (SEQ ID NO: 2)
  • Vector (II) homologous recombination sequence primer sequence (a) 5'-CTTCGAATTCTGCAGTCGACGGTACCGCGGGCCCGGGA-3 '(SEQ ID NO: 11) 3'-GAAGCTTAAGACGTCAGCTGCCATGGCGCCCGGGCCCT-5 '(SEQ ID NO: 12)
  • Vector (II) homologous recombination sequence primer sequence (b) 5'-CAGCGGCGTGCACACCTTCCCGGCT -3 '(SEQ ID NO: 13) 3'-GTCGCCGCACGTGTGGAAGGGCCGA -5 (SEQ ID NO: 14)
  • the DNA fragment (1) (FIG. 8, SEQ ID NO: 15) is a 683 bp target DNA fragment having a variable region of human immunoglobulin ⁇ chain and a part of the constant region.
  • the primer (a) and the primer ( b) It has a sequence. Moreover, as a sequence utilized for the internal sequence specific homologous recombination reaction, it has a poly dG / dC sequence inside the primer (a), and an immunoglobulin gamma chain constant region-derived sequence inside the primer (b) sequence.
  • the positions of primers (a) and (b) used for amplification are indicated by arrows.
  • DNA fragment (2) (FIG. 9, SEQ ID NO: 16) is a DNA fragment derived from the 628 bp GPF gene, and has a primer (a) sequence and a primer (b) sequence used for PCR amplification at both ends. There is no sequence used for the internal sequence-specific homologous recombination reaction inside both primer sequences, and there is a sequence derived from the GFP gene.
  • FIG. 8 The sequence of FIG. 8 was inserted into EcoRI and NotI sites of pCMVCMEGFPN1 (Clontech) to create Vector I (FIG. 10, SEQ ID NO: 17).
  • This plasmid has a primer (a) sequence for homologous recombination downstream of the Eco RI site and an internal sequence for specifically incorporating a human immunoglobulin ⁇ chain DNA fragment amplified using 5'-RACE PCR. Has a dG sequence. Downstream of the poly dC / dG sequence is a SacB gene (2 kb) which is a negative selection marker for killing E. coli into which a plasmid that has not been linearized by restriction enzyme digestion has been introduced on a sucrose-containing medium.
  • the vector was cleaved with EcoRV, and linear plasmid DNA was recovered by ethanol precipitation and prepared to a final concentration of 0.1 ⁇ g / ⁇ l (FIG. 7).
  • FIG. 9 The sequence of FIG. 9 was inserted into the EcoRI and NotI sites of pCMV EGFPN1 (Clontech) to create Vector II (Fig. 11, SEQ ID NO: 18).
  • This plasmid has a primer (a) sequence for homologous recombination downstream of the Eco RI site.
  • a SacB gene (2 kb) which is a negative selection marker for killing E. coli into which a plasmid that has not undergone homologous recombination was introduced downstream of the primer (a) sequence on a sucrose-containing medium, is an EcoRV site (SEQ ID NO: 18 Between 51 and 52).
  • a primer (b) sequence for homologous recombination exists downstream of the SacB gene.
  • the vector was cleaved with EcoRV, and linear plasmid DNA was recovered by ethanol precipitation and prepared to a final concentration of 0.1 ⁇ g / ⁇ l.
  • Competent cells were prepared according to the GeneBridges Red / ET Recombination system. 3 ⁇ l of a solution in which DNA fragments 1 and 2 and vector (II) were mixed at a ratio of 50 ng: 50 ng: 100 ng was introduced into E. coli. From the obtained colonies of drug-resistant bacteria, colony PCR using primers (a) and (b) was performed to amplify the DNA fragment inserted into the vector.
  • E. coli colonies were suspended in 50 ⁇ l of PBS-0.1% TritonX solution and heated at 95 ° C. for 5 minutes to elute plasmid DNA from the cells.
  • PCR reaction was performed by adding 10 pmol of primers (a) and (b) and 10 nmol of dNTP to 1 ⁇ l of the above bacterial cell heating solution, and using a Takara Bio PrimeSTAR thermostable DNA polymerase (94 ° C.) in a 50 ⁇ l reaction system. (30 cycles of 30 seconds-68 ° C. for 40 seconds). 2 ⁇ l of the reaction solution was electrophoresed on a 1% agarose gel to separate the amplified DNA fragments.
  • Example 2 Selective cloning of target DNA using an internal sequence-dependent homologous recombination reaction [Method] 3 ⁇ l of a solution in which DNA fragments 1 and 2 prepared in Experiment 1 and vector (I) were mixed at a ratio of 50 ng: 50 ng: 100 ng was introduced into E. coli.
  • a DNA fragment introduced into the vector (I) from the obtained colonies of drug-resistant bacteria was amplified by the same method as in Experiment 1 and analyzed by electrophoresis. [result] As a result of the electrophoresis of the colony PCR product (FIG. 13), 8 DNA fragments 1 derived from IgG were inserted.
  • mRNA washing solution A 10 mM Tris HCl (pH 7.5), 0.15 M LiCl, 0.1% LiDS
  • mRNA washing solution B 75 mM KCl, 3 mM MgCl 2 , 0.1
  • TritonX 0.5 mM dNTP, 5 mM DTT, 2 unit RNase inhibitor
  • 3 ⁇ l of cDNA synthesis solution 50 mM Tris HCl (pH 8.3), 75 mM KCl, 3 mM MgCl 2 , 0.1% Triton X-100, 0.5 mM dNTP, 5 mM DTT, 2 unit RNase inhibitor, 10 unit SuperScript III Reverse transcriptase (Invitrogen) was added and reacted for 1 hour at 50 ° C.
  • 3 ′ tailing washing solution 50 mM potassium phosphate (pH 7.0), 0.5 mM dGTP, 0.1% Triton X -100, 4mM magnesium chloride
  • 3 'tailing reaction solution 50mM potassium phosphate (pH7.0), 0.5mM dGTP, 0.1% Triton X-100, 4mM magnesium chloride, terminal deoxynucleotidyl transferase 10U ) was added, and the reaction was performed at 37 ° C. for 30 minutes.
  • the magnetic beads were washed with 3 ⁇ l of TE solution (10 mM Tris HCl (pH 7.5), 1 mM EDTA, 0.1% TritonX), and then the human immunoglobulin ⁇ chain gene was amplified using 5′-RACE PCR method.
  • TE solution 10 mM Tris HCl (pH 7.5), 1 mM EDTA, 0.1% TritonX
  • the human immunoglobulin ⁇ chain gene was amplified using 5′-RACE PCR method.
  • 25 ⁇ l of PCR reaction solution primers 1 and 2 10 pmol each, dNTP 10 nmol, Takara Bio PrimeSTAR heat-resistant DNA polymerase 1 U
  • the sequence of primer 1 is 5′-CGGTACCGCGGGCCCGGGATCCCCCCCCCCCCCDN-3 ′ (SEQ ID NO: 19) and annealed to the poly dG added to the 3 ′ end of the cDNA by TdT.
  • the sequence of primer 2 is 5′-ACGCTGCTGAGGGAGTAGAGTCCTGAG-3 ′ (SEQ ID NO: 20) and is derived from the human immunoglobulin ⁇ chain gene constant region. After the reaction, 225 ⁇ l of water is added to the PCR solution and diluted 10-fold.
  • the primer (a) 5′-CTTCGAATTCTGCAGTCGACGGTACCGCGGGCCCGGGA-3 ′ (SEQ ID NO: 1) and (b) 5′-AGCCGGGAAGGTGTGCACGCCGCTG-3 ′ (SEQ ID NO: 2
  • the reaction was performed under the same conditions as in the first PCR.
  • Primer (a) anneals to a region complementary to the primer 1 sequence of the DNA fragment amplified by the first PCR.
  • Primer (b) is derived from the human immunoglobulin ⁇ chain gene constant region, and is located upstream of primer 2 used in the first PCR. The positional relationship of the primers is shown below.
  • ET recombination reaction was performed using 2 ⁇ l of a mixture of 0.5 ⁇ l of this PCR reaction solution and 100 ng of vector (I) linearized by EcoRV cleavage.
  • Escherichia coli was grown on a kanamycin agar plate containing 0.5% sucrose, 5 colonies formed were cultured overnight in 2 ml of LB medium, and plasmid DNA was extracted from the cells.
  • the plasmid DNA was cleaved with BamHI / NotI, and the efficiency of introducing the target human immunoglobulin ⁇ chain variable region DNA fragment into the vector was examined using agarose gel electrophoresis. As a result (FIG. 17), it was found that the target DNA fragment was correctly integrated into the vector in all five colonies analyzed.
  • Plasmid DNA was cleaved with BamHI / NotI, and the efficiency of introduction of the target human immunoglobulin ⁇ chain variable region DNA fragment into the vector was examined by agarose gel electrophoresis. As a result (FIG. 18-2), it was found that the target immunoglobulin gene fragment was correctly integrated into the vector in all 12 colonies analyzed. From the above results, the present invention is capable of specifically inserting a target PCR product into a vector even in the In-Fusion method, which is a homologous recombination method having a reaction mechanism different from that of the ET recombination method. Has been demonstrated.
  • Example 2 Preparation of DNA fragment PCR reaction using primer 1 (5'-CGGTACCGCGGGCCCGGGATCCCCCCCCCCCCCDN-3 ') (SEQ ID NO: 19) and primers (b) to (e) shown below using DNA fragment I used in Experiment 1 as a template Went. PCR reaction conditions were the same as in Experiment 1. The positional relationship between the primer sequences used below and DNA fragment 1 is shown in FIG.
  • Plasmid DNA was cleaved with BamHI / NotI, and the efficiency of introducing each DNA fragment into the vector was examined by agarose gel electrophoresis (FIG. 21). From the plasmid incorporating the target DNA fragment, full-length human immunoglobulin ⁇ chain (about 1.5 kb) and vector (about 4 kb) are detected by BamHI / NotI cleavage.
  • the present invention is useful in the field of genetic engineering.

Abstract

目的とする遺伝子を選択的に相同組換えできる方法、およびこの方法で得られる組換えDNA分子を提供する。 増幅用プライマー配列P1およびP2を両末端に有する標的遺伝子の配列を含むPCR産物と、このPCR産物の増幅用プライマー配列P1およびP2に相同的な塩基配列からなる相同組換え領域VP1およびVP2を有し、P1の内側の一部の配列T1に相同的な塩基配列からなる相同組換え領域VT1 をVP1の末端側に、および/または、P2の内側の一部の配列T2に相同的な塩基配列からなる相同組換え領域VT2をVP2の末端側に有する線状化されたべクターを用い(T1およびT2の少なくとも一方は、標的遺伝子に特有の塩基配列を有する)前記PCR産物を相同組換え反応に付して前記ベクターに挿入して、目的とするPCR産物を特異的にベクターへ挿入した組換えDNA分子を得る、相同組換え方法。この相同組換え方法により、目的とするPCR産物を特異的にベクターに挿入した組換えDNA分子を調製し、得られた組換DNA分子を増幅するクローニング方法。

Description

相同組換え方法およびクローニング方法並びにキット 関連出願の相互参照
 本出願は、2008年3月7日出願の日本特願2008-57995号の優先権を主張し、それらの全記載は、ここに特に開示として援用される。
 本発明は、遺伝子の相同組換え方法および標的遺伝子のクローニング方法並びにこれらの方法に用いられるキットに関する。
 DNAクローニングとは、目的遺伝子をプラスミド、ファージ、コスミドなどの自己複製能を持つベクターに結合し、大腸菌などの宿主に導入して増殖させることにより、同じ遺伝子集団を大量に作り出す技術を言う。大腸菌におけるクローニング及びサブクローニングは、重合酵素連鎖反応(PCR)の方法などにより増幅された目的遺伝子を、DNAリガーゼを用いて複製開始点と抗生剤の選択標識を持ったベクターに結合して大腸菌細胞の中に導入した後、抗生剤耐性を調べることでクローニングされた細胞を選り分ける方法で行われる。
 かかる通常のクローニング技術は現代の生命工学の基礎をなしており、ヒトゲノムプロジェクトが完成された以降に飛躍的な発展を成し遂げている、遺伝子情報に基づく大量遺伝子のクローニング及び高速なタンパク質発現などに幅広く用いられている。しかしながら、既存の遺伝子の操作方法においては、挿入DNAとベクターを同じ認識部位の制限酵素で切断することや、制限酵素を選択するときにも挿入DNAやベクターの内部を切断しないものを選択すること、などが求められるといった制限がある。また、制限酵素及びリガーゼを処理する過程で高度の技術が必要となり、しかも、高価な酵素を使用することによるコスト高も無視できない。
 1990年代以降、特定の塩基配列を認識してDNA断片間の組換えを促すという配列特異的な遺伝子組換え酵素を用いた遺伝子操作技術への関心が高まりつつある。特に、attL、attR、attB、attPなどの特異なDNA配列を認識する遺伝子インテグラーゼを用いて遺伝子をクローニングするゲートウェイ・システム(インビトロジェン(株)製)が開発されて、大量の遺伝子の素早いクローニング及びタンパク質の発現のために汎用されている。この方法は、通常の制限酵素-連結反応と同様に、細胞外の遺伝子操作により行われるが、attLまたはattRを持つ線状DNA断片を仲介するLRクロナーゼと、attPとattBとの間を認識するBPクロナーゼとを用いる新規なクローニング方法である。同方法では、まず通常の遺伝子操作により目的遺伝子を挿入ベクターにクローン化し、その挿入ベクターに存在するattL、attR、attB、attPなどの特異的組換え配列と、その配列を認識するクロナーゼという酵素を利用した相同組換え反応により、同様の特異的組換え配列を持つ様々な発現ベクターへの遺伝子の移動を可能とする。この手法は大量の遺伝子の素早いサブクローニング及び発現の検証に有効ではあるが、最初にまず目的とするDNA断片を通常のクローニング法によって挿入ベクターにクローン化する必要があり、特異的組換え配列をもたない任意のDNA断片のクローン化には適さない。
 一方、大腸菌細胞では、二本鎖切断の修復に関与するタンパク質RecA,RecBCDが相同組換え反応を触媒する。本組換え反応には、数百個以上の塩基が同じ配列を示すDNA断片が存在する場合に相同組換えが起こる場合がある。しかしながら、相同DNAの長さが40-50個以下である場合は、大腸菌自体による遺伝子組換えが極めて起こり難く、ファージ由来の組換え酵素であるレッド(Redα/β)またはRecE/Tシステムを導入した場合に限って、相同遺伝子間の組換えを起こすことが可能となる。この短い相同領域を含むDNA断片を用いた遺伝子組換えは、微生物の遺伝体を操作する技術、または制限酵素/リガーゼに影響されない細胞内クローニングなどに用いられる(非特許文献1、特許文献1)
 [非特許文献1]
 Zhang et al., 1998, Nature Genetics, 20, 123-128, Zhang et al., 2000, Nature Biotechnology 18, 1314-1317
 [特許文献1]特表2002-503448号公報(対応するWO99/29837)
上記特許文献1および非特許文献1の全記載は、ここに特に開示として援用される。
 線状化させたプラスミドベクターとPCR産物との間の相同組換え反応により細胞内クローニングを行う場合、先ず、挿入DNAの両端に長さが50塩基の配列相同領域を位置させ、ベクターにおいても、配列相同領域が両端に位置するように制限酵素による切断を行い、相同組換え酵素(リコンビナーゼ)を持つ大腸菌に導入する方法が用いられる。
 挿入DNAは、例えば、PCR産物として調製されるが、PCRの際のプライマーの鋳型への結合の特異性が低い場合や鋳型にプライマー配列と類似した配列が複数存在する場合などでは、非特異的増幅反応の結果両端の配列相同領域に挟まれた領域が、クローニングの対象であるターゲット領域でない場合も生じ得る。
 配列相同領域には挟まれた領域が、クローニングの対象であるターゲット領域でない場合も、プライマー中に存在する配列相同領域を用いて、目的とする遺伝子と同様にクローン化されてしまう。
 そこで本発明の目的は、相同組換えを用いた遺伝子のクローニング方法に用いる相同組換え方法であって、目的とする遺伝子を選択的に相同組換えできる方法を提供することにある。
 さらに本発明の目的は、上記目的とする遺伝子を選択的に相同組換えできる方法を用いて得られる組換えDNA分子を増幅することを含む標的遺伝子のクローニング方法を提供することにある。
 通常の相同組換えは、線状化されたベクターの両端に存在する相同組換え領域と、増幅用プライマー配列に存在する相同領域は同一である。それに対して、本発明における線状化されたベクターが有する相同組換え領域は、増幅用プライマーの配列に加え、標的遺伝子のみに存在する増幅用プライマー配列の内側の配列をベクター側に付加することにより、増幅用プライマーを用いて得られた増幅産物の中から、標的DNA断片を選択的に相同組換えさせるという特徴を有する。
 本発明は以下のとおりである。
[1]増幅用プライマー配列P1およびP2を両末端に有する標的遺伝子の配列を含むPCR産物と、
このPCR産物の増幅用プライマー配列P1およびP2に相同的な塩基配列からなる相同組換え領域VP1およびVP2を有し、かつ、P1の内側の一部の配列T1に相同的な塩基配列からなる相同組換え領域VT1をVP1の末端側に、および/またはP2の内側の一部の配列T2に相同的な塩基配列からなる相同組換え領域VT2をVP2の末端側に有する線状化されたべクターを用い(但し、T1およびT2の少なくとも一方は、標的遺伝子に特有の塩基配列を有する)
前記PCR産物を相同組換え反応に付して前記ベクターに挿入して、
目的とするPCR産物を特異的にベクターへ挿入した組換えDNA分子を得ることを含む、相同組換え方法。
[2]T1およびT2の両方が、標的遺伝子に特有の塩基配列を有する、[1]に記載の方法。
[3]増幅用プライマー配列P1およびP2の一方または両方が、標的遺伝子に特有の塩基配列を有する、[1]または[2]に記載の方法。
[4]PCR産物は、2回のPCRによって調製されたものであり、1回目のPCRでは、T1配列を含む増幅用プライマーとP3配列を含む増幅用プライマーを用いて実施され(ただし、P3配列は前記ベクターが有する相同組換え領域VT1、VP1、VT2、およびVP2とは相同性を有さない)、2回目のPCRでは、P1配列を含む増幅用プライマーとP2配列を含む増幅用プライマーを用いて実施されたものである、[1]~[3]のいずれかに記載の方法。
[5]P1配列を含む増幅用プライマーの3'端側領域とT1配列を含む増幅用プライマーの5'端側領域とは、部分的に重複する配列を有し、P2配列を含む増幅用プライマーとP3配列を含む増幅用プライマーとは、部分的に重複する配列を有し、または有さない、[4]に記載の方法。
[6]増幅用プライマー配列P1およびP2は、独立に10塩基以上である[1]~[5]のいずれかに記載の方法。
[7]ベクターの相同組換え領域VP1+VT1およびVP2+VT2は、独立に11塩基以上である[1]~[6]のいずれかに記載の方法。
[8]一方または両方の増幅用プライマー配列P1およびP2は、ヌクレアーゼ耐性オリゴプライマー由来である[1]~[7]のいずれかに記載の方法。
[9]前記標的遺伝子が抗体遺伝子またはT細胞受容体遺伝子であり、前記抗体遺伝子またはT細胞受容体遺伝子の定常領域由来の配列および可変領域由来の配列を含み、前記ベクターの相同組換え領域VP1+VT1およびVP2+VT2の一方は、抗体遺伝子またはT細胞受容体遺伝子の定常領域由来の配列である[1]~[8]のいずれかに記載の方法。
[10]前記ベクターの相同組換え領域VP1+VT1およびVP2+VT2の他方は、抗体遺伝子およびT細胞受容体遺伝子に由来しない塩基配列を有する、[9]に記載の方法。
[11]前記相同組換え反応が、レッド(Redα/β)またはRecE/Tシステムを用いて細胞内で行われる、[1]~[10]のいずれかに記載の方法。
[12]前記相同組換え反応が、In-Fusion法で行われる[1]~[10]のいずれかに記載の方法。
[13][1]~[12]のいずれかに記載の相同組換え方法により、目的とするPCR産物を特異的にベクターに挿入した組換えDNA分子を調製し、次いで得られた組換えDNA分子を持つ組換え体を増幅することを含む、標的遺伝子のクローニング方法。
[14]増幅用プライマー配列P1およびP2を両末端に有する標的遺伝子の配列を含むPCR産物を特異的にベクターへ挿入した組換えDNA分子を得ることを含む相同組換え方法に用いるための、線状化ベクターを含むキットであって、
前記線状化ベクターは、PCR産物の増幅用プライマー配列P1及びP2に相同的な塩基配列からなる相同領域VP1およびVP2を有し、かつ、P1の内側の一部の配列T1に相同的な塩基配列からなる相同組換え領域VT1をVP1の末端側に、および/またはP2の内側の一部の配列T2に相同的な塩基配列からなる相同組換え領域VT2をVP2の末端側に有する線状化ベクターである、前記キット。
[15]前記相同組換え方法が、[1]~[12]のいずれかに記載の方法である、[14]に記載のキット。
[16]前記組換えDNA分子が、該組換えDNA分子を持つ組換え体を増幅することを含む標的遺伝子のクローニング方法に用いられる、[14]または[15]に記載のキット。
 本発明の方法(内部配列依存的相同組換え反応を利用する方法)によれば、標的DNA断片と非標的DNA断片が混在する場合であっても、標的DNA断片を精製する(非標的DNA断片を除去する)ことなしに、標的DNA断片を効率よくベクターへ導入でき、この標的DNA断片を導入したベクターを用いることで、標的DNA断片を効率よくクローニングすることができる。
 本発明の方法(ヌクレアーゼ耐性オリゴプライマーを用いて増幅されたPCR産物と内部配列依存的相同組換え反応を利用する方法)によれば、標的DNA断片と非標的DNA断片が混在する場合であっても、標的DNA断片を精製する(非標的DNA断片を除去する)ことなしに、上記内部配列依存的相同組換え反応を利用する方法に比べて、さらに高い確率(選択性)で標的DNA断片をベクターへ挿入することができ、この標的DNA断片を導入したベクターを用いることで、標的DNA断片をさらに効率よくクローニングすることができる。
 [相同組換え方法]
 本発明の相同組換え方法は、
増幅用プライマー配列P1およびP2を両末端に有する標的遺伝子の配列を含むPCR産物と、
このPCR産物の増幅用プライマー配列P1およびP2に相同的な塩基配列からなる相同組換え領域VP1およびVP2を有し、かつ、P1の内側の一部の配列T1に相同的な塩基配列からなる相同組換え領域VT1をVP1の末端側に、および/またはP2の内側の一部の配列T2に相同的な塩基配列からなる相同組換え領域VT2 をVP2の末端側に有する線状化されたべクターを用い(但し、T1およびT2の少なくとも一方は、標的遺伝子に特有の塩基配列を有する)
前記PCR産物を相同組換え反応に付して前記ベクターに挿入して、
目的とするPCR産物を特異的にベクターへ挿入した組換えDNA分子を得ることを含む。
[通常の相同組換え方法、図1]
 通常の相同組換え方法(ETリコンビネーション反応)は、図1に示すように、増幅用プライマー配列P1およびP2を両末端に有するPCR産物[標的DNA断片(1)と非標的DNA断片(2)]と、このPCR産物の末端または末端付近に位置する、増幅用プライマー配列の一部または全部からなる相同組換え領域VP1およびVP2を有するベクター(II)とを用いて、前記PCR産物を相同組換えにより前記ベクターに挿入する。
 この場合、DNA断片のプライマー配列P1およびP2と、線状化されたベクターのプライマー相同配列VP1およびVP2との間で組換えが起こる。このため、標的DNA断片(1)と非標的DNA断片(2)が混在した場合、DNA断片の長さに極端な違いがあるなどの特別な条件がない限り、両者は同じ確率でベクターへ組み込まれる。図1に示すように、標的DNA断片(1)と非標的DNA断片(2)とは、同じ確率でベクター(II)へ組み込まれる。
 従って、通常の相同組換え方法の場合には、標的DNA断片(1)と非標的DNA断片(2)が混在する場合には、予め標的DNA断片(1)を精製して(非標的DNA断片(2)を除去して)から、相同組換え反応に付す。
[内部配列依存的相同組換え反応、図2]
 それに対して、本発明では、線状化されたベクターの相同組換え領域は、増幅用プライマー配列(PCR産物の少なくとも一方の末端または末端付近に位置する) P1(およびP2)および標的DNA断片の増幅用プライマー配列の内側に存在する配列T1(およびT2)に相同的な塩基配列VP1+VT1(およびVP2+VT2)からなる。そして、PCR産物の一方の末端に位置する増幅用プライマー配列の内側の配列T1(およびT2)は、鋳型由来の配列とする。ベクターの相同組換え領域は、一部が増幅用プライマー配列P1(およびP2)に由来し、残りの一部は標的遺伝子の配列の一部T1(およびT2)に由来する。これにより、増幅用プライマー配列を両端に有するがその内側が標的遺伝子以外の配列を含むPCR産物については、増幅用プライマー配列部分は共通するが、標的遺伝子の配列部分については、相違することから、相同組換え領域として認識されず、相同組換えされない。そのため、目的とする標的遺伝子の配列を含むPCR産物を特異的にベクターへ相同組換えすることができる。本発明の方法は、内部配列依存的相同組換え反応方法と呼ぶこともできる。
 図2に示すように、標的DNA断片(1)は、両方の末端に、一部が増幅用プライマー配列に由来し、残りの一部は標的遺伝子の配列の一部に由来する相同組換え領域P1+T1およびP2+T2を有する。線状化されたベクター(I)が有する相同組換え領域VP1+VT1およびVP2+VT2も、一部が増幅用プライマー配列に由来する配列に相当し、残りの一部は標的遺伝子の配列の一部に由来する配列に相当するものである。この場合(ETリコンビネーション反応を利用する内部配列依存的相同組換え反応)は、DNA断片のプライマーの相補鎖に由来する配列からの組換えと、ベクターの内部配列(標的遺伝子の配列の一部に由来する配列)からの組換えが起こる。内部配列を利用するベクターからの組換え反応は、内部配列を相同組換え領域に有する、標的DNA断片(1)の特異的組換えのみが生じ(ルートB)、内部配列T1およびT2を相同組換え領域に有さない、非標的DNA断片(2)の組換えは生じない(ルートD、内部配列との相同性無し)。しかし、DNA断片のプライマー配列P1およびP2の相補鎖からの組換えが起こった場合(ルートAとC)には、標的DNA断片(1)および非標的DNA断片(2)は共にベクターへ組み込まれる。その結果、標的DNA断片(1)および非標的DNA断片(2)が混在した場合、標的DNA断片(1)の場合は、ルートAとBがあるのに対して非標的DNA断片(2) の場合は、ルートCのみであり、前者が優位にベクターへ導入される。
 但し、PCR産物の末端に位置する増幅用プライマー配列の内側の配列(内部配列)T1およびT2は、少なくとも一方が鋳型由来の配列、即ち、鋳型特有(固有)の配列であれば、上記標的DNA断片の相同組換えの選択性(特異性)向上効果は得られ、ベクターへの標的遺伝子の配列を含むPCR産物の相同組換えの特異性は大幅に向上する。残りの一方の内部配列は、鋳型特有(固有)の配列でなくてもよい。しかし、T1およびT2の、両方が鋳型特有(固有)の配列である方が、標的DNA断片の相同組換えの選択性向上効果は高く、その方が好ましい。
[S化-オリゴプライマーによる内部配列依存的相同組換え反応、図3]
 通常のオリゴDNAをプライマーとして増幅したDNA断片を、線状化されたベクターと共に大腸菌へ導入しETリコンビネーション反応を行うと、当該DNA断片は菌体内で5'→3'エキソヌクレアーゼによる消化を受ける。その結果、DNA断片の3'端が突出した構造が形成される。本3'突出端はPCRに用いたプライマー配列に由来する。同様に、線状化されたベクターも5'→3'エキソヌクレアーゼによる消化を受け、その結果ベクターの3'端が突出した構造が形成される(図2の左から2番目の状態)。ベクターの3'突出端は内部配列に由来する。
 線状化されたベクターの3'突出端がDNA断片の相同領域と組換え反応を行う場合(経路B及びD)は内部配列を利用するため、標的DNAのみがベクターへ組み込まれる(図2の経路B)。内部配列を有さない非標的DNAはこの経路では相同組換えが起こらずベクターに挿入されない(図2の経路D)。DNA断片の3'突出端がベクターと相同領域と組換え反応を行う場合(経路A及びC)はプライマー配列を利用するため、標的DNA断片(図2の経路A)だけでなく、非標的DNA断片(図2の経路C)もベクターに挿入される場合が有るのは、上述のとおりである。
 DNAを構成するヌクレオチド分子は、リン酸を介したフォスフォジエステル結合で連結しており、細胞内のDNA分解酵素はフォスフォジエステル結合を切断する活性を有する。しかしフォスフォジエステルがS化(ホスホロチオエート化)されたDNAや2'4'-BNA化(Bridged Nucleic Acid化)されたDNAはDNA分解酵素に耐性を示す。本発明では、これらDNA分解酵素に耐性を示すオリゴプライマーをヌクレアーゼ耐性オリゴプライマーと呼ぶ。ヌクレアーゼ耐性オリゴプライマーの代表例は、S化(ホスホロチオエート化)オリゴプライマーであるが、ヌクレアーゼ耐性オリゴプライマーは、S化オリゴプライマーに限定される意図ではない。S化オリゴDNA(SP1、SP2)をプライマーとしてPCR反応により増幅されたS化DNA断片は、その5'側にS化された配列を有するため、特に5'→3'エキソヌクレアーゼによる消化を受けにくくなる。よって当該DNA断片をベクターと共に大腸菌へ導入しETリコンビネーション反応を行うと、S化DNA断片は5'側がS化されているため5'→3'エキソヌクレアーゼによる消化を受けない(図3の左から2番目の状態)。この結果プライマーの相補配列に由来する3'突出端を形成できず、S化DNA断片からベクターへ向けた相同組換えは起こらない(経路A,C、組換え生じず)。一方線状化されたベクターは5'→3'エキソヌクレアーゼによる消化を受けるため、ベクターの3'端が突出した構造が形成される。本3'突出端は内部配列に由来するため、本領域と相同性を有する標的S化DNA断片のみが相同組換え反応の基質となる(経路B)。
 このように、DNA断片の5'側はS化-オリゴDNAに由来するため、5'→3'エキソヌクレアーゼ消化に耐性となる。このためDNA断片からベクター側への相同組換え反応が抑制される。一方線状化されたベクターの5'端は5'→3'エキソヌクレアーゼにより消化され、一本鎖となった3'端の内部配列が、標的DNA断片のみと相同組換え反応を行うことができる。この結果、たとえ標的DNAが非標的DNAの五分の一量であっても、標的DNA断片のみがベクターへ選択的に導入される。
 S化-オリゴDNA(SP1、SP2)をプライマーとして得られたPCR産物を相同組換え用のDNA断片として用いることで、図3のBのみが相同組換え反応経路となる。これに対し通常のプライマーを用いて得られるPCR産物を相同組換え用のDNA断片として用いた場合は、図2のA、B、Cが相同組換え反応経路となる。このうち経路Cは非標的DNA断片が組み込まれる反応経路である。本反応に用いられるオリゴプライマーは5'側が少なくとも1塩基以上DNA分解酵素に耐性であれば、その種類は特に制限されない。5'側が32'4'-BNA化されたオリゴプライマーであることもできる。
[相同組換え反応]
 本発明における相同組換え反応は、ETリコンビネーション法[レッド(Redα/β)またはRecE/Tシステム]である以外に、In-Fusion法であってもよい。
 ETリコンビネーション法は、RecEまたはRedαによる5'→3'エキソヌクレアーゼ消化により形成された3'突出端を利用した、菌体内で行われる相同組換え反応である(非特許文献1、特許文献1に参照)。RecEまたはRedαのいずれを用いても本発明を実施することができる。相同組換え反応自体は、常法により実施できる。
 In-Fusion法は、ワクシニアウイルスDNAポリメラーゼの3'→5'エキソヌクレアーゼ消化により形成された5'突出端を利用した、試験管内で行われる相同組換え反応である。本反応にはDNA断片端と直鎖状ベクター端との間に約15bp程度の相同領域が必要とされている。ワクシニアウイルスDNAポリメラーゼの3'→5'エキソヌクレアーゼ消化が内部配列を消化する段階にまで至ると、標的DNA断片がベクターに組み込まれる。
 In-Fusion法の原理は、以下の論文で説明されており、実施に当たっては、タカラバイオ/Clontech社で販売されている相同組換え試薬をそのまま用いることができる。
Nucleic Acids Research, 2007, Vol. 35, No. 1 143-151
Michael et.al.
Duplex strand joining reactions catalyzed by vaccinia virus DNA polymerase
 In-Fusion法を用いた、通常の相同組換え反応は、図4のB図として示される。ワクシニアウイルスDNAポリメラーゼが、DNA断片及びベクターの3'端を消化する。これにより、DNA断片と線状化されたベクター間に相補領域が出現する。本相補鎖領域が互いにアニーリングすることで、DNA断片のベクターへの挿入が行われる。
 それに対して本発明の相同組換え反応は、図4のA図として示される。ワクシニアウイルスDNAポリメラーゼの3'→5'エキソヌクレアーゼ消化が内部配列を消化する段階にまで至ると、標的DNA断片(1)と線状化されたベクター(I)との間に相補鎖領域が出現する。その結果、組換え反応が起る。それに対して、非標的DNA断片(2)では、プライマー配列を介してベクターと相補鎖領域が形成されるが、非標的DNA断片(2)と相同性を有さないベクターの内部配列が存在するため組換え反応が起こらない。
[標的遺伝子]
 本発明の方法で用いられる標的遺伝子は、特に制限されない。標的遺伝子は、例えば、抗体遺伝子であることができ、抗体遺伝子を含むPCR産物の一方の末端に位置する増幅用プライマー配列の内側の配列は、抗体遺伝子の定常領域由来の配列であることができる。標的遺伝子は、抗体遺伝子以外に、T細胞受容体遺伝子、スプライシングバリアント等のプライマー領域及びそれに隣接する内側の配列が一定であるが、内部に可変部位を持つDNAであることもできる。
 PCR産物は、2回のPCRによって調製されたものであり、1回目のPCRでは、T1配列を含む増幅用プライマーとP3配列を含む増幅用プライマーを用いて実施され(ただし、P3配列は前記ベクターが有する相同組換え領域VT1、VP1、VT2、およびVP2とは相同性を有さない)、2回目のPCRでは、P1配列を含む増幅用プライマーとP2配列を含む増幅用プライマーを用いて実施されたものであることができる。各配列の位置関係を図5に示す。上記P3配列は相同組換えには直接関与せず、nested PCRを行う時の1回目に使用するプライマーとして用いられる。P1配列を含む増幅用プライマーの3'端側領域とT1配列を含む増幅用プライマーの5'端側領域とは、部分的に重複する配列を有し、P2配列を含む増幅用プライマーとP3配列を含む増幅用プライマーとは、部分的に重複する配列を有することも、有さないこともできる。
 以下に、免疫グロブリン遺伝子定常領域を標的遺伝子配列とする場合を例に、図6に基づいて以下に説明する。図6に示すプライマーB(の一部)が、図2および5のプライマーT1に相当し、プライマーDとCが図2および5の配列P1とP2に相当する。プライマーAは、図6に示すプライマーP3に相当する。
(1)PCR産物
 磁気ビーズを用いたcDNA合成法の図6(免疫グロブリン可変領域増幅法)を参照。
 鋳型にポリdGを3'端に付加した免疫グロブリンcDNA(磁気ビーズ上に合成)、プライマーA(免疫グロブリン遺伝子定常領域)とB(ポリdGに結合するためのもの)を用いて、1回目のPCRを行う。
 1回目のPCR終了後、これを例えば、100倍程度に希釈したものを、2回目のPCRの鋳型として用いる。使用するプライマーは、DとCである。Dは、3'側の配列が1回目のPCRで使用したプライマーBの5'側とオーバーラップするように設計し、この領域にDの3'端側領域を結合させる。プライマーCは定常領域に位置し、1回目のPCRで使用したプライマーAの内側に位置するように設計したプライマーである。ただし、プライマーCは、プライマーAと一部がオーバーラップする配列を有していてもよいが、プライマーAとオーバーラップしない配列を有することもできる。1回目のPCRで免疫グロブリンの定常領域を含むDNA断片が増幅されていれば、プライマーCとDを用いることで、さらに免疫グロブリンの定常領域を含むDNA断片を増幅することができる。5'RACE-PCR(rapid amplification of cDNAend)と呼ばれるPCR法の一つである。
 プライマーD+B配列は、2回のPCR反応で、プライマーBとDにより合成された人工的な配列であって、鋳型の配列に特有(固有)の配列は有さない。この部位がベクターの相同組換え用配列の一つとなる。
 2回目の遺伝子増幅反応では、プライマーDが特異的に、1回目のPCRで増幅されたDNA断片の3'端側領域に結合し(プライマーBの配列を有するため)、プライマーCが プライマーAのさらに内側の免疫グロブリン定常領域に結合する。その結果、特異的な増幅が行われる。この場合は必ず、PCR産物の片側にはD+Bの配列が存在することになる。しかし実際は、使用したプライマーがこれと類似した塩基配列を有する非標的DNAに結合した結果、非特異的なPCR産物が合成されてしまうこともある。例えば、プライマーDが非特異的に他のDNA断片に結合した場合には、合成されたDNA断片にはプライマーDの配列がその端末に存在するが、その内側にはプライマーBの配列は存在しない。このような配列を有するDNA断片は、プライマーD+B配列を有さないため、内部配列依存的相同組換えの対象とならない(図7、免疫グロブリン可変領域の相同組換えを用いたベクター導入法参照)。従ってプライマーBのプライマーDとオーバーラップしない配列は、図5にも示すように、内部配列として働き、標的DNA断片の相同組換えの選択性を向上させる。
 また、もしプライマーCがこれと類似した塩基配列を有する非標的DNAに結合し、DNA増幅が行われた場合、このDNA断片には図7で示した+αに相当する定常領域の配列が存在しない。+αに相当する配列は標的DNAである免疫グロブリン鎖特有(固有)の配列である。従って、相同領域として+αを有さないDNA断片は、相同組換えの対象とならず、ベクターには挿入されることはない(図7、免疫グロブリン可変領域の相同組換えを用いたベクター導入法参照)。プライマーCが特異的に標的遺伝子である免疫グロブリン遺伝子の定常領域に結合しDNAが増幅されたときのみ、プライマーC+αの配列がDAN断片の端末に現れる。この配列がベクターとの相同組換えの対象となる(図7)。
 本発明の方法は、非特異的に増幅されたPCR産物はベクターに導入されず、特異的に増幅されたPCR産物のみがベクターに自動的に導入される方法である。従来法では、目的とする特異的増幅産物をベクターに導入するためには、PCR反応後、ゲル電気泳動法又はスピンカラム法等を用いた特異的増幅産物の分離精製作業が必要である。また得られたプラスミドの遺伝子配列解析も行わなければならず、手間とコストがかかる。
 上記のように、PCR産物は、2回のPCRによって調製されたものであり、1回目のPCRでは、T1とP3の配列を含む増幅用プライマーを用いて実施され、2回目のPCRでは、P1とP2の配列を含む増幅用プライマーを用いて実施されたものであることができる。P1の配列を含む増幅用プライマーとT1の配列を含む増幅用プライマーとは、5'RACE-PCRでは、部分的に重複する配列を有する。また、P2の配列を含む増幅用プライマーとP3の配列を含む増幅用プライマーについても、部分的に重複する配列を有することもできるが、有さないものであってもよい。
 各増幅用プライマー配列は、PCRのプライミングの性能を考慮して、例えば、10塩基以上であることができ、好ましくは 、14~35塩基の範囲である。
 プライマー配列P1およびP2に由来する相同組換え領域は、例えば、10塩基以上であることができ、好ましくは 、14~35塩基の範囲である。
 相同組換え領域の一部の配列と相同的な塩基配列である増幅用プライマー配列の内側の内部配列T1およびT2は、1塩基以上の範囲であり、好ましくは5 ~1000塩基の範囲である。さらに、増幅用プライマー配列との合計P1+T1およびP2+T2は、それぞれ独立に11塩基以上の範囲であることができ、好ましくは25~1000塩基の範囲である。
[クローニング方法]
 本発明は、上記本発明の方法により、目的とするPCR産物を特異的にベクターに挿入した組換えDNA分子(組換えベクター)を増幅することを含む、標的遺伝子のクローニング方法を包含する。組換えDNA分子の増幅には常法を用いることができる。発現ベクターへ組み込み増幅された組換えDNA分子(組換えベクター)は、細胞などで発現させ、タンパク質を得、さらに、得られたタンパク質の機能解析に用いることができる。目的遺伝子が抗体遺伝子の場合、単離した抗体(タンパク質)が、目的の抗原に結合するか、調べることができる。
 また、増幅された組換えDNA分子(組換えベクター)に含まれる標的遺伝子は、例えば、制限酵素処理によってベクターから切り出され、必要により精製される。標的遺伝子の分離及び精製は、常法により行うことができる。標的遺伝子の分離及び精製としては、例えば、ゲル抽出やカラム精製等を挙げることができる。分離及び精製された標的遺伝子は、例えば、塩基配列の決定、発現ベクターへ組み込み、標的遺伝子の機能解析などに利用することができる。
[キット]
 本発明は、増幅用プライマー配列P1およびP2を両末端に有する標的遺伝子の配列を含むPCR産物を特異的にベクターへ挿入した組換えDNA分子を得ることを含む相同組換え方法に用いるための、線状化ベクターを含むキットにも関する。このキットに含まれる線状化ベクターは、PCR産物の増幅用プライマー配列P1及びP2に相同的な塩基配列からなる相同領域VP1およびVP2を有し、かつ、P1の内側の一部の配列T1に相同的な塩基配列からなる相同組換え領域VT1をVP1の末端側に、および/またはP2の内側の一部の配列T2に相同的な塩基配列からなる相同組換え領域VT2をVP2の末端側に有する線状化ベクターである。この線状化ベクターは、上記相同組換え方法で説明したものと同様である。
 上記キットには、線状化ベクター以外に、例えば、キットの使用説明書および相同組換え反応に用いるための試薬等を含むこともできる。相同組換え反応に用いるための試薬等としては、例えば、レッド(Redα/β)またはRecE/Tシステム用の試薬等、In-Fusion法用の試薬等を挙げることができる。
 本発明のキットを用いて実施できる相同組換え方法は、例えば、上記本発明の相同組換え方法であるが、それ以外の方法に用いることを制限する意図ではない。
 さらに、本発明のキットを用いて得られた組換えDNA分子は、該組換えDNA分子を持つ組換え体を増幅することを含む標的遺伝子のクローニング方法に用いることができる。
 以下、本発明を実施例によりさらに詳細に説明する。
実施例1
 標的DNA断片と非標的DNA断片が混在した場合における、内部配列依存的相同組換え法の利点について、以下の実験1~4で示す。
[実験材料の概略]
 プライマー(a)及び(b)を用い、2種類のDNA断片(1)および(2)をPCR法により増幅した。
Figure JPOXMLDOC01-appb-C000001
 DNA断片(1)は相同組換えの標的DNAで、その端にはPCR用のプライマー(a)配列由来の配列が存在し、更にその内側(標的DNA側)にポリdG/dC配列由来の配列が存在する。もう一方の端には、プライマー(b)配列由来の配列が存在し、更に内側(標的DNA側)にはヒト免疫グロブリンガンマー(Igγ)鎖定常領域由来の配列が存在する(上記DNA断片I塩基配列参照)。
 DNA断片(2)は、非標的DNAで、その端にPCR用のプライマー(a)配列由来の配列が存在し、もう一方の端には、プライマー(b)配列由来の配列が存在する(DNA断片II塩基配列参照)。
 直鎖状ベクター(I)は相同組換え領域として、プライマー(a)由来配列及びその内側にポリdG/dC配列を有し、他端にはプライマー(b)由来配列及びその内側に免疫グロブリンガンマー(Igγ)鎖定常領域由来配列を有する(ベクターI配列参照)。
 直鎖状ベクター(II)は相同組換え領域として、プライマー(a)由来配列並びにプライマー(b)由来配列のみを有する(ベクターII配列参照)。
プライマー(a):(pCMV EGFP N1 マルチクローニングサイト由来) 
5'-CTTCGAATTCTGCAGTCGACGGTACCGCGGGCCCGGGA-3' (配列番号1)
プライマー(b): (ヒトIgγ鎖定常領域由来)
5'-AGCCGGGAAGGTGTGCACGCCGCTG-3 (配列番号2)
内部配列(ポリdG/dC)
5'-TCCCCCCCCCCCCC-3' (配列番号3)
3'-AGGGGGGGGGGGGG-5' (配列番号4)
内部配列(ヒトIgγ鎖定常領域由来)
5'-CGTGGAACTCAGGCGCCCTGAC-3' (配列番号5)
3'-GCACCTTGAGTCCGCGGGACTG-5' (配列番号6)
Figure JPOXMLDOC01-appb-I000002
Figure JPOXMLDOC01-appb-I000003
ベクター(II)相同組換え配列: プライマー配列(a)
5'-CTTCGAATTCTGCAGTCGACGGTACCGCGGGCCCGGGA-3' (配列番号11)
3'-GAAGCTTAAGACGTCAGCTGCCATGGCGCCCGGGCCCT-5' (配列番号12)
ベクター(II)相同組換え配列: プライマー配列(b)
5'-CAGCGGCGTGCACACCTTCCCGGCT -3' (配列番号13)
3'-GTCGCCGCACGTGTGGAAGGGCCGA -5    (配列番号14)
 DNA断片(1)(図8、配列番号15)は、ヒト免疫グロブリンγ鎖の可変領域と一部の定常領域を有する683bpの標的DNA断片で、PCR増幅のためのプライマー(a)並びにプライマー(b)配列を有する。また内部配列特異的相同組換え反応に利用される配列として、プライマー(a)の内側にポリdG/dC配列、プライマー(b)配列の内側に免疫グロブリンガンマー鎖定常領域由来配列をそれぞれ有する。増幅に用いたプライマー(a)、(b)の位置を矢印で示した。
 DNA断片(2) (図9、配列番号16)は628bpのGPF遺伝子に由来するDNA断片で、その両端にPCR増幅のために用いるプライマー(a)配列とプライマー(b)配列を有する。両プライマー配列の内側には内部配列特異的相同組換え反応に利用される配列は存在せず、GFP遺伝子由来の配列が存在する。
 pCMV EGFPN1(Clontech社)のEco RIとNotIサイトに図8の配列を挿入しベクターI(図10、配列番号17)を作成した。本プラスミドはEco RIサイト下流に相同組換えのためのプライマー(a)配列並びに5'-RACE PCRを用いて増幅したヒト免疫グロブリンγ鎖DNA断片を特異的に組み込むための内部配列としてポリdC/dG配列を有する。ポリdC/dG配列の下流には、制限酵素切断で直鎖状にならなかったプラスミドが導入された大腸菌内をショ糖含有培地上で殺すためのネガティブセレクションマーカーであるSacB遺伝子(2kb)が、EcoRVサイト(配列番号17の62位と63位の間)に挿入さていれる。SacB遺伝子下流には、5'-RACE PCRを用いて増幅したヒト免疫グロブリンγ鎖DNA断片を特異的に組み込むためのもう一つの内部配列として、ヒト免疫グロブリンγ鎖定常領域の配列が存在する。その下流にはプライマー(b)配列が存在する。
 本ベクターをEcoRVで切断後エタノール沈殿により直鎖状プラスミドDNAを回収し、最終濃度0.1μg/μlの濃度に調製した(図7)。
 pCMV EGFPN1(Clontech社)のEco RIとNotIサイトに図9の配列を挿入しベクターII(図11、配列番号18)を作成した。本プラスミドはEco RIサイト下流に相同組換えのためのプライマー(a)配列を有する。プライマー(a)配列の下流には相同組換えを行わなかったプラスミドが導入された大腸菌内をショ糖含有培地上で殺すためのネガティブセレクションマーカーであるSacB遺伝子(2kb)がEcoRVサイト(配列番号18の51位と52位の間)に挿入される。SacB遺伝子下流には、相同組換えのためのプライマー(b)配列が存在する。
 本ベクターをEcoRVで切断後エタノール沈殿により直鎖状プラスミドDNAを回収し、最終濃度0.1μg/μlの濃度に調製した。
(実験1)
通常のETリコンビネーション法を用いた相同組換え反応
[方法]
 DNA断片1および2が挿入されたプラスミドを鋳型とし、プライマー(a)及び(b)を用いてPCR反応を行い、DNA断片1および2を増幅した。PCR反応は、50μlの反応系に、鋳型プラスミドDNA 2ng、各プライマー10pmol、dNTP 10nmolを加え、タカラバイオ社製PrimeSTAR耐熱性DNAポリメラーゼを用い94℃30秒-68℃40秒の反応を30サイクル行った。増幅されたDNA断片をスピンカラム法により精製し、50ng/μlの濃度に調製した。
 コンピテントセルはGeneBridges 社のRed/ET Recombination systemに従い調製した。DNA断片1、2及びベクター(II)を50ng:50ng:100ngの割合で混合した溶液3μlを、大腸菌に導入した。得られた薬剤耐性菌のコロニーから、プライマー(a)及び(b)を用いたコロニーPCR法を行い、ベクターに挿入されたDNA断片を増幅した。
 コロニーPCR法は、大腸菌コロニーを50μlのPBS-0.1% TritonX溶液に懸濁させ、これを95℃で5分加熱し菌体からプラスミドDNAを溶出させた。PCR反応は、上記菌体加熱溶液1μlに、プライマー(a)及び(b)を10pmol、dNTP 10nmolを加え、50μlの反応系にてタカラバイオのPrimeSTAR耐熱性DNAポリメラーゼを用いたPCR反応(94℃30秒-68℃40秒の反応を30サイクル)を行った。反応液2μlを1%アガロースゲルにて電気泳動を行い、増幅されたDNA断片を分離した。
[結果]
 コロニーPCR産物の電気泳動の結果(図12)、IgGに由来する683bpのDNA断片1が挿入されていたものは6個。GFPに由来する628bpのDNA断片2が挿入されていたものは5個、DNA断片1及び2が挿入されていないものが1個検出された。すなわち、通常のETリコンビネーション法では、標的DNA断片と非特異的DNA断片が混在した場合に、標的DNA断片のみを効率よくベクターへ導入することは困難であることが判明した。
(実験2)
内部配列依存的相同組換え反応を用いた標的DNAの選択的クローン化
[方法]
 実験1で調製したDNA断片1、2及びベクター(I)を50ng:50ng:100ngの割合で混合した溶液3μlを、大腸菌に導入した。得られた薬剤耐性菌のコロニーから、ベクター(I)に導入されたDNAフラグメントを、実験1と同様の方法で増幅し、電気泳動法にて解析した。
[結果]
 コロニーPCR産物の電気泳動の結果(図13)、IgGに由来するDNA断片1が挿入されていたものは8個。GFPに由来するDNA断片2が挿入されていたものは2個、DNA断片1及び2が挿入されていないものが2個検出された。以上の結果から、内部配列依存的相同組換え反応を行うことで、標的DNA断片と非標的DNA断片が混在した場合でも、標的DNA断片を効率よくベクターへ導入できることが明らかになった。
(実験3)
S化-オリゴプライマーを用いた内部配列依存的相同組換え法
 プライマー(a)及び(b)の5'端3塩基をS化したオリゴプライマーを用いて実験1と同様の方法でS化DNA断片1、2を調製した。
 本S化DNA断片1、2及びベクター(I)を50ng:50ng:100ngの割合で混合した溶液3μlを、大腸菌に導入した。薬剤耐性菌のコロニーから、プライマー(a)及び(b)を用いコロニーPCR法を行い、ベクターに挿入されたDNA断片を増幅した。その結果(図14)、IgGに由来するDNA断片1が挿入されたものは9個。GFPに由来するDNA断片2が挿入されたものは0個、DNA断片1及び2が挿入されていないものが2個検出された。
(実験4)
 実験3で調製したS化DNA断片1、2及びベクター(I)を10ng:50ng:100ngの割合で混合した溶液3μlを大腸菌に導入し、同様の方法でベクターに挿入されたDNA断片を解析した。その結果(図15)、IgGに由来するDNA断片1が挿入されていたものは7個、GFPに由来するDNA断片2が挿入されていたものは1個、DNA断片1及び2が挿入されていないものが3個検出された。以上の結果より、S化-オリゴプライマーで増幅されたPCR産物と内部配列依存的相同組換え反応を用いることで、標的DNAを35倍の正確性でベクターへ挿入することが可能となった。
(実験5)
ETリコンビネーション法を用いた、ヒト末梢血Bリンパ球免疫グロブリンγ鎖可変領域DNA断片のベクターへの導入
 ヒト末梢血Bリンパ球1個を、オリゴdT25が結合した磁気ビーズ(ダイナビーズ)3μgの入った細胞溶解液3μl(100mM Tris HCl (pH7.5), 500mM LiCl, 1%ドデシル硫酸Li (LiDS) 5mM dithiothreitol)に加え、細胞内のmRNAを磁気ビーズに結合させた。次に磁気ビーズを、3μlのmRNA洗浄用溶液A(10mM Tris HCl (pH7.5), 0.15M LiCl, 0.1% LiDS)、続いて3μlのmRNA洗浄用溶液B(75mM KCl, 3mM MgCl2, 0.1% TritonX, 0.5mM dNTP, 5mM DTT, 2 unit RNase inhibitor)にて1回洗浄した後、cDNA合成を行った。すなわち洗浄後の磁気ビーズにcDNA合成用溶液3μl(50mM Tris HCl (pH8.3), 75mM KCl, 3mM MgCl2, 0.1% Triton X-100, 0.5mM dNTP, 5mM DTT, 2 unit RNase inhibitor, 10 unit SuperScript III Reverse transcriptase (Invitrogen)を加え、50℃にて1時間反応させた。次に磁気ビーズを3'テーリング洗浄溶液3μl(50mMリン酸カリウム(pH7.0), 0.5mM dGTP, 0.1% Triton X-100, 4mM 塩化マグネシウム)にて洗浄し、新たに3'テーリング反応溶液3μl(50mMリン酸カリウム(pH7.0), 0.5mM dGTP, 0.1% Triton X-100, 4mM 塩化マグネシウム、 terminal deoxynucleotidyl transferase 10U )を加え、37℃にて30分間反応を行った。
 磁気ビーズを3μlのTE溶液(10mM Tris HCl(pH7.5),1mM EDTA, 0.1% TritonX)にて洗浄後、5'-RACE PCR法を用いてヒト免疫グロブリンγ鎖遺伝子の増幅を行った。1回目のPCR反応は、磁気ビーズに25μlのPCR反応溶液(プライマー1及び2各10pmol、dNTP 10nmol、タカラバイオPrimeSTAR耐熱性DNAポリメラーゼ1U)を加え94℃30秒-68℃40秒の反応を35サイクル行った。プライマー1の配列は5'- CGGTACCGCGGGCCCGGGATCCCCCCCCCCCCCDN-3' (配列番号19)でTdTによりcDNAの3'端に付加されたポリdGにアニーリングする。プライマー2の配列は5'- ACGCTGCTGAGGGAGTAGAGTCCTGAG-3' (配列番号20)でヒト免疫グロブリンγ鎖遺伝子定常領域に由来する。反応後PCR溶液に水225μlを加え10倍希釈した溶液1μlを鋳型とし、プライマー(a) 5'- CTTCGAATTCTGCAGTCGACGGTACCGCGGGCCCGGGA-3' (配列番号1)及び(b)5'- AGCCGGGAAGGTGTGCACGCCGCTG-3' (配列番号2)を用い1回目のPCRと同様の条件で反応を行った。プライマー(a)は、1回目のPCRで増幅されたDNA断片のプライマー1配列と相補的な領域にアニーリングする。プライマー(b)はヒト免疫グロブリンγ鎖遺伝子定常領域に由来し、1回目のPCRに用いたプライマー2の上流に位置する。
 以下にプライマーの位置関係を示した。
Figure JPOXMLDOC01-appb-C000004
 図16に示すように、得られたPCR反応液2μlをアガロースゲル電気泳動法により分離したところ、目的とする免疫グロブリンγ鎖に由来するDNA断片(約0.8kb)に加え、100-300bp付近にスメア状の非特異的増幅に由来するDNA断片が検出された。
 本PCR反応液0.5μlとEcoRV切断により直鎖化したベクター(I) 100ngを混合した溶液2μlを用いて、ETリコンビネーション反応を行った。大腸菌を0.5%ショ糖を含有するカナマイシンアガープレート上で増殖させ、形成されたコロニー5個を2mlのLB培地で一晩培養し、菌体からプラスミドDNAを抽出した。プラスミドDNAをBamHI/NotIで切断後、アガロースゲル電気泳動法を用いて標的ヒト免疫グロブリンγ鎖可変領域DNA断片のベクターへの導入効率を調べた。その結果(図17)、解析した5個すべてのコロニーで標的DNA断片が正しくベクターに組み込まれていることが判明した。
(実験6)
In-Fusion法を用いた内部配列依存的相同組換え反応
 実験1で調製したDNA断片1、2及びベクター(I)を50ng:50ng:100ngで混合した溶液10μlを、タカラバイオ/Clontech社のIn-Fusion II dry-down 試薬に加え、37℃で15分反応を行った。TE溶液で5倍に希釈した反応液2μlをケミカルコンピテントセルに導入し形質転換を行った。得られた薬剤耐性の大腸菌コロニーを用いて、実験1と同様の手法でコロニーPCRを行い、ベクターに挿入されたDNA断片を増幅した。その結果(図18-1)、IgGに由来するDNA断片1が挿入されたものは7個。GFPに由来するDNA断片2が挿入されたものは0個、DNA断片1及び2が挿入されていないものが4個検出された。以上の結果より内部配列依存的相同組換え法は、ETリコンビネーション法のみならずIn-Fusion法にも適用できる技術であることが判明した。
(実験7)
In-Fusion法を用いた、ヒト末梢血Bリンパ球免疫グロブリンγ鎖可変領域DNA断片のベクターへの導入
 実験5で調製した標的ヒト免疫グロブリンγ鎖可変領域DNA断片、及びベクター(I)を50ng:100ngで混合した溶液10μlを、タカラバイオ/Clontech社のIn-Fusion II dry-down 試薬に加え、37℃で15分、その後50℃で15分反応を行った。TE溶液で5倍に希釈した反応液2μlをケミカルコンピテントセルに導入し形質転換を行った。得られた薬剤耐性の大腸菌コロニーから、実験5と同様の手法を用いてプラスミドDNAを抽出した。プラスミドDNAをBamHI/NotIで切断しアガロースゲル電気泳動法により標的ヒト免疫グロブリンγ鎖可変領域DNA断片のベクターへの導入効率を調べた。その結果(図18-2)、解析した12個すべてのコロニーにおいて標的である免疫グロブリン遺伝子断片が正しくベクターに組み込まれていることが判明した。以上の結果より本発明は、ETリコンビネーション法とは反応機構の異なる相同組換え法であるIn-Fusion法においても、目的とするPCR産物を特異的にベクターへ挿入することが可能であることが実証された。
実施例2
DNA 断片の調製
 実験1で使用したDNA断片Iを鋳型とし、プライマー1(5'- CGGTACCGCGGGCCCGGGATCCCCCCCCCCCCCDN-3') (配列番号19)及び以下に示したプライマー(b)から(e)をそれぞれ用いPCR反応を行った。PCR反応条件は実験1に準じて行った。
 以下に用いたプライマー配列とDNA断片1の位置関係を図19に示した。
プライマー(b) 5'-AGCCGGGAAGGTGTGCACGCCGCTG -3' (配列番号21)
プライマー(c) 5'-AGGTGTGCACGCCGCTGGTC-3' (配列番号22)
プライマー(d) 5'-CACGCCGCTGGTCAGGGCGCCTG-3' (配列番号23)
プライマー(e) 5'-CTGGTCAGGGCGCCTGAGTTCCA-3' (配列番号24)
 PCR後のサンプルをスピンカラム法により精製した後、溶液1μlをアガロースゲル電気泳動で解析した。その結果予想されたサイズのDNA断片が確認された(図20)。実験1で調製したベクター(I)100ngと各DNA断片25ngを混合した溶液2μlを用いて、Red/ETリコンビネーション法を用いた相同組換え反応を行った。大腸菌を0.5%ショ糖を含有するカナマイシンアガープレート上で増殖させ、形成されたコロニー数を調べた。得られたコロニー数は、146個(DAN断片1-A)、125個(DAN断片1-B),144個(DAN断片1-C),80個(DAN断片1-D)であった。
 形成されたコロニー5個を2mlのLB培地で一晩培養し、菌体からプラスミドDNAを抽出した。プラスミドDNAをBamHI/NotIで切断しアガロースゲル電気泳動法により各DNA断片のベクターへの導入効率を調べた(図21)。標的DNA断片を取り込んだプラスミドはBamHI/NotI切断により、全長ヒト免疫グロブリンγ鎖(約1.5kb)とベクター(約4kb)が検出される。
 その結果(図21)、DAN断片1-(b)を用いた場合は100%、1-(c)B,1-(d)Cを用いた場合は80%、1-(e)を用いた場合は60%の割合で目的DNA断片がベクターに導入された。以上の結果から内部配列依存的相同組換えには、少なくとも片側2塩基以上の内部配列に加え増幅用プライマー配列との合計25塩基以上が必要であることが明らかになった。各DNA断片とベクターの相同組換え領域図を図22に示す。
 本発明は、遺伝子工学の分野に有用である。
通常の相同組換え方法の反応機構(実験1)の説明図。 内部配列依存的相同組換え反応の反応機構(実験2)の説明図。 S化-オリゴプライマーによる内部配列依存的相同組換え反応の反応機構(実施例1の実験3)の説明図。 In-Fusion法を用いた、通常の相同組換え反応(A図)および本発明の相同組換え反応(B図)の反応機構 (実施例1の実験6)の説明図。 2回のPCRでPCR産物を調製する方法の説明図。 磁気ビーズを用いたcDNA合成法(免疫グロブリン可変領域増幅法)の説明図。 免疫グロブリン可変領域の相同組換えを用いたベクター導入法の説明図。 実施例1で使用したDNA断片(1)(配列番号15) の塩基配列。 実施例1で使用したDNA断片(2)(配列番号16) の塩基配列。 実施例1で使用したベクターI(配列番号17) の塩基配列。 実施例1で使用したベクターII(配列番号18) の塩基配列。 実施例1の実験1におけるコロニーPCR産物の電気泳動の結果。 実施例1の実験2におけるコロニーPCR産物の電気泳動の結果。 実施例1の実験3におけるコロニーPCR産物の電気泳動の結果。 実施例1の実験4におけるコロニーPCR産物の電気泳動の結果。 実施例1の実験5におけるPCR反応液のアガロースゲル電気泳動の結果。 実施例1の実験5におけるBamHI/NotIで切断したプラスミドDNAのアガロースゲル電気泳動の結果。標的DNA断片を取り込んだプラスミドはBamHI/NotI切断により、全長ヒト免疫グロブリンγ鎖(約1.5kb)とベクター(約4kb)が検出される。PCRで増幅されたヒト免疫グロブリンγ鎖可変領域が挿入されていない場合は、BamHI/NotI切断により、ヒト免疫グロブリンγ鎖定常領域(約0.8kb)とベクター(約4kb)が検出される。 実施例1の実験6におけるコロニーPCR産物の電気泳動の結果。 実施例1の実験7におけるアガロースゲル電気泳動の結果。 実施例2で用いたプライマー配列とDNA断片1の位置関係。 実施例2におけるPCR後のサンプル(スピンカラム法により精製)のアガロースゲル電気泳動の結果。 実施例2におけるBamHI/NotIで切断したプラスミドDNAのアガロースゲル電気泳動の結果。 実施例2における各DNA断片とベクターの相同組換え領域を示す図。

Claims (16)

  1. 増幅用プライマー配列P1およびP2を両末端に有する標的遺伝子の配列を含むPCR産物と、
    このPCR産物の増幅用プライマー配列P1およびP2に相同的な塩基配列からなる相同組換え領域VP1およびVP2を有し、かつ、P1の内側の一部の配列T1に相同的な塩基配列からなる相同組換え領域VT1をVP1の末端側に、および/またはP2の内側の一部の配列T2に相同的な塩基配列からなる相同組換え領域VT2をVP2の末端側に有する線状化されたべクターを用い(但し、T1およびT2の少なくとも一方は、標的遺伝子に特有の塩基配列を有する)
    前記PCR産物を相同組換え反応に付して前記ベクターに挿入して、
    目的とするPCR産物を特異的にベクターへ挿入した組換えDNA分子を得ることを含む、相同組換え方法。
  2. T1およびT2の両方が、標的遺伝子に特有の塩基配列を有する、請求項1に記載の方法。
  3. 増幅用プライマー配列P1およびP2の一方または両方が、標的遺伝子に特有の塩基配列を有する、請求項1または2に記載の方法。
  4. PCR産物は、2回のPCRによって調製されたものであり、1回目のPCRでは、T1配列を含む増幅用プライマーとP3配列を含む増幅用プライマーを用いて実施され(ただし、P3配列は前記ベクターが有する相同組換え領域VT1、VP1、VT2、およびVP2とは相同性を有さない)、2回目のPCRでは、P1配列を含む増幅用プライマーとP2配列を含む増幅用プライマーを用いて実施されたものである、請求項1~3のいずれかに記載の方法。
  5. P1配列を含む増幅用プライマーの3'端側領域とT1配列を含む増幅用プライマーの5'端側領域とは、部分的に重複する配列を有し、P2配列を含む増幅用プライマーとP3配列を含む増幅用プライマーとは、部分的に重複する配列を有し、または有さない、請求項4に記載の方法。
  6.  増幅用プライマー配列P1およびP2は、独立に10塩基以上である請求項1~5のいずれかに記載の方法。
  7. ベクターの相同組換え領域VP1+VT1およびVP2+VT2は、独立に11塩基以上である請求項1~6のいずれかに記載の方法。
  8. 一方または両方の増幅用プライマー配列P1およびP2は、ヌクレアーゼ耐性オリゴプライマー由来である請求項1~7のいずれかに記載の方法。
  9. 前記標的遺伝子が抗体遺伝子またはT細胞受容体遺伝子であり、前記抗体遺伝子またはT細胞受容体遺伝子の定常領域由来の配列および可変領域由来の配列を含み、前記ベクターの相同組換え領域VP1+VT1およびVP2+VT2の一方は、抗体遺伝子またはT細胞受容体遺伝子の定常領域由来の配列である請求項1~8のいずれかに記載の方法。
  10. 前記ベクターの相同組換え領域VP1+VT1およびVP2+VT2の他方は、抗体遺伝子およびT細胞受容体遺伝子に由来しない塩基配列を有する、請求項9に記載の方法。
  11. 前記相同組換え反応が、レッド(Redα/β)またはRecE/Tシステムを用いて細胞内で行われる、請求項1~10のいずれかに記載の方法。
  12. 前記相同組換え反応が、In-Fusion法で行われる請求項1~10のいずれかに記載の方法。
  13. 請求項1~12のいずれかに記載の相同組換え方法により、目的とするPCR産物を特異的にベクターに挿入した組換えDNA分子を調製し、次いで得られた組換えDNA分子を持つ組換え体を増幅することを含む、標的遺伝子のクローニング方法。
  14. 増幅用プライマー配列P1およびP2を両末端に有する標的遺伝子の配列を含むPCR産物を特異的にベクターへ挿入した組換えDNA分子を得ることを含む相同組換え方法に用いるための、線状化ベクターを含むキットであって、
    前記線状化ベクターは、PCR産物の増幅用プライマー配列P1及びP2に相同的な塩基配列からなる相同領域VP1およびVP2を有し、かつ、P1の内側の一部の配列T1に相同的な塩基配列からなる相同組換え領域VT1をVP1の末端側に、および/またはP2の内側の一部の配列T2に相同的な塩基配列からなる相同組換え領域VT2をVP2の末端側に有する線状化ベクターである、前記キット。
  15. 前記相同組換え方法が、請求項1~12のいずれかに記載の方法である、請求項14に記載のキット。
  16. 前記組換えDNA分子が、該組換えDNA分子を持つ組換え体を増幅することを含む標的遺伝子のクローニング方法に用いられる、請求項14または15に記載のキット。
PCT/JP2009/054325 2008-03-07 2009-03-06 相同組換え方法およびクローニング方法並びにキット WO2009110606A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US12/921,367 US8841094B2 (en) 2008-03-07 2009-03-06 Homologous recombination method, cloning method, and kit
JP2010501983A JP5628664B2 (ja) 2008-03-07 2009-03-06 相同組換え方法およびクローニング方法並びにキット
CN2009801088267A CN102007212B (zh) 2008-03-07 2009-03-06 同源重组方法和克隆方法以及试剂盒
KR1020107022275A KR101524332B1 (ko) 2008-03-07 2009-03-06 상동 재조합 방법 및 클로닝 방법 및 키트
EP09717816.4A EP2251423B1 (en) 2008-03-07 2009-03-06 Homologous recombination method, cloning method, and kit
CA2717618A CA2717618A1 (en) 2008-03-07 2009-03-06 Homologous recombination method, cloning method, and kit
AU2009220532A AU2009220532B2 (en) 2008-03-07 2009-03-06 Homologous recombination method, cloning method, and kit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008057995 2008-03-07
JP2008-057995 2008-03-07

Publications (1)

Publication Number Publication Date
WO2009110606A1 true WO2009110606A1 (ja) 2009-09-11

Family

ID=41056155

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/054325 WO2009110606A1 (ja) 2008-03-07 2009-03-06 相同組換え方法およびクローニング方法並びにキット

Country Status (8)

Country Link
US (1) US8841094B2 (ja)
EP (1) EP2251423B1 (ja)
JP (1) JP5628664B2 (ja)
KR (1) KR101524332B1 (ja)
CN (1) CN102007212B (ja)
AU (1) AU2009220532B2 (ja)
CA (1) CA2717618A1 (ja)
WO (1) WO2009110606A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012133572A1 (ja) 2011-03-30 2012-10-04 国立大学法人富山大学 形質細胞または形質芽細胞の選択方法、目的抗原特異的な抗体の製造方法、新規モノクローナル抗体
JPWO2015107888A1 (ja) * 2014-01-14 2017-03-23 国立大学法人 鹿児島大学 幹細胞における腫瘍化原因細胞の新たな標識法と治療法
US10416165B2 (en) 2015-08-10 2019-09-17 National University Corporation University Of Toyama Method for producing antigen specific monoclonal antibody
WO2020171020A1 (ja) 2019-02-18 2020-08-27 株式会社エヌビィー健康研究所 細胞の選抜方法、核酸の製造方法、組換え細胞の製造方法、目的物質の製造方法、医薬組成物の製造方法、及び試薬

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK2521556T3 (en) 2010-01-08 2018-08-13 Ionis Pharmaceuticals Inc MODULATION OF ANGIOPOIETIN-LIKE 3 EXPRESSION
CN102634534A (zh) * 2012-03-30 2012-08-15 深圳市中联生物科技开发有限公司 基于同源重组的核酸分子克隆方法及相关试剂盒
CN111394355A (zh) 2013-12-24 2020-07-10 Ionis制药公司 促血管生成素样3表达的调节
CN104046614A (zh) * 2014-06-19 2014-09-17 科蒂亚(新乡)生物技术有限公司 一种细胞裂解液及其制备工艺
CN104805074A (zh) * 2015-04-20 2015-07-29 徐州医学院 一种制备粘性末端dna组装底物的方法
CN108220337A (zh) * 2018-01-30 2018-06-29 郭小芹 一种dna病毒重组体的构建方法
JP7209980B2 (ja) 2020-12-11 2023-01-23 東洋紡株式会社 Dnaポリメラーゼの5’→3’エキソヌクレアーゼ活性ドメインに特異的に結合する抗体
CN113215145B (zh) * 2021-05-08 2022-07-08 河南大学 一种不依赖pcr反应的短片段克隆方法
CN113862299B (zh) * 2021-06-02 2023-11-28 上海南方模式生物科技股份有限公司 一种用于同源重组的载体及其应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001004288A1 (en) * 1999-07-09 2001-01-18 The European Molecular Biology Laboratory Methods and compositions for directed cloning and subcloning using homologous recombination
US20070148775A1 (en) * 2005-12-02 2007-06-28 Seung-Goo Lee Method for cloning and expressing target gene by homologous recombination

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5518901A (en) * 1993-04-19 1996-05-21 Murtagh; James J. Methods for adapting nucleic acid for detection, sequencing, and cloning using exonuclease
AU752105B2 (en) 1997-12-05 2002-09-05 Europaisches Laboratorium Fur Molekularbiologie (Embl) Novel dna cloning method
US20020165175A1 (en) * 2001-04-17 2002-11-07 Xiaowu Liang Fast and enzymeless cloning of nucleic acid fragments
US8148155B2 (en) * 2002-04-22 2012-04-03 Novozymes, Inc. Methods for increasing homologous recombination of a nucleic acid sequence
CN1162546C (zh) * 2002-07-30 2004-08-18 复旦大学 基于体内同源重组的构建遗传工程生物体的方法
CA2615532C (en) 2005-07-26 2016-06-28 Sangamo Biosciences, Inc. Targeted integration and expression of exogenous nucleic acid sequences

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001004288A1 (en) * 1999-07-09 2001-01-18 The European Molecular Biology Laboratory Methods and compositions for directed cloning and subcloning using homologous recombination
US20070148775A1 (en) * 2005-12-02 2007-06-28 Seung-Goo Lee Method for cloning and expressing target gene by homologous recombination

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BERROW N.S. ET AL.: "A versatile ligation- independent cloning method suitable for high-throughput expression screening applications", NUCLEIC ACIDS RES., vol. 35, no. 6, March 2007 (2007-03-01), XP055004202 *
CHARTIER C. ET AL.: "Efficient generation of recombinant adenovirus vectors by homologous recombination in Escherichia coli", J. VIROL., vol. 70, no. 7, July 1996 (1996-07-01), pages 4805 - 4810, XP002144833 *
OLINER J.D. ET AL.: "In vivo cloning of PCR products in E. coli", NUCLEIC ACIDS RES., vol. 21, no. 22, 11 November 1993 (1993-11-11), pages 5192 - 5197, XP002064297 *
See also references of EP2251423A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012133572A1 (ja) 2011-03-30 2012-10-04 国立大学法人富山大学 形質細胞または形質芽細胞の選択方法、目的抗原特異的な抗体の製造方法、新規モノクローナル抗体
US9487583B2 (en) 2011-03-30 2016-11-08 National University Corporation University Of Toyama Method for selecting plasma cells or plasmablasts, method for producing target antigen specific antibodies, and novel monoclonal antibodies
JPWO2015107888A1 (ja) * 2014-01-14 2017-03-23 国立大学法人 鹿児島大学 幹細胞における腫瘍化原因細胞の新たな標識法と治療法
US10416165B2 (en) 2015-08-10 2019-09-17 National University Corporation University Of Toyama Method for producing antigen specific monoclonal antibody
WO2020171020A1 (ja) 2019-02-18 2020-08-27 株式会社エヌビィー健康研究所 細胞の選抜方法、核酸の製造方法、組換え細胞の製造方法、目的物質の製造方法、医薬組成物の製造方法、及び試薬

Also Published As

Publication number Publication date
EP2251423A1 (en) 2010-11-17
EP2251423B1 (en) 2016-01-13
KR20100135781A (ko) 2010-12-27
EP2251423A4 (en) 2011-10-05
KR101524332B1 (ko) 2015-05-29
JPWO2009110606A1 (ja) 2011-07-14
AU2009220532B2 (en) 2013-10-31
US20110117609A1 (en) 2011-05-19
CN102007212A (zh) 2011-04-06
CN102007212B (zh) 2013-11-20
AU2009220532A1 (en) 2009-09-11
EP2251423A9 (en) 2012-03-28
US8841094B2 (en) 2014-09-23
JP5628664B2 (ja) 2014-11-19
CA2717618A1 (en) 2009-09-11

Similar Documents

Publication Publication Date Title
JP5628664B2 (ja) 相同組換え方法およびクローニング方法並びにキット
US11427818B2 (en) S. pyogenes CAS9 mutant genes and polypeptides encoded by same
CN107922931B (zh) 热稳定的Cas9核酸酶
JP6626830B2 (ja) Dna操作のための複数のトランスポザーゼアダプター
JP6594955B2 (ja) シントン形成
US20180320201A1 (en) S. pyogenes cas9 mutant genes and polypeptides encoded by same
CN104520429A (zh) 通过Cas9-crRNA复合物的RNA指导的DNA裂解
WO2011027808A1 (ja) 標的遺伝子由来配列を含む連結dna断片の特異的作製方法
JP2016507252A (ja) 定方向進化のためのライブラリーの作製方法
CN107488655B (zh) 测序文库构建中5’和3’接头连接副产物的去除方法
AU2020209757B2 (en) A method for assembling circular and linear DNA molecules in an ordered manner
US10837012B2 (en) Compositions and methods for polynucleotide assembly
JPWO2002034907A1 (ja) 1本鎖核酸の合成方法
US20230183678A1 (en) In-cell continuous target-gene evolution, screening and selection
Lumba Splice Site Recognition During Early Spliceosome Assembly
JP2024509048A (ja) Crispr関連トランスポゾンシステム及びその使用方法
JP2024509047A (ja) Crispr関連トランスポゾンシステム及びその使用方法
KR20240004213A (ko) 신규 중합효소 및 이의 용도
CN117321202A (zh) 具有宽松pam要求的双链dna的编辑
JP2004041083A (ja) 二本鎖dna分子の効率的合成方法
WO2004101783A1 (fr) Methode d'utilisation d'une sequence d'adn cible

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980108826.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09717816

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010501983

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2717618

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009717816

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009220532

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 20107022275

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2009220532

Country of ref document: AU

Date of ref document: 20090306

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12921367

Country of ref document: US